
User Guide

Amazon Relational Database Service

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Relational Database Service User Guide

Amazon Relational Database Service: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Relational Database Service User Guide

Table of Contents

What is Amazon RDS? ... 1
Advantages of Amazon RDS .. 1
Comparison of responsibilities .. 2
Amazon RDS shared responsibility model .. 3
DB instances .. 4

Amazon RDS application architecture: example ... 5
DB engines .. 6
DB instance classes ... 7
DB instance storage .. 8
DB instances in an Amazon Virtual Private Cloud (Amazon VPC) ... 8

AWS Regions and Availability Zones .. 9
Availability Zones .. 9
Multi-AZ deployments ... 10

Access control with security groups ... 12
Amazon RDS monitoring .. 13
User interfaces to Amazon RDS .. 14

AWS Management Console ... 15
Command line interface .. 15
Amazon RDS APIs ... 15

How you are charged for Amazon RDS ... 16
What's next? .. 16

Getting started .. 16
Topics specific to database engines .. 16

DB instances .. 17
DB instance classes .. 20

DB instance class types ... 20
Supported DB engines ... 28
Determining DB instance class support in AWS Regions .. 92
Changing your DB instance class ... 97
Configuring the processor for RDS for Oracle .. 98
Hardware specifications .. 121

DB instance storage .. 160
Storage types .. 160
Provisioned IOPS storage ... 161

iii

Amazon Relational Database Service User Guide

General Purpose storage ... 165
SSD performance characteristics ... 169
Magnetic storage (deprecated) .. 174
Dedicated log volume (DLV) .. 174
Monitoring database performance ... 175
Factors that affect database performance .. 176

Regions, Availability Zones, and Local Zones .. 180
AWS Regions .. 181
Availability Zones ... 186
Local Zones .. 187

Supported Amazon RDS features by Region and engine .. 189
Table conventions ... 189
Feature quick reference ... 190
Blue/Green Deployments .. 192
Cross-Region automated backups ... 193
Cross-Region read replicas ... 194
Database activity streams ... 197
Dual-stack mode ... 204
Export snapshots to S3 ... 222
IAM database authentication ... 232
Kerberos authentication .. 237
Multi-AZ DB clusters .. 251
Performance Insights ... 259
RDS Custom ... 260
Amazon RDS Proxy ... 273
Secrets Manager integration .. 287
Zero-ETL integrations .. 287
Engine-native features .. 290

DB instance billing for Amazon RDS ... 292
On-Demand DB instances ... 294
Reserved DB instances ... 296

Setting up .. 310
Sign up for an AWS account ... 310
Create a user with administrative access .. 311
Grant programmatic access ... 312
Determine requirements ... 313

iv

Amazon Relational Database Service User Guide

Provide access to your DB instance ... 315
Getting started .. 319

Creating and connecting to a MariaDB DB instance ... 320
Prerequisites .. 321
Create an EC2 instance ... 321
Create a MariaDB DB instance ... 327
(Optional) Create VPC, EC2 instance, and MariaDB instance using AWS CloudFormation ... 332
Connect to a MariaDB DB instance ... 334
Delete the EC2 instance and DB instance ... 337
(Optional) Delete the EC2 instance and DB instance created with CloudFormation 338
(Optional) Connect your DB instance to a Lambda function ... 338

Creating and connecting to a Microsoft SQL Server DB instance .. 340
Prerequisites .. 341
Create an EC2 instance ... 341
Create a SQL Server DB instance .. 346
(Optional) Create VPC, EC2 instance, and SQL Server instance using AWS
CloudFormation .. 352
Connecting to your SQL Server DB instance .. 354
Exploring your sample DB instance .. 356
Delete the EC2 instance and DB instance ... 358
(Optional) Delete the EC2 instance and DB instance created with CloudFormation 359
(Optional) Connect your DB instance to a Lambda function ... 359

Creating and connecting to a MySQL DB instance ... 360
Prerequisites .. 361
Create an EC2 instance ... 361
Create a MySQL DB instance ... 367
(Optional) Create VPC, EC2 instance, and MySQL instance using AWS CloudFormation 372
Connect to a MySQL DB instance ... 374
Delete the EC2 instance and DB instance ... 377
(Optional) Delete the EC2 instance and DB instance created with CloudFormation 378
(Optional) Connect your DB instance to a Lambda function ... 379

Creating and connecting to an Oracle DB instance .. 380
Prerequisites .. 381
Step 1: Create an EC2 instance ... 381
Step 2: Create an Oracle DB instance .. 387
(Optional) Create VPC, EC2 instance, and Oracle DB instance using AWS CloudFormation . 392

v

Amazon Relational Database Service User Guide

Step 3: Connect your SQL client to an Oracle DB instance ... 394
Step 4: Delete the EC2 instance and DB instance ... 398
(Optional) Delete the EC2 instance and DB instance created with CloudFormation 398
(Optional) Connect your DB instance to a Lambda function ... 399

Creating and connecting to a PostgreSQL DB instance ... 400
Prerequisites .. 401
Create an EC2 instance ... 401
Create a PostgreSQL DB instance ... 407
(Optional) Create VPC, EC2 instance, and PostgreSQL instance using AWS
CloudFormation .. 412
Connect to a PostgreSQL DB instance ... 414
Delete the EC2 instance and DB instance ... 417
(Optional) Delete the EC2 instance and DB instance created with CloudFormation 418
(Optional) Connect your DB instance to a Lambda function ... 418

Tutorial: Create a web server and an Amazon RDS DB instance .. 420
Launch an EC2 instance to connect with your DB instance ... 421
Create a DB instance ... 427
Install a web server .. 445

Tutorial: Create a Lambda function to access your Amazon RDS DB instance 457
Prerequisites .. 458
Create an Amazon RDS DB instance .. 458
Create Lambda function and proxy .. 459
Create a function execution role ... 460
Create a Lambda deployment package ... 462
Update the Lambda function .. 464
Test your Lambda function in the console ... 466
Create an Amazon SQS queue .. 467
Create an event source mapping to invoke your Lambda function ... 468
Test and monitor your setup ... 468
Clean up your resources .. 470

Tutorials and sample code .. 472
Tutorials in this guide ... 472
Tutorials in other AWS guides .. 473
AWS workshop and lab content portal for Amazon RDS PostgreSQL .. 474
AWS workshop and lab content portal for Amazon RDS MySQL .. 474
Tutorials and sample code in GitHub .. 475

vi

Amazon Relational Database Service User Guide

Working with AWS SDKs .. 475
Best practices for Amazon RDS .. 477

Basica operational guidelines .. 477
DB instance RAM recommendations .. 478
Keeping database engine versions up to date ... 479
AWS database drivers ... 479
Using Enhanced Monitoring .. 480
Using metrics .. 480

Viewing performance metrics .. 480
Evaluating performance metrics ... 483

Tuning queries .. 485
Best practices for working with MySQL .. 486

Table size .. 486
Number of tables ... 487
Storage engine .. 487

Best practices for working with MariaDB ... 488
Table size .. 488
Number of tables ... 489
Storage engine .. 489

Best practices for working with Oracle ... 490
Best practices for working with PostgreSQL .. 490

Loading data into a PostgreSQL DB instance ... 490
Working with the PostgreSQL autovacuum feature .. 491
Amazon RDS for PostgreSQL best practices video .. 492

Best practices for working with SQL Server .. 492
Amazon RDS for SQL Server best practices video ... 493

Working with DB parameter groups .. 494
Automating DB instance creation .. 494
New features video ... 495

Programmatic access to Amazon RDS .. 496
Console-to-Code ... 497

Configuring a DB instance .. 498
Creating a DB instance ... 499

Prerequisites .. 499
Creating a DB instance .. 505
Available settings ... 512

vii

Amazon Relational Database Service User Guide

Creating resources with AWS CloudFormation .. 548
RDS and AWS CloudFormation templates .. 548
Learn more about AWS CloudFormation ... 548

Connecting to a DB instance ... 549
Finding the connection information ... 549
Scenarios for accessing a DB instance ... 553
Connecting to DB instances with the AWS drivers .. 554
Connecting to a DB instance running a specific DB engine ... 555
Managing connections with RDS Proxy ... 555
Database authentication options .. 556
Encrypted connections .. 556

Working with option groups ... 557
Option groups overview ... 557
Creating an option group ... 559
Copying an option group .. 562
Adding an option to an option group ... 563
Listing the options and option settings for an option group .. 569
Modifying an option setting .. 570
Removing an option from an option group ... 573
Deleting an option group ... 576

Parameter groups .. 579
Overview of parameter groups ... 579
DB parameter groups .. 583
DB cluster parameter groups ... 599
Comparing DB parameter groups ... 613
Specifying DB parameters .. 613

Creating an ElastiCache cache from Amazon RDS .. 621
Overview of ElastiCache cache creation with RDS DB instance settings 621
Creating an ElastiCache cache with settings from an RDS DB instance 622

Auto-migrating EC2 databases ... 626
Overview ... 626
Prerequisites .. 627
Limitations .. 628
Creating IAM resources .. 629
Set up data migration ... 636
Managing migrations ... 638

viii

Amazon Relational Database Service User Guide

Monitoring .. 640
Tutorial: Creating a MySQL DB instance with a custom parameter and new option group 642

Prerequisites .. 643
Create a custom parameter group .. 643
Modify parameter values .. 644
Create option group .. 644
Add option ... 645
Create your DB DB instance ... 645

Managing a DB instance ... 647
Stopping a DB instance .. 648

Use cases .. 649
Supported DB engines, classes, and Regions ... 649
Support for Multi-AZ ... 650
How it works ... 650
Limitations .. 651
Option and parameter groups ... 652
Public IP addresses ... 652
Stopping a DB instance ... 652

Starting a DB instance .. 654
Rebooting a DB instance .. 656

Use cases for rebooting a DB instance .. 656
How rebooting works .. 657
Rebooting in Multi-AZ ... 657
Considerations ... 658
Prerequisites .. 658
Rebooting a DB instance: basic steps .. 659

Connecting an EC2 instance .. 661
Overview ... 662
Connecting an EC2 instance ... 667
Viewing connected compute resources .. 670
Connecting to a DB instance running a specific DB engine ... 671

Connecting a Lambda function .. 672
Overview ... 674
Connecting a Lambda function ... 685
Viewing connected compute resources .. 687

Modifying a DB instance .. 688

ix

Amazon Relational Database Service User Guide

Scheduling modifications .. 690
Available settings ... 691

Maintaining a DB instance ... 726
Overview of DB instance maintenance updates .. 726
Viewing pending maintenance .. 727
Maintenance for Multi-AZ deployments .. 730
Maintenance window ... 730
Applying updates .. 736
Operating system updates ... 738

Upgrading the engine version .. 742
Manually upgrading the engine version .. 743
Automatically upgrading the minor engine version .. 745

Renaming a DB instance .. 750
Renaming to replace an existing DB instance .. 751

Working with DB instance read replicas ... 753
Overview ... 755
Creating a read replica .. 764
Promoting a read replica .. 767
Monitoring read replication .. 772
Cross-Region read replicas ... 775

Tagging RDS resources ... 789
Why use RDS tags? .. 790
How RDS tags work ... 791
Best practices .. 794
Copying tags to DB snapshots .. 794
Adding and deleting tags in Amazon RDS .. 795
Tutorial: Specify which DB instances to stop by using tags .. 800

ARNs in Amazon RDS .. 804
Constructing an ARN ... 804
Getting an existing ARN .. 811

Working with storage ... 815
Increasing DB instance storage capacity ... 815
Managing capacity automatically with storage autoscaling .. 817
Upgrading the storage file system ... 825
Modifying Provisioned IOPS settings ... 827
I/O-intensive storage modifications ... 829

x

Amazon Relational Database Service User Guide

Modifying General Purpose (gp3) settings ... 830
Using a dedicated log volume (DLV) .. 832

Deleting a DB instance ... 839
Prerequisites for deleting a DB instance ... 839
Considerations when deleting a DB instance ... 839
Deleting a DB instance .. 841

Tutorial: Managing a MySQL DB instance .. 844
Introduction ... 844
Prerequisites .. 844
Add tags to your DB instance .. 845
Increase DB storage ... 845
Create read replicas ... 846
Update tags ... 847

Configuring and managing a Multi-AZ deployment ... 850
Multi-AZ DB instance deployments ... 852

Converting a DB instance to a Multi-AZ deployment ... 854
Failing over a Multi-AZ DB instance ... 856

Multi-AZ DB cluster deployments .. 861
Instance class availability for Multi-AZ DB clusters ... 862
Multi-AZ DB cluster architecture ... 862
Parameter groups for Multi-AZ DB clusters .. 864
RDS Proxy with Multi-AZ DB clusters ... 864
Replica lag and Multi-AZ DB clusters ... 864
Multi-AZ DB cluster snapshots .. 867
Creating a Multi-AZ DB cluster .. 868
Connecting to a Multi-AZ DB cluster ... 893
Connecting an AWS compute resource and a Multi-AZ DB cluster .. 899
Modifying a Multi-AZ DB cluster ... 925
Upgrading a Multi-AZ DB cluster .. 943
Renaming a Multi-AZ DB cluster ... 946
Rebooting a Multi-AZ DB cluster .. 949
Failing over a Multi-AZ DB cluster .. 951
PostgreSQL logical replication with Multi-AZ DB clusters ... 955
Working with Multi-AZ DB cluster read replicas .. 960
Setting up external replication from Multi-AZ DB clusters .. 971
Deleting a Multi-AZ DB cluster .. 972

xi

Amazon Relational Database Service User Guide

Limitations of Multi-AZ DB clusters ... 974
RDS Extended Support .. 975

RDS Extended Support overview ... 976
RDS Extended Support charges .. 977

Avoiding charges for RDS Extended Support ... 977
Versions with RDS Extended Support ... 977

RDS Extended Support version naming .. 978
Responsibilities with RDS Extended Support ... 979

Amazon RDS responsibilities .. 979
Your responsibilities ... 979

Creating a DB instance or a Multi-AZ DB cluster .. 980
RDS Extended Support behavior ... 980
Considerations for RDS Extended Support ... 981
Create a DB instance or a Multi-AZ DB cluster with RDS Extended Support 981

Viewing RDS Extended Support enrollment .. 983
Restoring a DB instance or a Multi-AZ DB cluster .. 986

RDS Extended Support behavior ... 987
Considerations for RDS Extended Support ... 987
Restore a DB instance or a Multi-AZ DB cluster with RDS Extended Support 988

Using Blue/Green Deployments for database updates ... 990
Overview of Blue/Green Deployments ... 991

Region and version availability .. 992
Benefits ... 992
Workflow .. 992
Authorizing access .. 997
Limitations and considerations .. 998
Best practices .. 1005
PostgreSQL replication methods .. 1009

Creating a blue/green deployment ... 1011
Preparing for a blue/green deployment ... 1011
Specifying changes .. 1013
Lazy loading and storage initialization ... 1016
Creating a blue/green deployment .. 1018
Available settings ... 1020

Viewing a blue/green deployment .. 1025
Switching a blue/green deployment ... 1029

xii

Amazon Relational Database Service User Guide

Switchover timeout .. 1030
Switchover guardrails .. 1030
Switchover actions ... 1031
Switchover best practices ... 1032
Verifying CloudWatch metrics before switchover ... 1033
Monitoring replica lag prior to switchover ... 1033
Switching over a blue/green deployment .. 1034
After switchover ... 1037

Deleting a blue/green deployment ... 1039
Backing up, restoring, and exporting data .. 1043

Introduction to backups ... 1044
Backup storage ... 1044

Managing automated backups ... 1046
Backup window ... 1046
Backup retention period ... 1049
Enabling automated backups .. 1049
Retaining automated backups ... 1052
Deleting retained automated backups .. 1054
Unsupported MySQL storage engines ... 1058
Unsupported MariaDB storage engines ... 1059
Cross-Region automated backups .. 1060

Managing manual backups .. 1077
Creating a DB snapshot for a Single-AZ DB instance ... 1078
Creating a Multi-AZ DB cluster snapshot .. 1081
Deleting a DB snapshot .. 1083

Restoring to a DB instance .. 1085
Restoring from a snapshot ... 1086
Considerations ... 1087
Point-in-time recovery .. 1092
Restoring a Multi-AZ DB cluster to a specified time ... 1097
Restoring from a snapshot to a Multi-AZ DB cluster .. 1101
Restoring from a Multi-AZ DB cluster snapshot to a DB instance .. 1104
Tutorial: Restore a DB instance from a DB snapshot .. 1107

Copying a DB snapshot .. 1111
Copying a DB snapshot ... 1111
Limitations ... 1121

xiii

Amazon Relational Database Service User Guide

Considerations ... 1122
Sharing a DB snapshot ... 1131

Sharing a snapshot .. 1132
Sharing public snapshots ... 1136
Sharing encrypted snapshots .. 1138
Stopping snapshot sharing .. 1142

Exporting DB snapshot data to Amazon S3 .. 1144
Overview of exporting snapshot data ... 1145
Setting up access to an S3 bucket ... 1146
Exporting a DB snapshot .. 1151
Region and version availability ... 1155
Limitations ... 1155
Monitoring snapshot exports ... 1156
Canceling a snapshot export ... 1159
Failure messages .. 1160
Troubleshooting PostgreSQL permissions errors ... 1162
File naming conventions ... 1162
Data conversion .. 1164

Using AWS Backup .. 1174
Monitoring metrics in a DB instance .. 1175

Monitoring plan ... 1175
Performance baseline ... 1176
Performance guidelines .. 1176
Monitoring tools .. 1178

Automated monitoring tools ... 1178
Manual monitoring tools .. 1180

Viewing instance status .. 1182
Viewing Amazon RDS DB instance status ... 1183

Recommendations from Amazon RDS .. 1189
Viewing recommendations ... 1191
Applying recommendations ... 1199
Dismissing recommendations .. 1205
Modifying dismissed recommendations to active ... 1207
Recommendations reference ... 1208

Viewing metrics in the Amazon RDS console .. 1233
Viewing the Performance Insights dashboard ... 1234

xiv

Amazon Relational Database Service User Guide

Choosing the new monitoring view from the Monitoring tab .. 1234
Choosing the new monitoring view from the Performance Insights page 1235
Creating a custom dashboard ... 1236
Choosing the preconfigured dashboard .. 1239

Monitoring RDS with CloudWatch ... 1241
Overview of Amazon RDS and Amazon CloudWatch ... 1242
Viewing CloudWatch metrics ... 1244
Exporting Performance Insights metrics to CloudWatch ... 1249
Creating CloudWatch alarms ... 1255
Tutorial: Creating a CloudWatch alarm for DB cluster replica lag .. 1255

Monitoring with Database Insights .. 1263
Pricing ... 1263
Engine, Region, and instance class support ... 1263
Turning on the Advanced mode ... 1266
Turning on the Standard mode .. 1270
Monitor slow queries ... 1276
Considerations ... 1278

Monitoring DB load with Performance Insights .. 1279
Overview of Performance Insights ... 1279
Turning Performance Insights on and off ... 1291
Performance Schema for MariaDB or MySQL .. 1295
Performance Insights policies .. 1300
Analyzing metrics with the Performance Insights dashboard ... 1313
Viewing Performance Insights proactive recommendations ... 1362
Retrieving metrics with the Performance Insights API ... 1365
Logging Performance Insights calls using AWS CloudTrail ... 1389
VPC endpoints (AWS PrivateLink) ... 1392

Analyzing performance with DevOps Guru for RDS ... 1396
Benefits of DevOps Guru for RDS ... 1396
How DevOps Guru for RDS works .. 1397
Setting up DevOps Guru for RDS ... 1399

Monitoring the OS with Enhanced Monitoring ... 1407
Overview of Enhanced Monitoring ... 1407
Setting up and enabling Enhanced Monitoring ... 1409
Viewing OS metrics in the RDS console .. 1414
Viewing OS metrics using CloudWatch Logs .. 1418

xv

Amazon Relational Database Service User Guide

RDS metrics reference .. 1420
CloudWatch metrics for RDS ... 1420
CloudWatch dimensions for RDS .. 1440
CloudWatch metrics for Performance Insights .. 1440
Counter metrics for Performance Insights .. 1443
SQL statistics for Performance Insights .. 1476
OS metrics in Enhanced Monitoring .. 1493

Monitoring events, logs, and database activity streams ... 1507
Viewing logs, events, and streams in the Amazon RDS console .. 1508
Monitoring RDS events ... 1511

Overview of events for Amazon RDS .. 1511
Viewing Amazon RDS events ... 1513
Working with Amazon RDS event notification ... 1517
Creating a rule that triggers on an Amazon RDS event ... 1543
Amazon RDS event categories and event messages ... 1548

Monitoring RDS logs ... 1592
Viewing and listing database log files ... 1592
Downloading a database log file .. 1593
Watching a database log file ... 1595
Publishing to CloudWatch Logs .. 1596
Reading log file contents using REST .. 1599
Db2 database log files .. 1601
MariaDB database log files .. 1606
Microsoft SQL Server database log files ... 1620
MySQL database log files ... 1625
Oracle database log files .. 1641
PostgreSQL database log files .. 1652

Monitoring RDS API calls in CloudTrail ... 1665
CloudTrail integration with Amazon RDS ... 1665
Amazon RDS log file entries .. 1666

Monitoring RDS with Database Activity Streams .. 1670
Overview .. 1670
Configuring Oracle unified auditing ... 1677
Configuring SQL Server auditing .. 1678
Starting a database activity stream ... 1679
Modifying a database activity stream ... 1682

xvi

Amazon Relational Database Service User Guide

Getting the activity stream status .. 1685
Stopping a database activity stream ... 1686
Monitoring activity streams ... 1687
IAM policy examples for activity streams ... 1729

Monitoring threats with GuardDuty RDS Protection .. 1732
Amazon RDS Custom ... 1733

Database customization challenge .. 1733
RDS Custom management model and benefits .. 1735

Shared responsibility model in RDS Custom .. 1735
Support perimeter and unsupported configurations in RDS Custom 1738
Key benefits of RDS Custom .. 1738

RDS Custom architecture ... 1739
VPC .. 1739
RDS Custom automation and monitoring ... 1740
Amazon S3 ... 1744
AWS CloudTrail ... 1745

RDS Custom security .. 1746
How RDS Custom securely manages tasks on your behalf .. 1746
SSL certificates ... 1747
Secure your Amazon S3 bucket against the confused deputy problem 1747
Rotating credentials for RDS Custom for Oracle ... 1748

Working with RDS Custom for Oracle .. 1754
RDS Custom for Oracle workflow ... 1754
Database architecture for Amazon RDS Custom for Oracle .. 1759
Feature availability and support for RDS Custom for Oracle .. 1761
RDS Custom for Oracle requirements and limitations ... 1764
Setting up your RDS Custom for Oracle environment ... 1768
Working with CEVs for RDS Custom for Oracle ... 1788
Configuring an RDS Custom for Oracle DB instance .. 1820
Managing an RDS Custom for Oracle DB instance .. 1840
Working with RDS Custom for Oracle replicas .. 1857
Backing up and restoring an RDS Custom for Oracle DB instance ... 1867
Working with option groups in RDS Custom for Oracle .. 1878
Migrating to RDS Custom for Oracle ... 1887
Upgrading an RDS Custom for Oracle DB instance .. 1888
Troubleshooting RDS Custom for Oracle .. 1901

xvii

Amazon Relational Database Service User Guide

Known issues for RDS Custom for Oracle ... 1923
Working with RDS Custom for SQL Server .. 1927

RDS Custom for SQL Server workflow .. 1927
RDS Custom for SQL Server requirements and limitations ... 1930
Setting up your RDS Custom for SQL Server environment ... 2008
Bring Your Own Media with RDS Custom for SQL Server ... 2033
Working with CEVs for RDS Custom for SQL Server .. 2035
Creating and connecting to an RDS Custom for SQL Server DB instance 2057
Managing an RDS Custom for SQL Server DB instance ... 2069
Working with Microsoft Active Directory with RDS Custom for SQL Server 2083
Managing a Multi-AZ deployment for RDS Custom for SQL Server 2109
Backing up and restoring an RDS Custom for SQL Server DB instance 2125
Copying an RDS Custom for SQL Server DB snapshot ... 2142
Migrating an on-premises database to RDS Custom for SQL Server 2153
Upgrading a DB instance for RDS Custom for SQL Server .. 2156
Troubleshooting Amazon RDS Custom for SQL Server .. 2158

Amazon RDS on AWS Outposts .. 2188
Prerequisites ... 2189
Support for Amazon RDS features .. 2190
Supported DB instance classes ... 2196
Customer-owned IP addresses .. 2198

Using CoIPs .. 2198
Limitations ... 2200

Multi-AZ deployments .. 2201
Working with the shared responsibility model .. 2201
Improving availability .. 2201
Prerequisites .. 2202
Working with API operations for Amazon EC2 permissions .. 2203

Creating DB instances for RDS on Outposts .. 2205
Creating read replicas for RDS on Outposts .. 2215
Considerations for restoring DB instances ... 2218

Amazon RDS Proxy .. 2219
Region and version availability ... 2220
Quotas and limitations ... 2220

RDS for MariaDB limitations .. 2221
RDS for SQL Server limitations ... 2222

xviii

Amazon Relational Database Service User Guide

MySQL limitations .. 2223
PostgreSQL limitations ... 2224

Planning where to use RDS Proxy ... 2225
RDS Proxy concepts and terminology ... 2226

Overview of RDS Proxy concepts ... 2227
Connection pooling .. 2228
Security ... 2228
Failover ... 2230
Transactions ... 2232

Getting started with RDS Proxy ... 2232
Set up a proxy network .. 2233
Setting up database credentials ... 2235
Configuring IAM authentication .. 2239
Creating a proxy ... 2243
Viewing a proxy .. 2252
Connecting through RDS Proxy .. 2253

Managing an RDS Proxy ... 2257
Modifying an RDS Proxy ... 2258
Adding a database user .. 2264
RDS Proxy connection considerations .. 2265
Avoid pinning RDS Proxy .. 2269
Deleting an RDS Proxy .. 2276

Working with RDS Proxy endpoints .. 2276
Overview of proxy endpoints .. 2277
Limitations for proxy endpoints ... 2278
Proxy endpoints for Multi-AZ DB clusters .. 2278
Accessing RDS databases across VPCs ... 2280
Creating a proxy endpoint ... 2281
Viewing proxy endpoints .. 2284
Modifying a proxy endpoint .. 2285
Deleting a proxy endpoint ... 2286

Monitoring RDS Proxy with CloudWatch .. 2287
Working with RDS Proxy events ... 2296

RDS Proxy events ... 2296
Troubleshooting RDS Proxy ... 2299

Verifying connectivity for a proxy .. 2299

xix

Amazon Relational Database Service User Guide

Common issues and solutions ... 2301
Troubleshooting for RDS for MySQL ... 2302
Troubleshooting for RDS for PostgreSQL ... 2304

Using RDS Proxy with AWS CloudFormation ... 2309
Zero-ETL integrations .. 2311

Benefits .. 2312
Key concepts ... 2312
Limitations .. 2313

General limitations ... 2313
RDS for MySQL limitations .. 2314
Amazon Redshift limitations ... 2315

Quotas .. 2315
Supported Regions .. 2315
Getting started with zero-ETL integrations ... 2316

Step 1: Create a custom DB parameter group ... 2316
Step 2: Select or create a source database .. 2317
Step 3: Create a target Amazon Redshift data warehouse .. 2317
Set up an integration using the AWS SDKs .. 2318
Next steps .. 2323

Creating zero-ETL integrations ... 2323
Prerequisites .. 2324
Required permissions .. 2324
Creating zero-ETL integrations .. 2327
Encrypting integrations .. 2330
Next steps .. 2332

Data filtering for zero-ETL integrations ... 2332
Format of a data filter .. 2333
Filter logic .. 2335
Filter precedence .. 2336
Examples .. 2336
Adding data filters ... 2337
Removing data filters .. 2339

Adding and querying data ... 2339
Creating a destination database in Amazon Redshift .. 2340
Adding data to the source database .. 2340
Querying your Amazon RDS data in Amazon Redshift .. 2341

xx

Amazon Relational Database Service User Guide

Data type differences .. 2342
Viewing and monitoring zero-ETL integrations .. 2346

Viewing integrations .. 2346
Monitoring using system tables .. 2348
Monitoring with EventBridge ... 2349

Modifying zero-ETL integrations .. 2349
Deleting zero-ETL integrations ... 2350
Troubleshooting zero-ETL integrations ... 2351

I can't create a zero-ETL integration .. 2352
My integration is stuck in a state of Syncing .. 2352
My tables aren't replicating to Amazon Redshift .. 2353
One or more of my Amazon Redshift tables requires a resync .. 2353

Db2 on Amazon RDS ... 2357
Db2 overview .. 2358

Db2 features .. 2359
Db2 versions .. 2362
Db2 licensing ... 2366
Db2 instance classes .. 2383
Db2 default roles ... 2385
Db2 parameters .. 2386
EBCDIC collation ... 2392
Db2 local time zone .. 2393

DB instance prerequisites .. 2396
Administrator account ... 2396
Additional considerations ... 2396

Multiple Db2 databases ... 2398
Connecting to your Db2 DB instance .. 2400

Finding the endpoint ... 2400
IBM Db2 CLP ... 2402
IBM CLPPlus ... 2407
DBeaver .. 2409
IBM Db2 Data Management Console ... 2413
Security group considerations ... 2422

Securing Db2 connections ... 2423
Encrypting with SSL/TLS .. 2423
Using Kerberos authentication .. 2430

xxi

Amazon Relational Database Service User Guide

Administering your RDS for Db2 DB instance ... 2445
System tasks .. 2447
Database tasks .. 2459

Integrating with S3 ... 2483
Create an IAM policy ... 2483
Create an IAM role and attach your IAM policy ... 2486
Add your IAM role to your DB instance ... 2488

Migrating data to RDS for Db2 .. 2491
Migrating data with AWS services .. 2491
Migrating data with native Db2 tools .. 2502

Federation ... 2515
Homogeneous federation ... 2515
Heterogeneous federation ... 2520

Options for RDS for Db2 DB instances ... 2525
Db2 audit logging .. 2526

External stored procedures .. 2541
Java-based external stored procedures ... 2541

Known issues and limitations ... 2550
Authentication limitation ... 2550
Non-fenced routines .. 2550
Non-automatic storage tablespaces during migration ... 2550
Setting the db2_compatibility_vector parameter ... 2551
Migrating databases that contain INVALID packages ... 2551

RDS for Db2 stored procedures .. 2553
Considerations for stored procedures .. 2560
Granting and revoking privileges .. 2561
Audit policies ... 2576
Buffer pools ... 2581
Databases ... 2587
Storage access ... 2614
Tablespaces .. 2617

RDS for Db2 user-defined functions ... 2628
rdsadmin.get_task_status ... 2628
rdsadmin.list_databases .. 2633

Troubleshooting ... 2635
Database connection error ... 2635

xxii

Amazon Relational Database Service User Guide

File I/O error ... 2635
Stored procedure errors .. 2639

MariaDB on Amazon RDS .. 2650
MariaDB feature support ... 2652

MariaDB major versions .. 2652
Supported storage engines .. 2660
Cache warming ... 2662
Features not supported .. 2663

MariaDB versions ... 2665
Supported MariaDB minor versions ... 2665
Supported MariaDB major versions .. 2671
The Database Preview environment .. 2671
MariaDB version 11.8 in the Database Preview environment ... 2675
MariaDB version 11.7 in the Database Preview environment ... 2675
MariaDB version 11.4 in the Database Preview environment ... 2675
Deprecated MariaDB versions .. 2676

Connecting to a DB instance running MariaDB ... 2677
Finding the connection information .. 2678
Connecting from the command-line client .. 2681
Connecting with the AWS drivers ... 2682
Troubleshooting .. 2683

Securing MariaDB connections ... 2684
MariaDB security ... 2684
Password validation plugins .. 2686
Encrypting with SSL/TLS .. 2687
Using new SSL/TLS certificates .. 2691

Improving query performance with RDS Optimized Reads .. 2696
Overview .. 2696
Use cases .. 2697
Best practices .. 2697
Using ... 2698
Monitoring ... 2699
Limitations ... 2699

Improving write performance with RDS Optimized Writes for MariaDB 2701
Overview .. 2701
Using with a new database .. 2702

xxiii

Amazon Relational Database Service User Guide

Enabling on an existing database ... 2707
Limitations ... 2708

Upgrades of the MariaDB DB engine .. 2709
Considerations ... 2710
Finding valid upgrade targets ... 2711
MariaDB version numbers .. 2712
RDS version numbers .. 2714
Major version upgrades ... 2715
Upgrading a MariaDB DB instance ... 2715
Automatic minor version upgrades .. 2715
Upgrading with reduced downtime ... 2719

Upgrading a MariaDB DB snapshot engine version .. 2723
Upgrade options for unsupported engine versions .. 2725

Importing data into an RDS for MariaDB DB instance .. 2727
Importing data considerations .. 2731
Importing data from an external database .. 2736
Importing data with reduced downtime ... 2740
Importing data from any source ... 2760

MariaDB replication ... 2766
MariaDB read replicas ... 2767
Configuring GTID-based replication with an external source instance 2781
Configuring binary log file position replication with an external source instance 2785

Options for MariaDB ... 2791
MariaDB Audit Plugin support .. 2791

Parameters for MariaDB ... 2797
Viewing MariaDB parameters .. 2797
MySQL parameters that aren't available ... 2799

Migrating data from a MySQL DB snapshot to a MariaDB DB instance 2801
Performing the migration .. 2801
Incompatibilities between MariaDB and MySQL .. 2803

MariaDB on Amazon RDS SQL reference .. 2805
mysql.rds_replica_status ... 2805
mysql.rds_set_external_master_gtid .. 2807
mysql.rds_kill_query_id ... 2810

Local time zone ... 2812
Known issues and limitations for MariaDB .. 2814

xxiv

Amazon Relational Database Service User Guide

File size limits ... 2814
InnoDB reserved word ... 2816
Custom ports ... 2816
Performance Insights ... 2816

Microsoft SQL Server on Amazon RDS .. 2817
Common management tasks .. 2819
Limitations .. 2821
DB instance class support .. 2824
Security .. 2829

SSL support ... 2830
Using SSL with a SQL Server DB instance .. 2831
Configuring SQL Server security protocols and ciphers ... 2836
Updating applications for new SSL/TLS certificates .. 2843

Compliance programs ... 2847
HIPAA .. 2847

Version support .. 2848
Version management .. 2852

Feature support ... 2854
SQL Server 2022 features .. 2854
SQL Server 2019 features .. 2855
SQL Server 2017 features .. 2856
SQL Server 2016 features .. 2856
SQL Server 2014 features .. 2857
SQL Server 2012 end of support on Amazon RDS ... 2857
SQL Server 2008 R2 end of support on Amazon RDS ... 2857
CDC support .. 2857
Unsupported and limited feature support ... 2858

Multi-AZ deployments .. 2860
Using TDE .. 2860
Functions and stored procedures ... 2860
Local time zone ... 2867

Supported time zones ... 2868
Licensing SQL Server on Amazon RDS ... 2881

Restoring license-terminated DB instances .. 2881
SQL Server Developer Edition ... 2882

Connecting to a DB instance running SQL Server .. 2883

xxv

Amazon Relational Database Service User Guide

Before you connect .. 2883
Finding the DB instance endpoint and port number .. 2884
Connecting to your DB instance with SSMS ... 2885
Connecting to your DB instance with SQL Workbench/J .. 2888
Security group considerations ... 2890
Troubleshooting .. 2890

Working with Active Directory with RDS for SQL Server .. 2893
Working with Self Managed Active Directory with a SQL Server DB instance 2894
Working with AWS Managed Active Directory with RDS for SQL Server 2913

Upgrades of the SQL Server DB engine ... 2928
Major version upgrades ... 2929
Upgrade considerations .. 2931
Testing an upgrade .. 2934
Upgrading a SQL server DB instance ... 2935
Upgrading deprecated DB instances before support ends .. 2935

Importing and exporting SQL Server databases ... 2936
Limitations and recommendations ... 2938
Setting up .. 2940
Using native backup and restore .. 2945
Compressing backup files ... 2962
Troubleshooting .. 2962
Importing and exporting SQL Server data using other methods ... 2966

SQL Server read replicas .. 2979
Configuring read replicas for SQL Server ... 2979
Read replica limitations with SQL Server ... 2980
Option considerations ... 2981
Synchronizing database users and objects ... 2982
Troubleshooting .. 2984

Multi-AZ for RDS for SQL Server ... 2986
Adding Multi-AZ to a SQL Server DB instance .. 2987
Removing Multi-AZ from a SQL Server DB instance ... 2988
Limitations, notes, and recommendations .. 2988
Determining the location of the secondary ... 2992
Migrating to Always On AGs .. 2993

Additional features for SQL Server ... 2994
Using password policy with a SQL Server DB instance .. 2995

xxvi

Amazon Relational Database Service User Guide

Amazon S3 integration ... 3002
Using Database Mail .. 3023
Instance store support for tempdb .. 3039
Using extended events .. 3042
Access to transaction log backups ... 3046

Options for SQL Server .. 3082
Listing the available options for SQL Server versions and editions 3084
Linked Servers with Oracle OLEDB .. 3086
Linked Servers with Teradata ODBC .. 3097
Native backup and restore ... 3106
Transparent Data Encryption ... 3111
SQL Server Audit .. 3124
SQL Server Analysis Services ... 3134
SQL Server Integration Services ... 3163
SQL Server Reporting Services ... 3186
Microsoft Distributed Transaction Coordinator .. 3206

Common DBA tasks .. 3224
Accessing the tempdb database ... 3226
Analyzing database workload with Database Engine Tuning Advisor 3230
Changing the db_owner to the rdsa account for your database ... 3234
Managing collations and character sets .. 3235
Creating a database user .. 3241
Determining a recovery model .. 3242
Determining the last failover time ... 3243
Troubleshoot PITR failures due to LSN gaps .. 3244
Deny or allow viewing database names .. 3245
Disabling fast inserts ... 3246
Dropping a SQL Server database ... 3246
Renaming a Multi-AZ database ... 3247
Resetting the db_owner role membership for master user ... 3248
Restoring license-terminated DB instances .. 3248
Transitioning a database from OFFLINE to ONLINE ... 3249
Using CDC .. 3250
Using SQL Server Agent ... 3253
Working with SQL Server logs .. 3258
Working with trace and dump files .. 3259

xxvii

Amazon Relational Database Service User Guide

MySQL on Amazon RDS .. 3261
MySQL feature support .. 3264

MySQL major versions .. 3264
Supported storage engines .. 3266
Using memcached and other options .. 3267
InnoDB cache warming ... 3267
Inclusive language changes for MySQL 8.4 .. 3269
Features not supported .. 3272

MySQL versions .. 3273
Minor versions ... 3273
Major versions ... 3279
RDS Extended Support versions ... 3280
Database Preview environment ... 3284
9.2 (preview) .. 3288
9.1 (preview) .. 3288
Deprecated versions .. 3288

Connecting to a DB instance running MySQL ... 3289
Finding the connection information .. 3290
Installing the command-line client .. 3294
Connecting from the command-line client .. 3294
Connecting from MySQL Workbench ... 3295
Connecting with the AWS drivers ... 3297
Troubleshooting .. 3298

Securing MySQL connections .. 3299
Password validation ... 3301
Encrypting with SSL/TLS .. 3303
Using new SSL/TLS certificates .. 3307
Using Kerberos authentication for MySQL ... 3312

Improving query performance with RDS Optimized Reads .. 3326
Overview .. 3326
Use cases .. 3327
Best practices .. 3327
Using ... 3328
Monitoring ... 3329
Limitations ... 3329

Improving write performance with RDS Optimized Writes for MySQL 3331

xxviii

Amazon Relational Database Service User Guide

Overview .. 2701
Using with a new database .. 3332
Enabling on an existing database ... 3337
Limitations ... 3338

Upgrades of the MySQL DB engine ... 3339
Considerations ... 3340
Finding valid upgrade targets ... 3341
MySQL version numbers ... 3342
RDS version numbers .. 3344
Major version upgrades ... 3344
Testing an upgrade .. 3351
Upgrading a MySQL DB instance .. 3352
Automatic minor version upgrades .. 3352
Upgrading with reduced downtime ... 3355

Upgrading a MySQL DB snapshot engine version .. 3359
Upgrade options for unsupported engine versions .. 3361

Importing data into an RDS for MySQL DB instance ... 3364
Importing data considerations .. 3368
Restoring a backup into a MySQL DB instance .. 3373
Importing data from an external database .. 3388
Importing data with reduced downtime ... 3392
Importing data from any source ... 3412

MySQL replication ... 3418
MySQL read replicas .. 3419
GTID-based replication .. 3435
Configuring binary log file position replication with an external source instance 3443
Configuring multi-source replication ... 3448

Configuring active-active clusters .. 3455
Use cases .. 3455
Limitations and considerations for active-active clusters .. 3456
Preparing for a cross-VPC active-active cluster ... 3459
Required parameter settings for active-active clusters .. 3461
Converting a DB instance to an active-active cluster ... 3464
Setting up a new active-active cluster .. 3470
Adding a DB instance to an active-active cluster .. 3476
Monitoring active-active clusters .. 3479

xxix

Amazon Relational Database Service User Guide

Stopping Group Replication in an active-active cluster ... 3480
Renaming a DB instance in an active-active cluster ... 3481
Removing a DB instance from an active-active cluster .. 3481

Exporting data from a MySQL DB instance ... 3483
Prepare an external MySQL database .. 3483
Prepare the source MySQL DB instance .. 3484
Copy the database ... 3486
Complete the export ... 3487

Options for MySQL ... 3489
MariaDB Audit Plugin .. 3490
memcached .. 3497

Parameters for MySQL ... 3503
Common DBA tasks for MySQL .. 3505

Understanding predefined users ... 3505
Role-based privilege model ... 3505
Dynamic privileges ... 3509
Ending a session or query .. 3513
Skipping the current replication error ... 3513
Improve crash recovery times .. 3515
Managing the Global Status History .. 3518
Configuring buffer pool size and redo log capacity .. 3520

Local time zone ... 3522
Known issues and limitations ... 3524

InnoDB reserved word ... 3524
Storage-full behavior .. 3524
Inconsistent InnoDB buffer pool size ... 3525
Index merge optimization returns incorrect results .. 3526
MySQL parameter exceptions for Amazon RDS DB instances ... 3527
MySQL file size limits in Amazon RDS ... 3528
MySQL Keyring Plugin not supported ... 3530
Custom ports ... 3530
MySQL stored procedure limitations ... 3530
GTID-based replication with an external source instance .. 3531
MySQL default authentication plugin .. 3531
Overriding innodb_buffer_pool_size .. 3531
Upgrading from MySQL 5.7 to MySQL 8.4 ... 3532

xxx

Amazon Relational Database Service User Guide

InnoDB page compression .. 3532
RDS for MySQL stored procedures .. 3533

Collecting and maintaining the Global Status History ... 3534
Configuring, starting, and stopping binary log (binlog) replication 3537
Ending a session or query .. 3579
Managing active-active clusters .. 3581
Managing multi-source replication ... 3586
Replicating transactions using GTIDs ... 3608
Rotating the query logs .. 3611
Setting and showing binary log configuration .. 3613
Warming the InnoDB cache ... 3617

Oracle on Amazon RDS ... 3619
Oracle overview ... 3620

Oracle features ... 3621
Oracle versions ... 3625
Oracle licensing .. 3631
Oracle users and privileges .. 3635
Oracle instance classes ... 3636
Oracle database architecture ... 3645
Oracle parameters .. 3646
Oracle character sets ... 3647
Oracle limitations ... 3651

Connecting to your Oracle DB instance ... 3654
Finding the endpoint ... 3654
SQL developer ... 3656
SQL*Plus ... 3659
Security group considerations ... 3660
Dedicated and shared server processes ... 3661
Troubleshooting .. 3661
Modifying Oracle sqlnet.ora parameters ... 3663

Securing Oracle connections ... 3668
Encrypting with SSL .. 3668
Using new SSL/TLS certificates .. 3669
Encrypting with NNE ... 3673
Configuring Kerberos authentication ... 3673
Configuring UTL_HTTP access ... 3692

xxxi

Amazon Relational Database Service User Guide

Working with CDBs ... 3704
Overview of CDBs .. 3704
Configuring a CDB ... 3710
Backing up and restoring a CDB ... 3717
Converting a non-CDB to a CDB ... 3718
Converting single-tenant to multi-tenant .. 3720
Adding an RDS for Oracle tenant database to your CDB instance ... 3723
Modifying an RDS for Oracle tenant database .. 3726
Deleting an RDS for Oracle tenant database from your CDB ... 3729
Viewing tenant database details .. 3731
Upgrading your CDB .. 3736

Administering your Oracle DB instance .. 3737
System tasks .. 3752
Database tasks .. 3777
Log tasks .. 3806
RMAN tasks .. 3819
Oracle Scheduler tasks .. 3852
Diagnosing problems ... 3861
Other tasks .. 3871

Configuring advanced RDS for Oracle features .. 3886
Configuring the instance store .. 3886
Turning on HugePages .. 3897
Turning on extended data types ... 3900

Importing data into Oracle ... 3904
Importing using Oracle SQL Developer ... 3905
Migrating using Oracle transportable tablespaces ... 3905
Importing using Oracle Data Pump ... 3922
Importing using Oracle Export/Import ... 3938
Importing using Oracle SQL*Loader .. 3939
Migrating with Oracle materialized views .. 3941

Working with Oracle replicas .. 3944
Overview of Oracle replicas ... 3944
Requirements and considerations for Oracle replicas .. 3946
Preparing to create an Oracle replica .. 3950
Creating a mounted Oracle replica .. 3952
Modifying the replica mode .. 3953

xxxii

Amazon Relational Database Service User Guide

Working with Oracle replica backups .. 3955
Performing an Oracle Data Guard switchover ... 3957
Troubleshooting Oracle replicas ... 3966

Options for Oracle .. 3968
Overview of Oracle DB options .. 3968
Amazon S3 integration ... 3971
Application Express (APEX) .. 3997
Amazon EFS integration ... 4021
Java virtual machine (JVM) .. 4037
Enterprise Manager .. 4041
Label security .. 4064
Locator .. 4067
Native network encryption (NNE) ... 4071
OLAP ... 4086
Secure Sockets Layer (SSL) .. 4089
Spatial ... 4101
SQLT .. 4105
Statspack .. 4114
Time zone .. 4118
Time zone file autoupgrade ... 4123
Transparent Data Encryption (TDE) .. 4133
UTL_MAIL ... 4138
XML DB ... 4142

Upgrading the Oracle DB engine ... 4143
Overview of Oracle upgrades .. 4143
Major version upgrades ... 4149
Minor version upgrades .. 4151
Upgrade considerations .. 4157
Testing an upgrade .. 4160
Upgrading an RDS for Oracle DB instance ... 4162
Upgrading an Oracle DB snapshot ... 4164

Tools and third-party software for Oracle ... 4167
Using Oracle GoldenGate ... 4168
Using the Oracle Repository Creation Utility ... 4186
Configuring CMAN ... 4194
Installing a Siebel database on Oracle on Amazon RDS .. 4197

xxxiii

Amazon Relational Database Service User Guide

Oracle Database engine releases ... 4202
PostgreSQL on Amazon RDS .. 4203

Common management tasks .. 4205
Working with the Database Preview environment ... 4209

Features not supported in the Database Preview environment ... 4210
PostgreSQL version 17 in the Database Preview environment ... 4210
Creating a new DB instance in the Database Preview environment 4210

PostgreSQL versions ... 4213
Deprecated PostgreSQL versions .. 4213

RDS for PostgreSQL release process ... 4214
Advantages of RDS for PostgreSQL incremental release process .. 4214
Managing release updates ... 4214

PostgreSQL extension versions ... 4216
Restricting installation of PostgreSQL extensions .. 4216
PostgreSQL trusted extensions ... 4218

PostgreSQL features ... 4220
Custom data types and enumerations .. 4221
Event triggers .. 4221
Huge pages .. 4222
Performing logical replication ... 4223
RAM disk for the stats_temp_directory ... 4226
Tablespaces .. 4226
Collations for EBCDIC and other mainframe migrations ... 4227
Managing logical slot synchronization .. 4232

Connecting to a PostgreSQL instance ... 4234
Installing the psql client ... 4235
Finding the connection information .. 4235
Using pgAdmin to connect to a RDS for PostgreSQL DB instance ... 4237
Using psql to connect to your RDS for PostgreSQL DB instance ... 4239
Connecting to RDS for PostgreSQL with the AWS JDBC Driver .. 4241
Connecting to RDS for PostgreSQL with the AWS Python Driver .. 4241
Troubleshooting connections to your RDS for PostgreSQL instance 4241

Securing connections with SSL/TLS .. 4244
Using SSL with a PostgreSQL DB instance ... 4244
Updating applications to use new SSL/TLS certificates ... 4251

Using Kerberos authentication ... 4256

xxxiv

Amazon Relational Database Service User Guide

Region and version availability ... 4257
Overview of Kerberos authentication .. 4257
Setting up .. 4258
Managing an RDS for PostgreSQL DB instance in an Active Directory domain 4272
Connecting with Kerberos authentication .. 4273

Using a custom DNS server for outbound network access ... 4276
Turning on custom DNS resolution .. 4276
Turning off custom DNS resolution .. 4276
Setting up a custom DNS server .. 4276

Upgrades of the PostgreSQL DB engine .. 4279
Considerations ... 4281
Finding valid upgrade targets ... 4282
PostgreSQL version numbers .. 4283
RDS version numbers .. 4283
Choosing a major version upgrade .. 4284
How to perform a major version upgrade .. 4298
Automatic minor version upgrades .. 4306
Upgrading PostgreSQL extensions ... 4308

Upgrading a PostgreSQL DB snapshot engine version .. 4310
Working with read replicas for RDS for PostgreSQL .. 4313

Logical decoding on a read replica .. 4313
Read replica limitations with PostgreSQL ... 4316
Read replica configuration with PostgreSQL .. 4318
Using cascading read replicas .. 4320
Creating cross-Region cascading read replicas .. 4321
How replication works for different RDS for PostgreSQL versions .. 4323
Monitoring and tuning the replication process ... 4327
Troubleshooting for RDS for PostgreSQL read replica ... 4330

Improving query performance with RDS Optimized Reads .. 4332
Overview of RDS Optimized Reads in PostgreSQL ... 4332
Use cases .. 4333
Best practices .. 4334
Using ... 4334
Monitoring ... 4335
Limitations ... 4335

Importing data into PostgreSQL .. 4336

xxxv

Amazon Relational Database Service User Guide

Importing a PostgreSQL database from an Amazon EC2 instance .. 4338
Using the \copy command to import data to a table on a PostgreSQL DB instance 4340
Importing data from Amazon S3 into RDS for PostgreSQL .. 4342
Transporting PostgreSQL databases between DB instances ... 4361

Exporting PostgreSQL data to Amazon S3 .. 4370
Installing the extension .. 4371
Overview of exporting to S3 ... 4372
Specifying the Amazon S3 file path to export to ... 4373
Setting up access to an Amazon S3 bucket ... 4374
Exporting query data using the aws_s3.query_export_to_s3 function 4379
Function reference ... 4382
Troubleshooting access to Amazon S3 .. 4386

Invoking a Lambda function from RDS for PostgreSQL .. 4387
Step 1: Configure outbound connections ... 4388
Step 2: Configure IAM for your instance and Lambda ... 4389
Step 3: Install the extension .. 4390
Step 4: Use Lambda helper functions ... 4391
Step 5: Invoke a Lambda function ... 4392
Step 6: Grant users permissions ... 4394
Examples: Invoking Lambda functions .. 4394
Lambda function error messages ... 4397
Lambda function and parameter reference .. 4398

Common DBA tasks for RDS for PostgreSQL .. 4404
Collations supported in RDS for PostgreSQL ... 4405
Understanding PostgreSQL roles and permissions ... 4405
Working with PostgreSQL autovacuum ... 4420
Logging mechanisms ... 4466
Managing temporary files with PostgreSQL .. 4467
Using pgBadger for log analysis with PostgreSQL .. 4474
Using PGSnapper for monitoring PostgreSQL ... 4474
Working with parameters ... 4474

Tuning with wait events for RDS for PostgreSQL ... 4495
Essential concepts for RDS for PostgreSQL tuning ... 4496
RDS for PostgreSQL wait events .. 4501
Client:ClientRead .. 4503
Client:ClientWrite ... 4506

xxxvi

Amazon Relational Database Service User Guide

CPU .. 4508
IO:BufFileRead and IO:BufFileWrite ... 4514
IO:DataFileRead .. 4522
IO:WALWrite .. 4530
Lock:advisory ... 4533
Lock:extend .. 4536
Lock:Relation ... 4539
Lock:transactionid .. 4542
Lock:tuple ... 4545
LWLock:BufferMapping (LWLock:buffer_mapping) ... 4549
LWLock:BufferIO (IPC:BufferIO) ... 4552
LWLock:buffer_content (BufferContent) .. 4554
LWLock:lock_manager (LWLock:lockmanager) ... 4556
Timeout:PgSleep ... 4561
Timeout:VacuumDelay ... 4562

Tuning RDS for PostgreSQL with Amazon DevOps Guru proactive insights 4565
Database has long running idle in transaction connection ... 4565

Using PostgreSQL extensions ... 4569
Using functions from orafce .. 4570
Using Amazon RDS delegated extension support for PostgreSQL .. 4572
Managing partitions with the pg_partman extension .. 4586
Using pgAudit to log database activity ... 4592
Scheduling maintenance with the pg_cron extension .. 4605
Using pglogical to synchronize data .. 4615
Using pgactive to create active-active replication .. 4629
Reducing bloat with the pg_repack extension ... 4641
Upgrading and using PLV8 .. 4647
Using PL/Rust to write functions in the Rust language ... 4649
Managing spatial data with PostGIS .. 4655

Supported foreign data wrappers in Amazon RDS for PostgreSQL .. 4665
Using the log_fdw extension ... 4665
Using postgres_fdw to access external data .. 4667
Working with a MySQL database ... 4668
Working with an Oracle database .. 4672
Working with a SQL Server database .. 4676

Working with Trusted Language Extensions for PostgreSQL ... 4680

xxxvii

Amazon Relational Database Service User Guide

Terminology ... 4681
Requirements for using Trusted Language Extensions .. 4682
Setting up Trusted Language Extensions .. 4685
Overview of Trusted Language Extensions ... 4689
Creating TLE extensions ... 4690
Dropping your TLE extensions from a database ... 4695
Uninstalling Trusted Language Extensions ... 4696
Using PostgreSQL hooks with your TLE extensions .. 4697
Using Custom Data Types in Trusted Language Extensions .. 4703
Function reference for Trusted Language Extensions .. 4704
Hooks reference for Trusted Language Extensions ... 4717

Code examples ... 4721
Basics .. 4732

Hello Amazon RDS ... 4733
Learn the basics .. 4742
Actions .. 4841

Scenarios .. 4958
Create an Aurora Serverless work item tracker ... 4958

Serverless examples .. 4963
Connecting to an Amazon RDS database in a Lambda function .. 4963

Security .. 4983
Database authentication .. 4985

Password authentication .. 4986
IAM database authentication ... 4986
Kerberos authentication .. 4986

Password management with RDS and Secrets Manager ... 4988
Limitations ... 4988
Overview .. 4989
Benefits ... 4990
Permissions required for Secrets Manager integration .. 4990
Enforcing RDS management .. 4991
Managing the master user password for a DB instance ... 4992
Managing the master user password for a tenant database ... 4996
Managing the master user password for a Multi-AZ DB cluster ... 5000
Rotating the master user password secret for a DB instance ... 5004
Rotating the master user password secret for a Multi-AZ DB cluster 5006

xxxviii

Amazon Relational Database Service User Guide

Viewing the details about a secret for a DB instance ... 5008
Viewing the details about a secret for a Multi-AZ DB cluster ... 5011
Region and version availability ... 5014

Data protection .. 5015
Data encryption .. 5016
Internetwork traffic privacy ... 5047

Identity and access management .. 5049
Audience ... 5049
Authenticating with identities ... 5050
Managing access using policies ... 5053
How Amazon RDS works with IAM ... 5055
Identity-based policy examples ... 5063
AWS managed policies .. 5080
Policy updates ... 5087
Cross-service confused deputy prevention ... 5105
IAM database authentication ... 5107
Troubleshooting .. 5156

Logging and monitoring .. 5158
Compliance validation .. 5161
Resilience ... 5162

Backup and restore .. 5162
Replication ... 5162
Failover ... 5163

Infrastructure security .. 5164
Security groups ... 5164
Public accessibility ... 5164

VPC endpoints (AWS PrivateLink) .. 5166
Considerations ... 1392
Availability ... 1393
Creating an interface VPC endpoint .. 1393
Creating a VPC endpoint policy .. 1393

Security best practices ... 5169
Controlling access with security groups ... 5170

Overview of VPC security groups ... 5170
Security group scenario .. 5171
Creating a VPC security group .. 5173

xxxix

Amazon Relational Database Service User Guide

Associating with a DB instance ... 5173
Master user account privileges ... 5174
Service-linked roles ... 5178

Service-linked role permissions for Amazon RDS .. 5178
Service-linked role permissions for Amazon RDS Custom ... 5181
Service-linked role permissions for Amazon RDS Beta .. 5182
Service-linked role for Amazon RDS Preview ... 5183

Using Amazon RDS with Amazon VPC ... 5185
Working with a DB instance in a VPC .. 5185
Updating the VPC for a DB instance .. 5202
Scenarios for accessing a DB instance in a VPC ... 5202
Tutorial: Create a VPC for use with a DB instance (IPv4 only) .. 5209
Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5217
Moving a DB instance into a VPC ... 5228

Quotas and constraints ... 5231
Quotas in Amazon RDS .. 5231
Naming constraints in Amazon RDS .. 5237
Maximum number of database connections .. 5238
File size limits in Amazon RDS ... 5241

Troubleshooting ... 5242
Can't connect to DB instance .. 5242

Testing the DB instance connection ... 5245
Troubleshooting connection authentication ... 5245

Security issues .. 5246
Error message "failed to retrieve account attributes, certain console functions may be
impaired." ... 5246

Troubleshooting incompatible-network state ... 5246
Causes ... 5246
Resolution .. 5247

Resetting the DB instance owner password .. 5248
DB instance outage or reboot .. 5249
Parameter changes not taking effect .. 5249
DB instance out of storage ... 5250
Insufficient DB instances available ... 5252
RDS freeable memory issues .. 5252
MySQL and MariaDB issues ... 5253

xl

Amazon Relational Database Service User Guide

Maximum MySQL and MariaDB connections .. 5253
Diagnosing and resolving incompatible parameters status for a memory limit 5254
Diagnosing and resolving lag between read replicas ... 5256
Diagnosing and resolving a MySQL or MariaDB read replication failure 5258
Creating triggers with binary logging enabled requires SUPER privilege 5260
Diagnosing and resolving point-in-time restore failures ... 5261
Replication stopped error ... 5262
Read replica create fails or replication breaks with fatal error 1236 5263
Read replica replication fails to initialize metadata structure .. 5263

Can't set backup retention period to 0 .. 5264
Amazon RDS API reference ... 5265

Using the Query API ... 5265
Query parameters .. 5265
Query request authentication ... 5266

Troubleshooting applications .. 5266
Retrieving errors ... 5266
Troubleshooting tips .. 5267

Document history .. 5268
Earlier updates ... 5426

AWS Glossary ... 5456

xli

Amazon Relational Database Service User Guide

What is Amazon Relational Database Service (Amazon
RDS)?

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to
set up, operate, and scale a relational database in the AWS Cloud. It provides cost-efficient,
resizable capacity for an industry-standard relational database and manages common database
administration tasks.

Note

This guide covers Amazon RDS database engines other than Amazon Aurora. For
information about using Amazon Aurora, see the Amazon Aurora User Guide.

If you are new to AWS products and services, begin learning more with the following resources:

• For an overview of all AWS products, see What is cloud computing?

• Amazon Web Services provides a number of database services. To learn more about the variety
of database options available on AWS, see Choosing an AWS database service and Running
databases on AWS.

Advantages of Amazon RDS

Amazon RDS is a managed database service. It's responsible for most management tasks. By
eliminating tedious manual processes, Amazon RDS frees you to focus on your application and your
users.

Amazon RDS provides the following principal advantages over database deployments that aren't
fully managed:

• You can use database engines that you are already familiar with: IBM Db2, MariaDB, Microsoft
SQL Server, MySQL, Oracle Database, and PostgreSQL.

• Amazon RDS manages backups, software patching, automatic failure detection, and recovery.

• You can turn on automated backups, or manually create your own backup snapshots. You can
use these backups to restore a database. The Amazon RDS restore process works reliably and
efficiently.

Advantages of Amazon RDS 1

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
http://aws.amazon.com/what-is-aws/
https://aws.amazon.com/getting-started/decision-guides/databases-on-aws-how-to-choose
http://aws.amazon.com/running_databases/
http://aws.amazon.com/running_databases/

Amazon Relational Database Service User Guide

• You can get high availability with a primary DB instance and a synchronous secondary DB
instance that you can fail over to when problems occur. You can also use read replicas to increase
read scaling.

• In addition to the security in your database package, you can control access by using AWS
Identity and Access Management (IAM) to define users and permissions. You can also help
protect your databases by putting them in a virtual private cloud (VPC).

Comparison of responsibilities with Amazon EC2 and on-
premises deployments

We recommend Amazon RDS as your default choice for most relational database deployments. The
following alternatives have the disadvantage of making you spend more time managing software
and hardware:

On-premises deployment

When you buy an on-premises server, you get CPU, memory, storage, and IOPS, all bundled
together. You assume full responsibility for the server, operating system, and database
software.

Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing capacity in the AWS
Cloud. Unlike in an on-premises server, CPU, memory, storage, and IOPS are separated so that
you can scale them independently. AWS manages the hardware layers, which eliminates some
of the burden of managing an on-premises database server.

The disadvantage to running a database on Amazon EC2 is that you're more prone to user
errors. For example, when you update the operating system or database software manually, you
might accidentally cause application downtime. You might spend hours checking every change
to identify and fix an issue.

The following table compares the management models for on-premises databases, Amazon EC2,
and Amazon RDS.

Comparison of responsibilities 2

Amazon Relational Database Service User Guide

Feature On-premises
management

Amazon EC2
management

Amazon RDS
management

Application optimization Customer Customer Customer

Scaling Customer Customer AWS

High availability Customer Customer AWS

Database backups Customer Customer AWS

Database software
patching

Customer Customer AWS

Database software install Customer Customer AWS

Operating system (OS)
patching

Customer Customer AWS

OS installation Customer Customer AWS

Server maintenance Customer AWS AWS

Hardware lifecycle Customer AWS AWS

Power, network, and
cooling

Customer AWS AWS

Amazon RDS shared responsibility model

Amazon RDS is responsible for hosting the software components and infrastructure of DB instances
and DB clusters. You are responsible for query tuning, which is the process of adjusting SQL queries
to improve performance. Query performance is highly dependent on database design, data size,
data distribution, application workload, and query patterns, which can vary greatly. Monitoring
and tuning are highly individualized processes that you own for your RDS databases. You can use
Amazon RDS Performance Insights and other tools to identify problematic queries.

Amazon RDS shared responsibility model 3

Amazon Relational Database Service User Guide

Amazon RDS DB instances

A DB instance is an isolated database environment in the AWS Cloud. The basic building block of
Amazon RDS is the DB instance. Your DB instance can contain one or more user-created databases.
The following diagram shows a virtual private cloud (VPC) that contains two Availability Zones,
with each AZ containing two DB instances.

You can access your DB instances by using the same tools and applications that you use with
a standalone database instance. You can create and modify a DB instance by using the AWS
Command Line Interface (AWS CLI), the Amazon RDS API, or the AWS Management Console.

Topics

• Amazon RDS application architecture: example

• DB engines

• DB instance classes

• DB instance storage

• DB instances in an Amazon Virtual Private Cloud (Amazon VPC)

DB instances 4

Amazon Relational Database Service User Guide

Amazon RDS application architecture: example

The following image shows a typical use case of a dynamic website that uses Amazon RDS DB
instances for database storage:

The primary components of the preceding architecture are as follows:

Elastic Load Balancing

AWS routes user traffic through Elastic Load Balancing. A load balancer distributes workloads
across multiple compute resources, such as virtual servers. In this sample use case, the Elastic
Load Balancer forwards client requests to application servers.

Application servers

Application servers interact with RDS DB instances. An application server in AWS is typically
hosted on EC2 instances, which provide scalable computing capacity. The application servers

Amazon RDS application architecture: example 5

Amazon Relational Database Service User Guide

reside in public subnets with different Availability Zones (AZs) within the same Virtual Private
Cloud (VPC). .

RDS DB instances

The EC2 application servers interact with RDS DB instances. The DB instances reside in private
subnets within different Availability Zones (AZs) within the same Virtual Private Cloud (VPC).
Because the subnets are private, no requests from the internet are permitted.

The primary DB instance replicates to another DB instance, called a read replica. Both DB
instances are in private subnets within the VPC, which means that Internet users can't access
them directly.

DB engines

A DB engine is the specific relational database software that runs on your DB instance. Amazon RDS
supports the following database engines:

• IBM Db2

For more information, see Amazon RDS for Db2.

• MariaDB

For more information, see Amazon RDS for MariaDB.

• Microsoft SQL Server

For more information, see Amazon RDS for Microsoft SQL Server.

• MySQL

For more information, see Amazon RDS for MySQL.

• Oracle Database

For more information, see Amazon RDS for Oracle.

• PostgreSQL

For more information, see Amazon RDS for PostgreSQL.

Each DB engine has its own supported features, and each version of a DB engine can include
specific features. Support for Amazon RDS features varies across AWS Regions and specific

DB engines 6

Amazon Relational Database Service User Guide

versions of each DB engine. To check feature support in different engine versions and Regions, see
Supported features in Amazon RDS by AWS Region and DB engine.

Additionally, each DB engine has a set of parameters in a DB parameter group that control the
behavior of the databases that it manages. For more information about parameter groups, see
Parameter groups for Amazon RDS.

DB instance classes

A DB instance class determines the computation and memory capacity of a DB instance. A DB
instance class consists of both the DB instance class type and the size. Amazon RDS supports the
following instance class types, where the asterisk (*) represents the generation, optional attribute,
and size:

• General purpose – db.m*

• Memory optimized – db.z*, db.x*, db.r*

• Compute optimized – db.c*

• Burstable performance – db.t*

Each instance class offers different compute, memory, and storage capabilities. For example,
db.m7g is a 7th-generation, general-purpose DB instance class type powered by AWS Graviton3
processors. When you create a DB instance, you specify a DB instance class such as db.m7g.2xlarge,
where 2xlarge is the size. For more information about the hardware specifications for the different
instance classes, see Hardware specifications for DB instance classes.

You can select the DB instance class that best meets your requirements. If your requirements
change over time, you can change your DB instance class. For example, you might scale up your
db.m7g.2xlarge instance to db.m7g.4xlarge. For more information, see DB instance classes.

Note

For pricing information on DB instance classes, see the Pricing section of the Amazon RDS
product page.

DB instance classes 7

http://aws.amazon.com/rds/

Amazon Relational Database Service User Guide

DB instance storage

Amazon EBS provides durable, block-level storage volumes that you can attach to a running
instance. DB instance storage comes in the following types:

• General Purpose (SSD)

This cost-effective storage type is ideal for a broad range of workloads running on medium-sized
DB instances. General Purpose storage is best suited for development and testing environments.

• Provisioned IOPS (PIOPS)

This storage type is designed to meet the needs of I/O-intensive workloads, particularly
database workloads, that require low I/O latency and consistent I/O throughput. Provisioned
IOPS storage is best suited for production environments.

• Magnetic

Amazon RDS supports magnetic storage for backward compatibility. We recommend that you
use General Purpose SSD or Provisioned IOPS SSD for any new storage needs.

The storage types differ in performance characteristics and price. You can tailor your storage
performance and cost to the requirements of your database.

Each DB instance has minimum and maximum storage requirements depending on the storage
type and the database engine it supports. It's important to have sufficient storage so that your
databases have room to grow. Also, sufficient storage makes sure that features for the DB engine
have room to write content or log entries. For more information, see Amazon RDS DB instance
storage.

DB instances in an Amazon Virtual Private Cloud (Amazon VPC)

You can run a DB instance on a virtual private cloud (VPC) using the Amazon Virtual Private
Cloud (Amazon VPC) service. When you use a VPC, you have control over your virtual networking
environment. You can choose your own IP address range, create subnets, and configure routing and
access control lists.

The basic functionality of Amazon RDS is the same whether it's running in a VPC or not. Amazon
RDS manages backups, software patching, automatic failure detection, and recovery. There's no
additional cost to run your DB instance in a VPC. For more information on using Amazon VPC with
RDS, see Amazon VPC and Amazon RDS.

DB instance storage 8

Amazon Relational Database Service User Guide

Amazon RDS uses Network Time Protocol (NTP) to synchronize the time on DB instances.

AWS Regions and Availability Zones

Amazon cloud computing resources are housed in highly available data center facilities in different
areas of the world (for example, North America, Europe, or Asia). Each data center location is called
an AWS Region. With Amazon RDS, you can create your DB instances in multiple Regions.

The following scenario shows an RDS DB instance in one Region that replicates asynchronously to
a standby DB instance in a different Region. If one Region becomes unavailable, the instance in the
other Region is still available.

Availability Zones

Each AWS Region contains multiple distinct locations called Availability Zones, or AZs. Each
Availability Zone is engineered to be isolated from failures in other Availability Zones. Each is
engineered to provide inexpensive, low-latency network connectivity to other Availability Zones
in the same AWS Region. By launching DB instances in separate Availability Zones, you can
protect your applications from the failure of a single location. For more information, see Regions,
Availability Zones, and Local Zones.

AWS Regions and Availability Zones 9

Amazon Relational Database Service User Guide

Multi-AZ deployments

You can run your DB instance in several Availability Zones, an option called a Multi-AZ deployment.
When you choose this option, Amazon automatically provisions and maintains one or more
secondary standby DB instances in a different AZ. Your primary DB instance is replicated across
Availability Zones to each secondary DB instance.

A Multi-AZ deployment provides the following advantages:

• Providing data redundancy and failover support

• Eliminating I/O freezes

• Minimizing latency spikes during system backups

• Serving read traffic on secondary DB instances (Multi-AZ DB clusters deployment only)

The following diagram depicts a Multi-AZ DB instance deployment, where Amazon RDS
automatically provisions and maintains a synchronous standby replica in a different Availability
Zone. The replica database doesn't serve read traffic.

Multi-AZ deployments 10

Amazon Relational Database Service User Guide

The following diagram depicts a Multi-AZ DB cluster deployment, which has a writer DB instance
and two reader DB instances in three separate Availability Zones in the same AWS Region. All three
DB instances can serve read traffic.

Multi-AZ deployments 11

Amazon Relational Database Service User Guide

For more information, see Configuring and managing a Multi-AZ deployment for Amazon RDS.

Access control with security groups

A security group controls the access to a DB instance by allowing access to IP address ranges
or Amazon EC2 instances that you specify. You can apply a security group to one or more DB
instances.

A common use of a DB instance in a VPC is to share data with an application server in the same
VPC. The following example uses VPC security group ec2-rds-x to define inbound rules that
use the IP addresses of the client application as the source. The application server belongs to this
security group. A second security group named rds-ec2-x specifies ec2-rds-x as the source
and attaches to an RDS DB instance. According to the security group rules, client applications can't
directly access the DB instance, but the EC2 instance can access the DB instance.

Access control with security groups 12

Amazon Relational Database Service User Guide

For more information about security groups, see Security in Amazon RDS.

Amazon RDS monitoring

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon RDS and your other AWS solutions. AWS provides various monitoring tools to watch
Amazon RDS, report when something is wrong, and take automatic actions when appropriate.

You can track the performance and health of your DB instances using various automated and
manual tools:

Amazon RDS monitoring 13

Amazon Relational Database Service User Guide

Amazon RDS DB instance status and recommendations

View details about the current status of your instance by using the Amazon RDS console, AWS
CLI, or RDS API. You can also respond to automated recommendations for database resources,
such as DB instances, read replicas, and DB parameter groups. For more information, see
Recommendations from Amazon RDS.

Amazon CloudWatch metrics for Amazon RDS

You can use the Amazon CloudWatch service to monitor the performance and health of a DB
instance. CloudWatch performance charts are shown in the Amazon RDS console. Amazon RDS
automatically sends metrics to CloudWatch every minute for each active database. You don't
get additional charges for Amazon RDS metrics in CloudWatch.

Using Amazon CloudWatch alarms, you can watch a single Amazon RDS metric over a specific
time period. You can then perform one or more actions based on the value of the metric
relative to a threshold that you set. For more information, see Monitoring Amazon RDS metrics
with Amazon CloudWatch.

Amazon RDS Performance Insights and operating-system monitoring

Performance Insights assesses the load on your database, and determine when and where
to take action. For more information, see Monitoring DB load with Performance Insights on
Amazon RDS. Amazon RDS Enhanced Monitoring looks at metrics in real time for the operating
system. For more information, see Monitoring OS metrics with Enhanced Monitoring.

Integrated AWS services

Amazon RDS is integrated with Amazon EventBridge, Amazon CloudWatch Logs, and Amazon
DevOps Guru. For more information, see Monitoring metrics in an Amazon RDS instance.

User interfaces to Amazon RDS

You can interact with Amazon RDS in multiple ways.

Topics

• AWS Management Console

• Command line interface

• Amazon RDS APIs

User interfaces to Amazon RDS 14

Amazon Relational Database Service User Guide

AWS Management Console

The AWS Management Console is a simple web-based user interface. You can manage your
DB instances from the console with no programming required. To access the Amazon RDS
console, sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Command line interface

You can use the AWS Command Line Interface (AWS CLI) to access the Amazon RDS API
interactively. To install the AWS CLI, see Installing the AWS Command Line Interface. To begin
using the AWS CLI for RDS, see AWS Command Line Interface reference for Amazon RDS.

Amazon RDS APIs

If you are a developer, you can access the Amazon RDS programmatically using APIs. For more
information, see Amazon RDS API reference.

AWS Management Console 15

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html

Amazon Relational Database Service User Guide

For application development, we recommend that you use one of the AWS Software Development
Kits (SDKs). The AWS SDKs handle low-level details such as authentication, retry logic, and error
handling, so that you can focus on your application logic. AWS SDKs are available for a wide variety
of languages. For more information, see Tools for Amazon web services .

AWS also provides libraries, sample code, tutorials, and other resources to help you get started
more easily. For more information, see Sample code & libraries.

How you are charged for Amazon RDS

When you use Amazon RDS, you can choose to use on-demand DB instances or reserved DB
instances. For more information, see DB instance billing for Amazon RDS.

For Amazon RDS pricing information, see the Amazon RDS product page.

What's next?

The preceding section introduced you to the basic infrastructure components that RDS offers. What
should you do next?

Getting started

Create a DB instance using instructions in Getting started with Amazon RDS.

Topics specific to database engines

You can review information specific to a particular DB engine in the following sections:

• Amazon RDS for Db2

• Amazon RDS for MariaDB

• Amazon RDS for Microsoft SQL Server

• Amazon RDS for MySQL

• Amazon RDS for Oracle

• Amazon RDS for PostgreSQL

How you are charged for Amazon RDS 16

https://aws.amazon.com/tools/
https://aws.amazon.com/code
https://aws.amazon.com/rds/pricing

Amazon Relational Database Service User Guide

Amazon RDS DB instances

A DB instance is an isolated database environment running in the cloud. It is the basic building
block of Amazon RDS. A DB instance can contain multiple user-created databases, and can be
accessed using the same client tools and applications you might use to access a standalone
database instance. DB instances are simple to create and modify with the AWS command line tools,
Amazon RDS API operations, or the AWS Management Console.

Note

Amazon RDS supports access to databases using any standard SQL client application.
Amazon RDS does not allow direct host access except with RDS Custom.

You can have up to 40 Amazon RDS DB instances, with the following limitations:

• 10 for each SQL Server edition (Enterprise, Standard, Web, and Express) under the "license-
included" model

• 10 for Oracle under the "license-included" model

• 40 for Db2 under the "bring-your-own-license" (BYOL) licensing model

• 40 for MySQL, MariaDB, or PostgreSQL

• 40 for Oracle under the "bring-your-own-license" (BYOL) licensing model

Note

If your application requires more DB instances, you can request additional DB instances by
using this form.

Each DB instance has a DB instance identifier. This customer-supplied name uniquely identifies the
DB instance when interacting with the Amazon RDS API and AWS CLI commands. The DB instance
identifier must be unique for that customer in an AWS Region.

The DB instance identifier forms part of the DNS hostname allocated to your instance by RDS.
For example, if you specify db1 as the DB instance identifier, then RDS will automatically
allocate a DNS endpoint for your instance. An example endpoint is db1.abcdefghijkl.us-
east-1.rds.amazonaws.com, where db1 is your instance ID.

DB instances 17

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-rds-instances

Amazon Relational Database Service User Guide

In the example endpoint db1.abcdefghijkl.us-east-1.rds.amazonaws.com, the string
abcdefghijkl is a unique identifier for a specific combination of AWS Region and AWS account.
The identifier abcdefghijkl in the example is internally generated by RDS and doesn't change
for the specified combination of Region and account. Thus, all your DB instances in this Region
share the same fixed identifier. Consider the following features of the fixed identifier:

• If you rename your DB instance, the endpoint is different but the fixed identifier is the same.
For example, if you rename db1 to renamed-db1, the new instance endpoint is renamed-
db1.abcdefghijkl.us-east-1.rds.amazonaws.com.

• If you delete and re-create a DB instance with the same DB instance identifier, the endpoint is the
same.

• If you use the same account to create a DB instance in a different Region, the internally
generated identifier is different because the Region is different, as in db2.mnopqrstuvwx.us-
west-1.rds.amazonaws.com.

Each DB instance supports a database engine. Amazon RDS currently supports Db2, MySQL,
MariaDB, PostgreSQL, Oracle, Microsoft SQL Server, and Amazon Aurora database engines.

When creating a DB instance, some database engines require that a database name be specified.
A DB instance can host multiple databases or a single Oracle database with multiple schemas. The
database name value depends on the database engine:

• For the Db2 database engine, the database name is the name of the database hosted
in your DB instance. This field is optional. You can create a database later by calling the
rdsadmin.create_database stored procedure. For more information, see the section called
“Creating a database”.

• For the MySQL and MariaDB database engines, the database name is the name of a database
hosted in your DB instance. Databases hosted by the same DB instance must have a unique name
within that instance.

• For the Oracle database engine, database name is used to set the value of ORACLE_SID, which
must be supplied when connecting to the Oracle RDS instance.

• For the Microsoft SQL Server database engine, database name is not a supported parameter.

• For the PostgreSQL database engine, the database name is the name of a database hosted in
your DB instance. A database name is not required when creating a DB instance. Databases
hosted by the same DB instance must have a unique name within that instance.

DB instances 18

Amazon Relational Database Service User Guide

Amazon RDS creates a master user account for your DB instance as part of the creation process.
This master user has permissions to create databases and to perform create, delete, select, update,
and insert operations on tables the master user creates. You must set the master user password
when you create a DB instance, but you can change it at any time using the AWS CLI, Amazon RDS
API operations, or the AWS Management Console. You can also change the master user password
and manage users using standard SQL commands.

Note

This guide covers non-Aurora Amazon RDS database engines. For information about using
Amazon Aurora, see the Amazon Aurora User Guide.

DB instances 19

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html

Amazon Relational Database Service User Guide

DB instance classes

The DB instance class determines the computation and memory capacity of an Amazon RDS DB
instance. The DB instance class that you need depends on your processing power and memory
requirements.

A DB instance class consists of both the DB instance class type and the size. For example, db.r6g
is a memory-optimized DB instance class type powered by AWS Graviton2 processors. Within the
db.r6g instance class type, db.r6g.2xlarge is a DB instance class. The size of this class is 2xlarge.

For more information about instance class pricing, see Amazon RDS pricing.

For more information about DB instance class types, supported DB engines, supported AWS
Regions, changing your DB instance class, configuring the processor for RDS for Oracle, or
hardware specifications for DB instance classes, see the following sections.

Topics

• DB instance class types

• Supported DB engines for DB instance classes

• Determining DB instance class support in AWS Regions

• Changing your DB instance class

• Configuring the processor for a DB instance class in RDS for Oracle

• Hardware specifications for DB instance classes

DB instance class types

Amazon RDS supports DB instance classes for the following use cases:

• General-purpose

• Memory-optimized

• Compute-optimized

• Burstable-performance

• Optimized Reads

For more information about Amazon EC2 instance types, see Instance types in the Amazon EC2
documentation.

DB instance classes 20

https://aws.amazon.com/rds/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Relational Database Service User Guide

General-purpose instance class types

The following general-purpose DB instance classes are available:

• db.m8g – General-purpose DB instance classes powered by AWS Graviton4 processors. These
instance classes deliver balanced compute, memory, and networking for a broad range of
general-purpose workloads. Compared to seventh-generation AWS Graviton3-based M7g
instances, these new classes offer larger instance sizes with up to 3x more vCPUs and memory.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton4
processors. To do so, complete the same steps as with any other DB instance modification.

• db.m7i – General-purpose DB instance classes powered by 4th Generation Intel Xeon Scalable
processors. The db.m7i instances are SAP certified and ideal for supporting enterprise
applications that need larger instance sizes or high continuous CPU usage. These instance classes
deliver balanced compute, memory, and networking for a broad range of general-purpose
workloads. This instance class type delivers up to 40,000 Mbps EBS bandwidth and up to 50
Gbps network bandwidth. The db.m7i instances deliver up to 15% better price performance
compared to db.m6i instances.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton3
processors. To do so, complete the same steps as with any other DB instance modification.

• db.m7g – General-purpose DB instance classes powered by AWS Graviton3 processors. These
instance classes deliver balanced compute, memory, and networking for a broad range of
general-purpose workloads.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton3
processors. To do so, complete the same steps as with any other DB instance modification.

• db.m6g – General-purpose DB instance classes powered by AWS Graviton2 processors. These
instances deliver balanced compute, memory, and networking for a broad range of general-
purpose workloads. The db.m6gd instance classes have local NVMe-based SSD block-level
storage for applications that need high-speed, low latency local storage.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton2
processors. To do so, complete the same steps as with any other DB instance modification.

• db.m6i – General-purpose DB instance classes powered by 3rd Generation Intel Xeon Scalable
processors. These instances are SAP Certified and ideal for workloads such as backend servers
supporting enterprise applications, gaming servers, caching fleets, and application development
environments. The db.m6id and db.m6idn instance classes offer up to 7.6 TB of local NVMe-

DB instance class types 21

Amazon Relational Database Service User Guide

based SSD storage, whereas db.m6in offers EBS-only storage. The db.m6in and db.m6idn classes
offer up to 200 Gbps of network bandwidth.

• db.m5 –General-purpose DB instance classes that provide a balance of compute, memory,
and network resources, and are a good choice for many applications. The db.m5d instance
class offers NVMe-based SSD storage that is physically connected to the host server. The
db.m5 instance classes provide more computing capacity than the previous db.m4 instance
classes. They are powered by the AWS Nitro System, a combination of dedicated hardware and
lightweight hypervisor.

• db.m4 – General-purpose DB instance classes that provide more computing capacity than the
previous db.m3 instance classes.

For the RDS for Oracle DB engines, Amazon RDS no longer supports db.m4 DB instance classes.
If you had previously created RDS for Oracle db.m4 DB instances, Amazon RDS automatically
upgrades those DB instances to equivalent db.m5 DB instance classes.

For the RDS for MariaDB, RDS for MySQL, RDS for SQL Server, and RDS for PostgreSQL DB
engines, Amazon RDS has started the end-of-support process for this DB instance class using the
following schedule. For all RDS DB instances that use this instance class, we recommend that you
upgrade to a newer generation DB instance class as soon as possible.

Action or recommendation Date

Starting on this date, Amazon RDS began
automatically upgrading instances using db.m4
to the newer generation db.m5 instance class.
Creating DB instances using the db.m4 instance
class is no longer supported.

June 1, 2024

Amazon RDS ends support for db.m4. December 31, 2024

• db.m3 – General-purpose DB instance classes that provide more computing capacity than the
previous db.m1 instance classes.

For the RDS for MariaDB, RDS for MySQL, and RDS for PostgreSQL DB engines, Amazon RDS has
started the end-of-life process for db.m3 DB instance classes using the following schedule, which
includes upgrade recommendations. For all RDS DB instances that use db.m3 DB instance classes,
we recommend that you upgrade to a higher generation DB instance class as soon as possible.

DB instance class types 22

Amazon Relational Database Service User Guide

Action or recommendation Dates

You can no longer create RDS DB instances that
use db.m3 DB instance classes.

Now

Amazon RDS started automatic upgrades of RDS
DB instances that use db.m3 DB instance classes to
equivalent db.m5 DB instance classes.

February 1, 2023

Memory-optimized instance class types

The memory-optimized Z family supports the following instance classes:

• db.z1d – Instance classes optimized for memory-intensive applications. These instance classes
offer both high compute capacity and a high memory footprint. High frequency z1d instances
deliver a sustained all-core frequency of up to 4.0 GHz.

The memory-optimized X family supports the following instance classes:

• db.x2g – Instance classes optimized for memory-intensive applications and powered by AWS
Graviton2 processors. These instance classes offer low cost per GiB of memory.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton2
processors. To do so, complete the same steps as with any other DB instance modification.

• db.x2i – Instance classes optimized for memory-intensive applications. The db.x2iedn and
db.x2idn instance class types are powered by third-generation Intel Xeon Scalable processors
(Ice Lake). They include up to 3.8 TB of local NVMe SSD storage, up to 100 Gbps of networking
bandwidth, and up to 4 TiB (db.x2iden) or 2 TiB (db.x2idn) of memory. The db.x2iezn type is
powered by second-generation Intel Xeon Scalable processors (Cascade Lake) with an all-core
turbo frequency of up to 4.5 GHz and up to 1.5 TiB of memory.

• db.x1 – Instance classes optimized for memory-intensive applications. These instance classes
offer one of the lowest price per GiB of RAM among the DB instance classes and up to 1,952
GiB of DRAM-based instance memory. The db.x1e instance class type offers up to 3,904 GiB of
DRAM-based instance memory.

DB instance class types 23

Amazon Relational Database Service User Guide

The memory-optimized R family supports the following instance class types:

• db.r8g – Instance classes powered by AWS Graviton4 processors. These instance classes are
ideal for running memory-intensive workloads in open-source databases such as MySQL and
PostgreSQL. These instances offer larger instance sizes with up to 3x more vCPUs and memory
than the seventh-generation AWS Graviton3-based db.r7g instances.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton4
processors. To do so, complete the same steps as with any other DB instance modification.

• db.r7g – Instance classes powered by AWS Graviton3 processors. These instance classes are
ideal for running memory-intensive workloads in open-source databases such as MySQL and
PostgreSQL.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton3
processors. To do so, complete the same steps as with any other DB instance modification.

• db.r7i – Instance classes powered by 4th Generation Intel Xeon Scalable processors. These
instance classes are SAP-Certified and are ideal for running memory-intensive workloads in
open-source databases such as MySQL and PostgreSQL. You can modify a DB instance to use one
of the DB instance classes powered by 4th Generation Intel Xeon Scalable processors. To do so,
complete the same steps as with any other DB instance modification.

• db.r6g – Instance classes powered by AWS Graviton2 processors. These instance classes are
ideal for running memory-intensive workloads in open-source databases such as MySQL and
PostgreSQL. The db.r6gd type offers local NVMe-based SSD block-level storage for applications
that need high-speed, low latency local storage.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton2
processors. To do so, complete the same steps as with any other DB instance modification.

• db.r6i – Instance classes powered by 3rd Generation Intel Xeon Scalable processors. These
instance classes are SAP-Certified and are an ideal fit for memory-intensive workloads in open-
source databases such as MySQL and PostgreSQL. The db.r6id, db.r6in, and db.r6idn instance
classes have a memory-to-vCPU ratio of 8:1 and a maximum memory of 1 TiB. The db.r6id and
db.r6idn classes offer up to 7.6 TB of direct-attached NVMe-based SSD storage, whereas db.r6in
offers EBS-only storage. The db.r6idn and db.r6in classes offer up to 200 Gbps of network
bandwidth.

• db.r5b – Instance classes that are memory-optimized for throughput-intensive applications.
Powered by the AWS Nitro System, db.r5b instances deliver up to 60 Gbps bandwidth and
260,000 IOPS of EBS performance. This is the fastest block storage performance on EC2.

DB instance class types 24

Amazon Relational Database Service User Guide

• db.r5d – Instance classes that are optimized for low latency, very high random I/O performance,
and high sequential read throughput.

• db.r5 – Instance classes optimized for memory-intensive applications. These instance classes
offer improved networking performance. They are powered by the AWS Nitro System, a
combination of dedicated hardware and lightweight hypervisor.

• db.r4 – Instance classes that provide improved networking over previous db.r3 instance classes.

For the RDS for Oracle DB engines, Amazon RDS has started the end-of-life process for db.r4 DB
instance classes using the following schedule, which includes upgrade recommendations. For
RDS for Oracle DB instances that use db.r4 instance classes, we recommend that you upgrade to
a higher generation instance class as soon as possible.

Action or recommendation Dates

You can no longer create RDS for Oracle DB
instances that use db.r4 DB instance classes.

Now

Amazon RDS started automatic upgrades of RDS
for Oracle DB instances that use db.r4 DB instance
classes to equivalent db.r5 DB instance classes.

April 17, 2023

For the RDS for MariaDB, RDS for MySQL, RDS for SQL Server, and RDS for PostgreSQL DB
engines, Amazon RDS has started the end-of-support process for this DB instance class using the
following schedule. For all RDS DB instances that use this instance class, we recommend that you
upgrade to a newer generation DB instance class as soon as possible.

Action or recommendation Dates

Starting on this date, Amazon RDS began
automatically upgrading instances using db.r4 to
the newer generation db.r5 instance class. Creating
DB instances using the db.m4 instance class is no
longer supported.

June 1, 2024

Amazon RDS ends support for db.r4. December 31, 2024

DB instance class types 25

Amazon Relational Database Service User Guide

• db.r3 – Instance classes that provide memory optimization.

For the RDS for MariaDB, RDS for MySQL, and RDS for PostgreSQL DB engines, Amazon RDS has
started the end-of-life process for db.r3 DB instance classes using the following schedule, which
includes upgrade recommendations. For all RDS DB instances that use db.r3 DB instance classes,
we recommend that you upgrade to a higher generation DB instance class as soon as possible.

Action or recommendation Dates

You can no longer create RDS DB instances that
use db.r3 DB instance classes.

Now

Amazon RDS started automatic upgrades of RDS
DB instances that use db.r3 DB instance classes to
equivalent db.r5 DB instance classes.

February 1, 2023

Compute-optimized instance class type

The following compute-optimized instance class types are available:

• db.c6gd – Instance classes that are ideal for running advanced compute-intensive workloads.
Powered by AWS Graviton2 processors, these instance classes offer local NVMe-based SSD block-
level storage for applications that need high-speed, low latency local storage.

Note

The c6gd instance classes are supported only for Multi-AZ DB cluster deployments.
They're the only instance class supported for Multi-AZ DB clusters that offer the
medium instance size. For more information, see the section called “Multi-AZ DB cluster
deployments”.

Burstable-performance instance class types

The following burstable-performance DB instance class types are available:

• db.t4g – General-purpose instance classes powered by Arm-based AWS Graviton2 processors.
These instance classes deliver better price performance than previous burstable-performance

DB instance class types 26

Amazon Relational Database Service User Guide

DB instance classes for a broad set of burstable general-purpose workloads. Amazon RDS
db.t4g instances are configured for Unlimited mode. This means that they can burst beyond the
baseline over a 24-hour window for an additional charge.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton2
processors. To do so, complete the same steps as with any other DB instance modification.

• db.t3 – Instance classes that provide a baseline performance level, with the ability to burst to
full CPU usage. The db.t3 instances are configured for Unlimited mode. These instance classes
provide more computing capacity than the previous db.t2 instance classes. They are powered by
the AWS Nitro System, a combination of dedicated hardware and lightweight hypervisor.

• db.t2 – Instance classes that provide a baseline performance level, with the ability to burst to full
CPU usage. The db.t2 instances are configured for Unlimited mode. We recommend using these
instance classes only for development and test servers, or other non-production servers.

For the RDS for MariaDB, RDS for MySQL, RDS for SQL Server, and RDS for PostgreSQL DB
engines, Amazon RDS has started the end-of-support process for this DB instance class using the
following schedule. For all RDS DB instances that use this instance class, we recommend that you
upgrade to a newer generation DB instance class as soon as possible.

Action or recommendation Dates

Starting on this date, Amazon RDS began
automatically upgrading instances using db.t2 to
the newer generation db.t3 instance class. Creating
DB instances using the db.t2 instance class is no
longer supported.

June 1, 2024

Amazon RDS ends support for db.t2. December 31, 2024

Note

The DB instance classes that use the AWS Nitro System (db.m5, db.r5, db.t3) are throttled
on combined read plus write workload.

For DB instance class hardware specifications, see Hardware specifications for DB instance classes.

DB instance class types 27

Amazon Relational Database Service User Guide

Optimized Reads instance class types

The following Optimized Reads instance class types are available:

• db.r6gd – Instance classes powered by AWS Graviton2 processors. These instance classes are
ideal for running memory-intensive workloads and offer local NVMe-based SSD block-level
storage for applications that need high-speed, low latency local storage.

• db.r6id – Instance classes powered by 3rd Generation Intel Xeon Scalable processors. These
instance classes are SAP-Certified and are an ideal fit for memory-intensive workloads. They
offer a maximum memory of 1 TiB and up to 7.6 TB of direct-attached NVMe-based SSD storage.

Supported DB engines for DB instance classes

The following are DB engine–specific considerations for DB instance classes:

Db2

DB instance class support varies according to the version and edition of Db2. For instance class
support by version and edition, see Amazon RDS for Db2 instance classes.

Microsoft SQL Server

DB instance class support varies according to the version and edition of SQL Server. For instance
class support by version and edition, see DB instance class support for Microsoft SQL Server.

Oracle

DB instance class support varies according to the Oracle Database version and edition. RDS for
Oracle supports additional memory-optimized instance classes. These classes have names of
the form db.r5.instance_size.tpcthreads_per_core.memratio. For the vCPU count and
memory allocation for each optimized class, see Supported RDS for Oracle DB instance classes.

RDS Custom

For information about the DB instance classes supported in RDS Custom, see DB instance class
support for RDS Custom for Oracle and DB instance class support for RDS Custom for SQL
Server.

In the following table, you can find details about supported Amazon RDS DB instance classes for
each Amazon RDS DB engine. The cell for each engine contains one of the following values:

Supported DB engines 28

Amazon Relational Database Service User Guide

Yes

The instance class is supported for all versions of the DB engine.

No

The instance class isn't supported for the DB engine.

specific-versions

The instance class is supported only for the specified database versions of the DB engine.

Amazon RDS periodically deprecates major and minor DB engine versions. Not all AWS Regions
might have support for earlier engine versions. For information about current supported versions,
see topics for the individual DB engines: Db2 versions, MariaDB versions, Microsoft SQL Server
versions, MySQL versions, Oracle versions, and PostgreSQL versions.

