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8.1 Language Description

Oaklisp [4,5] is an object-oriented extension of Scheme; any program conforming to the
R3RS Scheme standard [6] should run under Oaklisp with identical results. Thus, the
most efficient way to describe Oaklisp is to mention the features that distinguish it from
Scheme.

The fundamental computational model of Oaklisp is based on generic operations rather
than functions. When an operation is applied to an object, the piece of code (or “method™)
that is actually invoked depends on the type of the object. For example, consider what
happens when the expression (car mylist) is evaluated in Oaklisp. The variables
car and mylist are dereferenced to yield two objects, the first of which is an operation
— an anonymous token that denotes an abstract computation. This operation is then
applied to the object to which the variable mylist was bound. If the object is an
instance of the Oaklisp type cons-pair, ! then a method is invoked which returns the
contents of the first storage slot in the object. If the object is an instance of some type
that doesn’t have a car method, the run-time system checks to see whether a supertype
of that type has a method for performing the operation. In case of conflict, the system
invokes the method that would be found during a left-to-right, depth-first search of the
multiple inheritance graph starting at the type of the object.

Syntactically, Oaklisp is similar to Scheme. Oaklisp has all the standard primitive
special forms such as if and quote, but 1lambda is not primitive. In its place is the
add-method special form, which associates a method with a type and an operation.

(add-method ( operation ( type . ivarlist ) . arglist ) body) Special Form

Returns operation after adding a method for operation to the method table of fype. The arguments
to the method are specified by arglist, and instance variables that are referenced in the method’s
body are declared in ivarlist. Free variables in a method are evaluated in the lexical context
in which they appear, with the bindings from the time the form was evaluated, just as with
lambda in regular Scheme. The operation and type positions of the form are evaluated at run
time.

The phrase “the type cons-pair” means “the type to which the variable cons-pair is bound.” We
will use this convention throughout this chapter.
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The Oaklisp run-time environment includes all of the standard Lisp types such as
numbers, conses, and symbols. Unlike other dialects of Lisp, types in Oaklisp are
explicitly represented by objects that can be manipulated at run time. Thus, Oaklisp
types are first-class entities in the same sense as Scheme functions. Oaklisp types are
instantiated by the make operation. For example, the call (make hash-table)
causes a message containing the make operation to be sent to the hash-table type
object, which then allocates, initializes, and returns a new hash table object. Similarly,
one can create a new operation by applying make to the operation type, and one can
create a new type by applying make to the type type.

To see how Oaklisp works in practice, let us define a new type of cons cell using
make.

(set! mycons-cell

(make type
(list pair) ; supertypes |
(list ’slotl ’slot2))) ;instance variable names

The make method for types takes two extra arguments: a list of the types from
which the new type will inherit methods, and a list of names for the new type’é instance
variables. The type mycons-cell inherits from pair, which has methods for high-
level list-processing operations such as map and print. These methods are written in
terms of the accessor operations car and c¢dr, so we can cause instances of mycons-
cell to be fully functional list components simply by supplying car and cdr methods
for the type:

(add-method (car (mycons-cell slotl) self) slotl)

(add-method (cdr (mycons-cell slot2) self) slot2)

Now all we have to do is define the method for initializing instances of mycons-
cell, and then we can instantiate the type using make:

(add-method (initialize (mycons-cell slotl slot2) self x y)
(set! slotl x)
(set! slot2 y))

{make mycons-cell 1 (2 3))

The make operation really only needs to receive one argument (the object which
denotes the type that is being instantiated) but our call contains the extra values 1
and ’(2 3). Before returning our new object, the code for make sends the object an
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initialize message which includes these two values. Our initialize method
then uses these values to set up the object’s internal state.

Because mycons-cell has car and cdr methods and inherits all of the system’s
list-processing methods from the supertype pair, our new object acts exactly like any
other cons cell in the system. For example, when we apply the print operation to the
object, it prints out as “(1 2 3)”.

Although the type mycons-cell merely duplicates the functionality of the existing
cons-pair type, we could just as easily define a radically different type of cons cell,
such as a variety that contains thunks which aren’t evaluated until their values are actually
needed. Such a type would make it possible to build potentially infinite, lazily evaluated
lists. In fact, in our implementation of Oaklisp, the variable prime-1ist is bound to
a list of all prime numbers that was defined using this type of lazy cons cell.

Because Oaklisp types are represented by ordinary run-time objects, it is even pos-
sible to define new kinds of types at user level. For example, we have defined the
coercible-type type, each instance of which is a type that responds to the coercer
operation by returning the coercion operation for that type. For example, when the expres-
sion ( (coercer string) ‘foo) isevaluated, the coercer operation is applied to
the coercible type string, which returns the (anonymous) operation for coercing things
to strings. This operation is then applied to the symbol ’foo, and because a method for
the string-coercer operation has been defined for symbols, the result of this call is the
string “foo”.

This ability to add significant new features to Oaklisp at the user level is a result of
the consistency of its semantics. Everything in the Oaklisp world is a full-fledged object
with a type that fits into the inheritance hierarchy, and all computation occurs as the
result of generic operation applications.

Due to the language’s temporal consistency, add-method can be done at any time,
and it is thus necessary for the method dispatch mechanisms to be dynamically modifiable.
This is in contrast to statically compiled implementations of languages like C++, but is
similar to interactive programming environments like Common Lisp’s CLOS. Since these
dynamic modification mechanisms must be present for processing incremental method
addition, it seems capricious to deny the programmer run-time access to them.

8.2 Memory Format

Most objects, whether system- or user-defined, are stored in a standardized “boxed”
format. The first word in this format is a reference to the object’s type. The type
of an object not only carries semantic weight, but also permits the run-time system to
determine the answer to practical questions such as the number of storage cells that are
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included in a given object. The type is followed by storage for the object’s instance
variables.

lazy-cons-pair
cons-pair car-thunk
the-car ¢dr-thunk
the-cdr car-flag

cdr-flag

The two objects shown here are instances of the pre-defined cons-pair type and
a hypothetical, user-defined lazy-cons-pair type. Each of the objects contains a
reference to the type of the object, followed by an appropriately sized block of storage
for its instance variables.

