HATEX 3

The User’s Guide, version 1.8.1.5 (using HATEX 3.16.2.0)

https://github.com/Daniel-Diaz/HaTeX

Main author: Daniel Diaz (dhelta.diaz@gmail.com)
Contributors:

GetContented

Date of creation: June 8, 2016.

https://github.com/Daniel-Diaz/HaTeX

Contents

[I_Prefacel 1
L1 Introduction|. 1
1.2 Whatis HaTeX700 o 1

2 Basics] 2
21 The Monoid classl 2
22 TaTeX blocksl 2
2.3 Creating blocks| 3

2.3.1 From strings| 4
32 Moreblocksl 4

2.4 Putting blocks together| 4
5 Rend Bl o 5
2.6 Try it yourself]. 6

B LaTeX blocks and the Writer monad| 7
BI _The Writer Monadl 7
B2 TheLaTeX Monadl 9
3.3 Composing monads|. e e e 10

4_The LaTeXC class] 12

P ag 13
... 13

The HATEX User’s Guide

6.1 Notes about this guide]

The HATEX User’s Guide

1 Preface

1.1 Introduction

If you are here to learn more about HATEX, or are just curious, you are in the right place. First of
all, note that this guide is aimed at those who already know the basics of both Haskell and BTEX. If
you don’t, first try to learn some of each (both are quite useful). To learn Haskell, start with some
tutorials and suggestions at the excellent Haskell website [http://haskell.org]. To learn BTEX,
start with The not so short introduction to BTEX [http://tobi.oetiker.ch/1short/lshort.pdf].

The HATEX library aspires to be the tool with which Haskellers want to construct their ITEX
documents while working within their beloved language. HATEX tries to be as comprehensive and
well-constructed as possible. Do you still think something could be better? Is something lacking,
perhaps? If so, go to the HATEX mailing list [http://projects.haskell.org/cgi-bin/mailman/
listinfo/hatex| and complain without mercy! Or, if you are a GitHub user, create an issue
[https://github.com/Daniel-Diaz/HaTeX/issues| or, to be even more awesome, create a patch

and send a pull request. This is one of the great things about open source projects!

1.2 What is HaTeX?

Before explaining how HATEX works, let’s state what HATEX actually is.
HATEX is a Haskell library that provides functions to create, manipulate and parse BTEX code.

People often say that HATEX is a ETgX DSL, or Domain Specific Language. With it, you can
enjoy all the many advantages of Haskell while creating IATEX documents. A common use is the
automatic creation of such documents, perhaps from a Haskell data source. A more exotic one would
be to render chessboard situations. Possibilities are limited only by the imagination. The goal is:
if you can do it with ITEX, you can do it with HATEX, while taking advantage of all that Haskell

offers.

http://haskell.org
http://tobi.oetiker.ch/lshort/lshort.pdf
http://projects.haskell.org/cgi-bin/mailman/listinfo/hatex
http://projects.haskell.org/cgi-bin/mailman/listinfo/hatex
https://github.com/Daniel-Diaz/HaTeX/issues

The HATEX User’s Guide

2 Basics

Through this section you will learn the basics of HATEX. Essentially, how it works.

2.1 The Monoid class

If you are already familiar with the Monoid class, jump to the next point. The Monoid class is
something that you must get used to in Haskell. But don’t worry, it is quite simple (despite having
a similar name to the Monad class). A monoid in Mathematics is an algebraic structure consisting of
a set of objects, an associative operation and a neutral element. Phew! But what is the meaning of
this? By associative we mean that, if you have three elements a, b and ¢, then a* (bxc) = (a*b) x c.
A neutral element is one that does not change other values when operated with, because it means
nothing with respect to the operation! To say, e is a neutral element if e x a = a *x e = a, given any
object a. As an example, you may take the real numbers as objects and the ordinary multiplication

as operation, in which case the neutral element would be the number one.
Now that you know the math basics behind the Monoid class, let’s see its definition:
class Monoid m where
mempty :: m

mappend :: m ->m ->m

mconcat :: [m] ->m

See that mappend corresponds to the monoid operation and mempty to its neutral element. The
names of the methods may seem unsuitable, but they correspond to a particular case of monoid:
the lists with the appending (++) operation. What is the neutral element here? The empty list:

xs ++ [] = [] ++ xs = xs

This class plays a significant role in HATEX. Keep reading.

2.2 LaTeX blocks

Suppose we have a well—formecﬂ piece of BTEX code, call it a. Now, let LaTeX be a Haskell type in
which each element represents a well-formed piece of I¥TEX code. Then, a can be seen as a Haskell
expression a of type LaTeX. We can say that a is a LaTeX block. What happens if we append,

1 By well-formed we mean all braces, environments, math expressions, ... are closed.

The HATEX User’s Guide

by juxtaposition, two LaTeX blocks? As both are well-formed, so is the result. Thus, two blocks
appended form another block. This way, we can define an operation over the LaTeX blocks. If we
consider that a totally empty code is a well-formed piece of IATEX code, we can speak about the
empty block. And, as the reader may notice, these blocks with the append operation form a monoid.