Topics

• Supported DB engines for general-purpose instance classes

• Supported DB engines for memory-optimized instance classes

• Supported DB engines for compute-optimized instance classes

• Supported DB engines for burstable-performance instance classes

• Supported DB engines for Optimized Reads instance classes

Supported DB engines for general-purpose instance classes

The following tables show the supported databases and database versions for the general-purpose
instance classes.

db.m8g – general-purpose instance classes powered by AWS Graviton4 processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m8g.48
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and

Supported DB engines 29

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m8g.24
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m8g.16
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m8g.12
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

Supported DB engines 30

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m8g.8x
large

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m8g.4x
large

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m8g.2x
large

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m8g.xl
arge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

Supported DB engines 31

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m8g.la
rge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i – general-purpose instance classes powered by 4th generation Intel Xeon Scalable
processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.m7i.48
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
EE
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i.24
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
EE
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i.16
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,

PostgreSQL
version 17.1 and

Supported DB engines 32

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

EE
only

higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i.12
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
EE
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i.8x
large

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
EE
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i.4x
large

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

Supported DB engines 33

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.m7i.2x
large

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i.xl
arge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7i.la
rge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.m7g – general-purpose instance classes powered by AWS Graviton3 processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m7g.16
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4 and
8.0

No All PostgreSQL
17, 16, and 15
versions, 14.5

Supported DB engines 34

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

and higher 14
versions, and 13.4
and higher 13
versions

db.m7g.12
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4 and
8.0

No All PostgreSQL
17, 16, and 15
versions, 14.5
and higher 14
versions, and 13.4
and higher 13
versions

db.m7g.8x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4 and
8.0

No All PostgreSQL
17, 16, and 15
versions, 14.5
and higher 14
versions, and 13.4
and higher 13
versions

db.m7g.4x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4 and
8.0

No All PostgreSQL
17, 16, and 15
versions, 14.5
and higher 14
versions, and 13.4
and higher 13
versions

Supported DB engines 35

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m7g.2x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4 and
8.0

No All PostgreSQL
17, 16, and 15
versions, 14.5
and higher 14
versions, and 13.4
and higher 13
versions

db.m7g.xl
arge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4 and
8.0

No All PostgreSQL
17, 16, and 15
versions, 14.5
and higher 14
versions, and 13.4
and higher 13
versions

db.m7g.la
rge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4 and
8.0

No All PostgreSQL
17, 16, and 15
versions, 14.5
and higher 14
versions, and 13.4
and higher 13
versions

db.m6g – general-purpose instance classes powered by AWS Graviton2 processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m6g.16
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, 14, and
13 versions; and

Supported DB engines 36

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

12.7 and higher 12
versions

db.m6g.12
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, 14, and
13 versions; and
12.7 and higher 12
versions

db.m6g.8x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, 14, and
13 versions; and
12.7 and higher 12
versions

db.m6g.4x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, 14, and
13 versions; and
12.7 and higher 12
versions

db.m6g.2x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, 14, and
13 versions; and
12.7 and higher 12
versions

db.m6g.xl
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, 14, and
13 versions; and
12.7 and higher 12
versions

Supported DB engines 37

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m6g.la
rge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, 14, and
13 versions; and
12.7 and higher 12
versions

db.m6gd – general-purpose instance classes powered by AWS Graviton2 processors and SSD
storage

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m6gd.1
6xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, and 14
versions; 13.7 and
higher 13 versions;
and 13.4

db.m6gd.1
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, and 14
versions; 13.7 and
higher 13 versions;
and 13.4

db.m6gd.8
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, and 14
versions; 13.7 and
higher 13 versions;
and 13.4

db.m6gd.4
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, and 14

Supported DB engines 38

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

versions; 13.7 and
higher 13 versions;
and 13.4

db.m6gd.2
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, and 14
versions; 13.7 and
higher 13 versions;
and 13.4

db.m6gd.x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, and 14
versions; 13.7 and
higher 13 versions;
and 13.4

db.m6gd.l
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL
17, 16, 15, and 14
versions; 13.7 and
higher 13 versions;
and 13.4

db.m6id – general-purpose instance classes powered by 3rd generation Intel Xeon Scalable
processors and SSD storage

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.m6id.3
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and

Supported DB engines 39

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

13.7 and higher 13
versions

db.m6id.2
4xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

db.m6id.1
6xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

db.m6id.1
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

db.m6id.8
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

Supported DB engines 40

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.m6id.4
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

db.m6id.2
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

db.m6id.x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

db.m6id.l
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher
14 versions, and
13.7 and higher 13
versions

db.m6idn – general-purpose instance classes with 3rd Generation Intel Xeon Scalable
processors, SSD storage, and network optimization

Supported DB engines 41

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m6idn.
32xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6idn.
24xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6idn.
16xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6idn.
12xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6idn.
8xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6idn.
4xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,

Supported DB engines 42

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

and 13.7 and higher 13
versions

db.m6idn.
2xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6idn.
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6idn.
large

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.m6in – general-purpose instance classes powered by 3rd generation Intel Xeon Scalable
processors and network optimization

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m6in.3
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12

Supported DB engines 43

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

versions, and 11.16 and
higher 11 versions

db.m6in.2
4xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

db.m6in.1
6xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

db.m6in.1
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

db.m6in.8
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

Supported DB engines 44

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m6in.4
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

db.m6in.2
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

db.m6in.x
large

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

db.m6in.l
arge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7
and higher 13 versions,
12.11 and higher 12
versions, and 11.16 and
higher 11 versions

Supported DB engines 45

Amazon Relational Database Service User Guide

db.m6i – general-purpose instance classes powered by 3rd generation Intel Xeon Scalable
processors

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.m6i.32
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m6i.24
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m6i.16
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m6i.12
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m6i.8x
large

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m6i.4x
large

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m6i.2x
large

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m6i.xl
arge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

Supported DB engines 46

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.m6i.la
rge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL 8.4
and 8.0

Oracle
Database
19c

All available versions

db.m5d – general-purpose instance classes powered by Intel Xeon Platinum processors and SSD
storage

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.m5d.24
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7
and higher 13 versions, and
13.4

db.m5d.16
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7
and higher 13 versions, and
13.4

db.m5d.12
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7
and higher 13 versions, and
13.4

db.m5d.8x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7

Supported DB engines 47

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

and higher 13 versions, and
13.4

db.m5d.4x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7
and higher 13 versions, and
13.4

db.m5d.2x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7
and higher 13 versions, and
13.4

db.m5d.xl
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7
and higher 13 versions, and
13.4

db.m5d.la
rge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16,
and 15 versions, 14.5 and
higher 14 versions, 13.7
and higher 13 versions, and
13.4

db.m5 – general-purpose instance classes 2.5 GHz Intel Xeon Platinum processors

Supported DB engines 48

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDBMicrosoft
SQL
Server

MySQLOraclePostgreSQL

db.m5.24x
large

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m5.16x
large

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m5.12x
large

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m5.8xl
arge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m5.4xl
arge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m5.2xl
arge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m5.xla
rge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m5.lar
ge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12, and 11
versions; 10.17 and higher 10 versions; and
9.6.22 and higher 9 versions

db.m4 – general-purpose instance classes with Intel Xeon processors

Supported DB engines 49

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.m4.16x
large

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.m4.10x
large

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.m4.4xl
arge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.m4.2xl
arge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.m4.xla
rge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.m4.lar
ge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.m3 – general-purpose instance classes

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQL

db.m3.2xl
arge

No No Deprecated Yes Deprecated Deprecated

db.m3.xla
rge

No No Deprecated Yes Deprecated Deprecated

db.m3.lar
ge

No No Deprecated Yes Deprecated Deprecated

db.m3.med
ium

No No Deprecated Yes Deprecated Deprecated

Supported DB engines 50

Amazon Relational Database Service User Guide

Supported DB engines for memory-optimized instance classes

The following tables show the supported databases and database versions for the memory-
optimized instance classes.

db.z1d – memory-optimized instance classes

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQL

db.z1d.12
xlarge

No No Yes No Yes No

db.z1d.6x
large

No No Yes No Yes No

db.z1d.3x
large

No No Yes No Yes No

db.z1d.2x
large

No No Yes No Yes No

db.z1d.xl
arge

No No Yes No Yes No

db.z1d.la
rge

No No Yes No Yes No

db.x2g – memory-optimized instance classes powered by AWS Graviton2 processors

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.x2g.16
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, 15,
14, and 13 versions; and
12.7 and higher 12 versions

Supported DB engines 51

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.x2g.12
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, 15,
14, and 13 versions; and
12.7 and higher 12 versions

db.x2g.8x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, 15,
14, and 13 versions; and
12.7 and higher 12 versions

db.x2g.4x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, 15,
14, and 13 versions; and
12.7 and higher 12 versions

db.x2g.2x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, 15,
14, and 13 versions; and
12.7 and higher 12 versions

db.x2g.xl
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, 15,
14, and 13 versions; and
12.7 and higher 12 versions

db.x2g.la
rge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, 15,
14, and 13 versions; and
12.7 and higher 12 versions

db.x2idn – memory-optimized instance classes powered by 3rd generation Intel Xeon Scalable
processors

Supported DB engines 52

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.x2idn.
32xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4
and
8.0

Enterpris
e
Edition
only

PostgreSQL 15
versions, 14.6, and
13.9

db.x2idn.
24xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4
and
8.0

Enterpris
e
Edition
only

PostgreSQL 15
versions, 14.6, and
13.9

db.x2idn.
16xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4
and
8.0

Enterpris
e
Edition
only

PostgreSQL 15
versions, 14.6, and
13.9

db.x2iedn – memory-optimized instance classes with local NVMe-based SSDs, powered by 3rd
generation Intel Xeon Scalable processors

Instance
class

Db2MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQL

db.x2iedn
.32xlarge

YesMariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Enterpris
e and
Standard
Editions
only, SQL
Server
2014 12.00
and higher

MySQL
8.4
and
8.0

Enterpris
e
Edition
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, 13.7 and
higher 13 versions,
and 13.4

db.x2iedn
.24xlarge

YesMariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Enterpris
e and
Standard

MySQL
8.4

Enterpris
e

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14

Supported DB engines 53

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQL

Editions
only, SQL
Server
2014 12.00
and higher

and
8.0

Edition
only

versions, 13.7 and
higher 13 versions,
and 13.4

db.x2iedn
.16xlarge

YesMariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Enterpris
e and
Standard
Editions
only, SQL
Server
2014 12.00
and higher

MySQL
8.4
and
8.0

Enterpris
e
Edition
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, 13.7 and
higher 13 versions,
and 13.4

db.x2iedn
.8xlarge

YesMariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Enterpris
e and
Standard
Editions
only, SQL
Server
2014 12.00
and higher

MySQL
8.4
and
8.0

Enterpris
e
Edition
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, 13.7 and
higher 13 versions,
and 13.4

db.x2iedn
.4xlarge

YesMariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Enterpris
e and
Standard
Editions
only, SQL
Server
2014 12.00
and higher

MySQL
8.4
and
8.0

Enterpris
e
Edition
and
Standard
Edition
2
(SE2)

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, 13.7 and
higher 13 versions,
and 13.4

Supported DB engines 54

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQL

db.x2iedn
.2xlarge

YesMariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Enterpris
e and
Standard
Editions
only, SQL
Server
2014 12.00
and higher

MySQL
8.4
and
8.0

Enterpris
e
Edition
and
Standard
Edition
2
(SE2)

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, 13.7 and
higher 13 versions,
and 13.4

db.x2iedn
.xlarge

YesMariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

Enterpris
e and
Standard
Editions
only, SQL
Server
2014 12.00
and higher

MySQL
8.4
and
8.0

Enterpris
e
Edition
and
Standard
Edition
2
(SE2)

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, 13.7 and
higher 13 versions,
and 13.4

db.x2iezn – memory-optimized instance classes powered by 2nd generation Intel Xeon Scalable
processors

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQ
L

db.x2iezn
.8xlarge

No No No No Enterprise Edition only No

db.x2iezn
.6xlarge

No No No No Enterprise Edition only No

db.x2iezn
.4xlarge

No No No No Enterprise Edition and
Standard Edition 2 (SE2)

No

Supported DB engines 55

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQ
L

db.x2iezn
.2xlarge

No No No No Enterprise Edition and
Standard Edition 2 (SE2)

No

db.x1e – memory-optimized instance classes

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQL

db.x1e.32
xlarge

No No Yes No Deprecate
d1

No

db.x1e.16
xlarge

No No Yes No Deprecate
d1

No

db.x1e.8x
large

No No Yes No Deprecate
d1

No

db.x1e.4x
large

No No Yes No Deprecate
d1

No

db.x1e.2x
large

No No Yes Nos Deprecate
d1

No

db.x1e.xl
arge

No No Yes No Deprecate
d1

No

1 You can no longer create RDS for Oracle DB instances using the X1 instance class family. If you
currently use X1 classes, switch to a new generation instance class as soon as possible. Starting
on January 22, 2025, RDS begins automated upgrades in your defined maintenance window.
During the upgrade, RDS chooses the equivalent X2iedn instance type and upgrades it. For more
information, see the re:Post article Amazon RDS for Oracle is ending support for X1 Database
Instances on January 22, 2025.

db.x1 – memory-optimized instance classes

Supported DB engines 56

https://repost.aws/articles/ARM9RDhfR2Tz2nFmKwpcjCSQ
https://repost.aws/articles/ARM9RDhfR2Tz2nFmKwpcjCSQ

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQL Oracle PostgreSQL

db.x1.32x
large

No No Yes No Deprecate
d1

No

db.x1.16x
large

No No Yes No Deprecate
d1

No

1 You can no longer create RDS for Oracle DB instances using the X1 instance class family. If you
currently use X1 classes, switch to a new generation instance class as soon as possible. Starting
on January 22, 2025, RDS begins automated upgrades in your defined maintenance window.
During the upgrade, RDS chooses the equivalent X2iedn instance type and upgrades it. For more
information, see the re:Post article Amazon RDS for Oracle is ending support for X1 Database
Instances on January 22, 2025.

db.r8g – memory-optimized instance classes powered by AWS Graviton4 processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r8g.48
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r8g.24
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and

Supported DB engines 57

https://repost.aws/articles/ARM9RDhfR2Tz2nFmKwpcjCSQ
https://repost.aws/articles/ARM9RDhfR2Tz2nFmKwpcjCSQ

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

higher, and 13.11
and higher

db.r8g.16
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r8g.12
xlarge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r8g.8x
large

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r8g.4x
large

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

Supported DB engines 58

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r8g.2x
large

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r8g.xl
arge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r8g.la
rge

No MariaDB 11.4.3 and
higher, 10.11.7 and
higher, 10.6.13 and
higher, 10.5.20 and
higher, and 10.4.29 and
higher

No MySQL 8.0.32
and higher

No PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7i – memory-optimized instance classes powered by 4th generation Intel Xeon Scalable
processors

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r7i.48
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only

PostgreSQL
version 17.1 and

Supported DB engines 59

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7i.24
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7i.16
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7i.12
xlarge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

Supported DB engines 60

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r7i.8x
large

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7i.4x
large

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7i.2x
large

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7i.xl
arge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

Supported DB engines 61

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r7i.la
rge

Db2
11.5

MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.0.32
and higher

BYOL
only,
all
editions

PostgreSQL
version 17.1 and
higher, 16.1 and
higher, 15.4 and
higher, 14.9 and
higher, and 13.11
and higher

db.r7g – memory-optimized instance classes powered by AWS Graviton3 processors

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r7g.16
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.4 and higher 13
versions

db.r7g.12
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.4 and higher 13
versions

db.r7g.8x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.4 and higher 13
versions

Supported DB engines 62

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r7g.4x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.4 and higher 13
versions

db.r7g.2x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.4 and higher 13
versions

db.r7g.xl
arge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.4 and higher 13
versions

db.r7g.la
rge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.4 and higher 13
versions

db.r6g – memory-optimized instance classes powered by AWS Graviton2 processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6g.16
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;

Supported DB engines 63

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

and 12.7 and higher 12
versions

db.r6g.12
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.r6g.8x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.r6g.4x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.r6g.2x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.r6g.xl
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.r6g.la
rge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.r6gd – memory-optimized instance classes powered by AWS Graviton2 processors

Supported DB engines 64

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6gd.1
6xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.1
2xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.8
xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.4
xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.2
xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.x
large

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,

Supported DB engines 65

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

13.7 and higher 13
versions, and 13.4

db.r6gd.l
arge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6id – memory-optimized instance classes powered by 3rd generation Intel Xeon Scalable
processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r6id.3
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.2
4xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.1
6xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

Supported DB engines 66

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r6id.1
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.8
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.4
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.2
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

Supported DB engines 67

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r6id.l
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6idn – memory-optimized instance classes powered by 3rd generation Intel Xeon Scalable
processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6idn.
32xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.r6idn.
24xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.r6idn.
16xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

Supported DB engines 68

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6idn.
12xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.r6idn.
8xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.r6idn.
4xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.r6idn.
2xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.r6idn.
xlarge

Yes MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.5
and higher 14 versions,
and 13.7 and higher 13
versions

db.r6in – memory-optimized instance classes powered by 3rd generation Intel Xeon Scalable
processors

Supported DB engines 69

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6in.3
2xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

db.r6in.2
4xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

db.r6in.1
6xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

db.r6in.1
2xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

Supported DB engines 70

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6in.8
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

db.r6in.4
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

db.r6in.2
xlarge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

db.r6in.x
large

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

Supported DB engines 71

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6in.l
arge

Yes MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16,
and 15 versions, 14.3 and
higher 14 versions, 13.7 and
higher 13 versions, 12.11
and higher 12 versions,
and 11.16 and higher 11
versions

db.r6i – memory-optimized instance classes preconfigured for high memory, storage, and I/O

Instance class Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQ
L

db.r6i.8x
large.tpc
2.mem4x

No No No No EE only No

db.r6i.8x
large.tpc
2.mem3x

No No No No EE only No

db.r6i.6x
large.tpc
2.mem4x

No No No No EE only No

db.r6i.4x
large.tpc
2.mem4x

No No No No EE and
SE2 BYOL

No

db.r6i.4x
large.tpc
2.mem3x

No No No No EE and
SE2 BYOL

No

Supported DB engines 72

Amazon Relational Database Service User Guide

Instance class Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQ
L

db.r6i.4x
large.tpc
2.mem2x

No No No No EE and
SE2 BYOL

No

db.r6i.2x
large.tpc
2.mem8x

No No No No EE and
SE2 BYOL

No

db.r6i.2x
large.tpc
2.mem4x

No No No No EE and
SE2 BYOL

No

db.r6i.2x
large.tpc
1.mem2x

No No No No EE and
SE2 BYOL

No

db.r6i.xl
arge.tpc2
.mem4x

No No No No EE and
SE2 BYOL

No

db.r6i.xl
arge.tpc2
.mem2x

No No No No EE and
SE2 BYOL

No

db.r6i.la
rge.tpc1.
mem2x

No No No No EE and
SE2 BYOL

No

db.r6i – memory-optimized instance classes

Supported DB engines 73

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6i.32
xlarge

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

db.r6i.24
xlarge

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

db.r6i.16
xlarge

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

db.r6i.12
xlarge

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

Supported DB engines 74

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6i.8x
large

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

db.r6i.4x
large

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

db.r6i.2x
large

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

db.r6i.xl
arge

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

Supported DB engines 75

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6i.la
rge

YesMariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17, 16, 15,
and 14 versions, 13.4 and
higher 13 versions, 12.8
and higher 12 versions,
11.13 and higher 11
versions, and 10.21 and
higher 10 versions

db.r5d – memory-optimized instance classes

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r5d.24
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4
and
8.0

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher
14 versions, 13.7 and higher
13 versions, and 13.4

db.r5d.16
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4
and
8.0

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher
14 versions, 13.7 and higher
13 versions, and 13.4

db.r5d.12
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4
and
8.0

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher
14 versions, 13.7 and higher
13 versions, and 13.4

db.r5d.8x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher

Supported DB engines 76

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

and
8.0

14 versions, 13.7 and higher
13 versions, and 13.4

db.r5d.4x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4
and
8.0

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher
14 versions, 13.7 and higher
13 versions, and 13.4

db.r5d.2x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4
and
8.0

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher
14 versions, 13.7 and higher
13 versions, and 13.4

db.r5d.xl
arge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4
and
8.0

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher
14 versions, 13.7 and higher
13 versions, and 13.4

db.r5d.la
rge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4
and
8.0

Yes All PostgreSQL 17, 16, and
15 versions, 14.5 and higher
14 versions, 13.7 and higher
13 versions, and 13.4

db.r5b – memory-optimized instance classes preconfigured for high memory, storage, and I/O

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQ
L

db.r5b.8x
large.tpc
2.mem3x

No No No No Yes No

Supported DB engines 77

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQ
L

db.r5b.6x
large.tpc
2.mem4x

No No No No Yes No

db.r5b.4x
large.tpc
2.mem4x

No No No No Yes No

db.r5b.4x
large.tpc
2.mem3x

No No No No Yes No

db.r5b.4x
large.tpc
2.mem2x

No No No No Yes No

db.r5b.2x
large.tpc
2.mem8x

No No No No Yes No

db.r5b.2x
large.tpc
2.mem4x

No No No No Yes No

db.r5b.2x
large.tpc
1.mem2x

No No No No Yes No

db.r5b.xl
arge.tpc2
.mem4x

No No No No Yes No

db.r5b.xl
arge.tpc2
.mem2x

No No No No Yes No

Supported DB engines 78

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQ
L

db.r5b.la
rge.tpc1.
mem2x

No No No No Yes No

db.r5b – memory-optimized instance classes

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r5b.24
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17,
16, 15, 14, and 13
versions; and 12.7 and
higher 12 versions

db.r5b.16
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17,
16, 15, 14, and 13
versions; and 12.7 and
higher 12 versions

db.r5b.12
xlarge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17,
16, 15, 14, and 13
versions; and 12.7 and
higher 12 versions

db.r5b.8x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

>Yes All PostgreSQL 17,
16, 15, 14, and 13
versions; and 12.7 and
higher 12 versions

db.r5b.4x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17,
16, 15, 14, and 13

Supported DB engines 79

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

versions; and 12.7 and
higher 12 versions

db.r5b.2x
large

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17,
16, 15, 14, and 13
versions; and 12.7 and
higher 12 versions

db.r5b.xl
arge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17,
16, 15, 14, and 13
versions; and 12.7 and
higher 12 versions

db.r5b.la
rge

No MariaDB 11.4, 10.11, 10.6,
10.5, and 10.4

Yes MySQL
8.4 and
8.0

Yes All PostgreSQL 17,
16, 15, 14, and 13
versions; and 12.7 and
higher 12 versions

db.r5 – memory-optimized instance classes preconfigured for high memory, storage, and I/O

Instance class Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r5.12xlarge.tpc
2.mem2x

No No No No Yes No

db.r5.8xlarge.tpc2
.mem3x

No No No No Yes No

db.r5.6xlarge.tpc2
.mem4x

No No No No Yes No

Supported DB engines 80

Amazon Relational Database Service User Guide

Instance class Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r5.4xlarge.tpc2
.mem4x

No No No No Yes No

db.r5.4xlarge.tpc2
.mem3x

No No No No Yes No

db.r5.4xlarge.tpc2
.mem2x

No No No No Yes No

db.r5.2xlarge.tpc2
.mem8x

No No No No Yes No

db.r5.2xlarge.tpc2
.mem4x

No No No No Yes No

db.r5.2xlarge.tpc1
.mem2x

No No No No Yes No

db.r5.xlarge.tpc2.
mem4x

No No No No Yes No

db.r5.xlarge.tpc2.
mem2x

No No No No Yes No

db.r5.large.tpc1.m
em2x

No No No No Yes No

db.r5 – memory-optimized instance classes

Supported DB engines 81

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDBMicrosoft
SQL Server

MySQLOracle PostgreSQL

db.r5.24x
large

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r5.16x
large

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r5.12x
large

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r5.8xl
arge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r5.4xl
arge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r5.2xl
arge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r5.xla
rge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r5.lar
ge

No Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
and 11 versions; 10.17 and higher 10
versions; and 9.6.22 and higher 9 versions

db.r4 – memory-optimized instance classes

Supported DB engines 82

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r4.16x
large

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.r4.8xl
arge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.r4.4xl
arge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.r4.2xl
arge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.r4.xla
rge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.r4.lar
ge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.r3 – memory-optimized instance classes

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQLOracle PostgreSQL

db.r3.8xl
arge**

No All MariaDB 10.6, 10.5, 10.4,
and 10.3 versions

Deprecated Yes Deprecate
d

Deprecated

db.r3.4xl
arge

No All MariaDB 10.6, 10.5, 10.4,
and 10.3 versions

Deprecated Yes Deprecate
d

Deprecated

db.r3.2xl
arge

No All MariaDB 10.6, 10.5, 10.4,
and 10.3 versions

Deprecated Yes Deprecate
d

Deprecated

db.r3.xla
rge

No All MariaDB 10.6, 10.5, 10.4,
and 10.3 versions

Deprecated Yes Deprecate
d

Deprecated

Supported DB engines 83

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL Server

MySQLOracle PostgreSQL

db.r3.lar
ge

No All MariaDB 10.6, 10.5, 10.4,
and 10.3 versions

Deprecated Yes Deprecate
d

Deprecated

Supported DB engines for compute-optimized instance classes

The following tables show the supported databases and database versions for the compute-
optimized instance classes.

db.c6gd – compute-optimized instance classes (for Multi-AZ DB cluster deployments only)

Instance
class

Db2 MariaDBMicrosoft
SQL
Server

MySQL OraclePostgreSQL

db.c6gd.1
6xlarge

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

db.c6gd.1
2xlarge

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

db.c6gd.8
xlarge

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

db.c6gd.4
xlarge

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

Supported DB engines 84

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDBMicrosoft
SQL
Server

MySQL OraclePostgreSQL

db.c6gd.2
xlarge

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

db.c6gd.x
large

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

db.c6gd.l
arge

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

db.c6gd.m
edium

No No No MySQL 8.4
and 8.0

No All PostgreSQL 17, 16, and 15
versions; 14.5 and higher 14
versions; 13.4 and 13.7 and higher
13 versions

Supported DB engines for burstable-performance instance classes

The following tables show the supported databases and database versions for the burstable-
performance instance classes.

db.t4g – burstable-performance instance classes powered by AWS Graviton2 processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.t4g.2x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4

No All PostgreSQL 17, 16,
15, 14, and 13 versions;

Supported DB engines 85

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

and
8.0

and 12.7 and higher 12
versions

db.t4g.xl
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4
and
8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.t4g.la
rge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4
and
8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.t4g.me
dium

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4
and
8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.t4g.sm
all

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4
and
8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.t4g.mi
cro

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL
8.4
and
8.0

No All PostgreSQL 17, 16,
15, 14, and 13 versions;
and 12.7 and higher 12
versions

db.t3 – burstable-performance instance classes

Supported DB engines 86

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDBMicrosoft
SQL
Server

MySQLOracle PostgreSQL

db.t3.2xl
arge

Yes Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
11, and 10 versions; and 9.6.22 and
higher 9 versions

db.t3.xla
rge

Yes Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
11, and 10 versions; and 9.6.22 and
higher 9 versions

db.t3.lar
ge

Yes Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
11, and 10 versions; and 9.6.22 and
higher 9 versions

db.t3.med
ium

Yes Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
11, and 10 versions; and 9.6.22 and
higher 9 versions

db.t3.sma
ll

Yes Yes Yes Yes Yes All PostgreSQL 17, 16, 15, 14, 13, 12,
11, and 10 versions; and 9.6.22 and
higher 9 versions

db.t3.mic
ro

No Yes Yes Yes Only on
Oracle
Database
12c Release
1 (12.1.0.2
), which is
deprecated

All PostgreSQL 17, 16, 15, 14, 13, 12,
11, and 10 versions; and 9.6.22 and
higher 9 versions

db.t2 – burstable-performance instance classes

Supported DB engines 87

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.t2.2xl
arge

No Deprecated No Deprecate
d

Deprecate
d

Deprecated

db.t2.xla
rge

No Deprecated No Deprecate
d

Deprecate
d

Deprecated

db.t2.lar
ge

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.t2.med
ium

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.t2.sma
ll

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

db.t2.mic
ro

No Deprecated Deprecate
d

Deprecate
d

Deprecate
d

Deprecated

Supported DB engines for Optimized Reads instance classes

The following tables show the supported databases and database versions for the Optimized Reads
instance classes.

db.r6gd – memory-optimized instance classes that support Optimized Reads and are powered
by AWS Graviton2 processors

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6gd.1
6xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,

Supported DB engines 88

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

13.7 and higher 13
versions, and 13.4

db.r6gd.1
2xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.8
xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.4
xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.2
xlarge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6gd.x
large

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

Supported DB engines 89

Amazon Relational Database Service User Guide

Instance
class

Db2MariaDB Microsoft
SQL
Server

MySQL OraclePostgreSQL

db.r6gd.l
arge

No MariaDB 11.4, 10.11, 10.6, 10.5,
and 10.4

No MySQL
8.4 and
8.0

No All PostgreSQL 17, 16
and 15 versions, 14.5
and higher 14 versions,
13.7 and higher 13
versions, and 13.4

db.r6id – memory-optimized instance classes that support Optimized Reads and are powered
by 3rd generation Intel Xeon Scalable processors

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

db.r6id.3
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.2
4xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.1
6xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.1
2xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and

All PostgreSQL 17,
16, and 15 versions,

Supported DB engines 90

Amazon Relational Database Service User Guide

Instance
class

Db2 MariaDB Microsoft
SQL
Server

MySQL Oracle PostgreSQL

BYOL
only

14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.8
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

EE
and
BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.4
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.2
xlarge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.x
large

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

db.r6id.l
arge

No MariaDB 11.4, 10.11,
10.6, 10.5, and 10.4

No MySQL 8.4
and 8.0

BYOL
only

All PostgreSQL 17,
16, and 15 versions,
14.5 and higher 14
versions, and 13.7 and
higher 13 versions

Supported DB engines 91

Amazon Relational Database Service User Guide

Determining DB instance class support in AWS Regions

To determine the DB instance classes supported by each DB engine in a specific AWS Region, you
can take one of several approaches. You can use the AWS Management Console, the Amazon RDS
Pricing page, or the describe-orderable-db-instance-options command for the AWS Command Line
Interface (AWS CLI).

Note

When you perform operations with the AWS Management Console, it automatically shows
the supported DB instance classes for a specific DB engine, DB engine version, and AWS
Region. Examples of the operations that you can perform include creating and modifying a
DB instance.

Contents

• Using the Amazon RDS pricing page to determine DB instance class support in AWS Regions

• Using the AWS CLI to determine DB instance class support in AWS Regions

• Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region

• Listing the DB engine versions that support a specific DB instance class in an AWS Region

• Listing AWS Regions that support a specific DB engine and instance class

Using the Amazon RDS pricing page to determine DB instance class support in
AWS Regions

You can use the Amazon RDS Pricing page to determine the DB instance classes supported by each
DB engine in a specific AWS Region.

To use the pricing page to determine the DB instance classes supported by each engine in a
Region

1. Go to Amazon RDS Pricing.

2. In the AWS Pricing Calculator for Amazon RDS section, choose Create your custom estimate
now.

3. In Choose a Region, choose an AWS Region.

Determining DB instance class support in AWS Regions 92

https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/rds/pricing/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

4. In Find a Service, enter Amazon RDS.

5. Choose Configure for your configuration option and DB engine.

6. Use the section for compatible instances to view the supported DB instance classes.

7. (Optional) Choose other options in the calculator, and then choose Save and view summary or
Save and add service.

Using the AWS CLI to determine DB instance class support in AWS Regions

You can use the AWS CLI to determine which DB instance classes are supported for specific DB
engines and DB engine versions in an AWS Region. The following table shows the valid DB engine
values.

Engine names Engine values in CLI
commands

More information about versions

Db2 db2-ae

db2-se

Db2 on Amazon RDS versions

MariaDB mariadb MariaDB on Amazon RDS versions

Microsoft SQL Server sqlserver-ee

sqlserver-se

sqlserver-ex

sqlserver-web

Microsoft SQL Server versions on Amazon RDS

MySQL mysql MySQL on Amazon RDS versions

Oracle oracle-ee

oracle-se2

Amazon RDS for Oracle Release Notes

PostgreSQL postgres Available PostgreSQL database versions

For information about AWS Region names, see AWS Regions.

Determining DB instance class support in AWS Regions 93

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html

Amazon Relational Database Service User Guide

The following examples demonstrate how to determine DB instance class support in an AWS
Region using the describe-orderable-db-instance-options AWS CLI command.

Note

To limit the output, the following examples show results only for the General Purpose
SSD (gp2) storage type. If necessary, you can change the storage type to General Purpose
SSD (gp3), Provisioned IOPS (io1), Provisioned IOPS Block Express (io2), or magnetic
(standard) in the commands.

Topics

• Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region

• Listing the DB engine versions that support a specific DB instance class in an AWS Region

• Listing AWS Regions that support a specific DB engine and instance class

Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region

To list the DB instance classes that are supported by a specific DB engine version in an AWS Region,
run the following command.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine engine --engine-version version
 \
 --query "*[].{DBInstanceClass:DBInstanceClass,StorageType:StorageType}|[?
StorageType=='gp2']|[].{DBInstanceClass:DBInstanceClass}" \
 --output text \
 --region region

For Windows:

aws rds describe-orderable-db-instance-options --engine engine --engine-version version
 ^
 --query "*[].{DBInstanceClass:DBInstanceClass,StorageType:StorageType}|[?
StorageType=='gp2']|[].{DBInstanceClass:DBInstanceClass}" ^
 --output text ^

Determining DB instance class support in AWS Regions 94

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html

Amazon Relational Database Service User Guide

 --region region

For example, the following command lists the supported DB instance classes for version 13.6 of the
RDS for PostgreSQL DB engine in US East (N. Virginia).

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine postgres --engine-version 15.4
 \
 --query "*[].{DBInstanceClass:DBInstanceClass,StorageType:StorageType}|[?
StorageType=='gp2']|[].{DBInstanceClass:DBInstanceClass}" \
 --output text \
 --region us-east-1

For Windows:

aws rds describe-orderable-db-instance-options --engine postgres --engine-version 15.4
 ^
 --query "*[].{DBInstanceClass:DBInstanceClass,StorageType:StorageType}|[?
StorageType=='gp2']|[].{DBInstanceClass:DBInstanceClass}" ^
 --output text ^
 --region us-east-1

Listing the DB engine versions that support a specific DB instance class in an AWS Region

To list the DB engine versions that support a specific DB instance class in an AWS Region, run the
following command.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine engine --db-instance-
class DB_instance_class \
 --query "*[].{EngineVersion:EngineVersion,StorageType:StorageType}|[?
StorageType=='gp2']|[].{EngineVersion:EngineVersion}" \
 --output text \
 --region region

For Windows:

aws rds describe-orderable-db-instance-options --engine engine --db-instance-
class DB_instance_class ^

Determining DB instance class support in AWS Regions 95

Amazon Relational Database Service User Guide

 --query "*[].{EngineVersion:EngineVersion,StorageType:StorageType}|[?
StorageType=='gp2']|[].{EngineVersion:EngineVersion}" ^
 --output text ^
 --region region

For example, the following command lists the DB engine versions of the RDS for PostgreSQL DB
engine that support the db.r5.large DB instance class in US East (N. Virginia).

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine postgres --db-instance-class
 db.m7g.large \
 --query "*[].{EngineVersion:EngineVersion,StorageType:StorageType}|[?
StorageType=='gp2']|[].{EngineVersion:EngineVersion}" \
 --output text \
 --region us-east-1

For Windows:

aws rds describe-orderable-db-instance-options --engine postgres --db-instance-class
 db.m7g.large ^
 --query "*[].{EngineVersion:EngineVersion,StorageType:StorageType}|[?
StorageType=='gp2']|[].{EngineVersion:EngineVersion}" ^
 --output text ^
 --region us-east-1

Listing AWS Regions that support a specific DB engine and instance class

The following bash script lists all the AWS Regions that support the specified combination of DB
engine and instance class.

#!/usr/bin/env bash
Usage: check_region_support.sh <db-engine> <db-instance-class>

if [$# -ne 2]; then
 echo "Usage: $0 <db-engine> <db-instance-class>"
 exit 1
fi
ENGINE="$1"
INSTANCE_CLASS="$2"
REGIONS=$(aws ec2 describe-regions --query "Regions[].RegionName" --output text)

Determining DB instance class support in AWS Regions 96

Amazon Relational Database Service User Guide

for region in $REGIONS; do
 supported_count=$(aws rds describe-orderable-db-instance-options \
 --region "$region" \
 --engine "$ENGINE" \
 --db-instance-class "$INSTANCE_CLASS" \
 --query 'length(OrderableDBInstanceOptions)' \
 --output text 2>/dev/null || echo "0")
 if ["$supported_count" -gt 0]; then
 echo "$region supports $INSTANCE_CLASS for $ENGINE."
 else
 echo "$region doesn't support $INSTANCE_CLASS for $ENGINE."
 fi
done

The following sample output checks Region support for RDS for MySQL using the db.r8g.large
instance class.

./check_region_support.sh mysql db.r8g.large
ap-south-1 doesn't support db.r8g.large for mysql.
eu-north-1 doesn't support db.r8g.large for mysql.
eu-west-3 doesn't support db.r8g.large for mysql.
eu-west-2 doesn't support db.r8g.large for mysql.
eu-west-1 doesn't support db.r8g.large for mysql.
ap-northeast-3 doesn't support db.r8g.large for mysql.
ap-northeast-2 doesn't support db.r8g.large for mysql.
ap-northeast-1 doesn't support db.r8g.large for mysql.
ca-central-1 doesn't support db.r8g.large for mysql.
sa-east-1 doesn't support db.r8g.large for mysql.
ap-southeast-1 doesn't support db.r8g.large for mysql.
ap-southeast-2 doesn't support db.r8g.large for mysql.
eu-central-1 supports db.r8g.large for mysql.
us-east-1 supports db.r8g.large for mysql.
us-east-2 supports db.r8g.large for mysql.
us-west-1 doesn't support db.r8g.large for mysql.
us-west-2 supports db.r8g.large for mysql.

Changing your DB instance class

You can change the CPU and memory available to a DB instance by changing its DB instance
class. To change the DB instance class, modify your DB instance by following the instructions in
Modifying an Amazon RDS DB instance.

Changing your DB instance class 97

Amazon Relational Database Service User Guide

Configuring the processor for a DB instance class in RDS for Oracle

Amazon RDS DB instance classes support Intel Hyper-Threading Technology, which enables
multiple threads to run concurrently on a single Intel Xeon CPU core. Each thread is represented as
a virtual CPU (vCPU) on the DB instance. A DB instance has a default number of CPU cores, which
varies according to DB instance class. For example, a db.m4.xlarge DB instance class has two CPU
cores and two threads per core by default—four vCPUs in total.

Note

Each vCPU is a hyperthread of an Intel Xeon CPU core.

Topics

• Overview of processor configuration for RDS for Oracle

• DB instance classes that support processor configuration

• Setting the CPU cores and threads per CPU core for a DB instance class

Overview of processor configuration for RDS for Oracle

When you use RDS for Oracle, you can usually find a DB instance class that has a combination of
memory and number of vCPUs to suit your workloads. However, you can also specify the following
processor features to optimize your RDS for Oracle DB instance for specific workloads or business
needs:

• Number of CPU cores – You can customize the number of CPU cores for the DB instance. You
might do this to potentially optimize the licensing costs of your software with a DB instance that
has sufficient amounts of RAM for memory-intensive workloads but fewer CPU cores.

• Threads per core – You can disable Intel Hyper-Threading Technology by specifying a single
thread per CPU core. You might do this for certain workloads, such as high-performance
computing (HPC) workloads.

You can control the number of CPU cores and threads for each core separately. You can set one
or both in a request. After a setting is associated with a DB instance, the setting persists until you
change it.

Configuring the processor for RDS for Oracle 98

Amazon Relational Database Service User Guide

The processor settings for a DB instance are associated with snapshots of the DB instance. When
a snapshot is restored, its restored DB instance uses the processor feature settings used when the
snapshot was taken.

If you modify the DB instance class for a DB instance with nondefault processor settings, either
specify default processor settings or explicitly specify processor settings at modification. This
requirement ensures that you are aware of the third-party licensing costs that might be incurred
when you modify the DB instance.

There is no additional or reduced charge for specifying processor features on an RDS for Oracle
DB instance. You're charged the same as for DB instances that are launched with default CPU
configurations.

DB instance classes that support processor configuration

You can configure the number of CPU cores and threads per core only when the following
conditions are met:

• You're configuring an RDS for Oracle DB instance. For information about the DB instance classes
supported by different Oracle Database editions, see RDS for Oracle DB instance classes.

• Your DB instance is using the Bring Your Own License (BYOL) licensing option of RDS for Oracle.
For more information about Oracle licensing options, see RDS for Oracle licensing options.

• Your DB instance doesn't belong to one of the db.r5 or db.r5b instance classes
that have predefined processor configurations. These instance classes have
names in the form db.r5.instance_size.tpcthreads_per_core.memratio
or db.r5b.instance_size.tpcthreads_per_core.memratio. For example,
db.r5b.xlarge.tpc2.mem4x is preconfigured with 2 threads per core (tpc2) and 4x as much
memory as the standard db.r5b.xlarge instance class. You can't configure the processor features
of these optimized instance classes. For more information, see Supported RDS for Oracle DB
instance classes.

You can use the following AWS CLI command to show the default vCPUs, cores, threads per core,
and valid numbers of cores for an instance class. Replace r7i.48xlarge in the sample command
with the name of your instance class.

aws ec2 describe-instance-types \
 --instance-types r7i.48xlarge \
 --query '{

Configuring the processor for RDS for Oracle 99

Amazon Relational Database Service User Guide

 DefaultVCPUs: InstanceTypes[0].VCpuInfo.DefaultVCpus,
 DefaultCores: InstanceTypes[0].VCpuInfo.DefaultCores,
 DefaultThreadsPerCore: InstanceTypes[0].VCpuInfo.DefaultThreadsPerCore,
 ValidCores: InstanceTypes[0].VCpuInfo.ValidCores
 }' \
 --output json

In the following table, you can find the DB instance classes that support setting a number of CPU
cores and CPU threads per core. You can also find the default value and the valid values for the
number of CPU cores and CPU threads per core for each DB instance class.

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.m6i – memory-optimized instance classes

db.m6i.large 2 1 2 1 1, 2

db.m6i.xlarge 4 2 2 2 1, 2

db.m6i.2x
large

8 4 2 2, 4 1, 2

db.m6i.4x
large

16 8 2 2, 4, 6, 8 1, 2

db.m6i.4x
large

16 8 2 2, 4, 6, 8 1, 2

db.m6i.8x
large

32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.m6i.12
xlarge

48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

db.m6i.16
xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

Configuring the processor for RDS for Oracle 100

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.m6i.24
xlarge

96 48 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.m6i.32
xlarge

128 64 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64

1, 2

db.m5 – general-purpose instance classes

db.m5.large 2 1 2 1 1, 2

db.m5.xlarge 4 2 2 2 1, 2

db.m5.2xlarge 8 4 2 2, 4 1, 2

db.m5.4xlarge 16 8 2 2, 4, 6, 8 1, 2

db.m5.8xlarge 32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.m5.12x
large

48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

db.m5.16x
large

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.m5.24x
large

96 48 2 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

Configuring the processor for RDS for Oracle 101

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.m5d – general-purpose instance classes

db.m5d.large 2 1 2 1 1, 2

db.m5d.xlarge 4 2 2 2 1, 2

db.m5d.2x
large

8 4 2 2, 4 1, 2

db.m5d.4x
large

16 8 2 2, 4, 6, 8 1, 2

db.m5d.8x
large

32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.m5d.12
xlarge

48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

db.m5d.16
xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.m5d.24
xlarge

96 48 2 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.m4 – general-purpose instance classes

db.m4.10x
large

40 20 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20

1, 2

Configuring the processor for RDS for Oracle 102

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.m4.16x
large

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.r7i – memory-optimized instance classes

db.r7i.large 2 1 2 1 1, 2

db.r7i.xlarge 4 2 2 1, 2 1, 2

db.r7i.2xlarge 8 4 2 1, 2, 3, 4 1, 2

db.r7i.4xlarge 16 8 2 1, 2, 3, 4, 5, 6, 7, 8 1, 2

db.r7i.8xlarge 32 16 2 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16

1, 2

db.r7i.12
xlarge

48 24 2 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21,
22, 23, 24

1, 2

db.r7i.16
xlarge

64 32 2 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32

1, 2

Configuring the processor for RDS for Oracle 103

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.r7i.24
xlarge

96 48 2 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45,
46, 47, 48

1, 2

db.r7i.48
xlarge

192 96 2 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88,
90, 92, 94, 96

1, 2

db.r6i – memory-optimized instance classes

db.r6i.large 2 1 2 1 1, 2

db.r6i.xlarge 4 2 2 1, 2 1, 2

db.r6i.2xlarge 8 4 2 2, 4 1, 2

db.r6i.4xlarge 16 8 2 2, 4, 6, 8 1, 2

db.r6i.8xlarge 32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.r6i.12
xlarge

48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

Configuring the processor for RDS for Oracle 104

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.r6i.16
xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.r6i.24
xlarge

96 48 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.r6i.32
xlarge

128 64 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64

1, 2

db.r5 – memory-optimized instance classes

db.r5.large 2 1 2 1 1, 2

db.r5.xlarge 4 2 2 2 1, 2

db.r5.2xlarge 8 4 2 2, 4 1, 2

db.r5.4xlarge 16 8 2 2, 4, 6, 8 1, 2

db.r5.8xlarge 32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.r5.12xlarge 48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

db.r5.16xlarge 64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

Configuring the processor for RDS for Oracle 105

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.r5.24xlarge 96 48 2 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.r5 – memory-optimized instance classes

db.r5b.large 2 1 2 1 1, 2

db.r5b.xlarge 4 2 2 2 1, 2

db.r5b.2xlarge 8 4 2 2, 4 1, 2

db.r5b.4xlarge 16 8 2 2, 4, 6, 8 1, 2

db.r5b.8xlarge 32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.r5b.12
xlarge

48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

db.r5b.16
xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.r5b.24
xlarge

96 48 2 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.r5d – memory-optimized instance classes

db.r5d.large 2 1 2 1 1, 2

db.r5d.xlarge 4 2 2 2 1, 2

Configuring the processor for RDS for Oracle 106

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.r5d.2xlarge 8 4 2 2, 4 1, 2

db.r5d.4xlarge 16 8 2 2, 4, 6, 8 1, 2

db.r5d.8xlarge 32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.r5d.12
xlarge

48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

db.r5d.16
xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.r5d.24
xlarge

96 48 2 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.r4 – memory-optimized instance classes

db.r4.large 2 1 2 1 1, 2

db.r4.xlarge 4 2 2 1, 2 1, 2

db.r4.2xlarge 8 4 2 1, 2, 3, 4 1, 2

db.r4.4xlarge 16 8 2 1, 2, 3, 4, 5, 6, 7, 8 1, 2

db.r4.8xlarge 32 16 2 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16

1, 2

db.r4.16xlarge 64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

Configuring the processor for RDS for Oracle 107

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.r3 – memory-optimized instance classes

db.r3.large 2 1 2 1 1, 2

db.r3.xlarge 4 2 2 1, 2 1, 2

db.r3.2xlarge 8 4 2 1, 2, 3, 4 1, 2

db.r3.4xlarge 16 8 2 1, 2, 3, 4, 5, 6, 7, 8 1, 2

db.r3.8xlarge 32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.x2idn – memory-optimized instance classes

db.x2idn.
16xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.x2idn.
24xlarge

96 48 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.x2idn.
32xlarge

128 64 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64

1, 2

db.x2iedn – memory-optimized instance classes

db.x2iedn
.xlarge

4 2 2 1, 2 1, 2

Configuring the processor for RDS for Oracle 108

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.x2iedn
.2xlarge

8 4 2 2, 4 1, 2

db.x2iedn
.4xlarge

16 8 2 2, 4, 6, 8 1, 2

db.x2iedn
.8xlarge

32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.x2iedn
.16xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.x2iedn
.24xlarge

96 48 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48

1, 2

db.x2iedn
.32xlarge

128 64 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64

1, 2

db.x2iezn – memory-optimized instance classes

db.x2iezn
.2xlarge

8 4 2 2, 4 1, 2

db.x2iezn
.4xlarge

16 8 2 2, 4, 6, 8 1, 2

db.x2iezn
.6xlarge

24 12 2 2, 4, 6, 8, 10, 12 1, 2

Configuring the processor for RDS for Oracle 109

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.x2iezn
.8xlarge

32 16 2 2, 4, 6, 8, 10, 12, 14, 16 1, 2

db.x2iezn
.12xlarge

48 24 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

db.x1 – memory-optimized instance classes

db.x1.16xlarge 64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.x1.32xlarge 128 64 2 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52,
56, 60, 64

1, 2

db.x1e – memory-optimized instance classes

db.x1e.xlarge 4 2 2 1, 2 1, 2

db.x1e.2xlarge 8 4 2 1, 2, 3, 4 1, 2

db.x1e.4xlarge 16 8 2 1, 2, 3, 4, 5, 6, 7, 8 1, 2

db.x1e.8xlarge 32 16 2 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16

1, 2

db.x1e.16
xlarge

64 32 2 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28,
30, 32

1, 2

db.x1e.32
xlarge

128 64 2 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52,
56, 60, 64

1, 2

Configuring the processor for RDS for Oracle 110

Amazon Relational Database Service User Guide

DB instance
class

Default
vCPUs

Default
CPU
cores

Default
threads
per core

Valid number of CPU
cores

Valid
number of
threads per
core

db.z1d – memory-optimized instance classes

db.z1d.large 2 1 2 1 1, 2

db.z1d.xlarge 4 2 2 2 1, 2

db.z1d.2xlarge 8 4 2 2, 4 1, 2

db.z1d.3xlarge 12 6 2 2, 4, 6 1, 2

db.z1d.6xlarge 24 12 2 2, 4, 6, 8, 10, 12 1, 2

db.z1d.12
xlarge

48 24 2 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24

1, 2

Note

You can use AWS CloudTrail to monitor and audit changes to the process configuration of
Amazon RDS for Oracle DB instances. For more information about using CloudTrail, see
Monitoring Amazon RDS API calls in AWS CloudTrail.

Setting the CPU cores and threads per CPU core for a DB instance class

You can configure the number of CPU cores and threads per core for the DB instance class when
you perform the following operations:

• Creating an Amazon RDS DB instance

• Modifying an Amazon RDS DB instance

• Restoring to a DB instance

• Restoring a DB instance to a specified time for Amazon RDS

Configuring the processor for RDS for Oracle 111

Amazon Relational Database Service User Guide

Note

When you modify a DB instance to configure the number of CPU cores or threads per core,
there is a brief DB instance outage.

You can set the CPU cores and the threads per CPU core for a DB instance class using the AWS
Management Console, the AWS CLI, or the RDS API.

Console

When you are creating, modifying, or restoring a DB instance, you set the DB instance class in the
AWS Management Console. The Instance specifications section shows options for the processor.
The following image shows the processor features options.

Configuring the processor for RDS for Oracle 112

Amazon Relational Database Service User Guide

Configuring the processor for RDS for Oracle 113

Amazon Relational Database Service User Guide

Set the following options to the appropriate values for your DB instance class under Processor
features:

• Core count – Set the number of CPU cores using this option. The value must be equal to or less
than the maximum number of CPU cores for the DB instance class.

• Threads per core – Specify 2 to enable multiple threads per core, or specify 1 to disable multiple
threads per core.

When you modify or restore a DB instance, you can also set the CPU cores and the threads per CPU
core to the defaults for the instance class.

When you view the details for a DB instance in the console, you can view the processor information
for its DB instance class on the Configuration tab. The following image shows a DB instance class
with one CPU core and multiple threads per core enabled.

Configuring the processor for RDS for Oracle 114

Amazon Relational Database Service User Guide

For Oracle DB instances, the processor information only appears for Bring Your Own License (BYOL)
DB instances.

AWS CLI

You can set the processor features for a DB instance when you run one of the following AWS CLI
commands:

• create-db-instance

• modify-db-instance

• restore-db-instance-from-db-snapshot

• restore-db-instance-from-s3

• restore-db-instance-to-point-in-time

To configure the processor of a DB instance class for a DB instance by using the AWS CLI, include
the --processor-features option in the command. Specify the number of CPU cores with the
coreCount feature name, and specify whether multiple threads per core are enabled with the
threadsPerCore feature name.

The option has the following syntax.

--processor-features "Name=coreCount,Value=<value>" "Name=threadsPerCore,Value=<value>"

The following are examples that configure the processor:

Examples

• Setting the number of CPU cores for a DB instance

• Setting the number of CPU cores and disabling multiple threads for a DB instance

• Viewing the valid processor values for a DB instance class

• Returning to default processor settings for a DB instance

• Returning to the default number of CPU cores for a DB instance

• Returning to the default number of threads per core for a DB instance

Configuring the processor for RDS for Oracle 115

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

Setting the number of CPU cores for a DB instance

Example

The following example modifies mydbinstance by setting the number of CPU cores to 4. The
changes are applied immediately by using --apply-immediately. If you want to apply the
changes during the next scheduled maintenance window, omit the --apply-immediately
option.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --processor-features "Name=coreCount,Value=4" \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --processor-features "Name=coreCount,Value=4" ^
 --apply-immediately

Setting the number of CPU cores and disabling multiple threads for a DB instance

Example

The following example modifies mydbinstance by setting the number of CPU cores to 4 and
disabling multiple threads per core. The changes are applied immediately by using --apply-
immediately. If you want to apply the changes during the next scheduled maintenance window,
omit the --apply-immediately option.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --processor-features "Name=coreCount,Value=4" "Name=threadsPerCore,Value=1" \
 --apply-immediately

For Windows:

Configuring the processor for RDS for Oracle 116

Amazon Relational Database Service User Guide

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --processor-features "Name=coreCount,Value=4" "Name=threadsPerCore,Value=1" ^
 --apply-immediately

Viewing the valid processor values for a DB instance class

Example

You can view the valid processor values for a particular DB instance class by running the describe-
orderable-db-instance-options command and specifying the instance class for the --db-
instance-class option. For example, the output for the following command shows the
processor options for the db.r3.large instance class.

aws rds describe-orderable-db-instance-options --engine oracle-ee --db-instance-class
 db.r3.large

Following is sample output for the command in JSON format.

 {
 "SupportsIops": true,
 "MaxIopsPerGib": 50.0,
 "LicenseModel": "bring-your-own-license",
 "DBInstanceClass": "db.r3.large",
 "SupportsIAMDatabaseAuthentication": false,
 "MinStorageSize": 100,
 "AvailabilityZones": [
 {
 "Name": "us-west-2a"
 },
 {
 "Name": "us-west-2b"
 },
 {
 "Name": "us-west-2c"
 }
],
 "EngineVersion": "12.1.0.2.v2",
 "MaxStorageSize": 32768,
 "MinIopsPerGib": 1.0,
 "MaxIopsPerDbInstance": 40000,
 "ReadReplicaCapable": false,

Configuring the processor for RDS for Oracle 117

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html

Amazon Relational Database Service User Guide

 "AvailableProcessorFeatures": [
 {
 "Name": "coreCount",
 "DefaultValue": "1",
 "AllowedValues": "1"
 },
 {
 "Name": "threadsPerCore",
 "DefaultValue": "2",
 "AllowedValues": "1,2"
 }
],
 "SupportsEnhancedMonitoring": true,
 "SupportsPerformanceInsights": false,
 "MinIopsPerDbInstance": 1000,
 "StorageType": "io1",
 "Vpc": false,
 "SupportsStorageEncryption": true,
 "Engine": "oracle-ee",
 "MultiAZCapable": true
 }

In addition, you can run the following commands for DB instance class processor information:

• describe-db-instances – Shows the processor information for the specified DB instance.

• describe-db-snapshots – Shows the processor information for the specified DB snapshot.

• describe-valid-db-instance-modifications – Shows the valid modifications to the processor for
the specified DB instance.

In the output of the preceding commands, the values for the processor features are not null only if
the following conditions are met:

• You are using an RDS for Oracle DB instance.

• Your RDS for Oracle DB instance supports changing processor values.

• The current CPU core and thread settings are set to nondefault values.

If the preceding conditions aren't met, you can get the instance type using describe-db-instances.
You can get the processor information for this instance type by running the EC2 operation
describe-instance-types.

Configuring the processor for RDS for Oracle 118

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshots.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instance-types.html

Amazon Relational Database Service User Guide

Returning to default processor settings for a DB instance

Example

The following example modifies mydbinstance by returning its DB instance class to the default
processor values for it. The changes are applied immediately by using --apply-immediately.
If you want to apply the changes during the next scheduled maintenance window, omit the --
apply-immediately option.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --use-default-processor-features \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --use-default-processor-features ^
 --apply-immediately

Returning to the default number of CPU cores for a DB instance

Example

The following example modifies mydbinstance by returning its DB instance class to the default
number of CPU cores for it. The threads per core setting isn't changed. The changes are applied
immediately by using --apply-immediately. If you want to apply the changes during the next
scheduled maintenance window, omit the --apply-immediately option.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --processor-features "Name=coreCount,Value=DEFAULT" \
 --apply-immediately

For Windows:

Configuring the processor for RDS for Oracle 119

Amazon Relational Database Service User Guide

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --processor-features "Name=coreCount,Value=DEFAULT" ^
 --apply-immediately

Returning to the default number of threads per core for a DB instance

Example

The following example modifies mydbinstance by returning its DB instance class to the default
number of threads per core for it. The number of CPU cores setting isn't changed. The changes are
applied immediately by using --apply-immediately. If you want to apply the changes during
the next scheduled maintenance window, omit the --apply-immediately option.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --processor-features "Name=threadsPerCore,Value=DEFAULT" \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --processor-features "Name=threadsPerCore,Value=DEFAULT" ^
 --apply-immediately

RDS API

You can set the processor features for a DB instance when you call one of the following Amazon
RDS API operations:

• CreateDBInstance

• ModifyDBInstance

• RestoreDBInstanceFromDBSnapshot

• RestoreDBInstanceFromS3

• RestoreDBInstanceToPointInTime

Configuring the processor for RDS for Oracle 120

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

To configure the processor features of a DB instance class for a DB instance by using the Amazon
RDS API, include the ProcessFeatures parameter in the call.

The parameter has the following syntax.

ProcessFeatures "Name=coreCount,Value=<value>" "Name=threadsPerCore,Value=<value>"

Specify the number of CPU cores with the coreCount feature name, and specify whether multiple
threads per core are enabled with the threadsPerCore feature name.

You can view the valid processor values for a particular DB instance class by running the
DescribeOrderableDBInstanceOptions operation and specifying the instance class for the
DBInstanceClass parameter. You can also use the following operations:

• DescribeDBInstances – Shows the processor information for the specified DB instance.

• DescribeDBSnapshots – Shows the processor information for the specified DB snapshot.

• DescribeValidDBInstanceModifications – Shows the valid modifications to the processor for the
specified DB instance.

In the output of the preceding operations, the values for the processor features are not null only if
the following conditions are met:

• You are using an RDS for Oracle DB instance.

• Your RDS for Oracle DB instance supports changing processor values.

• The current CPU core and thread settings are set to nondefault values.

If the preceding conditions aren't met, you can get the instance type using DescribeDBInstances.
You can get the processor information for this instance type by running the EC2 operation
DescribeInstanceTypes.

Hardware specifications for DB instance classes

In the tables in this section, you can find hardware details about the Amazon RDS DB instance
classes.

For information about Amazon RDS DB engine support for each DB instance class, see Supported
DB engines for DB instance classes.

Hardware specifications 121

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeOrderableDBInstanceOptions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshots.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeValidDBInstanceModifications.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstanceTypes.html

Amazon Relational Database Service User Guide

Topics

• Hardware terminology for DB instance classes

• Hardware specifications for the general-purpose instance classes

• Hardware specifications for the memory-optimized instance classes

• Hardware specifications for the compute-optimized instance classes

• Hardware specifications for the burstable-performance instance classes

Hardware terminology for DB instance classes

The following terminology is used to describe hardware specifications for DB instance classes:

vCPU

The number of virtual central processing units (CPUs). A virtual CPU is a unit of capacity that
you can use to compare DB instance classes. Instead of purchasing or leasing a particular
processor to use for several months or years, you are renting capacity by the hour. Our goal is to
make a consistent and specific amount of CPU capacity available, within the limits of the actual
underlying hardware.

ECU

The relative measure of the integer processing power of an Amazon EC2 instance. To make
it easy for developers to compare CPU capacity between different instance classes, we have
defined an Amazon EC2 Compute Unit. The amount of CPU that is allocated to a particular
instance is expressed in terms of these EC2 Compute Units. One ECU currently provides CPU
capacity equivalent to a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.

Memory (GiB)

The RAM, in gibibytes, allocated to the DB instance. There is often a consistent ratio between
memory and vCPU. As an example, take the db.r4 instance class, which has a memory to vCPU
ratio similar to the db.r5 instance class. However, for most use cases the db.r5 instance class
provides better, more consistent performance than the db.r4 instance class.

EBS-optimized

The DB instance uses an optimized configuration stack and provides additional, dedicated
capacity for I/O. This optimization provides the best performance by minimizing contention
between I/O and other traffic from your instance. For more information about Amazon EBS–
optimized instances, see Amazon EBS–Optimized instances in the Amazon EC2 User Guide.

Hardware specifications 122

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Amazon Relational Database Service User Guide

EBS-optimized instances have a baseline and maximum IOPS rate. The maximum IOPS rate
is enforced at the DB instance level. A set of EBS volumes that combine to have an IOPS rate
that is higher than the maximum can't exceed the instance-level threshold. For example, if the
maximum IOPS for a particular DB instance class is 40,000, and you attach four 64,000 IOPS
EBS volumes, the maximum IOPS is 40,000 rather than 256,000. For the IOPS maximum specific
to each EC2 instance type, see Supported instance types in the Amazon EC2 User Guide for Linux
Instances.

Max. EBS bandwidth (Mbps)

The maximum EBS bandwidth in megabits per second. Divide by 8 to get the expected
throughput in megabytes per second.

Important

General Purpose SSD (gp2) volumes for Amazon RDS DB instances have a throughput
limit of 250 MiB/s in most cases. However, the throughput limit can vary depending on
volume size. For more information, see Amazon EBS volume types in the Amazon EC2
User Guide.

Network bandwidth

The network speed relative to other DB instance classes.

Hardware specifications for the general-purpose instance classes

The following tables show the compute, memory, storage, and bandwidth specifications for the
general-purpose instance classes.

db.m8g – general-purpose instance classes powered by AWS Graviton4 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m8g.48xlarge 192 — 768 EBS-optim
ized only

40,000 50

Hardware specifications 123

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#ebs-optimization-support
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m8g.24xlarge 96 — 512 EBS-optim
ized only

30,000 40

db.m8g.16xlarge 64 — 384 EBS-optim
ized only

20,000 30

db.m8g.12xlarge 48 — 256 EBS-optim
ized only

15,000 22.5

db.m8g.8xlarge 32 — 128 EBS-optim
ized only

10,000 15

db.m8g.4xlarge* 16 — 64 EBS-optim
ized only

Up to 10,000 Up to 15

db.m8g.2xlarge* 8 — 32 EBS-optim
ized only

Up to 10,000 Up to 15

db.m8g.xlarge* 4 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m8g.large* 2 — 8 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m7i – general-purpose instance classes powered by 4th generation Intel Xeon Scalable
processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m7i.48xlarge 192 — 768 EBS-optim
ized only

40,000 50

Hardware specifications 124

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m7i.24xlarge 96 — 384 EBS-optim
ized only

30,000 37.5

db.m7i.16xlarge 64 — 256 EBS-optim
ized only

20,000 25

db.m7i.12xlarge 48 — 192 EBS-optim
ized only

15,000 18.75

db.m7i.8xlarge 32 — 128 EBS-optim
ized only

10,000 12.5

db.m7i.4xlarge 16 — 64 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m7i.2xlarge 8 — 32 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m7i.xlarge 4 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m7i.large 2 — 8 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m7g – general-purpose instance classes powered by AWS Graviton3 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m7g.16xlarge 64 — 256 EBS-optim
ized only

20,000 30

Hardware specifications 125

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m7g.12xlarge 48 — 192 EBS-optim
ized only

15,000 22.5

db.m7g.8xlarge 32 — 128 EBS-optim
ized only

10,000 15

db.m7g.4xlarge 16 — 64 EBS-optim
ized only

Up to 10,000 Up to 15

db.m7g.2xlarge* 8 — 32 EBS-optim
ized only

Up to 10,000 Up to 15

db.m7g.xlarge* 4 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m7g.large* 2 — 8 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m6g – general-purpose instance classes powered by AWS Graviton2 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6g.16xlarge 64 — 256 EBS-optim
ized only

19,000 25

db.m6g.12xlarge 48 — 192 EBS-optim
ized only

13,500 20

db.m6g.8xlarge 32 — 128 EBS-optim
ized only

9,000 12

Hardware specifications 126

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6g.4xlarge 16 — 64 EBS-optim
ized only

4,750 Up to 10

db.m6g.2xlarge* 8 — 32 EBS-optim
ized only

Up to 4,750 Up to 10

db.m6g.xlarge* 4 — 16 EBS-optim
ized only

Up to 4,750 Up to 10

db.m6g.large* 2 — 8 EBS-optim
ized only

Up to 4,750 Up to 10

db.m6gd – general-purpose instance classes powered by AWS Graviton2 processors and SSD
storage

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6gd.16xlarge 64 — 256 2 x 1900
NVMe SSD

19,000 25

db.m6gd.12xlarge 48 — 192 2 x 1425
NVMe SSD

13,500 20

db.m6gd.8xlarge 32 — 128 1 x 1900
NVMe SSD

9,000 12

db.m6gd.4xlarge* 16 — 64 1 x 950 NVMe
SSD

4,750 Up to 10

db.m6gd.2xlarge* 8 — 32 1 x 474 NVMe
SSD

Up to 4,750 Up to 10

Hardware specifications 127

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6gd.xlarge* 4 — 16 1 x 237 NVMe
SSD

Up to 4,750 Up to 10

db.m6gd.large* 2 — 8 1 x 118 NVMe
SSD

Up to 4,750 Up to 10

db.m6id – general-purpose instance classes powered by 3rd generation Intel Xeon Scalable
processors and SSD storage

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6id.32xlarge 128 — 512 4 x 1900
NVMe SSD

40,000 50

db.m6id.24xlarge 96 — 384 4 x 1425
NVMe SSD

30,000 37.5

db.m6id.16xlarge 64 — 256 2 x 1900
NVMe SSD

20,000 25

db.m6id.12xlarge 48 — 192 2 x 1425
NVMe SSD

15,000 18.75

db.m6id.8xlarge 32 — 128 1 x 1900
NVMe SSD

10,000 12.5

db.m6id.4xlarge* 16 — 64 1 x 950 NVMe
SSD

Up to 10,000 Up to 12.5

db.m6id.2xlarge* 8 — 32 1 x 474 NVMe
SSD

Up to 10,000 Up to 12.5

Hardware specifications 128

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6id.xlarge* 4 — 16 1 x 237 NVMe
SSD

Up to 10,000 Up to 12.5

db.m6id.large* 2 — 8 1 x 118 NVMe
SSD

Up to 10,000 Up to 12.5

db.m6idn – general-purpose instance classes with 3rd Generation Intel Xeon Scalable
processors, SSD storage, and network optimization

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6idn.32xlarge 128 — 512 4 x 1900
NVMe SSD

80,000 200

db.m6idn.24xlarge 96 — 384 4 x 1425
NVMe SSD

60,000 150

db.m6idn.16xlarge 64 — 256 2 x 1900
NVMe SSD

40,000 100

db.m6idn.12xlarge 48 — 192 2 x 1425
NVMe SSD

30,000 75

db.m6idn.8xlarge 32 — 128 1 x 1900
NVMe SSD

20,000 50

db.m6idn.4xlarge* 16 — 64 1 x 950 NVMe
SSD

Up to 20,000 Up to 50

db.m6idn.2xlarge* 8 — 32 1 x 474 NVMe
SSD

Up to 20,000 Up to 40

Hardware specifications 129

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6idn.xlarge* 4 — 16 1 x 237 NVMe
SSD

Up to 20,000 Up to 30

db.m6idn.large* 2 — 8 1 x 118 NVMe
SSD

Up to 20,000 Up to 25

db.m6in – general-purpose instance classes powered by 3rd generation Intel Xeon Scalable
processors and network optimization

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6in.32xlarge 128 — 512 EBS-optim
ized only

80,000 200

db.m6in.24xlarge 96 — 384 EBS-optim
ized only

60,000 150

db.m6in.16xlarge 64 — 256 EBS-optim
ized only

40,000 100

db.m6in.12xlarge 48 — 192 EBS-optim
ized only

30,000 75

db.m6in.8xlarge 32 — 128 EBS-optim
ized only

20,000 50

db.m6in.4xlarge* 16 — 64 EBS-optim
ized only

Up to 20,000 Up to 50

db.m6in.2xlarge* 8 — 32 EBS-optim
ized only

Up to 20,000 Up to 40

Hardware specifications 130

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6in.xlarge* 4 — 16 EBS-optim
ized only

Up to 20,000 Up to 30

db.m6in.large* 2 — 8 EBS-optim
ized only

Up to 20,000 Up to 25

db.m6i – general-purpose instance classes powered by 3rd generation Intel Xeon Scalable
processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6i.32xlarge 128 — 512 EBS-optim
ized only

40,000 50

db.m6i.24xlarge 96 — 384 EBS-optim
ized only

30,000 37.5

db.m6i.16xlarge 64 — 256 EBS-optim
ized only

20,000 25

db.m6i.12xlarge 48 — 192 EBS-optim
ized only

15,000 18.75

db.m6i.8xlarge 32 — 128 EBS-optim
ized only

10,000 12.5

db.m6i.4xlarge* 16 — 64 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m6i.2xlarge* 8 — 32 EBS-optim
ized only

Up to 10,000 Up to 12.5

Hardware specifications 131

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m6i.xlarge* 4 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m6i.large* 2 — 8 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.m5d – general-purpose instance classes powered by Intel Xeon Platinum processors and SSD
storage

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m5d.24xlarge 96 345 384 4 x 900 NVMe
SSD

19,000 25

db.m5d.16xlarge 64 262 256 4 x 600 NVMe
SSD

13,600 20

db.m5d.12xlarge 48 173 192 2 x 900 NVMe
SSD

9,500 10

db.m5d.8xlarge 32 131 128 2 x 600 NVMe
SSD

6,800 10

db.m5d.4xlarge 16 61 64 2 x 300 NVMe
SSD

4,750 Up to 10

db.m5d.2xlarge* 8 31 32 1 x 300 NVMe
SSD

Up to 4,750 Up to 10

db.m5d.xlarge* 4 15 16 1 x 150 NVMe
SSD

Up to 4,750 Up to 10

Hardware specifications 132

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m5d.large* 2 10 8 1 x 75 NVMe
SSD

Up to 4,750 Up to 10

db.m5 – general-purpose instance classes with Intel Xeon Platinum processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m5.24xlarge 96 345 384 EBS-optim
ized only

19,000 25

db.m5.16xlarge 64 262 256 EBS-optim
ized only

13,600 20

db.m5.12xlarge 48 173 192 EBS-optim
ized only

9,500 10

db.m5.8xlarge 32 131 128 EBS-optim
ized only

6,800 10

db.m5.4xlarge 16 61 64 EBS-optim
ized only

4,750 Up to 10

db.m5.2xlarge* 8 31 32 EBS-optim
ized only

Up to 4,750 Up to 10

db.m5.xlarge* 4 15 16 EBS-optim
ized only

Up to 4,750 Up to 10

db.m5.large* 2 10 8 EBS-optim
ized only

Up to 4,750 Up to 10

Hardware specifications 133

Amazon Relational Database Service User Guide

db.m4 – general-purpose instance classes with Intel Xeon Scalable processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m4.16xlarge 64 188 256 EBS-optim
ized only

10,000 25

db.m4.10xlarge 40 124.5 160 EBS-optim
ized only

4,000 10

db.m4.4xlarge 16 53.5 64 EBS-optim
ized only

2,000 High

db.m4.2xlarge 8 25.5 32 EBS-optim
ized only

1,000 High

db.m4.xlarge 4 13 16 EBS-optim
ized only

750 High

db.m4.large 2 6.5 8 EBS-optim
ized only

450 Moderate

db.m3 – general-purpose instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m3.2xlarge 8 26 30 EBS-optim
ized only

1,000 High

db.m3.xlarge 4 13 15 EBS-optim
ized only

500 High

db.m3.large 2 6.5 7.5 EBS only — Moderate

Hardware specifications 134

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.m3.medium 1 3 3.75 EBS only — Moderate

* These DB instance classes can support maximum performance for 30 minutes at least once every
24 hours. For more information on baseline performance of the underlying EC2 instance types, see
Amazon EBS-optimized instances in the Amazon EC2 User Guide.

Hardware specifications for the memory-optimized instance classes

The following tables show the compute, memory, storage, and bandwidth specifications for the
memory-optimized instance classes.

db.z1d – memory-optimized instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.z1d.12xlarge 48 271 384 2 x 900 NVMe
SSD

14,000 25

db.z1d.6xlarge 24 134 192 1 x 900 NVMe
SSD

7,000 10

db.z1d.3xlarge 12 75 96 1 x 450 NVMe
SSD

3,500 Up to 10

db.z1d.2xlarge 8 53 64 1 x 300 NVMe
SSD

2,333 Up to 10

db.z1d.xlarge* 4 28 32 1 x 150 NVMe
SSD

Up to 2,333 Up to 10

db.z1d.large* 2 15 16 1 x 75 NVMe
SSD

Up to 2,333 Up to 10

Hardware specifications 135

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Amazon Relational Database Service User Guide

db.x2g – memory-optimized instance classes with AWS Graviton2 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x2g.16xlarge 64 — 1024 EBS-optim
ized only

19,000 25

db.x2g.12xlarge 48 — 768 EBS-optim
ized only

14,250 20

db.x2g.8xlarge 32 — 512 EBS-optim
ized only

9,500 12

db.x2g.4xlarge 16 — 256 EBS-optim
ized only

4,750 Up to 10

db.x2g.2xlarge 8 — 128 EBS-optim
ized only

Up to 4,750 Up to 10

db.x2g.xlarge 4 — 64 EBS-optim
ized only

Up to 4,750 Up to 10

db.x2g.large 2 — 32 EBS-optim
ized only

Up to 4,750 Up to 10

db.x2idn – memory-optimized instance classes with 3rd generation Intel Xeon Scalable
processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x2idn.32xlarge 128 — 2,048 2 x 1900
NVMe SSD

80,000 100

Hardware specifications 136

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x2idn.24xlarge 96 — 1,536 2 x 1425
NVMe SSD

60,000 75

db.x2idn.16xlarge 64 — 1,024 1 x 1900
NVMe SSD

40,000 50

db.x2iedn – memory-optimized instance classes with local NVMe-based SSDs, with 3rd
generation Intel Xeon Scalable processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x2iedn.32xlarge 128 — 4,096 2 x 1900
NVMe SSD

80,000 100

db.x2iedn.24xlarge 96 — 3,072 2 x 1425
NVMe SSD

60,000 75

db.x2iedn.16xlarge 64 — 2,048 1 x 1900
NVMe SSD

40,000 50

db.x2iedn.8xlarge 32 — 1,024 1 x 950 NVMe
SSD

20,000 25

db.x2iedn.4xlarge 16 — 512 1 x 475 NVMe
SSD

Up to 20,000 Up to 25

db.x2iedn.2xlarge 8 — 256 1 x 237 NVMe
SSD

Up to 20,000 Up to 25

db.x2iedn.xlarge 4 — 128 1 x 118 NVMe
SSD

Up to 20,000 Up to 25

Hardware specifications 137

Amazon Relational Database Service User Guide

db.x2iezn – memory-optimized instance classes with 2nd generation Intel Xeon Scalable
processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x2iezn.12xlarge >48 — 1,536 EBS-optim
ized only

19,000 100

db.x2iezn.8xlarge 32 — 1,024 EBS-optim
ized only

12,000 75

db.x2iezn.6xlarge 24 — 768 EBS-optim
ized only

Up to 9,500 50

db.x2iezn.4xlarge 16 — 512 EBS-optim
ized only

Up to 4,750 Up to 25

db.x2iezn.2xlarge 8 — 256 EBS-optim
ized only

Up to 3,170 Up to 25

db.x1e – memory-optimized instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x1e.32xlarge 128 340 3,904 EBS-optim
ized only

14,000 25

db.x1e.16xlarge 64 179 1,952 EBS-optim
ized only

7,000 10

db.x1e.8xlarge 32 91 976 EBS-optim
ized only

3,500 Up to 10

Hardware specifications 138

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x1e.4xlarge 16 47 488 EBS-optim
ized only

1,750 Up to 10

db.x1e.2xlarge 8 23 244 EBS-optim
ized only

1,000 Up to 10

db.x1e.xlarge 4 12 122 EBS-optim
ized only

500 Up to 10

db.x1 – memory-optimized instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.x1.32xlarge 128 349 1,952 EBS-optim
ized only

14,000 25

db.x1.16xlarge 64 174.5 976 EBS-optim
ized only

7,000 10

db.r8g – memory-optimized instance classes with AWS Graviton4 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r8g.48xlarge 192 — 1536 EBS-optim
ized only

40,000 50

db.r8g.24xlarge 96 — 768 EBS-optim
ized only

30,000 40

Hardware specifications 139

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r8g.16xlarge 64 — 512 EBS-optim
ized only

20,000 30

db.r8g.12xlarge 48 — 384 EBS-optim
ized only

15,000 22.5

db.r8g.8xlarge 32 — 256 EBS-optim
ized only

10,000 15

db.r8g.4xlarge* 16 — 128 EBS-optim
ized only

Up to 10,000 Up to 15

db.r8g.2xlarge* 8 — 64 EBS-optim
ized only

Up to 10,000 Up to 15

db.r8g.xlarge* 4 — 32 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r8g.large* 2 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r7i – memory-optimized instance classes powered by 4th generation Intel Xeon Scalable
processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r7i.48xlarge 192 — 1536 EBS-optim
ized only

40,000 50

db.r7i.24xlarge 96 — 768 EBS-optim
ized only

30,000 37.5

Hardware specifications 140

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r7i.16xlarge 64 — 512 EBS-optim
ized only

20,000 25

db.r7i.12xlarge 48 — 384 EBS-optim
ized only

15,000 18.75

db.r7i.8xlarge 32 — 256 EBS-optim
ized only

10,000 12.5

db.r7i.4xlarge 16 — 128 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r7i.2xlarge 8 — 64 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r7i.xlarge 4 — 32 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r7i.large 2 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r7g – memory-optimized instance classes with AWS Graviton3 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r7g.16xlarge 64 — 512 EBS-optim
ized only

20,000 30

db.r7g.12xlarge 48 — 384 EBS-optim
ized only

15,000 22.5

Hardware specifications 141

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r7g.8xlarge 32 — 256 EBS-optim
ized only

10,000 15

db.r7g.4xlarge 16 — 128 EBS-optim
ized only

Up to 10,000 Up to 15

db.r7g.2xlarge* 8 — 64 EBS-optim
ized only

Up to 10,000 Up to 15

db.r7g.xlarge* 4 — 32 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r7g.large* 2 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r6g – memory-optimized instance classes with AWS Graviton2 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6g.16xlarge 64 — 512 EBS-optim
ized only

19,000 25

db.r6g.12xlarge 48 — 384 EBS-optim
ized only

13,500 20

db.r6g.8xlarge 32 — 256 EBS-optim
ized only

9,000 12

db.r6g.4xlarge 16 — 128 EBS-optim
ized only

4,750 Up to 10

Hardware specifications 142

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6g.2xlarge* 8 — 64 EBS-optim
ized only

Up to 4,750 Up to 10

db.r6g.xlarge* 4 — 32 EBS-optim
ized only

Up to 4,750 Up to 10

db.r6g.large* 2 — 16 EBS-optim
ized only

Up to 4,750 Up to 10

db.r6gd – memory-optimized instance classes with AWS Graviton2 processors and SSD storage

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6gd.16xlarge 64 — 512 2 x 1900
NVMe SSD

19,000 25

db.r6gd.12xlarge 48 — 384 2 x 1425
NVMe SSD

13,500 20

db.r6gd.8xlarge 32 — 256 1 x 1900
NVMe SSD

9,000 12

db.r6gd.4xlarge 16 — 128 1 x 950 NVMe
SSD

4,750 Up to 10

db.r6gd.2xlarge 8 — 64 1 x 474 NVMe
SSD

Up to 4,750 Up to 10

db.r6gd.xlarge 4 — 32 1 x 237 NVMe
SSD

Up to 4,750 Up to 10

Hardware specifications 143

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6gd.large 2 — 16 1 x 118 NVMe
SSD

Up to 4,750 Up to 10

db.r6id – memory-optimized instance classes with 3rd generation Intel Xeon Scalable
processors and SSD storage

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6id.32xlarge 128 — 1,024 4x1900 NVMe
SSD

40,000 50

db.r6id.24xlarge 96 — 768 4x1425 NVMe
SSD

30,000 37.5

db.r6id.16xlarge 64 — 512 2x1900 NVMe
SSD

20,000 25

db.r6id.12xlarge 48 — 384 2x1425 NVMe
SSD

15,000 18.75

db.r6id.8xlarge 32 — 256 1x1900 NVMe
SSD

10,000 12.5

db.r6id.4xlarge* 16 — 128 1x950 NVMe
SSD

Up to 10,000 Up to 12.5

db.r6id.2xlarge* 8 — 64 1x474 NVMe
SSD

Up to 10,000 Up to 12.5

db.r6id.xlarge* 4 — 32 1x237 NVMe
SSD

Up to 10,000 Up to 12.5

Hardware specifications 144

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6id.large* 2 — 16 1x118 NVMe
SSD

Up to 10,000 Up to 12.5

db.r6idn – memory-optimized instance classes with 3rd generation Intel Xeon Scalable
processors, SSD storage, and network optimization

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6idn.32xlarge 128 — 1,024 4x1900 NVMe
SSD

80,000 200

db.r6idn.24xlarge 96 — 768 4x1425 NVMe
SSD

60,000 150

db.r6idn.16xlarge 64 — 512 2x1900 NVMe
SSD

40,000 100

db.r6idn.12xlarge 48 — 384 2x1425 NVMe
SSD

30,000 75

db.r6idn.8xlarge 32 — 256 1x1900 NVMe
SSD

20,000 50

db.r6idn.4xlarge* 16 — 128 1x950 NVMe
SSD

Up to 20,000 Up to 50

db.r6idn.2xlarge* 8 — 64 1x474 NVMe
SSD

Up to 20,000 Up to 40

db.r6idn.xlarge* 4 — 32 1x237 NVMe
SSD

Up to 20,000 Up to 30

Hardware specifications 145

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6idn.large* 2 — 16 1x118 NVMe
SSD

Up to 20,000 Up to 25

db.r6in – memory-optimized instance classes with 3rd generation Intel Xeon Scalable
processors and network optimization

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6in.32xlarge 128 — 1,024 EBS-optim
ized only

80,000 200

db.r6in.24xlarge 96 — 768 EBS-optim
ized only

60,000 150

db.r6in.16xlarge 64 — 512 EBS-optim
ized only

40,000 100

db.r6in.12xlarge 48 — 384 EBS-optim
ized only

30,000 75

db.r6in.8xlarge 32 — 256 EBS-optim
ized only

20,000 50

db.r6in.4xlarge* 16 — 128 EBS-optim
ized only

Up to 20,000 Up to 50

db.r6in.2xlarge* 8 — 64 EBS-optim
ized only

Up to 20,000 Up to 40

db.r6in.xlarge* 4 — 32 EBS-optim
ized only

Up to 20,000 Up to 30

Hardware specifications 146

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6in.large* 2 — 16 EBS-optim
ized only

Up to 20,000 Up to 25

db.r6i – Oracle memory-optimized instance classes preconfigured for high memory, storage,
and I/O

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6i.8xlarge.tpc
2.mem4x

32 — 1024 EBS-optim
ized only

40,000 50

db.r6i.8xlarge.tpc
2.mem3x

32 — 768 EBS-optim
ized only

30,000 37.5

db.r6i.6xlarge.tpc
2.mem4x

24 — 768 EBS-optim
ized only

30,000 37.5

db.r6i.4xlarge.tpc
2.mem4x

16 — 512 EBS-optim
ized only

20,000 25

db.r6i.4xlarge.tpc
2.mem3x

16 — 384 EBS-optim
ized only

15,000 18.75

db.r6i.4xlarge.tpc
2.mem2x

16 — 256 EBS-optim
ized only

10,000 12.5

db.r6i.2xlarge.tpc
2.mem8x

8 — 512 EBS-optim
ized only

20,000 12.5

db.r6i.2xlarge.tpc
2.mem4x

8 — 256 EBS-optim
ized only

10,000 12.5

Hardware specifications 147

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6i.2xlarge.tpc
1.mem2x

8 — 128 EBS-optim
ized only

Up to 10,000 12.5

db.r6i.xlarge.tpc2
.mem4x

4 — 128 EBS-optim
ized only

Up to 10,000 12.5

db.r6i.xlarge.tpc2
.mem2x

4 — 64 EBS-optim
ized only

Up to 10,000 12.5

db.r6i.large.tpc1.
mem2x

2 — 32 EBS-optim
ized only

Up to 10,000 12.5

db.r6i – memory-optimized instance classes with 3rd Generation Intel Xeon Scalable processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6i.32xlarge 128 — 1,024 EBS-optim
ized only

40,000 50

db.r6i.24xlarge 96 — 768 EBS-optim
ized only

30,000 37.5

db.r6i.16xlarge 64 — 512 EBS-optim
ized only

20,000 25

db.r6i.12xlarge 48 — 384 EBS-optim
ized only

15,000 18.75

db.r6i.8xlarge 32 — 256 EBS-optim
ized only

10,000 12.5

Hardware specifications 148

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r6i.4xlarge* 16 — 128 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r6i.2xlarge* 8 — 64 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r6i.xlarge* 4 — 32 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r6i.large* 2 — 16 EBS-optim
ized only

Up to 10,000 Up to 12.5

db.r5d – memory-optimized instance classes with Intel Xeon Platinum processors and SSD
storage

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5d.24xlarge 96 347 768 4 x 900 NVMe
SSD

19,000 25

db.r5d.16xlarge 64 264 512 4 x 600 NVMe
SSD

13,600 20

db.r5d.12xlarge 48 173 384 2 x 900 NVMe
SSD

9,500 10

db.r5d.8xlarge 32 132 256 2 x 600 NVMe
SSD

6,800 10

db.r5d.4xlarge 16 71 128 2 x 300 NVMe
SSD

4,750 Up to 10

Hardware specifications 149

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5d.2xlarge* 8 38 64 1 x 300 NVMe
SSD

Up to 4,750 Up to 10

db.r5d.xlarge* 4 19 32 1 x 150 NVMe
SSD

Up to 4,750 Up to 10

db.r5d.large* 2 10 16 1 x 75 NVMe
SSD

Up to 4,750 Up to 10

db.r5b – Oracle memory-optimized instance classes preconfigured for high memory, storage,
and I/O

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5b.8xlarge.tpc
2.mem3x

32 — 768 EBS-optim
ized only

60,000 25

db.r5b.6xlarge.tpc
2.mem4x

24 — 768 EBS-optim
ized only

60,000 25

db.r5b.4xlarge.tpc
2.mem4x

16 — 512 EBS-optim
ized only

40,000 20

db.r5b.4xlarge.tpc
2.mem3x

16 — 384 EBS-optim
ized only

30,000 10

db.r5b.4xlarge.tpc
2.mem2x

16 — 256 EBS-optim
ized only

20,000 10

db.r5b.2xlarge.tpc
2.mem8x

8 — 512 EBS-optim
ized only

40,000 20

Hardware specifications 150

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5b.2xlarge.tpc
2.mem4x

8 — 256 EBS-optim
ized only

20,000 10

db.r5b.2xlarge.tpc
1.mem2x

8 — 128 EBS-optim
ized only

10,000 Up to 10

db.r5b.xlarge.tpc2
.mem4x

4 — 128 EBS-optim
ized only

10,000 Up to 10

db.r5b.xlarge.tpc2
.mem2x

4 — 64 EBS-optim
ized only

Up to 10,000 Up to 10

db.r5b.large.tpc1.
mem2x

2 — 32 EBS-optim
ized only

Up to 10,000 Up to 10

db.r5b – memory-optimized instance classes with Intel Xeon Platinum processors and EBS
optimization

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5b.24xlarge 96 347 768 EBS-optim
ized only

60,000 25

db.r5b.16xlarge 64 264 512 EBS-optim
ized only

40,000 20

db.r5b.12xlarge 48 173 384 EBS-optim
ized only

30,000 10

db.r5b.8xlarge 32 132 256 EBS-optim
ized only

20,000 10

Hardware specifications 151

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5b.4xlarge 16 71 128 EBS-optim
ized only

10,000 Up to 10

db.r5b.2xlarge* 8 38 64 EBS-optim
ized only

Up to 10,000 Up to 10

db.r5b.xlarge* 4 19 32 EBS-optim
ized only

Up to 10,000 Up to 10

db.r5b.large* 2 10 16 EBS-optim
ized only

Up to 10,000 Up to 10

db.r5 – Oracle memory-optimized instance classes preconfigured for high memory, storage,
and I/O

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5.12xlarge.tpc
2.mem2x

48 — 768 EBS-optim
ized only

19,000 25

db.r5.8xlarge.tpc2
.mem3x

32 — 768 EBS-optim
ized only

19,000 25

db.r5.6xlarge.tpc2
.mem4x

24 — 768 EBS-optim
ized only

19,000 25

db.r5.4xlarge.tpc2
.mem4x

16 — 512 EBS-optim
ized only

13,600 20

db.r5.4xlarge.tpc2
.mem3x

16 — 384 EBS-optim
ized only

9,500 10

Hardware specifications 152

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5.4xlarge.tpc2
.mem2x

16 — 256 EBS-optim
ized only

6,800 10

db.r5.2xlarge.tpc2
.mem8x

8 — 512 EBS-optim
ized only

13,600 20

db.r5.2xlarge.tpc2
.mem4x

8 — 256 EBS-optim
ized only

6,800 10

db.r5.2xlarge.tpc1
.mem2x

8 — 128 EBS-optim
ized only

4,750 Up to 10

db.r5.xlarge.tpc2.
mem4x

4 — 128 EBS-optim
ized only

4,750 Up to 10

db.r5.xlarge.tpc2.
mem2x

4 — 64 EBS-optim
ized only

Up to 4,750 Up to 10

db.r5.large.tpc1.m
em2x

2 — 32 EBS-optim
ized only

Up to 4,750 Up to 10

db.r5 – memory-optimized instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5.24xlarge 96 347 768 EBS-optim
ized only

19,000 25

db.r5.16xlarge 64 264 512 EBS-optim
ized only

13,600 20

Hardware specifications 153

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r5.12xlarge 48 173 384 EBS-optim
ized only

9,500 12

db.r5.8xlarge 32 132 256 EBS-optim
ized only

6,800 10

db.r5.4xlarge 16 71 128 EBS-optim
ized only

4,750 Up to 10

db.r5.2xlarge* 8 38 64 EBS-optim
ized only

Up to 4,750 Up to 10

db.r5.xlarge* 4 19 32 EBS-optim
ized only

Up to 4,750 Up to 10

db.r5.large* 2 10 16 EBS-optim
ized only

Up to 4,750 Up to 10

db.r4 – memory-optimized instance classes with Intel Xeon Scalable processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r4.16xlarge 64 195 488 EBS-optim
ized only

14,000 25

db.r4.8xlarge 32 99 244 EBS-optim
ized only

7,000 10

db.r4.4xlarge 16 53 122 EBS-optim
ized only

3,500 Up to 10

Hardware specifications 154

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r4.2xlarge 8 27 61 EBS-optim
ized only

1,700 Up to 10

db.r4.xlarge 4 13.5 30.5 EBS-optim
ized only

850 Up to 10

db.r4.large 2 7 15.25 EBS-optim
ized only

425 Up to 10

db.r3 – memory-optimized instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.r3.8xlarge** 32 104 244 EBS only — 10

db.r3.4xlarge 16 52 122 EBS-optim
ized only

2,000 High

db.r3.2xlarge 8 26 61 EBS-optim
ized only

1,000 High

db.r3.xlarge 4 13 30.5 EBS-optim
ized only

500 Moderate

db.r3.large 2 6.5 15.25 EBS-optim
ized only

— Moderate

* These DB instance classes can support maximum performance for 30 minutes at least once every
24 hours. For more information on baseline performance of the underlying EC2 instance types, see
Amazon EBS-optimized instances in the Amazon EC2 User Guide.

Hardware specifications 155

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Amazon Relational Database Service User Guide

** The r3.8xlarge DB instance class doesn't have dedicated EBS bandwidth and therefore doesn't
offer EBS optimization. For this instance class, network traffic and Amazon EBS traffic share the
same 10-gigabit network interface.

Hardware specifications for the compute-optimized instance classes

The following tables show the compute, memory, storage, and bandwidth specifications for the
compute-optimized instance classes.

db.c6gd – compute-optimized instance classes (for Multi-AZ DB cluster deployments only)

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.c6gd.16xlarge 64 — 128 2 x 1900
NVMe SSD

19,000 25

db.c6gd.12xlarge 48 — 96 2 x 1425
NVMe SSD

13,500 20

db.c6gd.8xlarge 32 — 64 1 x 1900
NVMe SSD

9,000 12

db.c6gd.4xlarge 16 — 32 1 x 950 NVMe
SSD

4,750 Up to 10

db.c6gd.2xlarge 8 — 16 1 x 474 NVMe
SSD

Up to 4,750 Up to 10

db.c6gd.xlarge 4 — 8 1 x 237 NVMe
SSD

Up to 4,750 Up to 10

db.c6gd.large 2 — 4 1 x 118 NVMe
SSD

Up to 4,750 Up to 10

db.c6gd.medium 1 — 2 1 x 59 NVMe
SSD

Up to 4,750 Up to 10

Hardware specifications 156

Amazon Relational Database Service User Guide

Hardware specifications for the burstable-performance instance classes

The following tables show the compute, memory, storage, and bandwidth specifications for the
burstable-performance instance classes.

db.t4g – burstable-performance instance classes powered by AWS Graviton2 processors

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.t4g.2xlarge* 8 — 32 EBS-optim
ized only

Up to 2,780 Up to 5

db.t4g.xlarge* 4 — 16 EBS-optim
ized only

Up to 2,780 Up to 5

db.t4g.large* 2 — 8 EBS-optim
ized only

Up to 2,780 Up to 5

db.t4g.medium* 2 — 4 EBS-optim
ized only

Up to 2,085 Up to 5

db.t4g.small* 2 — 2 EBS-optim
ized only

Up to 2,085 Up to 5

db.t4g.micro* 2 — 1 EBS-optim
ized only

Up to 2,085 Up to 5

db.t3 – burstable-performance instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.t3.2xlarge* 8 Variable32 EBS-optim
ized only

Up to 2,048 Up to 5

Hardware specifications 157

Amazon Relational Database Service User Guide

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.t3.xlarge* 4 Variable16 EBS-optim
ized only

Up to 2,048 Up to 5

db.t3.large* 2 Variable8 EBS-optim
ized only

Up to 2,048 Up to 5

db.t3.medium* 2 Variable4 EBS-optim
ized only

Up to 1,536 Up to 5

db.t3.small* 2 Variable2 EBS-optim
ized only

Up to 1,536 Up to 5

db.t3.micro* 2 Variable1 EBS-optim
ized only

Up to 1,536 Up to 5

db.t2 – burstable-performance instance classes

Instance class vCPU ECU Memory
(GiB)

Instance
storage (GiB)

Max. EBS
bandwidth
(Mbps)

Network
bandwidth
(Gbps)

db.t2.2xlarge 8 Variable32 EBS only — Moderate

db.t2.xlarge 4 Variable16 EBS only — Moderate

db.t2.large 2 Variable8 EBS only — Moderate

db.t2.medium 2 Variable4 EBS only — Moderate

db.t2.small 1 Variable2 EBS only — Low

db.t2.micro 1 Variable1 EBS only — Low

Hardware specifications 158

Amazon Relational Database Service User Guide

* These DB instance classes can support maximum performance for 30 minutes at least once every
24 hours. For more information on baseline performance of the underlying EC2 instance types, see
Amazon EBS-optimized instances in the Amazon EC2 User Guide.

Hardware specifications 159

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Amazon Relational Database Service User Guide

Amazon RDS DB instance storage

DB instances for Amazon RDS for Db2, MariaDB, MySQL, PostgreSQL, Oracle, and Microsoft SQL
Server use Amazon Elastic Block Store (Amazon EBS) volumes for database and log storage.

In some cases, your database workload might not be able to achieve 100 percent of the IOPS that
you have provisioned. For more information, see Factors that affect database performance.

For more information about instance storage pricing, see Amazon RDS pricing.

Topics

• Amazon RDS storage types

• Provisioned IOPS SSD storage

• General Purpose SSD storage

• Performance characteristics of solid-state drive (SSD) storage types

• Magnetic storage (deprecated)

• Dedicated log volume (DLV)

• Monitoring database performance

• Factors that affect database performance

Amazon RDS storage types

Amazon RDS provides three storage types: Provisioned IOPS SSD (also known as io1 and io2
Block Express), General Purpose SSD (also known as gp2 and gp3), and magnetic (also known as
standard). They differ in performance characteristics and price, which means that you can tailor
your storage performance and cost to the needs of your database workload. You can create Db2,
MySQL, MariaDB, Oracle, SQL Server, and PostgreSQL RDS DB instances with up to 64 tebibytes
(TiB) of storage. RDS for Db2 doesn't support the gp2 and magnetic storage types.

The following list briefly describes the three storage types:

• Provisioned IOPS SSD – Provisioned IOPS storage is designed to meet the needs of I/O-intensive
workloads, particularly database workloads, that require low I/O latency and consistent I/O
throughput. Provisioned IOPS storage is best suited for production environments.

For more information about Provisioned IOPS storage, including the storage size ranges, see
Provisioned IOPS SSD storage.

DB instance storage 160

https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

• General Purpose SSD – General Purpose SSD volumes offer cost-effective storage that is ideal
for a broad range of workloads running on medium-sized DB instances. General Purpose storage
is best suited for development and testing environments.

For more information about General Purpose SSD storage, including the storage size ranges, see
General Purpose SSD storage.

• Magnetic – Amazon RDS also supports magnetic storage for backward compatibility. We
recommend that you use General Purpose SSD or Provisioned IOPS SSD for any new storage
needs. The maximum amount of storage allowed for DB instances on magnetic storage is 3 TiB.
For more information, see Magnetic storage (deprecated).

Provisioned IOPS SSD storage

For a production application that requires fast and consistent I/O performance, we recommend
Provisioned IOPS storage. Provisioned IOPS storage is a storage type that delivers predictable
performance, and consistently low latency. Provisioned IOPS storage is optimized for online
transaction processing (OLTP) workloads that require consistent performance. Provisioned IOPS
helps performance tuning of these workloads.

Amazon RDS offers two types of Provisioned IOPS SSD storage: io2 and io1. When you create a DB
instance, you specify the IOPS rate and the size of the volume. Amazon RDS provides that IOPS
rate for the DB instance until you change it.

Topics

• io2 Block Express storage (recommended)

• io1 storage (previous generation)

• Combining Provisioned IOPS storage with Multi-AZ deployments or read replicas

• Provisioned IOPS storage costs

• Getting the best performance from Amazon RDS Provisioned IOPS storage

io2 Block Express storage (recommended)

For I/O-intensive and latency-sensitive workloads, we recommend that you use Provisioned IOPS
SSD io2 Block Express storage to achieve up to 256,000 I/O operations per second (IOPS). The
throughput of io2 Block Express volumes varies based on the amount of IOPS provisioned per
volume and on the size of the I/O operations being run.

Provisioned IOPS storage 161

Amazon Relational Database Service User Guide

All RDS io2 volumes based on the AWS Nitro System are io2 Block Express volumes and provide
sub-millisecond average latency. DB instances not based on the AWS Nitro System are io2 volumes.

The following table shows the range of Provisioned IOPS and maximum throughput for each
database engine and storage size range.

Database engine Range of
storage size

Range of Provisioned IOPS Maximum
throughput

Db2, MariaDB, MySQL,
and PostgreSQL

100–65,536 GiB 1,000–256,000 IOPS 16,000 MiB/s

Oracle 100–199 GiB 1,000–199,000 IOPS 4,000 MiB/s

Oracle 200–65,536 GiB 1,000–256,000 IOPS 16,000 MiB/s

SQL Server 20–65,536 GiB 1,000–256,000 IOPS 4,000 MiB/s

The IOPS and storage size ranges have the following constraints:

• The ratio of IOPS to allocated storage (in GiB) must be from 0.5–1,000. For DB instances not
based on the AWS Nitro System, the ratio must be from 0.5–500.

• Maximum IOPS can be provisioned with volumes 256 GiB and larger (1,000 IOPS × 256 GiB
= 256,000 IOPS). For DB instances not based on the AWS Nitro System, maximum IOPS are
achieved at 512 GiB (500 IOPS x 512 GiB = 256,000 IOPS).

• Throughput scales proportionally up to 0.256 MiB/s per provisioned IOPS. Maximum throughput
of 4,000 MiB/s can be achieved at 256,000 IOPS with a 16-KiB I/O size and 16,000 IOPS or
higher with a 256-KiB I/O size. For DB instances not based on the AWS Nitro System, maximum
throughput of 2,000 MiB/s can be achieved at 128,000 IOPS with a 16-KiB I/O size.

• If you're using storage autoscaling, the same ratios between IOPS and maximum storage
threshold (in GiB) also apply. For more information on storage autoscaling, see Managing
capacity automatically with Amazon RDS storage autoscaling.

Amazon RDS io2 Block Express volumes are available in the following AWS Regions:

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

Provisioned IOPS storage 162

Amazon Relational Database Service User Guide

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Stockholm)

• Middle East (Bahrain)

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

io1 storage (previous generation)

For I/O-intensive workloads, you can use Provisioned IOPS SSD io1 storage and achieve up to
256,000 I/O operations per second (IOPS). The throughput of io1 volumes varies based on the
amount of IOPS provisioned per volume and on the size of the I/O operations being run. We
recommend using io2 Block Express storage where it's available.

The following table shows the range of Provisioned IOPS and maximum throughput for each
database engine and storage size range.

Database engine Range of
storage size

Range of Provisioned IOPS Maximum
throughput

Db2, MariaDB, MySQL,
and PostgreSQL

100–399 GiB 1,000–19,950 IOPS 500 MiB/s

Db2, MariaDB, MySQL,
and PostgreSQL

400–65,536 GiB 1,000–256,000 IOPS 4,000 MiB/s

Oracle 100–199 GiB 1,000–9,950 IOPS 500 MiB/s

Provisioned IOPS storage 163

Amazon Relational Database Service User Guide

Database engine Range of
storage size

Range of Provisioned IOPS Maximum
throughput

Oracle 200–65,536 GiB 1,000–256,000 IOPS¹ 4,000 MiB/s

SQL Server 20–16,384 GiB 1,000–64,000 IOPS² 1,000 MiB/s

Note

¹ For Oracle, you can provision the maximum 256,000 IOPS only on the r5b instance type.
² For SQL Server, the maximum 64,000 IOPS is guaranteed only on Nitro-based instances
that are on the m5*, m6i, r5*, r6i, and z1d instance types. Other instance types guarantee
performance up to 32,000 IOPS.

The IOPS and storage size ranges have the following constraints:

• The ratio of IOPS to allocated storage (in GiB) must be from 1–50 on RDS for SQL Server, and
0.5–50 on other RDS DB engines.

• If you're using storage autoscaling, the same ratios between IOPS and maximum storage
threshold (in GiB) also apply.

For more information on storage autoscaling, see Managing capacity automatically with Amazon
RDS storage autoscaling.

Combining Provisioned IOPS storage with Multi-AZ deployments or read replicas

For production OLTP use cases, we recommend that you use Multi-AZ deployments for enhanced
fault tolerance with Provisioned IOPS storage for fast and predictable performance.

You can also use Provisioned IOPS storage with read replicas for MySQL, MariaDB or PostgreSQL.
The type of storage for a read replica is independent of that on the primary DB instance. For
example, you might use General Purpose SSD for read replicas with a primary DB instance that uses
Provisioned IOPS SSD storage to reduce costs. However, your read replica's performance in this
case might differ from that of a configuration where both the primary DB instance and the read
replicas use Provisioned IOPS storage.

Provisioned IOPS storage 164

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances

Amazon Relational Database Service User Guide

Provisioned IOPS storage costs

With Provisioned IOPS storage, you are charged for the provisioned resources whether or not you
use them in a given month.

For more information about pricing, see Amazon RDS pricing.

Getting the best performance from Amazon RDS Provisioned IOPS storage

If your workload is I/O constrained, using Provisioned IOPS storage can increase the number of I/
O requests that the system can process concurrently. Increased concurrency allows for decreased
latency because I/O requests spend less time in a queue. Decreased latency allows for faster
database commits, which improves response time and allows for higher database throughput.

Provisioned IOPS storage provides a way to reserve I/O capacity by specifying IOPS. However, as
with any other system capacity attribute, its maximum throughput under load is constrained by
the resource that is consumed first. That resource might be network bandwidth, CPU, memory, or
database internal resources.

General Purpose SSD storage

General Purpose storage offers cost-effective storage that is acceptable for most database
workloads that aren't latency or performance sensitive.

Note

DB instances that use General Purpose storage can experience much longer latency than
instances that use Provisioned IOPS storage. If you need a DB instance with minimum
latency after these operations, we recommend using Provisioned IOPS SSD storage.

Amazon RDS offers two types of General Purpose storage: gp3 storage (recommended) and gp2
storage (previous generation).

gp3 storage (recommended)

By using General Purpose gp3 storage volumes, you can customize storage performance
independently of storage capacity. Storage performance is the combination of I/O operations per

General Purpose storage 165

https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

second (IOPS) and how fast the storage volume can perform reads and writes (storage throughput).
On gp3 storage volumes, Amazon RDS provides a baseline storage performance of 3000 IOPS and
125 MiB/s.

For every RDS DB engine except RDS for SQL Server, when the storage size for gp3 volumes
reaches a certain threshold, the baseline storage performance increases. This is because of volume
striping, where the storage uses four volumes instead of one. RDS for SQL Server doesn't support
volume striping, and therefore doesn't have a threshold value. For striped volumes, Amazon RDS
provides a baseline storage performance of 12,000 IOPS and 500 MiB/s.

Storage performance for gp3 volumes on Amazon RDS DB engines, including the threshold, is
shown in the following table.

DB engine Storage size Baseline
storage
performance

Range of
Provisioned
IOPS

Range of
provision
ed storage
throughput

Db2, MariaDB,
MySQL, and
PostgreSQL

20–399 GiB 3,000 IOPS/125
MiB/s

N/A N/A

Db2, MariaDB,
MySQL, and
PostgreSQL

400–65,536 GiB 12,000
IOPS/500 MiB/s

12,000–64,000
IOPS

500–4,000 MiB/
s

Oracle 20–199 GiB 3,000 IOPS/125
MiB/s

N/A N/A

Oracle 200–65,536 GiB 12,000
IOPS/500 MiB/s

12,000–64,000
IOPS

500–4,000 MiB/
s

SQL Server 20–16,384 GiB 3,000 IOPS/125
MiB/s

3,000–16,000
IOPS

125–1,000 MiB/
s

For every DB engine except RDS for SQL Server, you can provision additional IOPS and storage
throughput when storage size is at or above the threshold value. For RDS for SQL Server, you
can provision additional IOPS and storage throughput for any available storage size. For all DB

General Purpose storage 166

Amazon Relational Database Service User Guide

engines, you pay for only the additional provisioned storage performance. For more information,
see Amazon RDS pricing.

Although the added Provisioned IOPS and storage throughput aren't dependent on the storage
size, they are related to each other. When you raise the IOPS above 32,000 for MariaDB and
MySQL, the storage throughput value automatically increases from 500 MiBps. For example, when
you set the IOPS to 40,000 on RDS for MySQL, the storage throughput must be at least 625 MiBps.
The automatic increase doesn't happen for Db2, Oracle, PostgreSQL, and SQL Server DB instances.

For Multi-AZ DB clusters, Amazon RDS automatically sets the throughput value based on the IOPS
that you provision. You can't modify the throughput value.

Storage performance values for gp3 volumes on RDS have the following constraints:

• The maximum ratio of storage throughput to IOPS is 0.25 for all supported DB engines.

• The minimum ratio of IOPS to allocated storage (in GiB) is 0.5 on RDS for SQL Server. There is no
minimum ratio for the other supported DB engines.

• The maximum ratio of IOPS to allocated storage is 500 for all supported DB engines.

• If you're using storage autoscaling, the same ratios between IOPS and maximum storage
threshold (in GiB) also apply.

For more information on storage autoscaling, see Managing capacity automatically with Amazon
RDS storage autoscaling.

gp2 storage (previous generation)

When your applications don't need high storage performance, you can use General Purpose SSD
gp2 storage. Baseline I/O performance for gp2 storage is 3 IOPS for each GiB, with a minimum
of 100 IOPS. This relationship means that larger volumes have better performance. For example,
baseline performance for one 100 GiB volume is 300 IOPS. Baseline performance for one 1,000 GiB
volume is 3,000 IOPS.

Individual gp2 volumes below 1,000 GiB in size also have the ability to burst to 3,000 IOPS for
extended periods of time. Volume I/O credit balance determines burst performance. For a more
detailed description of how baseline performance and I/O credit balance affect performance, see
the post Understanding burst vs. baseline performance with Amazon RDS and gp2 on the AWS
Database Blog.

General Purpose storage 167

https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/blogs/database/understanding-burst-vs-baseline-performance-with-amazon-rds-and-gp2/

Amazon Relational Database Service User Guide

Many workloads never deplete the burst balance. However, some workloads can exhaust the
3,000 IOPS burst storage credit balance, so plan your storage capacity to meet the needs of your
workloads.

For gp2 volumes larger than 4,000 GiB, the baseline performance is greater than the burst
performance. For such volumes, burst is irrelevant because the baseline performance is better than
the 3,000 IOPS burst performance. However, for DB instances of certain engines and sizes, storage
is striped across four volumes providing four times the baseline throughput, and four times the
burst IOPS of a single volume.

Storage performance for gp2 volumes of various storage sizes on Amazon RDS DB engines is
shown in the following table.

DB engine RDS storage
size

Range of
baseline IOPS

Range of
baseline
throughput

Burst IOPS

MariaDB,
MySQL, and
PostgreSQL

5–399 GiB¹ 100-1197 IOPS 128-250 MiB/s 3,000

MariaDB,
MySQL, and
PostgreSQL

400–1,335 GiB 1,200-4,005
IOPS

512-1,000 MiB/s 12,000

MariaDB,
MySQL, and
PostgreSQL

1,336–3,999 GiB 4008-11,997
IOPS

1,000 MiB/s 12,000

MariaDB,
MySQL, and
PostgreSQL

4,000–65,536
GiB

12,000-64,000
IOPS

1,000 MiB/s N/A²

Oracle 20–199 GiB 100-597 IOPS 128-250 MiB/s 3,000

Oracle 200–1,335 GiB 600-4,005 IOPS 512-1,000 MiB/s 12,000

Oracle 1,336–3,999 GiB 4008-11,997
IOPS

1,000 MiB/s 12,000

General Purpose storage 168

Amazon Relational Database Service User Guide

DB engine RDS storage
size

Range of
baseline IOPS

Range of
baseline
throughput

Burst IOPS

Oracle 4,000–65,536
GiB

12,000-64,000
IOPS

1,000 MiB/s N/A²

SQL Server 20–333 GiB 100-999 IOPS 128-250 MiB/s 3,000

SQL Server 334–999 GiB 1,002-2,997
IOPS

250 MiB/s 3,000

SQL Server 1,000–16,384
GiB

3,000-16,000
IOPS

250 MiB/s N/A²

Note

¹ Using the AWS Management Console, you can create DB instances with a minimum
storage size of 5 GiB in the Free tier for the db.t3.micro and db.t4g.micro DB instance
classes. Otherwise, the minimum storage size is 20 GiB. This limitation doesn't apply to the
AWS CLI and RDS API.
² The baseline performance of the volume exceeds the maximum burst performance.