Our implementation of Oaklisp currently runs only on machines with 32-bit words
(although porting to a machine with slightly different word size, such as 36 or 24, should
be very simple). These words are divided into two contiguous chunks: free words and
allocated words. The free pointer points to the division between these two chunks, and
it is incremented as memory is allocated. When allocating an object would push the free
pointer beyond the limits of memory, a garbage collection is performed.

The allocated portion of memory is divided into boxed objects and solitary cells. Each
aggregate object is a contiguous chunk of cells. The first cell of an object is a reference
to its type; if the type is variable length, the second stores the length of the object,
including the first two cells. The remainder of the cells hold the instance variables.
Solitary cells are cells that are not part of any object, but are the targets of locatives, and
are used heavily in the implementation of variables, discussed later.

8.2.1 Tags

The low two bits of each word contain a tag value which tells how the word should be
interpreted. The most important question that the tag answers is whether a word should
be interpreted as an “immediate” object or as a reference to a “boxed” object that lives
elsewhere. |

For example, if the tag has the value 00, the high 30 bits of the word are interpreted
as an integer, but if the tag has the value 11,, then the high 30 bits of the word are
interpreted as a reference to the boxed object that resides at the address specified by
those 30 bits.

While reserving 2 bits for a tag clearly costs us something in the case of an integer,
the tag is free in the case of a reference to a boxed object because the 2 low bits of a
word-aligned pointer always have the same value and hence carry no information.
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Fixnums, locatives, and characters are stored as single-word, immediate objects whose
types are specified by their tag bits.

313029282726...111098 765432 |10 | vype
two’s complement integer 00 | fixnum .
data subtype 1 0 | other immediate type
address 0 1 | locative (pointer to cell)
address 1 1 | reference to boxed object

To simplify garbage collection, we do not permit any exceptions to the tagging proto-
col. As a result, strings and code vectors are not as dense as they would be if raw binary
data could be stored in memory.

8.2.2 Efficient Access to Predefined Slots in Objects

To justify this tagging scheme, consider what happens when the Oaklisp processor ex-
ecutes a edr instruction, ignoring type checking for the moment. The processor first
strips the tag value of 11, from the reference which is the instruction’s argument to obtain
a pointer to a memory location. The processor then fetches the contents of the second
slot of the memory structure that begins at that location. An interesting optimization
is possible: subtraction rather than bit-wise and can be used to strip the tag from the
reference. Then the C expression to perform cdr on a reference r (an unsigned long) is

*((ref *)(r - 0x3) + 2)

which gets constant folded to
*(ref *)(r + 5) /* 5 = 2%4 - 3 */

Most computers can use addressing modes to dereference a pointer with an offset, so
the cdr operation can be performed by a single instruction of the form

141l 5erl ,r2.

But even on computers that can’t do this in one instruction, it is just as easy to add
an offset of 5 as it would be to add an offset of 8 to access the cdr of a cons cell, so no
efficiency is lost by using a tag value of 3 rather than a tag value of O for references.

The only time when a tag value of 0 would be better is when the machine must access
the type field of an object. However, some machines ignore the low two bits when
performing a long word fetch anyway, and on the remaining machines the advantage
of avoiding tag manipulations on arithmetic seems to outweigh the overhead of slightly
slower access to the type fields of boxed objects.
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8.2.3 Storage Reclamation

Our garbage collector is of the popular stop-and-copy variety [1]; the spaces to be
reclaimed are renamed old, all accessible objects in the old spaces are transported to a
new space, and the old spaces are reclaimed. The data present in the initial world is
considered static and is not part of old space in normal garbage collections, only in full
garbage collections, which also move everything not reclaimed into static space. Before
dumping the world to a save file, a modified full garbage collection is performed in
which the stacks are left out of the root set.

Locatives can point to a single cell in the middle of a large object, and the garbage
collector is able to deallocate all of an object except for those cells pointed to by locatives,
which become solitary cells. Due to this complication, the collector makes an extra pass
over the heap. A paper with more complete details on this technique is in press.

The weak pointer table is scanned at the end of garbage collection, and references to
deallocated objects are discarded. Desired new space size is changed dynamically, being
expanded after a garbage collection when the allocation system judges that it would have
been better to have allocated more space. The entire garbage collector is written in C,
and even in code that places heavy demands on the storage allocation subsystem, such
as bignum arithmetic, the time spent in the garbage collector is a tiny fraction.of the
total time.

The user interface to the garbage collector is quite simple. Normally, the user need
not be concerned with storage reclamation, as upon the exhaustion of storage the garbage
collector is automatically invoked. A switch is provided to allow the user to turn off
noise messages about garbage collection, and Oaklisp operations to force normal and full
garbage collections are provided.

8.2.4 Inheritance of Instance Variables

reference to type foo
value of foo-~1

value of baz~-1
value of baz-2
value of baz-3

value of bar-1
value of bar-2

Pictured above is the memory format for an instance of a type foo which inherits from
types bar and baz. The type bar has instance variables bar-1 and bar-2, the type
baz has instance variables baz~1, baz-2 and baz-3, and foo has instance variable
foo-1.
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The sharp-eyed reader will note that the instance of foo is structured such that the
instance variables associated with its constituent types foo, bar, and baz are stored in
separate, contiguous memory blocks. Because Oaklisp methods are not allowed to contain
direct references to the instance variables of supertypes, this memory format permits the
compiler to implement all of the instance variable references in a method using a base-
pointer-relative addressing mode. At run time, the processor’s base-pointer is always set
to the beginning of the instance variable block for the type which actually supplied the
method which is currently being executed. )

When a type inherits a type through two different routes, it only gets a single instance
variable block for that type.2 Because of our strict segregation of instance variables
from the component types in a composite type, if the instance variables of two types
inherited by a third have the same names, they are still distinct variables. This is in
marked contrast to ZetaLisp Flavors or CLOS, in which references to instance variable
must pass through mapping tables, resulting in considerable overhead. There are also
important modularity considerations in favor of our scheme which are beyond the scope
of this document, but are discussed in detail by Snyder [7]. Our semantics allow us
to reference instance variables very quickly once the location of the relevant. instance
variable block for a given method has been determined. It also allows us to always use
the same compiled code for a given method, regardless of whether it is being invoked
upon an instance of the type for which it was originally defined or upon an instance of
an inheriting type.