Namely, LaTeX is an instance of the Monoid class.

Of course, our objective when using HATEX is to create a LaTeX block that fits our purpose. The
way to achieve this is to create a multitude of LaTeX blocks and use the Monoid operation to collapse
them into a single block.

2.3 Creating blocks

We now have a universe of blocks that form a monoid. What we need is a way to create these blocks.
As we said, a block is the representation of a well-formed piece of ITEX code. Let a be the block
of the ITEX expression \delta{}ﬂ Since this is a constant expression, it has a constant value in
Haskell, named delta. Calling this value will generate the desired block.

Other IATEX expressions depend on a given argument. For example \linespread{x}, where x is
a number. How do we use these? As you would expect, with functions. We can create blocks that
depend on values with functions that take these values as arguments, where these arguments can be

blocks as well. For instance, we have the function linespread with type:
linespread :: Float -> LaTeX

As you may know, a title in ITEX can itself contain IXTEX code. So the type for the Haskell
function title is:

title :: LaTeX -> LaTeX

And this is essentialy the way we work with HATEX: to create blocks and combine them.
Once you have your final block ready, you will be able to create the IXTEX code that corresponds
to it (we will see how later). Note that there is WTEX code for every block, but not every piece of
ITEX has a block, because a malformed (in the sense of the negation of our well-formed concept)
code doe not have a corresponding block. This fact has a practical consequence: we cannot create
malformed BTEX code using HATEX. And that’s a good thing!

2 Please, note that the LaTeX block is not the same that the IATEX expression. The former is a Haskell value, not
the IATEX code itself.

The HATEX User’s Guide

2.3.1 From strings

Inserting text in a ITEX document is a constant task. You can create a block with text given an

arbitrary String with the fromString function, method of the IsString class:

class IsString a where

fromString :: String -> a

Since there is a set of characters reserved to create commands or another constructions, HATEX
takes care to avoid using them, replacing each with a command whose output looks like the originally
intended character. For example, the backslash \ is replaced with the \backslash{} command.

The function that avoids reserved characters is exported with the name protectString. Also,

there is a variant for Text values called protectText.

The use of the IsString class is because the Ouverloaded Strings extension. This is similar to the
Owverloaded Numbers Haskell feature, which translates the number 4 to fromInteger 4. In a similar
way, with OverloadedStrings enabled, the string "foo" is translated to fromString "foo". If we
now apply this to our blocks, the string "foo" will be automatically translated to a 1atex block with
foo as content. Quite handy! We will assume that the OverloadedStrings extension is enabled

from now on.

2.3.2 More blocks

There are a lot of functions to create blocks. In fact, we can say this is the primary purpose of the
library. I#TEX has a lot of commands: they can set font attributes, create tables, insert graphics,
include mathematical symbols, etc. So HATEX has a function for each command defined in BTEX (to
tell the truth, only for a small subset). Please go to the API documentation to read about particular
functions - you can either build it locally or find it on Hackage: http://hackage.haskell.org/
package/HaTeX. You will find the class constraint LaTeXC 1 in every entity. LaTeX is an instance of
this class, so you can think of 1 as the LaTeX datatype without any problem. There is more about

this in the section about the LaTeXC class.

2.4 Putting blocks together

Once you have your blocks, as we said before, you need to join them. The mappend method of the

Monoid class will do this. If a and b are two blocks, mappend a b, or a ‘mappend‘ b, or even a <>

http://hackage.haskell.org/package/HaTeX
http://hackage.haskell.org/package/HaTeX

The HATEX User’s Guide

bﬂ return the juxtaposition of a and b. For lists of blocks, you can use mconcat instead as follows:

mconcat ["I can see a " , textbf "rainbow"
, " in the blue " , textit "sky" , "."]

2.5 Rendering

This is the last step in our BTEX document creation. When we have our final IXTEX block a, the
function renderFile can output it to a file, in the form of its correspondent IATEX code.

Say we have this definition:

short =
documentclass [] article
<> title "A short message"
<> author "John Short"
<> document (maketitle <> "This is all.")

Then, after calling renderFile "short.tex" short, the following file will appear in the current

working directory (line breaks added for easier visualization):

\documentclass{article}
\title{A short message}
\author{John Short}
\begin{document}
\maketitle{}

This is all
\end{document}

Finally, you may use commands like latex or pdflatex in your command line environment to
compile the IXTEX output to dvi or pdf.