Performance characteristics of solid-state drive (SSD) storage types

The following table describes use cases and per-volume performance characteristics for the SSD
storage volumes used by Amazon RDS.

Characteristic Provisioned
IOPS (io2 Block
Express)

Provisioned
IOPS (io1)

General
Purpose (gp3)

General
Purpose (gp2)

Description Highest
performance
within the RDS
storage portfolio

Consisten
t storage
performan
ce (IOPS,

Flexibility in
provisioning
storage, IOPS,

Provides
burstable IOPS

SSD performance characteristics 169

Amazon Relational Database Service User Guide

Characteristic Provisioned
IOPS (io2 Block
Express)

Provisioned
IOPS (io1)

General
Purpose (gp3)

General
Purpose (gp2)

(IOPS, throughpu
t, latency)

Designed for
latency-sensitive,
transactional
workloads

throughput,
latency)

Designed
for latency-
sensitive,
transactional
workloads

and throughput
independently

Balances price
performance for
a wide variety
of transactional
workloads

Balances price
performance for
a wide variety
of transactional
workloads

Use cases Business-critical
transactional
workloads that
require sub-milli
second latency
and sustained
IOPS performan
ce up to 256,000
IOPS

Transactional
workloads
that require
sustained IOPS
performance up
to 256,000 IOPS

Broad range
of workloads
running on
medium-si
zed relationa
l databases in
development/
test environme
nts

Broad range
of workloads
running on
medium-si
zed relationa
l databases in
development/
test environme
nts

Latency Sub-milli
second, provided
consistently
99.9% of the time

Single-di
git milliseco
nd, provided
consistently
99.9% of the
time

Single-di
git milliseco
nd, provided
consistently
99% of the time

Single-di
git milliseco
nd, provided
consistently
99% of the time

Volume size 100–65,536 GiB 100–65,536 GiB
(20–16,384 GiB
on RDS for SQL
Server)

20–65,536 GiB
(16,384 GiB on
RDS for SQL
Server)

20–65,536 GiB
(16,384 GiB on
RDS for SQL
Server)

SSD performance characteristics 170

Amazon Relational Database Service User Guide

Characteristic Provisioned
IOPS (io2 Block
Express)

Provisioned
IOPS (io1)

General
Purpose (gp3)

General
Purpose (gp2)

Maximum IOPS 256,000 256,000 (64,000
on RDS for SQL
Server)

64,000 (16,000
on RDS for SQL
Server)

64,000 (16,000
on RDS for SQL
Server)

Note

You can't
provision
IOPS
directly
on gp2
storage.
IOPS
varies
with the
allocated
storage
size.

SSD performance characteristics 171

Amazon Relational Database Service User Guide

Characteristic Provisioned
IOPS (io2 Block
Express)

Provisioned
IOPS (io1)

General
Purpose (gp3)

General
Purpose (gp2)

Maximum
throughput

Scales based on
Provisioned IOPS
up to 4,000 MB/s

Throughput scales
proportionally up
to 0.256 MiB/s
per provisioned
IOPS. Maximum
throughput of
4,000 MiB/s can
be achieved at
256,000 IOPS
with a 16-KiB I/
O size and 16,000
IOPS or higher
with a 256-KiB I/
O size.

For instances
not based on
the AWS Nitro
System, maximum
throughput of
2,000 MiB/s can
be achieved at
128,000 IOPS
with a 16-KiB I/O
size.

Scales based
on Provision
ed IOPS up to
4,000 MB/s

Provision
additional
throughput up
to 4,000 MB/
s (1000 MB/s
on RDS for SQL
Server)

1000 MB/s (250
MB/s on RDS for
SQL Server)

AWS CLI and
RDS API name

io2 io1 gp3 gp2

SSD performance characteristics 172

Amazon Relational Database Service User Guide

Automatic striping across SSD volumes

When you select General Purpose SSD or Provisioned IOPS SSD, depending on the engine selected
and the amount of storage requested, Amazon RDS automatically stripes across multiple volumes
to enhance performance, as shown in the following table.

Database engine Amazon RDS
storage size

Number of volumes provisioned

Db2 Less than 400 GiB 1

Db2 400–65,536 GiB 4

MariaDB, MySQL, and
PostgreSQL

Less than 400 GiB 1

MariaDB, MySQL, and
PostgreSQL

400–65,536 GiB 4

Oracle Less than 200 GiB 1

Oracle 200–65,536 GiB 4

SQL Server Any 1

Performance impact when you modify an SSD volume

When you modify a General Purpose SSD or Provisioned IOPS SSD volume, it goes through a
sequence of states. While the volume is in the optimizing state, your volume performance is
between the source and target configuration specifications. Transitional volume performance will
be no less than the lower of the two specifications.

When you modify an instance’s storage so that it goes from one volume to four volumes, or when
you modify an instance using magnetic storage, Amazon RDS doesn't use the Elastic Volumes
feature. Instead, Amazon RDS provisions new volumes and transparently moves the data from
the old volume to the new volumes. This operation consumes a significant amount of IOPS and
throughput of both the old and new volumes. Depending on the size of the volume and the
amount of database workload present during the modification, this operation can consume a high

SSD performance characteristics 173

Amazon Relational Database Service User Guide

amount of IOPS, significantly increase I/O latency, and take several hours to complete, while the
RDS instance remains in the Modifying state.

Baseline and maximum IOPS rates for EBS-optimized instances

EBS-optimized instances have a baseline and maximum IOPS rate. The maximum IOPS rate is
enforced at the DB instance level. A set of EBS volumes that combine to have an IOPS rate that is
higher than the maximum can't exceed the instance-level threshold. For example, if the maximum
IOPS for a particular DB instance class is 40,000, and you attach four 64,000 IOPS EBS volumes,
the maximum IOPS is 40,000 rather than 256,000. For the IOPS maximum specific to each EC2
instance type, see Supported instance types in the Amazon EC2 User Guide for Linux Instances.

Magnetic storage (deprecated)

Amazon RDS no longer supports magnetic storage. We recommend that you use General Purpose
SSD or Provisioned IOPS SSD for your storage needs.

Dedicated log volume (DLV)

You can use a dedicated log volume (DLV) for a DB instance that uses Provisioned IOPS (PIOPS)
storage by using the Amazon RDS console, AWS CLI, or Amazon RDS API. A DLV moves PostgreSQL
database transaction logs and MySQL/MariaDB redo logs and binary logs to a storage volume
that's separate from the volume containing the database tables. A DLV makes transaction write
logging more efficient and consistent. DLVs are ideal for databases with large allocated storage,
high I/O per second (IOPS) requirements, or latency-sensitive workloads.

DLVs are supported for PIOPS storage (io1 and io2 Block Express), and are created with a fixed size
of 1,024 GiB and 3,000 Provisioned IOPS.

Note

DLVs aren't supported for General Purpose storage (gp2 and gp3).

Amazon RDS supports DLVs in all AWS Regions for the following versions:

• MariaDB 10.6.7 and higher 10 versions

• MySQL 8.0.28 and higher 8.0 versions, MySQL 8.4.3 and higher 8.4 versions

Magnetic storage (deprecated) 174

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#ebs-optimization-support

Amazon Relational Database Service User Guide

• PostgreSQL 13.10 and higher 13 versions, 14.7 and higher 14 versions, 15.2 and higher 15
versions, and 16.1 and higher 16 versions

RDS supports DLVs with Multi-AZ deployments. When you modify or create a Multi-AZ instance, A
DLV is created for both the primary and the secondary.

RDS supports DLVs with read replicas. If the primary DB instance has a DLV enabled, all read
replicas created after enabling DLV will also have a DLV. Any read replicas created before the switch
to DLV will not have it enabled unless explicitly modified to do so. We recommend all read replicas
attached to a primary instance before DLV was enabled also be manually modified to have A DLV.

After you modify the DLV setting for a DB instance, the DB instance must be rebooted.

For information on enabling a DLV, see Using a dedicated log volume (DLV).

Monitoring database performance

Amazon RDS provides several metrics that you can use to determine how your DB instance is
performing. You can view the metrics on the summary page for your instance in Amazon RDS
Management Console. You can also use Amazon CloudWatch to monitor these metrics. For more
information, see Viewing metrics in the Amazon RDS console. Enhanced Monitoring provides more
detailed I/O metrics; for more information, see Monitoring OS metrics with Enhanced Monitoring.

The following metrics are useful for monitoring performance for your DB instance:

• DiskQueueDepth – The number of I/O requests in the queue waiting to be serviced. These are
I/O requests that have been submitted by the application but have not been sent to the device
because the device is busy servicing other I/O requests. Time spent waiting in the queue is a
component of latency and service time (not available as a metric). This metric is reported as the
average queue depth for a given time interval. Amazon RDS reports queue depth at 1-minute
intervals. Typical values for queue depth range from zero to several hundred.

• EBSByteBalance% – The percentage of throughput credits remaining in the burst bucket of
your RDS database. This metric is available for basic monitoring only. The metric value is based
on the throughput of all volumes, including the root volume, rather than on only those volumes
containing database files.

When this metric approaches zero, it means that your DB instance is running out of computing
capacity. If this happens regularly, consider upgrading to a larger instance class size, for example
from db.r6g.large to db.r6g.xlarge. For more information, see DB instance class.

Monitoring database performance 175

Amazon Relational Database Service User Guide

• ReadIOPS and WriteIOPS – The number of I/O operations completed each second. This metric
is reported as the average IOPS for a given time interval. Amazon RDS reports read and write
IOPS separately at 1-minute intervals. TotalIOPS is the sum of the read and write IOPS. Typical
values for IOPS range from zero to tens of thousands per second.

If your TotalIOPS values regularly approach the Provisioned IOPS value that you have set for
your DB instance, then consider increasing the Provisioned IOPS (io1, io2 Block Express, and gp3
storage types).

Measured IOPS values are independent of the size of the individual I/O operation. This means
that when you measure I/O performance, make sure to look at the throughput of the instance,
not simply the number of I/O operations.

• ReadLatency and WriteLatency – The elapsed time between the submission of an I/O
request and its completion. This metric is reported as the average latency for a given time
interval. Amazon RDS reports read and write latency separately at 1-minute intervals. Typical
values for latency are in milliseconds (ms).

• ReadThroughput and WriteThroughput – The number of bytes each second that are
transferred to or from disk. This metric is reported as the average throughput for a given time
interval. Amazon RDS reports read and write throughput separately at 1-minute intervals
using units of bytes per second (B/s). Typical values for throughput range from zero to the I/O
channel's maximum bandwidth.

If your throughput values regularly approach the maximum throughput for your DB instance,
then consider provisioning more storage throughput if you're using the gp3 storage type.

Factors that affect database performance

System activities, database workload, and DB instance class can affect database performance.

Topics

• System activities

• Database workload

• DB instance class

Factors that affect database performance 176

Amazon Relational Database Service User Guide

System activities

The following system-related activities consume I/O capacity and might reduce DB instance
performance while in progress:

• Multi-AZ standby creation

• Read replica creation

• Changing storage types

Database workload

In some cases, your database or application design results in concurrency issues, locking, or other
forms of database contention. In these cases, you might not be able to use all the provisioned
bandwidth directly. In addition, you might encounter the following workload-related situations:

• The throughput limit of the underlying instance type is reached.

• Queue depth is consistently less than 1 because your application isn't driving enough I/O
operations.

• You experience query contention in the database even though some I/O capacity is unused.

In some cases, there isn't a system resource that is at or near a limit, and adding threads doesn't
increase the database transaction rate. In such cases, the bottleneck is most likely contention in
the database. The most common forms are row lock and index page lock contention, but there are
many other possibilities. If this is your situation, seek the advice of a database performance tuning
expert.

DB instance class

To get the most performance out of your Amazon RDS DB instance, choose a current generation
instance type with enough bandwidth to support your storage type. For example, you can choose
Amazon EBS–optimized instances and instances with 10-gigabit network connectivity.

Important

Depending on the instance class you're using, you might see lower IOPS performance
than the maximum that you can provision with RDS. For specific information on IOPS
performance for DB instance classes, see Amazon EBS–optimized instances in the Amazon

Factors that affect database performance 177

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html

Amazon Relational Database Service User Guide

EC2 User Guide. We recommend that you determine the maximum IOPS for the instance
class before setting a Provisioned IOPS value for your DB instance.

We encourage you to use the latest generation of instances to get the best performance. Previous
generation DB instances can also have lower maximum storage.

Some older 32-bit file systems might have lower storage capacities. To determine the storage
capacity of your DB instance, you can use the describe-valid-db-instance-modifications AWS CLI
command.

The following list shows the maximum storage that most DB instance classes can scale to for each
database engine:

• Db2 – 64 TiB

• MariaDB – 64 TiB

• Microsoft SQL Server – 64 TiB

• MySQL – 64 TiB

• Oracle – 64 TiB

• PostgreSQL – 64 TiB

The following table shows some exceptions for maximum storage (in TiB). All RDS for Microsoft
SQL Server DB instances apart from io2 Block Express storage have a maximum storage of 16 TiB,
so there are no entries for SQL Server.

Instance class Db2 MariaDB MySQL Oracle PostgreSQ
L

db.m3 – standard instance classes

db.t4g – burstable-performance instance classes

db.t4g.medium N/A 16 16 N/A 32

db.t4g.small N/A 16 16 N/A 16

db.t4g.micro N/A 6 6 N/A 6

Factors that affect database performance 178

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html

Amazon Relational Database Service User Guide

Instance class Db2 MariaDB MySQL Oracle PostgreSQ
L

db.t3 – burstable-performance instance classes

db.t3.medium 32 16 16 32 32

db.t3.small 32 16 16 32 16

db.t3.micro N/A 6 6 32 6

db.t2 – burstable-performance instance classes

For more details about all instance classes supported, see Previous generation DB instances.

Factors that affect database performance 179

https://aws.amazon.com/rds/previous-generation/

Amazon Relational Database Service User Guide

Regions, Availability Zones, and Local Zones

Amazon cloud computing resources are hosted in multiple locations world-wide. These locations
are composed of AWS Regions, Availability Zones, and Local Zones. Each AWS Region is a separate
geographic area. Each AWS Region has multiple, isolated locations known as Availability Zones.

Note

For information about finding the Availability Zones for an AWS Region, see Describe your
Availability Zones in the Amazon EC2 documentation.

By using Local Zones, you can place resources, such as compute and storage, in multiple locations
closer to your users. Amazon RDS enables you to place resources, such as DB instances, and data in
multiple locations. Resources aren't replicated across AWS Regions unless you do so specifically.

Amazon operates state-of-the-art, highly-available data centers. Although rare, failures can occur
that affect the availability of DB instances that are in the same location. If you host all your DB
instances in one location that is affected by such a failure, none of your DB instances will be
available.

It is important to remember that each AWS Region is completely independent. Any Amazon
RDS activity you initiate (for example, creating database instances or listing available database

Regions, Availability Zones, and Local Zones 180

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#availability-zones-describe
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#availability-zones-describe

Amazon Relational Database Service User Guide

instances) runs only in your current default AWS Region. The default AWS Region can be changed
in the console, or by setting the AWS_DEFAULT_REGION environment variable. Or it can be
overridden by using the --region parameter with the AWS Command Line Interface (AWS CLI).
For more information, see Configuring the AWS Command Line Interface, specifically the sections
about environment variables and command line options.

Amazon RDS supports special AWS Regions called AWS GovCloud (US). These are designed to
allow US government agencies and customers to move more sensitive workloads into the cloud.
The AWS GovCloud (US) Regions address the US government's specific regulatory and compliance
requirements. For more information, see What is AWS GovCloud (US)?

To create or work with an Amazon RDS DB instance in a specific AWS Region, use the corresponding
regional service endpoint.

AWS Regions

Each AWS Region is designed to be isolated from the other AWS Regions. This design achieves the
greatest possible fault tolerance and stability.

When you view your resources, you see only the resources that are tied to the AWS Region that you
specified. This is because AWS Regions are isolated from each other, and we don't automatically
replicate resources across AWS Regions.

Region availability

The following table shows the AWS Regions where Amazon RDS is currently available and the
endpoint for each Region.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com

rds-fips.us-east-2.api.aws

rds.us-east-2.api.aws

rds-fips.us-east-2.amazonaws.com

HTTPS

HTTPS

HTTPS

HTTPS

AWS Regions 181

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-region
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/whatis.html

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

US
East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com

rds-fips.us-east-1.api.aws

rds-fips.us-east-1.amazonaws.com

rds.us-east-1.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

US
West (N.
Californi
a)

us-
west-1

rds.us-west-1.amazonaws.com

rds.us-west-1.api.aws

rds-fips.us-west-1.amazonaws.com

rds-fips.us-west-1.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

US West
(Oregon)

us-
west-2

rds.us-west-2.amazonaws.com

rds-fips.us-west-2.amazonaws.com

rds.us-west-2.api.aws

rds-fips.us-west-2.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

Africa
(Cape
Town)

af-south-
1

rds.af-south-1.amazonaws.com

rds.af-south-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Hong
Kong)

ap-
east-1

rds.ap-east-1.amazonaws.com

rds.ap-east-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Hyderaba
d)

ap-
south-2

rds.ap-south-2.amazonaws.com

rds.ap-south-2.api.aws

HTTPS

HTTPS

AWS Regions 182

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Jakarta)

ap-
southe
ast-3

rds.ap-southeast-3.amazonaws.com

rds.ap-southeast-3.api.aws

HTTPS

HTTPS

Asia
Pacific
(Malaysia
)

ap-
southe
ast-5

rds.ap-southeast-5.amazonaws.com HTTPS

Asia
Pacific
(Melbourn
e)

ap-
southe
ast-4

rds.ap-southeast-4.amazonaws.com

rds.ap-southeast-4.api.aws

HTTPS

HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com

rds.ap-south-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Osaka)

ap-
northe
ast-3

rds.ap-northeast-3.amazonaws.com

rds.ap-northeast-3.api.aws

HTTPS

HTTPS

Asia
Pacific
(Seoul)

ap-
northe
ast-2

rds.ap-northeast-2.amazonaws.com

rds.ap-northeast-2.api.aws

HTTPS

HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

rds.ap-southeast-1.amazonaws.com

rds.ap-southeast-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

rds.ap-southeast-2.amazonaws.com

rds.ap-southeast-2.api.aws

HTTPS

HTTPS

AWS Regions 183

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Thailand
)

ap-
southe
ast-7

rds.ap-southeast-7.amazonaws.com HTTPS

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

rds.ap-northeast-1.amazonaws.com

rds.ap-northeast-1.api.aws

HTTPS

HTTPS

Canada
(Central)

ca-centra
l-1

rds.ca-central-1.amazonaws.com

rds.ca-central-1.api.aws

rds-fips.ca-central-1.api.aws

rds-fips.ca-central-1.amazonaws.com

HTTPS

HTTPS

HTTPS

HTTPS

Canada
West
(Calgary)

ca-
west-1

rds.ca-west-1.amazonaws.com

rds-fips.ca-west-1.amazonaws.com

HTTPS

HTTPS

Europe
(Frankfur
t)

eu-
central-1

rds.eu-central-1.amazonaws.com

rds.eu-central-1.api.aws

HTTPS

HTTPS

Europe
(Ireland)

eu-
west-1

rds.eu-west-1.amazonaws.com

rds.eu-west-1.api.aws

HTTPS

HTTPS

Europe
(London)

eu-
west-2

rds.eu-west-2.amazonaws.com

rds.eu-west-2.api.aws

HTTPS

HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com

rds.eu-south-1.api.aws

HTTPS

HTTPS

AWS Regions 184

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

Europe
(Paris)

eu-
west-3

rds.eu-west-3.amazonaws.com

rds.eu-west-3.api.aws

HTTPS

HTTPS

Europe
(Spain)

eu-
south-2

rds.eu-south-2.amazonaws.com

rds.eu-south-2.api.aws

HTTPS

HTTPS

Europe
(Stockhol
m)

eu-
north-1

rds.eu-north-1.amazonaws.com

rds.eu-north-1.api.aws

HTTPS

HTTPS

Europe
(Zurich)

eu-
central-2

rds.eu-central-2.amazonaws.com

rds.eu-central-2.api.aws

HTTPS

HTTPS

Israel
(Tel Aviv)

il-centra
l-1

rds.il-central-1.amazonaws.com

rds.il-central-1.api.aws

HTTPS

HTTPS

Mexico
(Central)

mx-
central-1

rds.mx-central-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com

rds.me-south-1.api.aws

HTTPS

HTTPS

Middle
East
(UAE)

me-
central-1

rds.me-central-1.amazonaws.com

rds.me-central-1.api.aws

HTTPS

HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com

rds.sa-east-1.api.aws

HTTPS

HTTPS

AWS Regions 185

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com

rds.us-gov-east-1.api.aws

HTTPS

HTTPS

AWS
GovCloud
(US-
West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com

rds.us-gov-west-1.api.aws

HTTPS

HTTPS

If you do not explicitly specify an endpoint, the US West (Oregon) endpoint is the default.

When you work with a DB instance using the AWS CLI or API operations, make sure that you specify
its regional endpoint.

Availability Zones

When you create a DB instance, you can choose an Availability Zone or have Amazon RDS choose
one for you randomly. An Availability Zone is represented by an AWS Region code followed by a
letter identifier (for example, us-east-1a).

Use the describe-availability-zones Amazon EC2 command as follows to describe the Availability
Zones within the specified Region that are enabled for your account.

aws ec2 describe-availability-zones --region region-name

For example, to describe the Availability Zones within the US East (N. Virginia) Region (us-east-1)
that are enabled for your account, run the following command:

aws ec2 describe-availability-zones --region us-east-1

You can't choose the Availability Zones for the primary and secondary DB instances in a Multi-AZ
DB deployment. Amazon RDS chooses them for you randomly. For more information about Multi-
AZ deployments, see Configuring and managing a Multi-AZ deployment for Amazon RDS.

Availability Zones 186

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-availability-zones.html

Amazon Relational Database Service User Guide

Note

Random selection of Availability Zones by RDS doesn't guarantee an even distribution of
DB instances among Availability Zones within a single account or DB subnet group. You
can request a specific AZ when you create or modify a Single-AZ instance, and you can use
more-specific DB subnet groups for Multi-AZ instances. For more information, see Creating
an Amazon RDS DB instance and Modifying an Amazon RDS DB instance.

Local Zones

A Local Zone is an extension of an AWS Region that is geographically close to your users. You can
extend any VPC from the parent AWS Region into Local Zones. To do so, create a new subnet and
assign it to the AWS Local Zone. When you create a subnet in a Local Zone, your VPC is extended to
that Local Zone. The subnet in the Local Zone operates the same as other subnets in your VPC.

When you create a DB instance, you can choose a subnet in a Local Zone. Local Zones have their
own connections to the internet and support AWS Direct Connect. Thus, resources created in a
Local Zone can serve local users with very low-latency communications. For more information, see
AWS Local Zones.

A Local Zone is represented by an AWS Region code followed by an identifier that indicates the
location, for example us-west-2-lax-1a.

Note

A Local Zone can't be included in a Multi-AZ deployment.

To use a Local Zone

1. Enable the Local Zone in the Amazon EC2 console.

For more information, see Enabling Local Zones in the Amazon EC2 User Guide.

2. Create a subnet in the Local Zone.

For more information, see Creating a subnet in your VPC in the Amazon VPC User Guide.

3. Create a DB subnet group in the Local Zone.

Local Zones 187

https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#enable-zone-group
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet

Amazon Relational Database Service User Guide

When you create a DB subnet group, choose the Availability Zone group for the Local Zone.

For more information, see Creating a DB instance in a VPC.

4. Create a DB instance that uses the DB subnet group in the Local Zone.

For more information, see Creating an Amazon RDS DB instance.

Important

Currently, the only AWS Local Zone where Amazon RDS is available is Los Angeles in the US
West (Oregon) Region.

Local Zones 188

Amazon Relational Database Service User Guide

Supported features in Amazon RDS by AWS Region and DB
engine

Support for Amazon RDS features and options varies across AWS Regions and specific versions of
each DB engine. To identify RDS DB engine version support and availability in a given AWS Region,
you can use the following sections.

Amazon RDS features are different from engine-native features and options. For more information
on engine-native features and options, see Engine-native features.

Supported Regions and DB engines

• Table conventions

• Feature quick reference

• Supported Regions and DB engines for Amazon RDS Blue/Green Deployments

• Supported Regions and DB engines for cross-Region automated backups in Amazon RDS

• Supported Regions and DB engines for cross-Region read replicas in Amazon RDS

• Supported Regions and DB engines for database activity streams in Amazon RDS

• Supported Regions and DB engines for dual-stack mode in Amazon RDS

• Supported Regions and DB engines for exporting snapshots to S3 in Amazon RDS

• Supported Regions and DB engines for IAM database authentication in Amazon RDS

• Supported Regions and DB engines for Kerberos authentication in Amazon RDS

• Supported Regions and DB engines for Multi-AZ DB clusters in Amazon RDS

• Supported Regions and DB engines for Performance Insights in Amazon RDS

• Supported Regions and DB engines for RDS Custom

• Supported Regions and DB engines for Amazon RDS Proxy

• Supported Regions and DB engines for the Secrets Manager integration with Amazon RDS

• Supported Regions and DB engines for Amazon RDS zero-ETL integrations with Amazon Redshift

• Engine-native features in Amazon RDS

Table conventions

The tables in the feature sections use these patterns to specify version numbers and level of
availability:

Supported Amazon RDS features by Region and engine 189

Amazon Relational Database Service User Guide

• Version x.y – The specific version alone is available.

• Version x.y and higher – The specified version and all higher minor versions of its major version
are supported. For example, "version 10.11 and higher" means that versions 10.11, 10.11.1, and
10.12 are available.

Feature quick reference

The following quick reference table lists each feature and available RDS DB engine. Region and
specific version availability appears in the later feature sections.

FeatureRDS for
Db2

RDS for
MariaDB

RDS for
MySQL

RDS for
Oracle

RDS for
PostgreSQL

RDS for
SQL Server

Blue/
Gree
n
Deploymen
ts

Not
available

Available Available Not
available

Available Not
available

Cross-
Reg
ion
automated
backups

Available Available Available Available Available Available

Cross-
Reg
ion
read
replicas

Not
available

Available Available Available Available Available

Database
activity
streams

Not
available

Not
available

Not
available

Available Not
available

Available

Dual-
stac

Not
available

Available Available Available Available Available

Feature quick reference 190

Amazon Relational Database Service User Guide

FeatureRDS for
Db2

RDS for
MariaDB

RDS for
MySQL

RDS for
Oracle

RDS for
PostgreSQL

RDS for
SQL Server

k
mode

Export
Snapshot
to
Amazon
S3

Not
available

Available Available Not
available

Available Not
available

AWS
Identity
and
Access
Managemen
t
(IAM)
database
authentic
ation

Not
available

Available Available Not
available

Available Not
available

Kerberos
authentic
ation

Available Not
available

Available Available Available Available

Multi-
AZ
DB
clusters

Not
available

Not
available

Available Not
available

Available Not
available

Performan
ce
Insights

Not
available

Available Available Available Available Available

RDS
Custom

Not
available

Not
available

Not
available

Available Not
available

Available

Feature quick reference 191

Amazon Relational Database Service User Guide

FeatureRDS for
Db2

RDS for
MariaDB

RDS for
MySQL

RDS for
Oracle

RDS for
PostgreSQL

RDS for
SQL Server

RDS
Proxy

Not
available

Available Available Not
available

Available Available

Secrets
Manager
integrati
on

Available Available Available Available Available Available

Supported Regions and DB engines for Amazon RDS Blue/Green
Deployments

A blue/green deployment copies a production database environment in a separate, synchronized
staging environment. By using Amazon RDS Blue/Green Deployments, you can make changes
to the database in the staging environment without affecting the production environment. For
example, you can upgrade the major or minor DB engine version, change database parameters,
or make schema changes in the staging environment. When you are ready, you can promote the
staging environment to be the new production database environment. For more information, see
Using Amazon RDS Blue/Green Deployments for database updates.

Blue/green deployments are supported in all AWS Regions.

Blue/green deployments are not supported with the following engines:

• RDS for Db2

• RDS for SQL Server

• RDS for Oracle

Topics

• Blue/green deployments with RDS for MariaDB

• Blue/green deployments with RDS for MySQL

• Blue/green deployments with RDS for PostgreSQL

Blue/Green Deployments 192

Amazon Relational Database Service User Guide

Blue/green deployments with RDS for MariaDB

For RDS for MariaDB, blue/green deployments are supported for the following versions:

• RDS for MariaDB 11.4 (All available versions)

• RDS for MariaDB 10.2 and higher 10 versions

Blue/green deployments with RDS for MySQL

For RDS for MySQL, blue/green deployments are supported for the following versions:

• RDS for MySQL 8.4 (All available versions)

• RDS for MySQL 8.0 (All available versions)

• RDS for MySQL 5.7 (All available versions)

Blue/green deployments with RDS for PostgreSQL

For RDS for PostgreSQL, blue/green deployments are supported for version 11.1 and all higher
major and minor versions.

Note

Under certain conditions, RDS for PostgreSQL uses logical replication instead of physical
replication to keep the green environment in sync with the blue environment. For more
information, see the section called “PostgreSQL replication methods”.

Supported Regions and DB engines for cross-Region automated
backups in Amazon RDS

By using backup replication in Amazon RDS, you can configure your RDS DB instance to replicate
snapshots and transaction logs to a destination Region. When backup replication is configured for
a DB instance, RDS starts a cross-Region copy of all snapshots and transaction logs when they're
ready. For more information, see Replicating automated backups to another AWS Region.

For information about AWS Regions where backup replication is available, see Replicating
automated backups to another AWS Region.

Cross-Region automated backups 193

Amazon Relational Database Service User Guide

Topics

• Backup replication with RDS for Db2

• Backup replication with RDS for MariaDB

• Backup replication with RDS for MySQL

• Backup replication with RDS for Oracle

• Backup replication with RDS for PostgreSQL

• Backup replication with RDS for SQL Server

Backup replication with RDS for Db2

Amazon RDS supports backup replication for all currently available versions of RDS for Db2.

Backup replication with RDS for MariaDB

Amazon RDS supports backup replication for all currently available versions of RDS for MariaDB.

Backup replication with RDS for MySQL

Amazon RDS supports backup replication for all currently available versions of RDS for MySQL.

Backup replication with RDS for Oracle

Amazon RDS supports backup replication for all currently available versions of RDS for Oracle.

Backup replication with RDS for PostgreSQL

Amazon RDS supports backup replication for all currently available versions of RDS for PostgreSQL.

Backup replication with RDS for SQL Server

Amazon RDS supports backup replication for all currently available versions of RDS for SQL Server.

Supported Regions and DB engines for cross-Region read replicas in
Amazon RDS

By using cross-Region read replicas in Amazon RDS, you can create a MariaDB, MySQL, Oracle,
PostgreSQL, or SQL Server read replica in a different Region from the source DB instance. For
more information about cross-Region read replicas, including source and destination Region
considerations, see Creating a read replica in a different AWS Region.

Cross-Region read replicas 194

Amazon Relational Database Service User Guide

Cross-Region read replicas are not available for the following engines:

• RDS for Db2

Topics

• Cross-Region read replicas with RDS for MariaDB

• Cross-Region read replicas with RDS for MySQL

• Cross-Region read replicas with RDS for Oracle

• Cross-Region read replicas with RDS for PostgreSQL

• Cross-Region read replicas with RDS for SQL Server

Cross-Region read replicas with RDS for MariaDB

Cross-Region read replicas with RDS for MariaDB are available in all Regions for the following
versions:

• RDS for MariaDB 11.4 (All available versions)

• RDS for MariaDB 10.11 (All available versions)

• RDS for MariaDB 10.6 (All available versions)

• RDS for MariaDB 10.5 (All available versions)

• RDS for MariaDB 10.4 (All available versions)

Cross-Region read replicas with RDS for MySQL

Cross-Region read replicas with RDS for MySQL are available in all Regions for the following
versions:

• RDS for MySQL 8.4 (All available versions)

• RDS for MySQL 8.0 (All available versions)

• RDS for MySQL 5.7 (All available versions)

Cross-Region read replicas with RDS for Oracle

Cross-Region read replicas for RDS for Oracle are available in all AWS Regions for all supported
database versions using Enterprise Edition. Replicas are supported only in non-CDBs and in the

Cross-Region read replicas 195

Amazon Relational Database Service User Guide

single-tenant configuration of the CDB architecture. Cross-Region read replicas aren't supported in
the multi-tenant configuration of the CDB architecture.

For more information on additional requirements for cross-Region read replicas with RDS for
Oracle, see Requirements and considerations for RDS for Oracle replicas.

Cross-Region read replicas with RDS for PostgreSQL

Cross-Region read replicas with RDS for PostgreSQL are available in all Regions for the following
versions:

• RDS for PostgreSQL 17 (All available versions)

• RDS for PostgreSQL 16 (All available versions)

• RDS for PostgreSQL 15 (All available versions)

• RDS for PostgreSQL 14 (All available versions)

• RDS for PostgreSQL 13 (All available versions)

• RDS for PostgreSQL 12 (All available versions)

• RDS for PostgreSQL 11 (All available versions)

• RDS for PostgreSQL 10 (All available versions)

Cross-Region read replicas with RDS for SQL Server

Cross-Region read replicas with RDS for SQL Server are available in all Regions except the
following:

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Hyderabad)

• Asia Pacific (Jakarta)

• Asia Pacific (Melbourne)

• Canada West (Calgary)

• Europe (Milan)

• Europe (Spain)

• Europe (Zurich)

Cross-Region read replicas 196

Amazon Relational Database Service User Guide

• Israel (Tel Aviv)

• Middle East (Bahrain)

• Middle East (UAE)

Cross-Region read replicas with RDS for SQL Server are available for the following versions using
Microsoft SQL Server Enterprise Edition:

• RDS for SQL Server 2022

• RDS for SQL Server 2019 (Version 15.00.4073.23 and higher)

• RDS for SQL Server 2017 (Version 14.00.3281.6 and higher)

• RDS for SQL Server 2016 (Version 13.00.6300.2 and higher)

Supported Regions and DB engines for database activity streams in
Amazon RDS

By using database activity streams in Amazon RDS, you can monitor and set alarms for auditing
activity in your Oracle database and SQL Server database. For more information, see Overview of
Database Activity Streams.

Database activity streams aren't available with the following engines:

• RDS for Db2

• RDS for MariaDB

• RDS for MySQL

• RDS for PostgreSQL

Topics

• Database activity streams with RDS for Oracle

• Database activity streams with RDS for SQL Server

Database activity streams with RDS for Oracle

The following Regions and engine versions are available for database activity streams with RDS for
Oracle.

Database activity streams 197

Amazon Relational Database Service User Guide

For more information on additional requirements for database activity streams with RDS for
Oracle, see Overview of Database Activity Streams.

Region RDS for Oracle 21c RDS for Oracle 19c

US East (N. Virginia) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

US East (Ohio) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

US West (N. California) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

US West (Oregon) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Africa (Cape Town) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Hong Kong) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Hyderabad) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using

Database activity streams 198

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Jakarta) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Malaysia) Not available Not available

Asia Pacific (Melbourne) Not available Not available

Asia Pacific (Mumbai) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Osaka) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Seoul) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Singapore) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Asia Pacific (Sydney) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Database activity streams 199

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

Asia Pacific (Tokyo) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Canada (Central) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Canada West (Calgary) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

China (Beijing) Not available Not available

China (Ningxia) Not available Not available

Europe (Frankfurt) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Europe (Ireland) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Europe (London) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Database activity streams 200

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

Europe (Milan) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Europe (Paris) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Europe (Spain) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Europe (Stockholm) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Europe (Zurich) Not available Not available

Asia Pacific (Melbourne) Not available Not available

Middle East (Bahrain) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Middle East (UAE) Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

Database activity streams 201

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

South America (São
Paulo)

Not available Oracle Database 19.0.0.0.ru-2019-0
7.rur-2019-07.r1 and higher, using
either Enterprise Edition (EE) or
Standard Edition 2 (SE2)

AWS GovCloud (US-East) Not available Not available

AWS GovCloud (US-West) Not available Not available

Database activity streams with RDS for SQL Server

The following Regions and engine versions are available for database activity streams with RDS for
SQL Server.

For more information on additional requirements for database activity streams with RDS for SQL
Server, see Overview of Database Activity Streams.

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

US East (N. Virginia) All available versions All available versions All available versions

US East (Ohio) All available versions All available versions All available versions

US West (N. Californi
a)

All available versions All available versions All available versions

US West (Oregon) All available versions All available versions All available versions

Africa (Cape Town) All available versions All available versions All available versions

Asia Pacific (Hong
Kong)

All available versions All available versions All available versions

Asia Pacific
(Hyderabad)

All available versions All available versions All available versions

Database activity streams 202

Amazon Relational Database Service User Guide

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

Asia Pacific (Jakarta) All available versions All available versions All available versions

Asia Pacific (Malaysia) Not available Not available Not available

Asia Pacific
(Melbourne)

Not available Not available Not available

Asia Pacific (Mumbai) All available versions All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions All available versions

Asia Pacific (Seoul) All available versions All available versions All available versions

Asia Pacific (Singapor
e)

All available versions All available versions All available versions

Asia Pacific (Sydney) All available versions All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions All available versions

Canada (Central) All available versions All available versions All available versions

Canada West
(Calgary)

All available versions All available versions All available versions

China (Beijing) Not available Not available Not available

China (Ningxia) Not available Not available Not available

Europe (Frankfurt) All available versions All available versions All available versions

Europe (Ireland) All available versions All available versions All available versions

Europe (London) All available versions All available versions All available versions

Europe (Milan) All available versions All available versions All available versions

Europe (Paris) All available versions All available versions All available versions

Database activity streams 203

Amazon Relational Database Service User Guide

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

Europe (Spain) All available versions All available versions All available versions

Europe (Stockholm) All available versions All available versions All available versions

Europe (Zurich) Not available Not available Not available

Israel (Tel Aviv) Not available Not available Not available

Middle East (Bahrain) All available versions All available versions All available versions

Middle East (UAE) All available versions All available versions All available versions

South America (São
Paulo)

All available versions All available versions All available versions

AWS GovCloud (US-
East)

Not available Not available Not available

AWS GovCloud (US-
West)

Not available Not available Not available

Supported Regions and DB engines for dual-stack mode in Amazon RDS

By using dual-stack mode in RDS, resources can communicate with a DB instance over Internet
Protocol version 4 (IPv4), Internet Protocol version 6 (IPv6), or both. For more information, see
Dual-stack mode.

Topics

• Dual-stack mode with RDS for Db2

• Dual-stack mode with RDS for MariaDB

• Dual-stack mode with RDS for MySQL

• Dual-stack mode with RDS for Oracle

• Dual-stack mode with RDS for PostgreSQL

• Dual-stack mode with RDS for SQL Server

Dual-stack mode 204

Amazon Relational Database Service User Guide

Dual-stack mode with RDS for Db2

The following Regions and engine versions are available for dual-stack mode with RDS for Db2.

Region RDS for Db2
11.5

US East (N.
Virginia)

All available
versions

US East
(Ohio)

All available
versions

US West (N.
California)

All available
versions

US West
(Oregon)

All available
versions

Africa (Cape
Town)

All available
versions

Asia Pacific
(Hong Kong)

All available
versions

Asia Pacific
(Hyderabad)

All available
versions

Asia Pacific
(Jakarta)

All available
versions

Asia Pacific
(Malaysia)

Not available

Asia Pacific
(Melbourne)

All available
versions

Asia Pacific
(Mumbai)

All available
versions

Dual-stack mode 205

Amazon Relational Database Service User Guide

Region RDS for Db2
11.5

Asia Pacific
(Osaka)

All available
versions

Asia Pacific
(Seoul)

All available
versions

Asia Pacific
(Singapore)

All available
versions

Asia Pacific
(Sydney)

All available
versions

Asia Pacific
(Tokyo)

All available
versions

Canada
(Central)

All available
versions

Canada West
(Calgary)

Not available

China
(Beijing)

Not available

China
(Ningxia)

Not available

Europe
(Frankfurt)

All available
versions

Europe
(Ireland)

All available
versions

Europe
(London)

All available
versions

Dual-stack mode 206

Amazon Relational Database Service User Guide

Region RDS for Db2
11.5

Europe
(Milan)

All available
versions

Europe
(Paris)

All available
versions

Europe
(Spain)

All available
versions

Europe
(Stockholm)

All available
versions

Europe
(Zurich)

All available
versions

Israel (Tel
Aviv)

Not available

Middle East
(Bahrain)

All available
versions

Middle East
(UAE)

All available
versions

South
America (São
Paulo)

All available
versions

AWS
GovCloud
(US-East)

Not available

AWS
GovCloud
(US-West)

Not available

Dual-stack mode 207

Amazon Relational Database Service User Guide

Dual-stack mode with RDS for MariaDB

The following Regions and engine versions are available for dual-stack mode with RDS for MariaDB.

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

US East (N.
Virginia)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US East
(Ohio)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US West (N.
California)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US West
(Oregon)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Africa (Cape
Town)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Hong Kong)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Hyderabad)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Jakarta)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Malaysia)

Not available Not available Not available Not available Not available

Asia Pacific
(Melbourne)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Mumbai)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Dual-stack mode 208

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

Asia Pacific
(Osaka)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Seoul)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Singapore)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Sydney)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Tokyo)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Canada
(Central)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Canada West
(Calgary)

Not available Not available Not available Not available Not available

China
(Beijing)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

China
(Ningxia)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Frankfurt)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Ireland)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(London)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Dual-stack mode 209

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

Europe
(Milan)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Paris)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Spain)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Stockholm)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Zurich)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Israel (Tel
Aviv)

Not available Not available Not available Not available Not available

Middle East
(Bahrain)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Middle East
(UAE)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

South
America (São
Paulo)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

AWS
GovCloud
(US-East)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

AWS
GovCloud
(US-West)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Dual-stack mode 210

Amazon Relational Database Service User Guide

Dual-stack mode with RDS for MySQL

The following Regions and engine versions are available for dual-stack mode with RDS for MySQL.

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

US East (N. Virginia) All available versions All available versions All available versions

US East (Ohio) All available versions All available versions All available versions

US West (N. Californi
a)

All available versions All available versions All available versions

US West (Oregon) All available versions All available versions All available versions

Africa (Cape Town) All available versions All available versions All available versions

Asia Pacific (Hong
Kong)

All available versions All available versions All available versions

Asia Pacific
(Hyderabad)

All available versions All available versions All available versions

Asia Pacific (Jakarta) All available versions All available versions All available versions

Asia Pacific (Malaysia) Not available Not available Not available

Asia Pacific
(Melbourne)

All available versions All available versions All available versions

Asia Pacific (Mumbai) All available versions All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions All available versions

Asia Pacific (Seoul) All available versions All available versions All available versions

Asia Pacific (Singapor
e)

All available versions All available versions All available versions

Dual-stack mode 211

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

Asia Pacific (Sydney) All available versions All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions All available versions

Canada (Central) All available versions All available versions All available versions

Canada West
(Calgary)

Not available Not available Not available

China (Beijing) All available versions All available versions All available versions

China (Ningxia) All available versions All available versions All available versions

Europe (Frankfurt) All available versions All available versions All available versions

Europe (Ireland) All available versions All available versions All available versions

Europe (London) All available versions All available versions All available versions

Europe (Milan) All available versions All available versions All available versions

Europe (Paris) All available versions All available versions All available versions

Europe (Spain) All available versions All available versions All available versions

Europe (Stockholm) All available versions All available versions All available versions

Europe (Zurich) All available versions All available versions All available versions

Israel (Tel Aviv) Not available Not available Not available

Middle East (Bahrain) All available versions All available versions All available versions

Middle East (UAE) All available versions All available versions All available versions

South America (São
Paulo)

All available versions All available versions All available versions

Dual-stack mode 212

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

AWS GovCloud (US-
East)

All available versions All available versions All available versions

AWS GovCloud (US-
West)

All available versions All available versions All available versions

Dual-stack mode with RDS for Oracle

The following Regions and engine versions are available for dual-stack mode with RDS for Oracle.

Region RDS for Oracle 21c RDS for Oracle 19c

US East (N. Virginia) All available versions All available versions

US East (Ohio) All available versions All available versions

US West (N. California) All available versions All available versions

US West (Oregon) All available versions All available versions

Africa (Cape Town) All available versions All available versions

Asia Pacific (Hong Kong) All available versions All available versions

Asia Pacific (Hyderabad) Not available Not available

Asia Pacific (Jakarta) All available versions All available versions

Asia Pacific (Malaysia) Not available Not available

Asia Pacific (Melbourne) Not available Not available

Asia Pacific (Mumbai) All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions

Dual-stack mode 213

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

Asia Pacific (Seoul) All available versions All available versions

Asia Pacific (Singapore) All available versions All available versions

Asia Pacific (Sydney) All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions

Canada (Central) All available versions All available versions

Canada West (Calgary) Not available Not available

China (Beijing) All available versions All available versions

China (Ningxia) All available versions All available versions

Europe (Frankfurt) All available versions All available versions

Europe (Ireland) All available versions All available versions

Europe (London) All available versions All available versions

Europe (Milan) All available versions All available versions

Europe (Paris) All available versions All available versions

Europe (Spain) Not available Not available

Europe (Stockholm) All available versions All available versions

Europe (Zurich) Not available Not available

Israel (Tel Aviv) Not available Not available

Middle East (Bahrain) All available versions All available versions

Middle East (UAE) Not available Not available

South America (São Paulo) All available versions All available versions

Dual-stack mode 214

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

AWS GovCloud (US-East) All available versions All available versions

AWS GovCloud (US-West) All available versions All available versions

Dual-stack mode with RDS for PostgreSQL

The following Regions and engine versions are available for dual-stack mode with RDS for
PostgreSQL.

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

US
East (N.
Virginia)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US East
(Ohio)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US
West
(N.
Californi
a)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US
West
(Oregon)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Africa
(Cape
Town)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Dual-stack mode 215

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Asia
Pacific
(Hong
Kong)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Hyderaba
d)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Jakarta)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Malaysia
)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Asia
Pacific
(Melbourn
e)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Mumbai)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Osaka)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Dual-stack mode 216

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Asia
Pacific
(Seoul)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Singapor
e)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Sydney)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Tokyo)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Canada
(Central)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Canada
West
(Calgary)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

China
(Beijing)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

China
(Ningxia)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Dual-stack mode 217

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Europe
(Frankfur
t)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Ireland)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(London)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Milan)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Paris)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Spain)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Stockhol
m)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Zurich)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Israel
(Tel
Aviv)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Dual-stack mode 218

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Middle
East
(Bahrain)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Middle
East
(UAE)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

South
America
(São
Paulo)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

AWS
GovCloud
(US-
East)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

AWS
GovCloud
(US-
West)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Dual-stack mode with RDS for SQL Server

The following Regions and engine versions are available for dual-stack mode with RDS for SQL
Server.

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

US East (N. Virginia) All available versions All available versions All available versions

Dual-stack mode 219

Amazon Relational Database Service User Guide

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

US East (Ohio) All available versions All available versions All available versions

US West (N. Californi
a)

All available versions All available versions All available versions

US West (Oregon) All available versions All available versions All available versions

Africa (Cape Town) All available versions All available versions All available versions

Asia Pacific (Hong
Kong)

All available versions All available versions All available versions

Asia Pacific
(Hyderabad)

Not available Not available Not available

Asia Pacific (Jakarta) All available versions All available versions All available versions

Asia Pacific (Malaysia) Not available Not available Not available

Asia Pacific
(Melbourne)

Not available Not available Not available

Asia Pacific (Mumbai) All available versions All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions All available versions

Asia Pacific (Seoul) All available versions All available versions All available versions

Asia Pacific (Singapor
e)

All available versions All available versions All available versions

Asia Pacific (Sydney) All available versions All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions All available versions

Canada (Central) All available versions All available versions All available versions

Dual-stack mode 220

Amazon Relational Database Service User Guide

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

Canada West
(Calgary)

Not available Not available Not available

China (Beijing) All available versions All available versions All available versions

China (Ningxia) All available versions All available versions All available versions

Europe (Frankfurt) All available versions All available versions All available versions

Europe (Ireland) All available versions All available versions All available versions

Europe (London) All available versions All available versions All available versions

Europe (Milan) All available versions All available versions All available versions

Europe (Paris) All available versions All available versions All available versions

Europe (Spain) Not available Not available Not available

Europe (Stockholm) All available versions All available versions All available versions

Europe (Zurich) Not available Not available Not available

Israel (Tel Aviv) Not available Not available Not available

Middle East (Bahrain) All available versions All available versions All available versions

Middle East (UAE) Not available Not available Not available

South America (São
Paulo)

All available versions All available versions All available versions

AWS GovCloud (US-
East)

All available versions All available versions All available versions

AWS GovCloud (US-
West)

All available versions All available versions All available versions

Dual-stack mode 221

Amazon Relational Database Service User Guide

Supported Regions and DB engines for exporting snapshots to S3 in
Amazon RDS

You can export RDS DB snapshot data to an Amazon S3 bucket. You can export all types of DB
snapshots—including manual snapshots, automated system snapshots, and snapshots created
by AWS Backup. After the data is exported, you can analyze the exported data directly through
tools like Amazon Athena or Amazon Redshift Spectrum. For more information, see Exporting DB
snapshot data to Amazon S3 for Amazon RDS.

Exporting snapshots to S3 is not available for the following engines:

• RDS for Db2

• RDS for Oracle

• RDS for SQL Server

Topics

• Export snapshots to S3 with RDS for MariaDB

• Export snapshots to S3 with RDS for MySQL

• Export snapshots to S3 with RDS for PostgreSQL

Export snapshots to S3 with RDS for MariaDB

The following Regions and engine versions are available for exporting snapshots to S3 with RDS for
MariaDB.

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

US East (N.
Virginia)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US East
(Ohio)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Export snapshots to S3 222

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

US West (N.
California)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US West
(Oregon)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Africa (Cape
Town)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Hong Kong)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Hyderabad)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Jakarta)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Malaysia)

Not available Not available Not available Not available Not available

Asia Pacific
(Melbourne)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Mumbai)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Osaka)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Seoul)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Singapore)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Export snapshots to S3 223

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

Asia Pacific
(Sydney)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Tokyo)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Canada
(Central)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Canada West
(Calgary)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

China
(Beijing)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

China
(Ningxia)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Frankfurt)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Ireland)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(London)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Milan)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Paris)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Spain)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Export snapshots to S3 224

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

Europe
(Stockholm)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Zurich)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Israel (Tel
Aviv)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Middle East
(Bahrain)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Middle East
(UAE)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

South
America (São
Paulo)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

AWS
GovCloud
(US-East)

Not available Not available Not available Not available Not available

AWS
GovCloud
(US-West)

Not available Not available Not available Not available Not available

Export snapshots to S3 with RDS for MySQL

The following Regions and engine versions are available for exporting snapshots to S3 with RDS for
MySQL.

Export snapshots to S3 225

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

US East (Ohio) All available versions All available versions All available versions

US East (N. Virginia) All available versions All available versions All available versions

US West (N. Californi
a)

All available versions All available versions All available versions

US West (Oregon) All available versions All available versions All available versions

Africa (Cape Town) All available versions All available versions All available versions

Asia Pacific (Hong
Kong)

All available versions All available versions All available versions

Asia Pacific
(Hyderabad)

All available versions All available versions All available versions

Asia Pacific (Jakarta) All available versions All available versions All available versions

Asia Pacific (Malaysia) Not available Not available Not available

Asia Pacific
(Melbourne)

All available versions All available versions All available versions

Asia Pacific (Mumbai) All available versions All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions All available versions

Asia Pacific (Seoul) All available versions All available versions All available versions

Asia Pacific (Singapor
e)

All available versions All available versions All available versions

Asia Pacific (Sydney) All available versions All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions All available versions

Export snapshots to S3 226

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

Canada (Central) All available versions All available versions All available versions

Canada West
(Calgary)

All available versions All available versions All available versions

China (Beijing) All available versions All available versions All available versions

China (Ningxia) All available versions All available versions All available versions

Europe (Frankfurt) All available versions All available versions All available versions

Europe (Ireland) All available versions All available versions All available versions

Europe (London) All available versions All available versions All available versions

Europe (Milan) All available versions All available versions All available versions

Europe (Paris) All available versions All available versions All available versions

Europe (Spain) All available versions All available versions All available versions

Europe (Stockholm) All available versions All available versions All available versions

Europe (Zurich) All available versions All available versions All available versions

Israel (Tel Aviv) All available versions All available versions All available versions

Middle East (Bahrain) All available versions All available versions All available versions

Middle East (UAE) All available versions All available versions All available versions

South America (São
Paulo)

All available versions All available versions All available versions

AWS GovCloud (US-
East)

Not available Not available Not available

Export snapshots to S3 227

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

AWS GovCloud (US-
West)

Not available Not available Not available

Export snapshots to S3 with RDS for PostgreSQL

The following Regions and engine versions are available for exporting snapshots to S3 with RDS for
PostgreSQL.

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

US East
(Ohio)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US
East (N.
Virginia)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US
West
(N.
Californi
a)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US
West
(Oregon)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Africa
(Cape
Town)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Export snapshots to S3 228

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Asia
Pacific
(Hong
Kong)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Hyderaba
d)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Jakarta)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Malaysia
)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Asia
Pacific
(Melbourn
e)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Mumbai)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Osaka)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Export snapshots to S3 229

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Asia
Pacific
(Seoul)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Singapor
e)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Sydney)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Tokyo)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Canada
(Central)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Canada
West
(Calgary)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

China
(Beijing)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

China
(Ningxia)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Export snapshots to S3 230

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Europe
(Frankfur
t)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Ireland)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(London)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Milan)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Paris)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Spain)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Stockhol
m)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Zurich)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Israel
(Tel
Aviv)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Export snapshots to S3 231

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Middle
East
(Bahrain)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Middle
East
(UAE)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

South
America
(São
Paulo)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

AWS
GovCloud
(US-
East)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

AWS
GovCloud
(US-
West)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Supported Regions and DB engines for IAM database authentication in
Amazon RDS

By using IAM database authentication in Amazon RDS, you can authenticate without a password
when you connect to a DB instance. Instead, you use an authentication token. For more
information, see IAM database authentication for MariaDB, MySQL, and PostgreSQL.

IAM database authentication isn't available with the following engines:

• RDS for Db2

IAM database authentication 232

Amazon Relational Database Service User Guide

• RDS for Oracle

• RDS for SQL Server

Topics

• IAM database authentication with RDS for MariaDB

• IAM database authentication with RDS for MySQL

• IAM database authentication with RDS for PostgreSQL

IAM database authentication with RDS for MariaDB

The following Regions and engine versions are available for IAM database authentication with RDS
for MariaDB.

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

US East (N.
Virginia)

All available
versions

All available
versions

All available
versions

Not available Not available

US East
(Ohio)

All available
versions

All available
versions

All available
versions

Not available Not available

US West (N.
California)

All available
versions

All available
versions

All available
versions

Not available Not available

US West
(Oregon)

All available
versions

All available
versions

All available
versions

Not available Not available

Africa (Cape
Town)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Hong Kong)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Hyderabad)

Not available Not available Not available Not available Not available

IAM database authentication 233

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

Asia Pacific
(Jakarta)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Malaysia)

All available
versions

All available
versions

Not available Not available Not available

Asia Pacific
(Melbourne)

Not available Not available Not available Not available Not available

Asia Pacific
(Mumbai)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Osaka)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Seoul)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Singapore)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Sydney)

All available
versions

All available
versions

All available
versions

Not available Not available

Asia Pacific
(Tokyo)

All available
versions

All available
versions

All available
versions

Not available Not available

Canada
(Central)

All available
versions

All available
versions

All available
versions

Not available Not available

Canada West
(Calgary)

All available
versions

All available
versions

All available
versions

Not available Not available

China
(Beijing)

All available
versions

All available
versions

All available
versions

Not available Not available

IAM database authentication 234

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

China
(Ningxia)

All available
versions

All available
versions

All available
versions

Not available Not available

Europe
(Frankfurt)

All available
versions

All available
versions

All available
versions

Not available Not available

Europe
(Ireland)

All available
versions

All available
versions

All available
versions

Not available Not available

Europe
(London)

All available
versions

All available
versions

All available
versions

Not available Not available

Europe
(Milan)

All available
versions

All available
versions

All available
versions

Not available Not available

Europe
(Paris)

All available
versions

All available
versions

All available
versions

Not available Not available

Europe
(Spain)

Not available Not available Not available Not available Not available

Europe
(Stockholm)

All available
versions

All available
versions

All available
versions

Not available Not available

Europe
(Zurich)

Not available Not available Not available Not available Not available

Israel (Tel
Aviv)

Not available Not available Not available Not available Not available

Middle East
(Bahrain)

All available
versions

All available
versions

All available
versions

Not available Not available

Middle East
(UAE)

Not available Not available Not available Not available Not available

IAM database authentication 235

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

South
America (São
Paulo)

All available
versions

All available
versions

All available
versions

Not available Not available

AWS
GovCloud
(US-East)

All available
versions

All available
versions

All available
versions

Not available Not available

AWS
GovCloud
(US-West)

All available
versions

All available
versions

All available
versions

Not available Not available

IAM database authentication with RDS for MySQL

IAM database authentication with RDS for MySQL is available in all Regions for the following
versions:

• RDS for MySQL 8.4 – All available versions

• RDS for MySQL 8.0 – All available versions

• RDS for MySQL 5.7 – All available versions

IAM database authentication with RDS for PostgreSQL

IAM database authentication with RDS for PostgreSQL is available in all Regions for the following
versions:

• RDS for PostgreSQL 17 – All available versions

• RDS for PostgreSQL 16 – All available versions

• RDS for PostgreSQL 15 – All available versions

• RDS for PostgreSQL 14 – All available versions

• RDS for PostgreSQL 13 – All available versions

• RDS for PostgreSQL 12 – All available versions

IAM database authentication 236

Amazon Relational Database Service User Guide

• RDS for PostgreSQL 11 – All available versions

• RDS for PostgreSQL 10 – All available versions

Supported Regions and DB engines for Kerberos authentication in
Amazon RDS

By using Kerberos authentication in Amazon RDS, you can support external authentication of
database users using Kerberos and Microsoft Active Directory. Using Kerberos and Active Directory
provides the benefits of single sign-on and centralized authentication of database users.

Kerberos authentication isn't available with the following engines:

• RDS for MariaDB

Although most AWS Regions are active by default for your AWS account, certain Regions are
activated only when you manually select them. These Regions are referred to as opt-in Regions. In
contrast, Regions that are active by default, as soon as your AWS account is created, are referred
to as commercial Regions, or simply, Regions. For opt-in Regions, you must use a regionalized
service principal of the form directoryservice.rds.region_name.amazonaws.com. For
example, for Africa (Cape Town), you must add service principal directoryservice.rds.af-
south-1.amazonaws.com to your trust policy. For more information, see Kerberos
authentication.

Topics

• Kerberos authentication with RDS for Db2

• Kerberos authentication with RDS for MySQL

• Kerberos authentication with RDS for Oracle

• Kerberos authentication with RDS for PostgreSQL

• Kerberos authentication with RDS for SQL Server

Kerberos authentication with RDS for Db2

The following Regions and engine versions are available for Kerberos authentication with RDS for
Db2.

Kerberos authentication 237

Amazon Relational Database Service User Guide

Region RDS for Db2 11.5

US East (N. Virginia) All versions

US East (Ohio) All versions

US West (N. California) All versions

US West (Oregon) All versions

Africa (Cape Town) All versions

Asia Pacific (Hong Kong) Not available

Asia Pacific (Hyderabad) All versions

Asia Pacific (Jakarta) All versions

Asia Pacific (Malaysia) Not available

Asia Pacific (Melbourne) All versions

Asia Pacific (Mumbai) All versions

Asia Pacific (Osaka) Not available

Asia Pacific (Seoul) All versions

Asia Pacific (Singapore) All versions

Asia Pacific (Sydney) All versions

Asia Pacific (Tokyo) All versions

Canada (Central) All versions

Canada West (Calgary) Not available

China (Beijing) Not available

China (Ningxia) Not available

Kerberos authentication 238

Amazon Relational Database Service User Guide

Region RDS for Db2 11.5

Europe (Frankfurt) All versions

Europe (Ireland) All versions

Europe (London) All versions

Europe (Milan) All versions

Europe (Paris) Not available

Europe (Spain) All versions

Europe (Stockholm) All versions

Europe (Zurich) All versions

Israel (Tel Aviv) All versions

Middle East (Bahrain) All versions

Middle East (UAE) All versions

South America (São Paulo) All versions

AWS GovCloud (US-East) Not available

AWS GovCloud (US-West) Not available

Kerberos authentication with RDS for MySQL

The following Regions and engine versions are available for Kerberos authentication with RDS for
MySQL.

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

US East (N. Virginia) All versions All versions All versions

Kerberos authentication 239

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

US East (Ohio) All versions All versions All versions

US West (N. Californi
a)

All versions All versions All versions

US West (Oregon) All versions All versions All versions

Africa (Cape Town) All versions All versions All versions

Asia Pacific (Hong
Kong)

All versions All versions All versions

Asia Pacific
(Hyderabad)

All versions All versions All versions

Asia Pacific (Jakarta) All versions All versions All versions

Asia Pacific (Malaysia) Not available Not available Not available

Asia Pacific
(Melbourne)

All versions All versions All versions

Asia Pacific (Mumbai) All versions All versions All versions

Asia Pacific (Osaka) All versions All versions All versions

Asia Pacific (Seoul) All versions All versions All versions

Asia Pacific (Singapor
e)

All versions All versions All versions

Asia Pacific (Sydney) All versions All versions All versions

Asia Pacific (Tokyo) All versions All versions All versions

Canada (Central) All versions All versions All versions

Kerberos authentication 240

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL
5.7 (under RDS
Extended Support)

Canada West
(Calgary)

Not available Not available Not available

China (Beijing) All versions All versions All versions

China (Ningxia) All versions All versions All versions

Europe (Frankfurt) All versions All versions All versions

Europe (Ireland) All versions All versions All versions

Europe (London) All versions All versions All versions

Europe (Milan) All versions All versions All versions

Europe (Paris) All versions All versions All versions

Europe (Spain) All versions All versions All versions

Europe (Stockholm) All versions All versions All versions

Europe (Zurich) All versions All versions All versions

Israel (Tel Aviv) All versions All versions All versions

Middle East (Bahrain) All versions All versions All versions

Middle East (UAE) All versions All versions All versions

South America (São
Paulo)

All versions All versions All versions

AWS GovCloud (US-
East)

Not available Not available Not available

AWS GovCloud (US-
West)

Not available Not available Not available

Kerberos authentication 241

Amazon Relational Database Service User Guide

Kerberos authentication with RDS for Oracle

The following Regions and engine versions are available for Kerberos authentication with RDS for
Oracle.

Region RDS for Oracle 21c RDS for Oracle 19c

US East (N. Virginia) All versions All versions

US East (Ohio) All versions All versions

US West (N. California) All versions All versions

US West (Oregon) All versions All versions

Africa (Cape Town) (opt-in
Region)

All versions All versions

Asia Pacific (Hong Kong) (opt-
in Region)

All versions All versions

Asia Pacific (Hyderabad) (opt-
in Region)

All versions All versions

Asia Pacific (Jakarta) (opt-in
Region)

All versions All versions

Asia Pacific (Malaysia) Not available Not available

Asia Pacific (Melbourne) (opt-
in Region)

All versions All versions

Asia Pacific (Mumbai) All versions All versions

Asia Pacific (Osaka) Not available Not available

Asia Pacific (Seoul) All versions All versions

Asia Pacific (Singapore) All versions All versions

Asia Pacific (Sydney) All versions All versions

Kerberos authentication 242

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

Asia Pacific (Tokyo) All versions All versions

Canada (Central) All versions All versions

Canada West (Calgary) Not available Not available

China (Beijing) Not available Not available

China (Ningxia) Not available Not available

Europe (Frankfurt) All versions All versions

Europe (Ireland) All versions All versions

Europe (London) All versions All versions

Europe (Milan) (opt-in Region) All versions All versions

Europe (Paris) Not available Not available

Europe (Spain) (opt-in Region) All versions All versions

Europe (Stockholm) All versions All versions

Europe (Zurich) (opt-in
Region)

All versions All versions

Israel (Tel Aviv) (opt-in
Region)

All versions All versions

Middle East (Bahrain) (opt-in
Region)

All versions All versions

Middle East (UAE) (opt-in
Region)

All versions All versions

South America (São Paulo) All versions All versions

AWS GovCloud (US-East) All versions All versions

Kerberos authentication 243

Amazon Relational Database Service User Guide

Region RDS for Oracle 21c RDS for Oracle 19c

AWS GovCloud (US-West) All versions All versions

Kerberos authentication with RDS for PostgreSQL

The following Regions and engine versions are available for Kerberos authentication with RDS for
PostgreSQL.

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

US
East (N.
Virginia)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US East
(Ohio)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US
West
(N.
Californi
a)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US
West
(Oregon)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Africa
(Cape
Town)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Kerberos authentication 244

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

(Hong
Kong)

Asia
Pacific
(Hyderaba
d)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Jakarta)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Malaysia
)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Asia
Pacific
(Melbourn
e)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Mumbai)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Osaka)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Asia
Pacific
(Seoul)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Kerberos authentication 245

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Asia
Pacific
(Singapor
e)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Sydney)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Tokyo)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Canada
(Central)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Canada
West
(Calgary)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

China
(Beijing)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

China
(Ningxia)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Frankfur
t)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Ireland)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(London)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Kerberos authentication 246

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Europe
(Milan)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Paris)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Spain)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Stockhol
m)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Zurich)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Israel
(Tel
Aviv)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Middle
East
(Bahrain)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Middle
East
(UAE)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

South
America
(São
Paulo)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Kerberos authentication 247

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

AWS
GovCloud
(US-
East)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

AWS
GovCloud
(US-
West)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Kerberos authentication with RDS for SQL Server

The following Regions and engine versions are available for Kerberos authentication with RDS for
SQL Server.

Region RDS for SQL
Server 2022

RDS for SQL
Server 2019

RDS for SQL
Server 2017

RDS for SQL
Server 2016

US East (N.
Virginia)

All versions All versions All versions All versions

US East (Ohio) All versions All versions All versions All versions

US West (N.
California)

All versions All versions All versions All versions

US West
(Oregon)

All versions All versions All versions All versions

Africa (Cape
Town)

All versions All versions All versions All versions

Asia Pacific
(Hong Kong)

All versions All versions All versions All versions

Kerberos authentication 248

Amazon Relational Database Service User Guide

Region RDS for SQL
Server 2022

RDS for SQL
Server 2019

RDS for SQL
Server 2017

RDS for SQL
Server 2016

Asia Pacific
(Hyderabad)

All versions All versions All versions All versions

Asia Pacific
(Malaysia)

Not available Not available Not available Not available

Asia Pacific
(Melbourne)

All versions All versions All versions All versions

Asia Pacific
(Mumbai)

All versions All versions All versions All versions

Asia Pacific
(Osaka)

All versions All versions All versions All versions

Asia Pacific
(Seoul)

All versions All versions All versions All versions

Asia Pacific
(Singapore)

All versions All versions All versions All versions

Asia Pacific
(Sydney)

All versions All versions All versions All versions

Asia Pacific
(Tokyo)

All versions All versions All versions All versions

Canada (Central) All versions All versions All versions All versions

Canada West
(Calgary)

Not available Not available Not available Not available

China (Beijing) All versions All versions All versions All versions

China (Ningxia) All versions All versions All versions All versions

Kerberos authentication 249

Amazon Relational Database Service User Guide

Region RDS for SQL
Server 2022

RDS for SQL
Server 2019

RDS for SQL
Server 2017

RDS for SQL
Server 2016

Europe (Frankfur
t)

All versions All versions All versions All versions

Europe (Ireland) All versions All versions All versions All versions

Europe (London) All versions All versions All versions All versions

Europe (Milan) All versions All versions All versions All versions

Europe (Paris) All versions All versions All versions All versions

Europe (Spain) All versions All versions All versions All versions

Europe
(Stockholm)

All versions All versions All versions All versions

Europe (Zurich) All versions All versions All versions All versions

Israel (Tel Aviv) Not available Not available Not available Not available

Middle East
(Bahrain)

All versions All versions All versions All versions

Middle East
(UAE)

All versions All versions All versions All versions

South America
(São Paulo)

All versions All versions All versions All versions

AWS GovCloud
(US-East)

All versions All versions All versions All versions

AWS GovCloud
(US-West)

All versions All versions All versions All versions

Kerberos authentication 250

Amazon Relational Database Service User Guide

Supported Regions and DB engines for Multi-AZ DB clusters in Amazon
RDS

A Multi-AZ DB cluster deployment in Amazon RDS provides a high availability deployment mode
of Amazon RDS with two readable standby DB instances. A Multi-AZ DB cluster has a writer DB
instance and two reader DB instances in three separate Availability Zones in the same Region.
Multi-AZ DB clusters provide high availability, increased capacity for read workloads, and lower
write latency when compared to Multi-AZ DB instance deployments. For more information, see
Multi-AZ DB cluster deployments for Amazon RDS.

Multi-AZ DB clusters aren't available with the following engines:

• RDS for Db2

• RDS for MariaDB

• RDS for Oracle

• RDS for SQL Server

Topics

• Multi-AZ DB clusters with RDS for MySQL

• Multi-AZ DB clusters with RDS for PostgreSQL

Multi-AZ DB clusters with RDS for MySQL

The following Regions and engine versions are available for Multi-AZ DB clusters with RDS for
MySQL.

Region RDS for MySQL 8.4 RDS for MySQL 8.0

US East (N. Virginia) All available versions All available versions

US East (Ohio) All available versions All available versions

US West (N. Californi
a)

Not available Not available

US West (Oregon) All available versions All available versions

Multi-AZ DB clusters 251

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0

Africa (Cape Town) All available versions All available versions

Asia Pacific (Hong
Kong)

All available versions All available versions

Asia Pacific
(Hyderabad)

All available versions All available versions

Asia Pacific (Jakarta) All available versions All available versions

Asia Pacific (Malaysia) All available versions All available versions

Asia Pacific
(Melbourne)

All available versions All available versions

Asia Pacific (Mumbai) All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions

Asia Pacific (Seoul) All available versions All available versions

Asia Pacific (Singapor
e)

All available versions All available versions

Asia Pacific (Sydney) All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions

Canada (Central) All available versions All available versions

Canada (Central) All available versions All available versions

Canada West
(Calgary)

All available versions All available versions

China (Beijing) All available versions All available versions

China (Ningxia) All available versions All available versions

Multi-AZ DB clusters 252

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0

Europe (Frankfurt) All available versions All available versions

Europe (Ireland) All available versions All available versions

Europe (London) All available versions All available versions

Europe (Milan) All available versions All available versions

Europe (Paris) All available versions All available versions

Europe (Spain) All available versions All available versions

Europe (Stockholm) All available versions All available versions

Europe (Zurich) All available versions All available versions

Israel (Tel Aviv) All available versions All available versions

Middle East (Bahrain) All available versions All available versions

Middle East (UAE) All available versions All available versions

South America (São
Paulo)

All available versions All available versions

AWS GovCloud (US-
East)

Not available Not available

AWS GovCloud (US-
West)

Not available Not available

You can list the available versions in a Region for a given DB instance class using the AWS CLI.
Change the DB instance class to show the available engine versions for it.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options \
--engine mysql \
--db-instance-class db.r5d.large \

Multi-AZ DB clusters 253

Amazon Relational Database Service User Guide

--query '*[]|[?SupportsClusters == `true`].[EngineVersion]' \
--output text

For Windows:

aws rds describe-orderable-db-instance-options ^
--engine mysql ^
--db-instance-class db.r5d.large ^
--query "*[]|[?SupportsClusters == `true`].[EngineVersion]" ^
--output text

Multi-AZ DB clusters with RDS for PostgreSQL

The following Regions and engine versions are available for Multi-AZ DB clusters with RDS for
PostgreSQL.

Region RDS for
PostgreSQL
17

RDS for
PostgreSQL
16

RDS for
PostgreSQL
15

RDS for
PostgreSQL
14

RDS for
PostgreSQL
13

US East (N.
Virginia)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

US East
(Ohio)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

US West (N.
California)

Not available Not available Not available Not available Not available

US West
(Oregon)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Multi-AZ DB clusters 254

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQL
17

RDS for
PostgreSQL
16

RDS for
PostgreSQL
15

RDS for
PostgreSQL
14

RDS for
PostgreSQL
13

Africa (Cape
Town)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Hong Kong)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Hyderabad)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Jakarta)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Malaysia)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Melbourne)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Mumbai)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Multi-AZ DB clusters 255

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQL
17

RDS for
PostgreSQL
16

RDS for
PostgreSQL
15

RDS for
PostgreSQL
14

RDS for
PostgreSQL
13

Asia Pacific
(Osaka)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Seoul)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Singapore)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Sydney)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Asia Pacific
(Tokyo)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Canada
(Central)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Canada West
(Calgary)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Multi-AZ DB clusters 256

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQL
17

RDS for
PostgreSQL
16

RDS for
PostgreSQL
15

RDS for
PostgreSQL
14

RDS for
PostgreSQL
13

China
(Beijing)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

China
(Ningxia)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Europe
(Frankfurt)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Europe
(Ireland)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Europe
(London)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Europe
(Milan)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Europe
(Paris)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Multi-AZ DB clusters 257

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQL
17

RDS for
PostgreSQL
16

RDS for
PostgreSQL
15

RDS for
PostgreSQL
14

RDS for
PostgreSQL
13

Europe
(Spain)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Europe
(Stockholm)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Europe
(Zurich)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Israel (Tel
Aviv)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Middle East
(Bahrain)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Middle East
(UAE)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

South
America (São
Paulo)

All
PostgreSQL
17 versions

All
PostgreSQL
16 versions

All
PostgreSQL
15 versions

Version 14.5
and higher

Version 13.4
and version
13.7 and
higher

Multi-AZ DB clusters 258

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQL
17

RDS for
PostgreSQL
16

RDS for
PostgreSQL
15

RDS for
PostgreSQL
14

RDS for
PostgreSQL
13

AWS
GovCloud
(US-East)

Not available Not available Not available Not available Not available

AWS
GovCloud
(US-West)

Not available Not available Not available Not available Not available

You can list the available versions in a Region for a given DB instance class using the AWS CLI.
Change the DB instance class to show the available engine versions for it.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options \
--engine postgres \
--db-instance-class db.r5d.large \
--query '*[]|[?SupportsClusters == `true`].[EngineVersion]' \
--output text

For Windows:

aws rds describe-orderable-db-instance-options ^
--engine postgres ^
--db-instance-class db.r5d.large ^
--query "*[]|[?SupportsClusters == `true`].[EngineVersion]" ^
--output text

Supported Regions and DB engines for Performance Insights in Amazon
RDS

Performance Insights in Amazon RDS expands on existing Amazon RDS monitoring features
to illustrate and help you analyze your database performance. With the Performance Insights
dashboard, you can visualize the database load on your Amazon RDS DB instance. You can also

Performance Insights 259

Amazon Relational Database Service User Guide

filter the load by waits, SQL statements, hosts, or users. For more information, see Monitoring DB
load with Performance Insights on Amazon RDS.

Performance Insights is available for all RDS DB engines, except RDS for Db2.

For the available DB engines, Performance Insights is available with all of the available engine
versions and in all AWS Regions.

For the Region, DB engine, and instance class support information for Performance Insights
features, see Amazon RDS DB engine, Region, and instance class support for Performance Insights
features.

Supported Regions and DB engines for RDS Custom

Amazon RDS Custom automates database administration tasks and operations. By using RDS
Custom, as a database administrator you can access and customize your database environment
and operating system. With RDS Custom, you can customize to meet the requirements of legacy,
custom, and packaged applications. For more information, see Amazon RDS Custom.

RDS Custom is supported for the following DB engines only:

Topics

• Supported Regions and DB engines for RDS Custom for Oracle

• Supported Regions and DB engines for RDS Custom for SQL Server

Supported Regions and DB engines for RDS Custom for Oracle

The following Regions and engine versions are available for RDS Custom for Oracle.

Region Oracle Database 19c Oracle Database 18c Oracle Database 12c

US East (N.
Virginia)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

US East (Ohio) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

RDS Custom 260

Amazon Relational Database Service User Guide

Region Oracle Database 19c Oracle Database 18c Oracle Database 12c

US West (N.
California)

Not available Not available Not available

US West (Oregon) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Africa (Cape
Town)

Not available Not available Not available

Asia Pacific (Hong
Kong)

Not available Not available Not available

Asia Pacific
(Jakarta)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Asia Pacific
(Malaysia)

Not available Not available Not available

Asia Pacific
(Melbourne)

Not available Not available Not available

Asia Pacific
(Mumbai)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Asia Pacific
(Osaka)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Asia Pacific
(Seoul)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

RDS Custom 261

Amazon Relational Database Service User Guide

Region Oracle Database 19c Oracle Database 18c Oracle Database 12c

Asia Pacific
(Singapore)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Asia Pacific
(Sydney)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Asia Pacific
(Tokyo)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Canada (Central) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Canada West
(Calgary)

Not available Not available Not available

China (Beijing) Not available Not available Not available

China (Ningxia) Not available Not available Not available

Europe (Frankfur
t)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Europe (Ireland) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Europe (London) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

RDS Custom 262

Amazon Relational Database Service User Guide

Region Oracle Database 19c Oracle Database 18c Oracle Database 12c

Europe (Milan) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Europe (Paris) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Europe (Stockhol
m)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

Israel (Tel Aviv) Not available Not available Not available

Middle East
(Bahrain)

Not available Not available Not available

Middle East (UAE) 19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

South America
(São Paulo)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

AWS GovCloud
(US-East)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

AWS GovCloud
(US-West)

19c with the January
2021 or higher RU/
RUR

18c with the January
2021 or higher RU/
RUR

12.1 and 12.2 with the
January 2021 or higher
RU/RUR

RDS Custom 263

Amazon Relational Database Service User Guide

Supported Regions and DB engines for RDS Custom for SQL Server

You can deploy RDS Custom for SQL Server by using either an RDS provided engine version (RPEV)
or a custom engine version (CEV):

• If you use an RPEV, it includes the default Amazon Machine Image (AMI) and SQL Server
installation. If you customize or modify the operating system (OS), your changes might not
persist during patching, snapshot restore, or automatic recovery.

• If you use a CEV, you choose your own AMI with either pre-installed Microsoft SQL Server or SQL
Server that you install using your own media. When using an AWS provided CEV, you choose
the latest Amazon EC2 image (AMI) available by AWS, which has the cumulative update (CU)
supported by RDS Custom for SQL Server. With a CEV, you can customize both the OS and SQL
Server configuration to meet your enterprise needs.

The following AWS Regions and DB engine versions are available for RDS Custom for SQL Server.
The engine version support depends on whether you're using RDS Custom for SQL Server with an
RPEV, AWS provided CEV, or customer-provided CEV.

Region RPEV AWS provided CEV Customer-provided
CEV

US East (N.
Virginia)

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

US East (Ohio) SQL Server 2022
Enterprise, Standard,

SQL Server 2022
Enterprise, Standard,

SQL Server 2022
Enterprise, Standard,

RDS Custom 264

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

US West (N.
California)

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

RDS Custom 265

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

US West (Oregon) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Africa (Cape Town) Not available Not available Not available

Asia Pacific (Hong
Kong)

Not available Not available Not available

Asia Pacific
(Hyderabad)

Not available Not available Not available

Asia Pacific
(Jakarta)

Not available Not available Not available

Asia Pacific
(Malaysia)

Not available Not available Not available

Asia Pacific
(Melbourne)

Not available Not available Not available

RDS Custom 266

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

Asia Pacific
(Mumbai)

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Asia Pacific (Osaka) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

RDS Custom 267

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

Asia Pacific (Seoul) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Asia Pacific
(Singapore)

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

RDS Custom 268

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

Asia Pacific
(Sydney)

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Asia Pacific (Tokyo) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

RDS Custom 269

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

Canada (Central) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Canada West
(Calgary)

Not available Not available Not available

China (Beijing) Not available Not available Not available

China (Ningxia) Not available Not available Not available

Europe (Frankfurt) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

RDS Custom 270

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

Europe (Ireland) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Europe (London) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Europe (Milan) Not available Not available Not available

RDS Custom 271

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

Europe (Paris) SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Europe (Spain) Not available Not available Not available

Europe (Stockhol
m)

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

Europe (Zurich) Not available Not available Not available

Israel (Tel Aviv) Not available Not available Not available

RDS Custom 272

Amazon Relational Database Service User Guide

Region RPEV AWS provided CEV Customer-provided
CEV

Middle East
(Bahrain)

Not available Not available Not available

Middle East (UAE) Not available Not available Not available

South America
(São Paulo)

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

SQL Server 2022
Enterprise, Standard,
or Web, with CU9,
CU13, CU14-GDR,
CU15-GDR, CU16,
and CU17. SQL Server
2019 Enterprise,
Standard, or Web,
with CU8, CU17,
CU18, CU20, CU24,
CU26, CU28-GDR,
CU29-GDR, CU30, and
CU32.

AWS GovCloud
(US-East)

Not available Not available Not available

AWS GovCloud
(US-West)

Not available Not available Not available

Supported Regions and DB engines for Amazon RDS Proxy

Amazon RDS Proxy is a fully managed, highly available database proxy that makes applications
more scalable by pooling and sharing established database connections. For more information, see
Amazon RDS Proxy.

RDS Proxy isn't available for the following engines:

• RDS for Db2

• RDS for Oracle

Amazon RDS Proxy 273

Amazon Relational Database Service User Guide

Topics

• RDS Proxy with RDS for MariaDB

• RDS Proxy with RDS for MySQL

• RDS Proxy with RDS for PostgreSQL

• RDS Proxy with RDS for SQL Server

RDS Proxy with RDS for MariaDB

The following Regions and engine versions are available for RDS Proxy with RDS for MariaDB.

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

US East (N.
Virginia)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US East
(Ohio)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US West (N.
California)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

US West
(Oregon)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Africa (Cape
Town)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Hong Kong)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Hyderabad)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Jakarta)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Amazon RDS Proxy 274

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

Asia Pacific
(Malaysia)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Melbourne)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Mumbai)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Osaka)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Seoul)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Singapore)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Sydney)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Thailand)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Asia Pacific
(Tokyo)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Canada
(Central)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Canada West
(Calgary)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

China
(Beijing)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Amazon RDS Proxy 275

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

China
(Ningxia)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Frankfurt)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Ireland)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(London)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Milan)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Paris)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Spain)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Stockholm)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Europe
(Zurich)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Israel (Tel
Aviv)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Middle East
(Bahrain)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Middle East
(UAE)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

Amazon RDS Proxy 276

Amazon Relational Database Service User Guide

Region RDS for
MariaDB
11.4

RDS for
MariaDB
10.11

RDS for
MariaDB
10.6

RDS for
MariaDB
10.5

RDS for
MariaDB
10.4

Mexico
(Central)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

South
America (São
Paulo)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

AWS
GovCloud
(US-East)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

AWS
GovCloud
(US-West)

All available
versions

All available
versions

All available
versions

All available
versions

All available
versions

RDS Proxy with RDS for MySQL

The following Regions and engine versions are available for RDS Proxy with RDS for MySQL.

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL 5.7

US East (N. Virginia) All available versions All available versions All available versions

US East (Ohio) All available versions All available versions All available versions

US West (N. Californi
a)

All available versions All available versions All available versions

US West (Oregon) All available versions All available versions All available versions

Africa (Cape Town) All available versions All available versions All available versions

Asia Pacific (Hong
Kong)

All available versions All available versions All available versions

Amazon RDS Proxy 277

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL 5.7

Asia Pacific
(Hyderabad)

All available versions All available versions All available versions

Asia Pacific (Jakarta) All available versions All available versions All available versions

Asia Pacific (Malaysia) All available versions All available versions All available versions

Asia Pacific
(Melbourne)

All available versions All available versions All available versions

Asia Pacific (Mumbai) All available versions All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions All available versions

Asia Pacific (Seoul) All available versions All available versions All available versions

Asia Pacific (Singapor
e)

All available versions All available versions All available versions

Asia Pacific (Sydney) All available versions All available versions All available versions

Asia Pacific (Thailand) All available versions All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions All available versions

Canada (Central) All available versions All available versions All available versions

Canada West
(Calgary)

All available versions All available versions All available versions

China (Beijing) All available versions All available versions All available versions

China (Ningxia) All available versions All available versions All available versions

Europe (Frankfurt) All available versions All available versions All available versions

Europe (Ireland) All available versions All available versions All available versions

Europe (London) All available versions All available versions All available versions

Amazon RDS Proxy 278

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0 RDS for MySQL 5.7

Europe (Milan) All available versions All available versions All available versions

Europe (Paris) All available versions All available versions All available versions

Europe (Spain) All available versions All available versions All available versions

Europe (Stockholm) All available versions All available versions All available versions

Europe (Zurich) All available versions All available versions All available versions

Israel (Tel Aviv) All available versions All available versions All available versions

Middle East (Bahrain) All available versions All available versions All available versions

Middle East (UAE) All available versions All available versions All available versions

Mexico (Central) All available versions All available versions All available versions

South America (São
Paulo)

All available versions All available versions All available versions

AWS GovCloud (US-
East)

All available versions All available versions All available versions

AWS GovCloud (US-
West)

All available versions All available versions All available versions

RDS Proxy with RDS for PostgreSQL

The following Regions and engine versions are available for RDS Proxy with RDS for PostgreSQL.

Amazon RDS Proxy 279

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

US
East (N.
Virginia)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US East
(Ohio)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US
West
(N.
Californi
a)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

US
West
(Oregon)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Africa
(Cape
Town)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Hong
Kong)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Hyderaba
d)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Amazon RDS Proxy 280

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Asia
Pacific
(Jakarta)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Malaysia
)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Melbourn
e)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Mumbai)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Osaka)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Seoul)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Singapor
e)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Sydney)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Amazon RDS Proxy 281

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Asia
Pacific
(Thailand
)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Asia
Pacific
(Tokyo)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Canada
(Central)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Canada
West
(Calgary)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

China
(Beijing)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

China
(Ningxia)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Frankfur
t)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Ireland)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Amazon RDS Proxy 282

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Europe
(London)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Milan)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Paris)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Spain)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Stockhol
m)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Europe
(Zurich)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Israel
(Tel
Aviv)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Middle
East
(Bahrain)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Middle
East
(UAE)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

Amazon RDS Proxy 283

Amazon Relational Database Service User Guide

Region RDS for
PostgreSQ
L 17

RDS for
PostgreSQ
L 16

RDS for
PostgreSQ
L 15

RDS for
PostgreSQ
L 14

RDS for
PostgreSQ
L 13

RDS for
PostgreSQ
L 12

RDS for
PostgreSQ
L 11

RDS for
PostgreSQ
L 10

Mexico
(Central)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

South
America
(São
Paulo)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

AWS
GovCloud
(US-
East)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

AWS
GovCloud
(US-
West)

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

All
available
versions

RDS Proxy with RDS for SQL Server

The following Regions and engine versions are available for RDS Proxy with RDS for SQL Server.

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

US East (N. Virginia) All available versions All available versions All available versions

US East (Ohio) All available versions All available versions All available versions

US West (N. Californi
a)

All available versions All available versions All available versions

US West (Oregon) All available versions All available versions All available versions

Amazon RDS Proxy 284

Amazon Relational Database Service User Guide

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

Africa (Cape Town) All available versions All available versions All available versions

Asia Pacific (Hong
Kong)

All available versions All available versions All available versions

Asia Pacific
(Hyderabad)

All available versions All available versions All available versions

Asia Pacific (Jakarta) All available versions All available versions All available versions

Asia Pacific (Malaysia) All available versions All available versions All available versions

Asia Pacific
(Melbourne)

All available versions All available versions All available versions

Asia Pacific (Mumbai) All available versions All available versions All available versions

Asia Pacific (Osaka) All available versions All available versions All available versions

Asia Pacific (Seoul) All available versions All available versions All available versions

Asia Pacific (Singapor
e)

All available versions All available versions All available versions

Asia Pacific (Sydney) All available versions All available versions All available versions

Asia Pacific (Thailand) All available versions All available versions All available versions

Asia Pacific (Tokyo) All available versions All available versions All available versions

Canada (Central) All available versions All available versions All available versions

Canada West
(Calgary)

All available versions All available versions All available versions

China (Beijing) All available versions All available versions All available versions

China (Ningxia) All available versions All available versions All available versions

Amazon RDS Proxy 285

Amazon Relational Database Service User Guide

Region RDS for SQL Server
2019

RDS for SQL Server
2017

RDS for SQL Server
2016

Europe (Frankfurt) All available versions All available versions All available versions

Europe (Ireland) All available versions All available versions All available versions

Europe (London) All available versions All available versions All available versions

Europe (Milan) All available versions All available versions All available versions

Europe (Paris) All available versions All available versions All available versions

Europe (Spain) All available versions All available versions All available versions

Europe (Stockholm) All available versions All available versions All available versions

Europe (Zurich) All available versions All available versions All available versions

Israel (Tel Aviv) All available versions All available versions All available versions

Middle East (Bahrain) All available versions All available versions All available versions

Middle East (UAE) All available versions All available versions All available versions

Mexico (Central) All available versions All available versions All available versions

South America (São
Paulo)

All available versions All available versions All available versions

AWS GovCloud (US-
East)

All available versions All available versions All available versions

AWS GovCloud (US-
West)

All available versions All available versions All available versions

Amazon RDS Proxy 286

Amazon Relational Database Service User Guide

Supported Regions and DB engines for the Secrets Manager integration
with Amazon RDS

With AWS Secrets Manager, you can replace hard-coded credentials in your code, including
database passwords, with an API call to Secrets Manager to retrieve the secret programmatically.
For more information about Secrets Manager, see AWS Secrets Manager User Guide.

You can specify that Amazon RDS manages the master user password in Secrets Manager for an
Amazon RDS DB instance or Multi-AZ DB cluster. RDS generates the password, stores it in Secrets
Manager, and rotates it regularly. For more information, see Password management with Amazon
RDS and AWS Secrets Manager.

Secrets Manager integration is available in all AWS Regions.

Supported Regions and DB engines for Amazon RDS zero-ETL
integrations with Amazon Redshift

RDS zero-ETL integrations with Amazon Redshift is a fully managed solution for making
transactional data available in Amazon Redshift after it's written to an Amazon RDS DB instance.
For more information, see Zero-ETL integrations.

Topics

• Zero-ETL integrations with RDS for MySQL

Zero-ETL integrations with RDS for MySQL

The following Regions and engine versions are available for RDS for MySQL zero-ETL integrations
with Amazon Redshift.

Region RDS for MySQL 8.4 RDS for MySQL 8.0

US East (N.
Virginia)

All available versions All available versions

US East
(Ohio)

All available versions All available versions

Secrets Manager integration 287

https://docs.aws.amazon.com/secretsmanager/latest/userguide/

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0

US West (N.
California)

All available versions All available versions

US West
(Oregon)

All available versions All available versions

Africa (Cape
Town)

All available versions All available versions

Asia Pacific
(Hong Kong)

All available versions All available versions

Asia Pacific
(Hyderabad)

Not available Not available

Asia Pacific
(Jakarta)

Not available Not available

Asia Pacific
(Malaysia)

Not available Not available

Asia Pacific
(Melbourne)

Not available Not available

Asia Pacific
(Mumbai)

All available versions All available versions

Asia Pacific
(Osaka)

All available versions All available versions

Asia Pacific
(Seoul)

All available versions All available versions

Asia Pacific
(Singapore)

All available versions All available versions

Asia Pacific
(Sydney)

All available versions All available versions

Zero-ETL integrations 288

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0

Asia Pacific
(Tokyo)

All available versions All available versions

Canada
(Central)

All available versions All available versions

Canada West
(Calgary)

Not available Not available

China
(Beijing)

Not available Not available

China
(Ningxia)

Not available Not available

Europe
(Frankfurt)

All available versions All available versions

Europe
(Ireland)

All available versions All available versions

Europe
(London)

All available versions All available versions

Europe
(Milan)

All available versions All available versions

Europe
(Paris)

All available versions All available versions

Europe
(Spain)

Not available Not available

Europe
(Stockholm)

All available versions All available versions

Europe
(Zurich)

Not available Not available

Zero-ETL integrations 289

Amazon Relational Database Service User Guide

Region RDS for MySQL 8.4 RDS for MySQL 8.0

Israel (Tel
Aviv)

Not available Not available

Middle East
(Bahrain)

All available versions All available versions

Middle East
(UAE)

Not available Not available

South
America (São
Paulo)

All available versions All available versions

AWS
GovCloud
(US-East)

Not available Not available

AWS
GovCloud
(US-West)

Not available Not available

Engine-native features in Amazon RDS

Amazon RDS database engines also support many of the most common engine-native features and
functionality. These features are different than the Amazon RDS-native features listed on this page.
Some engine-native features might have limited support or restricted privileges.

For more information on engine-native features, see:

• Amazon RDS for Db2 features

• MariaDB feature support on Amazon RDS

• MySQL feature support on Amazon RDS

• RDS for Oracle features

• Working with PostgreSQL features supported by Amazon RDS for PostgreSQL

• Microsoft SQL Server features on Amazon RDS

Engine-native features 290

Amazon Relational Database Service User Guide

Engine-native features 291

Amazon Relational Database Service User Guide

DB instance billing for Amazon RDS

Amazon RDS instances are billed based on the following components:

• DB instance hours (per hour) – Based on the DB instance class of the DB instance (for example,
db.t2.small or db.m4.large). Pricing is listed on a per-hour basis, but bills are calculated down to
the second and show times in decimal form. RDS usage is billed in 1-second increments, with a
minimum of 10 minutes. For more information, see DB instance classes.

• Storage (per GiB per month) – Storage capacity that you have provisioned to your DB instance.
If you scale your provisioned storage capacity within the month, your bill is prorated. For more
information, see Amazon RDS DB instance storage.

• Input/output (I/O) requests (per 1 million requests) – Total number of storage I/O requests that
you have made in a billing cycle, for Amazon RDS magnetic storage only.

• Provisioned IOPS (per IOPS per month) – Provisioned IOPS rate, regardless of IOPS consumed,
for Amazon RDS Provisioned IOPS (SSD) and General Purpose (SSD) gp3 storage. Provisioned
storage for EBS volumes are billed in 1-second increments, with a minimum of 10 minutes.

• Backup storage (per GiB per month) – Backup storage is the storage that is associated with
automated database backups and any active database snapshots that you have taken. Increasing
your backup retention period or taking additional database snapshots increases the backup
storage consumed by your database. Per second billing doesn't apply to backup storage (metered
in GB-month).

For more information, see Backing up, restoring, and exporting data.

• Data transfer (per GB) – Data transfer in and out of your DB instance from or to the internet and
other AWS Regions. For useful examples, see the AWS blog post Exploring Data Transfer Costs
for AWS Managed Databases.

Amazon RDS provides the following purchasing options to enable you to optimize your costs based
on your needs:

• On-Demand instances – Pay by the hour for the DB instance hours that you use. Pricing is listed
on a per-hour basis, but bills are calculated down to the second and show times in decimal form.
RDS usage is now billed in 1-second increments, with a minimum of 10 minutes.

• Reserved instances – Reserve a DB instance for a one-year or three-year term and get a
significant discount compared to the on-demand DB instance pricing. With Reserved Instance

DB instance billing for Amazon RDS 292

https://aws.amazon.com/blogs/architecture/exploring-data-transfer-costs-for-aws-managed-databases
https://aws.amazon.com/blogs/architecture/exploring-data-transfer-costs-for-aws-managed-databases

Amazon Relational Database Service User Guide

usage, you can launch, delete, start, or stop multiple instances within an hour and get the
Reserved Instance benefit for all of the instances.

For Amazon RDS pricing information, see the Amazon RDS pricing page.

Topics

• On-Demand DB instances for Amazon RDS

• Reserved DB instances for Amazon RDS

DB instance billing for Amazon RDS 293

https://aws.amazon.com/rds/pricing

Amazon Relational Database Service User Guide

On-Demand DB instances for Amazon RDS

Amazon RDS on-demand DB instances are billed based on the class of the DB instance (for
example, db.t3.small or db.m5.large). For Amazon RDS pricing information, see the Amazon RDS
product page.

Billing starts for a DB instance as soon as the DB instance is available. Pricing is listed on a per-hour
basis, but bills are calculated down to the second and show times in decimal form. Amazon RDS
usage is billed in one-second increments, with a minimum of 10 minutes. In the case of billable
configuration change, such as scaling compute or storage capacity, you're charged a 10-minute
minimum. Billing continues until the DB instance terminates, which occurs when you delete the DB
instance or if the DB instance fails.

If you no longer want to be charged for your DB instance, you must stop or delete it to avoid being
billed for additional DB instance hours. For more information about the DB instance states for
which you are billed, see Viewing Amazon RDS DB instance status.

Stopped DB instances

While your DB instance is stopped, you're charged for provisioned storage, including Provisioned
IOPS. You are also charged for backup storage, including storage for manual snapshots and
automated backups within your specified retention window. You aren't charged for DB instance
hours.

Multi-AZ DB instances

A Multi-AZ setup enhances data durability and availability by automatically provisioning and
maintaining a synchronous standby replica in a different Availability Zone. Due to the additional
resources and increased availability, Multi-AZ deployments are priced higher than Single-AZ
deployments, and can cost approximately twice as much due to the additional standby instance
and associated resources.

Consider the following important details about Multi-AZ pricing:

• Compute costs: Billed per DB instance-hour for both the primary and standby instances.

• Storage costs: Charged per GB-month for the storage provisioned for both the primary and
standby instances.

• Data transfer costs: Replication between the primary and standby instances is included in the
cost, but other data transfer charges might apply based on your usage.

On-Demand DB instances 294

https://aws.amazon.com/rds/pricing
https://aws.amazon.com/rds/pricing

Amazon Relational Database Service User Guide

To accurately estimate your monthly costs based on your specific use case and AWS Region, you
can use the AWS Pricing Calculator. This tool lets you to input your configuration details and
provides a comprehensive cost breakdown.

Note

Pricing is subject to change. See the Amazon RDS Pricing page for the most up-to-date
information.

On-Demand DB instances 295

https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

Reserved DB instances for Amazon RDS

Using reserved DB instances, you can reserve a DB instance for a one- or three-year term. Reserved
DB instances provide you with a significant discount compared to on-demand DB instance pricing.
Reserved DB instances are not physical instances, but rather a billing discount applied to the use
of certain on-demand DB instances in your account. Discounts for reserved DB instances are tied to
instance type and AWS Region.

The general process for working with reserved DB instances is: First get information about available
reserved DB instance offerings, then purchase a reserved DB instance offering, and finally get
information about your existing reserved DB instances.

For information about purchasing reserved DB instances and viewing the billing for reserved DB
instances, see the following sections.

• Purchasing reserved DB instances for Amazon RDS

• Viewing the billing for reserved DB instances for Amazon RDS

Overview of reserved DB instances

When you purchase a reserved DB instance in Amazon RDS, you purchase a commitment to getting
a discounted rate, on a specific DB instance type, for the duration of the reserved DB instance. To
use an Amazon RDS reserved DB instance, you create a new DB instance just like you do for an on-
demand instance.

The new DB instance that you create must have the same specifications as the reserved DB instance
for the following:

• AWS Region

• DB engine (The DB engine's version number doesn't need to match.)

• DB instance type

• DB instance size (RDS for Microsoft SQL Server and Amazon RDS for Oracle License Included)

• Edition (RDS for SQL Server and RDS for Oracle)

• License type (license-included or bring-your-own-license)

Reserved DB instances 296

Amazon Relational Database Service User Guide

If the specifications of the new DB instance match an existing reserved DB instance for your
account, you are billed at the discounted rate offered for the reserved DB instance. Otherwise, the
DB instance is billed at an on-demand rate.

You can modify a DB instance that you're using as a reserved DB instance. If the modification is
within the specifications of the reserved DB instance, part or all of the discount still applies to
the modified DB instance. If the modification is outside the specifications, such as changing the
instance class, the discount no longer applies. For more information, see Size-flexible reserved DB
instances.

Topics

• Offering types

• Size-flexible reserved DB instances

• Reserved DB instance billing example

• Reserved DB instances for a Multi-AZ DB cluster

• Deleting a reserved DB instance

For more information about reserved DB instances, including pricing, see Amazon RDS reserved
instances.

Offering types

Reserved DB instances are available in three varieties—No Upfront, Partial Upfront, and All Upfront
—that let you optimize your Amazon RDS costs based on your expected usage.

Note

Not all RDS instance classes support all Reserved Instance offering types. For example,
some instance classes might not offer the No Upfront option. To confirm availability, review
the Reserved Instance offerings in the AWS Management Console or use the describe-
reserved-db-instances-offerings AWS CLI command.

No Upfront

This option provides access to a reserved DB instance without requiring an upfront payment.
Your No Upfront reserved DB instance bills a discounted hourly rate for every hour within the

Reserved DB instances 297

http://aws.amazon.com/rds/reserved-instances/#2
http://aws.amazon.com/rds/reserved-instances/#2

Amazon Relational Database Service User Guide

term, regardless of usage, and no upfront payment is required. This option is only available as a
one-year reservation.

Partial Upfront

This option requires a part of the reserved DB instance to be paid upfront. The remaining
hours in the term are billed at a discounted hourly rate, regardless of usage. This option is the
replacement for the previous Heavy Utilization option.

All Upfront

Full payment is made at the start of the term, with no other costs incurred for the remainder of
the term regardless of the number of hours used.

If you are using consolidated billing, all the accounts in the organization are treated as one
account. This means that all accounts in the organization can receive the hourly cost benefit
of reserved DB instances that are purchased by any other account. For more information
about consolidated billing, see Amazon RDS reserved DB instances in the AWS Billing and Cost
Management User Guide.

Size-flexible reserved DB instances

When you purchase a reserved DB instance, one thing that you specify is the instance class, for
example db.r5.large. For more information about DB instance classes, see DB instance classes.

If you have a DB instance, and you need to scale it to larger capacity, your reserved DB instance
is automatically applied to your scaled DB instance. That is, your reserved DB instances are
automatically applied across all DB instance class sizes. Size-flexible reserved DB instances are
available for DB instances with the same AWS Region and database engine. Size-flexible reserved
DB instances can only scale in their instance class type. For example, a reserved DB instance for
a db.r5.large can apply to a db.r5.xlarge, but not to a db.r6g.large, because db.r5 and db.r6g are
different instance class types.

Reserved DB instance benefits apply to both Multi-AZ and Single-AZ configurations. This means
that you can move freely between configurations within the same DB instance class type. For
example, you can move from a Single-AZ deployment running on one large DB instance (four
normalized units per hour) to a Multi-AZ deployment running on two medium DB instances (2+2 =
4 normalized units per hour).

Size-flexible reserved DB instances are available for the following Amazon RDS database engines:

Reserved DB instances 298

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidatedbilling-other.html#consolidatedbilling-rds

Amazon Relational Database Service User Guide

• RDS for MariaDB

• RDS for MySQL

• RDS for Oracle, Bring Your Own License

• RDS for PostgreSQL

Size flexibility does not apply to RDS for SQL Server and RDS for Oracle License Included.

For details about using size-flexible reserved instances with Aurora, see Reserved DB instances for
Aurora.

You can compare usage for different reserved DB instance sizes by using normalized units per hour.
For example, one unit of usage on two db.r3.large DB instances is equivalent to eight normalized
units per hour of usage on one db.r3.small. The following table shows the number of normalized
units per hour for each DB instance size.