8.2.5 The Memory Format of Types and Operations

To show more of the character of the Oaklisp system, we will now look at the internal
representation of instances of two important types. All objects, including these, have the
same basic format as instances of user-defined types.

operation

lambda?
cache-type
cache-method
cache-type-offset

Operations are tokens whose only essential property is their identity. Thus, in our initial
implementation, the memory format of an operation included only a single word: a
reference to the operation type. Currently, operations contain some state that the

2This was a rather arbitrary implementation decision, and should not be relied upon by users. In fact, it
will likely be changed in a future release.
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run-time system uses to speed up message sending. For example, if an operation has
only one method and that method is associated with the root of the type hierarchy,
then it is possible to jump straight to this method whenever the operation must be
performed. We indicate that an operation has this property by storing its sole method in
its lambda? slot. (The instance variables associated with our method-caching scheme
will be described later in this chapter.)

In order to allow the C code to refer to instance variables of important low-level system
types as efficiently as possible, types whose instance variables are used directly by the C
code are rop wired, which forces the involved instance variables to appear first in memory.
Except for the inability to inherit from more than one top-wired type at once, this top
wiring is invisible to users. Most top-wired types have names like %code-~-vector or
%closed-environment, and are not of interest to users anyway.

settable-operation

lambda?
cache-type
cache-method
cache-type-offset

the-setter

Settable operations [3] (a subtype of normal operations described below) contain two
blocks of instance variables, one for the settable-operation type, and another for
the operation type from which it inherits. Because operation is top wired, its
instance variable block appears at the top of an instance of settable-operation.

Now we look at the memory format of a type. In particular, we will show the object
which represents the settable-operation type. Thus, the reference in the header
of the settable operation shown above points to this object:

fype
instance-length 6
supertype-list (#<Type OPERATION>)
ivar-list (the-setter) B
type-bp-alist “{(#<Type SETTABLE-OPERATION> . 5)
(#<Type OPERATION> . 1))
operation-method-alist | ((#<Operation SETTER> . #<Method 3652>))

As always, the first word in the object is a reference to its type, in this case, the type
type. The second word in the object contains the value of its first instance variable,
instance-length, which tells the system how many words of storage need to be
allocated for each instance of the type. The garbage collector also uses this information
when it copies instances of the type from old to new space.
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The rest of the information in a type object governs the method lookup process which
occurs when an operation is applied to an instance of the type. For example, the variable
operation-method-alist stores the association between operations and methods
for the type. However, this association list contains no information about the methods
of the type’s supertypes, so if a method can’t be found locally for a given operation, a
depth-first search of the inheritance graph is performed. The immediate supertypes of a
type are recorded in the variable supertype-list.

Once a method has been found for an operation, the processor’s base-pointer register
is loaded with the address of the relevant instance variable block in the object that was
the operation’s first argument. The base pointer is set using to type-bp-alist, which
describes the layout of the various instance variable blocks in instances of the object’s
type.

Finally, the field ivar-1ist specifies the layout of the variables in an instance
variable block for the type. This map is used by the compiler to compute the offsets for
the base-pointer-relative bytecodes that it emits for references to instance variables.

8.3 Processor Model

Our implementation of Oaklisp is based on a virtual processor that is emulated by a C
program. The virtual processor contains three important registers: the program counter,
the environment pointer, and the base pointer. When an operation is applied to an object
by the funcall-cxt instruction, the processor pushes the values of these three registers
on its context stack and then searches for a method for the operation, starting at the type of
the object and continuing up the inheritance hierarchy if necessary. The funcall-tail
instruction, which is identical to the funcall-cxt instruction except that it does not
push anything onto the context stack, is used when the processor doesn’t need to return
to the current execution context and hence shouldn’t save its state. The method which
results from this search contains two parts: a reference to a vector of instructions, and a
reference to a vector of storage cells which represents the method’s lexical environment.
These two references are used to set the processor’s program counter and environment
pointer. The base pointer is set to the top of the block of instance variables from the
type the method was defined for.

8.3.1 Calling Conventions

The processor contains two stacks: one for values and one for saved processor state.
This separation allows the value stack to smoothly accumulate values for function calls.
Before a tail-recursive call, the parameters of the current call must be removed from
the stack. Because return addresses do not have to be removed from the value stack
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during this process, stack motion is reduced. We feel that this dual stack system with an
unframed value stack is primarily responsible for the efficiency of function calls in our
implementation.

The calling protocol is illustrated by the following code vector, which the compiler gen-
erated for the expression (lambda (a b) (foo (bar b (baz b)) a)). The
convention for verifying that the correct number of arguments is included in each func-
tion call can also be seen here; the processor has a nargs register whose value is set
by callers and checked by callees.

Bytecode Resulting value stack | English Description
contents
(check-nargs 2) ... ba The lambda’s args are on the stack,
(load-stk 0 a) ... baa Preload second arg for £oo.
(load-stk 2 b) ... baab Load arg for baz.
(load-glo-con baz) ... baabbaz
(store-nargs 1)
(funcall-cxt) ... baaZ Call baz and return,
yielding second arg for bar.
(load-stk 3 b) ... baaZb Load first arg for bar.
(load-glo-con bar) ... baaZbbar
(store-nargs 2)
(funcall-cxt) ... baaR Call bar and return,
yielding first arg for foo.
(blt-stk 2 2) ... akR blow away the lambda’s args
(load-glo-con foo) ... aRfoo
(store-nargs 2)
(funcall-tail) call £oo, but don’t return.

8.3.2 C-Level Optimizations

In addition to optimizations discussed elsewhere in this chapter, a number of tricks at
the C level were used to speed up the bytecode emulator.

Judicious use of register declarations and manual reuse of variables sped things up
considerably, as did avoiding all procedure calls in common cases, and taking care that
important system variables were able to live in registers. The latter was somewhat
difficult because of interactions with the garbage collector. In our solution, storage
allocation was done with a macro which incremented the free pointer and checked it
against the upper limit of free space. Only if no storage was available was a procedure,
namely the garbage collector, called. In order to allow register variables to hold members
of the root set, such variables were pushed onto a special stack before calling the garbage
collector, and popped off afterwards. Similarly, the value and context stack pointers were
copied from local variables to global ones before calling the garbage collector. This
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allowed the context and value stack pointers, as well as emulator temporaries, to be kept
in registers, which resulted in considerable speedup.