The function renderFile is not only for LaTeX values. Let’s see its type:

renderFile :: Render a => FilePath -> a -> I0 ()

3 From GHC 7.4, (<>) is defined as a synonym for mappend. For previous versions of GHC, HATEX exports the

synonym.

The HATEX User’s Guide

The Render class that appears in the context is defined as:

class Render a where

render :: a —-> Text

So, it is the class of types that can be rendered to a Text value. The type LaTeX is an instance,
but other types, like Int or Float, are too. These instances are useful for creating blocks from other
values. With the function rendertex, any value in the Render class can be transformed to a block.
First, the value is converted to Text, and then to LaTeX in the same way as we did with strings.

But, be careful because rendertex does not escape reserved characters.

2.6 Try it yourself

As always, the best way to learn something well is to try it for yourself. Since looking at code
examples can help you greatly, HATEX comes with several examples at [https://github.com/
Daniel-Diaz/HaTeX/tree/master/Examples| so you can see for yourself how to accomplish various
tasks.

The API reference is also a good reference to keep in mind. Descriptions of functions allow you
to know exactly how they work. Even when these are not present, just the function names and their

type signatures can be very helpful and descriptive.

https://github.com/Daniel-Diaz/HaTeX/tree/master/Examples
https://github.com/Daniel-Diaz/HaTeX/tree/master/Examples

The HATEX User’s Guide

3 LaTeX blocks and the Writer monad

3.1 The Writer Monad

For any given monoid, M, the M-writer monad is just all possible pairs of elements from M and elements
from other types. Thus, the Haskell declaration is as followsﬂ

data Wma=Wm a

Note that to get the monad we need to fix the type m (the kind of monads is * -> *). To inject an
arbitrary value into the monad (the Haskell return function) we use the neutral element (mempty)

of the monoid.

inject :: Monoid m => a -> Wm a

inject a = W mempty a

Think about the element of m: there is only one element that it could be! Like any other monad,

W m is also a Functor. We just apply the function to the value.

instance Functor (W m) where
fmap £ (Wm a) = Wmn (f a)

Every Monad instance can be given by the two monad operations inject and join. We already

defined the inject function. The other one deletes one monad type constructor.

join :: Monoid m => Wm (Wma) -> Wma

join (Wm (Wm’ a)) = W (mappend m m’) a

In this function we use the other Monoid method to combine both values. It is important to
note that in both monad operations inject and join we used mempty and mappend respectively. In
practice, this is because they act similarly to each other. Indeed, they are equal if we forget the a

value. Now, we are ready to define the Monad instance:

instance Monoid m => Monad (W m) where
return = inject

w >>= f = join (fmap f w)

4 Some authors write it using tuples, like this: data W m a = W (a,m).

The HATEX User’s Guide

There is nothing to say about this instance. It is a standard definition, valid for any monad.

What we have done here is to hide a monoid in a monad, with all its operations. We have created
a machine that operates on monoidal values. To insert a value into the machine we need the tell
function:

tell ::m > Wm ()
tellm =Wm ()

When we execute the machine, it returns the result of operating on all the values we have put

into it.

execute :: Wma ->m

execute (Wm a) =m

Let’s see the machine working. For example, the Int type with addition forms a Monoid.

instance Monoid Int where
mempty = 0
mappend = (+)

example :: Int
example = execute $ do
tell 1
tell 2
tell 3
tell 4

When we evaluate example we get 10, as expected. Using mapM_ we can rewrite example.

example :: Int

example = execute $ mapM_ tell [1 .. 4]

The HATEX User’s Guide

3.2 The LaTeX Monad

Let’s go back to the LaTeX type. Since LaTeX is an instance of Monoid we can construct its corre-

sponding Writer monad.

type LaTeXW = W LaTeX

The W machine is now waiting for LaTeX values.

example :: LaTeX

example = execute $ do
tell $ documentclass [] article
tell $§ author "Monads lover"

tell $ title "LaTeX and the Writer Monad"

We put all these blocks into the machine, and it returns the concatenated block for us. We just
saved a lot of mappend’s, but we now have a lot of tell’s instead. No problem, just redefine each

function of blocks using tell and execute.

author’ :: LaTeXW a —-> LaTeXW ()

author’ = tell . author . execute

If this is done in a similar way to documentclass and title, every tell in example disappears.

10

The HATEX User’s Guide

example :: LaTeX

example = execute $ do
documentclass’ [] article
author’ "Monads lover"
title’ "LaTeX and the Writer Monad"

And we can now use the LaTeX machine more comfortably. However, we have duplicated all of
our functions. This is why the LaTeXC class exists. We'll talk about this later.