Instance size Single-AZ normalize
d units per hour
(deployment with
one DB instance)

Multi-AZ DB instance
normalized units per
hour (deployment
with one DB instance
and one standby)

Multi-AZ DB cluster
normalized units per
hour (deployment
with one DB instance
and two standbys)

micro 0.5 1 1.5

small 1 2 3

medium 2 4 6

large 4 8 12

xlarge 8 16 24

2xlarge 16 32 48

4xlarge 32 64 96

6xlarge 48 96 144

8xlarge 64 128 192

Reserved DB instances 299

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithReservedDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithReservedDBInstances.html

Amazon Relational Database Service User Guide

Instance size Single-AZ normalize
d units per hour
(deployment with
one DB instance)

Multi-AZ DB instance
normalized units per
hour (deployment
with one DB instance
and one standby)

Multi-AZ DB cluster
normalized units per
hour (deployment
with one DB instance
and two standbys)

10xlarge 80 160 240

12xlarge 96 192 288

16xlarge 128 256 384

24xlarge 192 384 576

32xlarge 256 512 768

For example, suppose that you purchase a db.t2.medium reserved DB instance, and you have
two running db.t2.small DB instances in your account in the same AWS Region. In this case, the
billing benefit is applied in full to both instances.

Alternatively, if you have one db.t2.large instance running in your account in the same AWS
Region, the billing benefit is applied to 50 percent of the usage of the DB instance.

Reserved DB instances 300

Amazon Relational Database Service User Guide

Reserved DB instance billing example

The price for a reserved DB instance doesn't provide a discount for the costs associated with
storage, backups, and I/O. It provides a discount only on the hourly, on-demand instance usage.
The following example illustrates the total cost per month for a reserved DB instance:

• An RDS for MySQL reserved Single-AZ db.r5.large DB instance class in US East (N. Virginia) with
the No Upfront option at a cost of $0.12 for the instance, or $90 per month

• 400 GiB of General Purpose SSD (gp2) storage at a cost of 0.115 per GiB per month, or $45.60
per month

• 600 GiB of backup storage at $0.095, or $19 per month (400 GiB free)

Add all of these charges ($90 + $45.60 + $19) with the reserved DB instance, and the total cost per
month is $154.60.

If you choose to use an on-demand DB instance instead of a reserved DB instance, an RDS for
MySQL Single-AZ db.r5.large DB instance class in US East (N. Virginia) costs $0.1386 per hour, or
$101.18 per month. So, for an on-demand DB instance, add all of these options ($101.18 + $45.60
+ $19), and the total cost per month is $165.78. You save a little over $11 per month by using the
reserved DB instance.

Reserved DB instances 301

Amazon Relational Database Service User Guide

Note

The prices in this example are sample prices and might not match actual prices. For Amazon
RDS pricing information, see Amazon RDS pricing.

Reserved DB instances for a Multi-AZ DB cluster

To purchase the equivalent reserved DB instances for a Multi-AZ DB cluster, you can do one of the
following:

• Reserve three Single-AZ DB instances that are the same size as the instances in the cluster.

• Reserve one Multi-AZ DB instance and one Single-AZ DB instance that are the same size as the
DB instances in the cluster.

For example, suppose that you have one cluster consisting of three db.m6gd.large DB instances.
In this case, you can either purchase three db.m6gd.large Single-AZ reserved DB instances, or
one db.m6gd.large Multi-AZ reserved DB instance and one db.m6gd.large Single-AZ reserved DB
instance. Either of these options reserves the maximum reserved instance discount for the Multi-AZ
DB cluster.

Alternately, you can use size-flexible DB instances and purchase a larger DB instance to cover
smaller DB instances in one or more clusters. For example, if you have two clusters with six total
db.m6gd.large DB instances, you can purchase three db.m6gd.xl Single-AZ reserved DB instances.
Doing so reserves all six DB instances in the two clusters. For more information, see Size-flexible
reserved DB instances.

You might reserve DB instances that are the same size as the DB instances in the cluster, but
reserve fewer DB instances than the total number of DB instances in the cluster. However, if you
do so, the cluster is only partially reserved. For example, suppose that you have one cluster with
three db.m6gd.large DB instances, and you purchase one db.m6gd.large Multi-AZ reserved DB
instance. In this case, the cluster is only partially reserved, because only two of the three instances
in the cluster are covered by reserved DB instances. The remaining DB instance is charged at the
on-demand db.m6gd.large hourly rate.

For more information about Multi-AZ DB clusters, see Multi-AZ DB cluster deployments for Amazon
RDS.

Reserved DB instances 302

https://aws.amazon.com/rds/pricing

Amazon Relational Database Service User Guide

Deleting a reserved DB instance

The terms for a reserved DB instance involve a one-year or three-year commitment. You can't
cancel a reserved DB instance. However, you can delete a DB instance that is covered by a reserved
DB instance discount. The process for deleting a DB instance that is covered by a reserved DB
instance discount is the same as for any other DB instance.

You're billed for the upfront costs regardless of whether you use the resources.

If you delete a DB instance that is covered by a reserved DB instance discount, you can launch
another DB instance with compatible specifications. In this case, you continue to get the discounted
rate during the reservation term (one or three years).

Purchasing reserved DB instances for Amazon RDS

You can use the AWS Management Console, the AWS CLI, and the RDS API to work with reserved
DB instances.

Console

You can use the AWS Management Console to work with reserved DB instances as shown in the
following procedures.

To get pricing and information about available reserved DB instance offerings

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Reserved instances.

3. Choose Purchase Reserved DB Instance.

4. For Product description, choose the DB engine and licensing type.

5. For DB instance class, choose the DB instance class.

6. For Deployment Option, choose whether you want a Single-AZ or Multi-AZ DB instance
deployment.

Note

To purchase the equivalent reserved DB instances for a Multi-AZ DB cluster
deployment, either purchase three Single-AZ reserved DB instances, or one Multi-

Reserved DB instances 303

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AZ and one Single-AZ reserved DB instance. For more information, see Reserved DB
instances for a Multi-AZ DB cluster.

7. For Term, choose the length of time to reserve the the DB instance.

8. For Offering type, choose the offering type.

After you select the offering type, you can see the pricing information.

Important

Choose Cancel to avoid purchasing the reserved DB instance and incurring any charges.

After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering as shown in the following procedure.

To purchase a reserved DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Reserved instances.

3. Choose Purchase reserved DB instance.

4. For Product description, choose the DB engine and licensing type.

5. For DB instance class, choose the DB instance class.

6. For Multi-AZ deployment, choose whether you want a Single-AZ or Multi-AZ DB instance
deployment.

Note

To purchase the equivalent reserved DB instances for a Multi-AZ DB cluster
deployment, either purchase three Single-AZ reserved DB instances, or one Multi-
AZ and one Single-AZ reserved DB instance. For more information, see Reserved DB
instances for a Multi-AZ DB cluster.

7. For Term, choose the length of time you want the DB instance reserved.

8. For Offering type, choose the offering type.

Reserved DB instances 304

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

After you choose the offering type, you can see the pricing information.

9. (Optional) You can assign your own identifier to the reserved DB instances that you purchase
to help you track them. For Reserved Id, type an identifier for your reserved DB instance.

10. Choose Submit.

Your reserved DB instance is purchased, then displayed in the Reserved instances list.

After you have purchased reserved DB instances, you can get information about your reserved DB
instances as shown in the following procedure.

To get information about reserved DB instances for your AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Navigation pane, choose Reserved instances.

The reserved DB instances for your account appear. To see detailed information about a
particular reserved DB instance, choose that instance in the list. You can then see detailed
information about that instance in the detail pane at the bottom of the console.

AWS CLI

You can use the AWS CLI to work with reserved DB instances as shown in the following examples.

Example of getting available reserved DB instance offerings

To get information about available reserved DB instance offerings, call the AWS CLI command
describe-reserved-db-instances-offerings.

aws rds describe-reserved-db-instances-offerings

This call returns output similar to the following:

OFFERING OfferingId Class Multi-AZ Duration Fixed
 Price Usage Price Description Offering Type
OFFERING 438012d3-4052-4cc7-b2e3-8d3372e0e706 db.r3.large y 1y
 1820.00 USD 0.368 USD mysql Partial Upfront

Reserved DB instances 305

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances-offerings.html

Amazon Relational Database Service User Guide

OFFERING 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f db.r3.small n 1y
 227.50 USD 0.046 USD mysql Partial Upfront
OFFERING 123456cd-ab1c-47a0-bfa6-12345667232f db.r3.small n 1y
 162.00 USD 0.00 USD mysql All Upfront
 Recurring Charges: Amount Currency Frequency
 Recurring Charges: 0.123 USD Hourly
OFFERING 123456cd-ab1c-37a0-bfa6-12345667232d db.r3.large y 1y
 700.00 USD 0.00 USD mysql All Upfront
 Recurring Charges: Amount Currency Frequency
 Recurring Charges: 1.25 USD Hourly
OFFERING 123456cd-ab1c-17d0-bfa6-12345667234e db.r3.xlarge n 1y
 4242.00 USD 2.42 USD mysql No Upfront

After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering.

To purchase a reserved DB instance, use the AWS CLI command purchase-reserved-db-
instances-offering with the following parameters:

• --reserved-db-instances-offering-id – The ID of the offering that you want to
purchase. See the preceding example to get the offering ID.

• --reserved-db-instance-id – You can assign your own identifier to the reserved DB
instances that you purchase to help track them.

Example of purchasing a reserved DB instance

The following example purchases the reserved DB instance offering with ID 649fd0c8-
cf6d-47a0-bfa6-060f8e75e95f, and assigns the identifier of MyReservation.

For Linux, macOS, or Unix:

aws rds purchase-reserved-db-instances-offering \
 --reserved-db-instances-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f \
 --reserved-db-instance-id MyReservation

For Windows:

aws rds purchase-reserved-db-instances-offering ^
 --reserved-db-instances-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f ^
 --reserved-db-instance-id MyReservation

Reserved DB instances 306

https://docs.aws.amazon.com/cli/latest/reference/rds/purchase-reserved-db-instances-offering.html
https://docs.aws.amazon.com/cli/latest/reference/rds/purchase-reserved-db-instances-offering.html

Amazon Relational Database Service User Guide

The command returns output similar to the following:

RESERVATION ReservationId Class Multi-AZ Start Time
 Duration Fixed Price Usage Price Count State Description Offering Type
RESERVATION MyReservation db.r3.small y 2011-12-19T00:30:23.247Z 1y
 455.00 USD 0.092 USD 1 payment-pending mysql Partial Upfront

After you have purchased reserved DB instances, you can get information about your reserved DB
instances.

To get information about reserved DB instances for your AWS account, call the AWS CLI command
describe-reserved-db-instances, as shown in the following example.

Example of getting your reserved DB instances

aws rds describe-reserved-db-instances

The command returns output similar to the following:

RESERVATION ReservationId Class Multi-AZ Start Time
 Duration Fixed Price Usage Price Count State Description Offering Type
RESERVATION MyReservation db.r3.small y 2011-12-09T23:37:44.720Z 1y
 455.00 USD 0.092 USD 1 retired mysql Partial Upfront

RDS API

You can use the RDS API to work with reserved DB instances:

• To get information about available reserved DB instance offerings, call the Amazon RDS API
operation DescribeReservedDBInstancesOfferings.

• After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering. Call the PurchaseReservedDBInstancesOffering RDS
API operation with the following parameters:

• --reserved-db-instances-offering-id – The ID of the offering that you want to
purchase.

• --reserved-db-instance-id – You can assign your own identifier to the reserved DB
instances that you purchase to help track them.

• After you have purchased reserved DB instances, you can get information about your reserved
DB instances. Call the DescribeReservedDBInstances RDS API operation.

Reserved DB instances 307

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstancesOfferings.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PurchaseReservedDBInstancesOffering.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstances.html

Amazon Relational Database Service User Guide

Viewing the billing for reserved DB instances for Amazon RDS

You can view the billing for your reserved DB instances in the Billing Dashboard in the AWS
Management Console.

To view reserved DB instance billing

1. Sign in to the AWS Management Console.

2. From the account menu at the upper right, choose Billing Dashboard.

3. Choose Bill Details at the upper right of the dashboard.

4. Under AWS Service Charges, expand Relational Database Service.

5. Expand the AWS Region where your reserved DB instances are, for example US West (Oregon).

Your reserved DB instances and their hourly charges for the current month are shown under
Amazon Relational Database Service for Database Engine Reserved Instances.

The reserved DB instance in this example was purchased All Upfront, so there are no hourly
charges.

6. Choose the Cost Explorer (bar graph) icon next to the Reserved Instances heading.

The Cost Explorer displays the Monthly EC2 running hours costs and usage graph.

7. Clear the Usage Type Group filter to the right of the graph.

8. Choose the time period and time unit for which you want to examine usage costs.

The following example shows usage costs for on-demand and reserved DB instances for the
year to date by month.

Reserved DB instances 308

Amazon Relational Database Service User Guide

The reserved DB instance costs from January through June 2021 are monthly charges for a
Partial Upfront instance, while the cost in August 2021 is a one-time charge for an All Upfront
instance.

The reserved instance discount for the Partial Upfront instance expired in June 2021, but the
DB instance wasn't deleted. After the expiration date, it was simply charged at the on-demand
rate.

Reserved DB instances 309

Amazon Relational Database Service User Guide

Setting up your Amazon RDS environment

This page provides a comprehensive guide for setting up Amazon Relational Database Service,
including account configuration, security, and resource management. It walks you through the
essential steps to create, manage, and secure your database environments efficiently. Whether
you're new to Amazon RDS or setting up for specific requirements, these sections help ensure your
setup is optimized and compliant with best practices.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Grant programmatic access

• Determine requirements

• Provide access to your DB instance in your VPC by creating a security group

If you already have an AWS account, know your Amazon RDS requirements, and prefer to use the
defaults for IAM and VPC security groups, skip ahead to Getting started with Amazon RDS.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Sign up for an AWS account 310

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Amazon Relational Database Service User Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create a user with administrative access 311

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon Relational Database Service User Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in

Grant programmatic access 312

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Amazon Relational Database Service User Guide

Which user needs
programmatic access?

To By

the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Determine requirements

The basic building block of Amazon RDS is the DB instance. In a DB instance, you create your
databases. A DB instance provides a network address called an endpoint. Your applications use this
endpoint to connect to your DB instance. When you create a DB instance, you specify details like
storage, memory, database engine and version, network configuration, security, and maintenance
periods. You control network access to a DB instance through a security group.

Determine requirements 313

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Relational Database Service User Guide

Before you create a DB instance and a security group, you must know your DB instance and
network needs. Here are some important things to consider:

• Resource requirements – What are the memory and processor requirements for your application
or service? You use these settings to help you determine what DB instance class to use. For
specifications about DB instance classes, see DB instance classes.

• VPC, subnet, and security group – Your DB instance will most likely be in a virtual private cloud
(VPC). To connect to your DB instance, you need to set up security group rules. These rules are
set up differently depending on what kind of VPC you use and how you use it. For example, you
can use: a default VPC or a user-defined VPC.

The following list describes the rules for each VPC option:

• Default VPC – If your AWS account has a default VPC in the current AWS Region, that VPC is
configured to support DB instances. If you specify the default VPC when you create the DB
instance, do the following:

• Make sure to create a VPC security group that authorizes connections from the application or
service to the Amazon RDS DB instance. Use the Security Group option on the VPC console
or the AWS CLI to create VPC security groups. For information, see Step 3: Create a VPC
security group.

• Specify the default DB subnet group. If this is the first DB instance you have created in
this AWS Region, Amazon RDS creates the default DB subnet group when it creates the DB
instance.

• User-defined VPC – If you want to specify a user-defined VPC when you create a DB instance,
be aware of the following:

• Make sure to create a VPC security group that authorizes connections from the application or
service to the Amazon RDS DB instance. Use the Security Group option on the VPC console
or the AWS CLI to create VPC security groups. For information, see Step 3: Create a VPC
security group.

• The VPC must meet certain requirements in order to host DB instances, such as having at
least two subnets, each in a separate Availability Zone. For information, see Amazon VPC
and Amazon RDS.

• Make sure to specify a DB subnet group that defines which subnets in that VPC can be used
by the DB instance. For information, see the DB subnet group section in Working with a DB
instance in a VPC.

Determine requirements 314

Amazon Relational Database Service User Guide

• High availability – Do you need failover support? On Amazon RDS, a Multi-AZ deployment
creates a primary DB instance and a secondary standby DB instance in another Availability
Zone for failover support. We recommend Multi-AZ deployments for production workloads to
maintain high availability. For development and test purposes, you can use a deployment that
isn't Multi-AZ. For more information, see Configuring and managing a Multi-AZ deployment for
Amazon RDS.

• IAM policies – Does your AWS account have policies that grant the permissions needed to
perform Amazon RDS operations? If you are connecting to AWS using IAM credentials, your IAM
account must have IAM policies that grant the permissions required to perform Amazon RDS
operations. For more information, see Identity and access management for Amazon RDS.

• Open ports – What TCP/IP port does your database listen on? The firewalls at some companies
might block connections to the default port for your database engine. If your company firewall
blocks the default port, choose another port for the new DB instance. When you create a
DB instance that listens on a port you specify, you can change the port by modifying the DB
instance.

• AWS Region – What AWS Region do you want your database in? Having your database in close
proximity to your application or web service can reduce network latency. For more information,
see Regions, Availability Zones, and Local Zones.

• DB disk subsystem – What are your storage requirements? Amazon RDS provides three storage
types:

• General Purpose (SSD)

• Provisioned IOPS (PIOPS)

• Magnetic (also known as standard storage)

For more information on Amazon RDS storage, see Amazon RDS DB instance storage.

When you have the information you need to create the security group and the DB instance,
continue to the next step.

Provide access to your DB instance in your VPC by creating a
security group

VPC security groups provide access to DB instances in a VPC. They act as a firewall for the
associated DB instance, controlling both inbound and outbound traffic at the DB instance level. DB

Provide access to your DB instance 315

Amazon Relational Database Service User Guide

instances are created by default with a firewall and a default security group that protect the DB
instance.

Before you can connect to your DB instance, you must add rules to a security group that enable you
to connect. Use your network and configuration information to create rules to allow access to your
DB instance.

For example, suppose that you have an application that accesses a database on your DB instance in
a VPC. In this case, you must add a custom TCP rule that specifies the port range and IP addresses
that your application uses to access the database. If you have an application on an Amazon EC2
instance, you can use the security group that you set up for the Amazon EC2 instance.

You can configure connectivity between an Amazon EC2 instance a DB instance when you create
the DB instance. For more information, see Configure automatic network connectivity with an EC2
instance.

Tip

You can set up network connectivity between an Amazon EC2 instance and a DB instance
automatically when you create the DB instance. For more information, see Configure
automatic network connectivity with an EC2 instance.

For information about how to connect resources in Amazon Lightsail to your DB instances, see
Connect Lightsail resources to AWS services using VPC peering.

For information about common scenarios for accessing a DB instance, see Scenarios for accessing a
DB instance in a VPC.

To create a VPC security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

Note

Make sure you are in the VPC console, not the RDS console.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region where you
want to create your VPC security group and DB instance. In the list of Amazon VPC resources

Provide access to your DB instance 316

https://docs.aws.amazon.com/lightsail/latest/userguide/using-lightsail-with-other-aws-services.html
https://docs.aws.amazon.com/lightsail/latest/userguide/using-lightsail-with-other-aws-services.html
https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon Relational Database Service User Guide

for that AWS Region, you should see at least one VPC and several subnets. If you don't, you
don't have a default VPC in that AWS Region.

3. In the navigation pane, choose Security Groups.

4. Choose Create security group.

The Create security group page appears.

5. In Basic details, enter the Security group name and Description. For VPC, choose the VPC
that you want to create your DB instance in.

6. In Inbound rules, choose Add rule.

a. For Type, choose Custom TCP.

b. For Port range, enter the port value to use for your DB instance.

c. For Source, choose a security group name or type the IP address range (CIDR value)
from where you access the DB instance. If you choose My IP, this allows access to the DB
instance from the IP address detected in your browser.

7. If you need to add more IP addresses or different port ranges, choose Add rule and enter the
information for the rule.

8. (Optional) In Outbound rules, add rules for outbound traffic. By default, all outbound traffic is
allowed.

9. Choose Create security group.

You can use the VPC security group that you just created as the security group for your DB instance
when you create it.

Note

If you use a default VPC, a default subnet group spanning all of the VPC's subnets is
created for you. When you create a DB instance, you can select the default VPC and use
default for DB Subnet Group.

After you have completed the setup requirements, you can create a DB instance using your
requirements and security group. To do so, follow the instructions in Creating an Amazon RDS DB
instance. For information about getting started by creating a DB instance that uses a specific DB
engine, see the relevant documentation in the following table.

Provide access to your DB instance 317

Amazon Relational Database Service User Guide

Database engine Documentation

MariaDB Creating and connecting to a MariaDB DB instance

Microsoft SQL Server Creating and connecting to a Microsoft SQL Server DB instance

MySQL Creating and connecting to a MySQL DB instance

Oracle Creating and connecting to an Oracle DB instance

PostgreSQL Creating and connecting to a PostgreSQL DB instance

Note

If you can't connect to a DB instance after you create it, see the troubleshooting
information in Can't connect to Amazon RDS DB instance.

Provide access to your DB instance 318

Amazon Relational Database Service User Guide

Getting started with Amazon RDS

In the following examples, you can find how to create and connect to a DB instance using Amazon
Relational Database Service (Amazon RDS). You can create a DB instance that uses Db2, MariaDB,
MySQL, Microsoft SQL Server, Oracle, or PostgreSQL.

Important

Before you can create or connect to a DB instance, make sure to complete the tasks in
Setting up your Amazon RDS environment.

Creating a DB instance and connecting to a database on a DB instance is slightly different for
each of the DB engines. Choose one of the following DB engines that you want to use for detailed
information on creating and connecting to the DB instance. After you have created and connected
to your DB instance, there are instructions to help you delete the DB instance.

Topics

• Creating and connecting to a MariaDB DB instance

• Creating and connecting to a Microsoft SQL Server DB instance

• Creating and connecting to a MySQL DB instance

• Creating and connecting to an Oracle DB instance

• Creating and connecting to a PostgreSQL DB instance

• Tutorial: Create a web server and an Amazon RDS DB instance

• Tutorial: Using a Lambda function to access an Amazon RDS database

319

Amazon Relational Database Service User Guide

Creating and connecting to a MariaDB DB instance

This tutorial creates an EC2 instance and an RDS for MariaDB DB instance. The tutorial shows you
how to access the DB instance from the EC2 instance using a standard MySQL client. As a best
practice, this tutorial creates a private DB instance in a virtual private cloud (VPC). In most cases,
other resources in the same VPC, such as EC2 instances, can access the DB instance, but resources
outside of the VPC can't access it.

After you complete the tutorial, there is a public and private subnet in each Availability Zone in
your VPC. In one Availability Zone, the EC2 instance is in the public subnet, and the DB instance is
in the private subnet.

Important

There's no charge for creating an AWS account. However, by completing this tutorial,
you might incur costs for the resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

The following diagram shows the configuration when the tutorial is complete.

This tutorial allows you to create your resources by using one of the following methods:

Creating and connecting to a MariaDB DB instance 320

Amazon Relational Database Service User Guide

1. Use the AWS Management Console ‐ Create an EC2 instance and Create a MariaDB DB instance

2. Use AWS CloudFormation to create the database instance and EC2 instance ‐ (Optional) Create
VPC, EC2 instance, and MariaDB instance using AWS CloudFormation

The first method uses Easy create to create a private MariaDB DB instance with the AWS
Management Console. Here, you specify only the DB engine type, DB instance size, and DB instance
identifier. Easy create uses the default settings for the other configuration options.

When you use Standard create instead, you can specify more configuration options when you
create a DB instance. These options include settings for availability, security, backups, and
maintenance. To create a public DB instance, you must use Standard create. For information, see
Creating an Amazon RDS DB instance.

Topics

• Prerequisites

• Create an EC2 instance

• Create a MariaDB DB instance

• (Optional) Create VPC, EC2 instance, and MariaDB instance using AWS CloudFormation

• Connect to a MariaDB DB instance

• Delete the EC2 instance and DB instance

• (Optional) Delete the EC2 instance and DB instance created with CloudFormation

• (Optional) Connect your DB instance to a Lambda function

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Create an EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

Prerequisites 321

Amazon Relational Database Service User Guide

To create an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown in the following image.

The Launch an instance page opens.

Create an EC2 instance 322

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

4. Choose the following settings on the Launch an instance page.

a. Under Name and tags, for Name, enter ec2-database-connect.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux,
and then choose the Amazon Linux 2023 AMI. Keep the default selections for the other
choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

Create an EC2 instance 323

Amazon Relational Database Service User Guide

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

e. For Allow SSH traffic in Network settings, choose the source of SSH connections to the
EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.
Otherwise, you can determine the IP address to use to connect to EC2 instances in your
VPC using Secure Shell (SSH). To determine your public IP address, in a different browser
window or tab, you can use the service at https://checkip.amazonaws.com. An example of
an IP address is 192.0.2.1/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range of
IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public EC2 instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your EC2 instances using SSH.

The following image shows an example of the Network settings section.

Create an EC2 instance 324

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair
https://checkip.amazonaws.com/

Amazon Relational Database Service User Guide

f. Leave the default values for the remaining sections.

g. Review a summary of your EC2 instance configuration in the Summary panel, and when
you're ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Create an EC2 instance 325

Amazon Relational Database Service User Guide

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Create an EC2 instance 326

Amazon Relational Database Service User Guide

8. Wait until the Instance state for your EC2 instance has a status of Running before continuing.

Create a MariaDB DB instance

The basic building block of Amazon RDS is the DB instance. This environment is where you run your
MariaDB databases.

In this example, you use Easy create to create a DB instance running the MariaDB database engine
with a db.t4g.micro DB instance class.

To create a MariaDB DB instance with Easy create

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the DB instance.

3. In the navigation pane, choose Databases.

4. Choose Create database and select Easy create.

5. In Configuration, choose MariaDB.

6. For DB instance size, choose Free tier.

7. For DB instance identifier, enter database-test1.

8. For Master username, enter a name for the master user, or keep the default name.

The Create database page should look similar to the following image.

Create a MariaDB DB instance 327

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

9. To use an automatically generated master password for the DB instance, select Auto generate
a password.

Create a MariaDB DB instance 328

Amazon Relational Database Service User Guide

To enter your master password, clear Auto generate a password, and then enter the same
password in Master password and Confirm master password.

10. To set up a connection with the EC2 instance you created previously, expand Set up EC2
connection - optional.

Select Connect to an EC2 compute resource. Choose the EC2 instance you created previously.

11. Expand View default settings for Easy create.

Create a MariaDB DB instance 329

Amazon Relational Database Service User Guide

You can examine the default settings used with Easy create. The Editable after database is
created column shows which options you can change after you create the database.

• If a setting has No in that column, and you want a different setting, you can use Standard
create to create the DB instance.

Create a MariaDB DB instance 330

Amazon Relational Database Service User Guide

• If a setting has Yes in that column, and you want a different setting, you can either use
Standard create to create the DB instance, or modify the DB instance after you create it to
change the setting.

12. Choose Create database.

To view the master username and password for the DB instance, choose View credential
details.

You can use the username and password that appears to connect to the DB instance as the
master user.

Important

You can't view the master user password again. If you don't record it, you might have
to change it.
If you need to change the master user password after the DB instance is available,
you can modify the DB instance to do so. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

13. In the Databases list, choose the name of the new MariaDB DB instance to show its details.

The DB instance has a status of Creating until it is ready to use.

When the status changes to Available, you can connect to the DB instance. Depending on
the DB instance class and the amount of storage, it can take up to 20 minutes before the new
instance is available.

Create a MariaDB DB instance 331

Amazon Relational Database Service User Guide

(Optional) Create VPC, EC2 instance, and MariaDB instance using AWS
CloudFormation

Instead of using the console to create your VPC, EC2 instance, and MariaDB instance, you can
use AWS CloudFormation to provision AWS resources by treating infrastructure as code. To help
you organize your AWS resources into smaller and more manageable units, you can use the AWS
CloudFormation nested stack functionality. For more information, see Creating a stack on the AWS
CloudFormation console and Working with nested stacks.

Important

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You
incur the standard usage fees for these resources until you terminate them. The total
charges will be minimal. For information about how you might minimize any charges, go to
AWS Free Tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

• Download the CloudFormation template

• Configure your resources using CloudFormation

Download the CloudFormation template

A CloudFormation template is a JSON or YAML text file that contains the configuration information
about the resources you want to create in the stack. This template also creates a VPC and a bastion
host for you along with the RDS instance.

To download the template file, open the following link, MariaDB CloudFormation template.

In the Github page, click the Download raw file button to save the template YAML file.

Configure your resources using CloudFormation

Note

Before starting this process, make sure you have a Key pair for an EC2 instance in your AWS
account. For more information, see Amazon EC2 key pairs and Linux instances.

(Optional) Create VPC, EC2 instance, and MariaDB instance using AWS CloudFormation 332

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/
https://github.com/aws-ia/cfn-ps-amazon-rds/blob/main/templates/rds-mariadb-main.template.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Relational Database Service User Guide

When you use the AWS CloudFormation template, you must select the correct parameters to make
sure your resources are created properly. Follow the steps below:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation.

2. Choose Create Stack.

3. In the Specify template section, select Upload a template file from your computer, and then
choose Next.

4. In the Specify stack details page, set the following parameters:

a. Set Stack name to MariaDBTestStack.

b. Under Parameters, set Availability Zones by selecting three availability zones.

c. Under Linux Bastion Host configuration, for Key Name, select a key pair to login to your EC2
instance.

d. In Linux Bastion Host configuration settings, set the Permitted IP range to your IP address.
To connect to EC2 instances in your VPC using Secure Shell (SSH), determine your public IP
address using the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses to
access your public EC2 instances using SSH. This approach is acceptable for a short
time in a test environment, but it's unsafe for production environments. In production,
authorize only a specific IP address or range of addresses to access your EC2 instances
using SSH.

e. Under Database General configuration, set Database instance class to db.t3.micro.

f. Set Database name to database-test1.

g. For Database master username, enter a name for the master user.

h. Set Manage DB master user password with Secrets Manager to false for this tutorial.

i. For Database password, set a password of your choice. Remember this password for further
steps in the tutorial.

j. Under Database Storage configuration, set Database storage type to gp2.

k. Under Database Monitoring configuration, set Enable RDS Performance Insights to false.
(Optional) Create VPC, EC2 instance, and MariaDB instance using AWS CloudFormation 333

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://checkip.amazonaws.com

Amazon Relational Database Service User Guide

l. Leave all other settings as the default values. Click Next to continue.

5. In the Review stack page, select Submit after checking the database and Linux bastion host
options.

After the stack creation process completes, view the stacks with names BastionStack and RDSNS
to note the information you need to connect to the database. For more information, see Viewing
AWS CloudFormation stack data and resources on the AWS Management Console.

Connect to a MariaDB DB instance

You can use any standard SQL client application to connect to the DB instance. In this example, you
connect to a MariaDB DB instance using the mysql command-line client.

To connect to a MariaDB DB instance

1. Find the endpoint (DNS name) and port number for your DB instance.

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the upper-right corner of the Amazon RDS console, choose the AWS Region for the DB
instance.

c. In the navigation pane, choose Databases.

d. Choose the MariaDB DB instance name to display its details.

e. On the Connectivity & security tab, copy the endpoint. Also note the port number. You
need both the endpoint and the port number to connect to the DB instance.

Connect to a MariaDB DB instance 334

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

Connect to a MariaDB DB instance 335

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Relational Database Service User Guide

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

3. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do this, use the following command.

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

4. Install the mysql command-line client from MariaDB.

To install the MariaDB command-line client on Amazon Linux 2023, run the following
command:

sudo dnf install mariadb105

5. Connect to the MariaDB DB instance. For example, enter the following command. This action
lets you connect to the MariaDB DB instance using the MySQL client.

Substitute the DB instance endpoint (DNS name) for endpoint, and substitute the master
username that you used for admin. Provide the master password that you used when
prompted for a password.

mysql -h endpoint -P 3306 -u admin -p

After you enter the password for the user, you should see output similar to the following.

Welcome to the MariaDB monitor. Commands end with ; or \g.

Connect to a MariaDB DB instance 336

Amazon Relational Database Service User Guide

Your MariaDB connection id is 156
Server version: 10.6.10-MariaDB-log managed by https://aws.amazon.com/rds/

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

For more information about connecting to a MariaDB DB instance, see Connecting to your
MariaDB DB instance. If you can't connect to your DB instance, see Can't connect to Amazon
RDS DB instance.

For security, it is a best practice to use encrypted connections. Only use an unencrypted
MariaDB connection when the client and server are in the same VPC and the network is
trusted. For information about using encrypted connections, see Connecting to your MariaDB
DB instance on Amazon RDS with SSL/TLS from the MySQL command-line client (encrypted).

6. Run SQL commands.

For example, the following SQL command shows the current date and time:

SELECT CURRENT_TIMESTAMP;

Delete the EC2 instance and DB instance

After you connect to and explore the sample EC2 instance and DB instance that you created, delete
them so you're no longer charged for them.

If you used AWS CloudFormation to create resources, skip this step and go to the next step.

To delete the EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the EC2 instance, and choose Instance state, Terminate instance.

4. Choose Terminate when prompted for confirmation.

Delete the EC2 instance and DB instance 337

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

For more information about deleting an EC2 instance, see Terminate your instance in the Amazon
EC2 User Guide.

To delete the DB instance with no final DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance you want to delete.

4. For Actions, choose Delete.

5. Clear Create final snapshot? and Retain automated backups.

6. Complete the acknowledgement and choose Delete.

(Optional) Delete the EC2 instance and DB instance created with
CloudFormation

If you used AWS CloudFormation to create resources, delete the CloudFormation stack after you
connect to and explore the sample EC2 instance and DB instance, so you're no longer charged for
them.

To delete the CloudFormation resources

1. Open the AWS CloudFormation console.

2. On the Stacks page in the CloudFormationconsole, select the root stack (the stack without the
name VPCStack, BastionStack or RDSNS).

3. Choose Delete.

4. Select Delete stack when prompted for confirmation.

For more information about deleting a stack in CloudFormation, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

(Optional) Connect your DB instance to a Lambda function

You can also connect your RDS for MariaDB DB instance to a Lambda serverless compute resource.
Lambda functions allow you to run code without provisioning or managing infrastructure. A
Lambda function also allows you to automatically respond to code execution requests at any scale,

(Optional) Delete the EC2 instance and DB instance created with CloudFormation 338

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Relational Database Service User Guide

from a dozen events a day to hundreds of per second. For more information, see Automatically
connecting a Lambda function and a DB instance.

(Optional) Connect your DB instance to a Lambda function 339

Amazon Relational Database Service User Guide

Creating and connecting to a Microsoft SQL Server DB instance

This tutorial creates an EC2 instance and an RDS for Microsoft SQL Server DB instance. The tutorial
shows you how to access the DB instance from the EC2 instance using the Microsoft SQL Server
Management Studio client. As a best practice, this tutorial creates a private DB instance in a virtual
private cloud (VPC). In most cases, other resources in the same VPC, such as EC2 instances, can
access the DB instance, but resources outside of the VPC can't access it.

After you complete the tutorial, there is a public and private subnet in each Availability Zone in
your VPC. In one Availability Zone, the EC2 instance is in the public subnet, and the DB instance is
in the private subnet.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

The following diagram shows the configuration when the tutorial is complete.

This tutorial allows you to create your resources by using one of the following methods:

Creating and connecting to a Microsoft SQL Server DB instance 340

Amazon Relational Database Service User Guide

1. Use the AWS Management Console ‐ Create a SQL Server DB instance and Create an EC2
instance

2. Use AWS CloudFormation to create the database instance and EC2 instance ‐ (Optional) Create
VPC, EC2 instance, and SQL Server instance using AWS CloudFormation

The first method uses Easy create to create a private SQL Server DB instance with the AWS
Management Console. Here, you specify only the DB engine type, DB instance size, and DB instance
identifier. Easy create uses the default settings for the other configuration options.

When you use Standard create instead, you can specify more configuration options when you
create a DB instance. These options include settings for availability, security, backups, and
maintenance. To create a public DB instance, you must use Standard create. For information, see
Creating an Amazon RDS DB instance.

Topics

• Prerequisites

• Create an EC2 instance

• Create a SQL Server DB instance

• (Optional) Create VPC, EC2 instance, and SQL Server instance using AWS CloudFormation

• Connect to your SQL Server DB instance

• Explore your sample SQL Server DB instance

• Delete the EC2 instance and DB instance

• (Optional) Delete the EC2 instance and DB instance created with CloudFormation

• (Optional) Connect your DB instance to a Lambda function

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Create an EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

Prerequisites 341

Amazon Relational Database Service User Guide

To create an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region you used
for the database previously.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown in the following image.

The Launch an instance page opens.

Create an EC2 instance 342

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

4. Choose the following settings on the Launch an instance page.

a. Under Name and tags, for Name, enter ec2-database-connect.

b. Under Application and OS Images (Amazon Machine Image), choose Windows, and then
choose the Microsoft Windows Server 2022 Base. Keep the default selections for the
other choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

Create an EC2 instance 343

Amazon Relational Database Service User Guide

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide for Windows Instances.

e. For Firewall (security groups) in Network settings, choose Allow RDP traffic from to
connect to the EC2 instance.

You can choose My IP if the displayed IP address is correct for RDP connections.
Otherwise, you can determine the IP address to use to connect to EC2 instances in your
VPC using RDP. To determine your public IP address, in a different browser window or tab,
you can use the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range of
IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for RDP access, you make it possible for all IP addresses
to access your public EC2 instances using RDP. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your EC2 instances using RDP.

The following image shows an example of the Network settings section.

Create an EC2 instance 344

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://checkip.amazonaws.com/

Amazon Relational Database Service User Guide

f. Keep the default values for the remaining sections.

g. Review a summary of your EC2 instance configuration in the Summary panel, and when
you're ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Create an EC2 instance 345

Amazon Relational Database Service User Guide

6. Choose the EC2 instance identifier to open the list of EC2 instances.

7. Wait until the Instance state for your EC2 instance has a status of Running before continuing.

Create a SQL Server DB instance

The basic building block of Amazon RDS is the DB instance. This environment is where you run your
SQL Server databases.

In this example, you use Easy create to create a DB instance running the SQL Server database
engine with a db.t2.micro DB instance class.

To create a Microsoft SQL Server DB instance with Easy create

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the DB instance.

3. In the navigation pane, choose Databases.

4. Choose Create database and make sure that Easy create is chosen.

Create a SQL Server DB instance 346

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. In Configuration, choose Microsoft SQL Server.

6. For Edition, choose SQL Server Express Edition.

7. For DB instance size, choose Free tier.

8. For DB instance identifier, enter database-test1.

The Create database page should look similar to the following image.

Create a SQL Server DB instance 347

Amazon Relational Database Service User Guide

9. For Master username, enter a name for the master user, or keep the default name.

10. To set up a connection with the EC2 instance you created previously, open Set up EC2
connection - optional.

Create a SQL Server DB instance 348

Amazon Relational Database Service User Guide

Select Connect to an EC2 compute resource. Choose the EC2 instance you created previously.

11. To use an automatically generated master password for the DB instance, select the Auto
generate a password box.

To enter your master password, clear the Auto generate a password box, and then enter the
same password in Master password and Confirm password.

12. Open View default settings for Easy create.

Create a SQL Server DB instance 349

Amazon Relational Database Service User Guide

You can examine the default settings used with Easy create. The Editable after database is
created column shows which options you can change after you create the database.

• If a setting has No in that column, and you want a different setting, you can use Standard
create to create the DB instance.

Create a SQL Server DB instance 350

Amazon Relational Database Service User Guide

• If a setting has Yes in that column, and you want a different setting, you can either use
Standard create to create the DB instance, or modify the DB instance after you create it to
change the setting.

13. Choose Create database.

To view the master username and password for the DB instance, choose View credential
details.

You can use the username and password that appears to connect to the DB instance as the
master user.

Important

You can't view the master user password again. If you don't record it, you might have
to change it.
If you need to change the master user password after the DB instance is available,
you can modify the DB instance to do so. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

14. In the Databases list, choose the name of the new SQL Server DB instance to show its details.

The DB instance has a status of Creating until it is ready to use.

When the status changes to Available, you can connect to the DB instance. Depending on
the DB instance class and the amount of storage, it can take up to 20 minutes before the new
instance is available.

Create a SQL Server DB instance 351

Amazon Relational Database Service User Guide

(Optional) Create VPC, EC2 instance, and SQL Server instance using
AWS CloudFormation

Instead of using the console to create your VPC, EC2 instance, and SQL Server instance, you can
use AWS CloudFormation to provision AWS resources by treating infrastructure as code. To help
you organize your AWS resources into smaller and more manageable units, you can use the AWS
CloudFormation nested stack functionality. For more information, see Creating a stack on the AWS
CloudFormation console and Working with nested stacks..

Important

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You
incur the standard usage fees for these resources until you terminate them. The total
charges will be minimal. For information about how you might minimize any charges, go to
AWS Free Tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

• Download the CloudFormation template

• Configure your resources using CloudFormation

Download the CloudFormation template

A CloudFormation template is a JSON or YAML text file that contains the configuration information
about the resources you want to create in the stack. This template also creates a VPC and a bastion
host for you along with the RDS instance.

To download the template file, open the following link, SQL Server CloudFormation template.

In the Github page, click the Download raw file button to save the template YAML file.

Configure your resources using CloudFormation

Note

Before starting this process, make sure you have a Key pair for an EC2 instance in your AWS
account. For more information, see Amazon EC2 key pairs and Linux instances.

(Optional) Create VPC, EC2 instance, and SQL Server instance using AWS CloudFormation 352

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/
https://github.com/aws-ia/cfn-ps-amazon-rds/blob/main/templates/rds-sqlserver-main.template.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Relational Database Service User Guide

When you use the AWS CloudFormation template, you must select the correct parameters to make
sure your resources are created properly. Follow the steps below:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation.

2. Choose Create Stack.

3. In the Specify template section, select Upload a template file from your computer, and then
choose Next.

4. In the Specify stack details page, set the following parameters:

a. Set Stack name to SQLServerTestStack.

b. Under Parameters, set Availability Zones by selecting three availability zones.

c. Under Linux Bastion Host configuration, for Key Name, select a key pair to login to your EC2
instance.

d. In Linux Bastion Host configuration settings, set the Permitted IP range to your IP address.
To connect to EC2 instances in your VPC using Secure Shell (SSH), determine your public IP
address using the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses to
access your public EC2 instances using SSH. This approach is acceptable for a short
time in a test environment, but it's unsafe for production environments. In production,
authorize only a specific IP address or range of addresses to access your EC2 instances
using SSH.

e. Under Database General configuration, set Database instance class to db.t3.micro.

f. Set Database name to database-test1.

g. For Database master username, enter a name for the master user.

h. Set Manage DB master user password with Secrets Manager to false for this tutorial.

i. For Database password, set a password of your choice. Remember this password for further
steps in the tutorial.

j. Under Database Storage configuration, set Database storage type to gp2.

k. Under Database Monitoring configuration, set Enable RDS Performance Insights to false.
(Optional) Create VPC, EC2 instance, and SQL Server instance using AWS CloudFormation 353

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://checkip.amazonaws.com

Amazon Relational Database Service User Guide

l. Leave all other settings as the default values. Click Next to continue.

5. In the Configure stack options page, leave all the default options. Click Next to continue.

6. In the Review stack page, select Submit after checking the database and Linux bastion host
options.

After the stack creation process completes, view the stacks with names BastionStack and RDSNS
to note the information you need to connect to the database. For more information, see Viewing
AWS CloudFormation stack data and resources on the AWS Management Console.

Connect to your SQL Server DB instance

In the following procedure, you connect to your DB instance by using Microsoft SQL Server
Management Studio (SSMS).

To connect to an RDS for SQL Server DB instance using SSMS

1. Find the endpoint (DNS name) and port number for your DB instance.

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the upper-right corner of the Amazon RDS console, choose the AWS Region for the DB
instance.

c. In the navigation pane, choose Databases.

d. Choose the SQL Server DB instance name to display its details.

e. On the Connectivity tab, copy the endpoint. Also, note the port number. You need both
the endpoint and the port number to connect to the DB instance.

Connecting to your SQL Server DB instance 354

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Microsoft Windows instance in the Amazon EC2 User Guide for Windows Instances.

3. Install the SQL Server Management Studio (SSMS) client from Microsoft.

To download a standalone version of SSMS to your EC2 instance, see Download SQL Server
Management Studio (SSMS) in the Microsoft documentation.

a. Use the Start menu to open Internet Explorer.

Connecting to your SQL Server DB instance 355

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Amazon Relational Database Service User Guide

b. Use Internet Explorer to download and install a standalone version of SSMS. If you are
prompted that the site isn't trusted, add the site to the list of trusted sites.

4. Start SQL Server Management Studio (SSMS).

The Connect to Server dialog box appears.

5. Provide the following information for your sample DB instance:

a. For Server type, choose Database Engine.

b. For Server name, enter the DNS name, followed by a comma and the port number (the
default port is 1433). For example, your server name should look as follows:

database-test1.0123456789012.us-west-2.rds.amazonaws.com,1433

c. For Authentication, choose SQL Server Authentication.

d. For Login, enter the username that you chose to use for your sample DB instance. This is
also known as the master username.

e. For Password, enter the password that you chose earlier for your sample DB instance. This
is also known as the master user password.

6. Choose Connect.

After a few moments, SSMS connects to your DB instance. For security, it is a best practice
to use encrypted connections. Only use an unencrypted SQL Server connection when the
client and server are in the same VPC and the network is trusted. For information about using
encrypted connections, see Using SSL with a Microsoft SQL Server DB instance

For more information about connecting to a Microsoft SQL Server DB instance, see Connecting to
your Microsoft SQL Server DB instance.

For information about connection issues, see Can't connect to Amazon RDS DB instance.

Explore your sample SQL Server DB instance

You can explore your sample DB instance by using Microsoft SQL Server Management Studio
(SSMS).

Exploring your sample DB instance 356

Amazon Relational Database Service User Guide

To explore a DB instance using SSMS

1. Your SQL Server DB instance comes with SQL Server's standard built-in system databases
(master, model, msdb, and tempdb). To explore the system databases, do the following:

a. In SSMS, on the View menu, choose Object Explorer.

b. Expand your DB instance, expand Databases, and then expand System Databases as
shown.

Your SQL Server DB instance also comes with a database named rdsadmin. Amazon RDS
uses this database to store the objects that it uses to manage your database. The rdsadmin
database also includes stored procedures that you can run to perform advanced tasks.

2. Start creating your own databases and running queries against your DB instance and databases
as usual. To run a test query against your sample DB instance, do the following:

a. In SSMS, on the File menu, point to New and then choose Query with Current
Connection.

b. Enter the following SQL query:

Exploring your sample DB instance 357

Amazon Relational Database Service User Guide

select @@VERSION

c. Run the query. SSMS returns the SQL Server version of your Amazon RDS DB instance.

Delete the EC2 instance and DB instance

After you connect to and explore the sample EC2 instance and DB instance that you created, delete
them so you're no longer charged for them.

If you used AWS CloudFormation to create resources, skip this step and go to the next step.

To delete the EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the EC2 instance, and choose Instance state, Terminate instance.

4. Choose Terminate when prompted for confirmation.

For more information about deleting an EC2 instance, see Terminate your instance in the User
Guide for Windows Instances.

Delete the EC2 instance and DB instance 358

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/terminating-instances.html

Amazon Relational Database Service User Guide

To delete the DB instance with no final DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to delete.

4. For Actions, choose Delete.

5. Clear Create final snapshot? and Retain automated backups.

6. Complete the acknowledgement and choose Delete.

(Optional) Delete the EC2 instance and DB instance created with
CloudFormation

If you used AWS CloudFormation to create resources, delete the CloudFormation stack after you
connect to and explore the sample EC2 instance and DB instance, so you're no longer charged for
them.

To delete the CloudFormation resources

1. Open the AWS CloudFormation console.

2. On the Stacks page in the CloudFormationconsole, select the root stack (the stack without the
name VPCStack, BastionStack or RDSNS).

3. Choose Delete.

4. Select Delete stack when prompted for confirmation.

For more information about deleting a stack in CloudFormation, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

(Optional) Connect your DB instance to a Lambda function

You can also connect your RDS for SQL Server DB instance to a Lambda serverless compute
resource. Lambda functions allow you to run code without provisioning or managing infrastructure.
A Lambda function also allows you to automatically respond to code execution requests at
any scale, from a dozen events a day to hundreds of per second. For more information, see
Automatically connecting a Lambda function and a DB instance.

(Optional) Delete the EC2 instance and DB instance created with CloudFormation 359

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Relational Database Service User Guide

Creating and connecting to a MySQL DB instance

This tutorial creates an EC2 instance and an RDS for MySQL DB instance. The tutorial shows you
how to access the DB instance from the EC2 instance using a standard MySQL client. As a best
practice, this tutorial creates a private DB instance in a virtual private cloud (VPC). In most cases,
other resources in the same VPC, such as EC2 instances, can access the DB instance, but resources
outside of the VPC can't access it.

After you complete the tutorial, there is a public and private subnet in each Availability Zone in
your VPC. In one Availability Zone, the EC2 instance is in the public subnet, and the DB instance is
in the private subnet.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

The following diagram shows the configuration when the tutorial is complete.

This tutorial allows you to create your resources by using one of the following methods:

Creating and connecting to a MySQL DB instance 360

Amazon Relational Database Service User Guide

1. Use the AWS Management Console ‐ Create a MySQL DB instance and Create an EC2 instance

2. Use AWS CloudFormation to create the database instance and EC2 instance ‐ (Optional) Create
VPC, EC2 instance, and MySQL instance using AWS CloudFormation

The first method uses Easy create to create a private MySQL DB instance with the AWS
Management Console. Here, you specify only the DB engine type, DB instance size, and DB instance
identifier. Easy create uses the default settings for the other configuration options.

When you use Standard create instead, you can specify more configuration options when you
create a DB instance. These options include settings for availability, security, backups, and
maintenance. To create a public DB instance, you must use Standard create. For information, see
Creating an Amazon RDS DB instance.

Topics

• Prerequisites

• Create an EC2 instance

• Create a MySQL DB instance

• (Optional) Create VPC, EC2 instance, and MySQL instance using AWS CloudFormation

• Connect to a MySQL DB instance

• Delete the EC2 instance and DB instance

• (Optional) Delete the EC2 instance and DB instance created with CloudFormation

• (Optional) Connect your DB instance to a Lambda function

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Create an EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

Prerequisites 361

Amazon Relational Database Service User Guide

To create an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown in the following image.

The Launch an instance page opens.

Create an EC2 instance 362

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

4. Choose the following settings on the Launch an instance page.

a. Under Name and tags, for Name, enter ec2-database-connect.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux,
and then choose the Amazon Linux 2023 AMI. Keep the default selections for the other
choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

Create an EC2 instance 363

Amazon Relational Database Service User Guide

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

e. For Allow SSH traffic in Network settings, choose the source of SSH connections to the
EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.
Otherwise, you can determine the IP address to use to connect to EC2 instances in your
VPC using Secure Shell (SSH). To determine your public IP address, in a different browser
window or tab, you can use the service at https://checkip.amazonaws.com. An example of
an IP address is 192.0.2.1/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range of
IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public EC2 instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your EC2 instances using SSH.

The following image shows an example of the Network settings section.

Create an EC2 instance 364

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair
https://checkip.amazonaws.com/

Amazon Relational Database Service User Guide

f. Leave the default values for the remaining sections.

g. Review a summary of your EC2 instance configuration in the Summary panel, and when
you're ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Create an EC2 instance 365

Amazon Relational Database Service User Guide

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Create an EC2 instance 366

Amazon Relational Database Service User Guide

8. Wait until the Instance state for your EC2 instance has a status of Running before continuing.

Create a MySQL DB instance

The basic building block of Amazon RDS is the DB instance. This environment is where you run your
MySQL databases.

In this example, you use Easy create to create a DB instance running the MySQL database engine
with a db.t3.micro DB instance class.

To create a MySQL DB instance with Easy create

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region you used for the
EC2 instance previously.

3. In the navigation pane, choose Databases.

4. Choose Create database and make sure that Easy create is chosen.

5. In Configuration, choose MySQL.

6. For DB instance size, choose Free tier.

7. For DB instance identifier, enter database-test1.

8. For Master username, enter a name for the master user, or keep the default name.

The Create database page should look similar to the following image.

Create a MySQL DB instance 367

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Create a MySQL DB instance 368

Amazon Relational Database Service User Guide

9. To use an automatically generated master password for the DB instance, select Auto generate
a password.

To enter your master password, make sure Auto generate a password is cleared, and then
enter the same password in Master password and Confirm password.

10. To set up a connection with the EC2 instance you created previously, open Set up EC2
connection - optional.

Select Connect to an EC2 compute resource. Choose the EC2 instance you created previously.

11. (Optional) Open View default settings for Easy create.

Create a MySQL DB instance 369

Amazon Relational Database Service User Guide

You can examine the default settings used with Easy create. The Editable after database is
created column shows which options you can change after you create the database.

• If a setting has No in that column, and you want a different setting, you can use Standard
create to create the DB instance.

Create a MySQL DB instance 370

Amazon Relational Database Service User Guide

• If a setting has Yes in that column, and you want a different setting, you can either use
Standard create to create the DB instance, or modify the DB instance after you create it to
change the setting.

12. Choose Create database.

To view the master username and password for the DB instance, choose View credential
details.

You can use the username and password that appears to connect to the DB instance as the
master user.

Important

You can't view the master user password again. If you don't record it, you might have
to change it.
If you need to change the master user password after the DB instance is available,
you can modify the DB instance to do so. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

13. In the Databases list, choose the name of the new MySQL DB instance to show its details.

The DB instance has a status of Creating until it is ready to use.

When the status changes to Available, you can connect to the DB instance. Depending on
the DB instance class and the amount of storage, it can take up to 20 minutes before the new
instance is available.

Create a MySQL DB instance 371

Amazon Relational Database Service User Guide

(Optional) Create VPC, EC2 instance, and MySQL instance using AWS
CloudFormation

Instead of using the console to create your VPC, EC2 instance, and MySQL instance, you can use
AWS CloudFormation to provision AWS resources by treating infrastructure as code. To help you
organize your AWS resources into smaller and more manageable units, you can use the AWS
CloudFormation nested stack functionality. For more information, see Creating a stack on the AWS
CloudFormation console and Working with nested stacks.

Important

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You
incur the standard usage fees for these resources until you terminate them. The total
charges will be minimal. For information about how you might minimize any charges, go to
AWS Free Tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

• Download the CloudFormation template

• Configure your resources using CloudFormation

Download the CloudFormation template

A CloudFormation template is a JSON or YAML text file that contains the configuration information
about the resources you want to create in the stack. This template also creates a VPC and a bastion
host for you along with the RDS instance.

To download the template file, open the following link, MySQL CloudFormation template.

In the Github page, click the Download raw file button to save the template YAML file.

Configure your resources using CloudFormation

Note

Before starting this process, make sure you have a Key pair for an EC2 instance in your AWS
account. For more information, see Amazon EC2 key pairs and Linux instances.

(Optional) Create VPC, EC2 instance, and MySQL instance using AWS CloudFormation 372

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/
https://github.com/aws-ia/cfn-ps-amazon-rds/blob/main/templates/rds-mysql-main.template.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Relational Database Service User Guide

When you use the AWS CloudFormation template, you must select the correct parameters to make
sure your resources are created properly. Follow the steps below:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation.

2. Choose Create Stack.

3. In the Specify template section, select Upload a template file from your computer, and then
choose Next.

4. In the Specify stack details page, set the following parameters:

a. Set Stack name to MySQLTestStack.

b. Under Parameters, set Availability Zones by selecting three availability zones.

c. Under Linux Bastion Host configuration, for Key Name, select a key pair to login to your EC2
instance.

d. In Linux Bastion Host configuration settings, set the Permitted IP range to your IP address.
To connect to EC2 instances in your VPC using Secure Shell (SSH), determine your public IP
address using the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses to
access your public EC2 instances using SSH. This approach is acceptable for a short
time in a test environment, but it's unsafe for production environments. In production,
authorize only a specific IP address or range of addresses to access your EC2 instances
using SSH.

e. Under Database General configuration, set Database instance class to db.t3.micro.

f. Set Database name to database-test1.

g. For Database master username, enter a name for the master user.

h. Set Manage DB master user password with Secrets Manager to false for this tutorial.

i. For Database password, set a password of your choice. Remember this password for further
steps in the tutorial.

j. Under Database Storage configuration, set Database storage type to gp2.

k. Under Database Monitoring configuration, set Enable RDS Performance Insights to false.
(Optional) Create VPC, EC2 instance, and MySQL instance using AWS CloudFormation 373

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://checkip.amazonaws.com

Amazon Relational Database Service User Guide

l. Leave all other settings as the default values. Click Next to continue.

5. In the Configure stack options page, leave all the default options. Click Next to continue.

6. In the Review stack page, select Submit after checking the database and Linux bastion host
options.

After the stack creation process completes, view the stacks with names BastionStack and RDSNS
to note the information you need to connect to the database. For more information, see Viewing
AWS CloudFormation stack data and resources on the AWS Management Console.

Connect to a MySQL DB instance

You can use any standard SQL client application to connect to the DB instance. In this example, you
connect to a MySQL DB instance using the mysql command-line client.

To connect to a MySQL DB instance

1. Find the endpoint (DNS name) and port number for your DB instance.

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the upper-right corner of the Amazon RDS console, choose the AWS Region for the DB
instance.

c. In the navigation pane, choose Databases.

d. Choose the MySQL DB instance name to display its details.

e. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You
need both the endpoint and the port number to connect to the DB instance.

Connect to a MySQL DB instance 374

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

Connect to a MySQL DB instance 375

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Relational Database Service User Guide

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

3. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do this, use the following command.

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

4. To install the mysql command-line client from MariaDB on Amazon Linux 2023, run the
following command:

sudo dnf install mariadb105

5. Connect to the MySQL DB instance. For example, enter the following command. This action
lets you connect to the MySQL DB instance using the MySQL client.

Substitute the DB instance endpoint (DNS name) for endpoint, and substitute the master
username that you used for admin. Provide the master password that you used when
prompted for a password.

mysql -h endpoint -P 3306 -u admin -p

After you enter the password for the user, you should see output similar to the following.

Connect to a MySQL DB instance 376

Amazon Relational Database Service User Guide

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 3082
Server version: 8.0.28 Source distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>

For more information about connecting to a MySQL DB instance, see Connecting to your
MySQL DB instance. If you can't connect to your DB instance, see Can't connect to Amazon RDS
DB instance.

For security, it is a best practice to use encrypted connections. Only use an unencrypted
MySQL connection when the client and server are in the same VPC and the network is trusted.
For information about using encrypted connections, see Connecting to your MySQL DB
instance on Amazon RDS with SSL/TLS from the MySQL command-line client (encrypted).

6. Run SQL commands.

For example, the following SQL command shows the current date and time:

SELECT CURRENT_TIMESTAMP;

Delete the EC2 instance and DB instance

After you connect to and explore the sample EC2 instance and DB instance that you created, delete
them so you're no longer charged for them.

If you used AWS CloudFormation to create resources, skip this step and go to the next step.

To delete the EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the EC2 instance, and choose Instance state, Terminate instance.

Delete the EC2 instance and DB instance 377

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

4. Choose Terminate when prompted for confirmation.

For more information about deleting an EC2 instance, see Terminate your instance in the Amazon
EC2 User Guide.

To delete the DB instance with no final DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to delete.

4. For Actions, choose Delete.

5. Clear Create final snapshot? and Retain automated backups.

6. Complete the acknowledgement and choose Delete.

(Optional) Delete the EC2 instance and DB instance created with
CloudFormation

If you used AWS CloudFormation to create resources, delete the CloudFormation stack after you
connect to and explore the sample EC2 instance and DB instance, so you're no longer charged for
them.

To delete the CloudFormation resources

1. Open the AWS CloudFormation console.

2. On the Stacks page in the CloudFormationconsole, select the root stack (the stack without the
name VPCStack, BastionStack or RDSNS).

3. Choose Delete.

4. Select Delete stack when prompted for confirmation.

For more information about deleting a stack in CloudFormation, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

(Optional) Delete the EC2 instance and DB instance created with CloudFormation 378

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Relational Database Service User Guide

(Optional) Connect your DB instance to a Lambda function

You can also connect your RDS for MySQL DB instance to a Lambda serverless compute resource.
Lambda functions allow you to run code without provisioning or managing infrastructure. A
Lambda function also allows you to automatically respond to code execution requests at any scale,
from a dozen events a day to hundreds of per second. For more information, see Automatically
connecting a Lambda function and a DB instance.

(Optional) Connect your DB instance to a Lambda function 379

Amazon Relational Database Service User Guide

Creating and connecting to an Oracle DB instance

This tutorial creates an EC2 instance and an RDS for Oracle DB instance. The tutorial shows you
how to access the DB instance from the EC2 instance using a standard Oracle client. As a best
practice, this tutorial creates a private DB instance in a virtual private cloud (VPC). In most cases,
other resources in the same VPC, such as EC2 instances, can access the DB instance, but resources
outside of the VPC can't access it.

After you complete the tutorial, there is a public and private subnet in each Availability Zone in
your VPC. In one Availability Zone, the EC2 instance is in the public subnet, and the DB instance is
in the private subnet.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

The following diagram shows the configuration when the tutorial is complete.

This tutorial allows you to create your resources by using one of the following methods:

Creating and connecting to an Oracle DB instance 380

Amazon Relational Database Service User Guide

1. Use the AWS Management Console ‐ Step 2: Create an Oracle DB instance and Step 1: Create an
EC2 instance

2. Use AWS CloudFormation to create the database instance and EC2 instance ‐ (Optional) Create
VPC, EC2 instance, and Oracle DB instance using AWS CloudFormation

The first method uses Easy create to create a private Oracle DB instance with the AWS
Management Console. Here, you specify only the DB engine type, DB instance size, and DB instance
identifier. Easy create uses the default settings for the other configuration options.

When you use Standard create instead, you can specify more configuration options when you
create a DB instance. These options include settings for availability, security, backups, and
maintenance. To create a public DB instance, you must use Standard create. For information, see
Creating an Amazon RDS DB instance.

Topics

• Prerequisites

• Step 1: Create an EC2 instance

• Step 2: Create an Oracle DB instance

• (Optional) Create VPC, EC2 instance, and Oracle DB instance using AWS CloudFormation

• Step 3: Connect your SQL client to an Oracle DB instance

• Step 4: Delete the EC2 instance and DB instance

• (Optional) Delete the EC2 instance and DB instance created with CloudFormation

• (Optional) Connect your DB instance to a Lambda function

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Step 1: Create an EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

Prerequisites 381

Amazon Relational Database Service User Guide

To create an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown in the following image.

The Launch an instance page opens.

Step 1: Create an EC2 instance 382

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

4. Choose the following settings on the Launch an instance page.

a. Under Name and tags, for Name, enter ec2-database-connect.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux,
and then choose the Amazon Linux 2023 AMI. Keep the default selections for the other
choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

Step 1: Create an EC2 instance 383

Amazon Relational Database Service User Guide

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

e. For Allow SSH traffic in Network settings, choose the source of SSH connections to the
EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.
Otherwise, you can determine the IP address to use to connect to EC2 instances in your
VPC using Secure Shell (SSH). To determine your public IP address, in a different browser
window or tab, you can use the service at https://checkip.amazonaws.com. An example of
an IP address is 192.0.2.1/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range of
IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public EC2 instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your EC2 instances using SSH.

The following image shows an example of the Network settings section.

Step 1: Create an EC2 instance 384

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair
https://checkip.amazonaws.com/

Amazon Relational Database Service User Guide

f. Leave the default values for the remaining sections.

g. Review a summary of your EC2 instance configuration in the Summary panel, and when
you're ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Step 1: Create an EC2 instance 385

Amazon Relational Database Service User Guide

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Step 1: Create an EC2 instance 386

Amazon Relational Database Service User Guide

8. Wait until the Instance state for your EC2 instance has a status of Running before continuing.

Step 2: Create an Oracle DB instance

The basic building block of Amazon RDS is the DB instance. This environment is where you run your
Oracle databases.

In this example, you use Easy create to create a DB instance running the Oracle database engine
with a db.m5.large DB instance class.

To create an Oracle DB instance with Easy create

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the DB instance.

3. In the navigation pane, choose Databases.

4. Choose Create database and make sure that Easy create is chosen.

5. In Configuration, choose Oracle.

6. For DB instance size, choose Dev/Test.

7. For DB instance identifier, enter database-test1.

8. For Master username, enter a name for the master user, or keep the default name.

The Create database page should look similar to the following image.

Step 2: Create an Oracle DB instance 387

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Step 2: Create an Oracle DB instance 388

Amazon Relational Database Service User Guide

9. To use an automatically generated master password for the DB instance, select Auto generate
a password.

To enter your master password, make sure Auto generate a password is cleared, and then
enter the same password in Master password and Confirm password.

10. To set up a connection with the EC2 instance you created previously, open Set up EC2
connection - optional.

Select Connect to an EC2 compute resource. Choose the EC2 instance you created previously.

11. Open View default settings for Easy create.

Step 2: Create an Oracle DB instance 389

Amazon Relational Database Service User Guide

You can examine the default settings used with Easy create. The Editable after database is
created column shows which options you can change after you create the database.

• If a setting has No in that column, and you want a different setting, you can use Standard
create to create the DB instance.

Step 2: Create an Oracle DB instance 390

Amazon Relational Database Service User Guide

• If a setting has Yes in that column, and you want a different setting, you can either use
Standard create to create the DB instance, or modify the DB instance after you create it to
change the setting.

12. Choose Create database.

To view the master username and password for the DB instance, choose View credential
details.

You can use the username and password that appears to connect to the DB instance as the
master user.

Important

You can't view the master user password again. If you don't record it, you might have
to change it.
If you need to change the master user password after the DB instance is available,
you can modify the DB instance to do so. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

13. In the Databases list, choose the name of the new Oracle DB instance to show its details.

The DB instance has a status of Creating until it is ready to use.

When the status changes to Available, you can connect to the DB instance. Depending on
the DB instance class and the amount of storage, it can take up to 20 minutes before the new
instance is available. While the DB instance is being created, you can move on to the next step
and create an EC2 instance.

Step 2: Create an Oracle DB instance 391

Amazon Relational Database Service User Guide

(Optional) Create VPC, EC2 instance, and Oracle DB instance using AWS
CloudFormation

Instead of using the console to create your VPC, EC2 instance, and Oracle DB instance, you can
use AWS CloudFormation to provision AWS resources by treating infrastructure as code. To help
you organize your AWS resources into smaller and more manageable units, you can use the AWS
CloudFormation nested stack functionality. For more information, see Creating a stack on the AWS
CloudFormation console and Working with nested stacks.

Important

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You
incur the standard usage fees for these resources until you terminate them. The total
charges will be minimal. For information about how you might minimize any charges, go to
AWS Free Tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

• Step 1: Download the CloudFormation template

• Step 2: Configure your resources using CloudFormation

Download the CloudFormation template

A CloudFormation template is a JSON or YAML text file that contains the configuration information
about the resources you want to create in the stack. This template also creates a VPC and a bastion
host for you along with the RDS instance.

To download the template file, open the following link, Oracle CloudFormation template.

In the Github page, click the Download raw file button to save the template YAML file.

Configure your resources using CloudFormation

Note

Before starting this process, make sure you have a Key pair for an EC2 instance in your AWS
account. For more information, see Amazon EC2 key pairs and Linux instances.

(Optional) Create VPC, EC2 instance, and Oracle DB instance using AWS CloudFormation 392

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/
https://github.com/aws-ia/cfn-ps-amazon-rds/blob/main/templates/rds-oracle-main.template.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Relational Database Service User Guide

When you use the AWS CloudFormation template, you must select the correct parameters to make
sure your resources are created properly. Follow the steps below:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation.

2. Choose Create Stack.

3. In the Specify template section, select Upload a template file from your computer, and then
choose Next.

4. In the Specify stack details page, set the following parameters:

a. Set Stack name to OracleTestStack.

b. Under Parameters, set Availability Zones by selecting three availability zones.

c. Under Linux Bastion Host configuration, for Key Name, select a key pair to login to your EC2
instance.

d. In Linux Bastion Host configuration settings, set the Permitted IP range to your IP address.
To connect to EC2 instances in your VPC using Secure Shell (SSH), determine your public IP
address using the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses to
access your public EC2 instances using SSH. This approach is acceptable for a short
time in a test environment, but it's unsafe for production environments. In production,
authorize only a specific IP address or range of addresses to access your EC2 instances
using SSH.

e. Under Database General configuration, set Database instance class to db.t3.micro.

f. Set Database name to database-test1.

g. For Database master username, enter a name for the master user.

h. Set Manage DB master user password with Secrets Manager to false for this tutorial.

i. For Database password, set a password of your choice. Remember this password for further
steps in the tutorial.

j. Under Database Storage configuration, set Database storage type to gp2.

k. Under Database Monitoring configuration, set Enable RDS Performance Insights to false.
(Optional) Create VPC, EC2 instance, and Oracle DB instance using AWS CloudFormation 393

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://checkip.amazonaws.com

Amazon Relational Database Service User Guide

l. Leave all other settings as the default values. Click Next to continue.

5. In the Configure stack options page, leave all the default options. Click Next to continue.

6. In the Review stack page, select Submit after checking the database and Linux bastion host
options.

After the stack creation process completes, view the stacks with names BastionStack and RDSNS
to note the information you need to connect to the database. For more information, see Viewing
AWS CloudFormation stack data and resources on the AWS Management Console.

Step 3: Connect your SQL client to an Oracle DB instance

You can use any standard SQL client application to connect to your DB instance. In this example,
you connect to an Oracle DB instance using the Oracle command-line client.

To connect to an Oracle DB instance

1. Find the endpoint (DNS name) and port number for your DB instance.

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the upper-right corner of the Amazon RDS console, choose the AWS Region for the DB
instance.

c. In the navigation pane, choose Databases.

d. Choose the Oracle DB instance name to display its details.

e. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You
need both the endpoint and the port number to connect to the DB instance.

Step 3: Connect your SQL client to an Oracle DB instance 394

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

Step 3: Connect your SQL client to an Oracle DB instance 395

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Relational Database Service User Guide

3. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do so, use the following command.

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

4. In a web browser, go to https://www.oracle.com/database/technologies/instant-client/linux-
x86-64-downloads.html.

5. For the latest database version that appears on the web page, copy the .rpm links (not the .zip
links) for the Instant Client Basic Package and SQL*Plus Package. For example, the following
links are for Oracle Database version 21.9:

• https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-basic-21.9.0.0.0-1.el8.x86_64.rpm

• https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-sqlplus-21.9.0.0.0-1.el8.x86_64.rpm

6. In your SSH session, run the wget command to the download the .rpm files from the links that
you obtained in the previous step. The following example downloads the .rpm files for Oracle
Database version 21.9:

wget https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-basic-21.9.0.0.0-1.el8.x86_64.rpm
wget https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-sqlplus-21.9.0.0.0-1.el8.x86_64.rpm

7. Install the packages by running the dnf command as follows:

sudo dnf install oracle-instantclient-*.rpm

8. Start SQL*Plus and connect to the Oracle DB instance. For example, enter the following
command.

Step 3: Connect your SQL client to an Oracle DB instance 396

https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html

Amazon Relational Database Service User Guide

Substitute the DB instance endpoint (DNS name) for oracle-db-instance-endpoint
and substitute the master user name that you used for admin. When you use Easy create for
Oracle, the database name is DATABASE. Provide the master password that you used when
prompted for a password.

sqlplus admin@oracle-db-instance-endpoint:1521/DATABASE

After you enter the password for the user, you should see output similar to the following.

SQL*Plus: Release 21.0.0.0.0 - Production on Wed Mar 1 16:41:28 2023
Version 21.9.0.0.0

Copyright (c) 1982, 2022, Oracle. All rights reserved.

Enter password:
Last Successful login time: Wed Mar 01 2023 16:30:52 +00:00

Connected to:
Oracle Database 19c Standard Edition 2 Release 19.0.0.0.0 - Production
Version 19.18.0.0.0

SQL>

For more information about connecting to an RDS for Oracle DB instance, see Connecting to
your Oracle DB instance. If you can't connect to your DB instance, see Can't connect to Amazon
RDS DB instance.

For security, it is a best practice to use encrypted connections. Only use an unencrypted Oracle
connection when the client and server are in the same VPC and the network is trusted. For
information about using encrypted connections, see Securing Oracle DB instance connections.

9. Run SQL commands.

For example, the following SQL command shows the current date:

SELECT SYSDATE FROM DUAL;

Step 3: Connect your SQL client to an Oracle DB instance 397

Amazon Relational Database Service User Guide

Step 4: Delete the EC2 instance and DB instance

After you connect to and explore the sample EC2 instance and DB instance that you created, delete
them so you're no longer charged for them.

If you used AWS CloudFormation to create resources, skip this step and go to the next step.

To delete the EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the EC2 instance, and choose Instance state, Terminate instance.

4. Choose Terminate when prompted for confirmation.

For more information about deleting an EC2 instance, see Terminate your instance in the Amazon
EC2 User Guide.

To delete the DB instance with no final DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to delete.

4. For Actions, choose Delete.

5. Clear Create final snapshot? and Retain automated backups.

6. Complete the acknowledgement and choose Delete.

(Optional) Delete the EC2 instance and DB instance created with
CloudFormation

If you used AWS CloudFormation to create resources, delete the CloudFormation stack after you
connect to and explore the sample EC2 instance and DB instance, so you're no longer charged for
them.

Step 4: Delete the EC2 instance and DB instance 398

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To delete the CloudFormation resources

1. Open the AWS CloudFormation console.

2. On the Stacks page in the CloudFormationconsole, select the root stack (the stack without the
name VPCStack, BastionStack or RDSNS).

3. Choose Delete.

4. Select Delete stack when prompted for confirmation.

For more information about deleting a stack in CloudFormation, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

(Optional) Connect your DB instance to a Lambda function

You can also connect your RDS for Oracle DB instance to a Lambda serverless compute resource.
Lambda functions allow you to run code without provisioning or managing infrastructure. A
Lambda function also allows you to automatically respond to code execution requests at any scale,
from a dozen events a day to hundreds of per second. For more information, see Automatically
connecting a Lambda function and a DB instance.

(Optional) Connect your DB instance to a Lambda function 399

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Relational Database Service User Guide

Creating and connecting to a PostgreSQL DB instance

This tutorial creates an EC2 instance and an RDS for PostgreSQL DB instance. The tutorial shows
you how to access the DB instance from the EC2 instance using a standard PostgreSQL client. As
a best practice, this tutorial creates a private DB instance in a virtual private cloud (VPC). In most
cases, other resources in the same VPC, such as EC2 instances, can access the DB instance, but
resources outside of the VPC can't access it.

After you complete the tutorial, there is a public and private subnet in each Availability Zone in
your VPC. In one Availability Zone, the EC2 instance is in the public subnet, and the DB instance is
in the private subnet.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

The following diagram shows the configuration when the tutorial is complete.

This tutorial allows you to create your resources by using one of the following methods:

Creating and connecting to a PostgreSQL DB instance 400

Amazon Relational Database Service User Guide

1. Use the AWS Management Console ‐ Create an EC2 instance and Create a PostgreSQL DB
instance

2. Use AWS CloudFormation to create the database instance and EC2 instance ‐ (Optional) Create
VPC, EC2 instance, and PostgreSQL instance using AWS CloudFormation

The first method uses Easy create to create a private PostgreSQL DB instance with the AWS
Management Console. Here, you specify only the DB engine type, DB instance size, and DB instance
identifier. Easy create uses the default settings for the other configuration options.

When you use Standard create instead, you can specify more configuration options when you
create a DB instance. These options include settings for availability, security, backups, and
maintenance. To create a public DB instance, you must use Standard create. For information, see
Creating an Amazon RDS DB instance.

Topics

• Prerequisites

• Create an EC2 instance

• Create a PostgreSQL DB instance

• (Optional) Create VPC, EC2 instance, and PostgreSQL instance using AWS CloudFormation

• Connect to a PostgreSQL DB instance

• Delete the EC2 instance and DB instance

• (Optional) Delete the EC2 instance and DB instance created with CloudFormation

• (Optional) Connect your DB instance to a Lambda function

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Create an EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

Prerequisites 401

Amazon Relational Database Service User Guide

To create an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown in the following image.

The Launch an instance page opens.

Create an EC2 instance 402

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

4. Choose the following settings on the Launch an instance page.

a. Under Name and tags, for Name, enter ec2-database-connect.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux,
and then choose the Amazon Linux 2023 AMI. Keep the default selections for the other
choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

Create an EC2 instance 403

Amazon Relational Database Service User Guide

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

e. For Allow SSH traffic in Network settings, choose the source of SSH connections to the
EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.
Otherwise, you can determine the IP address to use to connect to EC2 instances in your
VPC using Secure Shell (SSH). To determine your public IP address, in a different browser
window or tab, you can use the service at https://checkip.amazonaws.com. An example of
an IP address is 192.0.2.1/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range of
IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public EC2 instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your EC2 instances using SSH.

The following image shows an example of the Network settings section.

Create an EC2 instance 404

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair
https://checkip.amazonaws.com/

Amazon Relational Database Service User Guide

f. Leave the default values for the remaining sections.

g. Review a summary of your EC2 instance configuration in the Summary panel, and when
you're ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Create an EC2 instance 405

Amazon Relational Database Service User Guide

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Create an EC2 instance 406

Amazon Relational Database Service User Guide

8. Wait until the Instance state for your EC2 instance has a status of Running before continuing.

Create a PostgreSQL DB instance

The basic building block of Amazon RDS is the DB instance. This environment is where you run your
PostgreSQL databases.

In this example, you use Easy create to create a DB instance running the PostgreSQL database
engine with a db.t3.micro DB instance class.

To create a PostgreSQL DB instance with Easy create

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the DB instance.

3. In the navigation pane, choose Databases.

4. Choose Create database and make sure that Easy create is chosen.

5. In Configuration, choose PostgreSQL.

6. For DB instance size, choose Free tier.

7. For DB instance identifier, enter database-test1.

8. For Master username, enter a name for the master user, or keep the default name
(postgres).

The Create database page should look similar to the following image.

Create a PostgreSQL DB instance 407

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

9. To use an automatically generated master password for the DB instance, select Auto generate
a password.

To enter your master password, make sure Auto generate a password is cleared, and then
enter the same password in Master password and Confirm password.

10. To set up a connection with the EC2 instance you created previously, open Set up EC2
connection - optional.

Select Connect to an EC2 compute resource. Choose the EC2 instance you created previously.

Create a PostgreSQL DB instance 408

Amazon Relational Database Service User Guide

11. Open View default settings for Easy create.

Create a PostgreSQL DB instance 409

Amazon Relational Database Service User Guide

You can examine the default settings used with Easy create. The Editable after database is
created column shows which options you can change after you create the database.

• If a setting has No in that column, and you want a different setting, you can use Standard
create to create the DB instance.

Create a PostgreSQL DB instance 410

Amazon Relational Database Service User Guide

• If a setting has Yes in that column, and you want a different setting, you can either use
Standard create to create the DB instance, or modify the DB instance after you create it to
change the setting.

12. Choose Create database.

To view the master username and password for the DB instance, choose View credential
details.

You can use the username and password that appears to connect to the DB instance as the
master user.

Important

You can't view the master user password again. If you don't record it, you might have
to change it.
If you need to change the master user password after the DB instance is available,
you can modify the DB instance to do so. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

13. In the Databases list, choose the name of the new PostgreSQL DB instance to show its details.

The DB instance has a status of Creating until it is ready to use.

When the status changes to Available, you can connect to the DB instance. Depending on
the DB instance class and the amount of storage, it can take up to 20 minutes before the new
instance is available.

Create a PostgreSQL DB instance 411

Amazon Relational Database Service User Guide

(Optional) Create VPC, EC2 instance, and PostgreSQL instance using
AWS CloudFormation

Instead of using the console to create your VPC, EC2 instance, and PostgreSQL instance, you can
use AWS CloudFormation to provision AWS resources by treating infrastructure as code. To help
you organize your AWS resources into smaller and more manageable units, you can use the AWS
CloudFormation nested stack functionality. For more information, see Creating a stack on the AWS
CloudFormation console and Working with nested stacks.

Important

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You
incur the standard usage fees for these resources until you terminate them. The total
charges will be minimal. For information about how you might minimize any charges, go to
AWS Free Tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

• Download the CloudFormation template

• Configure your resources using CloudFormation

Download the CloudFormation template

A CloudFormation template is a JSON or YAML text file that contains the configuration information
about the resources you want to create in the stack. This template also creates a VPC and a bastion
host for you along with the RDS instance.

To download the template file, open the following link, PostgreSQL CloudFormation template.

In the Github page, click the Download raw file button to save the template YAML file.

Configure your resources using CloudFormation

Note

Before starting this process, make sure you have a Key pair for an EC2 instance in your AWS
account. For more information, see Amazon EC2 key pairs and Linux instances.

(Optional) Create VPC, EC2 instance, and PostgreSQL instance using AWS CloudFormation 412

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/
https://github.com/aws-ia/cfn-ps-amazon-rds/blob/main/templates/rds-postgres-main.template.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Relational Database Service User Guide

When you use the AWS CloudFormation template, you must select the correct parameters to make
sure your resources are created properly. Follow the steps below:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation.

2. Choose Create Stack.

3. In the Specify template section, select Upload a template file from your computer, and then
choose Next.

4. In the Specify stack details page, set the following parameters:

a. Set Stack name to PostgreSQLTestStack.

b. Under Parameters, set Availability Zones by selecting three availability zones.

c. Under Linux Bastion Host configuration, for Key Name, select a key pair to login to your EC2
instance.

d. In Linux Bastion Host configuration settings, set the Permitted IP range to your IP address.
To connect to EC2 instances in your VPC using Secure Shell (SSH), determine your public IP
address using the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses to
access your public EC2 instances using SSH. This approach is acceptable for a short
time in a test environment, but it's unsafe for production environments. In production,
authorize only a specific IP address or range of addresses to access your EC2 instances
using SSH.

e. Under Database General configuration, set Database instance class to db.t3.micro.

f. Set Database name to database-test1.

g. For Database master username, enter a name for the master user.

h. Set Manage DB master user password with Secrets Manager to false for this tutorial.

i. For Database password, set a password of your choice. Remember this password for further
steps in the tutorial.

j. Under Database Storage configuration, set Database storage type to gp2.

k. Under Database Monitoring configuration, set Enable RDS Performance Insights to false.
(Optional) Create VPC, EC2 instance, and PostgreSQL instance using AWS CloudFormation 413

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://checkip.amazonaws.com

Amazon Relational Database Service User Guide

l. Leave all other settings as the default values. Click Next to continue.

5. In the Configure stack options page, leave all the default options. Click Next to continue.

6. In the Review stack page, select Submit after checking the database and Linux bastion host
options.

After the stack creation process completes, view the stacks with names BastionStack and RDSNS
to note the information you need to connect to the database. For more information, see Viewing
AWS CloudFormation stack data and resources on the AWS Management Console.

Connect to a PostgreSQL DB instance

You can connect to the DB instance using pgadmin or psql. This example explains how to connect
to a PostgreSQL DB instance using the psql command-line client.

To connect to a PostgreSQL DB instance using psql

1. Find the endpoint (DNS name) and port number for your DB instance.

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the upper-right corner of the Amazon RDS console, choose the AWS Region for the DB
instance.

c. In the navigation pane, choose Databases.

d. Choose the PostgreSQL DB instance name to display its details.

e. On the Connectivity & security tab, copy the endpoint. Also note the port number. You
need both the endpoint and the port number to connect to the DB instance.

Connect to a PostgreSQL DB instance 414

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

Connect to a PostgreSQL DB instance 415

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Relational Database Service User Guide

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

3. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do this, use the following command.

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

4. To install the psql command-line client from PostgreSQL on Amazon Linux 2023, run the
following command:

sudo dnf install postgresql15

5. Connect to the PostgreSQL DB instance. For example, enter the following command at a
command prompt on a client computer. This action lets you connect to the PostgreSQL DB
instance using the psql client.

Substitute the DB instance endpoint (DNS name) for endpoint, substitute the database name
--dbname that you want to connect to for postgres, and substitute the master username
that you used for postgres. Provide the master password that you used when prompted for a
password.

psql --host=endpoint --port=5432 --dbname=postgres --username=postgres

Connect to a PostgreSQL DB instance 416

Amazon Relational Database Service User Guide

After you enter the password for the user, you should see output similar to the following:

psql (14.3, server 14.6)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256,
 compression: off)
Type "help" for help.

postgres=>

For more information on connecting to a PostgreSQL DB instance, see Connecting to a DB
instance running the PostgreSQL database engine. If you can't connect to your DB instance,
see Troubleshooting connections to your RDS for PostgreSQL instance.

For security, it is a best practice to use encrypted connections. Only use an unencrypted
PostgreSQL connection when the client and server are in the same VPC and the network is
trusted. For information about using encrypted connections, see Connecting to a PostgreSQL
DB instance over SSL.

6. Run SQL commands.

For example, the following SQL command shows the current date and time:

SELECT CURRENT_TIMESTAMP;

Delete the EC2 instance and DB instance

After you connect to and explore the sample EC2 instance and DB instance that you created, delete
them so you're no longer charged for them.

If you used AWS CloudFormation to create resources, skip this step and go to the next step.

To delete the EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the EC2 instance, and choose Instance state, Terminate instance.

4. Choose Terminate when prompted for confirmation.

Delete the EC2 instance and DB instance 417

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

For more information about deleting an EC2 instance, see Terminate your instance in the Amazon
EC2 User Guide.

To delete a DB instance with no final DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to delete.

4. For Actions, choose Delete.

5. Clear Create final snapshot? and Retain automated backups.

6. Complete the acknowledgement and choose Delete.

(Optional) Delete the EC2 instance and DB instance created with
CloudFormation

If you used AWS CloudFormation to create resources, delete the CloudFormation stack after you
connect to and explore the sample EC2 instance and DB instance, so you're no longer charged for
them.

To delete the CloudFormation resources

1. Open the AWS CloudFormation console.

2. On the Stacks page in the CloudFormationconsole, select the root stack (the stack without the
name VPCStack, BastionStack or RDSNS).

3. Choose Delete.

4. Select Delete stack when prompted for confirmation.

For more information about deleting a stack in CloudFormation, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

(Optional) Connect your DB instance to a Lambda function

You can also connect your RDS for PostgreSQL DB instance to a Lambda serverless compute
resource. Lambda functions allow you to run code without provisioning or managing infrastructure.
A Lambda function also allows you to automatically respond to code execution requests at

(Optional) Delete the EC2 instance and DB instance created with CloudFormation 418

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Relational Database Service User Guide

any scale, from a dozen events a day to hundreds of per second. For more information, see
Automatically connecting a Lambda function and a DB instance.

(Optional) Connect your DB instance to a Lambda function 419

Amazon Relational Database Service User Guide

Tutorial: Create a web server and an Amazon RDS DB instance

This tutorial shows you how to install an Apache web server with PHP and create a MariaDB,
MySQL, or PostgreSQL database. The web server runs on an Amazon EC2 instance using Amazon
Linux 2023, and you can choose between a MySQL or PostgreSQL DB instance. Both the Amazon
EC2 instance and the DB instance run in a virtual private cloud (VPC) based on the Amazon VPC
service.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

Note

This tutorial works with Amazon Linux 2023 and might not work for other versions of
Linux.

In the tutorial that follows, you create an EC2 instance that uses the default VPC, subnets, and
security group for your AWS account. This tutorial shows you how to create the DB instance and
automatically set up connectivity with the EC2 instance that you created. The tutorial then shows
you how to install the web server on the EC2 instance. You connect your web server to your DB
instance in the VPC using the DB instance endpoint.

1. Launch an EC2 instance to connect with your DB instance

2. Create an Amazon RDS DB instance

3. Install a web server on your EC2 instance

The following diagram shows the configuration when the tutorial is complete.

Tutorial: Create a web server and an Amazon RDS DB instance 420

Amazon Relational Database Service User Guide

Note

After you complete the tutorial, there is a public and private subnet in each Availability
Zone in your VPC. This tutorial uses the default VPC for your AWS account and
automatically sets up connectivity between your EC2 instance and DB instance. If you
would rather configure a new VPC for this scenario instead, complete the tasks in Tutorial:
Create a VPC for use with a DB instance (IPv4 only).

Launch an EC2 instance to connect with your DB instance

Create an Amazon EC2 instance in the public subnet of your VPC.

Launch an EC2 instance to connect with your DB instance 421

Amazon Relational Database Service User Guide

To launch an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region where you
want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown following.

4. Choose the following settings in the Launch an instance page.

Launch an EC2 instance to connect with your DB instance 422

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

a. Under Name and tags, for Name, enter tutorial-ec2-instance-web-server.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux, and
then choose the Amazon Linux 2023 AMI. Keep the defaults for the other choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

Launch an EC2 instance to connect with your DB instance 423

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair

Amazon Relational Database Service User Guide

e. Under Network settings, set these values and keep the other values as their defaults:

• For Allow SSH traffic from, choose the source of SSH connections to the EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.

Otherwise, you can determine the IP address to use to connect to EC2 instances in
your VPC using Secure Shell (SSH). To determine your public IP address, in a different
browser window or tab, you can use the service at https://checkip.amazonaws.com. An
example of an IP address is 203.0.113.25/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range
of IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your instances using SSH.

• Turn on Allow HTTPs traffic from the internet.

• Turn on Allow HTTP traffic from the internet.

Launch an EC2 instance to connect with your DB instance 424

https://checkip.amazonaws.com

Amazon Relational Database Service User Guide

f. Leave the default values for the remaining sections.

g. Review a summary of your instance configuration in the Summary panel, and when you're
ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Launch an EC2 instance to connect with your DB instance 425

Amazon Relational Database Service User Guide

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Launch an EC2 instance to connect with your DB instance 426

Amazon Relational Database Service User Guide

8. Wait until Instance state for your instance is Running before continuing.

9. Complete Create an Amazon RDS DB instance.

Create an Amazon RDS DB instance

Create an RDS for MariaDB, RDS for MySQL, or RDS for PostgreSQL DB instance that maintains the
data used by a web application.

RDS for MariaDB

To create a MariaDB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, check the AWS Region. It
should be the same as the one where you created your EC2 instance.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, choose Standard create.

6. For Engine options, choose MariaDB.

Create a DB instance 427

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. For Templates, choose Free tier.

Create a DB instance 428

Amazon Relational Database Service User Guide

8. In the Availability and durability section, keep the defaults.

9. In the Settings section, set these values:

• DB instance identifier – Type tutorial-db-instance.

• Master username – Type tutorial_user.

• Auto generate a password – Leave the option turned off.

• Master password – Type a password.

• Confirm password – Retype the password.

10. In the Instance configuration section, set these values:

• Burstable classes (includes t classes)

• db.t3.micro

Create a DB instance 429

Amazon Relational Database Service User Guide

11. In the Storage section, keep the defaults.

12. In the Connectivity section, set these values and keep the other values as their defaults:

• For Compute resource, choose Connect to an EC2 compute resource.

• For EC2 instance, choose the EC2 instance you created previously, such as tutorial-ec2-
instance-web-server.

Create a DB instance 430

Amazon Relational Database Service User Guide

13. In the Database authentication section, make sure Password authentication is selected.

14. Open the Additional configuration section, and enter sample for Initial database name.
Keep the default settings for the other options.

15. To create your MariaDB instance, choose Create database.

Your new DB instance appears in the Databases list with the status Creating.

16. Wait for the Status of your new DB instance to show as Available. Then choose the DB
instance name to show its details.

17. In the Connectivity & security section, view the Endpoint and Port of the DB instance.

Create a DB instance 431

Amazon Relational Database Service User Guide

Note the endpoint and port for your DB instance. You use this information to connect your
web server to your DB instance.

18. Complete Install a web server on your EC2 instance.

Create a DB instance 432

Amazon Relational Database Service User Guide

RDS for MySQL

To create a MySQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, check the AWS Region. It
should be the same as the one where you created your EC2 instance.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, choose Standard create.

6. For Engine options, choose MySQL.

Create a DB instance 433

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. For Templates, choose Free tier.

Create a DB instance 434

Amazon Relational Database Service User Guide

8. In the Availability and durability section, keep the defaults.

9. In the Settings section, set these values:

• DB instance identifier – Type tutorial-db-instance.

• Master username – Type tutorial_user.

• Auto generate a password – Leave the option turned off.

• Master password – Type a password.

• Confirm password – Retype the password.

10. In the Instance configuration section, set these values:

• Burstable classes (includes t classes)

• db.t3.micro

Create a DB instance 435

Amazon Relational Database Service User Guide

11. In the Storage section, keep the defaults.

12. In the Connectivity section, set these values and keep the other values as their defaults:

• For Compute resource, choose Connect to an EC2 compute resource.

• For EC2 instance, choose the EC2 instance you created previously, such as tutorial-ec2-
instance-web-server.

Create a DB instance 436

Amazon Relational Database Service User Guide

13. In the Database authentication section, make sure Password authentication is selected.

14. Open the Additional configuration section, and enter sample for Initial database name.
Keep the default settings for the other options.

15. To create your MySQL DB instance, choose Create database.

Your new DB instance appears in the Databases list with the status Creating.

16. Wait for the Status of your new DB instance to show as Available. Then choose the DB
instance name to show its details.

17. In the Connectivity & security section, view the Endpoint and Port of the DB instance.

Create a DB instance 437

Amazon Relational Database Service User Guide

Note the endpoint and port for your DB instance. You use this information to connect your
web server to your DB instance.

18. Complete Install a web server on your EC2 instance.

Create a DB instance 438

Amazon Relational Database Service User Guide

RDS for PostgreSQL

To create a PostgreSQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, check the AWS Region. It
should be the same as the one where you created your EC2 instance.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, choose Standard create.

6. For Engine options, choose PostgreSQL.

Create a DB instance 439

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. For Templates, choose Free tier.

Create a DB instance 440

Amazon Relational Database Service User Guide

8. In the Availability and durability section, keep the defaults.

9. In the Settings section, set these values:

• DB instance identifier – Type tutorial-db-instance.

• Master username – Type tutorial_user.

• Auto generate a password – Leave the option turned off.

• Master password – Type a password.

• Confirm password – Retype the password.

10. In the Instance configuration section, set these values:

• Burstable classes (includes t classes)

• db.t3.micro

Create a DB instance 441

Amazon Relational Database Service User Guide

11. In the Storage section, keep the defaults.

12. In the Connectivity section, set these values and keep the other values as their defaults:

• For Compute resource, choose Connect to an EC2 compute resource.

• For EC2 instance, choose the EC2 instance you created previously, such as tutorial-ec2-
instance-web-server.

Create a DB instance 442

Amazon Relational Database Service User Guide

13. In the Database authentication section, make sure Password authentication is selected.

14. Open the Additional configuration section, and enter sample for Initial database name.
Keep the default settings for the other options.

15. To create your PostgreSQL DB instance, choose Create database.

Your new DB instance appears in the Databases list with the status Creating.

16. Wait for the Status of your new DB instance to show as Available. Then choose the DB
instance name to show its details.

17. In the Connectivity & security section, view the Endpoint and Port of the DB instance.

Create a DB instance 443

Amazon Relational Database Service User Guide

Note the endpoint and port for your DB instance. You use this information to connect your
web server to your DB instance.

18. Complete Install a web server on your EC2 instance.

Create a DB instance 444

Amazon Relational Database Service User Guide

Install a web server on your EC2 instance

Install a web server on the EC2 instance you created in Launch an EC2 instance to connect with
your DB instance. The web server connects to the Amazon RDS DB instance that you created in
Create an Amazon RDS DB instance.

Install an Apache web server with PHP and MariaDB

Connect to your EC2 instance and install the web server.

To connect to your EC2 instance and install the Apache web server with PHP

1. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

2. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do this, use the following command.

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

Install a web server 445

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Relational Database Service User Guide

3. After the updates complete, install the Apache web server, PHP, and MariaDB or PostgreSQL
software using the following commands. This command installs multiple software packages
and related dependencies at the same time.

MariaDB & MySQL

sudo dnf install -y httpd php php-mysqli mariadb105

PostgreSQL

sudo dnf install -y httpd php php-pgsql postgresql15

If you receive an error, your instance probably wasn't launched with an Amazon Linux 2023
AMI. You might be using the Amazon Linux 2 AMI instead. You can view your version of
Amazon Linux using the following command.

cat /etc/system-release

For more information, see Updating instance software.

4. Start the web server with the command shown following.

sudo systemctl start httpd

You can test that your web server is properly installed and started. To do this, enter the public
Domain Name System (DNS) name of your EC2 instance in the address bar of a web browser,
for example: http://ec2-42-8-168-21.us-west-1.compute.amazonaws.com. If your
web server is running, then you see the Apache test page.

If you don't see the Apache test page, check your inbound rules for the VPC security group
that you created in Tutorial: Create a VPC for use with a DB instance (IPv4 only). Make sure that
your inbound rules include one allowing HTTP (port 80) access for the IP address to connect to
the web server.

Note

The Apache test page appears only when there is no content in the document root
directory, /var/www/html. After you add content to the document root directory,

Install a web server 446

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-updates.html

Amazon Relational Database Service User Guide

your content appears at the public DNS address of your EC2 instance. Before this point,
it appears on the Apache test page.

5. Configure the web server to start with each system boot using the systemctl command.

sudo systemctl enable httpd

To allow ec2-user to manage files in the default root directory for your Apache web server,
modify the ownership and permissions of the /var/www directory. There are many ways to
accomplish this task. In this tutorial, you add ec2-user to the apache group, to give the apache
group ownership of the /var/www directory and assign write permissions to the group.

To set file permissions for the Apache web server

1. Add the ec2-user user to the apache group.

sudo usermod -a -G apache ec2-user

2. Log out to refresh your permissions and include the new apache group.

exit

3. Log back in again and verify that the apache group exists with the groups command.

groups

Your output looks similar to the following:

ec2-user adm wheel apache systemd-journal

4. Change the group ownership of the /var/www directory and its contents to the apache
group.

sudo chown -R ec2-user:apache /var/www

5. Change the directory permissions of /var/www and its subdirectories to add group write
permissions and set the group ID on subdirectories created in the future.

sudo chmod 2775 /var/www

Install a web server 447

Amazon Relational Database Service User Guide

find /var/www -type d -exec sudo chmod 2775 {} \;

6. Recursively change the permissions for files in the /var/www directory and its subdirectories
to add group write permissions.

find /var/www -type f -exec sudo chmod 0664 {} \;

Now, ec2-user (and any future members of the apache group) can add, delete, and edit files in
the Apache document root. This makes it possible for you to add content, such as a static website
or a PHP application.

Note

A web server running the HTTP protocol provides no transport security for the data
that it sends or receives. When you connect to an HTTP server using a web browser,
much information is visible to eavesdroppers anywhere along the network pathway. This
information includes the URLs that you visit, the content of web pages that you receive,
and the contents (including passwords) of any HTML forms.
The best practice for securing your web server is to install support for HTTPS (HTTP
Secure). This protocol protects your data with SSL/TLS encryption. For more information,
see Tutorial: Configure SSL/TLS with the Amazon Linux AMI in the Amazon EC2 User Guide.

Connect your Apache web server to your DB instance

Next, you add content to your Apache web server that connects to your Amazon RDS DB instance.

To add content to the Apache web server that connects to your DB instance

1. While still connected to your EC2 instance, change the directory to /var/www and create a
new subdirectory named inc.

cd /var/www
mkdir inc
cd inc

2. Create a new file in the inc directory named dbinfo.inc, and then edit the file by calling
nano (or the editor of your choice).

Install a web server 448

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/SSL-on-amazon-linux-ami.html

Amazon Relational Database Service User Guide

>dbinfo.inc
nano dbinfo.inc

3. Add the following contents to the dbinfo.inc file. Here, db_instance_endpoint is your
DB instance endpoint, without the port, for your DB instance.

Note

We recommend placing the user name and password information in a folder that isn't
part of the document root for your web server. Doing this reduces the possibility of
your security information being exposed.
Make sure to change master password to a suitable password in your application.

<?php

define('DB_SERVER', 'db_instance_endpoint');
define('DB_USERNAME', 'tutorial_user');
define('DB_PASSWORD', 'master password');
define('DB_DATABASE', 'sample');
?>

4. Save and close the dbinfo.inc file. If you are using nano, save and close the file by using Ctrl
+S and Ctrl+X.

5. Change the directory to /var/www/html.

cd /var/www/html

6. Create a new file in the html directory named SamplePage.php, and then edit the file by
calling nano (or the editor of your choice).