Tag checking was accomplished by macros, which were carefully tuned by bench-
marking and examining the assembly level output of the compiler. Similarly, overflow
checking for fixnum arithmetic was carefully tuned. In the case of overflow checking,
we provided a number of different ways to detect overflows, selectable by compile time
switches, because of extra constructs available on some machines. Much to our chagrin,
although most machines raise an overflow flag, we were unable to find any way to access
these flags, even by abandoning portable constructs. If this optimization were possible,
we estimate that the tak benchmark could be sped up by about 10%.

Stack buffer overflow and underflow checking was another good target for optimiza-
tion. Rather than doing bounds checking each time a value is pushed or popped, the
code was modified to check only at strategic locations, where it was ensured that the
stack buffer was in a state where it was appropriate to execute the entire next instruction.
By making sure that there is always at least one element on the stack, unary instructions
were able to dispense with buffer bounds checking entirely. Such instructions are quite
common, including operators like car and contents, so this optimization alone was
quite fruitful. All in all, efforts to economize on buffer bounds checking were well spent,
resulting in about a 30% speed-up.

Since stack dumping or reloading procedures are called when the stack pointer exceeds
the stack buffer bounds, and for speed reasons the stack pointers are kept in register
variables, the stack buffer bounds checking macros load and unload the stack pointers
from global structures across these procedure calls. Even more speed could be gained
by using virtual memory facilities to trap at the edges of the stack buffer, obviating the
need for explicit stack buffer bounds checking entirely, but at the loss of portablity.

8.4 Compilation

Our Oaklisp compiler implements the following primitive language constructs:
e variables
e combinations
¢ quote
o if
e make-locative
¢ add-method
e labels
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All other special forms are macro-expanded in combinations of the primitive forms.
For example, the familiar special forms lambda and set! are macro-expanded into
combinations of function calls and add-method and make-locative forms.

8.4.1 Constant Folding and Frozen Variables

The compiler knows about the special properties of a number of operation subtypes,
such as open-coded-mixin which informs the compiler that an operation can be open
coded, no-side-effects-mixin, which permits constant folding, and backward-
args-mixin, which causes the arguments to the operation to be pushed onto the stack
in reverse order when the operation is open coded. These, in concert with a mechanism
by which global variables can be declared frozen, which means that their values will never
change, allow our simple compiler to perform a surprisingly wide range of optimizations.

For example, the 1ist operation contains backward-args-mixin and open-
coded-mixin, and is frozen. Thus, when compiling the expression (1list 1 2 3),
the compiler first generates code to push the arguments in reverse order:

(load-imm 1) (load-imm 2) (load-imm 3)

and then calls 1ist’s open-coder to obtain the following efficient bytecode sequence:

(load-reg nil) (reverse-cons) (reverse-cons) (reverse-cons)

where the reverse-cons instruction is a version of the cons instruction that takes
its arguments in reverse order.

Another example is the expression (set! (car x) y). This is macroexpanded to
((setter car) x y). Both setter and car are frozen, and the setter opera-
tion has no-side-effects-mixin, so the (setter car) expression is constant
folded at compile time to an anonymous operation. This anonymous operation has
open-coded-mixin, so it gets open coded as the instruction (set-car), and the
whole code fragment thus compiles to

(load-glo-con y) (load-glo-con x) (set-car).

8.4.2 Function Calls and Global Variables

The expansion of lambda makes use of the fact that all upward paths through the
Oaklisp inheritance graph terminate at the distinguished type object, and so any method
associated with this type functions as a “default” method that applies to objects of
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any type. Thus, (lambda (x y) (+ x y)) can be macro expanded to (add-
method ((make operation) (object) x y) (+ x y)). When evaluated,
this expansion generates a new anonymous operation and then associates it with a method
at the top of the inheritance hierarchy.

The special form (set! foo 3) is macro-expanded into the combination ( (set-
ter contents) (make-locative foo) 3). This combination is compiled as
follows. First, the compiler emits the instruction (LOAD-IMM 3) to load the immediate
value 3 onto the stack. ” -

Next, after determining that the variable foo is global, the compiler translates the
special form (make-locative foo) into the pseudo-instruction load-glo, sup-
plying the symbol foo as an argument. When this instruction is encountered by the
Oaklisp loader, the relevant global namespace is consulted to find the memory location
that is associated with the variable name foo. A locative to this memory cell is then
created and plugged into the argument field of the instruction, which is then turned into
an ordinary LOAD~-IMM instruction. |

Finally, the combination (setter contents) is constant folded to yield the anony-
mous operation for storing a value in the memory location referenced by a locative. The
compiler then notices that the type of this operation includes the supertype open-
coded-mixin, so a message is sent to the operation requesting a bytecode sequence
for executing the operation directly (that is, without a function call). In this case, the
operation returns the single instruction (set-contents).

So, the expression (set! foo 3) is macro expanded to ( (setter contents)
(make-locative £foo) 3), which is compiled into the bytecode sequence (load-
imm 3) (load-glo foo) (set-contents) and then converted by the loader
into (load-imm 3) (load-imm <locative>) (set-contents).

Another specially marked version of 1oad-imm called load-code is emitted when
the compiler turns an add-method special form into a call to the install-method
operation. The argument to this instruction is a symbolic representation of a code vec-
tor. The Oaklisp assembler turns this into a list of opcodes together with some sym-
bolic variable-patching information, and then the Oaklisp loader resolves the variable
references and constructs the actual code vector in memory. The load-code pseudo-
instruction is then turned into an ordinary load-imm instruction whose argument is a
reference to the code vector.