3.3 Composing monads

To add flexibility to HATEX, the writer monad explained above is defined as a monad transformer,
named LaTeXT. The way we use it is the same, with just a few small changes.

The first change is in the type signature. We need to carry an inner monad in every type.

foo :: Monad m => LaTeXT m a

However, in practice, we can avoid this by using type aliases. Say we’re going to use a specific
monad M.

type LaTeXW = LaTeXT M

foo :: LaTeXW a

Now, the type signatures go back to the way they were.

The other change is a new feature: the 1ift function. With it we can do any computation on
our inner monad at any time. For example, suppose we want to output some code we have in the
file foo.hs. Instead of copying all of its content, or reading and carrying it as an argument along in
the code, you can simply read that file using 1ift wherever you want.

type LaTeXI0 = LaTeXT IO

readCode :: FilePath -> LaTeXIO ()
readCode fp = 1lift (readFileTex fp) >>= verbatim . raw

example :: LaTeXIO ()

11

The HATEX User’s Guide

example = do
"This is the code I wrote this morning:"
readCode "foo.hs"

"It was a funny exercise."

Different monads will each give different features. In the case where we’re not interested in any

of these features, we can simply use the Identity monad.

type LaTeXW = LaTeXT Identity

12

The HATEX User’s Guide

4 The LaTeXC class

HATEX has two different interfaces. One uses blocks as Monoid elements and the other as Monad
actions. If we want to keep both interfaces we have two choices: to duplicate function definitiong’] or
to have a typeclass which unifies both interfaces. Since having duplicate definitions is hard work and
can raise many problemsﬂ we took the second alternative and defined the LaTeXC typeclass. Both
LaTeX and LaTeXT m a are instances of LaTeXC (the second one is a little tricky), so every function
in HATEX is defined using this typeclass. This way, we can have both interfaces with a single import,
without being worried about maintaining duplicated code. The cost for this is that we must have
class constraints in our type signatures. However, these constraints are only required in the package.

At the user level, you choose your interface and write type signatures correspondingly.

5 This was the approach taken in HATEX 3 until the version 3.3, where the LaTeXC class was included.

6 In fact, we had a problem with HATEX-meta, the program that automatically generated the duplicated
functions. The problem was described in the following blog post: http://deltadiaz.blogspot.com.es/2012/04/
hatex-trees-and-problems.html,

13

http://deltadiaz.blogspot.com.es/2012/04/hatex-trees-and-problems.html
http://deltadiaz.blogspot.com.es/2012/04/hatex-trees-and-problems.html

The HATEX User’s Guide

5 Packages

IMTEX, in addition to its predefined commands, has a big number of packages that increase its
power. HATEX functions for some of these packages are defined in separate modules, with one or
more modules per package. This way you can import only the functions you actually need. Some of

these modules are explained below.

5.1 Inputenc

This package is of vital importance if you use non-ASCII characters in your document. For example,
if my name is Angela, the A character will not appear correctly in the output. To solve this problem,

use the Inputenc module.

import Text.LaTeX.Base
import Text.LaTeX.Packages.Inputenc

thePreamble :: LaTeX
thePreamble =
documentclass [] article
<> usepackage [utf8] inputenc

<> author "Angela"

<> title "Issues with non-ASCII characters"

Don’t forget to set to UTF-8 encoding in your Haskell source too.

5.2 Graphicx

With the Graphicx package, you can insert images in your document and do some other transfor-

mations to them. In order to insert an image, use the includegraphics function.
includegraphics :: LaTeXC 1 => [IGOption] -> FilePath -> 1

The list of IGOption’s allows you to set some properties of the image like width, height, scaling

or rotation. See the API documentation for details.

14

The HATEX User’s Guide

6 Epilogue

6.1 Notes about this guide

This guide is not static. It will certainly be changed as time passes. Any reader can also help
participate in its writing, since the guide is itself open source (and written in Haskelll). The source
repository can be found at: https://github.com/Daniel-Diaz/hatex-guide. You can read more
detailed instructions in the README file.

If you think something is unclear, or hard to understand, please do take the time to report it.

We really appreciate it.

6.2 Notes from the author

I would like to end this guide by saying thanks to all the people that have been interested in HATEX
in any way, especially to those who contributed to it with patches, opinions and\/or bug reports.
Thanks.

15

https://github.com/Daniel-Diaz/hatex-guide

	Preface
	Introduction
	What is HaTeX?

	Basics
	The Monoid class
	LaTeX blocks
	Creating blocks
	From strings
	More blocks

	Putting blocks together
	Rendering
	Try it yourself

	LaTeX blocks and the Writer monad
	The Writer Monad
	The LaTeX Monad
	Composing monads

	The LaTeXC class
	Packages
	Inputenc
	Graphicx

	Epilogue
	Notes about this guide
	Notes from the author