>SamplePage.php
nano SamplePage.php

7. Add the following contents to the SamplePage.php file:

MariaDB & MySQL

<?php include "../inc/dbinfo.inc"; ?>

Install a web server 449

Amazon Relational Database Service User Guide

<html>
<body>
<h1>Sample page</h1>
<?php

 /* Connect to MySQL and select the database. */
 $connection = mysqli_connect(DB_SERVER, DB_USERNAME, DB_PASSWORD);

 if (mysqli_connect_errno()) echo "Failed to connect to MySQL: " .
 mysqli_connect_error();

 $database = mysqli_select_db($connection, DB_DATABASE);

 /* Ensure that the EMPLOYEES table exists. */
 VerifyEmployeesTable($connection, DB_DATABASE);

 /* If input fields are populated, add a row to the EMPLOYEES table. */
 $employee_name = htmlentities($_POST['NAME']);
 $employee_address = htmlentities($_POST['ADDRESS']);

 if (strlen($employee_name) || strlen($employee_address)) {
 AddEmployee($connection, $employee_name, $employee_address);
 }
?>

<!-- Input form -->
<form action="<?PHP echo $_SERVER['SCRIPT_NAME'] ?>" method="POST">
 <table border="0">
 <tr>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>
 <tr>
 <td>
 <input type="text" name="NAME" maxlength="45" size="30" />
 </td>
 <td>
 <input type="text" name="ADDRESS" maxlength="90" size="60" />
 </td>
 <td>
 <input type="submit" value="Add Data" />
 </td>
 </tr>
 </table>

Install a web server 450

Amazon Relational Database Service User Guide

</form>

<!-- Display table data. -->
<table border="1" cellpadding="2" cellspacing="2">
 <tr>
 <td>ID</td>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>

<?php

$result = mysqli_query($connection, "SELECT * FROM EMPLOYEES");

while($query_data = mysqli_fetch_row($result)) {
 echo "<tr>";
 echo "<td>",$query_data[0], "</td>",
 "<td>",$query_data[1], "</td>",
 "<td>",$query_data[2], "</td>";
 echo "</tr>";
}
?>

</table>

<!-- Clean up. -->
<?php

 mysqli_free_result($result);
 mysqli_close($connection);

?>

</body>
</html>

<?php

/* Add an employee to the table. */
function AddEmployee($connection, $name, $address) {
 $n = mysqli_real_escape_string($connection, $name);
 $a = mysqli_real_escape_string($connection, $address);

Install a web server 451

Amazon Relational Database Service User Guide

 $query = "INSERT INTO EMPLOYEES (NAME, ADDRESS) VALUES ('$n', '$a');";

 if(!mysqli_query($connection, $query)) echo("<p>Error adding employee data.</
p>");
}

/* Check whether the table exists and, if not, create it. */
function VerifyEmployeesTable($connection, $dbName) {
 if(!TableExists("EMPLOYEES", $connection, $dbName))
 {
 $query = "CREATE TABLE EMPLOYEES (
 ID int(11) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 NAME VARCHAR(45),
 ADDRESS VARCHAR(90)
)";

 if(!mysqli_query($connection, $query)) echo("<p>Error creating table.</
p>");
 }
}

/* Check for the existence of a table. */
function TableExists($tableName, $connection, $dbName) {
 $t = mysqli_real_escape_string($connection, $tableName);
 $d = mysqli_real_escape_string($connection, $dbName);

 $checktable = mysqli_query($connection,
 "SELECT TABLE_NAME FROM information_schema.TABLES WHERE TABLE_NAME = '$t'
 AND TABLE_SCHEMA = '$d'");

 if(mysqli_num_rows($checktable) > 0) return true;

 return false;
}
?>

PostgreSQL

<?php include "../inc/dbinfo.inc"; ?>

<html>
<body>

Install a web server 452

Amazon Relational Database Service User Guide

<h1>Sample page</h1>
<?php

/* Connect to PostgreSQL and select the database. */
$constring = "host=" . DB_SERVER . " dbname=" . DB_DATABASE . " user=" .
 DB_USERNAME . " password=" . DB_PASSWORD ;
$connection = pg_connect($constring);

if (!$connection){
 echo "Failed to connect to PostgreSQL";
 exit;
}

/* Ensure that the EMPLOYEES table exists. */
VerifyEmployeesTable($connection, DB_DATABASE);

/* If input fields are populated, add a row to the EMPLOYEES table. */
$employee_name = htmlentities($_POST['NAME']);
$employee_address = htmlentities($_POST['ADDRESS']);

if (strlen($employee_name) || strlen($employee_address)) {
 AddEmployee($connection, $employee_name, $employee_address);
}

?>

<!-- Input form -->
<form action="<?PHP echo $_SERVER['SCRIPT_NAME'] ?>" method="POST">
 <table border="0">
 <tr>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>
 <tr>
 <td>
 <input type="text" name="NAME" maxlength="45" size="30" />
 </td>
 <td>
 <input type="text" name="ADDRESS" maxlength="90" size="60" />
 </td>
 <td>
 <input type="submit" value="Add Data" />
 </td>
 </tr>

Install a web server 453

Amazon Relational Database Service User Guide

 </table>
</form>
<!-- Display table data. -->
<table border="1" cellpadding="2" cellspacing="2">
 <tr>
 <td>ID</td>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>

<?php

$result = pg_query($connection, "SELECT * FROM EMPLOYEES");

while($query_data = pg_fetch_row($result)) {
 echo "<tr>";
 echo "<td>",$query_data[0], "</td>",
 "<td>",$query_data[1], "</td>",
 "<td>",$query_data[2], "</td>";
 echo "</tr>";
}
?>
</table>

<!-- Clean up. -->
<?php

 pg_free_result($result);
 pg_close($connection);
?>
</body>
</html>

<?php

/* Add an employee to the table. */
function AddEmployee($connection, $name, $address) {
 $n = pg_escape_string($name);
 $a = pg_escape_string($address);
 echo "Forming Query";
 $query = "INSERT INTO EMPLOYEES (NAME, ADDRESS) VALUES ('$n', '$a');";

Install a web server 454

Amazon Relational Database Service User Guide

 if(!pg_query($connection, $query)) echo("<p>Error adding employee data.</
p>");
}

/* Check whether the table exists and, if not, create it. */
function VerifyEmployeesTable($connection, $dbName) {
 if(!TableExists("EMPLOYEES", $connection, $dbName))
 {
 $query = "CREATE TABLE EMPLOYEES (
 ID serial PRIMARY KEY,
 NAME VARCHAR(45),
 ADDRESS VARCHAR(90)
)";

 if(!pg_query($connection, $query)) echo("<p>Error creating table.</p>");
 }
}
/* Check for the existence of a table. */
function TableExists($tableName, $connection, $dbName) {
 $t = strtolower(pg_escape_string($tableName)); //table name is case sensitive
 $d = pg_escape_string($dbName); //schema is 'public' instead of 'sample' db
 name so not using that

 $query = "SELECT TABLE_NAME FROM information_schema.TABLES WHERE TABLE_NAME =
 '$t';";
 $checktable = pg_query($connection, $query);

 if (pg_num_rows($checktable) >0) return true;
 return false;

}
?>

8. Save and close the SamplePage.php file.

9. Verify that your web server successfully connects to your DB instance by opening a web
browser and browsing to http://EC2 instance endpoint/SamplePage.php, for
example: http://ec2-12-345-67-890.us-west-2.compute.amazonaws.com/
SamplePage.php.

You can use SamplePage.php to add data to your DB instance. The data that you add is then
displayed on the page. To verify that the data was inserted into the table, install MySQL client on
the Amazon EC2 instance. Then connect to the DB instance and query the table.

Install a web server 455

Amazon Relational Database Service User Guide

For information about installing the MySQL client and connecting to a DB instance, see Connecting
to your MySQL DB instance.

To make sure that your DB instance is as secure as possible, verify that sources outside of the VPC
can't connect to your DB instance.

After you have finished testing your web server and your database, you should delete your DB
instance and your Amazon EC2 instance.

• To delete a DB instance, follow the instructions in Deleting a DB instance. You don't need to
create a final snapshot.

• To terminate an Amazon EC2 instance, follow the instruction in Terminate your instance in the
Amazon EC2 User Guide.

Install a web server 456

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon Relational Database Service User Guide

Tutorial: Using a Lambda function to access an Amazon RDS
database

In this tutorial, you use a Lambda function to write data to an Amazon Relational Database Service
(Amazon RDS) database through RDS Proxy. Your Lambda function reads records from an Amazon
Simple Queue Service (Amazon SQS) queue and writes a new item to a table in your database
whenever a message is added. In this example, you use the AWS Management Console to manually
add messages to your queue. The following diagram shows the AWS resources you use to complete
the tutorial.

With Amazon RDS, you can run a managed relational database in the cloud using common
database products like Microsoft SQL Server, MariaDB, MySQL, Oracle Database, and PostgreSQL.
By using Lambda to access your database, you can read and write data in response to events, such
as a new customer registering with your website. Your function, database instance, and proxy scale
automatically to meet periods of high demand.

To complete this tutorial, you carry out the following tasks:

1. Launch an RDS for MySQL database instance and a proxy in your AWS account's default VPC.

2. Create and test a Lambda function that creates a new table in your database and writes data to
it.

Tutorial: Create a Lambda function to access your Amazon RDS DB instance 457

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

Amazon Relational Database Service User Guide

3. Create an Amazon SQS queue and configure it to invoke your Lambda function whenever a new
message is added.

4. Test the complete setup by adding messages to your queue using the AWS Management Console
and monitoring the results using CloudWatch Logs.

By completing these steps, you learn:

• How to use Amazon RDS to create a database instance and a proxy, and connect a Lambda
function to the proxy.

• How to use Lambda to perform create and read operations on an Amazon RDS database.

• How to use Amazon SQS to invoke a Lambda function.

You can complete this tutorial using the AWS Management Console or the AWS Command Line
Interface (AWS CLI).

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Create an Amazon RDS DB instance

An Amazon RDS DB instance is an isolated database environment running in the AWS Cloud. An
instance can contain one or more user-created databases. Unless you specify otherwise, Amazon
RDS creates new database instances in the default VPC included in your AWS account. For more
information about Amazon VPC, see the Amazon Virtual Private Cloud User Guide.

Prerequisites 458

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon Relational Database Service User Guide

In this tutorial, you create a new instance in your AWS account's default VPC and create a database
named ExampleDB in that instance. You can create your DB instance and database using either the
AWS Management Console or the AWS CLI.

To create a database instance

1. Open the Amazon RDS console and choose Create database.

2. Leave the Standard create option selected, then in Engine options, choose MySQL.

3. In Templates, choose Free tier.

4. In Settings, for DB instance identifier, enter MySQLForLambda.

5. Set your username and password by doing the following:

a. In Credentials settings, leave Master username set to admin.

b. For Master password, enter and confirm a password to access your database.

6. Specify the database name by doing the following:

• Leave all the remaining default options selected and scroll down to the Additional
configuration section.

• Expand this section and enter ExampleDB as the Initial database name.

7. Leave all the remaining default options selected and choose Create database.

Create Lambda function and proxy

You can use the RDS console to create a Lambda function and a proxy in the same VPC as the
database.

Create Lambda function and proxy 459

Amazon Relational Database Service User Guide

Note

You can only create these associated resources when your database has completed creation
and is in Available status.

To create an associated function and proxy

1. From the Databases page, check if your database is in the Available status. If so, proceed to
the next step. Else, wait till your database is available.

2. Select your database and choose Set up Lambda connection from Actions.

3. In the Set up Lambda connection page, choose Create new function.

Set the New Lambda function name to LambdaFunctionWithRDS.

4. In the RDS Proxy section, select the Connect using RDS Proxy option. Further choose Create
new proxy.

• For Database credentials, choose Database username and password.

• For Username, specify admin.

• For Password, enter the password you created for your database instance.

5. Select Set up to complete the proxy and Lambda function creation.

The wizard completes the set up and provides a link to the Lambda console to review your new
function. Note the proxy endpoint before switching to the Lambda console.

Create a function execution role

Before you create your Lambda function, you create an execution role to give your function
the necessary permissions. For this tutorial, Lambda needs permission to manage the network

Create a function execution role 460

Amazon Relational Database Service User Guide

connection to the VPC containing your database instance and to poll messages from an Amazon
SQS queue.

To give your Lambda function the permissions it needs, this tutorial uses IAM managed policies.
These are policies that grant permissions for many common use cases and are available in your
AWS account. For more information about using managed policies, see Policy best practices.

To create the Lambda execution role

1. Open the Roles page of the IAM console and choose Create role.

2. For the Trusted entity type, choose AWS service, and for the Use case, choose Lambda.

3. Choose Next.

4. Add the IAM managed policies by doing the following:

a. Using the policy search box, search for AWSLambdaSQSQueueExecutionRole.

b. In the results list, select the check box next to the role, then choose Clear filters.

c. Using the policy search box, search for AWSLambdaVPCAccessExecutionRole.

d. In the results list, select the check box next to the role, then choose Next.

5. For the Role name, enter lambda-vpc-sqs-role, then choose Create role.

Later in the tutorial, you need the Amazon Resource Name (ARN) of the execution role you just
created.

To find the execution role ARN

1. Open the Roles page of the IAM console and choose your role (lambda-vpc-sqs-role).

2. Copy the ARN displayed in the Summary section.

Create a function execution role 461

https://console.aws.amazon.com/iamv2/home#/roles
https://console.aws.amazon.com/iamv2/home#/roles

Amazon Relational Database Service User Guide

Create a Lambda deployment package

The following example Python code uses the PyMySQL package to open a connection to your
database. The first time you invoke your function, it also creates a new table called Customer. The
table uses the following schema, where CustID is the primary key:

Customer(CustID, Name)

The function also uses PyMySQL to add records to this table. The function adds records using
customer IDs and names specified in messages you will add to your Amazon SQS queue.

The code creates the connection to your database outside of the handler function. Creating
the connection in the initialization code allows the connection to be re-used by subsequent
invocations of your function and improves performance. In a production application, you can also
use provisioned concurrency to initialize a requested number of database connections. These
connections are available as soon as your function is invoked.

import sys
import logging
import pymysql
import json
import os

rds settings
user_name = os.environ['USER_NAME']
password = os.environ['PASSWORD']
rds_proxy_host = os.environ['RDS_PROXY_HOST']
db_name = os.environ['DB_NAME']

logger = logging.getLogger()
logger.setLevel(logging.INFO)

Create a Lambda deployment package 462

https://pymysql.readthedocs.io/en/latest/
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html

Amazon Relational Database Service User Guide

create the database connection outside of the handler to allow connections to be
re-used by subsequent function invocations.
try:
 conn = pymysql.connect(host=rds_proxy_host, user=user_name, passwd=password,
 db=db_name, connect_timeout=5)
except pymysql.MySQLError as e:
 logger.error("ERROR: Unexpected error: Could not connect to MySQL instance.")
 logger.error(e)
 sys.exit(1)

logger.info("SUCCESS: Connection to RDS for MySQL instance succeeded")

def lambda_handler(event, context):
 """
 This function creates a new RDS database table and writes records to it
 """
 message = event['Records'][0]['body']
 data = json.loads(message)
 CustID = data['CustID']
 Name = data['Name']

 item_count = 0
 sql_string = f"insert into Customer (CustID, Name) values(%s, %s)"

 with conn.cursor() as cur:
 cur.execute("create table if not exists Customer (CustID int NOT NULL, Name
 varchar(255) NOT NULL, PRIMARY KEY (CustID))")
 cur.execute(sql_string, (CustID, Name))
 conn.commit()
 cur.execute("select * from Customer")
 logger.info("The following items have been added to the database:")
 for row in cur:
 item_count += 1
 logger.info(row)
 conn.commit()

 return "Added %d items to RDS for MySQL table" %(item_count)

Note

In this example, your database access credentials are stored as environment variables. In
production applications, we recommend that you use AWS Secrets Manager as a more

Create a Lambda deployment package 463

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

Amazon Relational Database Service User Guide

secure option. Note that if your Lambda function is in a VPC, to connect to Secrets Manager
you need to create a VPC endpoint. See How to connect to Secrets Manager service within
a Virtual Private Cloud to learn more.

To include the PyMySQL dependency with your function code, create a .zip deployment package.
The following commands work for Linux, macOS, or Unix:

To create a .zip deployment package

1. Save the example code as a file named lambda_function.py.

2. In the same directory in which you created your lambda_function.py file, create a new
directory named package and install the PyMySQL library.

mkdir package
pip install --target package pymysql

3. Create a zip file containing your application code and the PyMySQL library. In Linux or MacOS,
run the following CLI commands. In Windows, use your preferred zip tool to create the
lambda_function.zip file. Your lambda_function.py source code file and the folders
containing your dependencies must be installed at the root of the .zip file.

cd package
zip -r ../lambda_function.zip .
cd ..
zip lambda_function.zip lambda_function.py

You can also create your deployment package using a Python virtual environment. See Deploy
Python Lambda functions with .zip file archives.

Update the Lambda function

Using the .zip package you just created, you now update your Lambda function using the Lambda
console. To enable your function to access your database, you also need to configure environment
variables with your access credentials.

Update the Lambda function 464

https://aws.amazon.com/blogs/security/how-to-connect-to-aws-secrets-manager-service-within-a-virtual-private-cloud/
https://aws.amazon.com/blogs/security/how-to-connect-to-aws-secrets-manager-service-within-a-virtual-private-cloud/
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-package-with-dependency
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-package-with-dependency

Amazon Relational Database Service User Guide

To update the Lambda function

1. Open the Functions page of the Lambda console and choose your function
LambdaFunctionWithRDS.

2. In the Runtime settings tab, select Edit to change the Runtime of the function to Python
3.10.

3. Change the Handler to lambda_function.lambda_handler.

4. In the Code tab, choose Upload from and then .zip file.

5. Select the lambda_function.zip file you created in the previous stage and choose Save.

Now configure the function with the execution role you created earlier. This grants the function the
permissions it needs to access your database instance and poll an Amazon SQS queue.

To configure the function's execution role

1. In the Functions page of the Lambda console, select the Configuration tab, then choose
Permissions.

2. In Execution role, choose Edit.

3. In Existing role, choose your execution role (lambda-vpc-sqs-role).

4. Choose Save.

To configure your function's environment variables

1. In the Functions page of the Lambda console, select the Configuration tab, then choose
Environment variables.

2. Choose Edit.

3. To add your database access credentials, do the following:

a. Choose Add environment variable, then for Key enter USER_NAME and for Value enter
admin.

b. Choose Add environment variable, then for Key enter DB_NAME and for Value enter
ExampleDB.

c. Choose Add environment variable, then for Key enter PASSWORD and for Value enter the
password you chose when you created your database.

Update the Lambda function 465

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

Amazon Relational Database Service User Guide

d. Choose Add environment variable, then for Key enter RDS_PROXY_HOST and for Value
enter the RDS Proxy endpoint you noted earlier.

e. Choose Save.

Test your Lambda function in the console

You can now use the Lambda console to test your function. You create a test event which mimics
the data your function will receive when you invoke it using Amazon SQS in the final stage of the
tutorial. Your test event contains a JSON object specifying a customer ID and customer name to
add to the Customer table your function creates.

To test the Lambda function

1. Open the Functions page of the Lambda console and choose your function.

2. Choose the Test section.

3. Choose Create new event and enter myTestEvent for the event name.

4. Copy the following code into Event JSON and choose Save.

{
 "Records": [
 {
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "{\n \"CustID\": 1021,\n \"Name\": \"Martha Rivera\"\n}",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },

Test your Lambda function in the console 466

https://console.aws.amazon.com/lambda/home#/functions

Amazon Relational Database Service User Guide

 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-west-2:123456789012:my-queue",
 "awsRegion": "us-west-2"
 }
]
}

5. Choose Test.

In the Execution results tab, you should see results similar to the following displayed in the
Function Logs:

[INFO] 2023-02-14T19:31:35.149Z bdd06682-00c7-4d6f-9abb-89f4bbb4a27f The following
 items have been added to the database:
[INFO] 2023-02-14T19:31:35.149Z bdd06682-00c7-4d6f-9abb-89f4bbb4a27f (1021, 'Martha
 Rivera')

Create an Amazon SQS queue

You have successfully tested the integration of your Lambda function and Amazon RDS database
instance. Now you create the Amazon SQS queue you will use to invoke your Lambda function in
the final stage of the tutorial.

To create the Amazon SQS queue (console)

1. Open the Queues page of the Amazon SQS console and select Create queue.

2. Leave the Type as Standard and enter LambdaRDSQueue for the name of your queue.

3. Leave all the default options selected and choose Create queue.

Create an Amazon SQS queue 467

https://console.aws.amazon.com/sqs/v2/home#/queues

Amazon Relational Database Service User Guide

Create an event source mapping to invoke your Lambda function

An event source mapping is a Lambda resource which reads items from a stream or queue and
invokes a Lambda function. When you configure an event source mapping, you can specify a batch
size so that records from your stream or queue are batched together into a single payload. In this
example, you set the batch size to 1 so that your Lambda function is invoked every time you send
a message to your queue. You can configure the event source mapping using either the AWS CLI or
the Lambda console.

To create an event source mapping (console)

1. Open the Functions page of the Lambda console and select your function
(LambdaFunctionWithRDS).

2. In the Function overview section, choose Add trigger.

3. For the source, select Amazon SQS, then select the name of your queue (LambdaRDSQueue).

4. For Batch size, enter 1.

5. Leave all the other options set to the default values and choose Add.

You are now ready to test your complete setup by adding a message to your Amazon SQS queue.

Test and monitor your setup

Create an event source mapping to invoke your Lambda function 468

https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html
https://console.aws.amazon.com/lambda/home#/functions

Amazon Relational Database Service User Guide

To test your complete setup, add messages to your Amazon SQS queue using the console. You then
use CloudWatch Logs to confirm that your Lambda function is writing records to your database as
expected.

To test and monitor your setup

1. Open the Queues page of the Amazon SQS console and select your queue (LambdaRDSQueue).

2. Choose Send and receive messages and paste the following JSON into the Message body in
the Send message section.

{
 "CustID": 1054,
 "Name": "Richard Roe"
}

3. Choose Send message.

Sending your message to the queue will cause Lambda to invoke your function through your
event source mapping. To confirm that Lambda has invoked your function as expected, use
CloudWatch Logs to verify that the function has written the customer name and ID to your
database table.

4. Open the Log groups page of the CloudWatch console and select the log group for your
function (/aws/lambda/LambdaFunctionWithRDS).

5. In the Log streams section, choose the most recent log stream.

Your table should contain two customer records, one from each invocation of your function. In
the log stream, you should see messages similar to the following:

[INFO] 2023-02-14T19:06:43.873Z 45368126-3eee-47f7-88ca-3086ae6d3a77 The following
 items have been added to the database:
[INFO] 2023-02-14T19:06:43.873Z 45368126-3eee-47f7-88ca-3086ae6d3a77 (1021, 'Martha
 Rivera')
[INFO] 2023-02-14T19:06:43.873Z 45368126-3eee-47f7-88ca-3086ae6d3a77 (1054,
 'Richard Roe')

Test and monitor your setup 469

https://console.aws.amazon.com/sqs/v2/home#/queues
https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

Amazon Relational Database Service User Guide

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete role.

4. Choose Yes, delete.

To delete the MySQL DB instance

1. Open the Databases page of the Amazon RDS console.

2. Select the database you created.

3. Choose Actions, Delete.

4. Clear the Create final snapshot check box.

5. Enter delete me in the text box.

6. Choose Delete.

To delete the Amazon SQS queue

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the queue you created.

3. Choose Delete.

Clean up your resources 470

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/rds/home#databases:
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Relational Database Service User Guide

4. Enter delete in the text box.

5. Choose Delete.

Clean up your resources 471

Amazon Relational Database Service User Guide

Amazon RDS tutorials and sample code

The AWS documentation includes several tutorials that guide you through common Amazon RDS
use cases. Many of these tutorials show you how to use Amazon RDS with other AWS services. In
addition, you can access sample code in GitHub.

Note

You can find more tutorials at the AWS Database Blog. For information about training, see
AWS Training and Certification.

Topics

• Tutorials in this guide

• Tutorials in other AWS guides

• AWS workshop and lab content portal for Amazon RDS PostgreSQL

• AWS workshop and lab content portal for Amazon RDS MySQL

• Tutorials and sample code in GitHub

• Using this service with an AWS SDK

Tutorials in this guide

The following tutorials in this guide show you how to perform common tasks with Amazon RDS:

• Tutorial: Create a VPC for use with a DB instance (IPv4 only)

Learn how to include a DB instance in a virtual private cloud (VPC) based on the Amazon VPC
service. In this case, the VPC shares data with a web server that is running on an Amazon EC2
instance in the same VPC.

• Tutorial: Create a VPC for use with a DB instance (dual-stack mode)

Learn how to include a DB instance in a virtual private cloud (VPC) based on the Amazon VPC
service. In this case, the VPC shares data with an Amazon EC2 instance in the same VPC. In this
tutorial, you create the VPC for this scenario that works with a database running in dual-stack
mode.

Tutorials in this guide 472

https://aws.amazon.com/blogs/database/
https://www.aws.training/

Amazon Relational Database Service User Guide

• Tutorial: Create a web server and an Amazon RDS DB instance

Learn how to install an Apache web server with PHP and create a MySQL database. The web
server runs on an Amazon EC2 instance using Amazon Linux, and the MySQL database is a
MySQL DB instance. Both the Amazon EC2 instance and the DB instance run in an Amazon VPC.

• Tutorial: Restore an Amazon RDS DB instance from a DB snapshot

Learn how to restore a DB instance from a DB snapshot.

• Tutorial: Using a Lambda function to access an Amazon RDS database

Learn how to create a Lambda function from the RDS console to access a database through a
proxy, create a table, add a few records, and retrieve the records from the table. You also learn
how to invoke the Lambda function and verify the query results.

• Tutorial: Specify which DB instances to stop by using tags

Learn how to use tags to specify which DB instances to stop.

• Tutorial: Log DB instance state changes using Amazon EventBridge

Learn how to log a DB instance state change using Amazon EventBridge and AWS Lambda.

• Tutorial: Creating an Amazon CloudWatch alarm for Multi-AZ DB cluster replica lag for Amazon
RDS

Learn how to create a CloudWatch alarm that sends an Amazon SNS message when replica lag
for a Multi-AZ DB cluster has exceeded a threshold. An alarm watches the ReplicaLag metric
over a time period that you specify. The action is a notification sent to an Amazon SNS topic or
Amazon EC2 Auto Scaling policy.

Tutorials in other AWS guides

The following tutorials in other AWS guides show you how to perform common tasks with Amazon
RDS:

• Tutorial: Rotating a Secret for an AWS Database in the AWS Secrets Manager User Guide

Learn how to create a secret for an AWS database and configure the secret to rotate on a
schedule. You trigger one rotation manually, and then confirm that the new version of the secret
continues to provide access.

• Tutorials and samples in the AWS Elastic Beanstalk Developer Guide

Tutorials in other AWS guides 473

https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_db-rotate.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/tutorials.html

Amazon Relational Database Service User Guide

Learn how to deploy applications that use Amazon RDS databases with AWS Elastic Beanstalk.

• Using Data from an Amazon RDS Database to Create an Amazon ML Datasource in the Amazon
Machine Learning Developer Guide

Learn how to create an Amazon Machine Learning (Amazon ML) datasource object from data
stored in a MySQL DB instance.

• Manually Enabling Access to an Amazon RDS Instance in a VPC in the Amazon QuickSight User
Guide

Learn how to enable QuickSight access to an Amazon RDS DB instance in a VPC.

AWS workshop and lab content portal for Amazon RDS
PostgreSQL

The following collection of workshops and other hands-on content helps you to gain an
understanding of the Amazon RDS PostgreSQL features and capabilities:

• Creating a DB instance

Learn how to create the DB instance.

• Performance Monitoring with RDS Tools

Learn how to use AWS and SQL tools(Cloudwatch, Enhanced Monitoring, Slow Query Logs,
Performance Insights, PostgreSQL Catalog Views) to understand performance issues and identify
ways to improve performance of your database.

AWS workshop and lab content portal for Amazon RDS MySQL

The following collection of workshops and other hands-on content helps you to gain an
understanding of the Amazon RDS MySQL features and capabilities:

• Creating a DB instance

Learn how to create the DB instance.

• Using Performance Insights

AWS workshop and lab content portal for Amazon RDS PostgreSQL 474

https://docs.aws.amazon.com/machine-learning/latest/dg/using-amazon-rds-with-amazon-ml.html
https://docs.aws.amazon.com/quicksight/latest/user/rds-vpc-access.html
https://catalog.us-east-1.prod.workshops.aws/workshops/2a5fc82d-2b5f-4105-83c2-91a1b4d7abfe/en-US/2-foundation/lab1-create/task1
https://catalog.us-east-1.prod.workshops.aws/workshops/31babd91-aa9a-4415-8ebf-ce0a6556a216/en-US/
https://catalog.us-east-1.prod.workshops.aws/workshops/0135d1da-9f07-470c-9845-44ead3c78212/en-US/lab3/task1
https://catalog.us-east-1.prod.workshops.aws/workshops/0135d1da-9f07-470c-9845-44ead3c78212/en-US/lab8

Amazon Relational Database Service User Guide

Learn how to monitor and tune your DB instance using Performance insights.

Tutorials and sample code in GitHub

The following tutorials and sample code in GitHub show you how to perform common tasks with
Amazon RDS:

• Creating the Amazon Relational Database Service item tracker

Learn how to create an application that tracks and reports on work items. This application uses
Amazon RDS, Amazon Simple Email Service, Elastic Beanstalk, and SDK for Java 2.x.

Using this service with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

Tutorials and sample code in GitHub 475

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_rds_item_tracker
https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html

Amazon Relational Database Service User Guide

SDK documentation Code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to this service, see Code examples for Amazon RDS using AWS SDKs.

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 476

https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon Relational Database Service User Guide

Best practices for Amazon RDS

Learn best practices for working with Amazon RDS. As new best practices are identified, we will
keep this section up to date.

Topics

• Amazon RDS basic operational guidelines

• DB instance RAM recommendations

• Keeping database engine versions up to date

• AWS database drivers

• Using Enhanced Monitoring to identify operating system issues

• Using metrics to identify performance issues

• Tuning queries

• Best practices for working with MySQL

• Best practices for working with MariaDB

• Best practices for working with Oracle

• Best practices for working with PostgreSQL

• Best practices for working with SQL Server

• Working with DB parameter groups

• Best practices for automating DB instance creation

• Amazon RDS new features video

Note

For common recommendations for Amazon RDS, see Recommendations from Amazon RDS.

Amazon RDS basic operational guidelines

The following are basic operational guidelines that everyone should follow when working with
Amazon RDS. Note that the Amazon RDS Service Level Agreement requires that you follow these
guidelines:

Basica operational guidelines 477

Amazon Relational Database Service User Guide

• Use metrics to monitor your memory, CPU, replica lag, and storage usage. You can set up
Amazon CloudWatch to notify you when the usage patterns change or when your deployment
approaches capacity limits. This allows you to maintain system performance and availability.

• Scale up your DB instance when you are approaching storage capacity limits. You should have
some buffer in storage and memory to accommodate unforeseen increases in demand from your
applications.

• Enable automatic backups and set the backup window to occur during the daily low in write
IOPS. That's when a backup is least disruptive to your database usage.

• If your database workload requires more I/O than you have provisioned, recovery after a failover
or database failure will be slow. To increase the I/O capacity of a DB instance, do any or all of the
following:

• Migrate to a different DB instance class with high I/O capacity.

• Convert from magnetic storage to either General Purpose or Provisioned IOPS storage,
depending on how much of an increase you need. For information on available storage types,
see Amazon RDS storage types.

If you convert to Provisioned IOPS storage, make sure you also use a DB instance class that is
optimized for Provisioned IOPS. For information on Provisioned IOPS, see Provisioned IOPS
SSD storage.

• If you are already using Provisioned IOPS storage, provision additional throughput capacity.

• If your client application is caching the Domain Name Service (DNS) data of your DB instances,
set a time-to-live (TTL) value of less than 30 seconds. The underlying IP address of a DB
instance can change after a failover. Caching the DNS data for an extended time can thus lead
to connection failures. Your application might try to connect to an IP address that's no longer in
service.

• Test failover for your DB instance to understand how long the process takes for your particular
use case. Also test failover to ensure that the application that accesses your DB instance can
automatically connect to the new DB instance after failover occurs.

DB instance RAM recommendations

An Amazon RDS performance best practice is to allocate enough RAM so that your working set
resides almost completely in memory. The working set is the data and indexes that are frequently
in use on your instance. The more you use the DB instance, the more the working set will grow.

DB instance RAM recommendations 478

Amazon Relational Database Service User Guide

To tell if your working set is almost all in memory, check the ReadIOPS metric (using Amazon
CloudWatch) while the DB instance is under load. The value of ReadIOPS should be small and
stable. In some cases, scaling up the DB instance class to a class with more RAM results in a
dramatic drop in ReadIOPS. In these cases, your working set was not almost completely in memory.
Continue to scale up until ReadIOPS no longer drops dramatically after a scaling operation, or
ReadIOPS is reduced to a very small amount. For information on monitoring a DB instance's
metrics, see Viewing metrics in the Amazon RDS console.

Keeping database engine versions up to date

Regularly upgrade your database engine version to maintain security, performance, and
compliance. Amazon RDS releases new minor and major versions that include security patches,
performance enhancements, and new features. Running an outdated database engine can expose
your workloads to known vulnerabilities, compatibility issues, and reduced support from AWS and
database vendors.

To minimize disruption, consider the following when you plan upgrades:

• Test in a staging environment – Validate the new version against your workload before you
upgrade production databases.

• Use Amazon RDS managed upgrades – Enable automatic minor version upgrades for easier
patching.

• Schedule major version upgrades – Review release notes, test application compatibility, and
plan a controlled upgrade window.

Regular upgrades help ensure your database remains secure, optimized, and aligned with AWS best
practices.

AWS database drivers

We recommend the AWS suite of drivers for application connectivity. The drivers have been
designed to provide support for faster switchover and failover times, and authentication with
AWS Secrets Manager, AWS Identity and Access Management (IAM), and Federated Identity. The
AWS drivers rely on monitoring DB instance status and being aware of the instance topology to
determine the new writer. This approach reduces switchover and failover times to single-digit
seconds, compared to tens of seconds for open-source drivers.

Keeping database engine versions up to date 479

Amazon Relational Database Service User Guide

As new service features are introduced, the goal of the AWS suite of drivers is to have built-in
support for these service features.

For more information, see Connecting to DB instances with the AWS drivers.

Using Enhanced Monitoring to identify operating system issues

When Enhanced Monitoring is enabled, Amazon RDS provides metrics in real time for the operating
system (OS) that your DB instance runs on. You can view the metrics for your DB instance using the
console. You can also consume the Enhanced Monitoring JSON output from Amazon CloudWatch
Logs in a monitoring system of your choice. For more information about Enhanced Monitoring, see
Monitoring OS metrics with Enhanced Monitoring.

Using metrics to identify performance issues

To identify performance issues caused by insufficient resources and other common bottlenecks,
you can monitor the metrics available for your Amazon RDS DB instance.

Viewing performance metrics

You should monitor performance metrics on a regular basis to see the average, maximum, and
minimum values for a variety of time ranges. If you do so, you can identify when performance is
degraded. You can also set Amazon CloudWatch alarms for particular metric thresholds so you are
alerted if they are reached.

To troubleshoot performance issues, it's important to understand the baseline performance of the
system. When you set up a DB instance and run it with a typical workload, capture the average,
maximum, and minimum values of all performance metrics. Do so at a number of different
intervals (for example, one hour, 24 hours, one week, two weeks). This can give you an idea of what
is normal. It helps to get comparisons for both peak and off-peak hours of operation. You can then
use this information to identify when performance is dropping below standard levels.

If you use Multi-AZ DB clusters, monitor the time difference between the latest transaction on the
writer DB instance and the latest applied transaction on a reader DB instance. This difference is
called replica lag. For more information, see Replica lag and Multi-AZ DB clusters.

You can view the combined Performance Insights and CloudWatch metrics in the Performance
Insights dashboard and monitor your DB instance. To use this monitoring view, Performance

Using Enhanced Monitoring 480

Amazon Relational Database Service User Guide

Insights must be turned on for your DB instance. For information about this monitoring view, see
Viewing combined metrics with the Performance Insights dashboard.

You can create a performance analysis report for a specific time period and view the insights
identified and the recommendations to resolve the issues. For more information see, Creating a
performance analysis report in Performance Insights.

To view performance metrics

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose a DB instance.

3. Choose Monitoring.

The dashboard provides the performance metrics. The metrics default to show the information
for the last three hours.

4. Use the numbered buttons in the upper-right to page through the additional metrics, or adjust
the settings to see more metrics.

5. Choose a performance metric to adjust the time range in order to see data for other than
the current day. You can change the Statistic, Time Range, and Period values to adjust the
information displayed. For example, you might want to see the peak values for a metric for
each day of the last two weeks. If so, set Statistic to Maximum, Time Range to Last 2 Weeks,
and Period to Day.

You can also view performance metrics using the CLI or API. For more information, see Viewing
metrics in the Amazon RDS console.

To set a CloudWatch alarm

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose a DB instance.

3. Choose Logs & events.

4. In the CloudWatch alarms section, choose Create alarm.

Viewing performance metrics 481

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. For Send notifications, choose Yes, and for Send notifications to, choose New email or SMS
topic.

Viewing performance metrics 482

Amazon Relational Database Service User Guide

6. For Topic name, enter a name for the notification, and for With these recipients, enter a
comma-separated list of email addresses and phone numbers.

7. For Metric, choose the alarm statistic and metric to set.

8. For Threshold, specify whether the metric must be greater than, less than, or equal to the
threshold, and specify the threshold value.

9. For Evaluation period, choose the evaluation period for the alarm. For consecutive period(s)
of, choose the period during which the threshold must have been reached in order to trigger
the alarm.

10. For Name of alarm, enter a name for the alarm.

11. Choose Create Alarm.

The alarm appears in the CloudWatch alarms section.

Evaluating performance metrics

A DB instance has a number of different categories of metrics, and how to determine acceptable
values depends on the metric.

CPU

• CPU Utilization – Percentage of computer processing capacity used.

Memory

• Freeable Memory – How much RAM is available on the DB instance, in bytes. The red line in
the Monitoring tab metrics is marked at 75% for CPU, Memory and Storage Metrics. If instance
memory consumption frequently crosses that line, then this indicates that you should check your
workload or upgrade your instance.

• Swap Usage – How much swap space is used by the DB instance, in bytes.

Disk space

• Free Storage Space – How much disk space is not currently being used by the DB instance, in
megabytes.

Evaluating performance metrics 483

Amazon Relational Database Service User Guide

Input/output operations

• Read IOPS, Write IOPS – The average number of disk read or write operations per second.

• Read Latency, Write Latency – The average time for a read or write operation in milliseconds.

• Read Throughput, Write Throughput – The average number of megabytes read from or written
to disk per second.

• Queue Depth – The number of I/O operations that are waiting to be written to or read from disk.

Network traffic

• Network Receive Throughput, Network Transmit Throughput – The rate of network traffic to and
from the DB instance in bytes per second.

Database connections

• DB Connections – The number of client sessions that are connected to the DB instance.

For more detailed individual descriptions of the performance metrics available, see Monitoring
Amazon RDS metrics with Amazon CloudWatch.

Generally speaking, acceptable values for performance metrics depend on what your baseline looks
like and what your application is doing. Investigate consistent or trending variances from your
baseline. Advice about specific types of metrics follows:

• High CPU or RAM consumption – High values for CPU or RAM consumption might be
appropriate. For example, they might be so if they are in keeping with your goals for your
application (like throughput or concurrency) and are expected.

• Disk space consumption – Investigate disk space consumption if space used is consistently at or
above 85 percent of the total disk space. See if it is possible to delete data from the instance or
archive data to a different system to free up space.

• Network traffic – For network traffic, talk with your system administrator to understand what
expected throughput is for your domain network and internet connection. Investigate network
traffic if throughput is consistently lower than expected.

• Database connections – Consider constraining database connections if you see high numbers
of user connections in conjunction with decreases in instance performance and response time.
The best number of user connections for your DB instance will vary based on your instance class

Evaluating performance metrics 484

Amazon Relational Database Service User Guide

and the complexity of the operations being performed. To determine the number of database
connections, associate your DB instance with a parameter group. In this group, set the User
Connections parameter to other than 0 (unlimited). You can either use an existing parameter
group or create a new one. For more information, see Parameter groups for Amazon RDS.

• IOPS metrics – The expected values for IOPS metrics depend on disk specification and server
configuration, so use your baseline to know what is typical. Investigate if values are consistently
different than your baseline. For best IOPS performance, make sure your typical working set will
fit into memory to minimize read and write operations.

For issues with performance metrics, a first step to improve performance is to tune the most used
and most expensive queries. Tune them to see if doing so lowers the pressure on system resources.
For more information, see Tuning queries.

If your queries are tuned and an issue persists, consider upgrading your Amazon RDS DB instance
classes. You might upgrade it to one with more of the resource (CPU, RAM, disk space, network
bandwidth, I/O capacity) that is related to the issue.

Tuning queries

One of the best ways to improve DB instance performance is to tune your most commonly used
and most resource-intensive queries. Here, you tune them to make them less expensive to run. For
information on improving queries, use the following resources:

• MySQL – See Optimizing SELECT statements in the MySQL documentation. For additional query
tuning resources, see MySQL performance tuning and optimization resources.

• Oracle – See Database SQL Tuning Guide in the Oracle Database documentation.

• SQL Server – See Analyzing a query in the Microsoft documentation. You can also use the
execution-, index-, and I/O-related data management views (DMVs) described in System Dynamic
Management Views in the Microsoft documentation to troubleshoot SQL Server query issues.

A common aspect of query tuning is creating effective indexes. For potential index improvements
for your DB instance, see Database Engine Tuning Advisor in the Microsoft documentation.
For information on using Tuning Advisor on RDS for SQL Server, see Analyzing your database
workload on an Amazon RDS for SQL Server DB instance with Database Engine Tuning Advisor.

• PostgreSQL – See Using EXPLAIN in the PostgreSQL documentation to learn how to analyze
a query plan. You can use this information to modify a query or underlying tables in order to
improve query performance.

Tuning queries 485

https://dev.mysql.com/doc/refman/8.0/en/select-optimization.html
http://www.mysql.com/why-mysql/performance/
https://docs.oracle.com/database/121/TGSQL/toc.htm
http://technet.microsoft.com/en-us/library/ms191227.aspx
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor
http://www.postgresql.org/docs/current/using-explain.html

Amazon Relational Database Service User Guide

For information about how to specify joins in your query for the best performance, see
Controlling the planner with explicit JOIN clauses.

• MariaDB – See Query optimizations in the MariaDB documentation.

Best practices for working with MySQL

Both table sizes and number of tables in a MySQL database can affect performance.

Table size

Typically, operating system constraints on file sizes determine the effective maximum table size for
MySQL databases. So, the limits usually aren't determined by internal MySQL constraints.

On a MySQL DB instance, avoid tables in your database growing too large. Although the general
storage limit is 64 TiB, provisioned storage limits restrict the maximum size of a MySQL table file
to 16 TiB. Partition your large tables so that file sizes are well under the 16 TiB limit. This approach
can also improve performance and recovery time. For more information, see MySQL file size limits
in Amazon RDS.

Very large tables (greater than 100 GB in size) can negatively affect performance for both reads
and writes (including DML statements and especially DDL statements). Indexes on larges tables
can significantly improve select performance, but they can also degrade the performance of DML
statements. DDL statements, such as ALTER TABLE, can be significantly slower for the large tables
because those operations might completely rebuild a table in some cases. These DDL statements
might lock the tables for the duration of the operation.

The amount of memory required by MySQL for reads and writes depends on the tables involved in
the operations. It is a best practice to have at least enough RAM to the hold the indexes of actively
used tables. To find the ten largest tables and indexes in a database, use the following query:

select table_schema, TABLE_NAME, dat, idx from
(SELECT table_schema, TABLE_NAME,
 (data_length) / 1024 / 1024 as dat,
 (index_length) / 1024 / 1024 as idx
FROM information_schema.TABLES
order by 3 desc) a
order by 3 desc
limit 10;

Best practices for working with MySQL 486

http://www.postgresql.org/docs/current/explicit-joins.html
https://mariadb.com/kb/en/mariadb/query-optimizations/

Amazon Relational Database Service User Guide

Number of tables

Your underlying file system might have a limit on the number of files that represent tables.
However, MySQL has no limit on the number of tables. Despite this, the total number of tables
in the MySQL InnoDB storage engine can contribute to the performance degradation, regardless
of the size of those tables. To limit the operating system impact, you can split the tables across
multiple databases in the same MySQL DB instance. Doing so might limit the number of files in a
directory but won't solve the overall problem.

When there is performance degradation because of a large number of tables (more than
10 thousand), it is caused by MySQL working with storage files, including opening and
closing them. To address this issue, you can increase the size of the table_open_cache and
table_definition_cache parameters. However, increasing the values of those parameters
might significantly increase the amount of memory MySQL uses, and might even use all of the
available memory. For more information, see How MySQL Opens and Closes Tables in the MySQL
documentation.

In addition, too many tables can significantly affect MySQL startup time. Both a clean shutdown
and restart and a crash recovery can be affected, especially in versions prior to MySQL 8.0.

We recommend having fewer than 10,000 tables total across all of the databases in a DB instance.
For a use case with a large number of tables in a MySQL database, see One Million Tables in
MySQL 8.0.

Storage engine

The point-in-time restore and snapshot restore features of Amazon RDS for MySQL require a crash-
recoverable storage engine. These features are supported for the InnoDB storage engine only.
Although MySQL supports multiple storage engines with varying capabilities, not all of them are
optimized for crash recovery and data durability. For example, the MyISAM storage engine doesn't
support reliable crash recovery and might prevent a point-in-time restore or snapshot restore from
working as intended. This might result in lost or corrupt data when MySQL is restarted after a
crash.

InnoDB is the recommended and supported storage engine for MySQL DB instances on Amazon
RDS. InnoDB instances can also be migrated to Aurora, while MyISAM instances can't be migrated.
However, MyISAM performs better than InnoDB if you require intense, full-text search capability.
If you still choose to use MyISAM with Amazon RDS, following the steps outlined in Automated

Number of tables 487

https://dev.mysql.com/doc/refman/8.0/en/table-cache.html
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/

Amazon Relational Database Service User Guide

backups with unsupported MySQL storage engines can be helpful in certain scenarios for snapshot
restore functionality.

If you want to convert existing MyISAM tables to InnoDB tables, you can use the process outlined
in Converting Tables from MyISAM to InnoDB in the MySQL documentation. MyISAM and InnoDB
have different strengths and weaknesses, so you should fully evaluate the impact of making this
switch on your applications before doing so.

In addition, Federated Storage Engine is currently not supported by Amazon RDS for MySQL.

Best practices for working with MariaDB

Both table sizes and number of tables in a MariaDB database can affect performance.

Table size

Typically, operating system constraints on file sizes determine the effective maximum table size for
MariaDB databases. So, the limits usually aren't determined by internal MariaDB constraints.

On a MariaDB DB instance, avoid tables in your database growing too large. Although the general
storage limit is 64 TiB, provisioned storage limits restrict the maximum size of a MariaDB table file
to 16 TiB. Partition your large tables so that file sizes are well under the 16 TiB limit. This approach
can also improve performance and recovery time.

Very large tables (greater than 100 GB in size) can negatively affect performance for both reads
and writes (including DML statements and especially DDL statements). Indexes on larges tables
can significantly improve select performance, but they can also degrade the performance of DML
statements. DDL statements, such as ALTER TABLE, can be significantly slower for the large tables
because those operations might completely rebuild a table in some cases. These DDL statements
might lock the tables for the duration of the operation.

The amount of memory required by MariaDB for reads and writes depends on the tables involved
in the operations. It is a best practice to have at least enough RAM to the hold the indexes of
actively used tables. To find the ten largest tables and indexes in a database, use the following
query:

select table_schema, TABLE_NAME, dat, idx from
(SELECT table_schema, TABLE_NAME,

Best practices for working with MariaDB 488

http://dev.mysql.com/doc/refman/5.0/en/converting-tables-to-innodb.html

Amazon Relational Database Service User Guide

 (data_length) / 1024 / 1024 as dat,
 (index_length) / 1024 / 1024 as idx
FROM information_schema.TABLES
order by 3 desc) a
order by 3 desc
limit 10;

Number of tables

Your underlying file system might have a limit on the number of files that represent tables.
However, MariaDB has no limit on the number of tables. Despite this, the total number of tables
in the MariaDB InnoDB storage engine can contribute to the performance degradation, regardless
of the size of those tables. To limit the operating system impact, you can split the tables across
multiple databases in the same MariaDB DB instance. Doing so might limit the number of files in a
directory but doesn’t solve the overall problem.

When there is performance degradation because of a large number of tables (more than 10,000),
it's caused by MariaDB working with storage files. This work includes MariaDB opening and closing
storage files. To address this issue, you can increase the size of the table_open_cache and
table_definition_cache parameters. However, increasing the values of those parameters
might significantly increase the amount of memory MariaDB uses. It might even use all of the
available memory. For more information, see Optimizing table_open_cache in the MariaDB
documentation.

In addition, too many tables can significantly affect MariaDB startup time. Both a clean shutdown
and restart and a crash recovery can be affected. We recommend having fewer than ten thousand
tables total across all of the databases in a DB instance.

Storage engine

The point-in-time restore and snapshot restore features of Amazon RDS for MariaDB require a
crash-recoverable storage engine. Although MariaDB supports multiple storage engines with
varying capabilities, not all of them are optimized for crash recovery and data durability. For
example, although Aria is a crash-safe replacement for MyISAM, it might still prevent a point-in-
time restore or snapshot restore from working as intended. This might result in lost or corrupt
data when MariaDB is restarted after a crash. InnoDB is the recommended and supported storage
engine for MariaDB DB instances on Amazon RDS. If you still choose to use Aria with Amazon RDS,
following the steps outlined in Automated backups with unsupported MariaDB storage engines can
be helpful in certain scenarios for snapshot restore functionality.

Number of tables 489

https://mariadb.com/kb/en/optimizing-table_open_cache/

Amazon Relational Database Service User Guide

If you want to convert existing MyISAM tables to InnoDB tables, you can use the process outlined
in Converting Tables from MyISAM to InnoDB in the MariaDB documentation. MyISAM and InnoDB
have different strengths and weaknesses, so you should fully evaluate the impact of making this
switch on your applications before doing so.

Best practices for working with Oracle

For information about best practices for working with Amazon RDS for Oracle, see Best practices
for running Oracle database on Amazon Web Services.

A 2020 AWS virtual workshop included a presentation on running production Oracle databases on
Amazon RDS. A video of the presentation is available here.

Best practices for working with PostgreSQL

Of two important areas where you can improve performance with RDS for PostgreSQL, one is when
loading data into a DB instance. Another is when using the PostgreSQL autovacuum feature. The
following sections cover some of the practices we recommend for these areas.

For information on how Amazon RDS implements other common PostgreSQL DBA tasks, see
Common DBA tasks for Amazon RDS for PostgreSQL.

Loading data into a PostgreSQL DB instance

When loading data into an Amazon RDS for PostgreSQL DB instance, modify your DB instance
settings and your DB parameter group values. Set these to allow for the most efficient importing of
data into your DB instance.

Modify your DB instance settings to the following:

• Disable DB instance backups (set backup_retention to 0)

• Disable Multi-AZ

Modify your DB parameter group to include the following settings. Also, test the parameter
settings to find the most efficient settings for your DB instance.

• Increase the value of the maintenance_work_mem parameter. For more information about
PostgreSQL resource consumption parameters, see the PostgreSQL documentation.

Best practices for working with Oracle 490

https://mariadb.com/kb/en/converting-tables-from-myisam-to-innodb/
https://docs.aws.amazon.com/aws-technical-content/latest/oracle-database-aws-best-practices/introduction.html
https://docs.aws.amazon.com/aws-technical-content/latest/oracle-database-aws-best-practices/introduction.html
https://www.youtube.com/watch?v=vpSWZx4-M-M
http://www.postgresql.org/docs/current/runtime-config-resource.html

Amazon Relational Database Service User Guide

• Increase the value of the max_wal_size and checkpoint_timeout parameters to reduce the
number of writes to the write-ahead log (WAL) log.

• Disable the synchronous_commit parameter.

• Disable the PostgreSQL autovacuum parameter.

• Make sure that none of the tables you're importing are unlogged. Data stored in unlogged tables
can be lost during a failover. For more information, see CREATE TABLE UNLOGGED.

Use the pg_dump -Fc (compressed) or pg_restore -j (parallel) commands with these settings.

After the load operation completes, return your DB instance and DB parameters to their normal
settings.

Working with the PostgreSQL autovacuum feature

The autovacuum feature for PostgreSQL databases is a feature that we strongly recommend
you use to maintain the health of your PostgreSQL DB instance. Autovacuum automates the
execution of the VACUUM and ANALYZE command Using autovacuum is required by PostgreSQL,
not imposed by Amazon RDS, and its use is critical to good performance. The feature is enabled
by default for all new Amazon RDS for PostgreSQL DB instances, and the related configuration
parameters are appropriately set by default.

Your database administrator needs to know and understand this maintenance operation. For the
PostgreSQL documentation on autovacuum, see The Autovacuum Daemon.

Autovacuum is not a "resource free" operation, but it works in the background and yields to user
operations as much as possible. When enabled, autovacuum checks for tables that have had a
large number of updated or deleted tuples. It also protects against loss of very old data due to
transaction ID wraparound. For more information, see Preventing transaction ID wraparound
failures.

Autovacuum should not be thought of as a high-overhead operation that can be reduced to gain
better performance. On the contrary, tables that have a high velocity of updates and deletes will
quickly deteriorate over time if autovacuum is not run.

Important

Not running autovacuum can result in an eventual required outage to perform a much
more intrusive vacuum operation. In some cases, an RDS for PostgreSQL DB instance might

Working with the PostgreSQL autovacuum feature 491

https://www.postgresql.org/docs/current/sql-createtable.html
http://www.postgresql.org/docs/current/routine-vacuuming.html#AUTOVACUUM
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Amazon Relational Database Service User Guide

become unavailable because of an over-conservative use of autovacuum. In these cases,
the PostgreSQL database shuts down to protect itself. At that point, Amazon RDS must
perform a single-user-mode full vacuum directly on the DB instance. This full vacuum
can result in a multi-hour outage. Thus, we strongly recommend that you do not turn off
autovacuum, which is turned on by default.

The autovacuum parameters determine when and how hard autovacuum works.
Theautovacuum_vacuum_threshold and autovacuum_vacuum_scale_factor parameters
determine when autovacuum is run. The autovacuum_max_workers, autovacuum_nap_time,
autovacuum_cost_limit, and autovacuum_cost_delay parameters determine how hard
autovacuum works. For more information about autovacuum, when it runs, and what parameters
are required, see Routine Vacuuming in the PostgreSQL documentation.

The following query shows the number of "dead" tuples in a table named table1:

SELECT relname, n_dead_tup, last_vacuum, last_autovacuum FROM
pg_catalog.pg_stat_all_tables
WHERE n_dead_tup > 0 and relname = 'table1';

The results of the query will resemble the following:

relname | n_dead_tup | last_vacuum | last_autovacuum
---------+------------+-------------+-----------------
 tasks | 81430522 | |
(1 row)

Amazon RDS for PostgreSQL best practices video

The 2020 AWS re:Invent conference included a presentation on new features and best practices for
working with PostgreSQL on Amazon RDS. A video of the presentation is available here.

Best practices for working with SQL Server

Best practices for a Multi-AZ deployment with a SQL Server DB instance include the following:

• Use Amazon RDS DB events to monitor failovers. For example, you can be notified by text
message or email when a DB instance fails over. For more information about Amazon RDS
events, see Working with Amazon RDS event notification.

Amazon RDS for PostgreSQL best practices video 492

https://www.postgresql.org/docs/current/routine-vacuuming.html
https://www.youtube.com/watch?v=3JLPWOoiVB8

Amazon Relational Database Service User Guide

• If your application caches DNS values, set time to live (TTL) to less than 30 seconds. Setting TTL
as so is a good practice in case there is a failover. In a failover, the IP address might change and
the cached value might no longer be in service.

• We recommend that you do not enable the following modes because they turn off transaction
logging, which is required for Multi-AZ:

• Simple recover mode

• Offline mode

• Read-only mode

• Test to determine how long it takes for your DB instance to failover. Failover time can vary due to
the type of database, the instance class, and the storage type you use. You should also test your
application's ability to continue working if a failover occurs.

• To shorten failover time, do the following:

• Ensure that you have sufficient Provisioned IOPS allocated for your workload. Inadequate I/O
can lengthen failover times. Database recovery requires I/O.

• Use smaller transactions. Database recovery relies on transactions, so if you can break up large
transactions into multiple smaller transactions, your failover time should be shorter.

• Take into consideration that during a failover, there will be elevated latencies. As part of the
failover process, Amazon RDS automatically replicates your data to a new standby instance. This
replication means that new data is being committed to two different DB instances. So there
might be some latency until the standby DB instance has caught up to the new primary DB
instance.

• Deploy your applications in all Availability Zones. If an Availability Zone does go down, your
applications in the other Availability Zones will still be available.

When working with a Multi-AZ deployment of SQL Server, remember that Amazon RDS creates
replicas for all SQL Server databases on your instance. If you don't want specific databases to have
secondary replicas, set up a separate DB instance that doesn't use Multi-AZ for those databases.

Amazon RDS for SQL Server best practices video

The 2019 AWS re:Invent conference included a presentation on new features and best practices for
working with SQL Server on Amazon RDS. A video of the presentation is available here.

Amazon RDS for SQL Server best practices video 493

https://www.youtube.com/watch?v=R4Vj88iqu5s

Amazon Relational Database Service User Guide

Working with DB parameter groups

We recommend that you try out DB parameter group changes on a test DB instance before
applying parameter group changes to your production DB instances. Improperly setting DB
engine parameters in a DB parameter group can have unintended adverse effects, including
degraded performance and system instability. Always exercise caution when modifying DB engine
parameters and back up your DB instance before modifying a DB parameter group.

For information about backing up your DB instance, see Backing up, restoring, and exporting data.

Best practices for automating DB instance creation

It’s an Amazon RDS best practice to create a DB instance with the preferred minor version of the
database engine. You can use the AWS CLI, Amazon RDS API, or AWS CloudFormation to automate
DB instance creation. When you use these methods, you can specify only the major version and
Amazon RDS automatically creates the instance with the preferred minor version. For example, if
PostgreSQL 12.5 is the preferred minor version, and if you specify version 12 with create-db-
instance, the DB instance will be version 12.5.

To determine the preferred minor version, you can run the describe-db-engine-versions
command with the --default-only option as shown in the following example.

aws rds describe-db-engine-versions --default-only --engine postgres

{
 "DBEngineVersions": [
 {
 "Engine": "postgres",
 "EngineVersion": "12.5",
 "DBParameterGroupFamily": "postgres12",
 "DBEngineDescription": "PostgreSQL",
 "DBEngineVersionDescription": "PostgreSQL 12.5-R1",
 ...some output truncated...
 }
]
}

For information on creating DB instances programmatically, see the following resources:

• Using the AWS CLI – create-db-instance

Working with DB parameter groups 494

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

• Using the Amazon RDS API – CreateDBInstance

• Using AWS CloudFormation – AWS::RDS::DBInstance

Amazon RDS new features video

The 2023 AWS re:Invent conference included a presentation on new Amazon RDS features. A video
of the presentation is available here.

New features video 495

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html
https://www.youtube.com/watch?v=IFg8EZGtLsM

Amazon Relational Database Service User Guide

Programmatic access to Amazon RDS

Amazon RDS provides you with the following tools to manage your Amazon RDS resources
programmatically.

AWS Command Line Interface (AWS CLI)

You can create and manage your RDS resources by using the AWS CLI in a command-line shell.
The AWS CLI provides direct access to the APIs for AWS services, such as Amazon RDS. For
syntax and examples for the commands for Amazon RDS, see rds in the AWS CLI Command
Reference.

AWS CloudFormation

With this AWS Infrastructure as Code (IaC) tool, you can create templates that describe all of
the Amazon RDS resources that you want, and AWS CloudFormation provisions and configures
those resources for you. For more information, see the section called “Creating resources with
AWS CloudFormation”.

AWS software development kits (SDKs)

AWS provides SDKs for many popular technologies and programming languages. They make it
easier for you to call AWS services from within your applications in that language or technology.
For more information about these SDKs, see Tools for developing and managing applications on
AWS.

Amazon RDS API

This API is the protocol-level interface for Amazon RDS. When using this API, you must format
every HTTPS request correctly and add a valid digital signature to every request. For more
information, see Amazon RDS API reference.

Console-to-Code

With this tool, you can generate code for actions that you perform in the Amazon RDS console,
and use that code in other tools such as AWS CloudFormation. For more information, see the
section called “Console-to-Code”.

496

https://docs.aws.amazon.com/cli/latest/reference/rds/
https://aws.amazon.com/developer/tools/
https://aws.amazon.com/developer/tools/

Amazon Relational Database Service User Guide

Use Console-to-Code to generate code for your Amazon RDS
console actions

The console provides a guided path for creating resources and testing prototypes. If you want to
create the same resources at scale, you'll need automation code. Console-to-Code is a feature of
Amazon Q Developer that can help you get started with your automation code. Console-to-Code
records your console actions, including default values and parameters values that you provide. It
then uses generative AI to suggest code in your preferred language and format for the actions that
you choose. Because the console workflow makes sure the parameter values that you specify are
valid together, the code that you generate by using Console-to-Code has compatible parameter
values. You can use the code as a starting point, and then customize it to make it production-ready
for your specific use case.

For example, with Console-to-Code, you can record creating an RDS DB instance and choose to
generate code in AWS CloudFormation JSON format. Then, you can copy that code and customize
it for use in your AWS CloudFormation template.

Console-to-Code can currently generate infrastructure-as-code (IaC) in the following languages
and formats:

• CDK Java

• CDK Python

• CDK TypeScript

• CloudFormation JSON

• CloudFormation YAML

For more information and instructions on how to use Console-to-Code, see Automating AWS
services with Amazon Q Developer Console-to-Code in the Amazon Q Developer User Guide.

Console-to-Code 497

https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/console-to-code.html
https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/console-to-code.html

Amazon Relational Database Service User Guide

Configuring an Amazon RDS DB instance

This section shows how to set up your Amazon RDS DB instance. Before creating a DB instance,
decide on the DB instance class that will run the DB instance. Also, decide where the DB instance
will run by choosing an AWS Region. Next, create the DB instance.

You can configure a DB instance with an option group and a DB parameter group.

• An option group specifies features, called options, that are available for a particular Amazon RDS
DB instance.

• A DB parameter group acts as a container for engine configuration values that are applied to one
or more DB instances.

The options and parameters that are available depend on the DB engine and DB engine version.
You can specify an option group and a DB parameter group when you create a DB instance. You can
also modify a DB instance to specify them.

Topics

• Creating an Amazon RDS DB instance

• Creating Amazon RDS resources with AWS CloudFormation

• Connecting to an Amazon RDS DB instance

• Working with option groups

• Parameter groups for Amazon RDS

• Creating an Amazon ElastiCache cache using Amazon RDS DB instance settings

• Auto migrating EC2 databases to Amazon RDS using AWS Database Migration Service

• Tutorial: Creating a MySQL DB instance with a custom parameter and new option group

498

Amazon Relational Database Service User Guide

Creating an Amazon RDS DB instance

The basic building block of Amazon RDS is the DB instance, where you create your databases. You
choose the engine-specific characteristics of the DB instance when you create it. You also choose
the storage capacity, CPU, memory, and so on of the AWS instance on which the database server
runs.

Topics

• DB instance prerequisites

• Creating a DB instance

• Settings for DB instances

DB instance prerequisites

Important

Before you can create an Amazon RDS DB instance, complete the tasks in Setting up your
Amazon RDS environment.

The following are prerequisites for creating an RDS DB instance.

Topics

• Configure the network for the DB instance

• Additional prerequisites

Configure the network for the DB instance

You can create an Amazon RDS DB instance only in a virtual private cloud (VPC) based on the
Amazon VPC service. Also, it must be in an AWS Region that has at least two Availability Zones. The
DB subnet group that you choose for the DB instance must cover at least two Availability Zones.
This configuration ensures that you can configure a Multi-AZ deployment when you create the DB
instance or easily move to one in the future.

Creating a DB instance 499

Amazon Relational Database Service User Guide

To set up connectivity between your new DB instance and an Amazon EC2 instance in the same
VPC, do so when you create the DB instance. To connect to your DB instance from resources other
than EC2 instances in the same VPC, configure the network connections manually.

Topics

• Configure automatic network connectivity with an EC2 instance

• Configure the network manually

Configure automatic network connectivity with an EC2 instance

When you create an RDS DB instance, you can use the AWS Management Console to set up
connectivity between an EC2 instance and the new DB instance. When you do so, RDS configures
your VPC and network settings automatically. The DB instance is created in the same VPC as the
EC2 instance so that the EC2 instance can access the DB instance.

The following are requirements for connecting an EC2 instance with the DB instance:

• The EC2 instance must exist in the AWS Region before you create the DB instance.

If no EC2 instances exist in the AWS Region, the console provides a link to create one.

• The user who is creating the DB instance must have permissions to perform the following
operations:

• ec2:AssociateRouteTable

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateRouteTable

• ec2:CreateSubnet

• ec2:CreateSecurityGroup

• ec2:DescribeInstances

• ec2:DescribeNetworkInterfaces

• ec2:DescribeRouteTables

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:ModifyNetworkInterfaceAttribute

• ec2:RevokeSecurityGroupEgress

Prerequisites 500

Amazon Relational Database Service User Guide

Using this option creates a private DB instance. The DB instance uses a DB subnet group with only
private subnets to restrict access to resources within the VPC.

To connect an EC2 instance to the DB instance, choose Connect to an EC2 compute resource in the
Connectivity section on the Create database page.

When you choose Connect to an EC2 compute resource, RDS sets the following options
automatically. You can't change these settings unless you choose not to set up connectivity with an
EC2 instance by choosing Don't connect to an EC2 compute resource.

Console option Automatic setting

Network type RDS sets network type to IPv4. Currently, dual-stack mode
isn't supported when you set up a connection between an EC2
instance and the DB instance.

Virtual Private Cloud (VPC) RDS sets the VPC to the one associated with the EC2 instance.

DB subnet group
RDS requires a DB subnet group with a private subnet in the
 same Availability Zone as the EC2 instance. If a DB subnet
group that meets this requirement exists, then RDS uses the

Prerequisites 501

Amazon Relational Database Service User Guide

Console option Automatic setting

existing DB subnet group. By default, this option is set to
 Automatic setup.

When you choose Automatic setup and there is no DB subne
t group that meets this requirement, the following action
happens. RDS uses three available private subnets in three
Availability Zones where one of the Availability Zones is the
same as the EC2 instance. If a private subnet isn’t available
in an Availability Zone, RDS creates a private subnet in the
Availability Zone. Then RDS creates the DB subnet group.

When a private subnet is available, RDS uses the route table
associated with the subnet and adds any subnets it creates
to this route table. When no private subnet is available, RDS
creates a route table without internet gateway access and
adds the subnets it creates to the route table.

RDS also allows you to use existing DB subnet groups. Select
 Choose existing if you want to use an existing DB subnet
group of your choice.

Public access RDS chooses No so that the DB instance isn't publicly
accessible.

For security, it is a best practice to keep the database private
and make sure it isn't accessible from the internet.

Prerequisites 502

Amazon Relational Database Service User Guide

Console option Automatic setting

VPC security group (firewall) RDS creates a new security group that is associated with the
DB instance. The security group is named rds-ec2-n, where
n is a number. This security group includes an inbound rule
with the EC2 VPC security group (firewall) as the source. This
security group that is associated with the DB instance allows
the EC2 instance to access the DB instance.

RDS also creates a new security group that is associated with
the EC2 instance. The security group is named ec2-rds-n,
where n is a number. This security group includes an outbound
rule with the VPC security group of the DB instance as the
source. This security group allows the EC2 instance to send
traffic to the DB instance.

You can add another new security group by choosing Create
new and typing the name of the new security group.

You can add existing security groups by choosing Choose
existing and selecting security groups to add.

Availability Zone When you choose Single DB instance in Availability &
durability (Single-AZ deployment), RDS chooses the Availabil
ity Zone of the EC2 instance.

When you choose Multi-AZ DB instance in Availability &
durability (Multi-AZ DB instance deployment), RDS chooses
the Availability Zone of the EC2 instance for one DB instance
in the deployment. RDS randomly chooses a different Availabil
ity Zone for the other DB instance. Either the primary DB
instance or the standby replica is created in the same Availabil
ity Zone as the EC2 instance. When you choose Multi-AZ DB
instance, there is the possibility of cross Availability Zone costs
if the DB instance and EC2 instance are in different Availability
Zones.

Prerequisites 503

Amazon Relational Database Service User Guide

For more information about these settings, see Settings for DB instances.

If you change these settings after the DB instance is created, the changes might affect the
connection between the EC2 instance and the DB instance.

Configure the network manually

To connect to your DB instance from resources other than EC2 instances in the same VPC, configure
the network connections manually. If you use the AWS Management Console to create your DB
instance, you can have Amazon RDS automatically create a VPC for you. Or you can use an existing
VPC or create a new VPC for your DB instance. With any approach, your VPC requires at least one
subnet in each of at least two Availability Zones for use with an RDS DB instance.

By default, Amazon RDS creates the DB instance an Availability Zone automatically for you. To
choose a specific Availability Zone, you need to change the Availability & durability setting
to Single DB instance. Doing so exposes an Availability Zone setting that lets you choose
from among the Availability Zones in your VPC. However, if you choose a Multi-AZ deployment,
RDS chooses the Availability Zone of the primary or writer DB instance automatically, and the
Availability Zone setting doesn't appear.

In some cases, you might not have a default VPC or haven't created a VPC. In these cases, you can
have Amazon RDS automatically create a VPC for you when you create a DB instance using the
console. Otherwise, do the following:

• Create a VPC with at least one subnet in each of at least two of the Availability Zones in the AWS
Region where you want to deploy your DB instance. For more information, see Working with a DB
instance in a VPC and Tutorial: Create a VPC for use with a DB instance (IPv4 only).

• Specify a VPC security group that authorizes connections to your DB instance. For more
information, see Provide access to your DB instance in your VPC by creating a security group and
Controlling access with security groups.

• Specify an RDS DB subnet group that defines at least two subnets in the VPC that can be used by
the DB instance. For more information, see Working with DB subnet groups.

If you want to connect to a resource that isn't in the same VPC as the DB instance, see the
appropriate scenarios in Scenarios for accessing a DB instance in a VPC.

Additional prerequisites

Before you create your DB instance, consider the following additional prerequisites:

Prerequisites 504

Amazon Relational Database Service User Guide

• If you are connecting to AWS using AWS Identity and Access Management (IAM) credentials, your
AWS account must have certain IAM policies. These grant the permissions required to perform
Amazon RDS operations. For more information, see Identity and access management for Amazon
RDS.

To use IAM to access the RDS console, sign in to the AWS Management Console with your IAM
user credentials. Then go to the Amazon RDS console at https://console.aws.amazon.com/rds/.

• To tailor the configuration parameters for your DB instance, specify a DB parameter group with
the required parameter settings. For information about creating or modifying a DB parameter
group, see Parameter groups for Amazon RDS.

Important

If you are using the BYOL model for Amazon RDS for Db2, before creating a DB instance,
you must first create a custom parameter group that contains your IBM Site ID and IBM
Customer ID. For more information, see Bring Your Own License for Db2.

• Determine the TCP/IP port number to specify for your DB instance. The firewalls at some
companies block connections to the default ports for RDS DB instances. If your company firewall
blocks the default port, choose another port for your DB instance. The default ports for Amazon
RDS DB engines are:

RDS for Db2 RDS for
MariaDB

RDS for
MySQL

RDS for
Oracle

RDS for
PostgreSQL

RDS for SQL
Server

50000 3306 3306 1521 5432 1433

For RDS for SQL Server, the following ports are reserved, and you can't use them when you
create a DB instance: 1234, 1434, 3260, 3343, 3389, 47001, and 49152-49156.

Creating a DB instance

You can create an Amazon RDS DB instance using the AWS Management Console, the AWS CLI, or
the RDS API.

Creating a DB instance 505

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Note

For RDS for Db2, we recommend that you set up items needed for your license model
before you create an RDS for Db2 DB instance. For more information, see Amazon RDS for
Db2 licensing options.

Console

You can create a DB instance by using the AWS Management Console with Easy create enabled
or not enabled. With Easy create enabled, you specify only the DB engine type, DB instance size,
and DB instance identifier. Easy create uses the default setting for other configuration options.
With Easy create not enabled, you specify more configuration options when you create a database,
including ones for availability, security, backups, and maintenance.

Note

In the following procedure, Standard create is enabled, and Easy create isn't enabled. This
procedure uses Microsoft SQL Server as an example.
For examples that use Easy create to walk you through creating and connecting to sample
DB instances for each engine, see Getting started with Amazon RDS.

To create a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the DB instance.

3. In the navigation pane, choose Databases.

4. Choose Create database, then choose Standard create.

5. For Engine type, choose IBM Db2, MariaDB, Microsoft SQL Server, MySQL, Oracle, or
PostgreSQL.

Microsoft SQL Server is shown here.

Creating a DB instance 506

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Creating a DB instance 507

Amazon Relational Database Service User Guide

6. For Database management type, if you're using Oracle or SQL Server choose Amazon RDS or
Amazon RDS Custom.

Amazon RDS is shown here. For more information on RDS Custom, see Amazon RDS Custom.

7. For Edition, if you're using Db2, Oracle, or SQL Server, choose the DB engine edition that you
want to use.

MySQL has only one option for the edition, and MariaDB and PostgreSQL have none.

8. For Version, choose the engine version.

9. In Templates, choose the template that matches your use case. If you choose Production, the
following are preselected in a later step:

• Multi-AZ failover option

• Provisioned IOPS SSD (io1) storage option

• Enable deletion protection option

We recommend these features for any production environment.

Note

Template choices vary by edition.

10. In the Settings section, open Credential Settings. Then do the following:

a. (Optional) Change the Master username value.

b. Choose either of the following credentials management options:

• Managed in AWS Secrets Manager

In Select the encryption key, choose either a KMS key that Secrets Manager creates or a
key that you have created.

Note

We recommend AWS Secrets Manager as the most secure technique for
managing credentials. Additional charges apply. For more information, see
Password management with Amazon RDS and AWS Secrets Manager.

Creating a DB instance 508

Amazon Relational Database Service User Guide

• Self managed

To specify a password, clear the Auto generate a password check box if it is selected.
Enter the same password in Master password and Confirm master password.

11. (Optional) Set up a connection to a compute resource for this DB instance.

You can configure connectivity between an Amazon EC2 instance and the new DB instance
during DB instance creation. For more information, see Configure automatic network
connectivity with an EC2 instance.

12. In the Connectivity section under VPC security group (firewall), if you select Create new, a
VPC security group is created with an inbound rule that allows your local computer's IP address
to access the database.

13. For the remaining sections, specify your DB instance settings. For information about each
setting, see Settings for DB instances.

14. Choose Create database.

If you chose to use an automatically generated password, the View credential details button
appears on the Databases page.

To view the master username and password for the DB instance, choose View credential
details.

To connect to the DB instance as the master user, use the username and password that appear.

Important

You can't view the master user password again. If you don't record it, you might have
to change it. If you need to change the master user password after the DB instance is
available, modify the DB instance to do so. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

15. For Databases, choose the name of the new DB instance.

On the RDS console, the details for the new DB instance appear. The DB instance has a status
of Creating until the DB instance is created and ready for use. When the state changes to
Available, you can connect to the DB instance. Depending on the DB instance class and
storage allocated, it can take several minutes for the new instance to be available.

Creating a DB instance 509

Amazon Relational Database Service User Guide

AWS CLI

Note

If you want to use Db2 license through AWS Marketplace, you must first subscribe to AWS
Marketplace and register with IBM by using the AWS Management Console. For more
information, see Subscribing to Db2 Marketplace listings and registering with IBM.

To create a DB instance by using the AWS CLI, call the create-db-instance command with the
following parameters:

• --db-instance-identifier

• --db-instance-class

• --vpc-security-group-ids

• --db-subnet-group

• --engine

• --master-username

• --master-user-password or --manage-master-user-password

• --allocated-storage

• --backup-retention-period

For information about each setting, see Settings for DB instances.

Creating a DB instance 510

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

This example uses Microsoft SQL Server.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --engine sqlserver-se \
 --db-instance-identifier mymsftsqlserver \
 --allocated-storage 250 \
 --db-instance-class db.t3.large \
 --vpc-security-group-ids mysecuritygroup \
 --db-subnet-group mydbsubnetgroup \
 --master-username masterawsuser \
 --manage-master-user-password \
 --backup-retention-period 3

For Windows:

aws rds create-db-instance ^
 --engine sqlserver-se ^
 --db-instance-identifier mydbinstance ^
 --allocated-storage 250 ^
 --db-instance-class db.t3.large ^
 --vpc-security-group-ids mysecuritygroup ^
 --db-subnet-group mydbsubnetgroup ^
 --master-username masterawsuser ^
 --manage-master-user-password ^
 --backup-retention-period 3

This command produces output similar to the following.

DBINSTANCE mydbinstance db.t3.large sqlserver-se 250 sa creating 3 **** n
 10.50.2789
SECGROUP default active
PARAMGRP default.sqlserver-se-14 in-sync

Creating a DB instance 511

Amazon Relational Database Service User Guide

RDS API

Note

If you want to use Db2 license through AWS Marketplace, you must first subscribe to AWS
Marketplace and register with IBM by using the AWS Management Console. For more
information, see Subscribing to Db2 Marketplace listings and registering with IBM.

To create a DB instance by using the Amazon RDS API, call the CreateDBInstance operation.

For information about each setting, see Settings for DB instances.

Settings for DB instances

In the following table, you can find details about settings that you choose when you create a DB
instance. The table also shows the DB engines for which each setting is supported.

You can create a DB instance using the console, the create-db-instance CLI command, or the
CreateDBInstance RDS API operation.

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Allocated
storage

The amount of storage to allocate for
your DB instance (in gibibytes). In some
cases, allocating a higher amount of
storage for your DB instance than the
size of your database can improve I/O
performance.

For more information, see Amazon RDS
DB instance storage.

CLI option:

--allocated-storag
e

API parameter:

AllocatedStorage

All

Architect
ure settings

If you choose Oracle multitenant
 architecture, RDS for Oracle creates
a container database (CDB). If you
don't choose this option, RDS for Oracle

CLI option: Oracle

Available settings 512

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

creates a non-CDB. A non-CDB uses the
traditional Oracle database architecture.
A CDB can contain pluggable databases
(PDBs) whereas a non-CDB cannot.

Oracle Database 21c uses the CDB
architecture only. Oracle Database
19c can use either the CDB or non-CDB
architecture. Releases lower than Oracle
Database 19c use the non-CDB architect
ure only.

For more information, see Overview of
RDS for Oracle CDBs.

--engine oracle-ee
-cdb (Oracle multitena
nt)

--engine oracle-
se2-cdb (Oracle
multitenant)

--engine oracle-ee
(traditional)

--engine oracle-se
2 (traditional)

API parameter:

Engine

Available settings 513

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Architect
ure
configura
tion

These settings are only valid when you
choose Oracle multitenant architect
ure for Architecture settings. Choose
either of the following additional
 settings:

•
With the Multi-tenant configuration,
 your RDS for Oracle CDB instance
can contain 1–30 tenant databases
, depending on the database edition
and any required option licenses. In
the context of an Oracle database,
a tenant database is a PDB. Applicati
on PDBs and proxy PDBs aren't
supported.

Your DB instance is created with 1
initial tenant database. Choose values
for Tenant database name, Tenant
database master username, Tenant
database master password, and
Tenant database character set.

The multi-tenant configuration is
permanent. Thus, you can't convert
the multi-tenant configuration back
to the single-tenant configuration.
The minimum supported release
 update (RU) for the multi-tenant
configuration is 19.0.0.0.ru-20
22-01.rur-2022.r1.

CLI option:

--multi-tenant
(multi-tenant configura
tion)

--no-multi-tenant
(single-tenant conf
iguration)

API parameter:

MultiTenant

Oracle

Available settings 514

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Note

The Amazon RDS configura
tion is called "multi-tenant"
rather than "multitenant"
because it is a capability of
the RDS platform, not just the
Oracle DB engine. Similarly,
the RDS term "tenant" refers
to any tenant in an RDS
configuration, not just Oracle
PDBs. In the RDS documenta
tion, the unhyphenated term
"Oracle multitenant" refers
exclusively to the Oracle
database CDB architecture,
which is compatible with
both on-premises and RDS
deployments.

•
With the Single-tenant configura
tion, your RDS for Oracle CDB
contains 1 PDB. This is the default
configuration when you create a CDB.
You can't delete the initial PDB or
add more PDBs. You can later convert
the single-tenant configuration of
your CDB to the multi-tenant conf
iguration, but you can't then convert

Available settings 515

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

back to the single-tenant configura
tion.

Regardless of which configuration
you choose, your CDB contains a
 single initial PDB. In the multi-tenant
configuration, you can create more
PDBs later using RDS APIs.

For more information, see Overview of
RDS for Oracle CDBs.

Auto minor
version
upgrade

Choose Enable auto minor version
upgrade to enable your DB instance
to receive preferred minor DB engine
version upgrades automatically when
they become available. This is the
default behavior. Amazon RDS performs
automatic minor version upgrades
in the maintenance window. If you
don't choose Enable auto minor
version upgrade, your DB instance
isn't upgraded automatically when new
minor versions become available.

For more information, see Automatically
upgrading the minor engine version.

CLI option:

--auto-minor-versi
on-upgrade

--no-auto-minor-ve
rsion-upgrade

API parameter:

AutoMinorVersionUp
grade

All

Available settings 516

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Availability
zone

The Availability Zone for your DB
instance. Use the default value of No
Preference unless you want to specify
an Availability Zone.

For more information, see Regions,
Availability Zones, and Local Zones.

CLI option:

--availability-zon
e

API parameter:

AvailabilityZone

All

AWS KMS
key

Only available if Encryption is set to
 Enable encryption. Choose the AWS
KMS key to use for encrypting this DB
instance. For more information, see
Encrypting Amazon RDS resources.

CLI option:

--kms-key-id

API parameter:

KmsKeyId

All

AWS
License
Manager
configura
tion

Enter a name for an AWS License
Manager license configuration. The
name must be 100 characters or less,
and only include a-z, A-Z, and 0-9.

For more information, see the section
called “Integrating with AWS License
Manager”.

CLI option:

For more informati
on, see AWS License
Manager CLI.

API parameter:

For more informati
on, see AWS License
Manager API.

Db2

Available settings 517

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Backup
replication

Choose Enable replication in another
AWS Region to create backups in an
additional Region for disaster recovery.

Then choose the Destination Region for
the additional backups.

Not available when
creating a DB instance.
For information on
enabling cross-Regi
on backups using the
AWS CLI or RDS API, see
Enabling cross-Region
automated backups for
Amazon RDS.

Oracle

PostgreSQ
L

SQL
Server

Backup
retention
period

The number of days that you want
automatic backups of your DB instanc
e to be retained. For any nontrivial DB
instance, set this value to 1 or greater.

For more information, see Introduction
to backups.

CLI option:

--backup-retention
-period

API parameter:

BackupRetentionPer
iod

All

Backup
target

Choose AWS Cloud to store automated
backups and manual snapshots in the
parent AWS Region. Choose Outposts
(on-premises) to store them locally on
your Outpost.

This option setting applies only to RDS
on Outposts. For more information, see
Creating DB instances for Amazon RDS
on AWS Outposts.

CLI option:

--backup-target

API parameter:

BackupTarget

MySQL,
PostgreSQ
L, SQL
Server

Available settings 518

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Backup
window

The time period during which Amazon
RDS automatically takes a backup of
 your DB instance. Unless you have a
specific time that you want to have your
database backed up, use the default of
No Preference.

For more information, see Introduction
to backups.

CLI option:

--preferred-backup
-window

API parameter:

PreferredBackupWin
dow

All

Certificate
authority

The certificate authority (CA) for the
server certificate used by the DB
instance.

For more information, see Using SSL/
TLS to encrypt a connection to a DB
instance or cluster.

CLI option:

--ca-certificate-i
dentifier

RDS API parameter:

CACertificateIdent
ifier

All

Available settings 519

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Character
set

The character set for your DB instance.
The default value of AL32UTF8 for the
DB character set is for the Unicode 5.0
UTF-8 Universal character set. You can't
change the DB character set after you
create the DB instance.

In a single-tenant configuration, a
non-default DB character set affects
only the PDB, not the CDB. For more
information, see Single-tenant configura
tion of the CDB architecture.

The DB character set is different from
the national character set, which
is called the NCHAR character set.
Unlike the DB character set, the NCHAR
character set specifies the encoding
for NCHAR data types (NCHAR,
NVARCHAR2, and NCLOB) columns
without affecting database metadata.

For more information, see RDS for
Oracle character sets.

CLI option:

--character-set-na
me

API parameter:

CharacterSetName

Oracle

Collation A server-level collation for your DB
instance.

For more information, see Server-level
collation for Microsoft SQL Server.

CLI option:

--character-set-na
me

API parameter:

CharacterSetName

SQL
Server

Available settings 520

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Copy
tags to
snapshots

This option copies any DB instance tags
to a DB snapshot when you create a
snapshot.

For more information, see Tagging
Amazon RDS resources.

CLI option:

--copy-tags-to-sna
pshot

--no-copy-tags-to-
snapshot

RDS API parameter:

CopyTagsToSnapshot

All

Available settings 521

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Database
authentic
ation

The database authentication option that
you want to use.

Choose Password authentication to
 authenticate database users with
database passwords only.

Choose Password and IAM DB
authentication to authenticate
database users with database passwords
and user credentials through users and
roles. For more information, see IAM
database authentication for MariaDB,
MySQL, and PostgreSQL. This option
is only supported for MySQL and
PostgreSQL.

Choose Password and Kerberos
authentication to authenticate
database users with database passwords
and Kerberos authentication through
an AWS Managed Microsoft AD created
with AWS Directory Service. Next, choo
se the directory or choose Create a new
 Directory.

For more information, see one of the
following:

•
Using Kerberos authentication for
Amazon RDS for Db2

•
Using Kerberos authentication for
Amazon RDS for MySQL

IAM:

CLI option:

--enable-iam-
database-authe
ntication

--no-enable-
iam-database-au
thentication

RDS API parameter:

EnableIAMDatabaseA
uthentication

Kerberos:

CLI option:

--domain

--domain-iam-role-
name

RDS API parameter:

Domain

DomainIAMRoleName

Varies by
authentic
ation
type

Available settings 522

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

•
Configuring Kerberos authentication
for Amazon RDS for Oracle

•
Using Kerberos authentication with
Amazon RDS for PostgreSQL

Database
managemen
t type

Choose Amazon RDS if you don't need
to customize your environment.

Choose Amazon RDS Custom if you
want to customize the database, OS,
and infrastructure. For more informati
on, see Amazon RDS Custom.

For the CLI and API, you
specify the database
engine type.

Oracle

SQL
Server

Database
port

The port that you want to access the DB
instance through. The default port is
shown.

Note

The firewalls at some companies
block connections to the default
MariaDB, MySQL, and PostgreSQ
L ports. If your company firewall
blocks the default port, enter
another port for your DB instan
ce.

CLI option:

--port

RDS API parameter:

Port

All

Available settings 523

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

DB engine
version

The version of database engine that you
want to use.

CLI option:

--engine-version

RDS API parameter:

EngineVersion

All

DB instance
class

The configuration for your DB instance.
For example, a db.t3.small DB instance
class has 2 GiB memory, 2 vCPUs,
1 virtual core, a variable ECU, and a
moderate I/O capacity.

If possible, choose a DB instance class
large enough that a typical query
working set can be held in memory.
When working sets are held in memory,
the system can avoid writing to disk,
which improves performance. For more
information, see DB instance classes.

In RDS for Oracle, you can select Include
additional memory configurations.
These configurations are optimized for
a high ratio of memory to vCPU. For
example, db.r5.6xlarge.tpc2.mem4x
is a db.r5.8x DB instance that has 2
threads per core (tpc2) and 4x the
memory of a standard db.r5.6xlarge DB
instance. For more information, see RDS
for Oracle DB instance classes.

CLI option:

--db-instance-clas
s

RDS API parameter:

DBInstanceClass

All

Available settings 524

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

DB instance
identifier

The name for your DB instance. Name
your DB instances in the same way that
you name your on-premises servers.
Your DB instance identifier can contain
up to 63 alphanumeric characters, and
must be unique for your account in the
AWS Region you chose.

CLI option:

--db-instance-iden
tifier

RDS API parameter:

DBInstanceIdentifi
er

All

DB
parameter
group

A parameter group for your DB instance.
You can choose the default parameter
group, or you can create a custom
parameter group.

If you are using the BYOL model for
RDS for Db2, before creating a DB
instance, you must first create a custom
parameter group that contains your IBM
Site ID and IBM Customer ID. For more
information, see Bring Your Own License
for Db2.

For more information, see Parameter
groups for Amazon RDS.

CLI option:

--db-parameter-gro
up-name

RDS API parameter:

DBParameterGroupNa
me

All

Available settings 525

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

DB subnet
group

The DB subnet group you want to use
for the DB cluster.
Select Choose existing to use an
 existing DB subnet group. Then choose
the required subnet group from the
 Existing DB subnet groups dropdown l
ist.

Choose Automatic setup to let RDS
select a compatible DB subnet group. If
none exist, RDS creates a new subnet
group for your cluster.

For more information, see Working with
DB subnet groups.

CLI option:

--db-subnet-group-
name

RDS API parameter:

DBSubnetGroupName

All

Dedicated
Log
Volume

Use a dedicated log volume (DLV) to
store database transaction logs on a
storage volume that's separate from the
volume containing the database tables.

For more information, see Using a
dedicated log volume (DLV).

CLI option:

--dedicated-log-vo
lume

RDS API parameter:

DedicatedLogVolume

All

Available settings 526

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Deletion
protection

Enable deletion protection to prevent
your DB instance from being deleted.
If you create a production DB instance
with the AWS Management Console,
deletion protection is enabled by
default.

For more information, see Deleting a DB
instance.

CLI option:

--deletion-protect
ion

--no-deletion-prot
ection

RDS API parameter:

DeletionProtection

All

Encryption Enable Encryption to enable encryption
at rest for this DB instance.

For more information, see Encrypting
Amazon RDS resources.

CLI option:

--storage-encrypte
d

--no-storage-encry
pted

RDS API parameter:

StorageEncrypted

All

Available settings 527

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Enhanced
Monitoring

Enable enhanced monitoring to enable
 gathering metrics in real time for the
operating system that your DB instance
runs on.

For more information, see Monitoring
OS metrics with Enhanced Monitoring.

CLI options:

--monitoring-inter
val

--monitoring-role-
arn

RDS API parameters:

MonitoringInterval

MonitoringRoleArn

All

Engine
type

Choose the database engine to be used
for this DB instance.

CLI option:

--engine

RDS API parameter:

Engine

All

Available settings 528

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Initial
database
name

The name for the database on your DB
instance. If you don't provide a name,
Amazon RDS doesn't create a database
on the DB instance (except for Oracle
and PostgreSQL). The name can't be a
word reserved by the database engine,
and has other constraints depending on
the DB engine.

Db2:

•
It must contain 1–8 alphanumeric
characters.

•
It must start with a-z, A-Z, @, $, or #,
and be followed by a-z, A-Z, 0-9, _,
@, #, or $.

•
It can't contain spaces.

•
For more information, see Additional
considerations.

MariaDB and MySQL:

•
It must contain 1–64 alphanumeric
 characters.

Oracle:

•

CLI option:

--db-name

RDS API parameter:

DBName

All
except
SQL
Server

Available settings 529

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

It must contain 1–8 alphanumeric
characters.

•
It can't be NULL. The default value is
 ORCL.

•
It must begin with a letter.

PostgreSQL:

•
It must contain 1–63 alphanumeric
 characters.

•
It must begin with a letter or an
underscore. Subsequent characters
can be letters, underscores, or digits (
0-9).

•
The initial database name is
postgres.

Available settings 530

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

License Valid values for the license model:

•
bring-your-own-license or
 marketplace-license for Db2.

•
general-public-license for MariaDB.

•
license-included for Microsoft SQL
 Server.

•
general-public-license for MySQL.

•
license-included or bring-your-own-
license for Oracle.

•
postgresql-license for PostgreSQL.

CLI option:

--license-model

RDS API parameter:

LicenseModel

All

Log exports The types of database log files to
publish to Amazon CloudWatch Logs.

For more information, see Publishing
database logs to Amazon CloudWatch
Logs.

CLI option:

--enable-cloudwatc
h-logs-exports

RDS API parameter:

EnableCloudwatchLo
gsExports

All

Available settings 531

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Maintenan
ce window

The 30-minute window in which
pending modifications to your DB
 instance are applied. If the time period
doesn't matter, choose No Preference.

For more information, see Amazon RDS
maintenance window.

CLI option:

--preferred-mainte
nance-window

RDS API parameter:

PreferredMaintenan
ceWindow

All

Manage
master
credentia
ls in AWS
Secrets
Manager

Select Manage master credentials in
AWS Secrets Manager to manage the
master user password in a secret in
Secrets Manager.

Optionally, choose a KMS key to use to
protect the secret. Choose from the
KMS keys in your account, or enter the
key from a different account.

For more information, see Password
management with Amazon RDS and
AWS Secrets Manager.

CLI option:

--manage-master-
user-password |
 --no-manage-mast
er-user-password

--master-user-secr
et-kms-key-id

RDS API parameter:

ManageMasterUserPa
ssword

MasterUserSecretKm
sKeyId

All

Available settings 532

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Master
password

The password for your master user
account. The password has the follow
ing number of printable ASCII character
s (excluding /, ", a space, and @)
 depending on the DB engine:

•
Db2: 8–255

•
Oracle: 8–30

•
MariaDB and MySQL: 8–41

•
SQL Server and PostgreSQL: 8–128

CLI option:

--master-user-pass
word

RDS API parameter:

MasterUserPassword

All

Available settings 533

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Master
username

The name that you use as the master
username to log in to your DB instance
with all database privileges. Note the
following naming restrictions:

• The name can contain 1–16
alphanumeric characters and
underscores.

• The first character must be a letter.

• The name can't be a word reserved by
the database engine.

You can't change the master username
after you create the DB instance.

For Db2, we recommend that you use
the same master username as your self-
managed Db2 instance name.

For more information on privileges
granted to the master user, see Master
user account privileges.

CLI option:

--master-username

RDS API parameter:

MasterUsername

All

Available settings 534

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Microsoft
SQL Server
Windows
 Aut
hentication

Enable Microsoft SQL Server Windows
 authentication, then Browse Directory
to choose the directory where you want
to allow authorized domain users to
authenticate with this SQL Server ins
tance using Windows Authentication.

CLI options:

--domain

--domain-iam-role-
name

RDS API parameters:

Domain

DomainIAMRoleName

SQL
Server

Multi-AZ
deploymen
t

Create a standby instance to create a
passive secondary replica of your DB
instance in another Availability Zone for
 failover support. We recommend Multi-
AZ for production workloads to maintai
n high availability.

For development and testing, you
can choose Do not create a standby
instance.

For more information, see Configuring
and managing a Multi-AZ deployment
for Amazon RDS.

CLI option:

--multi-az

--no-multi-az

RDS API parameter:

MultiAZ

All

Available settings 535

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

National
character
set
(NCHAR)

The national character set for your DB
instance, commonly called the NCHAR
character set. You can set the national
character set to either AL16UTF16
(default) or UTF-8. You can't change the
 national character set after you create
the DB instance.

The national character set is different
from the DB character set. Unlike the
DB character set, the national character
set specifies the encoding only for
NCHAR data types (NCHAR, NVARCHAR2
, and NCLOB) columns without affecting
database metadata.

For more information, see RDS for
Oracle character sets.

CLI option:

--nchar-character-
set-name

API parameter:

NcharCharacterSetN
ame

Oracle

Available settings 536

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Network
type

The IP addressing protocols supported
by the DB instance.

IPv4 (the default) to specify that
resources can communicate with the DB
instance only over the Internet Protocol
 version 4 (IPv4) addressing protocol.

Dual-stack mode to specify that
resources can communicate with the
DB instance over IPv4, Internet Protocol
version 6 (IPv6), or both. Use dual-
stack mode if you have any resources
that must communicate with your
DB instance over the IPv6 addressin
g protocol. Also, make sure that you
associate an IPv6 CIDR block with all
subnets in the DB subnet group that you
specify.

For more information, see Amazon RDS
IP addressing.

CLI option:

--network-type

RDS API parameter:

NetworkType

All

Option
group

An option group for your DB instance.
You can choose the default option gro
up or you can create a custom option
group.

For more information, see Working with
option groups.

CLI option:

--option-group-nam
e

RDS API parameter:

OptionGroupName

All

Available settings 537

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Performan
ce Insights

Enable Performance Insights to
monitor your DB instance load so that
you can analyze and troubleshoot your
database performance.

Choose a retention period to determine
how much Performance Insights data
history to keep. The retention setting
in the free tier is Default (7 days).
To retain your performance data for
longer, specify 1–24 months. For more
information about retention periods,
see Pricing and data retention for
Performance Insights.

Choose a KMS key to use to protect
the key used to encrypt this database
volume. Choose from the KMS keys in
your account, or enter the key from a
different account.

For more information, see Monitoring
DB load with Performance Insights on
Amazon RDS.

CLI options:

--enable-performan
ce-insights

--no-enable-perfor
mance-insights

--performance-insi
ghts-retention-
period

--performance-insi
ghts-kms-key-id

RDS API parameters:

EnablePerformanceI
nsights

PerformanceInsight
sRetentionPeriod

PerformanceInsight
sKMSKeyId

All
except
 Db2

Available settings 538

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Provisioned
IOPS

The Provisioned IOPS (I/O operations
per second) value for the DB instanc
e. This setting is available only if you
choose one of the following for Storage
type:

•
 General purpose SSD (gp3)

•
Provisioned IOPS SSD (io1)

• Provisioned IOPS SSD (io2)

For more information, see Amazon RDS
DB instance storage.

CLI option:

--iops

RDS API parameter:

Iops

All

Available settings 539

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Public
access

Yes to give the DB instance a public
IP address, meaning that it's accessibl
e outside the VPC. To be publicly a
ccessible, the DB instance also has to be
in a public subnet in the VPC.

No to make the DB instance accessible
only from inside the VPC.

For more information, see Hiding a DB
instance in a VPC from the internet.

To connect to a DB instance from
outside of its VPC, the DB instance m
ust be publicly accessible. Also, access
must be granted using the inbound
rules of the DB instance's security group.
In addition, other requirements must
be met. For more information, see Can't
connect to Amazon RDS DB instance.

If your DB instance isn't publicly
accessible, use an AWS Site-to-Site VPN
connection or an AWS Direct Connect
connection to access it from a private
network. For more information, see
Internetwork traffic privacy.

CLI option:

--publicly-accessi
ble

--no-publicly-acce
ssible

RDS API parameter:

PubliclyAccessible

All

Available settings 540

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

RDS
Extended
Support

Select Enable RDS Extended Support
to allow supported major engine
versions to continue running past the
RDS end of standard support date.

When you create a DB instance, Amazon
RDS defaults to RDS Extended Support.
To prevent the creation of a new DB
instance after the RDS end of standard
support date and to avoid charges
for RDS Extended Support, disable
this setting. Your existing DB instanc
es won't incur charges until the RDS
Extended Support pricing start date.

For more information, see Amazon RDS
Extended Support with Amazon RDS.

CLI option:

--engine-lifecycle
-support

RDS API parameter:

EngineLifecycleSup
port

MySQL

PostgreSQ
L

RDS Proxy Choose Create an RDS Proxy to create
a proxy for your DB instance. Amazon
RDS automatically creates an IAM role
and a Secrets Manager secret for the
proxy.

For more information, see Amazon RDS
Proxy.

Not available when
creating a DB instance.

MariaDB

MySQL

PostgreSQ
L

Available settings 541

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Storage
autoscaling

Enable storage autoscaling to enable
Amazon RDS to automatically increase
storage when needed to avoid having
your DB instance run out of storage
space.

Use Maximum storage threshold to
set the upper limit for Amazon RDS to
automatically increase storage for your
DB instance. The default is 1,000 GiB.

For more information, see Managing
capacity automatically with Amazon
RDS storage autoscaling.

CLI option:

--max-allocated-st
orage

RDS API parameter:

MaxAllocatedStorag
e

All

Storage
throughput

The storage throughput value for the DB
instance. This setting is available only if
you choose General purpose SSD (gp3)
 for Storage type.

For more information, see gp3 storage
(recommended).

CLI option:

--storage-throughp
ut

RDS API parameter:

StorageThroughput

All

Available settings 542

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Storage
type

The storage type for your DB instance.

If you choose General Purpose SSD
(gp3), you can provision additiona
l provisioned IOPS and storage
throughput under Advanced settings.

If you choose Provisioned IOPS SSD
(io1) or Provisioned IOPS SSD (io2),
enter the Provisioned IOPS value.

For more information, see Amazon RDS
storage types.

CLI option:

--storage-type

RDS API parameter:

StorageType

All

Subnet
group

A DB subnet group to associate with this
DB instance.

For more information, see Working with
DB subnet groups.

CLI option:

--db-subnet-group-
name

RDS API parameter:

DBSubnetGroupName

All

Tenant
database
name

The name of your initial PDB in the
multi-tenant configuration of the
Oracle architecture. This setting is
available only if you choose Multi-ten
ant configuration for Architecture
configuration.

The tenant database name must differ
from the name of your CDB, which is
named RDSCDB. You can't change the
CDB name.

CLI option:

--db-name

RDS API parameter:

DBName

Oracle

Available settings 543

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Tenant
database
master
username

The name that you use as the master
username to log in to your tenan
t database (PDB) with all database
privileges. This setting is availab
le only if you choose Multi-tenant
 configuration for Architecture confi
guration.

Note the following naming restrictions:

• The name can contain 1–16
alphanumeric characters and
underscores.

• The first character must be a letter.

• The name can't be a word reserved by
the database engine.

You can't do the following:

•
Change the tenant master username
after you create the tenant database.

•
Log in with the tenant master
username to the CDB.

CLI option:

--master-username

RDS API parameter:

MasterUsername

Oracle

Available settings 544

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Tenant
database
master
password

The password for the master user
account of your tenant database (PDB).
This setting is available only if you
choose Multi-tenant configuration for
 Architecture configuration.

The password has 8–30 printable ASCII
characters, excluding /, ", a space, and
 @.

CLI option:

--master-password

RDS API parameter:

MasterPassword

Oracle

Tenant
database
character
set

The character set of the initial tenant
database. This setting is available
only if you choose Multi-tenant
 configuration for Architecture confi
guration. Only RDS for Oracle CDB
instances are supported.

The default value of AL32UTF8 for the
tenant database character set is for the
Unicode 5.0 UTF-8 Universal character
set. You can choose a tenant database
character set that is different from the
character set of the CDB.

For more information, see RDS for
Oracle character sets.

CLI option:

--character-set-na
me

RDS API parameter:

CharacterSetName

Oracle

Available settings 545

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Tenant
database
national
character
set

The national character set for your
tenant database, commonly called the
NCHAR character set. This setting is
 available only if you choose Multi-ten
ant configuration for Architecture
 configuration. Only RDS for Oracle CDB
instances are supported.

You can set the national character set to
either AL16UTF16 (default) or UTF-8.
You can't change the national character
set after you create the tenant database.

The tenant database national character
set is different from the tenant
database character set. The national
character set specifies the encoding only
for columns that use the NCHAR data
 type (NCHAR, NVARCHAR2 , and NCLOB)
and doesn't affect database metadata.

For more information, see RDS for
Oracle character sets.

CLI option:

--nchar-character-
set-name

API parameter:

NcharCharacterSetN
ame

Oracle

Time zone The time zone for your DB instance. If
you don't choose a time zone, your DB
instance uses the default time zone. You
can't change the time zone after the DB
instance is created.

For more information, see Local time
zone for Amazon RDS for Db2 DB
instances and Local time zone for
Microsoft SQL Server DB instances.

CLI option:

--timezone

RDS API parameter:

Timezone

Db2

SQL
Server

RDS
Custom
for SQL
Server

Available settings 546

Amazon Relational Database Service User Guide

Console
setting

Setting description CLI option and RDS API
parameter

Supported
DB
engines

Virtual
Private
Cloud
(VPC)

A VPC based on the Amazon VPC service
to associate with this DB instance.

For more information, see Amazon VPC
and Amazon RDS.

For the CLI and API, you
specify the VPC security
group IDs.

All

VPC
security
group
(firewall)

The security group to associate with the
DB instance.

For more information, see Overview of
VPC security groups.

CLI option:

--vpc-security-gro
up-ids

RDS API parameter:

VpcSecurityGroupId
s

All

Available settings 547

Amazon Relational Database Service User Guide

Creating Amazon RDS resources with AWS CloudFormation

Amazon RDS is integrated with AWS CloudFormation, a service that helps you to model and set
up your AWS resources so that you can spend less time creating and managing your resources and
infrastructure. You create a template that describes all the AWS resources that you want (such as
DB instances and DB parameter groups), and AWS CloudFormation provisions and configures those
resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your RDS resources
consistently and repeatedly. Describe your resources once, and then provision the same resources
over and over in multiple AWS accounts and Regions.

RDS and AWS CloudFormation templates

AWS CloudFormation templates are formatted text files in JSON or YAML. These templates
describe the resources that you want to provision in your AWS CloudFormation stacks. If you're
unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help you get started
with AWS CloudFormation templates. For more information, see What is AWS CloudFormation
Designer? in the AWS CloudFormation User Guide.

RDS supports creating resources in AWS CloudFormation. For more information, including
examples of JSON and YAML templates for these resources, see the RDS resource type reference in
the AWS CloudFormation User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Creating resources with AWS CloudFormation 548

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Relational Database Service User Guide

Connecting to an Amazon RDS DB instance

Before you can connect to a DB instance, you must create the DB instance. For information, see
Creating an Amazon RDS DB instance. After Amazon RDS provisions your DB instance, use any
standard client application or utility for your DB engine to connect to the DB instance. In the
connection string, specify the DNS address from the DB instance endpoint as the host parameter.
Also, specify the port number from the DB instance endpoint as the port parameter.

For more information about finding connection information for an Amazon RDS DB instance or
scenarios for accessing a DB instance in a VPC, see the following topics.

• Finding the connection information for an Amazon RDS DB instance

• Scenarios for accessing a DB instance in a VPC

Finding the connection information for an Amazon RDS DB instance

The connection information for a DB instance includes its endpoint, port, and a valid database
user, such as the master user. For example, for a MySQL DB instance, suppose that the endpoint
value is mydb.123456789012.us-east-1.rds.amazonaws.com. In this case, the port value is
3306, and the database user is admin. Given this information, you specify the following values in a
connection string:

• For host or host name or DNS name, specify mydb.123456789012.us-
east-1.rds.amazonaws.com.