An example of the code that would be generated for an add-method special form is
shown below. Note that the loader converts the pseudo-instruction load~glo-con into
the instruction load-imm-con, which the processor treats as a 1oad~imm instruction
followed by the locative-dereferencing instruction contents.
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(add-method (jump (frog x-pos color)
| self distance)
(set! x-pos (+ distance x-pos))
(set! color ’‘greener))

_ .
;assumed ivar map

((load-code (code (x-pos color)
( (check-nargs 2)
(load-bp 0 x-pos)
(load-stk 2 distance)
(plus)
(store-bp 0)
(pop 3)
(load-imm greener)
(store-bp 1)
(return))))
(load-glo-con jump)
(load-glo-con frog)
(load-glo-con install-method)
(store-nargs 3)
(funcall-tail))

8.4.3 Local Function Calls and Iteration

All looping is expressed vis tail recursion, as evident from the primitive forms the
compiler recognizes listed above. Thus, in order for tight loops to be compiled efficiently
it is necessary for the compiler to optimize heavily certain tail-recursive constructs. In
particular, when the compiler encounters a 1abels form in which the labeled procedures
are only called tail recursively and never referenced in any other way, it emits the code
for the labeled procedures inline and compiles calls to them as simple branches, as in
the following example.

This form describes how to append lists. Since append is so frequently used, it was
written as a local tail-recursive loop.

(add-method (append (pair) oldcopy b)
(let ((newcopy (cons (car oldcopy) b)))
(let next ((oldpair (cdr oldcopy))
(last-newpair newcopy))
(if (not (null? oldpair))
(next (cdr oldpair)
(set! (cdr last-newpair)
(cons (car oldpair) b)))
newcopy))))
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This inner loop, which seems to involve procedure calls, nevertheless compiles into
efficient code, as seen in the compiler’s output.

( (check-nargs 2)
(load-stk 1 b)
(load-stk 1 oldcopy)
(car)

(cons)
(load-stk 0 newcopy)
(load-stk 2 oldcopy)
(cdr)
label0 (load-stk 0 oldpair)
(branch-nil elsel)
(load-stk 4 D)
(load-stk 1 oldpair)
(car)
(cons)
(load-stk 2 last-newpair)
(set-cdr)
(blast 2)
(cdr)
(branch label0)
elsel (pop 2)
(blt-stk 1 2)
{(return)))

8.5 List Optimizations

Because lists are so ubiquitous in lisp, it is desirable to expend some effort speeding up
access to them. On the other hand, we designed Oaklisp so that cons cells would fit
naturally into an extensible type hierarchy, as the example given in Section 8.1 shows. In
initial versions of the system car and cdr were not specially handled, but were regular
operations like any others. Because so much time was spent in these operations, we
decided to make them into instructions. These instructions are very simple: they check
if the object they are being applied to is a simple cons cell, of type cons~pair, which
is held in a special C variable to make this check fast. If its argument is of the correct
type, the instruction simply returns the appropriate value. Otherwise, the instruction traps
and the normal method lookup takes place.

This optimization sped the system up by at least a factor of two. However, because
it was made before method caching was inserted, it is not clear how much the system
would slow down if it were to be disabled at this point.
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Since the standard list processing operations, like append!, map, and copy, are
called so frequently, the methods for these operations were carefully hand tuned.

8.6 Bignums

Bignums were implemented very late, and we didn’t put much effort into them. They are
represented in signed magnitude format, with the magnitude represented as a list of base
10,000 digits, for efficient printing and ease of carry manipulation during multiplication.
Rather than the usual O(nm) time multiplication algorithm, where n and m are the num-
ber of digits in the two numbers being multiplied, we use an O(nm®>%) time algorithm,
where n > m. In addition, because bignum division is so expensive, a division cache of
the last two bignums divided is kept.

8.7 Locatives

Locatives are language-level pointer objects that permit the contents of memory cells to
be retrieved and modified. Locatives are created with the special form make-locative
and are derefenced with the operations contents and (setter contents).

Locatives are employed throughout the Oaklisp system. For example, locales and
closures contain locatives that point to the storage cells that actually contain the values
associated with variable names.

Locatives are used to keep the value stack “clean,” as required by the implementation
of call/ce [3]. The code that is emitted to close over or side-effect a variable causes
a locative to be made to that variable. When the compiler notices that a locative is being
made to a stack variable, it generates a method preamble that allocates a cell for that
variable in the heap, leaving a locative to this cell on the stack instead. For example,
the code fragment

(let ((a (£f1))
(b (£2)))
(foo a b)
(set! b (£3))
(bar a b))

keeps a on the stack but puts the cell for b in the heap:
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Locatives can be made to refer to any sort of variable, which after all are not distin-
guished at the language level. If one is made to an instance variable, the surrounding
object can get garbage collected, leaving a solitary storage cell.

Locatives obey the following identities.

(contents (make-locative wvar)) = var
(make-locative (contents loc))= loc

Although locatives complicate the garbage collector slightly, we found them so useful
that we consider them well worth the price of a dedicated tag code and a somewhat
slower garbage collector.

8.8 Methods

In describing how methods are created, represented, and looked up, we find ourselves
concerned with references to instance variables, so we shall also describe how that works.

A method has two instance variables, one of which holds the code object that imple-
ments the method. The other contains the environment vector that holds refererices to
lexical, or non-global, variables that were closed over. Global variable references are
implemented as inline locatives to value cells.

8.8.1 Code Vectors

Code is represented by vectors of integers, which are interpreted as instructions by the
bytecode emulator. This format allows code to be stored in the same space as all other
objects, and allows the garbage collector to be ignorant of its existence, treating code
vectors like any other vector. Bytecodes are 16 bits long, with the low 2 bits always 0.
Here is an example taken from the middle of a code vector:

8 bit inline arg | 6 bit opcode | 0 0 | 8 bit inline arg | 6 bit opcode | 0 0
14 bit instruction 0 0 | 8 bit inline arg | 6 bit opcode | 0 0

14 bit relative address 0 O | 8 bit inline arg | 6 bit opcode | 0 0

8 bit inline arg | 6 bit opcode | 0 0 | 8 bit inline arg | 6 bit opcode | 0 0
14 bit instruction 00 14 bit instruction 00
arbitrary reference used by last instruction of previous word

14 bit instruction 0 0 | 8 bit inline arg | 6 bit opcode | 0 0
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Note the reference to an arbitrary object in the middle of the code. To allow the
garbage collector to properly handle code vectors, as well as to allow the processor
to fetch the cell efficiently, this reference must be cell aligned. When the processor
encounters an instruction that requires such an inline argument, if the program counter is
not currently pointing to an aligned location then it is suitably incremented. This means
that the assembler must sometimes emit a padding instuction, which will be ignored,
between instructions that require inline arguments and their arguments.