• For port, specify 3306.

• For user, specify admin.

The endpoint is unique for each DB instance, and the values of the port and user can vary. The
following list shows the most common port for each DB engine:

• Db2 – 50000

• MariaDB – 3306

• Microsoft SQL Server – 1433

• MySQL – 3306

• Oracle – 1521

Connecting to a DB instance 549

Amazon Relational Database Service User Guide

• PostgreSQL – 5432

To connect to a DB instance, use any client for a DB engine. For example, you might use the
mysql utility to connect to a MariaDB or MySQL DB instance. You might use Microsoft SQL Server
Management Studio to connect to a SQL Server DB instance. You might use Oracle SQL Developer
to connect to an Oracle DB instance. Similarly, you might use the psql command line utility to
connect to a PostgreSQL DB instance.

To find the connection information for a DB instance, use the AWS Management Console. You can
also use the AWS Command Line Interface (AWS CLI) describe-db-instances command or the RDS
API DescribeDBInstances operation.

Console

To find the connection information for a DB instance in the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases to display a list of your DB instances.

3. Choose the name of the DB instance to display its details.

4. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You need
both the endpoint and the port number to connect to the DB instance.

Finding the connection information 550

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. If you need to find the master user name, choose the Configuration tab and view the Master
username value.

Finding the connection information 551

Amazon Relational Database Service User Guide

AWS CLI

To find the connection information for a DB instance by using the AWS CLI, call the describe-db-
instances command. In the call, query for the DB instance ID, endpoint, port, and master user
name.

For Linux, macOS, or Unix:

aws rds describe-db-instances \
 --query "*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

For Windows:

aws rds describe-db-instances ^
 --query "*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

Your output should be similar to the following.

[
 [
 "mydb",
 "mydb.123456789012.us-east-1.rds.amazonaws.com",
 3306,
 "admin"
],
 [
 "myoracledb",
 "myoracledb.123456789012.us-east-1.rds.amazonaws.com",
 1521,
 "dbadmin"
],
 [
 "mypostgresqldb",
 "mypostgresqldb.123456789012.us-east-1.rds.amazonaws.com",
 5432,
 "postgresadmin"
]
]

Finding the connection information 552

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

RDS API

To find the connection information for a DB instance by using the Amazon RDS API, call the
DescribeDBInstances operation. In the output, find the values for the endpoint address, endpoint
port, and master user name.

Scenarios for accessing a DB instance in a VPC

Using Amazon Virtual Private Cloud (Amazon VPC), you can launch AWS resources, such as Amazon
RDS DB instances, into a virtual private cloud (VPC). When you use Amazon VPC, you have control
over your virtual networking environment. You can choose your own IP address range, create
subnets, and configure routing and access control lists.

A VPC security group controls access to DB instances inside a VPC. Each VPC security group rule
enables a specific source to access a DB instance in a VPC that is associated with that VPC security
group. The source can be a range of addresses (for example, 203.0.113.0/24), or another VPC
security group. By specifying a VPC security group as the source, you allow incoming traffic from all
instances (typically application servers) that use the source VPC security group.

Before attempting to connect to your DB instance, configure your VPC for your use case. The
following are common scenarios for accessing a DB instance in a VPC:

• A DB instance in a VPC accessed by an Amazon EC2 instance in the same VPC – A common
use of a DB instance in a VPC is to share data with an application server that is running in an
EC2 instance in the same VPC. The EC2 instance might run a web server with an application that
interacts with the DB instance.

• A DB instance in a VPC accessed by an EC2 instance in a different VPC – In some cases, your DB
instance is in a different VPC from the EC2 instance that you're using to access it. If so, you can
use VPC peering to access the DB instance.

• A DB instance in a VPC accessed by a client application through the internet – To access a
DB instance in a VPC from a client application through the internet, you configure a VPC with a
single public subnet. You also configure an internet gateway to enable communication over the
internet.

To connect to a DB instance from outside of its VPC, the DB instance must be publicly accessible.
Also, access must be granted using the inbound rules of the DB instance's security group, and
other requirements must be met. For more information, see Can't connect to Amazon RDS DB
instance.

Scenarios for accessing a DB instance 553

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

• A DB instance in a VPC accessed by a private network – If your DB instance isn't publicly
accessible, you can use one of the following options to access it from a private network:

• An AWS Site-to-Site VPN connection

• An AWS Direct Connect connection

• An AWS Client VPN connection

For more information, see Scenarios for accessing a DB instance in a VPC.

Connecting to DB instances with the AWS drivers

The AWS suite of drivers has been designed to provide support for faster switchover and failover
times, and authentication with AWS Secrets Manager, AWS Identity and Access Management (IAM),
and Federated Identity. The AWS drivers rely on monitoring DB instance status and being aware of
the instance topology to determine the new primary instance. This approach reduces switchover
and failover times to single-digit seconds, compared to tens of seconds for open-source drivers.

The following table lists the features supported for each of the drivers. As new service features
are introduced, the goal of the AWS suite of drivers is to have built-in support for these service
features.

Feature AWS JDBC Driver AWS Python Driver AWS ODBC Driver
for MySQL

Failover support Yes Yes Yes

Enhanced failover
monitoring

Yes Yes Yes

Read/write splitting Yes Yes No

Driver metadata
connection

Yes N/A N/A

Telemetry Yes Yes No

Secrets Manager Yes Yes Yes

IAM authentication Yes Yes Yes

Connecting to DB instances with the AWS drivers 554

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/awslabs/aws-advanced-python-wrapper
https://github.com/aws/aws-mysql-odbc
https://github.com/aws/aws-mysql-odbc
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheFailoverPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheFailoverPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/UsingTheAwsDriver.md#failover-process
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheHostMonitoringPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheHostMonitoringPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/HostMonitoring.md#enhanced-failure-monitoring
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheReadWriteSplittingPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheReadWriteSplittingPlugin.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheDriverMetadataConnectionPlugin.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/Telemetry.md
https://github.com/aws/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/Telemetry.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheAwsSecretsManagerPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheAwsSecretsManagerPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/UsingTheAwsDriver.md#secrets-manager-authentication
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/UsingTheAwsDriver.md#iam-authentication

Amazon Relational Database Service User Guide

Feature AWS JDBC Driver AWS Python Driver AWS ODBC Driver
for MySQL

Federated Identity
(AD FS)

Yes Yes No

Federated Identity
(Okta)

Yes No No

Multi-AZ DB clusters Yes Yes No

For more information on the AWS drivers, see the corresponding language driver for your RDS for
MariaDB, RDS for MySQL, or RDS for PostgreSQL DB instance.

Note

The only features supported for RDS for MariaDB are authentication with AWS Secrets
Manager, AWS Identity and Access Management (IAM), and Federated Identity.

Connecting to a DB instance that's running a specific DB engine

To learn how to connect to a DB instance that is running a specific DB engine, follow the
instructions for your DB engine:

• RDS for Db2

• RDS for MariaDB

• RDS for SQL Server

• RDS for MySQL

• RDS for Oracle

• RDS for PostgreSQL

Managing connections with RDS Proxy

You can also use Amazon RDS Proxy to manage connections to RDS for MariaDB, RDS for Microsoft
SQL Server, RDS for MySQL, and RDS for PostgreSQL DB instances. RDS Proxy allows applications

Connecting to a DB instance running a specific DB engine 555

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/awslabs/aws-advanced-python-wrapper
https://github.com/aws/aws-mysql-odbc
https://github.com/aws/aws-mysql-odbc
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheFederatedAuthPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheFederatedAuthenticationPlugin.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheFederatedAuthPlugin.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/SupportForRDSMultiAzDBCluster.md
https://github.com/aws/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/SupportForRDSMultiAzDBCluster.md

Amazon Relational Database Service User Guide

to pool and share database connections to improve scalability. For more information, see Amazon
RDS Proxy.

Database authentication options

Amazon RDS supports the following ways to authenticate database users:

• Password authentication – Your DB instance performs all administration of user accounts.
You create users and specify passwords with SQL statements. The SQL statements you can use
depend on your DB engine.

• AWS Identity and Access Management (IAM) database authentication – You don't need to use
a password when you connect to a DB instance. Instead, you use an authentication token.

• Kerberos authentication – You use external authentication of database users using Kerberos
and Microsoft Active Directory. Kerberos is a network authentication protocol that uses tickets
and symmetric-key cryptography to eliminate the need to transmit passwords over the network.
Kerberos has been built into Active Directory and is designed to authenticate users to network
resources, such as databases.

IAM database authentication and Kerberos authentication are available only for specific DB engines
and versions.

For more information, see Database authentication with Amazon RDS.

Encrypted connections

You can use Secure Socket Layer (SSL) or Transport Layer Security (TLS) from your application to
encrypt a connection to a DB instance. Each DB engine has its own process for implementing SSL/
TLS. For more information, see Using SSL/TLS to encrypt a connection to a DB instance or cluster.

Database authentication options 556

Amazon Relational Database Service User Guide

Working with option groups

Some DB engines offer additional features that make it easier to manage data and databases, and
to provide additional security for your database. Amazon RDS uses option groups to enable and
configure these features. An option group can specify features, called options, that are available for
a particular Amazon RDS DB instance. Options can have settings that specify how the option works.
When you associate a DB instance with an option group, the specified options and option settings
are enabled for that DB instance.

Amazon RDS supports options for the following database engines:

Database engine Relevant documentation

Db2 Options for RDS for Db2 DB instances

MariaDB Options for MariaDB database engine

Microsoft SQL Server Options for the Microsoft SQL Server database engine

MySQL Options for MySQL DB instances

Oracle Adding options to Oracle DB instances

PostgreSQL PostgreSQL does not use options and option groups.
PostgreSQL uses extensions and modules to provide additiona
l features. For more information, see Supported PostgreSQL
extension versions.

Option groups overview

Amazon RDS provides an empty default option group for each new DB instance. You can't modify
or delete this default option group, but any new option group that you create derives its settings
from the default option group. To apply an option to a DB instance, you must do the following:

1. Create a new option group, or copy or modify an existing option group.

2. Add one or more options to the option group.

3. Associate the option group with the DB instance.

Working with option groups 557

Amazon Relational Database Service User Guide

To associate an option group with a DB instance, modify the DB instance. For more information,
see Modifying an Amazon RDS DB instance.

Both DB instances and DB snapshots can be associated with an option group. In some cases, you
might restore from a DB snapshot or perform a point-in-time restore for a DB instance. In these
cases, the option group associated with the DB snapshot or DB instance is, by default, associated
with the restored DB instance. You can associate a different option group with a restored DB
instance. However, the new option group must contain any persistent or permanent options
that were included in the original option group. Persistent and permanent options are described
following.

Options require additional memory to run on a DB instance. Thus, you might need to launch a
larger instance to use them, depending on your current use of your DB instance. For example,
Oracle Enterprise Manager Database Control uses about 300 MB of RAM. If you enable this option
for a small DB instance, you might encounter performance problems or out-of-memory errors.

Persistent and permanent options

Two types of options, persistent and permanent, require special consideration when you add them
to an option group.

Persistent options can't be removed from an option group while DB instances are associated with
the option group. An example of a persistent option is the TDE option for Microsoft SQL Server
transparent data encryption (TDE). You must disassociate all DB instances from the option group
before a persistent option can be removed from the option group. In some cases, you might
restore or perform a point-in-time restore from a DB snapshot. In these cases, if the option group
associated with that DB snapshot contains a persistent option, you can only associate the restored
DB instance with that option group.

Permanent options, such as the TDE option for Oracle Advanced Security TDE, can never be
removed from an option group. You can change the option group of a DB instance that is using
the permanent option. However, the option group associated with the DB instance must include
the same permanent option. In some cases, you might restore or perform a point-in-time restore
from a DB snapshot. In these cases, if the option group associated with that DB snapshot contains a
permanent option, you can only associate the restored DB instance with an option group with that
permanent option.

Option groups overview 558

Amazon Relational Database Service User Guide

For Oracle DB instances, you can copy shared DB snapshots that have the options Timezone or
OLS (or both). To do so, specify a target option group that includes these options when you copy
the DB snapshot. The OLS option is permanent and persistent only for Oracle DB instances running
Oracle version 12.2 or higher. For more information about these options, see Oracle time zone and
Oracle Label Security.

VPC considerations

The option group associated with the DB instance is linked to the DB instance's VPC. This means
that you can't use the option group assigned to a DB instance if you try to restore the instance to a
different VPC. If you restore a DB instance to a different VPC, you can do one of the following:

• Assign the default option group to the DB instance.

• Assign an option group that is linked to that VPC.

• Create a new option group and assign it to the DB instance.

With persistent or permanent options, such as Oracle TDE, you must create a new option group.
This option group must include the persistent or permanent option when restoring a DB instance
into a different VPC.

Option settings control the behavior of an option. For example, the Oracle Advanced Security
option NATIVE_NETWORK_ENCRYPTION has a setting that you can use to specify the encryption
algorithm for network traffic to and from the DB instance. Some options settings are optimized for
use with Amazon RDS and cannot be changed.

Mutually exclusive options

Some options are mutually exclusive. You can use one or the other, but not both at the same time.
The following options are mutually exclusive:

• Oracle Enterprise Manager Database Express and Oracle Management Agent for Enterprise
Manager Cloud Control.

• Oracle native network encryption and Oracle Secure Sockets Layer.

Creating an option group

You can create a new option group that derives its settings from the default option group. You
then add one or more options to the new option group. Or, if you already have an existing option

Creating an option group 559

Amazon Relational Database Service User Guide

group, you can copy that option group with all of its options to a new option group. For more
information, see Copying an option group.

After you create a new option group, it has no options. To learn how to add options to the option
group, see Adding an option to an option group. After you have added the options you want, you
can then associate the option group with a DB instance. This way, the options become available
on the DB instance. For information about associating an option group with a DB instance, see the
documentation for your engine in Working with option groups.

Console

One way of creating an option group is by using the AWS Management Console.

To create a new option group by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group window, do the following:

a. For Name, type a name for the option group that is unique within your AWS account. The
name can contain only letters, digits, and hyphens.

b. For Description, type a brief description of the option group. The description is used for
display purposes.

c. For Engine, choose the DB engine that you want.

d. For Major engine version, choose the major version of the DB engine that you want.

5. To continue, choose Create. To cancel the operation instead, choose Cancel.

AWS CLI

To create an option group, use the AWS CLI create-option-group command with the following
required parameters.

• --option-group-name

• --engine-name

• --major-engine-version

Creating an option group 560

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-option-group.html

Amazon Relational Database Service User Guide

• --option-group-description

Example

The following example creates an option group named testoptiongroup, which is associated
with the Oracle Enterprise Edition DB engine. The description is enclosed in quotation marks.

For Linux, macOS, or Unix:

aws rds create-option-group \
 --option-group-name testoptiongroup \
 --engine-name oracle-ee \
 --major-engine-version 19 \
 --option-group-description "Test option group for Oracle Database 19c EE"

For Windows:

aws rds create-option-group ^
 --option-group-name testoptiongroup ^
 --engine-name oracle-ee ^-
 --major-engine-version 19 ^
 --option-group-description "Test option group for Oracle Database 19c EE"

RDS API

To create an option group, call the Amazon RDS API CreateOptionGroup operation. Include the
following parameters:

• OptionGroupName

• EngineName

• MajorEngineVersion

• OptionGroupDescription

Creating an option group 561

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateOptionGroup.html

Amazon Relational Database Service User Guide

Copying an option group

You can use the AWS CLI or the Amazon RDS API copy an option group. Copying an option group
can be convenient. An example is when you have an existing option group and want to include
most of its custom parameters and values in a new option group. You can also make a copy of an
option group that you use in production and then modify the copy to test other option settings.

Note

Currently, you can't copy an option group to a different AWS Region.

AWS CLI

To copy an option group, use the AWS CLI copy-option-group command. Include the following
required options:

• --source-option-group-identifier

• --target-option-group-identifier

• --target-option-group-description

Example

The following example creates an option group named new-option-group, which is a local copy
of the option group my-option-group.

For Linux, macOS, or Unix:

aws rds copy-option-group \
 --source-option-group-identifier my-option-group \
 --target-option-group-identifier new-option-group \
 --target-option-group-description "My new option group"

For Windows:

aws rds copy-option-group ^
 --source-option-group-identifier my-option-group ^
 --target-option-group-identifier new-option-group ^
 --target-option-group-description "My new option group"

Copying an option group 562

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-option-group.html

Amazon Relational Database Service User Guide

RDS API

To copy an option group, call the Amazon RDS API CopyOptionGroup operation. Include the
following required parameters.

• SourceOptionGroupIdentifier

• TargetOptionGroupIdentifier

• TargetOptionGroupDescription

Adding an option to an option group

You can add an option to an existing option group. After you have added the options you want,
you can then associate the option group with a DB instance so that the options become available
on the DB instance. For information about associating an option group with a DB instance, see the
documentation for your specific DB engine listed at Working with option groups.

Option group changes must be applied immediately in two cases:

• When you add an option that adds or updates a port value, such as the OEM option.

• When you add or remove an option group with an option that includes a port value.

In these cases, choose the Apply Immediately option in the console. Or you can include the --
apply-immediately option when using the AWS CLI or set the ApplyImmediately parameter
to true when using the Amazon RDS API. Options that don't include port values can be applied
immediately, or can be applied during the next maintenance window for the DB instance.

Note

If you specify a security group as a value for an option in an option group, manage the
security group by modifying the option group. You can't change or remove this security
group by modifying a DB instance. Also, the security group doesn't appear in the DB
instance details in the AWS Management Console or in the output for the AWS CLI
command describe-db-instances.

Console

You can use the AWS Management Console to add an option to an option group.

Adding an option to an option group 563

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyOptionGroup.html

Amazon Relational Database Service User Guide

To add an option to an option group by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group that you want to modify, and then choose Add option.

4. In the Add option window, do the following:

a. Choose the option that you want to add. You might need to provide additional values,
depending on the option that you select. For example, when you choose the OEM option,
you must also type a port value and specify a security group.

b. To enable the option on all associated DB instances as soon as you add it, for Apply
Immediately, choose Yes. If you choose No (the default), the option is enabled for each
associated DB instance during its next maintenance window.

Adding an option to an option group 564

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. When the settings are as you want them, choose Add option.

AWS CLI

To add an option to an option group, run the AWS CLI add-option-to-option-group command
with the option that you want to add. To enable the new option immediately on all associated DB
instances, include the --apply-immediately parameter. By default, the option is enabled for
each associated DB instance during its next maintenance window. Include the following required
parameter:

• --option-group-name

Adding an option to an option group 565

https://docs.aws.amazon.com/cli/latest/reference/rds/add-option-to-option-group.html

Amazon Relational Database Service User Guide

Example

The following example adds the Timezone option, with the America/Los_Angeles setting, to
an option group named testoptiongroup and immediately enables it.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name testoptiongroup \
 --options "OptionName=Timezone,OptionSettings=[{Name=TIME_ZONE,Value=America/
Los_Angeles}]" \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name testoptiongroup ^
 --options "OptionName=Timezone,OptionSettings=[{Name=TIME_ZONE,Value=America/
Los_Angeles}]" ^
 --apply-immediately

Command output is similar to the following:

...{
 "OptionName": "Timezone",
 "OptionDescription": "Change time zone",
 "Persistent": true,
 "Permanent": false,
 "OptionSettings": [
 {
 "Name": "TIME_ZONE",
 "Value": "America/Los_Angeles",
 "DefaultValue": "UTC",
 "Description": "Specifies the timezone the user wants to change the
 system time to",
 "ApplyType": "DYNAMIC",
 "DataType": "STRING",
 "AllowedValues": "Africa/Cairo,...",
 "IsModifiable": true,
 "IsCollection": false
 }
],

Adding an option to an option group 566

Amazon Relational Database Service User Guide

 "DBSecurityGroupMemberships": [],
 "VpcSecurityGroupMemberships": []
 }...

Example

The following example adds the Oracle OEM option to an option group. It also specifies a custom
port and a pair of Amazon EC2 VPC security groups to use for that port.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name testoptiongroup \
 --options OptionName=OEM,Port=5500,VpcSecurityGroupMemberships="sg-test1,sg-test2"
 \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name testoptiongroup ^
 --options OptionName=OEM,Port=5500,VpcSecurityGroupMemberships="sg-test1,sg-test2"
 ^
 --apply-immediately

Command output is similar to the following:

OPTIONGROUP False oracle-ee 19 arn:aws:rds:us-east-1:1234567890:og:testoptiongroup
 Test Option Group testoptiongroup vpc-test
OPTIONS Oracle 12c EM Express OEM False False 5500
VPCSECURITYGROUPMEMBERSHIPS active sg-test1
VPCSECURITYGROUPMEMBERSHIPS active sg-test2

Example

The following example adds the Oracle option NATIVE_NETWORK_ENCRYPTION to an option
group and specifies the option settings. If no option settings are specified, default values are used.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \

Adding an option to an option group 567

Amazon Relational Database Service User Guide

 --option-group-name testoptiongroup \
 --options '[{"OptionSettings":
[{"Name":"SQLNET.ENCRYPTION_SERVER","Value":"REQUIRED"},
{"Name":"SQLNET.ENCRYPTION_TYPES_SERVER","Value":"AES256,AES192,DES"}],"OptionName":"NATIVE_NETWORK_ENCRYPTION"}]'
 \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name testoptiongroup ^
 --options "OptionSettings"=[{"Name"="SQLNET.ENCRYPTION_SERVER","Value"="REQUIRED"},
{"Name"="SQLNET.ENCRYPTION_TYPES_SERVER","Value"="AES256\,AES192\,DES"}],"OptionName"="NATIVE_NETWORK_ENCRYPTION"
 ^
 --apply-immediately

Command output is similar to the following:

...{
 "OptionName": "NATIVE_NETWORK_ENCRYPTION",
 "OptionDescription": "Native Network Encryption",
 "Persistent": false,
 "Permanent": false,
 "OptionSettings": [
 {
 "Name": "SQLNET.ENCRYPTION_TYPES_SERVER",
 "Value": "AES256,AES192,DES",
 "DefaultValue":
 "RC4_256,AES256,AES192,3DES168,RC4_128,AES128,3DES112,RC4_56,DES,RC4_40,DES40",
 "Description": "Specifies list of encryption algorithms in order of
 intended use",
 "ApplyType": "STATIC",
 "DataType": "STRING",
 "AllowedValues":
 "RC4_256,AES256,AES192,3DES168,RC4_128,AES128,3DES112,RC4_56,DES,RC4_40,DES40",
 "IsModifiable": true,
 "IsCollection": true
 },
 {
 "Name": "SQLNET.ENCRYPTION_SERVER",
 "Value": "REQUIRED",
 "DefaultValue": "REQUESTED",
 "Description": "Specifies the desired encryption behavior",

Adding an option to an option group 568

Amazon Relational Database Service User Guide

 "ApplyType": "STATIC",
 "DataType": "STRING",
 "AllowedValues": "ACCEPTED,REJECTED,REQUESTED,REQUIRED",
 "IsModifiable": true,
 "IsCollection": false
 },...

RDS API

To add an option to an option group using the Amazon RDS API, call the ModifyOptionGroup
operation with the option that you want to add. To enable the new option immediately on all
associated DB instances, include the ApplyImmediately parameter and set it to true. By default,
the option is enabled for each associated DB instance during its next maintenance window. Include
the following required parameter:

• OptionGroupName

Listing the options and option settings for an option group

You can list all the options and option settings for an option group.

Console

You can use the AWS Management Console to list all of the options and option settings for an
option group.

To list the options and option settings for an option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the name of the option group to display its details. The options and option settings in
the option group are listed.

AWS CLI

To list the options and option settings for an option group, use the AWS CLI describe-option-
groups command. Specify the name of the option group whose options and settings you want to
view. If you don't specify an option group name, all option groups are described.

Listing the options and option settings for an option group 569

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyOptionGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-option-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-option-groups.html

Amazon Relational Database Service User Guide

Example

The following example lists the options and option settings for all option groups.

aws rds describe-option-groups

Example

The following example lists the options and option settings for an option group named
testoptiongroup.

aws rds describe-option-groups --option-group-name testoptiongroup

RDS API

To list the options and option settings for an option group, use the Amazon RDS API
DescribeOptionGroups operation. Specify the name of the option group whose options
and settings you want to view. If you don't specify an option group name, all option groups are
described.

Modifying an option setting

After you have added an option that has modifiable option settings, you can modify the settings
at any time. If you change options or option settings in an option group, those changes are applied
to all DB instances that are associated with that option group. For more information on what
settings are available for the various options, see the documentation for your engine in Working
with option groups.

Option group changes must be applied immediately in two cases:

• When you add an option that adds or updates a port value, such as the OEM option.

• When you add or remove an option group with an option that includes a port value.

In these cases, choose the Apply Immediately option in the console. Or you can include the
--apply-immediately option when using the AWS CLI or set the ApplyImmediately
parameter to true when using the RDS API. Options that don't include port values can be applied
immediately, or can be applied during the next maintenance window for the DB instance.

Modifying an option setting 570

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeOptionGroups.html

Amazon Relational Database Service User Guide

Note

If you specify a security group as a value for an option in an option group, you manage
the security group by modifying the option group. You can't change or remove this
security group by modifying a DB instance. Also, the security group doesn't appear in the
DB instance details in the AWS Management Console or in the output for the AWS CLI
command describe-db-instances.

Console

You can use the AWS Management Console to modify an option setting.

To modify an option setting by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Select the option group whose option that you want to modify, and then choose Modify
option.

4. In the Modify option window, from Installed Options, choose the option whose setting you
want to modify. Make the changes that you want.

5. To enable the option as soon as you add it, for Apply Immediately, choose Yes. If you
choose No (the default), the option is enabled for each associated DB instance during its next
maintenance window.

6. When the settings are as you want them, choose Modify Option.

AWS CLI

To modify an option setting, use the AWS CLI add-option-to-option-group command with
the option group and option that you want to modify. By default, the option is enabled for each
associated DB instance during its next maintenance window. To apply the change immediately to
all associated DB instances, include the --apply-immediately parameter. To modify an option
setting, use the --settings argument.

Modifying an option setting 571

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/add-option-to-option-group.html

Amazon Relational Database Service User Guide

Example

The following example modifies the port that the Oracle Enterprise Manager Database Control
(OEM) uses in an option group named testoptiongroup and immediately applies the change.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name testoptiongroup \
 --options OptionName=OEM,Port=5432,DBSecurityGroupMemberships=default \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name testoptiongroup ^
 --options OptionName=OEM,Port=5432,DBSecurityGroupMemberships=default ^
 --apply-immediately

Command output is similar to the following:

OPTIONGROUP False oracle-ee 19 arn:aws:rds:us-east-1:1234567890:og:testoptiongroup
 Test Option Group testoptiongroup
OPTIONS Oracle 12c EM Express OEM False False 5432
DBSECURITYGROUPMEMBERSHIPS default authorized

Example

The following example modifies the Oracle option NATIVE_NETWORK_ENCRYPTION and changes
the option settings.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name testoptiongroup \
 --options '[{"OptionSettings":
[{"Name":"SQLNET.ENCRYPTION_SERVER","Value":"REQUIRED"},
{"Name":"SQLNET.ENCRYPTION_TYPES_SERVER","Value":"AES256,AES192,DES,RC4_256"}],"OptionName":"NATIVE_NETWORK_ENCRYPTION"}]'
 \
 --apply-immediately

For Windows:

Modifying an option setting 572

Amazon Relational Database Service User Guide

aws rds add-option-to-option-group ^
 --option-group-name testoptiongroup ^
 --options "OptionSettings"=[{"Name"="SQLNET.ENCRYPTION_SERVER","Value"="REQUIRED"},
{"Name"="SQLNET.ENCRYPTION_TYPES_SERVER","Value"="AES256\,AES192\,DES
\,RC4_256"}],"OptionName"="NATIVE_NETWORK_ENCRYPTION" ^
 --apply-immediately

Command output is similar to the following:

OPTIONGROUP False oracle-ee 19 arn:aws:rds:us-east-1:1234567890:og:testoptiongroup
 Test Option Group testoptiongroup
OPTIONS Oracle Advanced Security - Native Network Encryption
 NATIVE_NETWORK_ENCRYPTION False False
OPTIONSETTINGS
 RC4_256,AES256,AES192,3DES168,RC4_128,AES128,3DES112,RC4_56,DES,RC4_40,DES40 STATIC
 STRING
 RC4_256,AES256,AES192,3DES168,RC4_128,AES128,3DES112,RC4_56,DES,RC4_40,DES40
 Specifies list of encryption algorithms in order of intended use
 True True SQLNET.ENCRYPTION_TYPES_SERVER AES256,AES192,DES,RC4_256
OPTIONSETTINGS ACCEPTED,REJECTED,REQUESTED,REQUIRED STATIC STRING REQUESTED
 Specifies the desired encryption behavior False True SQLNET.ENCRYPTION_SERVER
 REQUIRED
OPTIONSETTINGS SHA1,MD5 STATIC STRING SHA1,MD5 Specifies list of
 checksumming algorithms in order of intended use True True
 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER SHA1,MD5
OPTIONSETTINGS ACCEPTED,REJECTED,REQUESTED,REQUIRED STATIC STRING
 REQUESTED Specifies the desired data integrity behavior False True
 SQLNET.CRYPTO_CHECKSUM_SERVER REQUESTED

RDS API

To modify an option setting, use the Amazon RDS API ModifyOptionGroup command with
the option group and option that you want to modify. By default, the option is enabled for each
associated DB instance during its next maintenance window. To apply the change immediately to
all associated DB instances, include the ApplyImmediately parameter and set it to true.

Removing an option from an option group

Some options can be removed from an option group, and some cannot. A persistent option
cannot be removed from an option group until all DB instances associated with that option group
are disassociated. A permanent option can never be removed from an option group. For more

Removing an option from an option group 573

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyOptionGroup.html

Amazon Relational Database Service User Guide

information about what options are removable, see the documentation for your specific engine
listed at Working with option groups.

If you remove all options from an option group, Amazon RDS doesn't delete the option group. DB
instances that are associated with the empty option group continue to be associated with it; they
just won't have any active options. Alternatively, to remove all options from a DB instance, you can
associate the DB instance with the default (empty) option group.

Console

You can use the AWS Management Console to remove an option from an option group.

To remove an option from an option group by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Select the option group whose option you want to remove, and then choose Delete option.

4. In the Delete option window, do the following:

• Select the check box for the option that you want to delete.

• For the deletion to take effect as soon as you make it, for Apply immediately, choose Yes. If
you choose No (the default), the option is deleted for each associated DB instance during its
next maintenance window.

5. When the settings are as you want them, choose Yes, Delete.

Removing an option from an option group 574

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To remove an option from an option group, use the AWS CLI remove-option-from-option-
group command with the option that you want to delete. By default, the option is removed
from each associated DB instance during its next maintenance window. To apply the change
immediately, include the --apply-immediately parameter.

Example

The following example removes the Oracle Enterprise Manager Database Control (OEM) option
from an option group named testoptiongroup and immediately applies the change.

For Linux, macOS, or Unix:

aws rds remove-option-from-option-group \
 --option-group-name testoptiongroup \
 --options OEM \
 --apply-immediately

For Windows:

aws rds remove-option-from-option-group ^
 --option-group-name testoptiongroup ^
 --options OEM ^
 --apply-immediately

Command output is similar to the following:

OPTIONGROUP testoptiongroup oracle-ee 19 Test option group

RDS API

To remove an option from an option group, use the Amazon RDS API ModifyOptionGroup action.
By default, the option is removed from each associated DB instance during its next maintenance
window. To apply the change immediately, include the ApplyImmediately parameter and set it
to true.

Removing an option from an option group 575

https://docs.aws.amazon.com/cli/latest/reference/rds/remove-option-from-option-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/remove-option-from-option-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyOptionGroup.html

Amazon Relational Database Service User Guide

Include the following parameters:

• OptionGroupName

• OptionsToRemove.OptionName

Deleting an option group

You can delete an option group only if it meets the following criteria:

• It is not associated with any Amazon RDS resource. An option group can be associated with a DB
instance, a manual DB snapshot, or an automated DB snapshot.

• It is not a default option group.

To identify the option groups used by your DB instances and DB snapshots, you can use the
following CLI commands:

aws rds describe-db-instances \
 --query 'DBInstances[*].
[DBInstanceIdentifier,OptionGroupMemberships[].OptionGroupName]'

aws rds describe-db-snapshots | jq -r '.DBSnapshots[] | "\(.DBInstanceIdentifier),
\(.OptionGroupName)"' | sort | uniq

If you try to delete an option group that is associated with an RDS resource, an error like the
following is returned.

An error occurred (InvalidOptionGroupStateFault) when calling the DeleteOptionGroup
 operation: The option group 'optionGroupName' cannot be deleted because it is in use.

To find the Amazon RDS resources associated with an option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the name of the option group to show its details.

Deleting an option group 576

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. Check the Associated Instances and Snapshots section for the associated Amazon RDS
resources.

If a DB instance is associated with the option group, modify the DB instance to use a different
option group. For more information, see Modifying an Amazon RDS DB instance.

If a manual DB snapshot is associated with the option group, modify the DB snapshot to use a
different option group. You can do so using the AWS CLI modify-db-snapshot command.

Note

You can't modify the option group of an automated DB snapshot.

Console

One way of deleting an option group is by using the AWS Management Console.

To delete an option group by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group.

4. Choose Delete group.

5. On the confirmation page, choose Delete to finish deleting the option group, or choose Cancel
to cancel the deletion.

AWS CLI

To delete an option group, use the AWS CLI delete-option-group command with the following
required parameter.

• --option-group-name

Example

The following example deletes an option group named testoptiongroup.

Deleting an option group 577

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-snapshot.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-option-group.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds delete-option-group \
 --option-group-name testoptiongroup

For Windows:

aws rds delete-option-group ^
 --option-group-name testoptiongroup

RDS API

To delete an option group, call the Amazon RDS API DeleteOptionGroup operation. Include the
following parameter:

• OptionGroupName

Deleting an option group 578

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteOptionGroup.html

Amazon Relational Database Service User Guide

Parameter groups for Amazon RDS

Database parameters specify how the database is configured. For example, database parameters
can specify the amount of resources, such as memory, to allocate to a database.

You manage your database configuration by associating your DB instances and Multi-AZ DB
clusters with parameter groups. Amazon RDS defines parameter groups with default settings. You
can also define your own parameter groups with customized settings.

Note

Some DB engines offer additional features that you can add to your database as options in
an option group. For information about option groups, see Working with option groups.

Topics

• Overview of parameter groups

• DB parameter groups for Amazon RDS DB instances

• Working with DB cluster parameter groups for Multi-AZ DB clusters

• Comparing DB parameter groups

• Specifying DB parameters

Overview of parameter groups

A DB parameter group acts as a container for engine configuration values that are applied to one or
more DB instances.

DB cluster parameter groups apply to Multi-AZ DB clusters only. In a Multi-AZ DB cluster, the
settings in the DB cluster parameter group apply to all of the DB instances in the cluster. The
default DB parameter group for the DB engine and DB engine version is used for each DB instance
in the DB cluster.

Topics

• Default and custom parameter groups

• Static and dynamic DB instance parameters

Parameter groups 579

Amazon Relational Database Service User Guide

• Static and dynamic DB cluster parameters

• Character set parameters

• Supported parameters and parameter values

Default and custom parameter groups

If you create a DB instance without specifying a DB parameter group, the DB instance uses a
default DB parameter group. Likewise, if you create a Multi-AZ DB cluster without specifying a DB
cluster parameter group, the DB cluster uses a default DB cluster parameter group. Each default
parameter group contains database engine defaults and Amazon RDS system defaults based on the
engine, compute class, and allocated storage of the instance.

You can't modify the parameter settings of a default parameter group. Instead, you can do the
following:

1. Create a new parameter group.

2. Change the settings of your desired parameters. Not all DB engine parameters in a parameter
group are eligible to be modified.

3. Modify your DB instance or DB cluster to associate the new parameter group.

When you associate a new DB parameter group with a DB instance, the association happens
immediately. For information about modifying a DB instance, see Modifying an Amazon RDS DB
instance. For information about modifying a Multi-AZ DB clusters, see Modifying a Multi-AZ DB
cluster for Amazon RDS.

Note

If you have modified your DB instance to use a custom parameter group, and you start
the DB instance, RDS automatically reboots the DB instance as part of the startup
process.

RDS applies the modified static and dynamic parameters in a newly associated parameter
group only after the DB instance is rebooted. However, if you modify dynamic parameters in
the DB parameter group after you associate it with the DB instance, these changes are applied
immediately without a reboot. For more information about changing the DB parameter group, see
Modifying an Amazon RDS DB instance.

Overview of parameter groups 580

Amazon Relational Database Service User Guide

If you update parameters within a DB parameter group, the changes apply to all DB instances that
are associated with that parameter group. Likewise, if you update parameters within a Multi-AZ DB
cluster parameter group, the changes apply to all Aurora DB clusters that are associated with that
DB cluster parameter group.

If you don't want to create a parameter group from scratch, you can copy an existing parameter
group with the AWS CLI copy-db-parameter-group command or copy-db-cluster-parameter-group
command. You might find that copying a parameter group is useful in some cases. For example,
you might want to include most of an existing DB parameter group's custom parameters and
values in a new DB parameter group.

Static and dynamic DB instance parameters

DB instance parameters are either static or dynamic. They differ as follows:

• When you change a static parameter and save the DB parameter group, the parameter change
takes effect after you manually reboot the associated DB instances. For static parameters, the
console always uses pending-reboot for the ApplyMethod.

• When you change a dynamic parameter, by default the parameter change takes effect
immediately, without requiring a reboot. When you use the AWS Management Console to change
DB instance parameter values, it always uses immediate for the ApplyMethod for dynamic
parameters. To defer the parameter change until after you reboot an associated DB instance, use
the AWS CLI or RDS API. Set the ApplyMethod to pending-reboot for the parameter change.

Note

Using pending-reboot with dynamic parameters in the AWS CLI or RDS API on RDS for
SQL Server DB instances generates an error. Use apply-immediately on RDS for SQL
Server.

For more information about using the AWS CLI to change a parameter value, see modify-db-
parameter-group. For more information about using the RDS API to change a parameter value, see
ModifyDBParameterGroup.

If a DB instance isn't using the latest changes to its associated DB parameter group, the console
shows a status of pending-reboot for the DB parameter group. This status doesn't result in an
automatic reboot during the next maintenance window. To apply the latest parameter changes to
that DB instance, manually reboot the DB instance.

Overview of parameter groups 581

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Relational Database Service User Guide

Static and dynamic DB cluster parameters

DB cluster parameters are either static or dynamic. They differ as follows:

• When you change a static parameter and save the DB cluster parameter group, the parameter
change takes effect after you manually reboot the associated DB clusters. For static parameters,
the console always uses pending-reboot for the ApplyMethod.

• When you change a dynamic parameter, by default the parameter change takes effect
immediately, without requiring a reboot. When you use the AWS Management Console to change
DB cluster parameter values, it always uses immediate for the ApplyMethod for dynamic
parameters. To defer the parameter change until after an associated DB cluster is rebooted, use
the AWS CLI or RDS API. Set the ApplyMethod to pending-reboot for the parameter change.

For more information about using the AWS CLI to change a parameter value, see modify-db-
cluster-parameter-group. For more information about using the RDS API to change a parameter
value, see ModifyDBClusterParameterGroup.

Character set parameters

Before you create a DB instance or Multi-AZ DB cluster, set any parameters that relate to the
character set or collation of your database in your parameter group. Also do so before you
create a database in it. In this way, you ensure that the default database and new databases use
the character set and collation values that you specify. If you change character set or collation
parameters, the parameter changes aren't applied to existing databases.

For some DB engines, you can change character set or collation values for an existing database
using the ALTER DATABASE command, for example:

ALTER DATABASE database_name CHARACTER SET character_set_name COLLATE collation;

For more information about changing the character set or collation values for a database, check
the documentation for your DB engine.

Supported parameters and parameter values

To determine the supported parameters for your DB engine, view the parameters in the DB
parameter group and DB cluster parameter group used by the DB instance or DB cluster. For more
information, see Viewing parameter values for a DB parameter group in Amazon RDS and Viewing
parameter values for a DB cluster parameter group.

Overview of parameter groups 582

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Relational Database Service User Guide

In many cases, you can specify integer and Boolean parameter values using expressions, formulas,
and functions. Functions can include a mathematical log expression. However, not all parameters
support expressions, formulas, and functions for parameter values. For more information, see
Specifying DB parameters.

Improperly setting parameters in a parameter group can have unintended adverse effects,
including degraded performance and system instability. Always be cautious when modifying
database parameters, and back up your data before modifying a parameter group. Try parameter
group setting changes on a test DB instance or DB cluster before applying those parameter group
changes to a production DB instance or DB cluster.

DB parameter groups for Amazon RDS DB instances

DB instances use DB parameter groups. The following sections describe configuring and managing
DB instance parameter groups.

Topics

• Creating a DB parameter group in Amazon RDS

• Associating a DB parameter group with a DB instance in Amazon RDS

• Modifying parameters in a DB parameter group in Amazon RDS

• Resetting parameters in a DB parameter group to their default values in Amazon RDS

• Copying a DB parameter group in Amazon RDS

• Listing DB parameter groups in Amazon RDS

• Viewing parameter values for a DB parameter group in Amazon RDS

• Deleting a DB parameter group in Amazon RDS

Creating a DB parameter group in Amazon RDS

You can create a new DB parameter group using the AWS Management Console, the AWS CLI, or
the RDS API.

The following limitations apply to the DB parameter group name:

• The name must be 1 to 255 letters, numbers, or hyphens.

Default parameter group names can include a period, such as default.mysql8.0. However,
custom parameter group names can't include a period.

DB parameter groups 583

Amazon Relational Database Service User Guide

• The first character must be a letter.

• The name can't end with a hyphen or contain two consecutive hyphens.

Console

To create a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

4. For Parameter group name, enter the name of your new DB parameter group.

5. For Description, enter a description for your new DB parameter group.

6. For Engine type, choose your DB engine.

7. For Parameter group family, choose a DB parameter group family.

8. For Type, if applicable, choose DB Parameter Group.

9. Choose Create.

AWS CLI

To create a DB parameter group, use the AWS CLI create-db-parameter-group command. The
following example creates a DB parameter group named mydbparametergroup for MySQL version
8.0 with a description of "My new parameter group."

Include the following required parameters:

• --db-parameter-group-name

• --db-parameter-group-family

• --description

To list all of the available parameter group families, use the following command:

aws rds describe-db-engine-versions --query "DBEngineVersions[].DBParameterGroupFamily"

DB parameter groups 584

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Relational Database Service User Guide

Note

The output contains duplicates.

Example

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --db-parameter-group-family MySQL8.0 \
 --description "My new parameter group"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --db-parameter-group-family MySQL8.0 ^
 --description "My new parameter group"

This command produces output similar to the following:

DBPARAMETERGROUP mydbparametergroup mysql8.0 My new parameter group

RDS API

To create a DB parameter group, use the RDS API CreateDBParameterGroup operation.

Include the following required parameters:

• DBParameterGroupName

• DBParameterGroupFamily

• Description

Associating a DB parameter group with a DB instance in Amazon RDS

You can create your own DB parameter groups with customized settings. You can associate a DB
parameter group with a DB instance using the AWS Management Console, the AWS CLI, or the RDS
API. You can do so when you create or modify a DB instance.

DB parameter groups 585

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBParameterGroup.html

Amazon Relational Database Service User Guide

For information about creating a DB parameter group, see Creating a DB parameter group in
Amazon RDS. For information about creating a DB instance, see Creating an Amazon RDS DB
instance. For information about modifying a DB instance, see Modifying an Amazon RDS DB
instance.

Note

When you associate a new DB parameter group with a DB instance, the modified static and
dynamic parameters are applied only after the DB instance is rebooted. However, if you
modify dynamic parameters in the DB parameter group after you associate it with the DB
instance, these changes are applied immediately without a reboot.

Console

To associate a DB parameter group with a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify. The Modify DB instance page appears.

4. Change the DB parameter group setting.

5. Choose Continue and check the summary of modifications.

6. (Optional) Choose Apply immediately to apply the changes immediately. Choosing this
option can cause an outage in some cases. For more information, see Using the schedule
modifications setting.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB instance
to save your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To associate a DB parameter group with a DB instance, use the AWS CLI modify-db-instance
command with the following options:

DB parameter groups 586

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• --db-instance-identifier

• --db-parameter-group-name

The following example associates the mydbpg DB parameter group with the database-1 DB
instance. The changes are applied immediately by using --apply-immediately. Use --no-
apply-immediately to apply the changes during the next maintenance window. For more
information, see Using the schedule modifications setting.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier database-1 \
 --db-parameter-group-name mydbpg \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier database-1 ^
 --db-parameter-group-name mydbpg ^
 --apply-immediately

RDS API

To associate a DB parameter group with a DB instance, use the RDS API ModifyDBInstance
operation with the following parameters:

• DBInstanceName

• DBParameterGroupName

Modifying parameters in a DB parameter group in Amazon RDS

You can modify parameter values in a customer-created DB parameter group; you can't change the
parameter values in a default DB parameter group. Changes to parameters in a customer-created
DB parameter group are applied to all DB instances that are associated with the DB parameter
group.

DB parameter groups 587

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Changes to some parameters are applied to the DB instance immediately without a reboot.
Changes to other parameters are applied only after the DB instance is rebooted. The RDS console
shows the status of the DB parameter group associated with a DB instance on the Configuration
tab. For example, suppose that the DB instance isn't using the latest changes to its associated DB
parameter group. If so, the RDS console shows the DB parameter group with a status of pending-
reboot. To apply the latest parameter changes to that DB instance, manually reboot the DB
instance.

DB parameter groups 588

Amazon Relational Database Service User Guide

Console

To modify the parameters in a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the name of the parameter group that you want to modify.

4. For Parameter group actions, choose Edit.

5. Change the values of the parameters that you want to modify. You can scroll through the
parameters using the arrow keys at the top right of the dialog box.

You can't change values in a default parameter group.

6. Choose Save changes.

AWS CLI

To modify a DB parameter group, use the AWS CLI modify-db-parameter-group command
with the following required options:

• --db-parameter-group-name

• --parameters

The following example modifies the max_connections and max_allowed_packet values in the
DB parameter group named mydbparametergroup.

Example

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --parameters
 "ParameterName=max_connections,ParameterValue=250,ApplyMethod=immediate" \

 "ParameterName=max_allowed_packet,ParameterValue=1024,ApplyMethod=immediate"

For Windows:

DB parameter groups 589

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

aws rds modify-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --parameters
 "ParameterName=max_connections,ParameterValue=250,ApplyMethod=immediate" ^

 "ParameterName=max_allowed_packet,ParameterValue=1024,ApplyMethod=immediate"

The command produces output like the following:

DBPARAMETERGROUP mydbparametergroup

RDS API

To modify a DB parameter group, use the RDS API ModifyDBParameterGroup operation with the
following required parameters:

• DBParameterGroupName

• Parameters

Resetting parameters in a DB parameter group to their default values in Amazon
RDS

You can reset parameter values in a customer-created DB parameter group to their default values.
Changes to parameters in a customer-created DB parameter group are applied to all DB instances
that are associated with the DB parameter group.

When you use the console, you can reset specific parameters to their default values. However, you
can't easily reset all of the parameters in the DB parameter group at once. When you use the AWS
CLI or RDS API, you can reset specific parameters to their default values. You can also reset all of
the parameters in the DB parameter group at once.

Changes to some parameters are applied to the DB instance immediately without a reboot.
Changes to other parameters are applied only after the DB instance is rebooted. The RDS console
shows the status of the DB parameter group associated with a DB instance on the Configuration
tab. For example, suppose that the DB instance isn't using the latest changes to its associated DB
parameter group. If so, the RDS console shows the DB parameter group with a status of pending-
reboot. To apply the latest parameter changes to that DB instance, manually reboot the DB
instance.

DB parameter groups 590

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Relational Database Service User Guide

Note

In a default DB parameter group, parameters are always set to their default values.

DB parameter groups 591

Amazon Relational Database Service User Guide

Console

To reset parameters in a DB parameter group to their default values

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group.

4. For Parameter group actions, choose Edit.

5. Choose the parameters that you want to reset to their default values. You can scroll through
the parameters using the arrow keys at the top right of the dialog box.

You can't reset values in a default parameter group.

6. Choose Reset and then confirm by choosing Reset parameters.

AWS CLI

To reset some or all of the parameters in a DB parameter group, use the AWS CLI reset-db-
parameter-group command with the following required option: --db-parameter-group-
name.

To reset all of the parameters in the DB parameter group, specify the --reset-all-parameters
option. To reset specific parameters, specify the --parameters option.

The following example resets all of the parameters in the DB parameter group named
mydbparametergroup to their default values.

Example

For Linux, macOS, or Unix:

aws rds reset-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --reset-all-parameters

For Windows:

aws rds reset-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^

DB parameter groups 592

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html

Amazon Relational Database Service User Guide

 --reset-all-parameters

The following example resets the max_connections and max_allowed_packet options to their
default values in the DB parameter group named mydbparametergroup.

Example

For Linux, macOS, or Unix:

aws rds reset-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --parameters "ParameterName=max_connections,ApplyMethod=immediate" \
 "ParameterName=max_allowed_packet,ApplyMethod=immediate"

For Windows:

aws rds reset-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --parameters "ParameterName=max_connections,ApplyMethod=immediate" ^
 "ParameterName=max_allowed_packet,ApplyMethod=immediate"

The command produces output like the following:

DBParameterGroupName mydbparametergroup

RDS API

To reset parameters in a DB parameter group to their default values, use the RDS
API ResetDBParameterGroup command with the following required parameter:
DBParameterGroupName.

To reset all of the parameters in the DB parameter group, set the ResetAllParameters
parameter to true. To reset specific parameters, specify the Parameters parameter.

Copying a DB parameter group in Amazon RDS

You can copy custom DB parameter groups that you create. Copying a parameter group can be
convenient solution. An example is when you have created a DB parameter group and want to
include most of its custom parameters and values in a new DB parameter group. You can copy a DB
parameter group by using the AWS Management Console. You can also use the AWS CLI copy-db-
parameter-group command or the RDS API CopyDBParameterGroup operation.

DB parameter groups 593

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBParameterGroup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html

Amazon Relational Database Service User Guide

After you copy a DB parameter group, wait at least 5 minutes before creating your first DB instance
that uses that DB parameter group as the default parameter group. Doing this allows Amazon RDS
to fully complete the copy action before the parameter group is used. This is especially important
for parameters that are critical when creating the default database for a DB instance. An example is
the character set for the default database defined by the character_set_database parameter.
Use the Parameter Groups option of the Amazon RDS console or the describe-db-parameters
command to verify that your DB parameter group is created.

Note

You can't copy a default parameter group. However, you can create a new parameter group
that is based on a default parameter group.
You can't copy a DB parameter group to a different AWS account or AWS Region.

Console

To copy a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the custom parameter group that you want to copy.

4. For Parameter group actions, choose Copy.

5. In New DB parameter group identifier, enter a name for the new parameter group.

6. In Description, enter a description for the new parameter group.

7. Choose Copy.

AWS CLI

To copy a DB parameter group, use the AWS CLI copy-db-parameter-group command with the
following required options:

• --source-db-parameter-group-identifier

• --target-db-parameter-group-identifier

• --target-db-parameter-group-description

DB parameter groups 594

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html

Amazon Relational Database Service User Guide

The following example creates a new DB parameter group named mygroup2 that is a copy of the
DB parameter group mygroup1.

Example

For Linux, macOS, or Unix:

aws rds copy-db-parameter-group \
 --source-db-parameter-group-identifier mygroup1 \
 --target-db-parameter-group-identifier mygroup2 \
 --target-db-parameter-group-description "DB parameter group 2"

For Windows:

aws rds copy-db-parameter-group ^
 --source-db-parameter-group-identifier mygroup1 ^
 --target-db-parameter-group-identifier mygroup2 ^
 --target-db-parameter-group-description "DB parameter group 2"

RDS API

To copy a DB parameter group, use the RDS API CopyDBParameterGroup operation with the
following required parameters:

• SourceDBParameterGroupIdentifier

• TargetDBParameterGroupIdentifier

• TargetDBParameterGroupDescription

Listing DB parameter groups in Amazon RDS

You can list the DB parameter groups you've created for your AWS account.

Note

Default parameter groups are automatically created from a default parameter template
when you create a DB instance for a particular DB engine and version. These default
parameter groups contain preferred parameter settings and can't be modified. When you
create a custom parameter group, you can modify parameter settings.

DB parameter groups 595

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html

Amazon Relational Database Service User Guide

Console

To list all DB parameter groups for an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

AWS CLI

To list all DB parameter groups for an AWS account, use the AWS CLI describe-db-parameter-
groups command.

Example

The following example lists all available DB parameter groups for an AWS account.

aws rds describe-db-parameter-groups

The command returns a response like the following:

DBPARAMETERGROUP default.mysql8.0 mysql8.0 Default parameter group for MySQL8.0
DBPARAMETERGROUP mydbparametergroup mysql8.0 My new parameter group

The following example describes the mydbparamgroup1 parameter group.

For Linux, macOS, or Unix:

aws rds describe-db-parameter-groups \
 --db-parameter-group-name mydbparamgroup1

For Windows:

aws rds describe-db-parameter-groups ^
 --db-parameter-group-name mydbparamgroup1

The command returns a response like the following:

DB parameter groups 596

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html

Amazon Relational Database Service User Guide

DBPARAMETERGROUP mydbparametergroup1 mysql8.0 My new parameter group

RDS API

To list all DB parameter groups for an AWS account, use the RDS API
DescribeDBParameterGroups operation.

Viewing parameter values for a DB parameter group in Amazon RDS

You can get a list of all parameters in a DB parameter group and their values.

Console

To view the parameter values for a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

3. Choose the name of the parameter group to see its list of parameters.

AWS CLI

To view the parameter values for a DB parameter group, use the AWS CLI describe-db-
parameters command with the following required parameter.

• --db-parameter-group-name

Example

The following example lists the parameters and parameter values for a DB parameter group named
mydbparametergroup.

aws rds describe-db-parameters --db-parameter-group-name mydbparametergroup

The command returns a response like the following:

DBPARAMETER Parameter Name Parameter Value Source Data Type
 Apply Type Is Modifiable

DB parameter groups 597

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameterGroups.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Relational Database Service User Guide

DBPARAMETER allow-suspicious-udfs engine-default boolean
 static false
DBPARAMETER auto_increment_increment engine-default integer
 dynamic true
DBPARAMETER auto_increment_offset engine-default integer
 dynamic true
DBPARAMETER binlog_cache_size 32768 system integer
 dynamic true
DBPARAMETER socket /tmp/mysql.sock system string
 static false

RDS API

To view the parameter values for a DB parameter group, use the RDS API
DescribeDBParameters command with the following required parameter.

• DBParameterGroupName

Deleting a DB parameter group in Amazon RDS

You can delete a DB parameter group using the AWS Management Console, AWS CLI, or RDS API. A
parameter group is eligible for deletion only if it isn't associated with a DB instance.

Console

To delete a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

3. Choose the name of the parameter groups to be deleted.

4. Choose Actions and then Delete.

5. Review the parameter group names and then choose Delete.

AWS CLI

To delete a DB parameter group, use the AWS CLI delete-db-parameter-group command with
the following required parameter.

DB parameter groups 598

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-parameter-group.html

Amazon Relational Database Service User Guide

• --db-parameter-group-name

Example

The following example deletes a DB parameter group named mydbparametergroup.

aws rds delete-db-parameter-group --db-parameter-group-name mydbparametergroup

RDS API

To delete a DB parameter group, use the RDS API DeleteDBParameterGroup command with the
following required parameter.

• DBParameterGroupName

Working with DB cluster parameter groups for Multi-AZ DB clusters

Multi-AZ DB clusters use DB cluster parameter groups. The following sections describe configuring
and managing DB cluster parameter groups.

Topics

• Creating a DB cluster parameter group

• Modifying parameters in a DB cluster parameter group

• Resetting parameters in a DB cluster parameter group

• Copying a DB cluster parameter group

• Listing DB cluster parameter groups

• Viewing parameter values for a DB cluster parameter group

• Deleting a DB cluster parameter group

Creating a DB cluster parameter group

You can create a new DB cluster parameter group using the AWS Management Console, the AWS
CLI, or the RDS API.

After you create a DB cluster parameter group, wait at least 5 minutes before creating a DB cluster
that uses that DB cluster parameter group. Doing this allows Amazon RDS to fully create the
parameter group before it is used by the new DB cluster. You can use the Parameter groups page

DB cluster parameter groups 599

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBParameterGroup.html

Amazon Relational Database Service User Guide

in the Amazon RDS console or the describe-db-cluster-parameters command to verify that your DB
cluster parameter group is created.

The following limitations apply to the DB cluster parameter group name:

• The name must be 1 to 255 letters, numbers, or hyphens.

Default parameter group names can include a period, such as default.mysql5.7. However,
custom parameter group names can't include a period.

• The first character must be a letter.

• The name can't end with a hyphen or contain two consecutive hyphens.

Console

To create a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

4. For Parameter group name, enter the name of the new DB cluster parameter group.

5. For Description, enter a description for the new DB cluster parameter group.

6. For Engine type, choose your database engine.

7. For Parameter group family, choose a DB parameter group family.

8. Choose Create.

AWS CLI

To create a DB cluster parameter group, use the AWS CLI create-db-cluster-parameter-
group command.

The following example creates a DB cluster parameter group named mydbclusterparametergroup
for RDS for MySQL version 8.0 with a description of "My new cluster parameter group."

Include the following required parameters:

• --db-cluster-parameter-group-name

DB cluster parameter groups 600

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html

Amazon Relational Database Service User Guide

• --db-parameter-group-family

• --description

To list all of the available parameter group families, use the following command:

aws rds describe-db-engine-versions --query "DBEngineVersions[].DBParameterGroupFamily"

Note

The output contains duplicates.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --db-parameter-group-family mysql8.0 \
 --description "My new cluster parameter group"

For Windows:

aws rds create-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --db-parameter-group-family mysql8.0 ^
 --description "My new cluster parameter group"

This command produces output similar to the following:

{
 "DBClusterParameterGroup": {
 "DBClusterParameterGroupName": "mydbclusterparametergroup",
 "DBParameterGroupFamily": "mysql8.0",
 "Description": "My new cluster parameter group",
 "DBClusterParameterGroupArn": "arn:aws:rds:us-east-1:123456789012:cluster-
pg:mydbclusterparametergroup2"
 }
}

DB cluster parameter groups 601

Amazon Relational Database Service User Guide

RDS API

To create a DB cluster parameter group, use the RDS API CreateDBClusterParameterGroup
action.

Include the following required parameters:

• DBClusterParameterGroupName

• DBParameterGroupFamily

• Description

Modifying parameters in a DB cluster parameter group

You can modify parameter values in a customer-created DB cluster parameter group. You can't
change the parameter values in a default DB cluster parameter group. Changes to parameters in
a customer-created DB cluster parameter group are applied to all DB clusters that are associated
with the DB cluster parameter group.

Console

To modify a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group that you want to modify.

4. For Parameter group actions, choose Edit.

5. Change the values of the parameters you want to modify. You can scroll through the
parameters using the arrow keys at the top right of the dialog box.

You can't change values in a default parameter group.

6. Choose Save changes.

7. Reboot the cluster to apply the changes to it.

AWS CLI

To modify a DB cluster parameter group, use the AWS CLI modify-db-cluster-parameter-
group command with the following required parameters:

DB cluster parameter groups 602

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Relational Database Service User Guide

• --db-cluster-parameter-group-name

• --parameters

The following example modifies the server_audit_logging and
server_audit_logs_upload values in the DB cluster parameter group named
mydbclusterparametergroup.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" \

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" ^

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

The command produces output like the following:

DBCLUSTERPARAMETERGROUP mydbclusterparametergroup

RDS API

To modify a DB cluster parameter group, use the RDS API ModifyDBClusterParameterGroup
command with the following required parameters:

• DBClusterParameterGroupName

• Parameters

DB cluster parameter groups 603

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Relational Database Service User Guide

Resetting parameters in a DB cluster parameter group

You can reset parameters to their default values in a customer-created DB cluster parameter group.
Changes to parameters in a customer-created DB cluster parameter group are applied to all DB
clusters that are associated with the DB cluster parameter group.

Note

In a default DB cluster parameter group, parameters are always set to their default values.

Console

To reset parameters in a DB cluster parameter group to their default values

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group.

4. For Parameter group actions, choose Edit.

5. Choose the parameters that you want to reset to their default values. You can scroll through
the parameters using the arrow keys at the top right of the dialog box.

You can't reset values in a default parameter group.

6. Choose Reset and then confirm by choosing Reset parameters.

7. Reboot the DB cluster.

AWS CLI

To reset parameters in a DB cluster parameter group to their default values, use the AWS CLI
reset-db-cluster-parameter-group command with the following required option: --db-
cluster-parameter-group-name.

To reset all of the parameters in the DB cluster parameter group, specify the --reset-all-
parameters option. To reset specific parameters, specify the --parameters option.

The following example resets all of the parameters in the DB parameter group named
mydbparametergroup to their default values.

DB cluster parameter groups 604

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-cluster-parameter-group.html

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbparametergroup \
 --reset-all-parameters

For Windows:

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbparametergroup ^
 --reset-all-parameters

The following example resets the server_audit_logging and server_audit_logs_upload
to their default values in the DB cluster parameter group named mydbclusterparametergroup.

Example

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --parameters "ParameterName=server_audit_logging,ApplyMethod=immediate" \
 "ParameterName=server_audit_logs_upload,ApplyMethod=immediate"

For Windows:

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" ^

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

The command produces output like the following:

DBClusterParameterGroupName mydbclusterparametergroup

DB cluster parameter groups 605

Amazon Relational Database Service User Guide

RDS API

To reset parameters in a DB cluster parameter group to their default values, use the RDS
API ResetDBClusterParameterGroup command with the following required parameter:
DBClusterParameterGroupName.

To reset all of the parameters in the DB cluster parameter group, set the ResetAllParameters
parameter to true. To reset specific parameters, specify the Parameters parameter.

Copying a DB cluster parameter group

You can copy custom DB cluster parameter groups that you create. Copying a parameter group
is a convenient solution when you have already created a DB cluster parameter group and you
want to include most of the custom parameters and values from that group in a new DB cluster
parameter group. You can copy a DB cluster parameter group by using the AWS CLI copy-db-
cluster-parameter-group command or the RDS API CopyDBClusterParameterGroup operation.

After you copy a DB cluster parameter group, wait at least 5 minutes before creating a DB cluster
that uses that DB cluster parameter group. Doing this allows Amazon RDS to fully copy the
parameter group before it is used by the new DB cluster. You can use the Parameter groups page
in the Amazon RDS console or the describe-db-cluster-parameters command to verify that your DB
cluster parameter group is created.

Note

You can't copy a default parameter group. However, you can create a new parameter group
that is based on a default parameter group.
You can't copy a DB cluster parameter group to a different AWS account or AWS Region.

Console

To copy a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the custom parameter group that you want to copy.

DB cluster parameter groups 606

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBClusterParameterGroup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. For Parameter group actions, choose Copy.

5. In New DB parameter group identifier, enter a name for the new parameter group.

6. In Description, enter a description for the new parameter group.

7. Choose Copy.

AWS CLI

To copy a DB cluster parameter group, use the AWS CLI copy-db-cluster-parameter-group
command with the following required parameters:

• --source-db-cluster-parameter-group-identifier

• --target-db-cluster-parameter-group-identifier

• --target-db-cluster-parameter-group-description

The following example creates a new DB cluster parameter group named mygroup2 that is a copy
of the DB cluster parameter group mygroup1.

Example

For Linux, macOS, or Unix:

aws rds copy-db-cluster-parameter-group \
 --source-db-cluster-parameter-group-identifier mygroup1 \
 --target-db-cluster-parameter-group-identifier mygroup2 \
 --target-db-cluster-parameter-group-description "DB parameter group 2"

For Windows:

aws rds copy-db-cluster-parameter-group ^
 --source-db-cluster-parameter-group-identifier mygroup1 ^
 --target-db-cluster-parameter-group-identifier mygroup2 ^
 --target-db-cluster-parameter-group-description "DB parameter group 2"

RDS API

To copy a DB cluster parameter group, use the RDS API CopyDBClusterParameterGroup
operation with the following required parameters:

DB cluster parameter groups 607

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterParameterGroup.html

Amazon Relational Database Service User Guide

• SourceDBClusterParameterGroupIdentifier

• TargetDBClusterParameterGroupIdentifier

• TargetDBClusterParameterGroupDescription

Listing DB cluster parameter groups

You can list the DB cluster parameter groups you've created for your AWS account.

Note

Default parameter groups are automatically created from a default parameter template
when you create a DB cluster for a particular DB engine and version. These default
parameter groups contain preferred parameter settings and can't be modified. When you
create a custom parameter group, you can modify parameter settings.

Console

To list all DB cluster parameter groups for an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB cluster parameter groups appear in the list with DB cluster parameter group for Type.

AWS CLI

To list all DB cluster parameter groups for an AWS account, use the AWS CLI describe-db-
cluster-parameter-groups command.

Example

The following example lists all available DB cluster parameter groups for an AWS account.

aws rds describe-db-cluster-parameter-groups

The following example describes the mydbclusterparametergroup parameter group.

DB cluster parameter groups 608

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusterparameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusterparameter-groups.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameter-groups \
 --db-cluster-parameter-group-name mydbclusterparametergroup

For Windows:

aws rds describe-db-cluster-parameter-groups ^
 --db-cluster-parameter-group-name mydbclusterparametergroup

The command returns a response like the following:

{
 "DBClusterParameterGroups": [
 {
 "DBClusterParameterGroupName": "mydbclusterparametergroup2",
 "DBParameterGroupFamily": "mysql8.0",
 "Description": "My new cluster parameter group",
 "DBClusterParameterGroupArn": "arn:aws:rds:us-east-1:123456789012:cluster-
pg:mydbclusterparametergroup"
 }
]
}

RDS API

To list all DB cluster parameter groups for an AWS account, use the RDS API
DescribeDBClusterParameterGroups action.

Viewing parameter values for a DB cluster parameter group

You can get a list of all parameters in a DB cluster parameter group and their values.

Console

To view the parameter values for a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

DB cluster parameter groups 609

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The DB cluster parameter groups appear in the list with DB cluster parameter group for Type.

3. Choose the name of the DB cluster parameter group to see its list of parameters.

AWS CLI

To view the parameter values for a DB cluster parameter group, use the AWS CLI describe-db-
cluster-parameters command with the following required parameter.

• --db-cluster-parameter-group-name

Example

The following example lists the parameters and parameter values for a DB cluster parameter group
named mydbclusterparametergroup, in JSON format.

The command returns a response like the following:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-
name mydbclusterparametergroup

{
 "Parameters": [
 {
 "ParameterName": "activate_all_roles_on_login",
 "ParameterValue": "0",
 "Description": "Automatically set all granted roles as active after the
 user has authenticated successfully.",
 "Source": "engine-default",
 "ApplyType": "dynamic",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "IsModifiable": true,
 "ApplyMethod": "pending-reboot",
 "SupportedEngineModes": [
 "provisioned"
]
 },
 {
 "ParameterName": "allow-suspicious-udfs",

DB cluster parameter groups 610

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html

Amazon Relational Database Service User Guide

 "Description": "Controls whether user-defined functions that have only an
 xxx symbol for the main function can be loaded",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "IsModifiable": false,
 "ApplyMethod": "pending-reboot",
 "SupportedEngineModes": [
 "provisioned"
]
 },
...

RDS API

To view the parameter values for a DB cluster parameter group, use the RDS API
DescribeDBClusterParameters command with the following required parameter.

• DBClusterParameterGroupName

In some cases, the allowed values for a parameter aren't shown. These are always parameters
where the source is the database engine default.

To view the values of these parameters, you can run the following SQL statements:

• MySQL:

-- Show the value of a particular parameter
mysql$ SHOW VARIABLES LIKE '%parameter_name%';

-- Show the values of all parameters
mysql$ SHOW VARIABLES;

• PostgreSQL:

-- Show the value of a particular parameter
postgresql=> SHOW parameter_name;

-- Show the values of all parameters
postgresql=> SHOW ALL;

DB cluster parameter groups 611

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html

Amazon Relational Database Service User Guide

Deleting a DB cluster parameter group

You can delete a DB cluster parameter group using the AWS Management Console, AWS CLI, or
RDS API. A DB cluster parameter group parameter group is eligible for deletion only if it isn't
associated with a DB cluster.

Console

To delete parameter groups

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The parameter groups appear in a list.

3. Choose the name of the DB cluster parameter groups to be deleted.

4. Choose Actions and then Delete.

5. Review the parameter group names and then choose Delete.

AWS CLI

To delete a DB cluster parameter group, use the AWS CLI delete-db-cluster-parameter-
group command with the following required parameter.

• --db-parameter-group-name

Example

The following example deletes a DB cluster parameter group named mydbparametergroup.

aws rds delete-db-cluster-parameter-group --db-parameter-group-name mydbparametergroup

RDS API

To delete a DB cluster parameter group, use the RDS API DeleteDBClusterParameterGroup
command with the following required parameter.

• DBParameterGroupName

DB cluster parameter groups 612

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterParameterGroup.html

Amazon Relational Database Service User Guide

Comparing DB parameter groups

You can use the AWS Management Console to view the differences between two DB parameter
groups.

The specified parameter groups must both be DB parameter groups, or they both must be DB
cluster parameter groups. This is true even when the DB engine and version are the same. For
example, you can't compare an aurora-mysql8.0 (Aurora MySQL version 3) DB parameter group
and an aurora-mysql8.0 DB cluster parameter group.

You can compare Aurora MySQL and RDS for MySQL DB parameter groups, even for different
versions, but you can't compare Aurora PostgreSQL and RDS for PostgreSQL DB parameter groups.

To compare two DB parameter groups

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the two parameter groups that you want to compare.

Note

To compare a default parameter group to a custom parameter group, first choose the
default parameter group on the Default tab, then choose the custom parameter group
on the Custom tab.

4. From Actions, choose Compare.

Specifying DB parameters

DB parameter types include the following:

• Integer

• Boolean

• String

• Long

• Double

Comparing DB parameter groups 613

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• Timestamp

• Object of other defined data types

• Array of values of type integer, Boolean, string, long, double, timestamp, or object

You can also specify integer and Boolean parameters using expressions, formulas, and functions.

For the Oracle engine, you can use the DBInstanceClassHugePagesDefault formula variable
to specify a Boolean DB parameter. See DB parameter formula variables.

For the PostgreSQL engine, you can use an expression to specify a Boolean DB parameter. See
Boolean DB parameter expressions.

Contents

• DB parameter formulas

• DB parameter formula variables

• DB parameter formula operators

• DB parameter functions

• Boolean DB parameter expressions

• DB parameter log expressions

• DB parameter value examples

DB parameter formulas

A DB parameter formula is an expression that resolves to an integer value or a Boolean value. You
enclose the expression in braces: {}. You can use a formula for either a DB parameter value or as an
argument to a DB parameter function.

Syntax

{FormulaVariable}
{FormulaVariable*Integer}
{FormulaVariable*Integer/Integer}
{FormulaVariable/Integer}

Specifying DB parameters 614

Amazon Relational Database Service User Guide

DB parameter formula variables

Each formula variable returns an integer or a Boolean value. The names of the variables are case-
sensitive.

AllocatedStorage

Returns an integer representing the size, in bytes, of the data volume.

DBInstanceClassHugePagesDefault

Returns a Boolean value. Currently, it's only supported for Oracle engines.

For more information, see Turning on HugePages for an RDS for Oracle instance.

DBInstanceClassMemory

Returns an integer for the number of bytes of memory available to the database process.
This number is internally calculated by starting with the total amount of memory for the DB
instance class. From this, the calculation subtracts memory reserved for the operating system
and the RDS processes that manage the instance. Therefore, the number is always somewhat
lower than the memory figures shown in the instance class tables in DB instance classes. The
exact value depends on a combination of factors. These include instance class, DB engine, and
whether it applies to an RDS instance or an instance that's part of an Aurora cluster.

DBInstanceVCPU

Returns an integer representing the number of virtual central processing units (vCPUs) used by
Amazon RDS to manage the instance.

EndPointPort

Returns an integer representing the port used when connecting to the DB instance.

TrueIfReplica

Returns 1 if the DB instance is a read replica and 0 if it is not. This is the default value for the
read_only parameter in MySQL.

DB parameter formula operators

DB parameter formulas support two operators: division and multiplication.

Specifying DB parameters 615

Amazon Relational Database Service User Guide

Division operator: /

Divides the dividend by the divisor, returning an integer quotient. Decimals in the quotient are
truncated, not rounded.

Syntax

dividend / divisor

The dividend and divisor arguments must be integer expressions.

Multiplication operator: *

Multiplies the expressions, returning the product of the expressions. Decimals in the expressions
are truncated, not rounded.

Syntax

expression * expression

Both expressions must be integers.

DB parameter functions

You specify the arguments of DB parameter functions as either integers or formulas. Each function
must have at least one argument. Specify multiple arguments as a comma-separated list. The
list can't have any empty members, such as argument1,,argument3. Function names are case-
insensitive.

IF

Returns an argument.

Currently, it's only supported for Oracle engines, and the only supported first argument is
{DBInstanceClassHugePagesDefault}. For more information, see Turning on HugePages
for an RDS for Oracle instance.

Syntax

IF(argument1, argument2, argument3)

Specifying DB parameters 616

Amazon Relational Database Service User Guide

Returns the second argument if the first argument evaluates to true. Returns the third
argument otherwise.

GREATEST

Returns the largest value from a list of integers or parameter formulas.

Syntax

GREATEST(argument1, argument2,...argumentn)

Returns an integer.

LEAST

Returns the smallest value from a list of integers or parameter formulas.

Syntax

LEAST(argument1, argument2,...argumentn)

Returns an integer.

SUM

Adds the values of the specified integers or parameter formulas.

Syntax

SUM(argument1, argument2,...argumentn)

Returns an integer.

Boolean DB parameter expressions

A Boolean DB parameter expression resolves to a Boolean value of 1 or 0. The expression is
enclosed in quotation marks.

Note

Boolean DB parameter expressions are only supported for the PostgreSQL engine.

Specifying DB parameters 617

Amazon Relational Database Service User Guide

Syntax

"expression operator expression"

Both expressions must resolve to integers. An expression can be the following:

• integer constant

• DB parameter formula

• DB parameter function

• DB parameter variable

Boolean DB parameter expressions support the following inequality operators:

The greater than operator: >

Syntax

"expression > expression"

The less than operator: <

Syntax

"expression < expression"

The greater than or equal to operators: >=, =>

Syntax

"expression >= expression"
"expression => expression"

The less than or equal to operators: <=, =<

Syntax

"expression <= expression"
"expression =< expression"

Specifying DB parameters 618

Amazon Relational Database Service User Guide

Example using a Boolean DB parameter expression

The following Boolean DB parameter expression example compares the result of a parameter
formula with an integer. It does so to modify the Boolean DB parameter wal_compression for a
PostgreSQL DB instance. The parameter expression compares the number of vCPUs with the value
2. If the number of vCPUs is greater than 2, then the wal_compression DB parameter is set to
true.

aws rds modify-db-parameter-group --db-parameter-group-name group-name \
--parameters "ParameterName=wal_compression,ParameterValue=\"{DBInstanceVCPU} > 2\" "

DB parameter log expressions

You can set an integer DB parameter value to a log expression. You enclose the expression in
braces: {}. For example:

{log(DBInstanceClassMemory/8187281418)*1000}

The log function represents log base 2. This example also uses the DBInstanceClassMemory
formula variable. See DB parameter formula variables.

Note

Currently, you can't specify the MySQL innodb_log_file_size parameter with any
value other than an integer.

DB parameter value examples

These examples show using formulas, functions, and expressions for the values of DB parameters.

Warning

Improperly setting parameters in a DB parameter group can have unintended adverse
effects. These might include degraded performance and system instability. Use caution
when modifying database parameters and back up your data before modifying your DB
parameter group. Try out parameter group changes on a test DB instance, created using
point-in-time-restores, before applying those parameter group changes to your production
DB instances.

Specifying DB parameters 619

Amazon Relational Database Service User Guide

Example using the DB parameter function GREATEST

You can specify the GREATEST function in an Oracle processes parameter. Use it to set the number
of user processes to the larger of either 80 or DBInstanceClassMemory divided by 9,868,951.

GREATEST({DBInstanceClassMemory/9868951},80)

Example using the DB parameter function LEAST

You can specify the LEAST function in a MySQL max_binlog_cache_size parameter value. Use
it to set the maximum cache size a transaction can use in a MySQL instance to the lesser of 1 MB or
DBInstanceClass/256.

LEAST({DBInstanceClassMemory/256},10485760)

Specifying DB parameters 620

Amazon Relational Database Service User Guide

Creating an Amazon ElastiCache cache using Amazon RDS DB
instance settings

ElastiCache is a fully managed, in-memory caching service that provides microsecond read and
write latencies that support flexible, real-time use cases. ElastiCache can help you accelerate
application and database performance. You can use ElastiCache as a primary data store for
use cases that don't require data durability, such as gaming leaderboards, streaming, and data
analytics. ElastiCache helps remove the complexity associated with deploying and managing a
distributed computing environment. For more information, see Common ElastiCache Use Cases
and How ElastiCache Can Help for Memcached and Common ElastiCache Use Cases and How
ElastiCache Can Help for Redis OSS. You can use the Amazon RDS console for creating ElastiCache
cache.

You can operate Amazon ElastiCache in two formats. You can get started with a serverless cache
or choose to design your own cache cluster. If you choose to design your own cache cluster,
ElastiCache works with both the Redis OSS and Memcached engines. If you're unsure which engine
you want to use, see Comparing Memcached and Redis OSS. For more information about Amazon
ElastiCache, see the Amazon ElastiCache User Guide.

Topics

• Overview of ElastiCache cache creation with RDS DB instance settings

• Creating an ElastiCache cache with settings from an RDS DB instance

Overview of ElastiCache cache creation with RDS DB instance settings

You can create an ElastiCache cache from Amazon RDS using the same configuration settings as a
newly created or existing RDS DB instance.

Some use cases to associate an ElastiCache cache with your DB instance:

• You can save costs and improve your performance by using ElastiCache with RDS versus running
on RDS alone.

For example, you can save up to 55% in cost and gain up to 80x faster read performance by
using ElastiCache with RDS for MySQL versus RDS for MySQL alone.

Creating an ElastiCache cache from Amazon RDS 621

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/SelectEngine.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/

Amazon Relational Database Service User Guide

• You can use the ElastiCache cache as a primary data store for applications that don't require data
durability. Your applications that use Redis OSS or Memcached can use ElastiCache with almost
no modification.

When you create an ElastiCache cache from RDS, the ElastiCache cache inherits the following
settings from the associated RDS DB instance:

• ElastiCache connectivity settings

• ElastiCache security settings

You can also set the cache configuration settings according to your requirements.

Setting up ElastiCache in your applications

Your applications must be set up to utilize ElastiCache cache. You can also optimize and improve
cache performance by setting up your applications to use caching strategies depending on your
requirements.

• To access your ElastiCache cache and get started, see Getting started with ElastiCache (Redis
OSS) and Getting started with ElastiCache (Memcached).

• For more information about caching strategies, see Caching strategies and best practices for
Memcached and Caching strategies and best practices for Redis OSS.

• For more information about high availability in ElastiCache (Redis OSS) clusters, see High
availability using replication groups.

• You might incur costs associated with backup storage, data transfer within or across regions, or
use of AWS Outposts. For pricing details, see Amazon ElastiCache pricing.

Creating an ElastiCache cache with settings from an RDS DB instance

You can create an ElastiCache cache for your RDS DB instances with settings for inherited from the
DB instance.

Create an ElastiCache cache with settings from a DB instance

1. To create a DB instance, follow the instructions in Creating an Amazon RDS DB instance.

2. After creating an RDS DB instance, the console displays the Suggested add-ons window. Select
Create an ElastiCache cluster from RDS using your DB settings.

Creating an ElastiCache cache with settings from an RDS DB instance 622

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/BestPractices.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.html
https://aws.amazon.com/elasticache/pricing/

Amazon Relational Database Service User Guide

For an existing database, in the Databases page, select the required DB instance. In the
Actions dropdown menu, choose Create ElastiCache cluster to create an ElastiCache cache in
RDS that has the same settings as your existing RDS DB instance.

In the ElastiCache configuration section, the Source DB identifier displays which DB instance
the ElastiCache cache inherits settings from.

3. Choose whether you want to create a Redis OSS or Memcached cluster. For more information,
see Comparing Memcached and Redis OSS.

4. After this, choose whether you want to create a Serverless cache or Design your own cache.
For more information, see Choosing between deployment options.

If you choose Serverless cache:

a. In Cache settings, enter values for Name and Description.

b. Under View default settings, leave the default settings to establish the connection
between your cache and DB instance.

c. You can also edit the default settings by choosing Customize default settings. Select the
ElastiCache connectivity settings, ElastiCache security settings, and Maximum usage
limits.

5. If you choose Design your own cache:

Creating an ElastiCache cache with settings from an RDS DB instance 623

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/SelectEngine.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.deployment.html

Amazon Relational Database Service User Guide

a. If you chose Redis OSS cluster, choose whether you want to keep the cluster mode
Enabled or Disabled. For more information, see Replication: Redis OSS (Cluster Mode
Disabled) vs. Redis OSS (Cluster Mode Enabled).

b. Enter values for Name, Description, and Engine version.

For Engine version, the recommended default value is the latest engine version. You
can also choose an Engine version for the ElastiCache cache that best meets your
requirements.

c. Choose the node type in the Node type option. For more information, see Managing
nodes.

If you choose to create a Redis OSS cluster with the Cluster mode set to Enabled, then
enter the number of shards (partitions/node groups) in the Number of shards option.

Enter the number of replicas of each shard in Number of replicas.

Note

The selected node type, the number of shards, and the number of replicas all
affect your cache performance and resource costs. Be sure these settings match
your database needs. For pricing information, see Amazon ElastiCache pricing.

d. Select the ElastiCache connectivity settings and ElastiCache security settings. You can
keep the default settings or customize these settings per your requirements.

6. Verify the default and inherited settings of your ElastiCache cache. Some settings can't be
changed after creation.

Note

RDS might adjust the backup window of your ElastiCache cache to meet the minimum
window requirement of 60 minutes. The backup window of your source database
remains the same.

7. When you're ready, choose Create ElastiCache cache.

Creating an ElastiCache cache with settings from an RDS DB instance 624

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Redis-RedisCluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Redis-RedisCluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.html
https://aws.amazon.com/elasticache/pricing/

Amazon Relational Database Service User Guide

The console displays a confirmation banner for the ElastiCache cache creation. Follow the link in
the banner to the ElastiCache console to view the cache details. The ElastiCache console displays
the newly created ElastiCache cache.

Creating an ElastiCache cache with settings from an RDS DB instance 625

Amazon Relational Database Service User Guide

Auto migrating EC2 databases to Amazon RDS using AWS
Database Migration Service

You can use the RDS console to migrate an EC2 database to RDS. RDS uses AWS Database
Migration Service (AWS DMS) to migrate your source EC2 database. AWS DMS allows you to
migrate relational databases into your AWS Cloud. For more information about AWS Database
Migration Service, see What is AWS Database Migration Service? in the AWS Database Migration
Service User Guide.

To begin the migration, you must create an equivalent RDS DB instance to migrate the data
into. After you create your target database, you can import your EC2 database into it. For source
databases smaller than 1TiB, this migration action reduces the time and resources required to
migrate your data into RDS.

Overview

The RDS console allows you to migrate EC2 databases into equivalent RDS databases. You must
create an RDS database to enable migration from the console.

You can migrate EC2 databases for the following databases engines:

• MySQL

• MariaDB

• PostgreSQL

The migration process involves the following steps:

• Create an equivalent database in RDS. For the databases to be equivalent, they must have the
same database engine and compatible engine versions. They must also be in the same VPC. For
instructions on creating your database, see Creating an Amazon RDS DB instance.

• Choose the type of replication for your database:

• Full load migration – RDS copies the complete source database to the target database,
creating new tables in the target when necessary.

Note

This option causes an outage in your RDS database.

Auto-migrating EC2 databases 626

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Relational Database Service User Guide

• Full load and change data capture (CDC) migration – Similar to full load migration, with this
option, RDS copies over the complete source database to the target database. However, after
the full load migration, RDS applies any captured changes in the source to the target database.
Change data capture collects changes to the database logs by using the database engine's
native API.

Note

This option causes an outage in your RDS database.

• Change data capture (CDC) – Use this option to keep your target database available through
the migration. RDS migrates ongoing changes in your source database to the target database.

• RDS creates the necessary networking resources to facilitate the migration. Once RDS creates the
required resources, it notifies you about the resources created and allows you to initiate the data
transfer.

The time required to complete the migration depends on the type of replication and the size of
the source database.

Prerequisites

MySQL and MariaDB

Before you begin to work with a MySQL or MariaDB database as the source database, make sure
that you have the following prerequisites. These prerequisites apply to AWS-managed sources.

You must have an account for AWS DMS that has the Replication Admin role. The role needs the
following privileges:

• REPLICATION CLIENT – This privilege is required for CDC tasks only. In other words, full-load-
only tasks don't require this privilege.

• REPLICATION SLAVE – This privilege is required for CDC tasks only. In other words, full-load-
only tasks don't require this privilege.

The AWS DMS user must also have SELECT privileges for the source tables designated for
replication.

Grant the following privileges if you use MySQL-specific premigration assessments.

Prerequisites 627

Amazon Relational Database Service User Guide

grant select on mysql.user to <dms_user>;
grant select on mysql.db to <dms_user>;
grant select on mysql.tables_priv to <dms_user>;
grant select on mysql.role_edges to <dms_user> #only for MySQL version 8.0.11 and
 higher

PostgreSQL

Before migrating data from an AWS-managed PostgreSQL source database, do the following:

• We recommend that you use an AWS user account with the minimum required permissions
for the PostgreSQL DB instance as the user account for the PostgreSQL source endpoint
for AWS DMS. Using the master account is not recommended. The account must have the
rds_superuser role and the rds_replication role. The rds_replication role grants
permissions to manage logical slots and to stream data using logical slots.

Note

Some AWS DMS transactions are idle for some time before the DMS engine uses them
again. By using the parameter idle_in_transaction_session_timeout in PostgreSQL
versions 9.6 and higher, you can cause idle transactions to time out and fail.

Limitations

The following limitations apply to the auto-migrate process:

• Your target database status must be Available to begin source database migration.

• When migrating from a MySQL source database, your RDS account must have the Replication
Admin role. You must also have the proper privileges applied for that role.

• Your EC2 instance and target database must be in the same VPC.

• You can't migrate your EC2 database to the following target databases when using the Migrate
data from EC2 database action:

• Database that is a member of a cluster

• Oracle, SQL Server, and Db2 databases

• Databases with MySQL version lower than 5.7

Limitations 628

Amazon Relational Database Service User Guide

• Databases with PostgreSQL version lower than 10.4

• Databases with MariaDB version lower than 10.2

Creating IAM resources for homogeneous migrations

RDS uses AWS DMS to migrate your data. To access your databases and to migrate data, AWS DMS
creates a serverless environment for homogeneous data migrations. In this environment, AWS DMS
requires access to VPC peering, route tables, security groups, and other AWS resources. Also, AWS
DMS stores logs, metrics, and progress for each data migration in Amazon CloudWatch. To create a
data migration project, AWS DMS needs access to these services.

Also, AWS DMS requires access to the secrets that respresent a set of user credentials to
authenticate the database connection for the source and target connection.

Note

By using the Migrate data from EC2 instance action, you can use the RDS console
to generate these IAM resources. Skip this step if you use the console generated IAM
resources.

You need the following IAM resources for this process:

Topics

• Creating an IAM policy for homogeneous data migrations

• Creating an IAM role for homogeneous data migrations

• Creating a secret access policy and role

• Creating an IAM role for AWS DMS to manage Amazon VPC

Creating an IAM policy for homogeneous data migrations

In this step, you create an IAM policy that provides AWS DMS with access to Amazon EC2 and
CloudWatch resources. Next, create an IAM role and attach this policy.

Creating IAM resources 629

Amazon Relational Database Service User Guide

To create an IAM policy for data migration

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. In the Create policy page, choose the JSON tab.

5. Paste the following JSON into the editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeVpcPeeringConnections",
 "ec2:DescribeVpcs",
 "ec2:DescribePrefixLists",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "servicequotas:GetServiceQuota"
],
 "Resource": "arn:aws:servicequotas:*:*:vpc/L-0EA8095F"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams"
],
 "Resource": "arn:aws:logs:*:*:log-group:dms-data-migration-*"
 },
 {
 "Effect": "Allow",

Creating IAM resources 630

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:dms-data-migration-*:log-
stream:dms-data-migration-*"
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateRoute",
 "ec2:DeleteRoute"
],
 "Resource": "arn:aws:ec2:*:*:route-table/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": [
 "arn:aws:ec2:*:*:security-group/*",
 "arn:aws:ec2:*:*:security-group-rule/*",
 "arn:aws:ec2:*:*:route-table/*",
 "arn:aws:ec2:*:*:vpc-peering-connection/*",
 "arn:aws:ec2:*:*:vpc/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress"
],
 "Resource": "arn:aws:ec2:*:*:security-group-rule/*"
 },
 {
 "Effect": "Allow",
 "Action": [

Creating IAM resources 631

Amazon Relational Database Service User Guide

 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress"
],
 "Resource": "arn:aws:ec2:*:*:security-group/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AcceptVpcPeeringConnection",
 "ec2:ModifyVpcPeeringConnectionOptions"
],
 "Resource": "arn:aws:ec2:*:*:vpc-peering-connection/*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:AcceptVpcPeeringConnection",
 "Resource": "arn:aws:ec2:*:*:vpc/*"
 }
]
}

6. Choose Next: Tags and Next: Review.

7. Enter HomogeneousDataMigrationsPolicy for Name*, and choose Create policy.

Creating an IAM role for homogeneous data migrations

In this step, you create an IAM role that provides access to AWS Secrets Manager, Amazon EC2, and
CloudWatch.

To create an IAM role for data migrations

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. On the Select trusted entity page, for Trusted entity type, choose AWS Service. For Use cases
for other AWS services, choose DMS.

5. Select the DMS check box and choose Next.

Creating IAM resources 632

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

6. On the Add permissions page, choose HomogeneousDataMigrationsPolicy that you created
before. Choose Next.

7. On the Name, review, and create page, enter HomogeneousDataMigrationsRole for Role
name, and choose Create role.

8. On the Roles page, enter HomogeneousDataMigrationsRole for Role name. Choose
HomogeneousDataMigrationsRole.

9. On the HomogeneousDataMigrationsRole page, choose the Trust relationships tab. Choose
Edit trust policy.

10. On the Edit trust policy page, paste the following JSON into the editor, replacing the existing
text.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "dms-data-migrations.amazonaws.com",
 "dms.your_region.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

In the preceding example, replace your_region with the name of your AWS Region.

The preceding resource-based policy provides AWS DMS service principals with permissions
to perform tasks according to the customer managed HomogeneousDataMigrationsPolicy
policy.

11. Choose Update policy.

Creating IAM resources 633

Amazon Relational Database Service User Guide

Creating a secret access policy and role

Follow the procedures below to create your secret access policy and role which allow DMS to access
the user credentials for your source and target databases.

To create the secret access policy and role, which allows Amazon RDS to access AWS Secrets
Manager to access your appropriate secret

1. Sign in to the AWS Management Console and open the AWS Identity and Access Management
(IAM) console at https://console.aws.amazon.com/iam/.

2. Choose Policies, then choose Create policy.

3. Choose JSON and enter the following policy to enable access to and decryption of your secret.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": secret_arn,
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey"
],
 "Resource": kms_key_arn,
 }
]
}

Here, secret_arn is the ARN of your secret, which you can get from either
SecretsManagerSecretId as appropriate, and kms_key_arn is the ARN of the AWS KMS
key that you are using to encrypt your secret, as in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Creating IAM resources 634

https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:us-
east-2:123456789012:secret:MySQLTestSecret-qeHamH"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:us-
east-2:123456789012:key/761138dc-0542-4e58-947f-4a3a8458d0fd"
 }
]
}

Note

If you use the default encryption key created by AWS Secrets Manager, you do not have
to specify the AWS KMS permissions for kms_key_arn.
If you want your policy to provide access to both secrets, simply specify an additional
JSON resource object for the other secret_arn.

4. Review and create the policy with a friendly name and optional description.

5. Choose Roles, then choose Create role.

6. Choose AWS service as the type of trusted entity.

7. Choose DMS from the list of services as the trusted service, then choose Next: Permissions.

8. Look up and attach the policy you created in step 4, then proceed through adding any tags and
review your role. At this point, edit the trust relationships for the role to use your Amazon RDS
regional service principal as the trusted entity. This principal has the following format.

dms.region-name.amazonaws.com

Here, region-name is the name of your region, such as us-east-1. Thus, an Amazon RDS
regional service principal for this region follows.

dms.us-east-1.amazonaws.com
dms-data-migrations.amazonaws.com

Creating IAM resources 635

Amazon Relational Database Service User Guide

Creating an IAM role for AWS DMS to manage Amazon VPC

You must create an IAM role for AWS DMS to manage the VPC settings for your resources. This role
must be available for successful migration.

Creating the dms-vpc-role for database migration

<result>

This creates the role for the DMS to manage the VPC settings for the migration.
</result>

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. Choose the AWS service option for the Select trusted entity option.

For Use case, select DMS.

4. For the Add permissions step, select AmazonDMSVPCManagementRole and choose Next.

5. In the Name, review, and create page, set the Role name to dms-vpc-role and choose
Create role.

Setting up data migration for EC2 database

To begin migrating data from your EC2 source database, you must create an equivalent RDS
database. For instructions on creating your database, see Creating an Amazon RDS DB instance.

After creating your target database, use the following steps to set up the data migration:

Set up data migration project

1. Select the target database on the Databases page in the RDS console.

2. Choose the Actions dropdown and select the Migrate data from EC2 database option. To see
the supported target databases, see Limitations.

3. Under the Select source EC2 database section:

1. Check the Engine type and make sure it is the same as your source database.

Also, check if the engine versions are compatible.

Set up data migration 636

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

2. For EC2 instance, choose the EC2 instance where your source database resides.

3. For Port, enter the port on which your source database allows traffic.

4. For Secret, choose Create and use a new secret if you don't have an existing secret. Enter
the Username and Password for your source database. Also choose the KMS key with which
to encrypt your secret.

If you have an existing secret, select Use an existing secret and then choose secret from the
dropdown.

5. For IAM role for secret, if you have an existing IAM role, select Use an existing IAM role and
choose an IAM role from the dropdown that can access the secret ID from the previous step.

If you don't have existing IAM role, choose Create and use new IAM role. Enter the new
name for your role for IAM role name. You can see the permissions associated with this
role in the link below.

4. Under the View target RDS database section:

1. Confirm the settings of your target database at the top of the section.

2. For Secret, choose Create and use a new secret if you don't have an existing secret that
holds your target database credentials.

If you have an existing secret, select the secret from the dropdown.

3. For IAM role for secret, select an IAM role that can access the secret from the previous step.
You can also create a new IAM role if you don't have existing IAM role.

If the dropdown doesn't populate the IAM roles, specify the IAM role ARN in the format
arn:aws:iam:account_id:role/roleName.

5. Under the Configure data migration section:

1. Select the type of data migration by selecting between Full load, Full load and change
data capture (CDC), or Change data capture (CDC). For more information about these
options, see Overview.

You can't modify the migration type afer the migration starts.

2. For IAM role for data migration, if you have an existing IAM role, select Use an existing
IAM role and choose an IAM role from the dropdown that grants DMS the permissions to
create the resources required for the migration. If you don't have existing IAM role, choose
Create and use new IAM role.

Set up data migration 637

Amazon Relational Database Service User Guide

6. Confirm that the View migration settings tab shows the required settings for your data
migration to be set up successfully.

7. Select Migrate to complete the migration set up.

After completing these steps, you can see the resources being set up for the data migration by
choosing View details in the progress banner in the console. Once the required resources are set
up, the migration automatically starts. If you create

To migrate multiple databases into the target database, start this process again with details about
the new EC2 database.

Managing data migrations

After using the Migrate data from EC2 database action from the RDS console, RDS starts the
migration automatically.

If you used the AWS DMS console to create the migration resources, you can start the migration
process.

Starting the data migration

Follow these steps to start data migration:

Starting a data migration

1. Choose the target database on the Databases page in the RDS console.

2. In the database details page, choose the Data migrations tab.

3. Under the Data migrations tab, the Associated data migrations lists the available data
migrations.

Migrations set up using the RDS console start automatically once the required resources are set
up.

Migrations set up using the DMS console are set to Ready.

To begin these migrations, select the Actions drop down and select Start.

4. This begins the data migration for your EC2 database.

Managing migrations 638

Amazon Relational Database Service User Guide

Stopping the data migration

For data migrations whose replication type is full load, stopping the migration causes the process
to stop and can't be resumed. Once stopped, you must restart the migration.

For migrations with replication type set to change data capture (CDC) or full load and CDC, you can
stop the continuous replication process, and resume the process later.

Stopping a data migration

1. Choose the target database on the Databases page in the RDS console.

2. In the database details page, choose the Data migrations tab.

3. Under the Data migrations tab, the Associated data migrations lists the ongoing data
migrations.

To stop a migration, select a data migration and select Stop in the Actions drop down.

4. This stops the data migration for your EC2 database.

Resuming the data migration

For data migrations whose replication type is full load and change data capture (CDC) or change
data capture (CDC) migration, you can resume the CDC process from the last stop point.

Resuming a data migration

1. Choose the target database on the Databases page in the RDS console.

2. In the database details page, choose the Data migrations tab.

3. Under the Data migrations tab, the Associated data migrations lists the stopped data
migrations.

To resume a migration, select a data migration and select Resume processing in the Actions
drop down.

4. This resume the data migration for your EC2 database.

Deleting the data migration

To delete an associated data migration, use the following instructions

Managing migrations 639

Amazon Relational Database Service User Guide

Deleting a data migration

1. Choose the target database on the Databases page in the RDS console.

2. In the database details page, choose the Data migrations tab.

3. To delete a migration, select a data migration and select Delete in the Actions drop down.

4. This deletes the data migration.

Deleting a data migration that was in progress doesn't impact any data that has already been
loaded to the target database.

Restarting the data migration

To restart an associated data migration from a CDC start point, use the following instructions

Restarting a data migration

1. Choose the target database on the Databases page in the RDS console.

2. In the database details page, choose the Data migrations tab.

3. To restart a migration, select a data migration and select Restart in the Actions drop down.

4. This restarts the data migration from a CDC start point.

Restarting a data migration that was in progress doesn't impact any data that has already been
loaded to the target database.

Monitoring your data migrations

After the data migrations starts, you can monitor its status and progress. Data migrations of large
data sets take hours to complete. To maintain the reliability, availability, and high performance of
your data migration, monitor its progress regularly.

To check the status and progress of your data migration

1. Choose the target database on the Databases page in the RDS console.

2. In the database details page, choose the Data migrations tab.

3. The Associated data migrations section lists your data migrations. Check the Status column.

4. For running data migrations, the Migration process column displays the percentage of
migrated data.

Monitoring 640

Amazon Relational Database Service User Guide

5. To monitor the process in CloudWatch, use the link in the in CloudWatch column.

Migration statuses

For each data migration that you run, the RDS console displays the Status. The following list
includes the statuses:

• Ready: The data migration is ready to start.

• Starting: RDS is creating the serverless environment for your data migration.

• Load running: RDS is performing the full load migration.

• Load complete, replication ongoing: RDS completed the full load and now replicates
the ongoing changes. This status only applies for full load and CDC type migrations.

• Replication ongoing: RDS is replicating ongoing changes. This status only applies to CDC
type migrations.

• Stopping: RDS is stopping the data migrations. This status applies when you choose to stop the
data migration from the Actions menu.

• Stopped: RDS has stopped the data migration.

• Failed: The data migration has failed. For more information, see the log files.

• Restarting: The data migration has restarted an ongoing data replication from a CDC start
point.

Monitoring 641

Amazon Relational Database Service User Guide

Tutorial: Creating a MySQL DB instance with a custom
parameter and new option group

In this tutorial, you create a MySQL DB instance with a custom parameter and new option group.
For more information about custom parameter and option groups, see Parameter groups for
Amazon RDS and Working with option groups.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

To create a DB instance with custom configurations and settings, you can use custom parameter
and new option groups. Custom parameter and new option groups are particularly helpful if you
work with multiple databases and want to uniformly configure settings for them.

By completing these steps, you learn:

• How to use Amazon RDS to create a MySQL DB instance with a custom parameter and new
option group.

• How to use specific parameters and options for MySQL DB instances.

To complete this tutorial, perform the following tasks:

1. Create a custom parameter group with the MySQL parameters
default_password_lifetimeand disconnect_on_expired_password.

2. Create a new option group with MySQL option feature MariaDB Audit Plugin. For steps to
create an option group, see Working with option groups.

3. Create a MySQL DB instance with the custom parameter group and new option group that you
created.

Topics

• Prerequisites

• Create an Amazon RDS parameter group

Tutorial: Creating a MySQL DB instance with a custom parameter and new option group 642

Amazon Relational Database Service User Guide

• Modify parameter values in your custom parameter group

• Create a new Amazon RDS option group

• Add a option to your new option group

• Create MySQL DB instance with a custom parameter and a new option group

Prerequisites

This tutorial requires you to have an AWS account and a user with administrative access. If you
don't already have those set up, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Create an Amazon RDS parameter group

In this tutorial, you learn how to create a custom parameter group with default_password_lifetime
and disconnect_on_expired_password for a MySQL DB instance in the console. The
default_password_lifetime parameter controls the number of days before the client
password automatically expires. The disconnect_on_expired_password parameter controls
whether the MySQL DB instance disconnects the client when the password expires. For more
information on other parameters available for MySQL DB instances, see Parameters for MySQL .

To create a parameter group

1. Open the Amazon RDS console and choose Parameter groups.

2. For Custom parameter groups, choose Create parameter group.

3. Set the parameter group details.

1. Enter a name for the parameter group.

2. Enter a description of the parameter group.

3. For Engine type, choose MySQL Community.

4. For Parameter group family, choose MySQL 8.0.

4. Choose Create.

Prerequisites 643

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_disconnect_on_expired_password

Amazon Relational Database Service User Guide

The new parameter group appears on the Parameter groups page in the Amazon RDS console. The
following steps illustrate how to modify parameter values to customize your parameter group.

Modify parameter values in your custom parameter group

Use the following steps to modify the parameter values in the parameter group that you created in
Create an Amazon RDS parameter group.

To modify parameter values in your parameter group

1. Open the Amazon RDS console and choose Parameter groups.

2. For Custom parameter groups, choose the name of the parameter group you created.

3. Choose Edit.

4. In the Filter parameters search box, search for the custom parameter
default_password_lifetime.

5. Select the check box next to the parameter and enter a value the number of days to set for
this password lifetime parameter.

6. Select Save Changes.

7. Repeat the same steps for the parameter disconnect_on_expired_password. When you
choose this parameter, you are prompted to select a value of 0 or 1 from the dropdown menu.
Select 1 to disconnect on expired password.

The custom parameter group is now available to associate with Amazon RDS for MySQL 8.0 DB
instance. Next, create a new option group for your DB instance.

Create a new Amazon RDS option group

Create a new option group with the option MariaDB Audit Plugin. This plugin logs server activity
for security and compliance. For more information on other custom options available for MySQL
DB instances, see Options for MySQL DB instances.

To create an option group

1. Open the Amazon RDS console and choose Option groups.

2. For Option Groups, choose Create group.

3. Set the option group details.

Modify parameter values 644

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.Options.AuditPlugin.html

Amazon Relational Database Service User Guide

• Enter a name for the option group.

• Enter a description of the option group.

• For Engine, select mysql.

• For Major engine version, select 8.0.

4. Choose Create.

The new option group appears on the Option groups page in the Amazon RDS console. The
following steps show how to add options to the option group.

Add a option to your new option group

Use the following steps to add a option to the new option group that you created in Create a new
Amazon RDS option group.

To add an option to your option group

1. Open the Amazon RDS console and choose Option groups.

2. For Option groups, select the name of the option group that you created.

3. Under Options, choose Add option.

4. Set the option group details.

• For Option name, choose the option MariaDB Audit Plugin, MARIADB_AUDIT_PLUGIN.

• For Option settings, leave all the default options selected.

• For Apply immediately, choose Yes.

5. Choose Create option.

The new option group should now be available for all associated DB instances. Next, create a
MySQL DB instance with the custom parameter and new option group.

Create MySQL DB instance with a custom parameter and a new option
group

Finally, create a MySQL DB instance with the custom parameter and new option group that you
made in the previous steps. The following steps show how to create the MySQL DB instance with
your custom parameter and new option group.

Add option 645

Amazon Relational Database Service User Guide

To create a DB instance with a custom parameter and new option group

1. Open the Amazon RDS console and choose Databases.

2. Choose Create database.

3. For Choose a database creation method, choose Standard Create.

4. For Engine options, choose MySQL .

5. For Availability and durability, choose Single DB instance. This step is necessary to support a
custom parameter or new option group.

6. Select Additional Configuration.

• For Initial database name, choose a name for your DB instance.

• Under the DB parameter group dropdown, select the name of the custom parameter group
you created previously.

• Under Option group dropdown, select the name of new option group you created
previously.

7. For this tutorial, you can leave the default settings for any other DB settings or modify them as
required.

8. Choose Create database.

RDS creates a new MySQL DB instance with a custom parameter groupand new option group. To
see more information on this database, see the Databases page of the Amazon RDS console.

In this tutorial, you configured a MySQL DB instance with tailored settings using a custom
parameter and a new option group. This newly created MySQL DB instance manages the
user password lifetime by using the parameter default_password_lifetime. This DB
instance also disconnects users that connect with an expired password by using the parameter
disconnect_on_expired_password. You also use the option MariaDB Audit Plugin to
keep track of server activity. To optimize your database, you can apply additional setting in your
custom parameter group and add options.

After you have finished creating your customized DB instance, you should delete your resources to
avoid incurring unwanted costs. To delete a DB instance, follow the instructions in Deleting a DB
instance.

Create your DB DB instance 646

Amazon Relational Database Service User Guide

Managing an Amazon RDS DB instance

Following, you can find instructions for managing and maintaining your Amazon RDS DB instance.

Topics

• Stopping an Amazon RDS DB instance temporarily

• Starting an Amazon RDS DB instance that was previously stopped

• Rebooting a DB instance

• Automatically connecting an EC2 instance and a DB instance

• Automatically connecting a Lambda function and a DB instance

• Modifying an Amazon RDS DB instance

• Maintaining a DB instance

• Upgrading a DB instance engine version

• Renaming a DB instance

• Working with DB instance read replicas

• Tagging Amazon RDS resources

• Amazon Resource Names (ARNs) in Amazon RDS

• Working with storage for Amazon RDS DB instances

• Deleting a DB instance

• Tutorial: Managing a MySQL DB instance environment from development to production

647

Amazon Relational Database Service User Guide

Stopping an Amazon RDS DB instance temporarily

You can stop your DB instance intermittently for temporary testing or for a daily development
activity, for a maximum of 7 consecutive days. The most common use case is cost optimization.

The time to stop your DB instance varies depending on factors such as the instance class, network
state, DB engine type, and database state. The process can take several minutes. The service must
perform the following actions:

• Shut down database engine processes.

• Shut down RDS platform processes.

• Detach the EBS storage volumes associated with your DB instance.

• Terminate the underlying Amazon EC2 instance.

Warning

Starting a DB instance requires instance recovery and can take from minutes to hours.
Therefore, if instance availability is a concern, be cautious about stopping a production
instance temporarily. For more information, see Starting an Amazon RDS DB instance that
was previously stopped.

To stop and start your DB instance in the same operation, reboot the DB instance. For more
information, see Rebooting a DB instance.

Topics

• Use cases for stopping your DB instance

• Supported DB engines, instance classes, and Regions

• Stopping a DB instance in a Multi-AZ deployment

• How stopping a DB instance works

• Limitations of stopping your DB instance

• Option and parameter group considerations

• Public IP address considerations

• Stopping a DB instance temporarily: basic steps

Stopping a DB instance 648

Amazon Relational Database Service User Guide

Use cases for stopping your DB instance

Stopping and starting a DB instance is faster than creating a DB snapshot, deleting your DB
instance, and then restoring the snapshot when you want to access the instance. Common use
cases for stopping an instance include the following:

• Cost optimization – For non-production databases, you can stop your Amazon RDS DB instance
temporarily to save money. While the instance is stopped, you're not charged for DB instance
hours.

Important

While your DB instance is stopped, you are charged for provisioned storage (including
Provisioned IOPS). You're also charged for backup storage, including manual snapshots
and automated backups within your specified retention window. However, you're not
charged for DB instance hours. For more information, see Billing FAQs.

• Daily development – If you maintain a DB instance for development purposes, you can start the
instance when it's needed and then shut down the instance when it's not needed.

• Testing – You might need a temporary DB instance to test backup and recovery procedures,
migrations, application upgrades, or related activities. In these use cases, you can stop the DB
instance when it's not needed.

• Training – If you're conducting training in RDS, you might need to start DB instances during the
training session and shut them down afterward.

Supported DB engines, instance classes, and Regions

You can stop and start Amazon RDS DB instances that are running the following DB engines:

• Db2

• MariaDB

• Microsoft SQL Server, including RDS Custom for SQL Server

• MySQL

• Oracle

• PostgreSQL

Use cases 649

http://aws.amazon.com/rds/faqs/#billing

Amazon Relational Database Service User Guide

Stopping and starting a DB instance is supported for all DB instance classes, and in all AWS
Regions.

Stopping a DB instance in a Multi-AZ deployment

You can stop and start a DB instance in a Multi-AZ deployment. Note the following limitations:

• You can only create a Multi-AZ deployment if your database engine supports it. For more
information about engine support, see Supported Regions and DB engines for Multi-AZ DB
clusters in Amazon RDS.

• RDS for SQL Server doesn't support stopping a DB instance in a Multi-AZ deployment. For
more information, see Microsoft SQL Server Multi-AZ deployment limitations, notes, and
recommendations.

• A long time might be required to stop a DB instance. If you have at least one backup after a
previous failover, then you can speed up the stop operation by performing a reboot with failover
operation. For more information, see Rebooting a DB instance.

How stopping a DB instance works

The stopping operation occurs in the following stages:

1. The DB instance initiates the normal shutdown process.

The status of the DB instance changes to stopping.

2. The instance stops running, up to a maximum of 7 consecutive days.

The status of the DB instance changes to stopped.

Characteristics of a stopped DB instance

When in a stopped state, your DB instance has the following characteristics:

• Your stopped DB instance retains the following:

• Instance ID

• Domain Name Server (DNS) endpoint

• Parameter group

• Security group

Support for Multi-AZ 650

Amazon Relational Database Service User Guide

• Option group

• Amazon S3 transaction logs (necessary for a point-in-time restore)

When you restart a DB instance, it has the same configuration as when you stopped it.

• Any storage volumes remain attached to the DB instance, and their data is kept. RDS deletes any
data stored in the RAM of the DB instance.

While your DB instance is stopped, you are charged for provisioned storage (including
Provisioned IOPS). You're also charged for backup storage, including manual snapshots and
automated backups within your specified retention window.

• RDS removes pending actions, including scheduled maintenance updates, except for pending
actions for the option group or DB parameter group of the DB instance.

Note

Occasionally, an RDS for PostgreSQL DB instance doesn't shut down cleanly. If this
happens, you see that the instance goes through a recovery process when you restart
it later. This is expected behavior of the database engine, intended to protect database
integrity. Some memory-based statistics and counters don't retain history and are re-
initialized after restart, to capture the operational workload moving forward.

Automatic restart of a stopped DB instance

If you don't manually start your DB instance after it is stopped for seven consecutive days, RDS
automatically starts your DB instance for you. This way, your instance doesn't fall behind any
required maintenance updates. To learn how to stop and start your instance on a schedule, see
How can I use Step Functions to stop an Amazon RDS instance for longer than 7 days?.

Limitations of stopping your DB instance

The following are some limitations of the stopping operation:

• You can't stop a DB instance that has a read replica, or that is a read replica.

• You can't modify a stopped DB instance.

• You can't delete an option group that is associated with a stopped DB instance.

Limitations 651

https://repost.aws/knowledge-center/rds-stop-seven-days-step-functions

Amazon Relational Database Service User Guide

• You can't delete a DB parameter group that is associated with a stopped DB instance.

• In a Multi-AZ deployment, note the following limitations:

• You can't stop an RDS for SQL Server DB instance.

• The primary and secondary Availability Zones might be switched after you start the DB
instance.

Additional limitations apply to RDS Custom for SQL Server. For more information, see Starting and
stopping an RDS Custom for SQL Server DB instance.

Option and parameter group considerations

You can't remove persistent options (including permanent options) from an option group if there
are DB instances associated with that option group. This functionality is also true of any DB
instance with a state of stopping, stopped, or starting.

You can change the option group or DB parameter group that is associated with a stopped DB
instance. However, the change doesn't occur until the next time you start the DB instance. If you
chose to apply changes immediately, the change occurs when you start the DB instance. Otherwise
the change occurs during the next maintenance window after you start the DB instance.

Public IP address considerations

When you stop a DB instance, it retains its DNS endpoint. If you stop a DB instance that has a
public IP address, Amazon RDS releases its public IP address. When the DB instance is restarted, it
has a different public IP address.

Note

You should always connect to a DB instance using the DNS endpoint, not the IP address.

Stopping a DB instance temporarily: basic steps

You can stop a DB using the AWS Management Console, the AWS CLI, or the RDS API.

Option and parameter groups 652

Amazon Relational Database Service User Guide

Console

To stop a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
stop.

3. For Actions, choose Stop temporarily.

4. In the Stop DB instance temporarily window, select the acknowledgement that the DB
instance will restart automatically after 7 days.

5. (Optional) Select Save the DB instance in a snapshot and enter the snapshot name for
Snapshot name. Choose this option if you want to create a snapshot of the DB instance before
stopping it.

6. Choose Stop temporarily to stop the DB instance, or choose Cancel to cancel the operation.

AWS CLI

To stop a DB instance by using the AWS CLI, call the stop-db-instance command with the following
option:

• --db-instance-identifier – the name of the DB instance.

Example

aws rds stop-db-instance --db-instance-identifier mydbinstance

RDS API

To stop a DB instance by using the Amazon RDS API, call the StopDBInstance operation with the
following parameter:

• DBInstanceIdentifier – the name of the DB instance.

Stopping a DB instance 653

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/stop-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StopDBInstance.html

Amazon Relational Database Service User Guide

Starting an Amazon RDS DB instance that was previously
stopped

This topic explains how to start an Amazon RDS DB instance that was previously stopped, outlining
the necessary steps and key considerations for resuming use of the database.

You can stop your Amazon RDS DB instance temporarily to save money. After you stop your DB
instance, you can restart it to begin using it again. For more information about stopping a DB
instance, see Stopping an Amazon RDS DB instance temporarily.

When you start a DB instance that you previously stopped, the DB instance retains information
such as the following:

• Instance ID

• Domain Name Server (DNS) endpoint

• DB parameter group

• VPC security group

• DB option group

Amazon RDS bills in one-second increments for database instances and attached storage. There is a
10-minute minimum charge when an instance is started.

To start the instance, the Amazon RDS service performs actions such as the following:

• Provisioning the underlying Amazon EC2 instance

• Starting the RDS processes

• Starting the database engine processes

• Attaching the EBS storage volumes

• Enabling Performance Insights if it was previously enabled

• Recovering the DB instance (recovery occurs even after a normal shutdown)

The time to start your DB instance varies depending on factors such as the instance class, network
state, DB engine type, database size, and the database state when the instance was shut down.
The startup process can take minutes to hours. We recommend that you consider the variability in
startup time when creating your availability plan.

Starting a DB instance 654

Amazon Relational Database Service User Guide

Console

To start a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
start.

3. For Actions, choose Start.

AWS CLI

To start a DB instance by using the AWS CLI, call the start-db-instance command with the following
option:

• --db-instance-identifier – The name of the DB instance.

Example

aws rds start-db-instance --db-instance-identifier mydbinstance

RDS API

To start a DB instance by using the Amazon RDS API, call the StartDBInstance operation with the
following parameter:

• DBInstanceIdentifier – The name of the DB instance.

Starting a DB instance 655

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartDBInstance.html

Amazon Relational Database Service User Guide

Rebooting a DB instance

You can stop and start the database service on your RDS DB instance in a single operation, called
rebooting. Rebooting might be necessary to apply configuration changes, address minor issues, or
resolve network problems without having to perform a full restart or migration of your database.

Note

This topic applies only to rebooting a Single-AZ or Multi-AZ DB instance. For instructions to
reboot a Multi-AZ DB cluster, see the section called “Rebooting a Multi-AZ DB cluster”.

Topics

• Use cases for rebooting a DB instance

• How rebooting a DB instance works

• How rebooting a DB instance in a Multi-AZ deployment works

• Considerations when rebooting a DB instance

• Prerequisites for rebooting a DB instance

• Rebooting a DB instance: basic steps

Use cases for rebooting a DB instance

Typically, you reboot your DB instance for maintenance reasons so that your changes take effect.
The following use cases are common:

• Associating a new DB parameter group – When you associate a new DB parameter group with a
DB instance, RDS applies the modified static and dynamic parameters only after the DB instance
is rebooted. However, if you modify dynamic parameters in the DB parameter group after you
have associated it with the DB instance, these changes are applied immediately without a reboot.
For more information, see Parameter groups for Amazon RDS.

• Applying a change to a static parameter in an existing DB parameter group – When you
change a static parameter and save the DB parameter group, the status of DB instances
associated with this parameter group in the console changes to pending-reboot. The parameter
change takes effect only after the associated DB instances are rebooted. When you change a

Rebooting a DB instance 656

Amazon Relational Database Service User Guide

dynamic parameter in an existing parameter group, the change takes effect immediately by
default, without requiring a reboot.

Note

The pending-reboot status doesn't result in an automatic reboot during the next
maintenance window. To apply the latest parameter changes to your DB instance, reboot
the DB instance manually. For more information about parameter groups, see Parameter
groups for Amazon RDS.

• Troubleshooting – You might encounter performance or other operational issues that
necessitate a reboot. For example, your DB instance might be unresponsive.

How rebooting a DB instance works

When Amazon RDS reboots your DB instance it performs the following sequential tasks:

1. Stops the database service on your DB instance

2. Starts the database service on your DB instance

The reboot process leads to a brief outage. During this outage, the DB instance status is rebooting.
An outage occurs for both a Single-AZ deployment and a Multi-AZ DB instance deployment, even
when you reboot with a failover.

How rebooting a DB instance in a Multi-AZ deployment works

If the Amazon RDS DB instance is in a Multi-AZ deployment, you can reboot with a failover. This
operation is useful to simulate a failure of a DB instance or restore operations to the original
Availability Zone after a failover.

During the reboot with failover, Amazon RDS does the following

• Interrupts the database abruptly. The DB instance and its client sessions might not have time to
shut down gracefully.

How rebooting works 657

Amazon Relational Database Service User Guide

Warning

To avoid the possibility of data loss, we recommend stopping transactions on your DB
instance before rebooting with a failover.

• Performs crash recovery of the database if necessary.

• Switches to a standby replica in another AZ automatically. The AZ change might not be reflected
in the AWS Management Console, and in calls to the AWS CLI and RDS API, for several minutes.

• Updates the DNS record for the DB instance to point to the standby DB instance. As a result,
you need to clean up and re-establish any existing connections to your DB instance. For more
information, see Configuring and managing a Multi-AZ deployment for Amazon RDS.

• Creates an Amazon RDS event after the reboot.

On RDS for Microsoft SQL Server, the failover reboots only the primary DB instance. After the
failover, the primary DB instance becomes the new secondary DB instance. Parameters might not
be updated for Multi-AZ instances. For reboot without failover, both the primary and secondary DB
instances reboot, and parameters are updated after the reboot. If the DB instance is unresponsive,
we recommend reboot without failover.

Considerations when rebooting a DB instance

Before you reboot your instance, consider the following:

• For a DB instance with read replicas, you can reboot the source DB instance and its read replicas
independently. After a reboot completes, replication resumes automatically.

• The reboot time depends on the crash recovery process, database activity at the time of reboot,
and the behavior of your specific DB engine. To improve the reboot time, we recommend that
you reduce database activity as much as possible during the reboot. This technique reduces
rollback activity for in-transit transactions.

Prerequisites for rebooting a DB instance

Make sure that you meet the following prerequisites:

Considerations 658

Amazon Relational Database Service User Guide

• Your DB instance must be in the available state. Your database can be unavailable for several
reasons, such as an in-progress backup, a previously requested modification, or a maintenance
window operation.

• If you force a failover to a different AZ, your DB instance must be configured for Multi-AZ.

• If you force a failover to a different AZ, we recommend first stopping transactions on your DB
instance to prevent possible data loss.

Rebooting a DB instance: basic steps

You can reboot your DB instance using the AWS Management Console, AWS CLI, or RDS API.

Console

To reboot a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
reboot.

3. For Actions, choose Reboot.

The Reboot DB instance page appears.

4. (Optional) Choose Reboot with failover? to force a failover from one AZ to another.

5. Choose Reboot to reboot your DB instance.

Alternatively, choose Cancel.

AWS CLI

To reboot a DB instance by using the AWS CLI, call the reboot-db-instance command.

Example Simple reboot

For Linux, macOS, or Unix:

aws rds reboot-db-instance \
 --db-instance-identifier mydbinstance

Rebooting a DB instance: basic steps 659

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-instance.html

Amazon Relational Database Service User Guide

For Windows:

aws rds reboot-db-instance ^
 --db-instance-identifier mydbinstance

Example Reboot with failover

To force a failover from one AZ to the other in a Multi-AZ DB cluster, use the --force-failover
parameter.

For Linux, macOS, or Unix:

aws rds reboot-db-instance \
 --db-instance-identifier mydbinstance \
 --force-failover

For Windows:

aws rds reboot-db-instance ^
 --db-instance-identifier mydbinstance ^
 --force-failover

RDS API

To reboot a DB instance by using the Amazon RDS API, call the RebootDBInstance operation.

Rebooting a DB instance: basic steps 660

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html

Amazon Relational Database Service User Guide

Automatically connecting an EC2 instance and a DB instance

You can use the Amazon RDS console to simplify setting up a connection between an Amazon
Elastic Compute Cloud (Amazon EC2) instance and a DB instance. Often, your DB instance is in a
private subnet and your EC2 instance is in a public subnet within a VPC. You can use a SQL client
on your EC2 instance to connect to your DB instance. The EC2 instance can also run web servers
or applications that access your private DB instance. For instructions on setting up a connection
between an EC2 instance and a Multi-AZ DB cluster, see the section called “Connecting an EC2
instance and a Multi-AZ DB cluster”.

If you want to connect to an EC2 instance that isn't in the same VPC as the DB instance, see the
scenarios in Scenarios for accessing a DB instance in a VPC.

Topics

• Overview of automatic connectivity with an EC2 instance

• Automatically connecting an EC2 instance and an RDS database

• Viewing connected compute resources

Connecting an EC2 instance 661

Amazon Relational Database Service User Guide

• Connecting to a DB instance that is running a specific DB engine

Overview of automatic connectivity with an EC2 instance

When you set up a connection between an EC2 instance and an RDS database, Amazon
RDSautomatically configures the VPC security group for your EC2 instance and for your RDS
database.

The following are requirements for connecting an EC2 instance with an RDS database:

• The EC2 instance must exist in the same VPC as the RDS database.

If no EC2 instances exist in the same VPC, then the console provides a link to create one.

• The user who sets up connectivity must have permissions to perform the following Amazon EC2
operations:

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateSecurityGroup

• ec2:DescribeInstances

• ec2:DescribeNetworkInterfaces

• ec2:DescribeSecurityGroups

• ec2:ModifyNetworkInterfaceAttribute

• ec2:RevokeSecurityGroupEgress

If the DB instance and EC2 instance are in different Availability Zones, your account may incur
cross-Availability Zone costs.

When you set up a connection to an EC2 instance, Amazon RDS acts according to the current
configuration of the security groups associated with the RDS database and EC2 instance, as
described in the following table.

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

There are one or more
security groups associated

There are one or more
security groups associated

RDS takes no action.

Overview 662

Amazon Relational Database Service User Guide

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

with the RDS database with
a name that matches the
pattern rds-ec2-n (where n
is a number). A security group
that matches the pattern
hasn't been modified. This
security group has only one
inbound rule with the VPC
security group of the EC2
instance as the source.

with the EC2 instance with
a name that matches the
pattern ec2-rds-n (where n
is a number). A security group
that matches the pattern
hasn't been modified. This
security group has only one
outbound rule with the VPC
security group of the RDS
database as the source.

A connection was already
configured automatically
between the EC2 instance
and RDS database. Because
a connection already exists
between the EC2 instance
and the RDS database,
the security groups aren't
modified.

Overview 663

Amazon Relational Database Service User Guide

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

Either of the following
conditions apply:

• There is no security group
associated with the RDS
database with a name that
matches the pattern rds-
ec2-n.

• There are one or more
security groups associate
d with the RDS database
with a name that matches
the pattern rds-ec2-n.
However, Amazon RDS can't
use any of these security
groups for the connectio
n with the EC2 instance.
 Amazon RDS can't use a
security group that doesn't
have one inbound rule with
the VPC security group of
the EC2 instance as the
source. Amazon RDS also
can't use a security group
that has been modified.
Examples of modifications
include adding a rule or
changing the port of an
existing rule.

Either of the following
conditions apply:

• There is no security group
associated with the EC2
instance with a name that
matches the pattern ec2-
rds-n.

• There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n.
However, Amazon RDS can't
use any of these security
groups for the connectio
n with the RDS database.
Amazon RDS can't use a
security group that doesn't
have one outbound rule
with the VPC security group
of the RDS database as the
source. Amazon RDS also
can't use a security group
that has been modified.

RDS action: create new
security groups

Overview 664

Amazon Relational Database Service User Guide

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

There are one or more
security groups associate
d with the RDS database
with a name that matches
the pattern rds-ec2-n. A
security group that matches
the pattern hasn't been
modified. This security group
has only one inbound rule
with the VPC security group
of the EC2 instance as the
source.

There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n.
However, Amazon RDS can't
use any of these security
groups for the connectio
n with the RDS database.
Amazon RDS can't use a
security group that doesn't
have one outbound rule with
the VPC security group of the
RDS database as the source.
Amazon RDS also can't use a
security group that has been
modified.

RDS action: create new
security groups

There are one or more
security groups associate
d with the RDS database
with a name that matches
the pattern rds-ec2-n. A
security group that matches
the pattern hasn't been
modified. This security group
has only one inbound rule
with the VPC security group
of the EC2 instance as the
source.

A valid EC2 security group for
the connection exists, but it is
not associated with the EC2
instance. This security group
has a name that matches the
pattern ec2-rds-n. It hasn't
been modified. It has only
one outbound rule with the
VPC security group of the RDS
database as the source.

RDS action: associate EC2
security group

Overview 665

Amazon Relational Database Service User Guide

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

Either of the following
conditions apply:

• There is no security group
associated with the RDS
database with a name that
matches the pattern rds-
ec2-n.

• There are one or more
security groups associate
d with the RDS database
with a name that matches
the pattern rds-ec2-n.
However, Amazon RDS can't
use any of these security
groups for the connectio
n with the EC2 instance.
 Amazon RDS can't use a
security group that doesn't
have one inbound rule with
the VPC security group of
the EC2 instance as the
source. Amazon RDS also
can't use security group
that has been modified.

There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n. A
security group that matches
the pattern hasn't been
modified. This security group
has only one outbound rule
with the VPC security group
of the RDS database as the
source.

RDS action: create new
security groups

 RDS action: create new security groups

Amazon RDS takes the following actions:

• Creates a new security group that matches the pattern rds-ec2-n. This security group has an
inbound rule with the VPC security group of the EC2 instance as the source. This security group is
associated with the RDS database and allows the EC2 instance to access the RDS database.

Overview 666

Amazon Relational Database Service User Guide

• Creates a new security group that matches the pattern ec2-rds-n. This security group has
an outbound rule with the VPC security group of the RDS database as the target. This security
group is associated with the EC2 instance and allows the EC2 instance to send traffic to the RDS
database.

 RDS action: associate EC2 security group

Amazon RDS associates the valid, existing EC2 security group with the EC2 instance. This security
group allows the EC2 instance to send traffic to the RDS database.

Automatically connecting an EC2 instance and an RDS database

Before setting up a connection between an EC2 instance and an RDS database, make sure you meet
the requirements described in Overview of automatic connectivity with an EC2 instance.

If you make changes to security groups after you configure connectivity, the changes might affect
the connection between the EC2 instance and the RDS database.

Note

You can only set up a connection between an EC2 instance and an RDS database
automatically by using the AWS Management Console. You can't set up a connection
automatically with the AWS CLI or RDS API.

To connect an EC2 instance and an RDS database automatically

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS database.

3. From Actions, choose Set up EC2 connection.

The Set up EC2 connection page appears.

4. On the Set up EC2 connection page, choose the EC2 instance.

Connecting an EC2 instance 667

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

If no EC2 instances exist in the same VPC, choose Create EC2 instance to create one. In this
case, make sure the new EC2 instance is in the same VPC as the RDS database.

5. Choose Continue.

The Review and confirm page appears.

Connecting an EC2 instance 668

Amazon Relational Database Service User Guide

6. On the Review and confirm page, review the changes that RDS will make to set up
connectivity with the EC2 instance.

If the changes are correct, choose Confirm and set up.

If the changes aren't correct, choose Previous or Cancel.

Connecting an EC2 instance 669

Amazon Relational Database Service User Guide

Viewing connected compute resources

You can use the AWS Management Console to view the compute resources that are connected to
an RDS database. The resources shown include compute resource connections that were set up
automatically. You can set up connectivity with compute resources automatically in the following
ways:

• You can select the compute resource when you create the database.

For more information, see Creating an Amazon RDS DB instance and Creating a Multi-AZ DB
cluster for Amazon RDS.

• You can set up connectivity between an existing database and a compute resource.

For more information, see Automatically connecting an EC2 instance and an RDS database.

The listed compute resources don't include ones that were connected to the database manually.
For example, you can allow a compute resource to access a database manually by adding a rule to
the VPC security group associated with the database.

For a compute resource to be listed, the following conditions must apply:

• The name of the security group associated with the compute resource matches the pattern ec2-
rds-n (where n is a number).

• The security group associated with the compute resource has an outbound rule with the port
range set to the port that the RDS database uses.

• The security group associated with the compute resource has an outbound rule with the source
set to a security group associated with the RDS database.

• The name of the security group associated with the RDS database matches the pattern rds-
ec2-n (where n is a number).

• The security group associated with the RDS database has an inbound rule with the port range set
to the port that the RDS database uses.

• The security group associated with the RDS database has an inbound rule with the source set to a
security group associated with the compute resource.

Viewing connected compute resources 670

Amazon Relational Database Service User Guide

To view compute resources connected to an RDS database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the name of the RDS database.

3. On the Connectivity & security tab, view the compute resources in the Connected compute
resources.

Connecting to a DB instance that is running a specific DB engine

For information about connecting to a DB instance that is running a specific DB engine, follow the
instructions for your DB engine:

• Connecting to your MariaDB DB instance

• Connecting to your Microsoft SQL Server DB instance

• Connecting to your MySQL DB instance

• Connecting to your Oracle DB instance

• Connecting to a DB instance running the PostgreSQL database engine

Connecting to a DB instance running a specific DB engine 671

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Automatically connecting a Lambda function and a DB instance

You can use the Amazon RDS console to simplify setting up a connection between a Lambda
function and a DB instance. Often, your DB instance is in a private subnet within a VPC. The
Lambda function can be used by applications to access your private DB instance.

For instructions on setting up a connection between a Lambda function and a Multi-AZ DB cluster,
see the section called “Connecting a Lambda function and a Multi-AZ DB cluster”.

The following image shows a direct connection between your DB instance and your Lambda
function.

You can set up the connection between your Lambda function and your DB instance through
RDS Proxy to improve your database performance and resiliency. Often, Lambda functions make
frequent, short database connections that benefit from connection pooling that RDS Proxy offers.
You can take advantage of any AWS Identity and Access Management (IAM) authentication that
you already have for Lambda functions, instead of managing database credentials in your Lambda
application code. For more information, see Amazon RDS Proxy.

Connecting a Lambda function 672

Amazon Relational Database Service User Guide

When you use the console to connect with an existing proxy, Amazon RDS updates the proxy
security group to allow connections from your DB instance and Lambda function.

You can also create a new proxy from the same console page. When you create a proxy in the
console, to access the DB instance, you must input your database credentials or select an AWS
Secrets Manager secret.

Tip

To quickly connect a Lambda function to a DB instance, you can also use the in-console
guided wizard. To open the wizard, do the following:

1. Open the Functions page of the Lambda console.

2. Select the function you want to connect a database to.

3. On the Configuration tab, select RDS databases.

4. Choose Connect to RDS database.

Connecting a Lambda function 673

https://console.aws.amazon.com/lambda/home#/functions

Amazon Relational Database Service User Guide

After you've connected your function to a database, you can create a proxy by choosing
Add proxy.

Topics

• Overview of automatic connectivity with a Lambda function

• Automatically connecting a Lambda function and an RDS database

• Viewing connected compute resources

Overview of automatic connectivity with a Lambda function

The following are requirements for connecting a Lambda function with an RDS DB instance:

• The Lambda function must exist in the same VPC as the DB instance.

• The user who sets up connectivity must have permissions to perform the following Amazon RDS,
Amazon EC2, Lambda, Secrets Manager, and IAM operations:

• Amazon RDS

• rds:CreateDBProxies

• rds:DescribeDBInstances

• rds:DescribeDBProxies

• rds:ModifyDBInstance

• rds:ModifyDBProxy

• rds:RegisterProxyTargets

• Amazon EC2

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateSecurityGroup

• ec2:DeleteSecurityGroup

• ec2:DescribeSecurityGroups

• ec2:RevokeSecurityGroupEgress

• ec2:RevokeSecurityGroupIngress

Overview 674

Amazon Relational Database Service User Guide

• Lambda

• lambda:CreateFunctions

• lambda:ListFunctions

• lambda:UpdateFunctionConfiguration

• Secrets Manager

• secretsmanager:CreateSecret

• secretsmanager:DescribeSecret

• IAM

• iam:AttachPolicy

• iam:CreateRole

• iam:CreatePolicy

• AWS KMS

• kms:describeKey

Note

If the DB instance and Lambda function are in different Availability Zones, your account
might incur cross-Availability Zone costs.

When you set up a connection between a Lambda function and an RDS database, Amazon RDS
configures the VPC security group for your function and for your DB instance. If you use RDS
Proxy, then Amazon RDS also configures the VPC security group for the proxy. Amazon RDS acts
according to the current configuration of the security groups associated with the DB instance,
Lambda function, and proxy, as described in the following table.

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with
the DB instance

There are one or
more security groups
associated with the
Lambda function

There are one or
more security groups
associated with the
proxy with a name

Amazon RDS takes no
action.

Overview 675

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

with a name that
matches the pattern
rds-lambda- n
or if a proxy is
already connected
to your DB instance,
RDS checks if the
TargetHealth of
an associated proxy is
AVAILABLE .

A security group that
matches the pattern
hasn't been modified.
This security group
has only one inbound
rule with the VPC
security group of the
Lambda function or
proxy as the source.

with a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n (where n
is a number).

A security group
that matches the
pattern hasn't been
modified. This
security group has
only one outbound
rule with either the
VPC security group
of the DB instance
or the proxy as the
destination.

that matches the
pattern rdsproxy-
lambda- n (where n
is a number).

A security group that
matches the pattern
hasn't been modified.
This security group
has inbound and
outbound rules with
the VPC security
groups of the
Lambda function and
the DB instance.

A connection was
already configure
d automatically
between the Lambda
function, the proxy
(optional), and DB
instance. Because a
connection already
exists between the
function, proxy, and
the database, the
security groups aren't
modified.

Overview 676

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Either of the
following conditions
apply:

• There is no security
group associate
d with the DB
instance with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

• There are one
or more security
groups associate
d with the DB
instance with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, none
of these security
groups can be used
for the connectio

Either of the
following conditions
apply:

• There is no security
group associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

• There are one
or more security
groups associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB instance.

Amazon RDS can't
use a security group

Either of the
following conditions
apply:

• There is no security
group associate
d with the proxy
with a name
that matches
the pattern
rdsproxy-
lambda- n.

• There are one
or more security
groups associate
d with the proxy
with a name
that matches
rdsproxy-
lambda- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB instance or
Lambda function.

Amazon RDS can't
use a security
group that doesn't
have inbound and

RDS action: create
new security groups

Overview 677

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

n with the Lambda
function.

Amazon RDS can't
use a security group
that doesn't have
one inbound rule
with the VPC security
group of the Lambda
function or proxy
as the source.
Amazon RDS also
can't use a security
group that has been
modified. Examples
of modifications
include adding a rule
or changing the port
of an existing rule.

that doesn't have
one outbound rule
with the VPC security
group of the DB
instance or proxy
as the destination.
Amazon RDS also
can't use a security
group that has been
modified.

outbound rules with
the VPC security
group of the DB
instance and the
Lambda function.
Amazon RDS also
can't use a security
group that has been
modified.

Overview 678

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with the
DB instance with a
name that matches
the pattern rds-
lambda- n or if the
TargetHealth of
an associated proxy is
AVAILABLE .

A security group that
matches the pattern
hasn't been modified.
This security group
has only one inbound
rule with the VPC
security group of the
Lambda function or
proxy as the source.

There are one or
more security groups
associated with the
Lambda function
with a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

However, Amazon
RDS can't use any of
these security groups
for the connection
with the DB instance.
Amazon RDS can't
use a security group
that doesn't have
one outbound rule
with the VPC security
group of the DB
instance or proxy
as the destination.
Amazon RDS also
can't use a security
group that has been
modified.

There are one or
more security groups
associated with the
proxy with a name
that matches the
pattern rdsproxy-
lambda- n.

However, Amazon
RDS can't use any of
these security groups
for the connection
with the DB instance
or Lambda function.
Amazon RDS can't
use a security
group that doesn't
have inbound and
outbound rules with
the VPC security
group of the DB
instance and the
Lambda function.
Amazon RDS also
can't use a security
group that has been
modified.

RDS action: create
new security groups

Overview 679

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with the
DB instance with a
name that matches
the pattern rds-
lambda- n or if the
TargetHealth of
an associated proxy is
AVAILABLE .

A security group that
matches the pattern
hasn't been modified.
This security group
has only one inbound
rule with the VPC
security group of the
Lambda function or
proxy as the source.

A valid Lambda
security group for
the connection
exists, but it isn't
associated with the
Lambda function.
This security group
has a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n. It hasn't
been modified. It has
only one outbound
rule with the VPC
security group of the
DB instance or proxy
as the destination.

A valid proxy
security group for
the connection
exists, but it isn't
associated with the
proxy. This security
group has a name
that matches the
pattern rdsproxy-
lambda- n. It hasn't
been modified. It
has inbound and
outbound rules with
the VPC security
group of the DB
instance and the
Lambda function.

RDS action: associate
Lambda security
group

Overview 680

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Either of the
following conditions
apply:

• There is no security
group associate
d with the DB
instance with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

• There are one
or more security
groups associate
d with the DB
instance with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, Amazon
RDS can't use
any of these
security groups
for the connectio

There are one or
more security groups
associated with the
Lambda function
with a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

A security group
that matches the
pattern hasn't been
modified. This
security group has
only one outbound
rule with the VPC
security group of the
DB instance or proxy
as the destination.

There are one or
more security groups
associated with the
proxy with a name
that matches the
pattern rdsproxy-
lambda- n.

A security group that
matches the pattern
hasn't been modified.
This security group
has inbound and
outbound rules with
the VPC security
group of the DB
instance and the
Lambda function.

RDS action: create
new security groups

Overview 681

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

n with the Lambda
function or proxy.

Amazon RDS can't
use a security group
that doesn't have
one inbound rule
with the VPC security
group of the Lambda
function or proxy as
the source. Amazon
RDS also can't use a
security group that
has been modified.

Overview 682

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Either of the
following conditions
apply:

• There is no security
group associate
d with the DB
instance with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

• There are one
or more security
groups associate
d with the DB
instance with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, Amazon
RDS can't use
any of these
security groups
for the connectio

Either of the
following conditions
apply:

• There is no security
group associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

• There are one
or more security
groups associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB instance.

Amazon RDS can't
use a security group

Either of the
following conditions
apply:

• There is no security
group associate
d with the proxy
with a name
that matches
the pattern
rdsproxy-
lambda- n.

• There are one
or more security
groups associate
d with the proxy
with a name
that matches
rdsproxy-
lambda- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB instance or
Lambda function.

Amazon RDS can't
use a security
group that doesn't
have inbound and

RDS action: create
new security groups

Overview 683

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

n with the Lambda
function or proxy.

Amazon RDS can't
use a security group
that doesn't have
one inbound rule
with the VPC security
group of the Lambda
function or proxy as
the source. Amazon
RDS also can't use a
security group that
has been modified.

that doesn't have
one outbound rule
with the VPC security
group of the DB
instance or proxy as
the source. Amazon
RDS also can't use a
security group that
has been modified.

outbound rules with
the VPC security
group of the DB
instance and the
Lambda function.
Amazon RDS also
can't use a security
group that has been
modified.

 RDS action: create new security groups

Amazon RDS takes the following actions:

• Creates a new security group that matches the pattern rds-lambda-n or rds-rdsproxy-n
(if you choose to use RDS Proxy). This security group has an inbound rule with the VPC security
group of the Lambda function or proxy as the source. This security group is associated with the
DB instance and allows the function or proxy to access the DB instance.

• Creates a new security group that matches the pattern lambda-rds-n or lambda-
rdsproxy-n. This security group has an outbound rule with the VPC security group of the DB
instance or proxy as the destination. This security group is associated with the Lambda function
and allows the function to send traffic to the DB instance or send traffic through a proxy.

• Creates a new security group that matches the pattern rdsproxy-lambda-n. This security
group has inbound and outbound rules with the VPC security group of the DB instance and the
Lambda function.

 RDS action: associate Lambda security group

Overview 684

Amazon Relational Database Service User Guide

Amazon RDS associates the valid, existing Lambda security group with the Lambda function. This
security group allows the function to send traffic to the DB instance or send traffic through a proxy.

Automatically connecting a Lambda function and an RDS database

You can use the Amazon RDS console to automatically connect a Lambda function to your DB
instance. This simplifies the process of setting up a connection between these resources.

You can also use RDS Proxy to include a proxy in your connection. Lambda functions make frequent
short database connections that benefit from the connection pooling that RDS Proxy offers. You
can also use any IAM authentication that you've already set up for your Lambda function, instead
of managing database credentials in your Lambda application code.

You can connect an existing DB instance to new and existing Lambda functions using the Set up
Lambda connection page. The setup process automatically sets up the required security groups for
you.

Before setting up a connection between a Lambda function and a DB instance, make sure that:

• Your Lambda function and DB instance are in the same VPC.

• You have the right permissions for your user account. For more information about the
requirements, see Overview of automatic connectivity with a Lambda function.

If you change security groups after you configure connectivity, the changes might affect the
connection between the Lambda function and the DB instance.

Note

You can automatically set up a connection between a DB instance and a Lambda function
only in the AWS Management Console. To connect a Lambda function, the DB instance
must be in the Available state.

To automatically connect a Lambda function and a DB instance

<result>

After you confirm the setup, Amazon RDS begins the process of connecting your Lambda function,
RDS Proxy (if you used a proxy), and DB instance. The console shows the Connection details dialog
box, which lists the security group changes that allow connections between your resources.

Connecting a Lambda function 685

Amazon Relational Database Service User Guide

</result>

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
connect to a Lambda function.

3. For Actions, choose Set up Lambda connection.

4. On the Set up Lambda connection page, under Select Lambda function, do either of the
following:

• If you have an existing Lambda function in the same VPC as your DB instance, choose
Choose existing function, and then choose the function.

• If you don't have a Lambda function in the same VPC, choose Create new function, and
then enter a Function name. The default runtime is set to Nodejs.18. You can modify the
settings for your new Lambda function in the Lambda console after you complete the
connection setup.

5. (Optional) Under RDS Proxy, select Connect using RDS Proxy, and then do any of the
following:

• If you have an existing proxy that you want to use, choose Choose existing proxy, and
then choose the proxy.

• If you don't have a proxy, and you want Amazon RDS to automatically create one for you,
choose Create new proxy. Then, for Database credentials, do either of the following:

a. Choose Database username and password, and then enter the Username and
Password for your DB instance.

b. Choose Secrets Manager secret. Then, for Select secret, choose an AWS Secrets
Manager secret. If you don't have a Secrets Manager secret, choose Create new
Secrets Manager secret to create a new secret. After you create the secret, for Select
secret, choose the new secret.

After you create the new proxy, choose Choose existing proxy, and then choose the proxy.
Note that it might take some time for your proxy to be available for connection.

6. (Optional) Expand Connection summary and verify the highlighted updates for your
resources.

7. Choose Set up.

Connecting a Lambda function 686

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Relational Database Service User Guide

Viewing connected compute resources

You can use the AWS Management Console to view the Lambda functions that are connected to
your DB instance. The resources shown include compute resource connections that Amazon RDS set
up automatically.

The listed compute resources don't include those that are manually connected to the DB instance.
For example, you can allow a compute resource to access your DB instance manually by adding a
rule to your VPC security group associated with the database.

For the console to list a Lambda function, the following conditions must apply:

• The name of the security group associated with the compute resource matches the pattern
lambda-rds-n or lambda-rdsproxy-n (where n is a number).

• The security group associated with the compute resource has an outbound rule with the port
range set to the port of the DB instance or an associated proxy. The destination for the outbound
rule must be set to a security group associated with the DB instance or an associated proxy.

• If the configuration includes a proxy, the name of the security group attached to the proxy
associated with your database matches the pattern rdsproxy-lambda-n (where n is a number).

• The security group associated with the function has an outbound rule with the port set to the
port that the DB instance or associated proxy uses. The destination must be set to a security
group associated with the DB instance or associated proxy.

To view compute resources automatically connected to an DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance.

3. On the Connectivity & security tab, view the compute resources under Connected compute
resources.

Viewing connected compute resources 687

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Modifying an Amazon RDS DB instance

You can change the settings of a DB instance to accomplish tasks such as adding additional storage
or changing the DB instance class. In this topic, you can find out how to modify an Amazon RDS DB
instance and learn about the settings for DB instances.

We recommend that you test any changes on a test instance before modifying a production
instance. Doing this helps you to fully understand the impact of each change. Testing is especially
important when upgrading database versions.

Most modifications to a DB instance you can either apply immediately or defer until the next
maintenance window. Some modifications, such as parameter group changes, require that you
manually reboot your DB instance for the change to take effect.

Important

Some modifications result in downtime because Amazon RDS must reboot your DB instance
for the change to take effect. Review the impact to your database and applications before
modifying your DB instance settings.

Console

To modify a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify. The Modify DB instance page appears.

4. Change any of the settings that you want. For information about each setting, see Settings for
DB instances.

5. When all the changes are as you want them, choose Continue and check the summary of
modifications.

6. (Optional) Choose Apply immediately to apply the changes immediately. Choosing this
option can cause downtime in some cases. For more information, see Using the schedule
modifications setting.

Modifying a DB instance 688

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. On the confirmation page, review your changes. If they are correct, choose Modify DB instance
to save your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To modify a DB instance by using the AWS CLI, call the modify-db-instance command. Specify the
DB instance identifier and the values for the options that you want to modify. For information
about each option, see Settings for DB instances.

Example

The following code modifies mydbinstance by setting the backup retention period to 1 week
(7 days). The code enables deletion protection by using --deletion-protection. To disable
deletion protection, use --no-deletion-protection. The changes are applied during the next
maintenance window by using --no-apply-immediately. Use --apply-immediately to apply
the changes immediately. For more information, see Using the schedule modifications setting.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --backup-retention-period 7 \
 --deletion-protection \
 --no-apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --backup-retention-period 7 ^
 --deletion-protection ^
 --no-apply-immediately

RDS API

To modify a DB instance by using the Amazon RDS API, call the ModifyDBInstance operation.
Specify the DB instance identifier, and the parameters for the settings that you want to modify. For
information about each parameter, see Settings for DB instances.

Modifying a DB instance 689

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Using the schedule modifications setting

When you modify your DB instance, you decide when you want the modifications to occur.

To apply changes immediately rather than in the next maintenance window, choose the Apply
Immediately option in the AWS Management Console. Or you use the --apply-immediately
parameter when calling the AWS CLI or set the ApplyImmediately parameter to true when
using the Amazon RDS API.

If you don't choose to apply changes immediately, RDS puts the changes into the pending
modifications queue. During the next maintenance window, RDS applies any pending changes in
the queue. If you choose to apply changes immediately, your new changes and any changes in the
pending modifications queue are applied.

To see the modifications that are pending for the next maintenance window, use the describe-db-
instances AWS CLI command and check the PendingModifiedValues field.

Important

If any of the pending modifications require the DB instance to be temporarily unavailable
(downtime), choosing the apply immediately option can cause unexpected downtime.
When you choose to apply a change immediately, any pending modifications are also
applied immediately, instead of during the next maintenance window.
If you don't want a pending change to be applied in the next maintenance window, you
can modify the DB instance to revert the change. You can do this by using the AWS CLI and
specifying the --apply-immediately option.

Changes to some database settings are applied immediately, even if you choose to defer your
changes. To see how the different database settings interact with the apply immediately setting,
see Settings for DB instances.

Scheduling modifications 690

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-instances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

Settings for DB instances

In the following table, you can find details about which settings you can and can't modify. You
can also find when changes can be applied and whether the changes cause downtime for your
DB instance. By using Amazon RDS features such as Multi-AZ, you can minimize downtime if you
later modify the DB instance. For more information, see Configuring and managing a Multi-AZ
deployment for Amazon RDS.

You can modify a DB instance using the console, the modify-db-instance CLI command, or the
ModifyDBInstance RDS API operation.

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Allocated storage

The storage, in gibibytes, that
you want to allocate for your DB
instance. You can only increase
the allocated storage. You can't
reduce the allocated storage.

You can't modify the storage of
some older DB instances, or DB
instances restored from older
DB snapshots. The Allocated
storage setting is disabled in the
console if your DB instance isn't
eligible. You can check whether
you can allocate more storage by
using the CLI command describe-
valid-db-instance-modificat
ions. This command returns the
valid storage options for your DB
instance.

CLI option:

--allocat
ed-storag
e

RDS API
parameter:

Allocated
Storage

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
doesn't occur
during this
change.
Performan
ce might be
degraded
during the
change.

All DB
engines

Available settings 691

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

You can't modify allocated
storage if the DB instance status
is storage-optimization. You
also can't modify allocated
storage for a DB instance if it's
been modified in the last six
hours.

The maximum storage allowed
depends on your DB engine
and the storage type. For more
information, see Amazon RDS DB
instance storage.

Available settings 692

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Architecture configuration

A configuration that allows
multiple tenant databases to
reside in your DB instance.
Currently, only RDS for Oracle
container databases (CDBs)
support this setting.

If your CDB is in the single-te
nant configuration, you can
modify it to use the Multi-
tenant configuration. In
this configuration, you can
use RDS APIs to create 1–30
tenant databases, depending
on the database edition and
any required option licenses.
Application PDBs and proxy
PDBs aren't supported. The
multi-tenant configuration is
permanent, which means that
you can't later convert your
CDB back to the single-tenant
configuration.

Note

The Amazon RDS
configuration is called
"multi-tenant" rather
than "multitenant"
because it is a capabilit

CLI option:

--multi-
tenant
(multi-tenant
configuration
of the CDB
architecture)

--no-mult
i-tenant
(single-tenant
configuration
of the CDB
architecture)

API parameter
:

MultiTena
nt

The change
occurs
immediately.

Downtime
doesn't occur
during this
change.

Oracle

Available settings 693

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

y of the RDS platform,
not just the Oracle DB
engine. Similarly, the
RDS term "tenant" refers
to any tenant in an RDS
configuration, not just
Oracle PDBs. In the RDS
documentation, the
unhyphenated term
"Oracle multitenant"
refers exclusively to the
Oracle database CDB
architecture, which is
compatible with both
on-premises and RDS
deployments.

For more information, see
Overview of RDS for Oracle
CDBs.

Available settings 694

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Architecture settings

The architecture of the Oracle
database: CDB or non-CDB. If
you choose Oracle multitena
nt architecture, RDS for Oracle
converts your non-CDB into a
CDB that uses the single-tenant
configuration.

This setting is supported only
if your database is a non-CDB
running Oracle Database 19c
with the April 2021 or higher
RU. After conversion, your CDB
contains one initial pluggable
database (PDB). The architect
ure change is permanent, which
means that you can't convert
your CDB back to a non-CDB.

Note

To convert a CDB in the
single-tenant configura
tion to the multi-tenant
configuration, modify
your CDB instance again
and choose Multi-tenant
configuration for your
Architecture configura
tion.

CLI option:

--engine
oracle-ee
-cdb (Oracle
multitenant)

--engine
oracle-
se2-cdb
(Oracle
multitenant)

API parameter
:

Engine

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
occurs during
this change.

Oracle

Available settings 695

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

For more information, see
Single-tenant configuration of
the CDB architecture.

Auto minor version upgrade

Choose Enable auto minor
version upgrade to enable your
DB instance to receive preferred
minor DB engine version
upgrades automatically when
they become available. This is
the default behavior. Amazon
RDS performs automatic
minor version upgrades in
the maintenance window. If
you don't choose Enable auto
minor version upgrade, your
DB instance isn't upgraded
automatically when new minor
versions become available.

For more information, see
Automatically upgrading the
minor engine version.

CLI option:

--auto-
minor-
version-
upgrade |
--no-auto
-minor-ve
rsion-upg
rade

RDS API
parameter:

AutoMinor
VersionUp
grade

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 696

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Backup replication

Choose Enable replication to
another AWS Region to create
backups in an additional Region
for disaster recovery.

Then choose the Destinati
on Region for the additional
backups.

Not available
when
modifying a
DB instance.
For informati
on on enabling
cross-Region
backups using
the AWS CLI
or RDS API,
see Enabling
cross-Region
automated
backups for
Amazon RDS.

The change
is applied
asynchron
ously, as soon
as possible.

Downtime
doesn't occur
during this
change.

Oracle,
PostgreSQ
L,
SQL
Server

Available settings 697

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Backup retention period

The number of days that
automatic backups are retained.
To disable automatic backups,
set the backup retention period
to 0.

For more information, see
Introduction to backups.

Note

If you use AWS Backup
to manage your backups,
this option doesn't apply.
For information about
AWS Backup, see the
AWS Backup Developer
 Guide.

CLI option:

--backup-
retention
-period

RDS API
parameter:

BackupRet
entionPer
iod

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediate
ly, and you
change the
setting from a
nonzero value
to another
nonzero value,
the change
is applied
asynchron
ously, as soon
as possible.
 Otherwise
, the change
occurs during
the next
maintenance
window.

Downtime
occurs if you
change from
0 to a nonzero
value, or from
a nonzero
value to 0.

This applies to
both Single-AZ
and Multi-AZ
DB instances.

All DB
engines

Available settings 698

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://docs.aws.amazon.com/aws-backup/latest/devguide

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Backup window

The time range during which
automated backups of your
databases occur. The backup
window is a start time in
Universal Coordinated Time
(UTC), and a duration in hours.

For more information, see
Introduction to backups.

Note

If you use AWS Backup
to manage your backups,
this option doesn't
appear. For informati
on about AWS Backup,
see the AWS Backup
Developer Guide.

CLI option:

--preferr
ed-backup
-window

RDS API
parameter:

Preferred
BackupWin
dow

The change
is applied
asynchron
ously, as soon
as possible.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 699

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://docs.aws.amazon.com/aws-backup/latest/devguide

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Certificate authority

The certificate authority (CA) for
the server certificate used by the
DB instance.

For more information, see Using
SSL/TLS to encrypt a connection
to a DB instance or cluster.

CLI option:

--ca-cert
ificate-i
dentifier

RDS API
parameter:

CACertifi
cateIdent
ifier

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
only occurs
if the DB
engine doesn't
support
rotation
without
restart. You
can use the
describe-
db-engine-
versions AWS
CLI command
to determine
 whether the
DB engine
supports
rotation
without
restart.

All DB
engines

Available settings 700

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Copy tags to snapshots

If you have any DB instance tags,
enable this option to copy them
when you create a DB snapshot.

For more information, see
Tagging Amazon RDS resources.

CLI option:

--copy-ta
gs-to-sna
pshot or
--no-copy
-tags-to-
snapshot

RDS API
parameter:

CopyTagsT
oSnapshot

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Database port

The port that you want to use to
access the DB instance.

The port value must not match
any of the port values specified
for options in the option group
that is associated with the DB
instance.

For more information, see
Connecting to an Amazon RDS
DB instance.

CLI option:

--db-port-
number

RDS API
parameter:

DBPortNum
ber

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

The DB
instance is
rebooted
immediately.

All DB
engines

Available settings 701

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

DB engine version

The version of the DB engine
that you want to use. Before you
upgrade your production DB
instance, we recommend that
you test the upgrade process on
a test DB instance. Doing this
helps verify its duration and
validate your applications.

For more information, see
Upgrading a DB instance engine
version.

CLI option:

--engine-
version

RDS API
parameter:

EngineVer
sion

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
occurs during
this change.

All DB
engines

DB instance class

The DB instance class that you
want to use.

For more information, see DB
instance classes.

CLI option:

--db-inst
ance-clas
s

RDS API
parameter:

DBInstanc
eClass

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
occurs during
this change.

All DB
engines

Available settings 702

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

DB instance identifier

The new DB instance identifie
r. This value is stored as a
lowercase string.

For more information about
the effects of renaming a DB
instance, see Renaming a DB
instance.

CLI option:

--new-db-
instance-
identifie
r

RDS API
parameter:

NewDBInst
anceIdent
ifier

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
occurs during
this change
unless your DB
engine version
supports
dynamic SSL
upload. To
determine
whether
your version
requires a
restart, run the
following AWS
CLI command:

aws rds
 describe-
db-engine
-versions
 \
--default-
only \
--engin
e your-db-
engine \
--query
 'DBEngine
Versions[
*].Suppor
tsCertifi
cateRotat
ionWithou
tRestart'

All DB
engines

Available settings 703

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

DB parameter group

The DB parameter group that
you want associated with the DB
instance.

For more information, see
Parameter groups for Amazon
RDS.

CLI option:

--db-para
meter-gro
up-name

RDS API
parameter:

DBParamet
erGroupNa
me

The associati
on of the new
DB parameter
group with
the DB
instance occurs
immediately.

Downtime
doesn't occur
when you
associate
a new DB
parameter
group with
your DB
instance.

The associati
on of a DB
parameter
group is
different from
the application
of parameter
changes within
a parameter
group. RDS
applies
modified static
and dynamic
parameter
settings in
the newly
associated
group only
after you
manually
reboot the
DB instance.
However, if

All DB
engines

Available settings 704

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

you modify
dynamic
parameter
s in the DB
parameter
group after
you associate
it with the DB
instance, these
parameter
settings
are applied
immediate
ly without
requiring a
reboot.

For more
information,
see Parameter
groups for
Amazon RDS
and Rebooting
a DB instance.

Available settings 705

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Dedicated Log Volume

Use a dedicated log volume
(DLV) to store database transacti
on logs on a storage volume
that's separate from the volume
containing the database tables.

For more information, see Using
a dedicated log volume (DLV).

CLI option:

-dedicate
d-log-vol
ume

RDS API
parameter:

Dedicated
LogVolume

The change
is applied
when the DB
instance is
rebooted.

Downtime
occurs while
the DB
instance is
rebooted.

MariaDB,
MySQL,
PostgreSQ
L

Deletion protection

Enable deletion protection to
prevent your DB instance from
being deleted.

For more information, see
Deleting a DB instance.

CLI option:

--deletio
n-protect
ion|--no-
deletion-
protectio
n

RDS API
parameter:

DeletionP
rotection

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 706

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Enhanced Monitoring

Enable Enhanced Monitoring to
enable gathering metrics in real
time for the operating system
that your DB instance runs on.

For more information, see
Monitoring OS metrics with
Enhanced Monitoring.

CLI option:

--monitor
ing-inter
val and
--monitor
ing-role-
arn

RDS API
parameter:

Monitorin
gInterval

 and
Monitorin
gRoleArn

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 707

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

IAM DB authentication

Enable IAM DB authentication
to authenticate database users
through users and roles.

For more information, see IAM
database authentication for
MariaDB, MySQL, and PostgreSQ
L.

CLI option:

--enable-
iam-datab
ase-authe
ntication
|--no-ena
ble-iam-d
atabase-a
uthentica
tion

RDS API
parameter:

EnableIAM
DatabaseA
uthentica
tion

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
doesn't occur
during this
change.

Only
MariaDB,
MySQL,
and
PostgreSQ
L

Available settings 708

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Kerberos authentication

Choose the Active Directory to
move the DB instance to. The
directory must exist prior to
this operation. If a directory is
already selected, you can specify
None to remove the DB instance
from its current directory.

For more information, see
Kerberos authentication.

CLI option:

--domain and
--domain-
iam-role-
name

RDS API
parameter:

Domain and
DomainIAM
RoleName

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

A brief
downtime
occurs during
this change.

Only
Microsoft
SQL
Server,
MySQL,
Oracle,
and
PostgreSQ
L

License model

Choose bring-your-own-license
to use your license for Db2 and
Oracle.

Choose license-included to use
the general license agreement
for Microsoft SQL Server or
Oracle.

For more information, see
Amazon RDS for Db2 licensing
options, Licensing Microsoft SQL
Server on Amazon RDS, and RDS
for Oracle licensing options.

CLI option:

--license-
model

RDS API
parameter:

LicenseMo
del

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
occurs during
this change.

Only
Microsoft
SQL
Server
and
Oracle

Available settings 709

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Log exports

The types of database log files to
publish to Amazon CloudWatch
Logs.

For more information, see
Publishing database logs to
Amazon CloudWatch Logs.

CLI option:

--cloudwa
tch-logs-
export-co
nfigurati
on

RDS API
parameter:

Cloudwatc
hLogsExpo
rtConfigu
ration

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 710

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Maintenance window

The time range during which
system maintenance occurs.
System maintenance includes
upgrades, if applicable. The
maintenance window is a start
time in Universal Coordinated
Time (UTC), and a duration in
hours.

If you set the window to the
current time, there must be at
least 30 minutes between the
current time and the end of the
window. This timing helps ensure
that any pending changes are
applied.

For more information, see
Amazon RDS maintenance
window.

CLI option:

--preferr
ed-mainte
nance-win
dow

RDS API
parameter:

Preferred
Maintenan
ceWindow

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

If there are
one or more
pending
actions
that cause
downtime, and
the maintenan
ce window is
changed to
include the
current time,
those pending
actions are
applied
immediately
and downtime
occurs.

All DB
engines

Available settings 711

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Manage master credentials in
AWS Secrets Manager

Select Manage master credentia
ls in AWS Secrets Manager
to manage the master user
password in a secret in Secrets
Manager.

Optionally, choose a KMS key
to use to protect the secret.
Choose from the KMS keys in
your account, or enter the key
from a different account.

If RDS is already managing the
master user password for the
DB instance, you can rotate
the master user password
by choosing Rotate secret
immediately.

For more information, see
Password management with
Amazon RDS and AWS Secrets
Manager.

CLI option:

--manage-
master-us
er-passwo
rd | --
no-manage-
master-
user-pas
sword

--master-
user-secr
et-kms-ke
y-id

--rotate-
master-us
er-passwo
rd | --
no-rotate-
master-
user-pas
sword

RDS API
parameter:

ManageMas
terUserPa
ssword

If you are
turning on or
turning off
automatic
master user
password
managemen
t, the change
occurs
immediately.
This change
ignores
the apply
immediately
setting.

If you are
rotating the
master user
password,
you must
specify that
the change
is applied
immediately.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 712

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

MasterUse
rSecretKm
sKeyId

RotateMas
terUserPa
ssword

Multi-AZ deployment

Yes to deploy your DB instance
in multiple Availability Zones.
Otherwise, No.

For more information, see
Configuring and managing
a Multi-AZ deployment for
Amazon RDS.

CLI option:

--multi-a
z|--no-mu
lti-az

RDS API
parameter:

MultiAZ

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
doesn't occur
during this
change.
However, there
is a possible
performan
ce impact.
For more
information,
see Converting
a DB instance
to a Multi-AZ
 deployment
for Amazon
RDS.

All DB
engines

Available settings 713

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Network type

The IP addressing protocols
supported by the DB instance.

IPv4 to specify that resources
can communicate with the
DB instance only over the
Internet Protocol version 4 (IPv4)
addressing protocol.

Dual-stack mode to specify
that resources can communica
te with the DB instance over
IPv4, Internet Protocol version
6 (IPv6), or both. Use dual-stack
mode if you have any resources
that must communicate with
your DB instance over the IPv6
addressing protocol. Also, make
sure that you associate an IPv6
CIDR block with all subnets in
the DB subnet group that you
specify.

For more information, see
Amazon RDS IP addressing.

CLI option:

--network-
type

RDS API
parameter:

NetworkTy
pe

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
is possible
during this
change.

All DB
engines

Available settings 714

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

New master password

The password for your master
user. The password must contain
8–41 alphanumeric characters.

CLI option:

--master-
user-pass
word

RDS API
parameter:

MasterUse
rPassword

The change
is applied
asynchron
ously, as soon
as possible.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Option group

The option group that you want
associated with the DB instance.

For more information, see
Working with option groups.

CLI option:

--option-
group-nam
e

RDS API
parameter:

OptionGro
upName

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
doesn't occur
during this
change. One
exception
is adding
the MariaDB
Audit Plugin
to an RDS
for MariaDB
or RDS for
MySQL DB
instance,
which might
cause an
outage.

All DB
engines

Available settings 715

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Performance Insights

Enable Performance Insights
to monitor your DB instance
load so that you can analyze
and troubleshoot your database
performance.

Performance Insights isn't
available for some DB engine
versions and DB instance classes.
The Performance Insights
section doesn't appear in the
console if it isn't available for
your DB instance.

For more information, see
Monitoring DB load with
Performance Insights on Amazon
RDS and Amazon RDS DB
engine, Region, and instance
class support for Performance
Insights.

CLI option:

--enable-
performan
ce-insigh
ts| --
no-enab
le-perfor
mance-ins
ights

RDS API
parameter:

EnablePer
formanceI
nsights

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All
except
Db2

Available settings 716

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Performance Insights AWS KMS
key

The AWS KMS key identifier for
the AWS KMS key for encryptio
n of Performance Insights data.
The key identifier is the Amazon
Resource Name (ARN), AWS KMS
key identifier, or the key alias for
the KMS key.

For more information, see
Turning Performance Insights on
and off for Amazon RDS.

CLI option:

--perform
ance-insi
ghts-kms-
key-id

RDS API
parameter:

Performan
ceInsight
sKMSKeyId

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All
except
Db2

Performance Insights Retention
period

The amount of time, in days,
to retain Performance Insights
data. The retention setting in
the free tier is Default (7 days).
To retain your performance
data for longer, specify 1–24
months. For more information
about retention periods, see
Pricing and data retention for
Performance Insights.

For more information, see
Turning Performance Insights on
and off for Amazon RDS.

CLI option:

--perform
ance-insi
ghts-rete
ntion-per
iod

RDS API
parameter:

Performan
ceInsight
sRetentio
nPeriod

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All
except
Db2

Available settings 717

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Processor features

The number of CPU cores and
the number of threads per core
for the DB instance class of the
DB instance.

For more information, see
Configuring the processor for
a DB instance class in RDS for
Oracle.

CLI option:

--process
or-featur
es and --
use-def
ault-proc
essor-fea
tures |
--no-use-
default-p
rocessor-
features

RDS API
parameter:

Processor
Features
and
UseDefaul
tProcesso
rFeatures

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
occurs during
this change.

Only
Oracle

Available settings 718

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Provisioned IOPS

The Provisioned IOPS (I/O
operations per second) value
for the DB instance. This setting
is available only if you choose
one of the following for Storage
type:

• General purpose SSD (gp3)

• Provisioned IOPS SSD (io1)

• Provisioned IOPS SSD (io2)

For more information, see the
section called “Provisioned IOPS
storage” and the section called
“gp3 storage (recommended)”.

CLI option:

--iops

RDS API
parameter:

Iops

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 719

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Public access

Publicly accessible to give the
DB instance a public IP address,
meaning that it's accessible
outside the VPC. To be publicly
accessible, the DB instance also
has to be in a public subnet in
the VPC.

Not publicly accessible to make
the DB instance accessible only
from inside the VPC.

For more information, see Hiding
a DB instance in a VPC from the
internet.

To connect to a DB instance from
outside its VPC, the DB instance
must be publicly accessible. Also,
access must be granted using the
inbound rules of the DB instance'
s security group. In addition,
 other requirements must be
met. For more information, see
Can't connect to Amazon RDS DB
instance.

If your DB instance isn't publicly
accessible, you can also use an
AWS Site-to-Site VPN connectio
n or an AWS Direct Connect
connection to access it from

CLI option:

--publicl
y-accessi
ble | --
no-publ
icly-acce
ssible

RDS API
parameter:

PubliclyA
ccessible

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 720

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

a private network. For more
information, see Internetwork
traffic privacy.

Security group

The VPC security group that you
want associated with the DB
instance.

For more information, see
Controlling access with security
groups.

CLI option:

--vpc-sec
urity-gro
up-ids

RDS API
parameter:

VpcSecuri
tyGroupId
s

The change
is applied
asynchron
ously, as soon
as possible.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 721

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Storage autoscaling

Enable storage autoscaling
to enable Amazon RDS to
automatically increase storage
when needed to avoid having
your DB instance run out of
storage space.

Use Maximum storage
threshold to set the upper limit
for Amazon RDS to automatic
ally increase storage for your DB
instance. The default is 1,000
GiB.

For more information, see
Managing capacity automatic
ally with Amazon RDS storage
autoscaling.

CLI option:

--max-all
ocated-st
orage

RDS API
parameter:

MaxAlloca
tedStorag
e

The change
occurs
immediately.
This setting
ignores
the apply
immediately
setting.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 722

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Storage throughput

The new storage throughput
value for the DB instance. This
setting is available only if you
choose General purpose SSD
(gp3) for Storage type.

For more information, see the
section called “gp3 storage
(recommended)”.

CLI option:

--storage-
throughput

RDS API
parameter:

StorageTh
roughput

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
doesn't occur
during this
change.

All DB
engines

Available settings 723

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

Storage type

The storage type that you want
to use.

If you choose General Purpose
SSD (gp3), you can provision
additional Provisioned IOPS
and Storage throughput under
Advanced settings.

If you choose Provisioned IOPS
SSD (io1) or Provisioned IOPS
SSD (io2), enter the Provisioned
IOPS value.

After Amazon RDS begins to
modify your DB instance to
change the storage size or type,
you can't submit another request
to change the storage size,
performance, or type for six
hours.

For more information, see
Amazon RDS storage types.

CLI option:

--storage-
type

RDS API
parameter:

StorageTy
pe

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

The following
changes all
result in a brief
downtime
while the
process starts.
After that,
you can use
your database
normally while
the change
takes place.

• From
General
Purpose
(SSD) or
Provisioned
IOPS (SSD)
to Magnetic.

• From
Magnetic
to General
Purpose
(SSD) or
Provisioned
IOPS (SSD).

All DB
engines

Available settings 724

Amazon Relational Database Service User Guide

Console setting and description CLI option
and RDS API
parameter

When the
change occurs

Downtime
notes

Supported
DB
engines

DB subnet group

The DB subnet group for the DB
instance. You can use this setting
to move your DB instance to a
different VPC.

For more information, see
Amazon VPC and Amazon RDS.

CLI option:

--db-subn
et-group-
name

RDS API
parameter:

DBSubnetG
roupName

If you choose
to apply
the change
immediate
ly, it occurs
immediately.

If you don't
choose to
apply the
change
immediately, it
occurs during
the next
maintenance
window.

Downtime
occurs during
this change.

All DB
engines

Available settings 725

Amazon Relational Database Service User Guide

Maintaining a DB instance

Periodically, Amazon RDS performs maintenance on Amazon RDS resources. The following topics
describe these maintenance actions and how to apply them.

Overview of DB instance maintenance updates

Maintenance most often involves updates to the following resources in your DB instance:

• Underlying hardware

• Underlying operating system (OS)

• Database engine version

Updates to the operating system most often occur for security issues. We recommend that you do
them as soon as possible. For more information about operating system updates, see the section
called “Applying updates”.

Topics

• Offline resources during maintenance updates

• Deferred DB instance modifications

• Eventual consistency for the DescribePendingMaintenanceActions API

Offline resources during maintenance updates

Some maintenance items require that Amazon RDS take your DB instance offline for a short time.
Maintenance items that require a resource to be offline include required operating system or
database patching. Required patching is automatically scheduled only for patches that are related
to security and instance reliability. Such patching occurs infrequently, typically once every few
months. It seldom requires more than a fraction of your maintenance window.

Deferred DB instance modifications

Deferred DB instance modifications that you have chosen not to apply immediately are applied
during the maintenance window. For example, you might choose to change the DB instance class
or parameter group during the maintenance window. Such modifications that you specify using
the pending reboot setting don't show up in the Pending maintenance list. For information about
modifying a DB instance, see Modifying an Amazon RDS DB instance.

Maintaining a DB instance 726

Amazon Relational Database Service User Guide

To see the modifications that are pending for the next maintenance window, use the describe-db-
instances AWS CLI command and check the PendingModifiedValues field.

Eventual consistency for the DescribePendingMaintenanceActions API

The Amazon RDS DescribePendingMaintenanceActions API follows an eventual consistency
model. This means that the result of the DescribePendingMaintenanceActions command
might not be immediately visible to all subsequent RDS commands. Keep this in mind when you
use DescribePendingMaintenanceActions immediately after using a previous API command.

Eventual consistency can affect the way you managed your maintenance updates.
For example, if you run the ApplyPendingMaintenanceActions command
to update the database engine version for a DB instance, it will eventually
be visible to DescribePendingMaintenanceActions. In this scenario,
DescribePendingMaintenanceActions might show that the maintenance action wasn't
applied even though it was.

To manage eventual consistency, you can do the following:

• Confirm the state of your DB instance before you run a command to modify it. Run the
appropriate DescribePendingMaintenanceActions command using an exponential backoff
algorithm to ensure that you allow enough time for the previous command to propagate
through the system. To do this, run the DescribePendingMaintenanceActions command
repeatedly, starting with a couple of seconds of wait time, and increasing gradually up to five
minutes of wait time.

• Add wait time between subsequent commands, even if a
DescribePendingMaintenanceActions command returns an accurate response. Apply
an exponential backoff algorithm starting with a couple of seconds of wait time, and increase
gradually up to about five minutes of wait time.

Viewing pending maintenance updates

View whether a maintenance update is available for your DB instance by using the RDS console, the
AWS CLI, or the RDS API. If an update is available, it is indicated in the Maintenance column for the
DB instance on the Amazon RDS console, as shown in this figure.

Viewing pending maintenance 727

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-instances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

If no maintenance update is available for a DB instance, the column value is none for it.

If a maintenance update is available for a DB instance, the following column values are possible:

• required – The maintenance action will be applied to the resource and can't be deferred
indefinitely.

• available – The maintenance action is available, but it will not be applied to the resource
automatically. You can apply it manually.

• next window – The maintenance action will be applied to the resource during the next
maintenance window.

• In progress – The maintenance action is being applied to the resource.

If an update is available, you can do one of the following:

• If the maintenance value is next window, defer the maintenance actions by choosing Defer
upgrade from Actions. You can't defer a maintenance action that has already started.

• Apply the maintenance actions immediately.

• Apply the maintenance actions during your next maintenance window.

• Take no action.

Viewing pending maintenance 728

Amazon Relational Database Service User Guide

To take an action by using the AWS Management Console

1. Choose the DB instance to show its details.

2. Choose Maintenance & backups. The pending maintenance actions appear.

3. Choose the action to take, then choose when to apply it.

The maintenance window determines when pending operations start, but doesn't limit the total
run time of these operations. Maintenance operations aren't guaranteed to finish before the
maintenance window ends, and can continue beyond the specified end time. For more information,
see Amazon RDS maintenance window.

You can also view whether a maintenance update is available for your DB instance by running the
describe-pending-maintenance-actions AWS CLI command.

For information about applying maintenance updates, see Applying updates to a DB instance.

Maintenance actions for Amazon RDS

The following maintenance actions apply to RDS DB instances:

• ca-certificate-rotation – Update the Amazon RDS Certificate Authority certificate for the
DB instance.

• db-upgrade – Upgrade the DB engine version for the DB instance.

• hardware-maintenance – Perform maintenance on the underlying hardware for the DB
instance.

• system-update – Update the operating system for the DB instance.

Viewing pending maintenance 729

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Relational Database Service User Guide

Maintenance for Multi-AZ deployments

Running a DB instance as a Multi-AZ deployment can further reduce the impact of a maintenance
event. This result is because Amazon RDS applies operating system updates by following these
steps:

1. Perform maintenance on the standby.

2. Promote the standby to primary.

3. Perform maintenance on the old primary, which becomes the new standby.

If you upgrade the database engine for your DB instance in a Multi-AZ deployment, Amazon RDS
modifies both primary and secondary DB instances at the same time. In this case, both the primary
and secondary DB instances in the Multi-AZ deployment are unavailable during the upgrade. This
operation causes downtime until the upgrade is complete. The duration of the downtime varies
based on the size of your DB instance.

If there are underlying operating system patches that need to be applied, a short Multi-AZ failover
is required to apply the patches to the primary DB instance. This failover typically lasts less than a
minute.

If your DB instance runs RDS for MySQL, RDS for PostgreSQL, or RDS for MariaDB, you can
minimize the downtime required for an upgrade by using a blue/green deployment. For more
information, see Using Amazon RDS Blue/Green Deployments for database updates. If you upgrade
an RDS for SQL Server or RDS Custom for SQL Server DB instance in a Multi-AZ deployment, then
Amazon RDS performs rolling upgrades, so you have an outage only for the duration of a failover.
For more information, see Multi-AZ and in-memory optimization considerations.

For more information about Multi-AZ deployments, see Configuring and managing a Multi-AZ
deployment for Amazon RDS.

Amazon RDS maintenance window

The maintenance window is a weekly time interval during which any system changes are applied.
Every DB instance has a weekly maintenance window. The maintenance window is an opportunity
to control when modifications and software patching occur. For more information about adjusting
the maintenance window, see Adjusting the preferred DB instance maintenance window.

Maintenance for Multi-AZ deployments 730

Amazon Relational Database Service User Guide

RDS consumes some of the resources on your DB instance while maintenance is being applied. You
might observe a minimal effect on performance. For a DB instance, on rare occasions, a Multi-AZ
failover might be required for a maintenance update to complete.

If a maintenance event is scheduled for a given week, it's initiated during the 30-minute
maintenance window you identify. Most maintenance events also complete during the 30-minute
maintenance window, although larger maintenance events may take more than 30 minutes to
complete. The maintenance window is paused when the DB instance is stopped.

The 30-minute maintenance window is selected at random from an 8-hour block of time per
region. If you don't specify a maintenance window when you create the DB instance, RDS assigns a
30-minute maintenance window on a randomly selected day of the week.

The following table shows the time blocks for each AWS Region from which default maintenance
windows are assigned.

Region Name Region Time Block

US East (N. Virginia) us-east-1 03:00–11:00 UTC

US East (Ohio) us-east-2 03:00–11:00 UTC

US West (N. Californi
a)

us-west-1 06:00–14:00 UTC

US West (Oregon) us-west-2 06:00–14:00 UTC

Africa (Cape Town) af-south-1 03:00–11:00 UTC

Asia Pacific (Hong
Kong)

ap-east-1 06:00–14:00 UTC

Asia Pacific
(Hyderabad)

ap-south-2 06:30–14:30 UTC

Asia Pacific (Jakarta) ap-southeast-3 08:00–16:00 UTC

Asia Pacific (Malaysia
)

ap-southeast-5 09:00–17:00 UTC

Maintenance window 731

Amazon Relational Database Service User Guide

Region Name Region Time Block

Asia Pacific
(Melbourne)

ap-southeast-4 11:00–19:00 UTC

Asia Pacific (Mumbai) ap-south-1 06:00–14:00 UTC

Asia Pacific (Osaka) ap-northeast-3 22:00–23:59 UTC

Asia Pacific (Seoul) ap-northeast-2 13:00–21:00 UTC

Asia Pacific (Singapor
e)

ap-southeast-1 14:00–22:00 UTC

Asia Pacific (Sydney) ap-southeast-2 12:00–20:00 UTC

Asia Pacific (Tokyo) ap-northeast-1 13:00–21:00 UTC

Canada (Central) ca-central-1 03:00–11:00 UTC

Canada West
(Calgary)

ca-west-1 18:00–02:00 UTC

China (Beijing) cn-north-1 06:00–14:00 UTC

China (Ningxia) cn-northwest-1 06:00–14:00 UTC

Europe (Frankfurt) eu-central-1 21:00–05:00 UTC

Europe (Ireland) eu-west-1 22:00–06:00 UTC

Europe (London) eu-west-2 22:00–06:00 UTC

Europe (Milan) eu-south-1 02:00–10:00 UTC

Europe (Paris) eu-west-3 23:59–07:29 UTC

Europe (Spain) eu-south-2 02:00–10:00 UTC

Europe (Stockholm) eu-north-1 23:00–07:00 UTC

Europe (Zurich) eu-central-2 02:00–10:00 UTC

Maintenance window 732

Amazon Relational Database Service User Guide

Region Name Region Time Block

Israel (Tel Aviv) il-central-1 03:00–11:00 UTC

Middle East (Bahrain) me-south-1 06:00–14:00 UTC

Middle East (UAE) me-central-1 05:00–13:00 UTC

South America (São
Paulo)

sa-east-1 00:00–08:00 UTC

AWS GovCloud (US-
East)

us-gov-east-1 17:00–01:00 UTC

AWS GovCloud (US-
West)

us-gov-west-1 06:00–14:00 UTC

Topics

• Adjusting the preferred DB instance maintenance window

Adjusting the preferred DB instance maintenance window

The maintenance window should fall at the time of lowest usage and thus might need modification
from time to time. Your DB instance is unavailable during this time only if the system changes,
such as a change in DB instance class, are being applied and require an outage. Your DB instance is
unavailable only for the minimum amount of time required to make the necessary changes.

In the following example, you adjust the preferred maintenance window for a DB instance.

For this example, we assume that a DB instance named mydbinstance exists and has a preferred
maintenance window of "Sun:05:00-Sun:06:00" UTC.

Console

To adjust the preferred maintenance window

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Maintenance window 733

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Databases, and then select the DB instance that you want to
modify.

3. Choose Modify. The Modify DB instance page appears.

4. In the Maintenance section, update the maintenance window.

Note

The maintenance window and the backup window for the DB instance cannot overlap.
If you enter a value for the maintenance window that overlaps the backup window, an
error message appears.

5. Choose Continue.

On the confirmation page, review your changes.

6. To apply the changes to the maintenance window immediately, select Apply immediately.

7. Choose Modify DB instance to save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To adjust the preferred maintenance window, use the AWS CLI modify-db-instance command
with the following parameters:

• --db-instance-identifier

• --preferred-maintenance-window

Example

The following code example sets the maintenance window to Tuesdays from 4:00-4:30AM UTC.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
--db-instance-identifier mydbinstance \
--preferred-maintenance-window Tue:04:00-Tue:04:30

For Windows:

Maintenance window 734

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

aws rds modify-db-instance ^
--db-instance-identifier mydbinstance ^
--preferred-maintenance-window Tue:04:00-Tue:04:30

RDS API

To adjust the preferred maintenance window, use the Amazon RDS API ModifyDBInstance
operation with the following parameters:

• DBInstanceIdentifier

• PreferredMaintenanceWindow

Maintenance window 735

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Applying updates to a DB instance

With Amazon RDS, you can choose when to apply maintenance operations. You can decide when
Amazon RDS applies updates by using the AWS Management Console, AWS CLI, or RDS API.

Console

To manage an update for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that has a required update.

4. For Actions, choose one of the following:

• Patch now

• Patch at next window

Note

If you choose Patch at next window and later want to delay the update, you can
choose Defer upgrade. You can't defer a maintenance action if it has already started.
To cancel a maintenance action, modify the DB instance and disable Auto minor
version upgrade.

AWS CLI

To apply a pending update to a DB instance, use the apply-pending-maintenance-action AWS CLI
command.

Example

For Linux, macOS, or Unix:

aws rds apply-pending-maintenance-action \
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db \
 --apply-action system-update \
 --opt-in-type immediate

Applying updates 736

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/apply-pending-maintenance-action.html

Amazon Relational Database Service User Guide

For Windows:

aws rds apply-pending-maintenance-action ^
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db ^
 --apply-action system-update ^
 --opt-in-type immediate

Note

To defer a maintenance action, specify undo-opt-in for --opt-in-type. You can't
specify undo-opt-in for --opt-in-type if the maintenance action has already started.
To cancel a maintenance action, run the modify-db-instance AWS CLI command and specify
--no-auto-minor-version-upgrade.

To return a list of resources that have at least one pending update, use the describe-pending-
maintenance-actions AWS CLI command.

Example

For Linux, macOS, or Unix:

aws rds describe-pending-maintenance-actions \
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db

For Windows:

aws rds describe-pending-maintenance-actions ^
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db

You can also return a list of resources for a DB instance by specifying the --filters parameter
of the describe-pending-maintenance-actions AWS CLI command. The format for the --
filters command is Name=filter-name,Value=resource-id,....

The following are the accepted values for the Name parameter of a filter:

• db-instance-id – Accepts a list of DB instance identifiers or Amazon Resource Names (ARNs).
The returned list only includes pending maintenance actions for the DB instances identified by
these identifiers or ARNs.

Applying updates 737

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Relational Database Service User Guide

• db-cluster-id – Accepts a list of DB cluster identifiers or ARNs for Amazon Aurora. The
returned list only includes pending maintenance actions for the DB clusters identified by these
identifiers or ARNs.

For example, the following example returns the pending maintenance actions for the sample-
instance1 and sample-instance2 DB instances.

Example

For Linux, macOS, or Unix:

aws rds describe-pending-maintenance-actions \
 --filters Name=db-instance-id,Values=sample-instance1,sample-instance2

For Windows:

aws rds describe-pending-maintenance-actions ^
 --filters Name=db-instance-id,Values=sample-instance1,sample-instance2

RDS API

To apply an update to a DB instance, call the Amazon RDS API
ApplyPendingMaintenanceAction operation.

To return a list of resources that have at least one pending update, call the Amazon RDS API
DescribePendingMaintenanceActions operation.

Operating system updates for RDS DB instances

RDS for Db2, RDS for MariaDB, RDS for MySQL, RDS for PostgreSQL, RDS for SQL Server, and RDS
for Oracle DB instances occasionally require operating system updates. Amazon RDS upgrades
the operating system to a newer version to improve database performance and customers’ overall
security posture. Typically, the updates take about 10 minutes. Operating system updates don't
change the DB engine version or DB instance class of a DB instance.

Operating system updates can be either optional or mandatory:

• An optional update can be applied at any time. While these updates are optional, we
recommend that you apply them periodically to keep your RDS fleet up to date. RDS does not
apply these updates automatically.

Operating system updates 738

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ApplyPendingMaintenanceAction.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribePendingMaintenanceActions.html

Amazon Relational Database Service User Guide

To be notified when a new, optional operating system patch becomes available, you can
subscribe to RDS-EVENT-0230 in the security patching event category. For information about
subscribing to RDS events, see Subscribing to Amazon RDS event notification.

Note

RDS-EVENT-0230 doesn't apply to operating system distribution upgrades.

• A mandatory update is required and has an apply date. Plan to schedule your update before this
apply date. After the specified apply date, Amazon RDS automatically upgrades the operating
system for your DB instance to the latest version during one of your assigned maintenance
windows.

Note

Staying current on all optional and mandatory updates might be required to meet various
compliance obligations. We recommend that you apply all updates made available by RDS
routinely during your maintenance windows.

You can use the AWS Management Console or the AWS CLI to get information about the type of
operating system upgrade.

Console

To get update information using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB instance.

3. Choose Maintenance & backups.

4. In the Pending maintenance section, find the operating system update, and check the Status
value.

In the AWS Management Console, an optional update has its maintenance Status set to available
and doesn't have an Apply date, as shown in the following image.

Operating system updates 739

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

A mandatory update has its maintenance Status set to required and has an Apply date, as shown
in the following image.

AWS CLI

To get update information from the AWS CLI, use the describe-pending-maintenance-actions
command.

aws rds describe-pending-maintenance-actions

A mandatory operating system update includes an AutoAppliedAfterDate value and a
CurrentApplyDate value. An optional operating system update doesn't include these values.

The following output shows a mandatory operating system update.

{
 "ResourceIdentifier": "arn:aws:rds:us-east-1:123456789012:db:mydb1",
 "PendingMaintenanceActionDetails": [
 {

Operating system updates 740

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Relational Database Service User Guide

 "Action": "system-update",
 "AutoAppliedAfterDate": "2022-08-31T00:00:00+00:00",
 "CurrentApplyDate": "2022-08-31T00:00:00+00:00",
 "Description": "New Operating System update is available"
 }
]
}

The following output shows an optional operating system update.

{
 "ResourceIdentifier": "arn:aws:rds:us-east-1:123456789012:db:mydb2",
 "PendingMaintenanceActionDetails": [
 {
 "Action": "system-update",
 "Description": "New Operating System update is available"
 }
]
}

Availability of operating system updates

Operating system updates are specific to DB engine version and DB instance class. Therefore,
DB instances receive or require updates at different times. When an operating system update is
available for your DB instance based on its engine version and instance class, the update appears in
the console. It can also be viewed by running the describe-pending-maintenance-actions AWS CLI
command or by calling the DescribePendingMaintenanceActions RDS API operation. If an update is
available for your instance, you can update your operating system by following the instructions in
Applying updates to a DB instance.

Operating system updates 741

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribePendingMaintenanceActions.html

Amazon Relational Database Service User Guide

Upgrading a DB instance engine version

Amazon RDS provides newer versions of each supported database engine so you can keep your
DB instance up-to-date. Newer versions can include bug fixes, security enhancements, and other
improvements for the database engine. When Amazon RDS supports a new version of a database
engine, you can choose how and when to upgrade your database DB instances.

There are two kinds of upgrades: major version upgrades and minor version upgrades. In general,
a major engine version upgrade can introduce changes that are not compatible with existing
applications. In contrast, a minor version upgrade includes only changes that are backward-
compatible with existing applications.

For Multi-AZ DB clusters, major version upgrades are only supported for RDS for PostgreSQL.
Minor version upgrades are supported for all engines that support Multi-AZ DB clusters. For more
information, see the section called “Upgrading a Multi-AZ DB cluster”.

The version numbering sequence is specific to each database engine. For example, RDS for MySQL
5.7 and 8.0 are major engine versions and upgrading from any 5.7 version to any 8.0 version is a
major version upgrade. RDS for MySQL version 5.7.22 and 5.7.23 are minor versions and upgrading
from 5.7.22 to 5.7.23 is a minor version upgrade.

Important

You can't modify a DB instance when it is being upgraded. During an upgrade, the DB
instance status is upgrading.

For more information about major and minor version upgrades for a specific DB engine, see the
following documentation for your DB engine:

• Upgrades of the MariaDB DB engine

• Upgrades of the Microsoft SQL Server DB engine

• Upgrades of the RDS for MySQL DB engine

• Upgrading the RDS for Oracle DB engine

• Upgrades of the RDS for PostgreSQL DB engine

Upgrading the engine version 742

Amazon Relational Database Service User Guide

For major version upgrades, you must manually modify the DB engine version through the AWS
Management Console, AWS CLI, or RDS API. For minor version upgrades, you can manually modify
the engine version, or you can choose to enable the Auto minor version upgrade option.

Note

Database engine upgrades require downtime. You can minimize the downtime required for
DB instance upgrade by using a blue/green deployment. For more information, see Using
Amazon RDS Blue/Green Deployments for database updates.

Topics

• Manually upgrading the engine version

• Automatically upgrading the minor engine version

Manually upgrading the engine version

To manually upgrade the engine version of a DB instance, you can use the AWS Management
Console, the AWS CLI, or the RDS API.

Console

To upgrade the engine version of a DB instance by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
upgrade.

3. Choose Modify. The Modify DB instance page appears.

4. For DB engine version, choose the new version.

5. Choose Continue and check the summary of modifications.

6. Decide when to schedule your upgrade:

• To put the changes into the pending modifications queue, choose Apply during the next
scheduled maintenance window. During the next maintenance window, RDS applies any
pending changes in the queue.

Manually upgrading the engine version 743

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• To apply the changes immediately, choose Apply immediately. Choosing this option can
cause an outage in some cases. For more information, see Using the schedule modifications
setting.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB instance
to save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To upgrade the engine version of a DB instance, use the CLI modify-db-instance command. Specify
the following parameters:

• --db-instance-identifier – the name of the DB instance.

• --engine-version – the version number of the database engine to upgrade to.

For information about valid engine versions, use the AWS CLI describe-db-engine-versions
command.

• --allow-major-version-upgrade – to upgrade the major version.

• --no-apply-immediately – to apply changes during the next maintenance window. To apply
changes immediately, use --apply-immediately.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --engine-version new_version \
 --allow-major-version-upgrade \
 --no-apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --engine-version new_version ^
 --allow-major-version-upgrade ^

Manually upgrading the engine version 744

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

 --no-apply-immediately

RDS API

To upgrade the engine version of a DB instance, use the ModifyDBInstance action. Specify the
following parameters:

• DBInstanceIdentifier – the name of the DB instance, for example mydbinstance.

• EngineVersion – the version number of the database engine to upgrade to. For information
about valid engine versions, use the DescribeDBEngineVersions operation.

• AllowMajorVersionUpgrade – whether to allow a major version upgrade. To do so, set the
value to true.

• ApplyImmediately – whether to apply changes immediately or during the next maintenance
window. To apply changes immediately, set the value to true. To apply changes during the next
maintenance window, set the value to false.

Automatically upgrading the minor engine version

Automatic minor version upgrades periodically update your database to recent database engine
versions. However, the upgrade might not always include the latest database engine version. If
you need to keep your databases on specific versions at particular times, we recommend that you
manually upgrade to the database versions that you need according to your required schedule.
In cases of critical security issues or when a version reaches its end-of-support date, Amazon RDS
might apply a minor version upgrade even if you haven't enabled the Auto minor version upgrade
option. For more information, see the upgrade documentation for your specific database engine.

• Automatic minor version upgrades for RDS for PostgreSQL

• Automatic minor version upgrades for RDS for MySQL

• Automatic minor version upgrades for RDS for MariaDB

• Oracle minor version upgrades

• Upgrades of the Microsoft SQL Server DB engine

• Db2 on Amazon RDS versions

Topics

• How automatic minor version upgrades work

Automatically upgrading the minor engine version 745

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBEngineVersions.html

Amazon Relational Database Service User Guide

• Turning on automatic minor version upgrades

• Determining the availability of maintenance updates

• Finding automatic minor version upgrade targets

How automatic minor version upgrades work

The upgrade target is the DB engine version to which Amazon RDS upgrades your database. A
minor engine version is designated as the upgrade target when the following conditions are met:

• The database is running a minor version of the DB engine that is lower than the target minor
engine version.

You can find the current engine version for your DB instance by looking on the Configuration tab
of the database details page or running the CLI command describe-db-instances.

• The database has automatic minor version upgrade enabled.

RDS schedules the upgrade to run automatically in the maintenance window. During the upgrade,
RDS does the following:

1. Runs a system precheck to make sure the database is healthy and ready to be upgraded

2. Upgrades the DB engine to the target minor engine version

3. Runs post-upgrade checks

4. Marks the database upgrade as complete

Automatic upgrades incur downtime. The length of the downtime depends on various factors,
including the DB engine type and the size of the database.

Turning on automatic minor version upgrades

You can control whether auto minor version upgrade is enabled for a DB instance when you
perform the following tasks:

• Creating a DB instance

• Modifying a DB instance

• Creating a read replica

• Restoring a DB instance from a snapshot

Automatically upgrading the minor engine version 746

Amazon Relational Database Service User Guide

• Restoring a DB instance to a specific time

• Importing a DB instance from Amazon S3 (for a MySQL backup on Amazon S3)

When you perform these tasks, you can control whether auto minor version upgrade is enabled for
the DB instance in the following ways:

• Using the console, set the Auto minor version upgrade option.

• Using the AWS CLI, set the --auto-minor-version-upgrade|--no-auto-minor-
version-upgrade option.

• Using the RDS API, set the AutoMinorVersionUpgrade parameter.

Determining the availability of maintenance updates

To determine whether a maintenance update, such as a DB engine version upgrade, is available
for your DB instance, you can use the console, AWS CLI, or RDS API. You can also upgrade the
DB engine version manually and adjust the maintenance window. For more information, see
Maintaining a DB instance.

Finding automatic minor version upgrade targets

You can use the following AWS CLI command to determine the current automatic minor upgrade
target version for a specified minor DB engine version in a specific AWS Region. You can find
the possible --engine values for this command in the description for the Engine parameter in
CreateDBInstance.

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine engine \
--engine-version minor-version \
--region region \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output text

For Windows:

aws rds describe-db-engine-versions ^

Automatically upgrading the minor engine version 747

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

--engine engine ^
--engine-version minor-version ^
--region region ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output text

For example, the following AWS CLI command determines the automatic minor upgrade target for
MySQL minor version 8.0.11 in the US East (Ohio) AWS Region (us-east-2).

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine mysql \
--engine-version 8.0.11 \
--region us-east-2 \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output table

For Windows:

aws rds describe-db-engine-versions ^
--engine mysql ^
--engine-version 8.0.11 ^
--region us-east-2 ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output table

Your output is similar to the following.

| DescribeDBEngineVersions |
+--------------+-----------------+
| AutoUpgrade | EngineVersion |
+--------------+-----------------+
False	8.0.15
False	8.0.16
False	8.0.17
False	8.0.19
False	8.0.20

Automatically upgrading the minor engine version 748

Amazon Relational Database Service User Guide

False	8.0.21
True	8.0.23
False	8.0.25
+--------------+-----------------+

In this example, the AutoUpgrade value is True for MySQL version 8.0.23. So, the automatic
minor upgrade target is MySQL version 8.0.23, which is highlighted in the output.

Important

If you plan to migrate an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB
cluster soon, we strongly recommend that you turn off auto minor version upgrades for
the DB instance early during planning. Migration to Aurora PostgreSQL might be delayed if
the RDS for PostgreSQL version isn't yet supported by Aurora PostgreSQL. For information
about Aurora PostgreSQL versions, see Engine versions for Amazon Aurora PostgreSQL.

Automatically upgrading the minor engine version 749

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

Amazon Relational Database Service User Guide

Renaming a DB instance

You can rename a DB instance by using the AWS Management Console, the AWS CLI modify-
db-instance command, or the Amazon RDS API ModifyDBInstance action. Renaming a DB
instance can have far-reaching effects. The following is a list of considerations before you rename a
DB instance.

• When you rename a DB instance, the endpoint for the DB instance changes, because the URL
includes the name you assigned to the DB instance. You should always redirect traffic from the
old URL to the new one.

• When you rename a DB instance, the old DNS name that was used by the DB instance is
immediately deleted, although it could remain cached for a few minutes. The new DNS name for
the renamed DB instance becomes effective in about 10 minutes. The renamed DB instance is not
available until the new name becomes effective.

• You cannot use an existing DB instance name when renaming an instance.

• All read replicas associated with a DB instance remain associated with that instance after it is
renamed. For example, suppose you have a DB instance that serves your production database
and the instance has several associated read replicas. If you rename the DB instance and then
replace it in the production environment with a DB snapshot, the DB instance that you renamed
will still have the read replicas associated with it.

• Metrics and events associated with the name of a DB instance are maintained if you reuse a DB
instance name. For example, if you promote a read replica and rename it to be the name of the
previous primary DB instance, the events and metrics associated with the primary DB instance
are associated with the renamed instance.

• DB instance tags remain with the DB instance, regardless of renaming.

• DB snapshots are retained for a renamed DB instance.

Note

A DB instance is an isolated database environment running in the cloud. A DB instance
can host multiple databases, or a single Oracle database with multiple schemas. For
information about changing a database name, see the documentation for your DB engine.

Renaming a DB instance 750

Amazon Relational Database Service User Guide

Renaming to replace an existing DB instance

The most common reasons for renaming a DB instance are that you are promoting a read replica
or you are restoring data from a DB snapshot or point-in-time recovery (PITR). By renaming the
database, you can replace the DB instance without having to change any application code that
references the DB instance. In these cases, you would do the following:

1. Stop all traffic going to the primary DB instance. This can involve redirecting traffic from
accessing the databases on the DB instance or some other way you want to use to prevent traffic
from accessing your databases on the DB instance.

2. Rename the primary DB instance to a name that indicates it is no longer the primary DB instance
as described later in this topic.

3. Create a new primary DB instance by restoring from a DB snapshot or by promoting a read
replica, and then give the new instance the name of the previous primary DB instance.

4. Associate any read replicas with the new primary DB instance.

If you delete the old primary DB instance, you are responsible for deleting any unwanted DB
snapshots of the old primary DB instance.

For information about promoting a read replica, see Promoting a read replica to be a standalone
DB instance.

Important

The DB instance is rebooted when it is renamed.

Console

To rename a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to rename.

4. Choose Modify.

5. In Settings, enter a new name for DB instance identifier.

Renaming to replace an existing DB instance 751

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. Choose Continue.

7. To apply the changes immediately, choose Apply immediately. Choosing this option can cause
an outage in some cases. For more information, see Modifying an Amazon RDS DB instance.

8. On the confirmation page, review your changes. If they are correct, choose Modify DB
Instance to save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To rename a DB instance, use the AWS CLI command modify-db-instance. Provide the current
--db-instance-identifier value and --new-db-instance-identifier parameter with
the new name of the DB instance.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier DBInstanceIdentifier \
 --new-db-instance-identifier NewDBInstanceIdentifier

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier DBInstanceIdentifier ^
 --new-db-instance-identifier NewDBInstanceIdentifier

RDS API

To rename a DB instance, call Amazon RDS API operation ModifyDBInstance with the following
parameters:

• DBInstanceIdentifier — existing name for the instance

• NewDBInstanceIdentifier — new name for the instance

Renaming to replace an existing DB instance 752

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Working with DB instance read replicas

A read replica is a read-only copy of a DB instance. You can reduce the load on your primary
DB instance by routing queries from your applications to the read replica. In this way, you can
elastically scale out beyond the capacity constraints of a single DB instance for read-heavy
database workloads.

To create a read replica from a source DB instance, Amazon RDS uses the built-in replication
features of the DB engine. For information about using read replicas with a specific engine, see the
following sections:

• Working with MariaDB read replicas

• Working with read replicas for Microsoft SQL Server in Amazon RDS

• Working with MySQL read replicas

• Working with read replicas for Amazon RDS for Oracle

• Working with read replicas for Amazon RDS for PostgreSQL

After you create a read replica from a source DB instance, the source becomes the primary
DB instance. When you make updates to the primary DB instance, Amazon RDS copies them
asynchronously to the read replica. The following diagram shows a source DB instance replicating
to a read replica in a different Availability Zone (AZ). Clients have read/write access to the primary
DB instance and read-only access to the replica.

Working with DB instance read replicas 753

Amazon Relational Database Service User Guide

Read replicas are billed as standard DB instances at the same rates as the DB instance class used
for the replica. You aren't charged for the data transfer incurred in replicating data between the
source DB instance and a read replica within the same AWS Region. For more information, see
Cross-Region replication costs and DB instance billing for Amazon RDS.

Topics

• Overview of Amazon RDS read replicas

• Creating a read replica

• Promoting a read replica to be a standalone DB instance

• Monitoring read replication

• Creating a read replica in a different AWS Region

Working with DB instance read replicas 754

Amazon Relational Database Service User Guide

Overview of Amazon RDS read replicas

The following sections discuss DB instance read replicas. For information about Multi-AZ DB cluster
read replicas, see the section called “Working with Multi-AZ DB cluster read replicas”.

Topics

• Use cases for read replicas

• How read replicas work

• Read replicas in a Multi-AZ deployment

• Cross-Region read replicas

• Differences among read replicas for DB engines

• Read replica storage types

• Restrictions for creating a replica from a replica

• Considerations when deleting replicas

Use cases for read replicas

Deploying one or more read replicas for a given source DB instance might make sense in a variety
of scenarios, including the following:

• Scaling beyond the compute or I/O capacity of a single DB instance for read-heavy database
workloads. You can direct this excess read traffic to one or more read replicas.

• Serving read traffic while the source DB instance is unavailable. In some cases, your source DB
instance might not be able to take I/O requests, for example due to I/O suspension for backups
or scheduled maintenance. In these cases, you can direct read traffic to your read replicas. For
this use case, keep in mind that the data on the read replica might be "stale" because the source
DB instance is unavailable.

• Business reporting or data warehousing scenarios where you might want business reporting
queries to run against a read replica, rather than your production DB instance.

• Implementing disaster recovery. You can promote a read replica to a standalone instance as a
disaster recovery solution if the primary DB instance fails.

Overview 755

Amazon Relational Database Service User Guide

How read replicas work

When you create a read replica, you specify an existing DB instance as the source. Then Amazon
RDS takes a snapshot of the source instance and creates a read-only instance from the snapshot.
Amazon RDS then uses the asynchronous replication method for the DB engine to update the read
replica whenever there is a change to the primary DB instance.

The read replica operates as a DB instance that allows only read-only connections. An exception
is the RDS for Oracle DB engine, which supports replica databases in mounted mode. A mounted
replica doesn't accept user connections and so can't serve a read-only workload. The primary use
for mounted replicas in RDS for Oracle is cross-Region disaster recovery. For more information, see
Working with read replicas for Amazon RDS for Oracle.

Applications connect to a read replica just as they do to any DB instance. Amazon RDS replicates all
databases from the source DB instance.

You must manually create read replicas. RDS doesn't support autoscaling of read replicas, which is
the automatic add or removing of read replicas as read demand changes.

Read replicas in a Multi-AZ deployment

You can configure a read replica for a DB instance that also has a standby replica configured for
high availability in a Multi-AZ deployment. Replication with the standby replica is synchronous.
Unlike a read replica, a standby replica can't serve read traffic.

In the following scenario, clients have read/write access to a primary DB instance in one AZ. The
primary instance copies updates asynchronously to a read replica in a second AZ and also copies
them synchronously to a standby replica in a third AZ. Clients have read access only to the read
replica.

Overview 756

Amazon Relational Database Service User Guide

For more information about high availability and standby replicas, see Configuring and managing a
Multi-AZ deployment for Amazon RDS.

Cross-Region read replicas

In some cases, a read replica resides in a different AWS Region from its primary DB instance. In
these cases, Amazon RDS sets up a secure communications channel between the primary DB
instance and the read replica. Amazon RDS establishes any AWS security configurations needed
to enable the secure channel, such as adding security group entries. For more information about
cross-Region read replicas, see Creating a read replica in a different AWS Region.