8.8.2 Environment Vectors

An environment vector is a block of cells, each of which contains a locative to a cell.
When the running code needs to reference a closed-over variable, it finds the location
of the cell by indexing into the environment vector. This index is calculated at compile
time, and such references consume only one instruction.

Just as it is possible for a number of methods to share the same code, differing only in
the associated environment, it is also possible for a number of methods to share the same
environment, differing only in the associated code, a possibility proposed by Sussman
and Steele [8] and partially implemented by the Orbit compiler’s closure-hoisting [3].
Currently the Oaklisp compiler does not generate such sophisticated constructs.

8.8.3 Invoking Methods

Methods are looked up by by doing a depth-first search of the inheritance tree. Some
Oaklisp code to find a method would look like this,

(define (%find-method op typ)
(let ((here (assq op (type-operation-method-alist typ))))
(if (null? here)
(any? (lambda (typ) (%find-method op typ))
(type-supertype-list typ))
(list typ (cdr here)))))

Once this information is found, we need to find the offset of the appropriate block of
instance variables, put a pointer to the instance-variable frame in the bp register, set the
other registers correctly, and branch.

(define (%send-operation op obj)
(let ((typ (get-type obj)))
(destructure (found-typ method) (%find-method op typ)
(set! ((%register ’current-method)) method)
(set! ((%register ’'bp))
(%increment-locative
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(%crunch (%data obj) %loc-tag)
(cdr (assq found-typ (type-bp-offset-alist typ)))))
(set! ((%register ’‘env)) (method-env method))
(set! ((%register ’'pc))
(code-body-instr (method-code (%method)))))))

Of course, the actual code to find a method is written in C and has a number of tricks
to improve efficiency.

° Simple lambdas (operations which have only one method defined at the type ob-
ject) are ubiquitous, so the overhead of method lookup is avoided for them by
having a lambda? slot in each operation. This slot holds a zero if no methods
are defined for the given operation. If the only method defined for the operation is
for the type object then the lambda? slot holds that method, and the method
is not incorporated in the operation-method-alist of type object. If
neither of these conditions holds, the 1ambda? slot holds #£.

¢ To reduce the frequency of full-blown method lookup, each operation has three
slots devoted to a method cache. When op is sent to obj, we check if the cache-
type slot of op is equal to the type of obj. If so, instead of doing a method search
and finding the instance-variable frame offset, we can use the cached values from
cache-method and cache-offset. In addition, after each full-blown method
search, the results of the search are inserted into the cache.

The method cache can be completely disabled by defining NO_METH_CACHE when
compiling the emulator. We note in passing that we have one method cache for
each operation. In contrast, the Smalltalk-80 [2] system has an analogous cache at
each call point. We know of no head-to-head comparison of the two techniques,
but suspect that if we were to switch to the Smalltalk-80 technique we would
achieve a higher hit rate at considerable cost in storage.

e In order to speed up full-blown method searches, a move-to-front heuristic reorders
the association lists inside the types. In addition, the C code for method lookup
was tuned for speed, is coded inline, and uses an internal stack to avoid recursion.

8.8.4 Adding Methods

A serious complication results from the fact that the type field in an add-method
form is not evaluated until the method is installed at run time. Since the target type
for the method is unknown at compile time, the appropriate instance-variable map is
also unknown, and hence the correct instance-variable offsets cannot be determined. Our
solution is to have the compiler guess the order (by attempting to evaluate the type
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expression at compile time) or simply invent one, compile the offsets accordingly, and
incorporate this map in the header of the emitted code block. When the add-method
form is actually executed at run time, the assumed instance-variable map is compared to
the actual map for the type that is the recipient of the method, and the code is copied and
patched if necessary. The code only needs to be copied in the rare case when a single
add-method is performed on multiple types that require different offsets.

After instance-variable references in the code block have been resolved (which usually
involves no work at all since the compiler almost always guesses correctly) the method
can actually be created and installed. Creating the method involves pairing the code
block with an appropriate environment vector containing references to variables that are
in the lexical environment. Because this environment vector is frequently empty, a special
empty environment vector is kept in the global variable %empty-environment so a
new one doesn’t have to be created on such occasions. All other environment vectors
are created by pushing the elements of the environment onto the stack and executing the
make-closed-environment opcode. With the exception of the empty environment,
environment vectors are not shared.

After the method is created it must be installed. The method cache for the involved
operation is invalidated, and the method is either put in the lambda? slot of the
operation or the operation-method-alist of the type it is being installed in. If
there is already a value in the 1ambda? slot and the new method is not being installed
for type object, the lambda? slot is cleared and the method that used to reside there
is added to the operation-method-alist of type object.

(%install-method-with-env fype operation code-body environment) Operation

This flushes the method cache of operation, ensures that the instance-variable maps of code-body
and type agree (possibly by copying code-body and remapping the instance variable references),
creates a method out of code-body and environment, and adds this method to the operation-
method-alist of fype, modulo the simple lambda optimization if fype is object.

Some simplified variants of this are provided, both to optimize these specialized calls
because of the extra assumptions about the arguments, and to save code volume in the
callers.

(%install-method type operation code-body)

= (%install-method-with-env type operation code-body
%empty-environment)

(%install-lambda-with-env code-body environment)

= (%install-method-with-env object (make operation) code-body
environment)

(%install-lambda code-body)
= (%install-method-with-env object (make operation) code-body
%empty-environment)
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8.9 Stacks and Continuations
8.9.1 Stack Implementation

Although the value and context stacks are logically contiguous, they are sometimes phys-
ically noncontiguous. The instructions all assume that stacks are stored in a designated
chunk of memory called the stack buffer. They check if they are about to overflow or
underflow the stack buffer, and if so they take appropriate actions to fill or flush it, as
appropriate, before proceeding. ‘

If the stack buffer is about to overflow, most of it is copied to a stack segment that is
allocated on the heap. These segments form a linked list, so upon stack underflow the
top segment is removed from this list and copied back to the stack buffer.

There is one more circumstance in which the stack buffer is flushed. The call/cc
construct of Scheme [6] is implemented in terms of stack photos, which are snapshots
of the current state of the two stacks. A FILL-CONTINUATION instruction forces the
stack buffers to be flushed and copies references to the linked lists of overflow segments
into a continuation object.

Actually, in the above treatment we have simplified what happens when a stack buffer
is flushed. The emulator constant MAX_SEGMENT_SIZE determines the maximum size
of any flushed stack segment. When flushing the stack, if the buffer has more than that
number of references then it is flushed into a number of segments. This provides some
hysteresis, speeding up call/cc by taking advantage of coherence in its usage patterns.
A possibility opened by our stack buffer scheme, which we do not currently exploit, is to
use virtual memory faults to detect stack-buffer overflows, thus eliminating the overhead
of explicitly checking for stack overflow and underflow.

As a historical note, an early version of Oaklisp did not use a stack buffer but instead
implemented stacks as linked lists of segments which were always loacted in the heap.
When exceeding the top of a segment, a couple of references were copied from the top of
that segment onto a newly allocated segment, providing sufficient hysteresis to prevent
inordinate overhead from repeated pushing and popping along a segment boundary. Re-
grettably, substantial storage is wasted by the hysteresis and the overflow and underflow
limits vary dynamically whereas in the new system these limits are C link-time constants.
Presumably due to these factors, timing experiments between the old system and the new
system were definitively in favor of the new system.

8.9.2 Catch and Throw

We provide two different escape facilities: call/cc and catch. The call/cc
construct is that described in the Scheme standard [6], and its implementation is described
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above. The catch facility provides the user with a second class catch tag, which is
valid only within the dynamic extent of the catch. :

The implementation of catch tags is very simple: they contain heights for the value
and context stacks. When a catch tag is thrown to, the value and context stacks are
truncated to the appropriate heights. The slot saved-wind-count is used for unwind
protection and saved-fluid-binding-1ist is used for fluid variables.

type: escape-object
value stack height: 25
context stack height: 19
saved wind count: 3
saved fluid binding list: ( (print-length . #£f) ...)

Actually, there are two variants of catch. In the regular variant, which is compatible
with T [3], the escape object is invoked by calling it like a procedure, as in (catch a
(+ (a ’done) 12)). In the other variant, the escape object is not called but rather
thrown to by using the throw operation, as in (native-catch a (+ (throw a
'done) 12)). Although the latter construct is slightly faster, the real motivation for
its inclusion is to remind the user that the the escape object being thrown to is not
first class. In order to ensure that an escape object is not used outside of the extent of
its dynamic validity, references to them should not be retained beyond the appropriate
dynamic context.

8.9.3 Fluid Variables and Unwind Protection

Fluid (or dynamic or special, depending on your background) variables are provided
using the special forms (£1luid x) to reference them and bind to bind them. Fluid
variables are implemented with an association list, and constructs which break the normal
flow of execution, such as throw or call/cc, restore the appropriate fluid-binding
list when control is transfered nonlocally.

Another facility, unwind protection, is also provided. This allows chunks of code to
be executed upon entry or exit from a particular dynamic context (call/cc allows a
dynamic context to be reentered even after it has been exited.) The fluid-binding list
could be maintained with the unwind protection facility, but for efficiency reasons we
implemented it separately. The unwind protection actions form a tree, and each time a
nonlocal transfer of control is made, either by throw or by invoking a continuation,
the unwind protection entries along the path from the source to the destination are
executed. Care is taken to restore the appropriate fluid-variable binding list for each
unwind-protection action.
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All of this is done at nearly user level, so the underlying primitive mechanisms for
nonlocal transfer of control need not be concerned with either fluid variables or with
unwind protection. In a multprocessor version of the implementation, a fluid binding
list would have to be stored for each process. We considered adding a cache for fluid
variables to avoid the overhead of looking them up, but such a tiny fraction of the
system’s time is spent looking up fluid variables on the fluid binding list that we decided
it was not worth it.

8.10 Traps

Some operations, like car and contents, are open coded as calls to bytecodes. If
the operand passed to the operation is not of the precise type expected by the system,
it is necessary for a full-blown operation dispatch to be performed. In cases like this,
a table containing a trap operation for each instruction is indexed, and the appropriate
operation is called, after setting things up so that the instruction following the trapping
instruction will be the next one executed when the trap code returns. This allows users
to define freely methods for system operations for their own types, even when the system
operation is open coded.

One issue that arises in this context is tail recursion. If car were not open coded, when
it occured in a tail recursive position it would be coded as (... (load-imm car)
(funcall-tail)). With car open coded, the codeis (... (car) (return)).
But if the car instruction traps, pushing the context of the trap point onto the context
stack would make the call non-tail-recursive. To avoid this, when an instruction traps if
the next instruction is a return then no context is pushed onto the context stack. Similar
special cases are needed when a funcall-tail instruction traps.

In the above treatment we have discussed synchronous traps. Another class of traps
are user interrupts, used to terminate infinite loops and the like. User interrupts set
a flag, which is polled by certain instructions, such as branches, carefully chosen to
interrupt any loop. By using polling, we avoid the overhead of determining where in
the C code the program was when the signal was fielded, and then having to clean up
memory to restore the heap and stack invariants. The polling solution has also proven
quite portable.

8.11 Anonymity and Printed Representations

Oaklisp objects are anonymous, but when an object is stored in a global variable, it can
be accessed through that variable.

When printing an object, the default print method tries to provide an expression that
will evaluate to that object, such as car or (setter contents). These expressions
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are generated relative to the current locale, and they are cached and rechecked for validity
every time they are used.

When this fails, a weak (or non-garbage-collector-proof) pointer to the object is gener-
ated. These weak pointers are represented by small integers. To determine the value of
#<0Object 427>, evaluate the expression (object-unhash 427). Weak pointers
are also used in hash tables, so that an object which appears only as a key in a hash table
can be deallocated by the garbage collector. For convenience, the describe operation,
which describes arbitrary objects, and dereferences any weak pointers it is passed.)

This strategy of moving responsibility for finding names for objects into the printer
avoids a trick used in most dialects of Scheme, in which many objects are created with a
“name” slot which contains a symbol corresponding to the global variable in which the
object in question is stored. This name slot is typically used by the printer, thus giving
descriptive names to objects; but such a strategy requires storage for keeping redundant
information, is susceptable to inconsistency as the system evolves, and subverts the
anonymous spirit of Scheme. |

8.12 Bootstrap and Portability Issues
8.12.1 Building the world

The Oaklisp world is built from files that define all of the types, operations, and other
data structures that a user expects to have predefined. The most primitive of these, those
which are necessary in order to load compiled files, are linked by an offline program
into a cold world file that contains one huge method which builds the world from ground
zero when invoked. ,

The cold-world linker also has to lay out a few skeletal data structures for quoted
lists and symbols that appear as program constants, along with information about these
structures are located so that they can be back-patched (with correct type descriptors, for
example) after the world comes up. Also, a locale is built to provide access to the global
environment that was implicitly in effect while the world was booting up.

The files that define the root of the type hierarchy, such as type, object, and
operation, are carefully written using only operations that are compiled straight into
bytecodes, because no function calls or add-method’s can occur until the machinery
has been built to support them.

8.12.2 Endianity

The logical order of the instructions in a code vector depends on the byte order of the
CPU running the emulator. If the machine is big-endian, i.e. addresses start at the most
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significant end of a word and go down (e.g. 68000 or IBM 370 series) then instructions are
executed left to right. Conversely, on a little-endian machine (e.g. a VAX) instructions are
executed right to left. Of course, the Oaklisp loader has to be able to pack instructions
into words in the appropriate order. The format of cold world loads is insensitive to
endianity, but binary world loads are sensitive to it, so binary worlds are distributed in
both big endian (with extensions beginning with .ol) and little endian (with extensions
beginning with . 1o) versions. When a running Oaklisp loads a compiled file, a special
instruction, %big-endian?, tells the running Oaklisp how to pack the instructions.

8.12.3 Strings

Characters are packed into strings more densely than one character per reference, so
strings are not just vectors with odd print methods; they also have accessor methods
which unpack characters from their internals. Unfortunately, it is not possible to pack
four eight bit characters into a single reference without violating the memory format
conventions by putting something other than |0 0| in the tag field. We could pack
four seven bit characters into each reference, but some computers use eight bit fonts,
and the characters within the string would not be aligned compatibly with C -strings
anyway. We therefore use a somewhat wasteful format, which is little endian regardless
of the endianity of the host. Here we document it by example, showing how the string
"Oaklisp Rules!" is represented:

31...26 | 25...18| 17...10 19...21]10
string

object length: 8 00

string length: 14 00

000000 #\k #\a #\0 |00
000000 #\s #\1 #$\1 |00
000000 #\R #\space | #\p (00
000000 #\e #\1 #\u (00
000000 | #\null #\! #\s |00

The unused high bits of each word are set to zero to simplify equality testing and
hash key computation. No trailing null character is required, although one is present
two thirds of the time due to padding. When interfacing to C routines that require string
arguments, such as when opening files, a special translation routine written in C is used
to convert Oaklisp strings to C strings.

The representation of strings is probably the first thing that would be changed if
facilities were added to permit raw binary data to exist in memory. Since the bulk of
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I/O time is spent doing string manipulation, they could be a fruitful source of useful
optimizations, especially considering that they have not been optimized at all yet. The
easiest thing to do would be to move manipulation of simple strings into C in the same
way that manipulation of simple cons cells was moved into C, but if strings were being
optimized it would probably be worth modifying the garbage collector to handle raw
binary data first so that they could be stored in a C-compatible fashion. Time constraints
prevented us from experimenting with such measures.

-

8.13 Getting a Copy

Copies of the Oaklisp language and implementation manuals can be obtained by sending
a request to

Catherine Copetas

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

or Catherine.Copetas@CS.CMU.EDU by computer mail. The most recent released
version of Oaklisp is available for FTP from the host DOGHEN.BOLTZ .CS.CMU.EDU
(128.2.222.37), user anonymous, with no particular password. The proper file to
retrieve is oaklisp/release.tar.2, which is a compressed tar file. This file is
binary so you must put FTP into binary mode before transferring it. For those without
access to FIP, a tape can be obtained by making suitable arrangements with Catherine
Copetas. There is a distribution fee.

8.14 Conclusions

The Oaklisp implementation effort was a success. In less than one year of full-time work,
a team of two experienced programmers implemented not just new language features, with
new techniques for their efficient implementation, but also the remainder of a full featured
Scheme, from rationals to bignums to hash tables. Through judicious design decisions,
with feedback from repeated profiling of the evolving implementation, speed rivaling
(and sometimes even surpassing!) that of contemporary native-code implementations
was obtained in a portable implementation. |

As a result of our experience, we have come to the strong conclusion that most Lisp
implementation efforts spend a great deal of time optimizing portions of the implementa-
tion that are rarely used, and spend insufficient time worrying about the tradeoff between
access to processor resources within procedures and speed of procedure calls. Our watch-
words were profile and experiment. We implemented dozens of “optimizations” which
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we were sure would speed the system up, only to remove them after profiling revealed
the inadequacy of our intuition.

Another trick we used constantly was that of amortized optimization: techniques which
save time on the average. Caching is such an optimization, as it slows down the worst
case in order to speed up the average case. Our stack fragmentation technique is another
example. In the worst case, call/cc needs to copy the entire stack onto the heap,
which can take unbounded time. But if call/cc is used frequently, most of the stack
has already been copied to the heap, so making the new continuation is cheap.” The
bring-to-front heuristic for method lookup is yet another. Almost every time we added
an optimization in this class, we observed a speedup.

Because of our choice of memory formats, it would be a straightforward task to add
a native code compiler if extreme speed was desired on a particular platform. If this
implementation is to fill more than its current niche as a reasonably fast Scheme system
that can be ported quickly to a new machine, to be used until native code implementation
are retargetted, it will be necessary to add such native-code back ends. |
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