The information in this chapter applies to creating Amazon RDS read replicas either in the same
AWS Region as the source DB instance, or in a separate AWS Region. The following information

Overview 757

Amazon Relational Database Service User Guide

doesn't apply to setting up replication with an instance that is running on an Amazon EC2 instance
or that is on-premises.

Differences among read replicas for DB engines

Because Amazon RDS DB engines implement replication differently, there are several significant
differences you should know about, as shown in the following table.

Feature or
behavior

MySQL and
MariaDB

Oracle PostgreSQL SQL Server

What is the
replication
method?

Logical replication. Physical replication. Physical replication. Physical
replication.

How are
transacti
on logs
purged?

RDS for MySQL and
RDS for MariaDB
keep any binary
logs that haven't
been applied.

If a primary DB
instance has no
cross-Region read
replicas, Amazon
RDS for Oracle
keeps a minimum
of two hours of
transaction logs
on the source DB
instance. Logs are
purged from the
source DB instance
after two hours or
after the archive
log retention
hours setting has
passed, whichever
is longer. Logs are
purged from the
read replica after
the archive log
retention hours

PostgreSQL has
the parameter
wal_keep_
segments that
dictates how many
write ahead log
(WAL) files are kept
to provide data to
the read replicas.
The parameter
value specifies the
number of logs to
keep.

The Virtual
Log File
(VLF) of the
transaction
log file on
the primary
replica
can be
truncated
after it is
no longer
required
for the
secondary
replicas.

The VLF
can only
be marked
as inactive
when the
log records
have been

Overview 758

Amazon Relational Database Service User Guide

Feature or
behavior

MySQL and
MariaDB

Oracle PostgreSQL SQL Server

setting has passed
only if they have
been successfu
lly applied to the
database.

In some cases,
a primary DB
instance might
have one or more
cross-Region read
replicas. If so,
Amazon RDS for
Oracle keeps the
transaction logs
on the source
DB instance until
they have been
transmitted and
applied to all
cross-Region read
replicas.

For information
about setting
archive log
retention hours, see
Retaining archived
redo logs.

hardened in
the replicas.
Regardles
s of how
fast the disk
subsystem
s are in the
primary
replica, the
transacti
on log will
keep the
VLFs until
the slowest
replica has
hardened it.

Overview 759

Amazon Relational Database Service User Guide

Feature or
behavior

MySQL and
MariaDB

Oracle PostgreSQL SQL Server

Can a
replica
be made
writable?

Yes. You can enable
the MySQL or
MariaDB read
replica to be
writable.

No. An Oracle read
replica is a physical
copy, and Oracle
doesn't allow for
writes in a read
replica. You can
promote the read
replica to make
it writable. The
promoted read
replica has the
replicated data to
the point when the
request was made
to promote it.

No. A PostgreSQ
L read replica is a
physical copy, and
PostgreSQL doesn't
allow for a read
replica to be made
writable.

No. A SQL
Server read
replica is
a physical
copy and
also doesn't
allow for
writes.
You can
promote
the read
replica to
make it
writable.
The
promoted
read replica
has the
replicated
data up to
the point
when the
request was
made to
promote it.

Overview 760

Amazon Relational Database Service User Guide

Feature or
behavior

MySQL and
MariaDB

Oracle PostgreSQL SQL Server

Can
backups be
performed
on the
replica?

Yes. Automatic
backups and
manual snapshots
are supported on
RDS for MySQL or
RDS for MariaDB
read replicas.

Yes. Automatic
backups and
manual snapshots
are supported on
RDS for Oracle read
replicas.

Yes, you can
create a manual
snapshot of RDS
for PostgreSQ
L read replicas.
Automated backups
for read replicas
are supported for
RDS for PostgreSQ
L 14.1 and higher
versions only.
You can't turn on
automated backups
for PostgreSQL
read replicas for
RDS for PostgreSQ
L versions earlier
than 14.1. For RDS
for PostgreSQ
L 13 and earlier
versions, create a
snapshot from a
read replica if you
want a backup of it.

No.
Automatic
backups
and manual
snapshots
aren't
supported
on RDS
for SQL
Server read
replicas.

Overview 761

Amazon Relational Database Service User Guide

Feature or
behavior

MySQL and
MariaDB

Oracle PostgreSQL SQL Server

Can you
use parallel
replication?

Yes. All supported
MariaDB and
MySQL versions
allow for parallel
replication threads.

Yes. Redo log data
is always transmitt
ed in parallel
from the primary
database to all of
its read replicas.

No. PostgreSQL
has a single process
handling replicati
on.

Yes. Redo
log data
is always
transmitted
in parallel
from the
primary
database
to all of
its read
replicas.

Can you
maintain a
replica in a
mounted
rather than
a read-only
state?

No. Yes. The primary
use for mounted
replicas is cross-
Region disaster
recovery. An Active
Data Guard license
isn't required for
mounted replicas.
For more informati
on, see Working
with read replicas
for Amazon RDS for
Oracle.

No. No.

Read replica storage types

By default, a read replica is created with the same storage type as the source DB instance. However,
you can create a read replica that has a different storage type from the source DB instance based
on the options listed in the following table.

Overview 762

Amazon Relational Database Service User Guide

Source DB instance storage
type

Source DB instance storage
allocation

Read replica storage type
options

Provisioned IOPS 100 GiB–64 TiB Provisioned IOPS, General
Purpose, Magnetic

General Purpose 100 GiB–64 TiB Provisioned IOPS, General
Purpose, Magnetic

General Purpose <100 GiB General Purpose, Magnetic

Magnetic 100 GiB–6 TiB Provisioned IOPS, General
Purpose, Magnetic

Magnetic <100 GiB General Purpose, Magnetic

Note

When you increase the allocated storage of a read replica, it must be by at least 10 percent.
If you try to increase the value by less than 10 percent, you get an error.

Restrictions for creating a replica from a replica

Amazon RDS doesn't support circular replication. You can't configure a DB instance to serve as
a replication source for an existing DB instance. You can only create a new read replica from an
existing DB instance. For example, if MySourceDBInstance replicates to ReadReplica1, you
can't configure ReadReplica1 to replicate back to MySourceDBInstance.

For RDS for MariaDB and RDS for MySQL, and for certain versions of RDS for PostgreSQL, you can
create a read replica from an existing read replica. For example, you can create new read replica
ReadReplica2 from existing replica ReadReplica1. For RDS for Oracle and RDS for SQL Server,
you can't create a read replica from an existing read replica.

Considerations when deleting replicas

RDS doesn't support autoscaling of read replicas. Thus, RDS won't increase the number of replicas
when demand or increases or decrease the number of replicas when demand decreases. If you no

Overview 763

Amazon Relational Database Service User Guide

longer need read replicas, manually delete them using the same mechanisms for deleting a DB
instance. If you delete a source DB instance without deleting its read replicas in the same AWS
Region, each replica is promoted to a standalone DB instance.

For information about deleting a DB instance, see Deleting a DB instance. For information
about read replica promotion, see Promoting a read replica to be a standalone DB instance. For
information related to deleting the source DB instance for a cross-Region read replica, see Cross-
Region replication considerations.

Creating a read replica

You can create a read replica from an existing DB instance using the AWS Management Console,
AWS CLI, or RDS API. You create a read replica by specifying SourceDBInstanceIdentifier,
which is the DB instance identifier of the source DB instance that you want to replicate from.

When you create a read replica, Amazon RDS takes a DB snapshot of your source DB instance and
begins replication. The source DB instance experiences a very brief I/O suspension when the DB
snapshot operation begins. The I/O suspension typically lasts about one second. You can avoid
the I/O suspension if the source DB instance is a Multi-AZ deployment, because in that case the
snapshot is taken from the secondary DB instance.

An active, long-running transaction can slow the process of creating the read replica. We
recommend that you wait for long-running transactions to complete before creating a read replica.
If you create multiple read replicas in parallel from the same source DB instance, Amazon RDS
takes only one snapshot at the start of the first create action.

When creating a read replica, there are a few things to consider. First, you must enable automatic
backups on the source DB instance by setting the backup retention period to a value other than
0. This requirement also applies to a read replica that is the source DB instance for another read
replica. To enable automatic backups on an RDS for MySQL read replica, first create the read
replica, then modify the read replica to enable automatic backups.

Note

Within an AWS Region, we strongly recommend that you create all read replicas in the
same virtual private cloud (VPC) based on Amazon VPC as the source DB instance. If you
create a read replica in a different VPC from the source DB instance, classless inter-domain
routing (CIDR) ranges can overlap between the replica and the RDS system. CIDR overlap
makes the replica unstable, which can negatively impact applications connecting to it.

Creating a read replica 764

Amazon Relational Database Service User Guide

If you receive an error when creating the read replica, choose a different destination DB
subnet group. For more information, see Working with a DB instance in a VPC.
There is no direct way to create a read replica in another AWS account using the console or
AWS CLI.

Console

To create a read replica from a source DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to use as the source for a read replica.

4. For Actions, choose Create read replica.

5. For DB instance identifier, enter a name for the read replica.

6. Choose your instance configuration. We recommend that you use the same or larger DB
instance class and storage type as the source DB instance for the read replica.

7. For AWS Region, specify the destination Region for the read replica.

8. For Storage, specify the allocated storage size and whether you want to use storage
autoscaling.

If your source DB instance isn't on the latest storage configuration, the Upgrade storage file
system configuration option is available. You can enable this setting to upgrade the storage
file system of the read replica to the preferred configuration. For more information, see the
section called “Upgrading the storage file system”.

9. For Availability, choose whether to create a standby of your replica in another Availability
Zone for failover support for the replica.

Note

Creating your read replica as a Multi-AZ DB instance is independent of whether the
source database is a Multi-AZ DB instance.

10. Specify other DB instance settings. For information about each available setting, see Settings
for DB instances.

Creating a read replica 765

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

11. To create an encrypted read replica, expand Additional configuration and specify the
following settings:

a. Choose Enable encryption.

b. For AWS KMS key, choose the AWS KMS key identifier of the KMS key.

Note

The source DB instance must be encrypted. To learn more about encrypting the source
DB instance, see Encrypting Amazon RDS resources.

12. Choose Create read replica.

After the read replica is created, you can see it on the Databases page in the RDS console. It shows
Replica in the Role column.

AWS CLI

To create a read replica from a source DB instance, use the AWS CLI command create-db-instance-
read-replica. This example also sets the allocated storage size, enables storage autoscaling, and
upgrades the file system to the preferred configuration.

You can specify other settings. For information about each setting, see Settings for DB instances.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance-read-replica \
 --db-instance-identifier myreadreplica \
 --source-db-instance-identifier mydbinstance \
 --allocated-storage 100 \
 --max-allocated-storage 1000 \
 --upgrade-storage-config

For Windows:

aws rds create-db-instance-read-replica ^
 --db-instance-identifier myreadreplica ^

Creating a read replica 766

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html

Amazon Relational Database Service User Guide

 --source-db-instance-identifier mydbinstance ^
 --allocated-storage 100 ^
 --max-allocated-storage 1000 ^
 --upgrade-storage-config

RDS API

To create a read replica from a source MySQL, MariaDB, Oracle, PostgreSQL, or SQL Server
DB instance, call the Amazon RDS API CreateDBInstanceReadReplica operation with the
following required parameters:

• DBInstanceIdentifier

• SourceDBInstanceIdentifier

Promoting a read replica to be a standalone DB instance

You can promote a read replica into a standalone DB instance. If a source DB instance has several
read replicas, promoting one of the read replicas to a DB instance has no effect on the other
replicas.

When you promote a read replica, RDS reboots the DB instance before making it available. The
promotion process can take several minutes or longer to complete, depending on the size of the
read replica.

Promoting a read replica 767

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html

Amazon Relational Database Service User Guide

Use cases for promoting a read replica

You might want to promote a read replica to a standalone DB instance for any of the following
reasons:

• Implementing failure recovery – You can use read replica promotion as a data recovery scheme
if the primary DB instance fails. This approach complements synchronous replication, automatic
failure detection, and failover.

Promoting a read replica 768

Amazon Relational Database Service User Guide

If you are aware of the ramifications and limitations of asynchronous replication and you still
want to use read replica promotion for data recovery, you can. To do this, first create a read
replica and then monitor the primary DB instance for failures. In the event of a failure, do the
following:

1. Promote the read replica.

2. Direct database traffic to the promoted DB instance.

3. Create a replacement read replica with the promoted DB instance as its source.

• Upgrading storage configuration – If your source DB instance isn't on the preferred storage
configuration, you can create a read replica of the instance and upgrade the storage file
system configuration. This option migrates the file system of the read replica to the preferred
configuration. You can then promote the read replica to a standalone instance.

You can use this option to overcome the scaling limitations on storage and file size for older 32-
bit file systems. For more information, see the section called “Upgrading the storage file system”.

This option is only available if your source DB instance is not on the latest storage configuration,
or if you're modifying the DB instance class within the same request.

• Sharding – Sharding embodies the "share-nothing" architecture and essentially involves breaking
a large database into several smaller databases. One common way to split a database is splitting
tables that are not joined in the same query onto different hosts. Another method is duplicating
a table across multiple hosts and then using a hashing algorithm to determine which host
receives a given update. You can create read replicas corresponding to each of your shards
(smaller databases) and promote them when you decide to convert them into standalone shards.
You can then carve out the key space (if you are splitting rows) or distribution of tables for each
of the shards depending on your requirements.

• Performing DDL operations (MySQL and MariaDB only) – DDL operations, such as creating
or rebuilding indexes, can take time and impose a significant performance penalty on your DB
instance. You can perform these operations on a MySQL or MariaDB read replica once the read
replica is in sync with its primary DB instance. Then you can promote the read replica and direct
your applications to use the promoted instance.

Note

If your read replica is an RDS for Oracle DB instance, you can perform a switchover instead
of a promotion. In a switchover, the source DB instance becomes the new replica, and the

Promoting a read replica 769

Amazon Relational Database Service User Guide

replica becomes the new source DB instance. For more information, see Performing an
Oracle Data Guard switchover.

Characteristics of a promoted read replica

After you promote the read replica, it ceases to function as a read replica and becomes a
standalone DB instance. The new standalone DB instance has the following characteristics:

• The standalone DB instance retains the option group and the parameter group of the pre-
promotion read replica.

• You can create read replicas from the standalone DB instance and perform point-in-time restore
operations.

• You can't use the DB instance as a replication target because it is no longer a read replica.

Prerequisites for promoting a read replica

Before you promote a read replica, do the following:

• Review your backup strategy:

• We recommend that you enable backups and complete at least one backup. Backup duration is
a function of the number of changes to the database since the previous backup.

• If you have enabled backups on your read replica, configure the automated backup window so
that daily backups don't interfere with read replica promotion.

• Make sure that your read replica doesn't have the backing-up status. You can't promote a
read replica when it is in this state.

• Stop any transactions from being written to the primary DB instance, and then wait for RDS to
apply all updates to the read replica.

Database updates occur on the read replica after they have occurred on the primary DB instance.
Replication lag can vary significantly. Use the Replica Lag metric to determine when all
updates have been made to the read replica.

• (MySQL and MariaDB only) To make changes to a MySQL or MariaDB read replica before you
promote it, set the read_only parameter to 0 in the DB parameter group for the read replica.
You can then perform all needed DDL operations, such as creating indexes, on the read replica.
Actions taken on the read replica don't affect the performance of the primary DB instance.

Promoting a read replica 770

http://aws.amazon.com/rds/faqs/#105

Amazon Relational Database Service User Guide

Promoting a read replica: basic steps

The following steps show the general process for promoting a read replica to a DB instance:

1. Promote the read replica by using the Promote option on the Amazon RDS console, the AWS
CLI command promote-read-replica, or the PromoteReadReplica Amazon RDS API
operation.

Note

The promotion process takes a few minutes to complete. When you promote a read
replica, RDS stops replication and reboots the read replica. When the reboot is complete,
the read replica is available as a new DB instance.

2. (Optional) Modify the new DB instance to be a Multi-AZ deployment. For more information, see
Modifying an Amazon RDS DB instance and Configuring and managing a Multi-AZ deployment
for Amazon RDS.

Console

To promote a read replica to a standalone DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Amazon RDS console, choose Databases.

The Databases pane appears. Each read replica shows Replica in the Role column.

3. Choose the read replica that you want to promote.

4. For Actions, choose Promote.

5. On the Promote Read Replica page, enter the backup retention period and the backup
window for the newly promoted DB instance.

6. When the settings are as you want them, choose Continue.

7. On the acknowledgment page, choose Promote Read Replica.

Promoting a read replica 771

https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplica.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To promote a read replica to a standalone DB instance, use the AWS CLI promote-read-replica
command.

Example

For Linux, macOS, or Unix:

aws rds promote-read-replica \
 --db-instance-identifier myreadreplica

For Windows:

aws rds promote-read-replica ^
 --db-instance-identifier myreadreplica

RDS API

To promote a read replica to a standalone DB instance, call the Amazon RDS API
PromoteReadReplica operation with the required parameter DBInstanceIdentifier.

Monitoring read replication

You can monitor the status of a read replica in several ways. The Amazon RDS console shows the
status of a read replica in the Replication section of the Connectivity & security tab in the read
replica details. To view the details for a read replica, choose the name of the read replica in the list
of DB instances in the Amazon RDS console.

You can also see the status of a read replica using the AWS CLI describe-db-instances
command or the Amazon RDS API DescribeDBInstances operation.

Monitoring read replication 772

https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplica.html

Amazon Relational Database Service User Guide

The status of a read replica can be one of the following:

• replicating – The read replica is replicating successfully.

• replication degraded (SQL Server and PostgreSQL only) – Replicas are receiving data from the
primary instance, but one or more databases might be not getting updates. This can occur, for
example, when a replica is in the process of setting up newly created databases. It can also occur
when unsupported DDL or large object changes are made in the blue environment of a blue/
green deployment.

The status doesn't transition from replication degraded to error, unless an error occurs
during the degraded state.

• error – An error has occurred with the replication. Check the Replication Error field in the
Amazon RDS console or the event log to determine the exact error. For more information about
troubleshooting a replication error, see Troubleshooting a MySQL read replica problem.

• terminated (MariaDB, MySQL, or PostgreSQL only) – Replication is terminated. This occurs if
replication is stopped for more than 30 consecutive days, either manually or due to a replication
error. In this case, Amazon RDS terminates replication between the primary DB instance and all
read replicas. Amazon RDS does this to prevent increased storage requirements on the source DB
instance and long failover times.

Broken replication can affect storage because the logs can grow in size and number due to the
high volume of errors messages being written to the log. Broken replication can also affect
failure recovery due to the time Amazon RDS requires to maintain and process the large number
of logs during recovery.

• terminated (Oracle only) – Replication is terminated. This occurs if replication is stopped for
more than 8 hours because there isn't enough storage remaining on the read replica. In this case,
Amazon RDS terminates replication between the primary DB instance and the affected read
replica. This status is a terminal state, and the read replica must be re-created.

• stopped (MariaDB or MySQL only) – Replication has stopped because of a customer-initiated
request.

• replication stop point set (MySQL only) – A customer-initiated stop point was set using the
mysql.rds_start_replication_until stored procedure and the replication is in progress.

• replication stop point reached (MySQL only) – A customer-initiated stop point was set using
the mysql.rds_start_replication_until stored procedure and replication is stopped because the
stop point was reached.

Monitoring read replication 773

Amazon Relational Database Service User Guide

You can see where a DB instance is being replicated and if so, check its replication status. On
the Databases page in the RDS console, it shows Primary in the Role column. Choose its DB
instance name. On its detail page, on the Connectivity & security tab, its replication status is under
Replication.

Monitoring replication lag

You can monitor replication lag in Amazon CloudWatch by viewing the Amazon RDS ReplicaLag
metric.

For MariaDB and MySQL, the ReplicaLag metric reports the value of the
Seconds_Behind_Master field of the SHOW REPLICA STATUS command. Common causes for
replication lag for MySQL and MariaDB are the following:

• A network outage.

• Writing to tables with indexes on a read replica. If the read_only parameter is not set to 0 on
the read replica, it can break replication.

• Using a nontransactional storage engine such as MyISAM. Replication is only supported for the
InnoDB storage engine on MySQL and the XtraDB storage engine on MariaDB.

Note

Previous versions of MariaDB used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MariaDB version lower than 10.5, then use SHOW SLAVE
STATUS.

When the ReplicaLag metric reaches 0, the replica has caught up to the primary DB instance. If
the ReplicaLag metric returns -1, then replication is currently not active. ReplicaLag = -1 is
equivalent to Seconds_Behind_Master = NULL.

For Oracle, the ReplicaLag metric is the sum of the Apply Lag value and the difference
between the current time and the apply lag's DATUM_TIME value. The DATUM_TIME value is the
last time the read replica received data from its source DB instance. For more information, see V
$DATAGUARD_STATS in the Oracle documentation.

Monitoring read replication 774

https://docs.oracle.com/database/121/REFRN/GUID-B346DD88-3F5E-4F16-9DEE-2FDE62B1ABF7.htm#REFRN30413
https://docs.oracle.com/database/121/REFRN/GUID-B346DD88-3F5E-4F16-9DEE-2FDE62B1ABF7.htm#REFRN30413

Amazon Relational Database Service User Guide

For SQL Server, the ReplicaLag metric is the maximum lag of databases that have fallen behind,
in seconds. For example, if you have two databases that lag 5 seconds and 10 seconds, respectively,
then ReplicaLag is 10 seconds. The ReplicaLag metric returns the value of the following query.

SELECT MAX(secondary_lag_seconds) max_lag FROM sys.dm_hadr_database_replica_states;

For more information, see secondary_lag_seconds in the Microsoft documentation.

ReplicaLag returns -1 if RDS can't determine the lag, such as during replica setup, or when the
read replica is in the error state.

Note

New databases aren't included in the lag calculation until they are accessible on the read
replica.

For PostgreSQL, the ReplicaLag metric returns the value of the following query.

SELECT extract(epoch from now() - pg_last_xact_replay_timestamp()) AS reader_lag

PostgreSQL versions 9.5.2 and later use physical replication slots to manage write ahead log (WAL)
retention on the source instance. For each cross-Region read replica instance, Amazon RDS creates
a physical replication slot and associates it with the instance. Two Amazon CloudWatch metrics,
Oldest Replication Slot Lag and Transaction Logs Disk Usage, show how far behind
the most lagging replica is in terms of WAL data received and how much storage is being used for
WAL data. The Transaction Logs Disk Usage value can substantially increase when a cross-
Region read replica is lagging significantly.

For more information about monitoring a DB instance with CloudWatch, see Monitoring Amazon
RDS metrics with Amazon CloudWatch.

Creating a read replica in a different AWS Region

With Amazon RDS, you can create a read replica in a different AWS Region from the source DB
instance.

Cross-Region read replicas 775

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-hadr-database-replica-states-transact-sql

Amazon Relational Database Service User Guide

You create a read replica in a different AWS Region to do the following:

• Improve your disaster recovery capabilities.

• Scale read operations into an AWS Region closer to your users.

• Make it easier to migrate from a data center in one AWS Region to a data center in another AWS
Region.

Creating a read replica in a different AWS Region from the source instance is similar to creating
a replica in the same AWS Region. You can use the AWS Management Console, run the create-
db-instance-read-replica command, or call the CreateDBInstanceReadReplica API
operation.

Note

To create an encrypted read replica in a different AWS Region from the source DB instance,
the source DB instance must be encrypted.

Topics

Cross-Region read replicas 776

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html

Amazon Relational Database Service User Guide

• Region and version availability

• Creating a cross-Region read replica

• How Amazon RDS does cross-Region replication

• Cross-Region replication considerations

• Cross-Region replication costs

Region and version availability

Feature availability and support varies across specific versions of each database engine, and
across AWS Regions. For more information on version and Region availability with cross-Region
replication, see Supported Regions and DB engines for cross-Region read replicas in Amazon RDS.

Creating a cross-Region read replica

The following procedures show how to create a read replica from a source MariaDB, Microsoft SQL
Server, MySQL, Oracle, or PostgreSQL DB instance in a different AWS Region.

Console

You can create a read replica across AWS Regions using the AWS Management Console.

To create a read replica across AWS Regions with the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the MariaDB, Microsoft SQL Server, MySQL, Oracle, or PostgreSQL DB instance that
you want to use as the source for a read replica.

4. For Actions, choose Create read replica.

5. For DB instance identifier, enter a name for the read replica.

6. Choose the Destination Region.

7. Choose the instance specifications that you want to use. We recommend that you use the same
or larger DB instance class and storage type for the read replica.

8. To create an encrypted read replica in another AWS Region:

a. Choose Enable encryption.

Cross-Region read replicas 777

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

b. For AWS KMS key, choose the AWS KMS key identifier of the KMS key in the destination
AWS Region.

Note

To create an encrypted read replica, the source DB instance must be encrypted. To
learn more about encrypting the source DB instance, see Encrypting Amazon RDS
resources.

9. Choose other options, such as storage autoscaling.

10. Choose Create read replica.

AWS CLI

To create a read replica from a source MySQL, Microsoft SQL Server, MariaDB, Oracle, or
PostgreSQL DB instance in a different AWS Region, you can use the create-db-instance-read-
replica command. In this case, you use create-db-instance-read-replica from the AWS
Region where you want the read replica (destination Region) and specify the Amazon Resource
Name (ARN) for the source DB instance. An ARN uniquely identifies a resource created in Amazon
Web Services.

For example, if your source DB instance is in the US East (N. Virginia) Region, the ARN looks similar
to this example:

arn:aws:rds:us-east-1:123456789012:db:mydbinstance

For information about ARNs, see Amazon Resource Names (ARNs) in Amazon RDS.

To create a read replica in a different AWS Region from the source DB instance, you can use the
AWS CLI create-db-instance-read-replica command from the destination AWS Region. The
following parameters are required for creating a read replica in another AWS Region:

• --region – The destination AWS Region where the read replica is created.

• --source-db-instance-identifier – The DB instance identifier for the source DB instance.
This identifier must be in the ARN format for the source AWS Region.

• --db-instance-identifier – The identifier for the read replica in the destination AWS
Region.

Cross-Region read replicas 778

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html

Amazon Relational Database Service User Guide

Example of a cross-Region read replica

The following code creates a read replica in the US West (Oregon) Region from a source DB
instance in the US East (N. Virginia) Region.

For Linux, macOS, or Unix:

aws rds create-db-instance-read-replica \
 --db-instance-identifier myreadreplica \
 --region us-west-2 \
 --source-db-instance-identifier arn:aws:rds:us-east-1:123456789012:db:mydbinstance

For Windows:

aws rds create-db-instance-read-replica ^
 --db-instance-identifier myreadreplica ^
 --region us-west-2 ^
 --source-db-instance-identifier arn:aws:rds:us-east-1:123456789012:db:mydbinstance

The following parameter is also required for creating an encrypted read replica in another AWS
Region:

• --kms-key-id – The AWS KMS key identifier of the KMS key to use to encrypt the read replica
in the destination AWS Region.

Example of an encrypted cross-Region read replica

The following code creates an encrypted read replica in the US West (Oregon) Region from a source
DB instance in the US East (N. Virginia) Region.

For Linux, macOS, or Unix:

aws rds create-db-instance-read-replica \
 --db-instance-identifier myreadreplica \
 --region us-west-2 \
 --source-db-instance-identifier arn:aws:rds:us-east-1:123456789012:db:mydbinstance
 \
 --kms-key-id my-us-west-2-key

For Windows:

Cross-Region read replicas 779

Amazon Relational Database Service User Guide

aws rds create-db-instance-read-replica ^
 --db-instance-identifier myreadreplica ^
 --region us-west-2 ^
 --source-db-instance-identifier arn:aws:rds:us-east-1:123456789012:db:mydbinstance
 ^
 --kms-key-id my-us-west-2-key

The --source-region option is required when you're creating an encrypted read replica between
the AWS GovCloud (US-East) and AWS GovCloud (US-West) Regions. For --source-region,
specify the AWS Region of the source DB instance.

If --source-region isn't specified, specify a --pre-signed-url value. A presigned URL is a
URL that contains a Signature Version 4 signed request for the create-db-instance-read-
replica command that's called in the source AWS Region. To learn more about the pre-signed-
url option, see create-db-instance-read-replica in the AWS CLI Command Reference.

RDS API

To create a read replica from a source MySQL, Microsoft SQL Server, MariaDB, Oracle, or
PostgreSQL DB instance in a different AWS Region, you can call the Amazon RDS API operation
CreateDBInstanceReadReplica. In this case, you call CreateDBInstanceReadReplica from the AWS
Region where you want the read replica (destination Region) and specify the Amazon Resource
Name (ARN) for the source DB instance. An ARN uniquely identifies a resource created in Amazon
Web Services.

To create an encrypted read replica in a different AWS Region from the source DB instance,
you can use the Amazon RDS API CreateDBInstanceReadReplica operation from the
destination AWS Region. To create an encrypted read replica in another AWS Region, you
must specify a value for PreSignedURL. PreSignedURL should contain a request for the
CreateDBInstanceReadReplica operation to call in the source AWS Region where the read
replica is created in. To learn more about PreSignedUrl, see CreateDBInstanceReadReplica.

For example, if your source DB instance is in the US East (N. Virginia) Region, the ARN looks similar
to the following.

arn:aws:rds:us-east-1:123456789012:db:mydbinstance

For information about ARNs, see Amazon Resource Names (ARNs) in Amazon RDS.

Cross-Region read replicas 780

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html

Amazon Relational Database Service User Guide

Example

https://us-west-2.rds.amazonaws.com/
 ?Action=CreateDBInstanceReadReplica
 &KmsKeyId=my-us-east-1-key
 &PreSignedUrl=https%253A%252F%252Frds.us-west-2.amazonaws.com%252F
 %253FAction%253DCreateDBInstanceReadReplica
 %2526DestinationRegion%253Dus-east-1
 %2526KmsKeyId%253Dmy-us-east-1-key
 %2526SourceDBInstanceIdentifier%253Darn%25253Aaws%25253Ards%25253Aus-
west-2%123456789012%25253Adb%25253Amydbinstance
 %2526SignatureMethod%253DHmacSHA256
 %2526SignatureVersion%253D4%2526SourceDBInstanceIdentifier%253Darn%25253Aaws
%25253Ards%25253Aus-west-2%25253A123456789012%25253Ainstance%25253Amydbinstance
 %2526Version%253D2014-10-31
 %2526X-Amz-Algorithm%253DAWS4-HMAC-SHA256
 %2526X-Amz-Credential%253DAKIADQKE4SARGYLE%252F20161117%252Fus-west-2%252Frds
%252Faws4_request
 %2526X-Amz-Date%253D20161117T215409Z
 %2526X-Amz-Expires%253D3600
 %2526X-Amz-SignedHeaders%253Dcontent-type%253Bhost%253Buser-agent%253Bx-amz-
content-sha256%253Bx-amz-date
 %2526X-Amz-Signature
%253D255a0f17b4e717d3b67fad163c3ec26573b882c03a65523522cf890a67fca613
 &DBInstanceIdentifier=myreadreplica
 &SourceDBInstanceIdentifier=®ion-arn;rds:us-east-1:123456789012:db:mydbinstance
 &Version=2012-01-15
 &SignatureVersion=2
 &SignatureMethod=HmacSHA256
 &Timestamp=2012-01-20T22%3A06%3A23.624Z
 &AWSAccessKeyId=<&AWS; Access Key ID>
 &Signature=<Signature>

How Amazon RDS does cross-Region replication

Amazon RDS uses the following process to create a cross-Region read replica. Depending on the
AWS Regions involved and the amount of data in the databases, this process can take hours to
complete. You can use this information to determine how far the process has proceeded when you
create a cross-Region read replica:

1. Amazon RDS begins configuring the source DB instance as a replication source and sets the
status to modifying.

Cross-Region read replicas 781

Amazon Relational Database Service User Guide

2. Amazon RDS begins setting up the specified read replica in the destination AWS Region and sets
the status to creating.

3. Amazon RDS creates an automated DB snapshot of the source DB instance in the source AWS
Region. The format of the DB snapshot name is rds:<InstanceID>-<timestamp>, where
<InstanceID> is the identifier of the source instance, and <timestamp> is the date and time
the copy started. For example, rds:mysourceinstance-2013-11-14-09-24 was created
from the instance mysourceinstance at 2013-11-14-09-24. During the creation of an
automated DB snapshot, the source DB instance status remains modifying, the read replica
status remains creating, and the DB snapshot status is creating. The progress column of the DB
snapshot page in the console reports how far the DB snapshot creation has progressed. When
the DB snapshot is complete, the status of both the DB snapshot and source DB instance are set
to available.

4. Amazon RDS begins a cross-Region snapshot copy for the initial data transfer. The snapshot
copy is listed as an automated snapshot in the destination AWS Region with a status of creating.
It has the same name as the source DB snapshot. The progress column of the DB snapshot
display indicates how far the copy has progressed. When the copy is complete, the status of the
DB snapshot copy is set to available.

5. Amazon RDS then uses the copied DB snapshot for the initial data load on the read replica.
During this phase, the read replica is in the list of DB instances in the destination, with a status
of creating. When the load is complete, the read replica status is set to available, and the DB
snapshot copy is deleted.

6. When the read replica reaches the available status, Amazon RDS starts by replicating the
changes made to the source instance since the start of the create read replica operation. During
this phase, the replication lag time for the read replica is greater than 0.

For information about replication lag time, see Monitoring read replication.

Cross-Region replication considerations

All of the considerations for performing replication within an AWS Region apply to cross-Region
replication. The following extra considerations apply when replicating between AWS Regions:

• A source DB instance can have cross-Region read replicas in multiple AWS Regions. Because
of the limit on the number of access control list (ACL) entries for the source VPC, RDS can't
guarantee more than five cross-Region read replica DB instances.

Cross-Region read replicas 782

Amazon Relational Database Service User Guide

• You can replicate between the GovCloud (US-East) and GovCloud (US-West) Regions, but not
into or out of GovCloud (US).

• For the following RDS engines, you can create a cross-Region Amazon RDS read replica from
a source Amazon RDS DB instance only when it isn't a read replica of another Amazon RDS DB
instance:

• RDS for SQL Server

• RDS for Oracle

• RDS for PostgreSQL versions lower than 14.1

This limitation doesn't apply to DB instances running RDS for PostgreSQL version 14.1 and
higher, RDS for MariaDB, and RDS for MySQL.

• You can expect to see a higher level of lag time for any read replica that is in a different AWS
Region than the source instance. This lag time comes from the longer network channels between
regional data centers.

• For cross-Region read replicas, any of the create read replica commands that specify the --db-
subnet-group-name parameter must specify a DB subnet group from the same VPC.

• In most cases, the read replica uses the default DB parameter group and DB option group for the
specified DB engine.

For the MySQL and Oracle DB engines, you can specify a custom parameter group for the read
replica in the --db-parameter-group-name option of the AWS CLI command create-db-
instance-read-replica. You can't specify a custom parameter group when you use the AWS
Management Console.

• The read replica uses the default security group.

• For MariaDB, Microsoft SQL Server, MySQL, and Oracle DB instances, when the source DB
instance for a cross-Region read replica is deleted, the read replica is promoted.

• For PostgreSQL DB instances, when the source DB instance for a cross-Region read replica is
deleted, the replication status of the read replica is set to terminated. The read replica isn't
promoted.

You have to promote the read replica manually or delete it.

Requesting a cross-Region read replica

To communicate with the source Region to request the creation of a cross-Region read replica, the
requester (IAM role or IAM user) must have access to the source DB instance and the source Region.

Cross-Region read replicas 783

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html

Amazon Relational Database Service User Guide

Certain conditions in the requester's IAM policy can cause the request to fail. The following
examples assume that the source DB instance is in US East (Ohio) and the read replica is created in
US East (N. Virginia). These examples show conditions in the requester's IAM policy that cause the
request to fail:

• The requester's policy has a condition for aws:RequestedRegion.

...
"Effect": "Allow",
"Action": "rds:CreateDBInstanceReadReplica",
"Resource": "*",
"Condition": {
 "StringEquals": {
 "aws:RequestedRegion": "us-east-1"
 }
}

The request fails because the policy doesn't allow access to the source Region. For a successful
request, specify both the source and destination Regions.

...
"Effect": "Allow",
"Action": "rds:CreateDBInstanceReadReplica",
"Resource": "*",
"Condition": {
 "StringEquals": {
 "aws:RequestedRegion": [
 "us-east-1",
 "us-east-2"
]
 }
}

• The requester's policy doesn't allow access to the source DB instance.

...
"Effect": "Allow",
"Action": "rds:CreateDBInstanceReadReplica",
"Resource": "arn:aws:rds:us-east-1:123456789012:db:myreadreplica"
...

Cross-Region read replicas 784

Amazon Relational Database Service User Guide

For a successful request, specify both the source instance and the replica.

...
"Effect": "Allow",
"Action": "rds:CreateDBInstanceReadReplica",
"Resource": [
 "arn:aws:rds:us-east-1:123456789012:db:myreadreplica",
 "arn:aws:rds:us-east-2:123456789012:db:mydbinstance"
]
...

• The requester's policy denies aws:ViaAWSService.

...
"Effect": "Allow",
"Action": "rds:CreateDBInstanceReadReplica",
"Resource": "*",
"Condition": {
 "Bool": {"aws:ViaAWSService": "false"}
}

Communication with the source Region is made by RDS on the requester's behalf. For a
successful request, don't deny calls made by AWS services.

• The requester's policy has a condition for aws:SourceVpc or aws:SourceVpce.

These requests might fail because when RDS makes the call to the remote Region, it isn't from
the specified VPC or VPC endpoint.

If you need to use one of the previous conditions that would cause a request to fail, you can
include a second statement with aws:CalledVia in your policy to make the request succeed. For
example, you can use aws:CalledVia with aws:SourceVpce as shown here:

...
"Effect": "Allow",
"Action": "rds:CreateDBInstanceReadReplica",
"Resource": "*",
"Condition": {
 "Condition" : {
 "ForAnyValue:StringEquals" : {
 "aws:SourceVpce": "vpce-1a2b3c4d"

Cross-Region read replicas 785

Amazon Relational Database Service User Guide

 }
 }
},
{
 "Effect": "Allow",
 "Action": [
 "rds:CreateDBInstanceReadReplica"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": [
 "rds.amazonaws.com"
]
 }
 }
}

For more information, see Policies and permissions in IAM in the IAM User Guide.

Authorizing the read replica

After a cross-Region DB read replica creation request returns success, RDS starts the replica
creation in the background. An authorization for RDS to access the source DB instance is created.
This authorization links the source DB instance to the read replica, and allows RDS to copy only to
the specified read replica.

The authorization is verified by RDS using the rds:CrossRegionCommunication permission in
the service-linked IAM role. If the replica is authorized, RDS communicates with the source Region
and completes the replica creation.

RDS doesn't have access to DB instances that weren't authorized previously by a
CreateDBInstanceReadReplica request. The authorization is revoked when read replica
creation completes.

RDS uses the service-linked role to verify the authorization in the source Region. If you delete the
service-linked role during the replication creation process, the creation fails.

For more information, see Using service-linked roles in the IAM User Guide.

Cross-Region read replicas 786

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon Relational Database Service User Guide

Using AWS Security Token Service credentials

Session tokens from the global AWS Security Token Service (AWS STS) endpoint are valid only in
AWS Regions that are enabled by default (commercial Regions). If you use credentials from the
assumeRole API operation in AWS STS, use the regional endpoint if the source Region is an opt-in
Region. Otherwise, the request fails. This happens because your credentials must be valid in both
Regions, which is true for opt-in Regions only when the regional AWS STS endpoint is used.

To use the global endpoint, make sure that it's enabled for both Regions in the operations. Set the
global endpoint to Valid in all AWS Regions in the AWS STS account settings.

The same rule applies to credentials in the presigned URL parameter.

For more information, see Managing AWS STS in an AWS Region in the IAM User Guide.

Cross-Region replication costs

The data transferred for cross-Region replication incurs Amazon RDS data transfer charges. These
cross-Region replication actions generate charges for the data transferred out of the source AWS
Region:

• When you create a read replica, Amazon RDS takes a snapshot of the source instance and
transfers the snapshot to the read replica AWS Region.

• For each data modification made in the source databases, Amazon RDS transfers data from the
source AWS Region to the read replica AWS Region.

For more information about data transfer pricing, see Amazon RDS pricing.

For MySQL and MariaDB instances, you can reduce your data transfer costs by reducing the number
of cross-Region read replicas that you create. For example, suppose that you have a source DB
instance in one AWS Region and want to have three read replicas in another AWS Region. In this
case, you create only one of the read replicas from the source DB instance. You create the other
two replicas from the first read replica instead of the source DB instance.

For example, if you have source-instance-1 in one AWS Region, you can do the following:

• Create read-replica-1 in the new AWS Region, specifying source-instance-1 as the
source.

• Create read-replica-2 from read-replica-1.

Cross-Region read replicas 787

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

• Create read-replica-3 from read-replica-1.

In this example, you are only charged for the data transferred from source-instance-1 to
read-replica-1. You aren't charged for the data transferred from read-replica-1 to the
other two replicas because they are all in the same AWS Region. If you create all three replicas
directly from source-instance-1 in another AWS Region, you are charged for the data transfers
to all three replicas.

Cross-Region read replicas 788

Amazon Relational Database Service User Guide

Tagging Amazon RDS resources

An Amazon RDS tag is a name-value pair that you define and associate with an Amazon RDS
resource such as a DB instance or DB snapshot. The name is referred to as the key. Optionally, you
can supply a value for the key.

You can use the AWS Management Console, the AWS CLI, or the Amazon RDS API to add, list,
and delete tags on Amazon RDS resources. When using the CLI or API, make sure to provide the
Amazon Resource Name (ARN) for the RDS resource to work with. For more information about
constructing an ARN, see Constructing an ARN for Amazon RDS.

You can use tags to add metadata to your Amazon RDS resources. You can use the tags to add
your own notations about database instances, snapshots, Aurora clusters, and so on. Doing so
can help you to document your Amazon RDS resources. You can also use the tags with automated
maintenance procedures.

In particular, you can use these tags with IAM policies. You can use them to manage access to
Amazon RDS resources and to control what actions can be applied to those resources. You can also
use these tags to track costs by grouping expenses for similarly tagged resources.

You can tag the following Amazon RDS resources:

• DB instances

• DB clusters

• Aurora global clusters

• DB cluster endpoints

• Read replicas

• DB snapshots

• DB cluster snapshots

• Reserved DB instances

• Event subscriptions

• DB option groups

• DB parameter groups

• DB cluster parameter groups

• DB subnet groups

• RDS Proxies

Tagging RDS resources 789

Amazon Relational Database Service User Guide

• RDS Proxy endpoints

• Blue/green deployments

• Zero-ETL integrations

Note

Currently, you can't tag RDS Proxies and RDS Proxy endpoints by using the AWS
Management Console.

Topics

• Why use Amazon RDS resource tags?

• How Amazon RDS resource tags work

• Best practices for tagging Amazon RDS resources

• Copying tags to DB snapshots

• Adding and deleting tags in Amazon RDS

• Tutorial: Specify which DB instances to stop by using tags

Why use Amazon RDS resource tags?

You can use tags to do the following:

• Categorize your RDS resources by application, project, department, environment, and so on.
For example, you could use a tag key to define a category, where the tag value is an item in
this category. You might create the tag environment=prod. Or you might define a tag key of
project and a tag value of Salix, which indicates that an Amazon RDS resource is assigned to
the Salix project.

• Automate resource management tasks. For example, you could create a maintenance window
for instances tagged environment=prod that differs from the window for instances tagged
environment=test. You could also configure automatic DB snapshots for instances tagged
environment=prod.

• Control access to RDS resources within an IAM policy. You can do this by using the global
aws:ResourceTag/tag-key condition key. For example, a policy might allow only users in the
DBAdmin group to modify DB instances tagged with environment=prod. For information about

Why use RDS tags? 790

Amazon Relational Database Service User Guide

managing access to tagged resources with IAM policies, see Identity and access management
for Amazon RDS and Controlling access to AWS resources in the AWS Identity and Access
Management User Guide.

• Monitor resources based on a tag. For example, you can create an Amazon CloudWatch
dashboard for DB instances tagged with environment=prod.

• Track costs by grouping expenses for similarly tagged resources. For example, if you tag RDS
resources associated with the Salix project with project=Salix, you can generate cost reports
for and allocate expenses to this project. For more information, see How AWS billing works with
tags in Amazon RDS.

How Amazon RDS resource tags work

AWS doesn't apply any semantic meaning to your tags. Tags are interpreted strictly as character
strings.

Topics

• Tag sets in Amazon RDS

• Tag structure in Amazon RDS

• Amazon RDS resources eligible for tagging

• How AWS billing works with tags in Amazon RDS

Tag sets in Amazon RDS

Every Amazon RDS resource has a container called a tag set. The container includes all the tags that
are assigned to the resource. A resource has exactly one tag set.

A tag set contains 0—50 tags. If you add a tag to an RDS resource with the same key as an existing
resource tag, the new value overwrites the old.

Tag structure in Amazon RDS

The structure of an RDS tag is as follows:

Tag key

The key is the required name of the tag. The string value must be 1—128 Unicode characters
in length and cannot be prefixed with aws: or rds:. The string can contain only the set of

How RDS tags work 791

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources

Amazon Relational Database Service User Guide

Unicode letters, digits, whitespace, _, ., :, /, =, +, -, and @. The Java regex is "^([\\p{L}\
\p{Z}\\p{N}_.:/=+\\-@]*)$". Tag keys are case-sensitive. Thus, the keys project and
Project are distinct.

A key is unique to a tag set. For example, you cannot have a key-pair in a tag set with the key
the same but with different values, such as project=Trinity and project=Xanadu.

Tag value

The value is an optional string value of the tag. The string value must be 1—256 Unicode
characters in length. The string can contain only the set of Unicode letters, digits, whitespace,
, ., :, /, =, +, -, and @. The Java regex is "^([\\p{L}\\p{Z}\\p{N}.:/=+\\-@]*)$". Tag
values are case-sensitive. Thus, the values prod and Prod are distinct.

Values don't need to be unique in a tag set and can be null. For example, you can have a key-
value pair in a tag set of project=Trinity and cost-center=Trinity.

Amazon RDS resources eligible for tagging

You can tag the following Amazon RDS resources:

• DB instances

• DB clusters

• DB cluster endpoints

• Read replicas

• DB snapshots

• DB cluster snapshots

• Reserved DB instances

• Event subscriptions

• DB option groups

• DB parameter groups

• DB cluster parameter groups

• DB subnet groups

• RDS Proxies

• RDS Proxy endpoints

How RDS tags work 792

Amazon Relational Database Service User Guide

Note

Currently, you can't tag RDS Proxies and RDS Proxy endpoints by using the AWS
Management Console.

• Blue/green deployments

• Zero-ETL integrations (preview)

How AWS billing works with tags in Amazon RDS

Use tags to organize your AWS bill to reflect your own cost structure. To do this, sign up to get
your AWS account bill with tag key values included. Then, to see the cost of combined resources,
organize your billing information according to resources with the same tag key values. For example,
you can tag several resources with a specific application name, and then organize your billing
information to see the total cost of that application across several services. For more information,
see Using Cost Allocation Tags in the AWS Billing User Guide.

How cost allocation tags work with DB snapshots

You can add a tag to a DB snapshot. However, your bill won't reflect this grouping. For cost
allocation tags to apply to DB snapshots, the following conditions must be met:

• The tags must be attached to the parent DB instance.

• The parent DB instance must exist in the same AWS account as the DB snapshot.

• The parent DB instance must exist in the same AWS Region as the DB snapshot.

DB snapshots are considered orphaned if they don't exist in the same Region as the parent DB
instance, or if the parent DB instance is deleted. Orphaned DB snapshots don't support cost
allocation tags. Costs for orphaned snapshots are aggregated in a single untagged line item. Cross-
account DB snapshots aren't considered orphaned when the following conditions are met:

• They exist in the same Region as the parent DB instance.

• The parent DB instance is owned by the source account.

How RDS tags work 793

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Relational Database Service User Guide

Note

If the parent DB instance is owned by a different account, cost allocation tags don't apply
to cross-account snapshots in the destination account.

Best practices for tagging Amazon RDS resources

When you use tags, we recommend that you adhere to the following best practices:

• Document conventions for tag use that are followed by all teams in your organization. In
particular, ensure the names are both descriptive and consistent. For example, standardize on the
format environment:prod rather than tagging some resources with env:production.

Important

Do not store personally identifiable information (PII) or other confidential or sensitive
information in tags.

• Automate tagging to ensure consistency. For example, you can use the following techniques:

• Include tags in an AWS CloudFormation template. When you create resources with the
template, the resources are tagged automatically.

• Define and apply tags using AWS Lambda functions.

• Create an SSM document that includes steps to add tags to your RDS resources.

• Use tags only when necessary. You can add up to 50 tags for a single RDS resource, but a best
practice is to avoid unnecessary tag proliferation and complexity.

• Review tags periodically for relevance and accuracy. Remove or modify outdated tags as needed.

• Consider creating tags with the AWS Tag Editor in the AWS Management Console. You can use
the Tag Editor to add tags to multiple supported AWS resources, including RDS resources, at the
same time. For more information, see Tag Editor in the AWS Resource Groups User Guide.

Copying tags to DB snapshots

When you create or restore a DB instance, you can specify that the tags from the DB instance
are copied to snapshots of the DB instance. Copying tags ensures that the metadata for the DB

Best practices 794

https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html

Amazon Relational Database Service User Guide

snapshots matches that of the source DB instance. It also ensures that any access policies for the
DB snapshots also match those of the source DB instance.

You can specify that tags are copied to DB snapshots for the following actions:

• Creating a DB instance

• Restoring a DB instance

• Creating a read replica

• Copying a DB snapshot

To copy tags for the preceding actions, choose Copy tags to snapshots in the AWS Management
Console, or specify --copy-tags-to-snapshot in the AWS CLI.

In most cases, tags aren't copied by default. However, when you restore a DB instance from a DB
snapshot, RDS checks whether you specify new tags. If yes, the new tags are added to the restored
DB instance. If there are no new tags, RDS adds the tags from the source DB instance at the time of
snapshot creation to the restored DB instance.

To prevent tags from source DB instances from being added to restored DB instances, we
recommend that you specify new tags when restoring a DB instance.

Note

In some cases, you might include a value for the --tags parameter of the create-
db-snapshot AWS CLI command. Or you might supply at least one tag to the
CreateDBSnapshot API operation. In these cases, RDS doesn't copy tags from the source DB
instance to the new DB snapshot. This functionality applies even if the source DB instance
has the --copy-tags-to-snapshot (CopyTagsToSnapshot) option turned on.
If you take this approach, you can create a copy of a DB instance from a DB snapshot.
This approach avoids adding tags that don't apply to the new DB instance. You create
your DB snapshot using the AWS CLI create-db-snapshot command (or the
CreateDBSnapshot RDS API operation). After you create your DB snapshot, you can add
tags as described later in this topic.

Adding and deleting tags in Amazon RDS

You can do the following:

Adding and deleting tags in Amazon RDS 795

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBSnapshot.html

Amazon Relational Database Service User Guide

• Create tags when you create a resource, for example, when you run the AWS CLI command
create-db-instance.

• Add tags to an existing resource using the command add-tags-to-resource.

• List tags associated with a specific resource using the command list-tags-for-resource.

• Update tags using the command add-tags-to-resource.

• Remove tags from a resource using the command remove-tags-from-resource.

The following procedures show how you can perform typical tagging operations on resources
related to DB instances. Note that tags are cached for authorization purposes. For this reason,
when you add or update tags on Amazon RDS resources, several minutes can pass before the
modifications are available.

Console

The process to tag an Amazon RDS resource is similar for all resources. The following procedure
shows how to tag an Amazon RDS DB instance.

To add a tag to a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Note

To filter the list of DB instances in the Databases pane, enter a text string for Filter
databases. Only DB instances that contain the string appear.

3. Choose the name of the DB instance that you want to tag to show its details.

4. In the details section, scroll down to the Tags section.

5. Choose Add. The Add tags window appears.

Adding and deleting tags in Amazon RDS 796

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. Enter a value for Tag key and Value.

7. To add another tag, you can choose Add another Tag and enter a value for its Tag key and
Value.

Repeat this step as many times as necessary.

8. Choose Add.

To delete a tag from a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Note

To filter the list of DB instances in the Databases pane, enter a text string in the Filter
databases box. Only DB instances that contain the string appear.

3. Choose the name of the DB instance to show its details.

4. In the details section, scroll down to the Tags section.

5. Choose the tag you want to delete.

Adding and deleting tags in Amazon RDS 797

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. Choose Delete, and then choose Delete in the Delete tags window.

AWS CLI

You can add, list, or remove tags for a DB instance using the AWS CLI.

• To add one or more tags to an Amazon RDS resource, use the AWS CLI command add-tags-to-
resource.

• To list the tags on an Amazon RDS resource, use the AWS CLI command list-tags-for-
resource.

• To remove one or more tags from an Amazon RDS resource, use the AWS CLI command remove-
tags-from-resource.

To learn more about how to construct the required ARN, see Constructing an ARN for Amazon RDS.

RDS API

You can add, list, or remove tags for a DB instance using the Amazon RDS API.

• To add a tag to an Amazon RDS resource, use the AddTagsToResource operation.

• To list tags that are assigned to an Amazon RDS resource, use the ListTagsForResource.

• To remove tags from an Amazon RDS resource, use the RemoveTagsFromResource operation.

To learn more about how to construct the required ARN, see Constructing an ARN for Amazon RDS.

When working with XML using the Amazon RDS API, tags use the following schema:

<Tagging>
 <TagSet>
 <Tag>

Adding and deleting tags in Amazon RDS 798

https://docs.aws.amazon.com/cli/latest/reference/rds/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/remove-tags-from-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/remove-tags-from-resource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddTagsToResource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveTagsFromResource.html

Amazon Relational Database Service User Guide

 <Key>Project</Key>
 <Value>Trinity</Value>
 </Tag>
 <Tag>
 <Key>User</Key>
 <Value>Jones</Value>
 </Tag>
 </TagSet>
 </Tagging>

The following table provides a list of the allowed XML tags and their characteristics. Values for
Key and Value are case-sensitive. For example, project=Trinity and PROJECT=Trinity are
distinct tags.

Tagging
element

Description

TagSet A tag set is a container for all tags assigned to an Amazon RDS resource. There
can be only one tag set per resource. You work with a TagSet only through the
Amazon RDS API.

Tag A tag is a user-defined key-value pair. There can be from 1 to 50 tags in a tag set.

Key A key is the required name of the tag. For restrictions, see Tag structure in
Amazon RDS.

The string value can be from 1 to 128 Unicode characters in length and cannot
be prefixed with aws: or rds:. The string can only contain only the set of
Unicode letters, digits, white space, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\
\p{Z}\\p{N}_.:/=+\\-]*)$").

Keys must be unique to a tag set. For example, you cannot have a key-pair in a
tag set with the key the same but with different values, such as project/Trinity
and project/Xanadu.

Value A value is the optional value of the tag. For restrictions, see Tag structure in
Amazon RDS.

The string value can be from 1 to 256 Unicode characters in length and cannot
be prefixed with aws: or rds:. The string can only contain only the set of

Adding and deleting tags in Amazon RDS 799

Amazon Relational Database Service User Guide

Tagging
element

Description

Unicode letters, digits, white space, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\
\p{Z}\\p{N}_.:/=+\\-]*)$").

Values do not have to be unique in a tag set and can be null. For example, you
can have a key-value pair in a tag set of project/Trinity and cost-center/Trinity.

Tutorial: Specify which DB instances to stop by using tags

This tutorial assumes that you have several DB instances in a development or test environment.
You need to keep these DB instances for several days. Some DB instances run tests overnight,
whereas others can be stopped overnight and started again the next day.

The following tutorial shows how to assign a tag to DB instances that are suitable to stop
overnight. The tutorial shows how a script can detect which DB instances have the tag and then
stop the tagged DB instances. In this example, the value portion of the key-value pair doesn't
matter. The presence of the stoppable tag signifies that the DB instance has this user-defined
property.

In the following tutorial, the commands and APIs for tagging work with ARNs, which allow RDS to
work seamlessly across AWS Regions, AWS accounts, and different types of resources that might
have identical short names. You can specify the ARN instead of the DB instance ID in CLI commands
that operate on DB instances.

To specify which DB instances to stop

1. Determine the ARN of a DB instance that you want to designate as stoppable.

In the following example, substitute the name of your own DB instances for dev-test-
db-instance. In subsequent commands that use ARN parameters, substitute the ARN of
your own DB instance. The ARN includes your own AWS account ID and the name of the AWS
Region where your DB instance is located.

$ aws rds describe-db-instances --db-instance-identifier dev-test-db-instance \
 --query "*[].{DBInstance:DBInstanceArn}" --output text
arn:aws:rds:us-east-1:123456789102:db:dev-test-db-instance

Tutorial: Specify which DB instances to stop by using tags 800

Amazon Relational Database Service User Guide

2. Add the tag stoppable to this DB instance.

You choose the name for this tag. Because this example treats the tag as an attribute that is
either present or absent, it omits the Value= part of the --tags parameter. This approach
means that you can avoid devising a naming convention that encodes all relevant information
in names. In such a convention, you might encode information in the DB instance name or
names of other resources.

$ aws rds add-tags-to-resource \
 --resource-name arn:aws:rds:us-east-1:123456789102:db:dev-test-db-instance \
 --tags Key=stoppable

3. Confirm that the tag is present in the DB instance.

The following commands retrieve the tag information for the DB instance in JSON format and
in plain tab-separated text.

$ aws rds list-tags-for-resource \
 --resource-name arn:aws:rds:us-east-1:123456789102:db:dev-test-db-instance
{
 "TagList": [
 {
 "Key": "stoppable",
 "Value": ""

 }
]
}
aws rds list-tags-for-resource \
 --resource-name arn:aws:rds:us-east-1:123456789102:db:dev-test-db-instance --
output text
TAGLIST stoppable

4. Stop all the DB instances that are designated as stoppable.

The following example create a text file that lists all your DB instances. The shell command
loops through the list and checks if each DB instance is tagged with the relevant attribute and
performs runs the command aws rds stop-db-instance for each DB instance.

$ aws rds describe-db-instances --query "*[].[DBInstanceArn]" --output text >/tmp/
db_instance_arns.lst
$ for arn in $(cat /tmp/db_instance_arns.lst)

Tutorial: Specify which DB instances to stop by using tags 801

Amazon Relational Database Service User Guide

do
 match="$(aws rds list-tags-for-resource --resource-name $arn --output text | grep
 stoppable)"
 if [[! -z "$match"]]
 then
 echo "DB instance $arn is tagged as stoppable. Stopping it now."
Note that you need to get the DB instance identifier from the ARN.
 dbid=$(echo $arn | sed -e 's/.*://')
 aws rds stop-db-instance --db-instance-identifier $dbid
 fi
done

DB instance arn:arn:aws:rds:us-east-1:123456789102:db:dev-test-db-instance is
 tagged as stoppable. Stopping it now.
{
 "DBInstance": {
 "DBInstanceIdentifier": "dev-test-db-instance",
 "DBInstanceClass": "db.t3.medium",
 ...

You can run a script like the preceding one at the end of every day to make sure that nonessential
DB instances are stopped. You might also schedule a job using a utility such as cron to perform
such a check each night. For example, you might do this in case some DB instances were left
running by mistake. Here, you might fine-tune the command that prepares the list of DB instances
to check.

The following command produces a list of your DB instances, but only the ones in available
state. The script can ignore DB instances that are already stopped, because they will have different
status values such as stopped or stopping.

$ aws rds describe-db-instances \
 --query '*[].{DBInstanceArn:DBInstanceArn,DBInstanceStatus:DBInstanceStatus}|[?
DBInstanceStatus == `available`]|[].{DBInstanceArn:DBInstanceArn}' \
 --output text
arn:aws:rds:us-east-1:123456789102:db:db-instance-2447
arn:aws:rds:us-east-1:123456789102:db:db-instance-3395
arn:aws:rds:us-east-1:123456789102:db:dev-test-db-instance
arn:aws:rds:us-east-1:123456789102:db:pg2-db-instance

Tutorial: Specify which DB instances to stop by using tags 802

Amazon Relational Database Service User Guide

Tip

You can use assigning tags and finding DB instances with those tags to reduce costs in
other ways. For example, take this scenario with DB instances used for development and
testing. In this case, you might designate some DB instances to be deleted at the end of
each day. Or you might designate them to have their DB instances changed to small DB
instance classes during times of expected low usage.

Tutorial: Specify which DB instances to stop by using tags 803

Amazon Relational Database Service User Guide

Amazon Resource Names (ARNs) in Amazon RDS

Resources created in Amazon Web Services are each uniquely identified with an Amazon Resource
Name (ARN). For certain Amazon RDS operations, you must uniquely identify an Amazon RDS
resource by specifying its ARN. For example, when you create an RDS DB instance read replica, you
must supply the ARN for the source DB instance.

For information about constructing an ARN and getting an existing ARN, see the following topics.

Topics

• Constructing an ARN for Amazon RDS

• Getting an existing ARN for Amazon RDS

Constructing an ARN for Amazon RDS

Resources created in Amazon Web Services are each uniquely identified with an Amazon Resource
Name (ARN). You can construct an ARN for an Amazon RDS resource using the following syntax.

arn:aws:rds:<region>:<account number>:<resourcetype>:<name>

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com

rds-fips.us-east-2.api.aws

rds.us-east-2.api.aws

rds-fips.us-east-2.amazonaws.com

HTTPS

HTTPS

HTTPS

HTTPS

US
East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com

rds-fips.us-east-1.api.aws

rds-fips.us-east-1.amazonaws.com

rds.us-east-1.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

ARNs in Amazon RDS 804

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

US
West (N.
Californi
a)

us-
west-1

rds.us-west-1.amazonaws.com

rds.us-west-1.api.aws

rds-fips.us-west-1.amazonaws.com

rds-fips.us-west-1.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

US West
(Oregon)

us-
west-2

rds.us-west-2.amazonaws.com

rds-fips.us-west-2.amazonaws.com

rds.us-west-2.api.aws

rds-fips.us-west-2.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

Africa
(Cape
Town)

af-south-
1

rds.af-south-1.amazonaws.com

rds.af-south-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Hong
Kong)

ap-
east-1

rds.ap-east-1.amazonaws.com

rds.ap-east-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Hyderaba
d)

ap-
south-2

rds.ap-south-2.amazonaws.com

rds.ap-south-2.api.aws

HTTPS

HTTPS

Asia
Pacific
(Jakarta)

ap-
southe
ast-3

rds.ap-southeast-3.amazonaws.com

rds.ap-southeast-3.api.aws

HTTPS

HTTPS

Constructing an ARN 805

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Malaysia
)

ap-
southe
ast-5

rds.ap-southeast-5.amazonaws.com HTTPS

Asia
Pacific
(Melbourn
e)

ap-
southe
ast-4

rds.ap-southeast-4.amazonaws.com

rds.ap-southeast-4.api.aws

HTTPS

HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com

rds.ap-south-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Osaka)

ap-
northe
ast-3

rds.ap-northeast-3.amazonaws.com

rds.ap-northeast-3.api.aws

HTTPS

HTTPS

Asia
Pacific
(Seoul)

ap-
northe
ast-2

rds.ap-northeast-2.amazonaws.com

rds.ap-northeast-2.api.aws

HTTPS

HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

rds.ap-southeast-1.amazonaws.com

rds.ap-southeast-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

rds.ap-southeast-2.amazonaws.com

rds.ap-southeast-2.api.aws

HTTPS

HTTPS

Asia
Pacific
(Thailand
)

ap-
southe
ast-7

rds.ap-southeast-7.amazonaws.com HTTPS

Constructing an ARN 806

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

rds.ap-northeast-1.amazonaws.com

rds.ap-northeast-1.api.aws

HTTPS

HTTPS

Canada
(Central)

ca-centra
l-1

rds.ca-central-1.amazonaws.com

rds.ca-central-1.api.aws

rds-fips.ca-central-1.api.aws

rds-fips.ca-central-1.amazonaws.com

HTTPS

HTTPS

HTTPS

HTTPS

Canada
West
(Calgary)

ca-
west-1

rds.ca-west-1.amazonaws.com

rds-fips.ca-west-1.amazonaws.com

HTTPS

HTTPS

Europe
(Frankfur
t)

eu-
central-1

rds.eu-central-1.amazonaws.com

rds.eu-central-1.api.aws

HTTPS

HTTPS

Europe
(Ireland)

eu-
west-1

rds.eu-west-1.amazonaws.com

rds.eu-west-1.api.aws

HTTPS

HTTPS

Europe
(London)

eu-
west-2

rds.eu-west-2.amazonaws.com

rds.eu-west-2.api.aws

HTTPS

HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com

rds.eu-south-1.api.aws

HTTPS

HTTPS

Europe
(Paris)

eu-
west-3

rds.eu-west-3.amazonaws.com

rds.eu-west-3.api.aws

HTTPS

HTTPS

Constructing an ARN 807

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

Europe
(Spain)

eu-
south-2

rds.eu-south-2.amazonaws.com

rds.eu-south-2.api.aws

HTTPS

HTTPS

Europe
(Stockhol
m)

eu-
north-1

rds.eu-north-1.amazonaws.com

rds.eu-north-1.api.aws

HTTPS

HTTPS

Europe
(Zurich)

eu-
central-2

rds.eu-central-2.amazonaws.com

rds.eu-central-2.api.aws

HTTPS

HTTPS

Israel
(Tel Aviv)

il-centra
l-1

rds.il-central-1.amazonaws.com

rds.il-central-1.api.aws

HTTPS

HTTPS

Mexico
(Central)

mx-
central-1

rds.mx-central-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com

rds.me-south-1.api.aws

HTTPS

HTTPS

Middle
East
(UAE)

me-
central-1

rds.me-central-1.amazonaws.com

rds.me-central-1.api.aws

HTTPS

HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com

rds.sa-east-1.api.aws

HTTPS

HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com

rds.us-gov-east-1.api.aws

HTTPS

HTTPS

Constructing an ARN 808

Amazon Relational Database Service User Guide

Region
Name

Region Endpoint Protocol

AWS
GovCloud
(US-
West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com

rds.us-gov-west-1.api.aws

HTTPS

HTTPS

The following table shows the format that you should use when constructing an ARN for a
particular Amazon RDS resource type.

Resource type ARN format

DB instance arn:aws:rds:<region>:<account> :db:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :db:my-mysql-
instance-1

DB cluster arn:aws:rds:<region>:<account> :cluster:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :cluster: my-
aurora-cluster-1

Event subscription arn:aws:rds:<region>:<account> :es:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :es:my-subscr
iption

DB option group arn:aws:rds:<region>:<account> :og:<name>

For example:

Constructing an ARN 809

Amazon Relational Database Service User Guide

Resource type ARN format

arn:aws:rds: us-east-2 :123456789012 :og:my-og

DB parameter group arn:aws:rds:<region>:<account> :pg:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :pg:my-param-
enable-logs

DB cluster parameter group arn:aws:rds:<region>:<account> :cluster-pg:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :cluster-pg: my-
cluster-param-timezone

Reserved DB instance arn:aws:rds:<region>:<account> :ri:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :ri:my-reserved-
postgresql

DB security group arn:aws:rds:<region>:<account> :secgrp:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :secgrp:my-public

Automated DB snapshot arn:aws:rds:<region>:<account> :snapshot:rds:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :snapshot:rds: my-
mysql-db-2019-07-22-07-23

Constructing an ARN 810

Amazon Relational Database Service User Guide

Resource type ARN format

Automated DB cluster
snapshot

arn:aws:rds:<region>:<account> :cluster-snapshot:
rds:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :cluster-
snapshot:rds: my-aurora-cluster-2019-07-22-16-16

Manual DB snapshot arn:aws:rds:<region>:<account> :snapshot:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :snapshot: my-
mysql-db-snap

Manual DB cluster snapshot arn:aws:rds:<region>:<account> :cluster-snapshot:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :cluster-
snapshot: my-aurora-cluster-snap

DB subnet group arn:aws:rds:<region>:<account> :subgrp:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :subgrp:my-subnet
-10

Getting an existing ARN for Amazon RDS

You can get the ARN of an RDS resource by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or RDS API.

Getting an existing ARN 811

Amazon Relational Database Service User Guide

Console

To get an ARN from the AWS Management Console, navigate to the resource you want an ARN for,
and view the details for that resource.

For example, you can get the ARN for a DB instance from the Configuration tab of the DB instance
details.

AWS CLI

To get an ARN from the AWS CLI for a particular RDS resource, you use the describe command
for that resource. The following table shows each AWS CLI command, and the ARN property used
with the command to get an ARN.

AWS CLI command ARN property

describe-event-subscriptions EventSubscriptionArn

describe-certificates CertificateArn

describe-db-parameter-groups DBParameterGroupArn

describe-db-cluster-parameter-
groups

DBClusterParameterGroupArn

describe-db-instances DBInstanceArn

describe-db-security-groups DBSecurityGroupArn

describe-db-snapshots DBSnapshotArn

describe-events SourceArn

describe-reserved-db-instances ReservedDBInstanceArn

describe-db-subnet-groups DBSubnetGroupArn

describe-option-groups OptionGroupArn

describe-db-clusters DBClusterArn

describe-db-cluster-snapshots DBClusterSnapshotArn

Getting an existing ARN 812

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-security-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshots.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-subnet-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-option-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshots.html

Amazon Relational Database Service User Guide

For example, the following AWS CLI command gets the ARN for a DB instance.

Example

For Linux, macOS, or Unix:

aws rds describe-db-instances \
--db-instance-identifier DBInstanceIdentifier \
--region us-west-2 \
--query "*[].{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceArn:DBInstanceArn}"

For Windows:

aws rds describe-db-instances ^
--db-instance-identifier DBInstanceIdentifier ^
--region us-west-2 ^
--query "*[].{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceArn:DBInstanceArn}"

The output of that command is like the following:

[
 {
 "DBInstanceArn": "arn:aws:rds:us-west-2:account_id:db:instance_id",
 "DBInstanceIdentifier": "instance_id"
 }
]

RDS API

To get an ARN for a particular RDS resource, you can call the following RDS API operations and use
the ARN properties shown following.

RDS API operation ARN property

DescribeEventSubscriptions EventSubscriptionArn

DescribeCertificates CertificateArn

DescribeDBParameterGroups DBParameterGroupArn

Getting an existing ARN 813

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventSubscriptions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeCertificates.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameterGroups.html

Amazon Relational Database Service User Guide

RDS API operation ARN property

DescribeDBClusterParameterG
roups

DBClusterParameterGroupArn

DescribeDBInstances DBInstanceArn

DescribeDBSecurityGroups DBSecurityGroupArn

DescribeDBSnapshots DBSnapshotArn

DescribeEvents SourceArn

DescribeReservedDBInstances ReservedDBInstanceArn

DescribeDBSubnetGroups DBSubnetGroupArn

DescribeOptionGroups OptionGroupArn

DescribeDBClusters DBClusterArn

DescribeDBClusterSnapshots DBClusterSnapshotArn

Getting an existing ARN 814

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshots.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSubnetGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeOptionGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshots.html

Amazon Relational Database Service User Guide

Working with storage for Amazon RDS DB instances

To specify how you want your data stored in Amazon RDS, choose a storage type and provide
a storage size when you create or modify a DB instance. Later, you can increase the amount or
change the type of storage by modifying the DB instance. For more information about which
storage type to use for your workload, see Amazon RDS storage types.

Topics

• Increasing DB instance storage capacity

• Managing capacity automatically with Amazon RDS storage autoscaling

• Upgrading the storage file system for a DB instance

• Modifying settings for Provisioned IOPS SSD storage

• I/O-intensive storage modifications

• Modifying settings for General Purpose SSD (gp3) storage

• Using a dedicated log volume (DLV)

Increasing DB instance storage capacity

If you need space for additional data, you can scale up the storage of an existing DB instance.
To do so, you can use the Amazon RDS Management Console, the Amazon RDS API, or the AWS
Command Line Interface (AWS CLI). For information about storage limits, see Amazon RDS DB
instance storage.

Note

You can't reduce the amount of storage for a DB instance after storage has been allocated.
When you increase the allocated storage, it must be by at least 10 percent. If you try to
increase the value by less than 10 percent, you get an error.
Scaling storage for RDS for SQL Server DB instances is supported only for the General
Purpose SSD and Provisioned IOPS SSD storage types.

To monitor the amount of free storage for your DB instance so you can respond when necessary,
we recommend that you create an Amazon CloudWatch alarm. For more information on setting
CloudWatch alarms, see Using CloudWatch alarms.

Working with storage 815

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html

Amazon Relational Database Service User Guide

Scaling storage usually doesn't cause any outage or performance degradation of the DB instance.
After you modify the storage size for a DB instance, the status of the DB instance is storage-
optimization.

Note

Storage optimization can take several hours. You can't make further storage modifications
for either six (6) hours or until storage optimization has completed on the instance,
whichever is longer. You can view the storage optimization progress in the AWS
Management Console or by using the describe-db-instances AWS CLI command.

Console

To increase storage for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify.

4. Choose Modify.

5. Enter a new value for Allocated storage. It must be greater than the current value.

6. Choose Continue to move to the next screen.

7. Choose Apply immediately in the Scheduling of modifications section to apply the storage
changes to the DB instance immediately.

Increasing DB instance storage capacity 816

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Or choose Apply during the next scheduled maintenance window to apply the changes
during the next maintenance window.

8. When the settings are as you want them, choose Modify DB instance.

AWS CLI

To increase the storage for a DB instance, use the AWS CLI command modify-db-instance. Set
the following parameters:

• --allocated-storage – Amount of storage to be allocated for the DB instance, in gibibytes.

• --apply-immediately – Use --apply-immediately to apply the storage changes
immediately.

Or use --no-apply-immediately (the default) to apply the changes during the next
maintenance window. An immediate outage occurs when the changes are applied.

For more information about storage, see Amazon RDS DB instance storage.

RDS API

To increase storage for a DB instance, use the Amazon RDS API operation ModifyDBInstance. Set
the following parameters:

• AllocatedStorage – Amount of storage to be allocated for the DB instance, in gibibytes.

• ApplyImmediately – Set this option to True to apply the storage changes immediately. Set
this option to False (the default) to apply the changes during the next maintenance window. An
immediate outage occurs when the changes are applied.

For more information about storage, see Amazon RDS DB instance storage.

Managing capacity automatically with Amazon RDS storage autoscaling

If your workload is unpredictable, you can enable storage autoscaling for an Amazon RDS DB
instance. To do so, you can use the Amazon RDS console, the Amazon RDS API, or the AWS CLI.

For example, you might use this feature for a new mobile gaming application that users are
adopting rapidly. In this case, a rapidly increasing workload might exceed the available database

Managing capacity automatically with storage autoscaling 817

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

storage. To avoid having to manually scale up database storage, you can use Amazon RDS storage
autoscaling.

With storage autoscaling enabled, when Amazon RDS detects that you are running out of free
database space it automatically scales up your storage. Amazon RDS starts a storage modification
for an autoscaling-enabled DB instance when these factors apply:

• Free available space is less than or equal to 10 percent of the allocated storage.

• The low-storage condition lasts at least five minutes.

• At least six hours have passed since the last storage modification, or storage optimization has
completed on the instance, whichever is longer.

The additional storage is in increments of whichever of the following is greater:

• 10 GiB

• 10 percent of currently allocated storage

• Predicted storage growth exceeding the current allocated storage size in the next 7 hours based
on the FreeStorageSpace metrics from the past hour. For more information on metrics, see
Monitoring with Amazon CloudWatch.

The maximum storage threshold is the limit that you set for autoscaling the DB instance. It has the
following constraints:

• You must set the maximum storage threshold to at least 10% more than the current allocated
storage. We recommend setting it to at least 26% more to avoid receiving an event notification
that the storage size is approaching the maximum storage threshold.

For example, if you have DB instance with 1000 GiB of allocated storage, then set the maximum
storage threshold to at least 1100 GiB. If you don't, you get an error such as Invalid max storage
size for engine_name. However, we recommend that you set the maximum storage threshold to
at least 1260 GiB to avoid the event notification.

• For a DB instance that uses Provisioned IOPS (io1 or io2 Block Express) storage, the ratio of IOPS
to maximum storage threshold (in GiB) must be within a certain range. For more information, see
Provisioned IOPS SSD storage.

• You can't set the maximum storage threshold for autoscaling-enabled instances to a value
greater than the maximum allocated storage for the database engine and DB instance class.

Managing capacity automatically with storage autoscaling 818

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MonitoringOverview.html#monitoring-cloudwatch

Amazon Relational Database Service User Guide

For example, SQL Server Standard Edition on db.m5.xlarge has a default allocated storage for
the instance of 20 GiB (the minimum) and a maximum allocated storage of 16,384 GiB. The
default maximum storage threshold for autoscaling is 1,000 GiB. If you use this default, the
instance doesn't autoscale above 1,000 GiB. This is true even though the maximum allocated
storage for the instance is 16,384 GiB.

Note

We recommend that you carefully choose the maximum storage threshold based on
usage patterns and customer needs. If there are any aberrations in the usage patterns, the
maximum storage threshold can prevent scaling storage to an unexpectedly high value
when autoscaling predicts a very high threshold. After a DB instance has been autoscaled,
its allocated storage can't be reduced.

Topics

• Limitations of storage autoscaling

• Enabling storage autoscaling for a new DB instance

• Changing the storage autoscaling settings for a DB instance

• Manually scaling your DB instance down or in

• Turning off storage autoscaling for a DB instance

Limitations of storage autoscaling

The following limitations apply to storage autoscaling:

• Autoscaling doesn't occur if the maximum storage threshold would be exceeded by the storage
increment.

• When autoscaling, RDS predicts the storage size for subsequent autoscaling operations. If
a subsequent operation is predicted to exceed the maximum storage threshold, then RDS
autoscales to the maximum storage threshold.

• Autoscaling can't completely prevent storage-full situations for large data loads. This is because
further storage modifications can't be made for either six (6) hours or until storage optimization
has completed on the instance, whichever is longer.

Managing capacity automatically with storage autoscaling 819

Amazon Relational Database Service User Guide

If you perform a large data load, and autoscaling doesn't provide enough space, the database
might remain in the storage-full state for several hours. This can harm the database.

• If you start a storage scaling operation at the same time that Amazon RDS starts an autoscaling
operation, your storage modification takes precedence. The autoscaling operation is canceled.

• Autoscaling can't decrease the allocated storage. You can't reduce the amount of storage for a
DB instance after storage has been allocated.

• Autoscaling can't be used with magnetic storage.

• Autoscaling can't be used with the following previous-generation instance classes that have less
than 6 TiB of orderable storage: db.m3.large, db.m3.xlarge, and db.m3.2xlarge.

• Autoscaling operations aren't logged by AWS CloudTrail. For more information on CloudTrail, see
Monitoring Amazon RDS API calls in AWS CloudTrail.

Although automatic scaling helps you to increase storage on your Amazon RDS DB instance
dynamically, you should still configure the initial storage for your DB instance to an appropriate
size for your typical workload.

Enabling storage autoscaling for a new DB instance

When you create a new Amazon RDS DB instance, you can choose whether to enable storage
autoscaling. You can also set an upper limit on the storage that Amazon RDS can allocate for the
DB instance.

Note

When you clone an Amazon RDS DB instance that has storage autoscaling enabled, that
setting isn't automatically inherited by the cloned instance. The new DB instance has
the same amount of allocated storage as the original instance. You can turn storage
autoscaling on again for the new instance if the cloned instance continues to increase its
storage requirements.

Console

To enable storage autoscaling for a new DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Managing capacity automatically with storage autoscaling 820

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region where you want
to create the DB instance.

3. In the navigation pane, choose Databases.

4. Choose Create database. On the Select engine page, choose your database engine and specify
your DB instance information as described in Getting started with Amazon RDS.

5. In the Storage autoscaling section, set the Maximum storage threshold value for the DB
instance.

6. Specify the rest of your DB instance information as described in Getting started with Amazon
RDS.

AWS CLI

To enable storage autoscaling for a new DB instance, use the AWS CLI command create-db-
instance. Set the following parameter:

• --max-allocated-storage – Turns on storage autoscaling and sets the upper limit on storage
size, in gibibytes.

To verify that Amazon RDS storage autoscaling is available for your DB instance, use the AWS CLI
describe-valid-db-instance-modifications command. To check based on the instance
class before creating an instance, use the describe-orderable-db-instance-options
command. Check the following field in the return value:

• SupportsStorageAutoscaling – Indicates whether the DB instance or instance class supports
storage autoscaling.

For more information about storage, see Amazon RDS DB instance storage.

RDS API

To enable storage autoscaling for a new DB instance, use the Amazon RDS API operation
CreateDBInstance. Set the following parameter:

• MaxAllocatedStorage – Turns on Amazon RDS storage autoscaling and sets the upper limit on
storage size, in gibibytes.

Managing capacity automatically with storage autoscaling 821

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

To verify that Amazon RDS storage autoscaling is available for your DB instance, use the Amazon
RDS API DescribeValidDbInstanceModifications operation for an existing instance, or the
DescribeOrderableDBInstanceOptions operation before creating an instance. Check the
following field in the return value:

• SupportsStorageAutoscaling – Indicates whether the DB instance supports storage
autoscaling.

For more information about storage, see Amazon RDS DB instance storage.

Changing the storage autoscaling settings for a DB instance

You can turn storage autoscaling on for an existing Amazon RDS DB instance. You can also change
the upper limit on the storage that Amazon RDS can allocate for the DB instance.

Console

To change the storage autoscaling settings for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify, and choose Modify. The Modify DB instance
page appears.

4. Change the storage limit in the Autoscaling section. For more information, see Modifying an
Amazon RDS DB instance.

5. When all the changes are as you want them, choose Continue and check your modifications.

6. On the confirmation page, review your changes. If they're correct, choose Modify DB instance
to save your changes. If they aren't correct, choose Back to edit your changes or Cancel to
cancel your changes.

Changing the storage autoscaling limit occurs immediately. This setting ignores the Apply
immediately setting.

AWS CLI

To change the storage autoscaling settings for a DB instance, use the AWS CLI command modify-
db-instance. Set the following parameter:

Managing capacity automatically with storage autoscaling 822

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeValidDbInstanceModifications.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeOrderableDBInstanceOptions.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• --max-allocated-storage – Sets the upper limit on storage size, in gibibytes. If the value
is greater than the --allocated-storage parameter, storage autoscaling is turned on. If the
value is the same as the --allocated-storage parameter, storage autoscaling is turned off.

To verify that Amazon RDS storage autoscaling is available for your DB instance, use the AWS CLI
describe-valid-db-instance-modifications command. To check based on the instance
class before creating an instance, use the describe-orderable-db-instance-options
command. Check the following field in the return value:

• SupportsStorageAutoscaling – Indicates whether the DB instance supports storage
autoscaling.

For more information about storage, see Amazon RDS DB instance storage.

RDS API

To change the storage autoscaling settings for a DB instance, use the Amazon RDS API operation
ModifyDBInstance. Set the following parameter:

• MaxAllocatedStorage – Sets the upper limit on storage size, in gibibytes.

To verify that Amazon RDS storage autoscaling is available for your DB instance, use the Amazon
RDS API DescribeValidDbInstanceModifications operation for an existing instance, or the
DescribeOrderableDBInstanceOptions operation before creating an instance. Check the
following field in the return value:

• SupportsStorageAutoscaling – Indicates whether the DB instance supports storage
autoscaling.

For more information about storage, see Amazon RDS DB instance storage.

Manually scaling your DB instance down or in

Amazon RDS provides storage autoscaling to meet growing demand. However, there are limitations
regarding scaling down and in:

• RDS storage – While RDS supports automatic scaling up of storage as demand increases, it
doesn't automatically scale down.

Managing capacity automatically with storage autoscaling 823

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeValidDbInstanceModifications.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeOrderableDBInstanceOptions.html

Amazon Relational Database Service User Guide

• Read replicas – RDS doesn't support automatic scaling out (adding) or scaling in (deleting)
of read replicas. You must manually add or remove read replicas according to your load
requirements.

To scale down your RDS resources, perform the following manual actions:

• For storage, you can't manually reduce the allocated storage of a DB instance using the modify-
db-instance command. Instead, choose one of the following techniques:

• Use a blue/green deployment if your DB engine supports it. Create a green database with a
lower storage size, and then promote your green database to be your blue database. For more
information, see Modify storage and performance settings.

• Create a new DB instance with lower allocated storage, manually migrate the data from your
current database to the newly created database instance, and switch your database endpoints.

• For read replicas, manually delete any unused replicas through the RDS console or AWS CLI.

Turning off storage autoscaling for a DB instance

If you no longer need Amazon RDS to automatically increase the storage for an Amazon RDS DB
instance, you can turn off storage autoscaling. After you do, you can still manually increase the
amount of storage for your DB instance.

Console

To turn off storage autoscaling for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify and choose Modify. The Modify DB instance
page appears.

4. Clear the Enable storage autoscaling check box in the Storage autoscaling section. For more
information, see Modifying an Amazon RDS DB instance.

5. When all the changes are as you want them, choose Continue and check the modifications.

6. On the confirmation page, review your changes. If they're correct, choose Modify DB instance
to save your changes. If they aren't correct, choose Back to edit your changes or Cancel to
cancel your changes.

Managing capacity automatically with storage autoscaling 824

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Changing the storage autoscaling limit occurs immediately. This setting ignores the Apply
immediately setting.

AWS CLI

To turn off storage autoscaling for a DB instance, use the AWS CLI command modify-db-
instance and the following parameter:

• --max-allocated-storage – Specify a value equal to the --allocated-storage setting to
prevent further Amazon RDS storage autoscaling for the specified DB instance.

For more information about storage, see Amazon RDS DB instance storage.

RDS API

To turn off storage autoscaling for a DB instance, use the Amazon RDS API operation
ModifyDBInstance. Set the following parameter:

• MaxAllocatedStorage – Specify a value equal to the AllocatedStorage setting to prevent
further Amazon RDS storage autoscaling for the specified DB instance.

For more information about storage, see Amazon RDS DB instance storage.

Upgrading the storage file system for a DB instance

Most RDS DB instances offer a maximum storage size of 64 TiB for RDS for MariaDB, MySQL, and
PostgreSQL databases. However, some older 32-bit file systems have lower storage capacities.
To determine the storage capacity of your DB instance, use the describe-valid-db-instance-
modifications AWS CLI command.

RDS checks whether your storage system has a 16 TiB storage size, a file size limit of 2 TiB, or non-
optimized writes. If your DB instances meet these conditions, RDS alerts you that your file system
configuration is eligible for an upgrade. You can check the upgrade eligibility of a DB instance on
the Storage panel of the DB instance details page.

Upgrading the storage file system 825

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-valid-db-instance-modifications.html

Amazon Relational Database Service User Guide

If your DB instance is eligible for a file system upgrade, use either of the following techniques:

• Create a blue/green deployment and specify Upgrade storage file system configuration.

This option upgrades the file system in the green environment to the preferred configuration.
You can then switch over the blue/green deployment, which promotes the green environment to
be the new production environment. For detailed instructions, see the section called “Creating a
blue/green deployment”.

• Create a DB instance read replica and specify Upgrade storage file system configuration.

This option upgrades the file system of the read replica to the preferred configuration. You can
then promote the read replica to be a standalone instance. For detailed instructions, see the
section called “Creating a read replica”.

During the storage upgrade, your database engine isn't available. Upgrading the storage
configuration is an I/O-intensive operation and leads to longer creation times for read replicas
and blue/green deployments. The storage upgrade process is faster when both of the following
conditions are met:

• The source DB instance uses Provisioned IOPS SSD (io1 or io2 Block Express) storage.

• You provisioned the green environment or read replica with an instance size of 4xlarge or larger.

Storage upgrades involving General Purpose SSD (gp2) storage can deplete your I/O credit balance,
resulting in longer upgrade times. For more information, see the section called “DB instance
storage”.

Upgrading the storage file system 826

Amazon Relational Database Service User Guide

During a storage upgrade, RDS increases the allocated storage size by 10% for the green instance
or read replica if both of the following conditions are met:

• The storage consumption on your source DB instance is greater than or equal to 90% of the
allocated storage size.

• Storage autoscaling is enabled.

RDS turns off autoscaling when the new storage size is greater than or equal to the maximum
allocated storage that was set for the instance. If storage autoscaling is disabled before the storage
upgrade begins, the storage size doesn't increase during the upgrade.

Modifying settings for Provisioned IOPS SSD storage

You can modify the settings for a DB instance that uses Provisioned IOPS SSD storage by using the
Amazon RDS console, AWS CLI, or Amazon RDS API. Specify the storage type, allocated storage,
and the amount of Provisioned IOPS that you require. The range depends on your database engine
and instance type.

Although you can reduce the amount of IOPS provisioned for your instance, you can't reduce the
storage size.

In most cases, scaling storage doesn't require any outage and doesn't degrade performance of
the server. After you modify the storage IOPS for a DB instance, the status of the DB instance is
storage-optimization.

Note

Storage optimization can take several hours. You can't make further storage modifications
for either six (6) hours or until storage optimization has completed on the instance,
whichever is longer.

For information on the ranges of allocated storage and Provisioned IOPS available for each
database engine, see Provisioned IOPS SSD storage.

Modifying Provisioned IOPS settings 827

Amazon Relational Database Service User Guide

Console

To change the Provisioned IOPS settings for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

To filter the list of DB instances, for Filter databases enter a text string for Amazon RDS to use
to filter the results. Only DB instances whose names contain the string appear.

3. Choose the DB instance with Provisioned IOPS that you want to modify.

4. Choose Modify.

5. On the Modify DB instance page, choose Provisioned IOPS SSD (io1) or Provisioned IOPS
SSD (io2) for Storage type.

6. For Provisioned IOPS, enter a value.

If the value that you specify for either Allocated storage or Provisioned IOPS is outside the
limits supported by the other parameter, a warning message is displayed. This message gives
the range of values required for the other parameter.

7. Choose Continue.

8. Choose Apply immediately in the Scheduling of modifications section to apply the changes
to the DB instance immediately. Or choose Apply during the next scheduled maintenance
window to apply the changes during the next maintenance window.

9. Review the parameters to be changed, and choose Modify DB instance to complete the
modification.

The new value for allocated storage or for Provisioned IOPS appears in the Status column.

AWS CLI

To change the Provisioned IOPS setting for a DB instance, use the AWS CLI command modify-db-
instance. Set the following parameters:

• --storage-type – Set to io1 or io2 for Provisioned IOPS.

• --allocated-storage – Amount of storage to be allocated for the DB instance, in gibibytes.

• --iops – The new amount of Provisioned IOPS for the DB instance, expressed in I/O operations
per second.

Modifying Provisioned IOPS settings 828

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• --apply-immediately – Use --apply-immediately to apply changes immediately. Use --
no-apply-immediately (the default) to apply changes during the next maintenance window.

RDS API

To change the Provisioned IOPS settings for a DB instance, use the Amazon RDS API operation
ModifyDBInstance. Set the following parameters:

• StorageType – Set to io1 or io2 for Provisioned IOPS.

• AllocatedStorage – Amount of storage to be allocated for the DB instance, in gibibytes.

• Iops – The new IOPS rate for the DB instance, expressed in I/O operations per second.

• ApplyImmediately – Set this option to True to apply changes immediately. Set this option to
False (the default) to apply changes during the next maintenance window.

I/O-intensive storage modifications

Amazon RDS DB instances use Amazon Elastic Block Store (EBS) volumes for database and log
storage. Depending on the amount of storage requested, RDS (except for RDS for SQL Server)
automatically stripes across multiple Amazon EBS volumes to enhance performance. RDS DB
instances with SSD storage types are backed by either one or four striped Amazon EBS volumes in
a RAID 0 configuration. By design, storage modification operations for an RDS DB instance have
minimal impact on ongoing database operations.

In most cases, storage scaling modifications are completely offloaded to the Amazon EBS layer and
are transparent to the database. This process is typically completed within a few minutes. However,
some older RDS storage volumes require a different process for modifying the size, Provisioned
IOPS, or storage type. This involves making a full copy of the data using a potentially I/O-intensive
operation.

Storage modification uses an I/O-intensive operation if any of the following factors apply:

• The source storage type is magnetic. Magnetic storage doesn't support elastic volume
modification.

• The RDS DB instance isn't on a one- or four-volume Amazon EBS layout. You can view the
number of Amazon EBS volumes in use on your RDS DB instances by using Enhanced Monitoring
metrics. For more information, see Viewing OS metrics in the RDS console.

I/O-intensive storage modifications 829

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

• The target size of the modification request increases the allocated storage above 400 GiB for
RDS for MariaDB, MySQL, and PostgreSQL instances, and 200 GiB for RDS for Oracle. Storage
autoscaling operations have the same effect when they increase the allocated storage size of
your DB instance above these thresholds.

If your storage modification involves an I/O-intensive operation, it consumes I/O resources and
increases the load on your DB instance. Storage modifications with I/O-intensive operations
involving General Purpose SSD (gp2) storage can deplete your I/O credit balance, resulting in
longer conversion times.

We recommend as a best practice to schedule these storage modification requests outside of
peak hours to help reduce the time required to complete the storage modification operation.
Alternatively, you can create a read replica of the DB instance and perform the storage
modification on the read replica. Then promote the read replica to be the primary DB instance. For
more information, see Working with DB instance read replicas.

For more information, see Why is an Amazon RDS DB instance stuck in the modifying state when I
try to increase the allocated storage?

Modifying settings for General Purpose SSD (gp3) storage

You can modify the settings for a DB instance that uses General Purpose SSD (gp3) storage by
using the Amazon RDS console, AWS CLI, or Amazon RDS API. Specify the storage type, allocated
storage, amount of Provisioned IOPS, and storage throughput that you require.

Although you can reduce the amount of Provisioned IOPS and storage throughput for your DB
instance, you can't reduce the storage size.

In most cases, scaling storage doesn't require any outage. After you modify the storage IOPS for
a DB instance, the status of the DB instance is storage-optimization. You can expect elevated
latencies, but still within the single-digit millisecond range, during storage optimization. The DB
instance is fully operational after a storage modification.

Note

You can't make further storage modifications until six (6) hours after storage optimization
has completed on the instance.

Modifying General Purpose (gp3) settings 830

https://aws.amazon.com/premiumsupport/knowledge-center/rds-stuck-modifying/
https://aws.amazon.com/premiumsupport/knowledge-center/rds-stuck-modifying/

Amazon Relational Database Service User Guide

For information on the ranges of allocated storage, Provisioned IOPS, and storage throughput
available for each database engine, see gp3 storage (recommended).

Console

To change the storage performance settings for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

To filter the list of DB instances, for Filter databases enter a text string for Amazon RDS to use
to filter the results. Only DB instances whose names contain the string appear.

3. Choose the DB instance with gp3 storage that you want to modify.

4. Choose Modify.

5. On the Modify DB instance page, choose General Purpose SSD (gp3) for Storage type, then
do the following:

a. For Provisioned IOPS, choose a value.

If the value that you specify for either Allocated storage or Provisioned IOPS is outside
the limits supported by the other parameter, a warning message appears. This message
gives the range of values required for the other parameter.

b. For Storage throughput, choose a value.

If the value that you specify for either Provisioned IOPS or Storage throughput is outside
the limits supported by the other parameter, a warning message appears. This message
gives the range of values required for the other parameter.

6. Choose Continue.

7. Choose Apply immediately in the Scheduling of modifications section to apply the changes
to the DB instance immediately. Or choose Apply during the next scheduled maintenance
window to apply the changes during the next maintenance window.

8. Review the parameters to be changed, and choose Modify DB instance to complete the
modification.

The new value for Provisioned IOPS appears in the Status column.

Modifying General Purpose (gp3) settings 831

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To change the storage performance settings for a DB instance, use the AWS CLI command
modify-db-instance. Set the following parameters:

• --storage-type – Set to gp3 for General Purpose SSD (gp3).

• --allocated-storage – Amount of storage to be allocated for the DB instance, in gibibytes.

• --iops – The new amount of Provisioned IOPS for the DB instance, expressed in I/O operations
per second.

• --storage-throughput – The new storage throughput for the DB instance, expressed in
MiBps.

• --apply-immediately – Use --apply-immediately to apply changes immediately. Use --
no-apply-immediately (the default) to apply changes during the next maintenance window.

RDS API

To change the storage performance settings for a DB instance, use the Amazon RDS API operation
ModifyDBInstance. Set the following parameters:

• StorageType – Set to gp3 for General Purpose SSD (gp3).

• AllocatedStorage – Amount of storage to be allocated for the DB instance, in gibibytes.

• Iops – The new IOPS rate for the DB instance, expressed in I/O operations per second.

• StorageThroughput – The new storage throughput for the DB instance, expressed in MiBps.

• ApplyImmediately – Set this option to True to apply changes immediately. Set this option to
False (the default) to apply changes during the next maintenance window.

Using a dedicated log volume (DLV)

You can use a dedicated log volume (DLV) for a DB instance that uses Provisioned IOPS (PIOPS)
storage. A DLV moves PostgreSQL database transaction logs and MySQL/MariaDB redo logs
and binary logs to a storage volume that's separate from the volume containing the database
tables. A DLV makes transaction write logging more efficient and consistent. DLVs are ideal for
databases with large allocated storage, high I/O per second (IOPS) requirements, or latency-
sensitive workloads.

Using a dedicated log volume (DLV) 832

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

DLVs are supported for PIOPS storage (io1 and io2 Block Express) and are created with a fixed size
of 1,024 GiB and 3,000 Provisioned IOPS.

Amazon RDS supports DLVs in all AWS Regions for the following versions:

• MariaDB 10.6.7 and higher 10 versions

• MySQL 8.0.28 and higher 8.0 versions, MySQL 8.4.3 and higher 8.4 versions

• PostgreSQL 13.10 and higher 13 versions, 14.7 and higher 14 versions, and 15.2 and higher 15
versions

RDS supports DLVs with Multi-AZ deployments. When you modify or create a Multi-AZ instance, a
DLV is created for both the primary and the secondary.

RDS supports DLVs with read replicas. If the primary DB instance has a DLV enabled, all read
replicas created after enabling DLV will also have a DLV. Any read replicas created before the switch
to DLV will not have it enabled unless explicitly modified to do so. We recommend all read replicas
attached to a primary instance before DLV was enabled also be manually modified to have A DLV.

Note

We recommend DLVs for database configurations of 5 TiB or greater.

For more information on the benefits of DLVs, see the following blog posts:

• Enhance database performance with Amazon RDS dedicated log volumes

• Benchmark Amazon RDS for PostgreSQL with dedicated log volumes

• Maximizing performance of AWS RDS for MySQL with dedicated log volumes in the Percona
documentation

For information on the ranges of allocated storage, Provisioned IOPS, and storage throughput
available for each database engine, see Provisioned IOPS SSD storage.

Topics

• Considerations when enabling and disabling DLV

• Enabling DLV when you create a DB instance

Using a dedicated log volume (DLV) 833

https://aws.amazon.com/blogs/database/enhance-database-performance-with-amazon-rds-dedicated-log-volumes/
https://aws.amazon.com/blogs/database/benchmark-amazon-rds-for-postgresql-with-dedicated-log-volumes/
https://www.percona.com/blog/maximizing-performance-of-aws-rds-for-mysql-with-dedicated-log-volumes/

Amazon Relational Database Service User Guide

• Enabling DLV on an existing DB instance

• Monitoring DLV storage

Considerations when enabling and disabling DLV

Enabling and disabling DLV can be time consuming and cause downtime. The process involves
copying all transaction logs or redo and binary logs (depending on the database engine) to the
new volume when enabling, or back to the original storage when disabling. The duration of this
operation is influenced by several factors:

• Number of transaction logs:

• Larger databases with more transactions generate more logs, increasing the time required for
copying.

• Transaction logs can accumulate on the primary DB instance if replication slots are inactive or
if replication is lagging, increasing the time required for copying. Make sure that replication is
current, and remove any unnecessary slots.

• Storage configuration:

• DB instance EBS bandwidth – Higher bandwidth allows for faster data transfer.

• Number of Provisioned IOPS – More input/output operations per second (IOPS) can speed up
the copying process.

• Database activity – High levels of database activity during configuration can slow down the
process.

To minimize downtime, we recommend that you plan and schedule during periods of low activity
or maintenance windows.

Enabling DLV when you create a DB instance

You can use the AWS Management Console, AWS CLI, or RDS API to create a DB instance with DLV
enabled.

Console

To enable DLV on a new DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Using a dedicated log volume (DLV) 834

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Choose Create database.

3. On the Create DB instance page, choose a DB engine that supports DLV.

4. For Storage:

a. Choose either Provisioned IOPS SSD (io1) or Provisioned IOPS SSD (io2).

b. Enter the Allocated storage and Provisioned IOPS that you want.

c. Expand Dedicated Log Volume, then select Turn on Dedicated Log Volume.

5. Choose other settings as needed.

6. Choose Create database.

Using a dedicated log volume (DLV) 835

Amazon Relational Database Service User Guide

After the database is created, the value for Dedicated Log Volume appears on the Configuration
tab of the database details page.

CLI

To enable DLV when you create a DB instance using Provisioned IOPS storage, use the AWS CLI
command create-db-instance. Set the following parameters:

• --dedicated-log-volume – Enables a dedicated log volume.

• --storage-type – Set to io1 or io2 for Provisioned IOPS.

• --allocated-storage – Amount of storage to be allocated for the DB instance, in gibibytes.

• --iops – The amount of Provisioned IOPS for the DB instance, expressed in I/O operations per
second.

RDS API

To enable DLV when you create a DB instance using Provisioned IOPS storage, use the Amazon RDS
API operation CreateDBInstance. Set the following parameters:

• DedicatedLogVolume – Set to true to enable a dedicated log volume.

• StorageType – Set to io1 or io2 for Provisioned IOPS.

• AllocatedStorage – Amount of storage to be allocated for the DB instance, in gibibytes.

• Iops – The IOPS rate for the DB instance, expressed in I/O operations per second.

Enabling DLV on an existing DB instance

You can use the AWS Management Console, AWS CLI, or RDS API to modify a DB instance to enable
DLV.

After you modify the DLV setting for a DB instance, you must reboot the DB instance.

Console

To enable DLV on an existing DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Using a dedicated log volume (DLV) 836

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CretaeDBInstance.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To filter the list of DB instances, for Filter databases enter a text string for Amazon RDS to use
to filter the results. Only DB instances whose names contain the string appear.

3. Choose the DB instance with Provisioned IOPS storage that you want to modify.

4. Choose Modify.

5. On the Modify DB instance page:

• For Storage, expand Dedicated Log Volume, then select Turn on Dedicated Log Volume.

6. Choose Continue.

7. Choose Apply immediately to apply the changes to the DB instance immediately. Or choose
Apply during the next scheduled maintenance window to apply the changes during the next
maintenance window.

8. Review the parameters to be changed, and choose Modify DB instance to complete the
modification.

The new value for Dedicated Log Volume appears on the Configuration tab of the database details
page.

CLI

To enable or disable DLV on an existing DB instance using Provisioned IOPS storage, use the AWS
CLI command modify-db-instance. Set the following parameters:

• --dedicated-log-volume – Enables a dedicated log volume.

Use --no-dedicated-log-volume (the default) to disable a dedicated log volume.

• --apply-immediately – Use --apply-immediately to apply changes immediately.

Use --no-apply-immediately (the default) to apply changes during the next maintenance
window.

RDS API

To enable or disable DLV on an existing DB instance using Provisioned IOPS storage, use the
Amazon RDS API operation ModifyDBInstance. Set the following parameters:

• DedicatedLogVolume – Set this option to true to enable a dedicated log volume.

Using a dedicated log volume (DLV) 837

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Set this option to false to disable a dedicated log volume. This is the default value.

• ApplyImmediately – Set this option to True to apply changes immediately.

Set this option to False (the default) to apply changes during the next maintenance window.

Monitoring DLV storage

You can monitor the DLV storage usage by using the FreeStorageSpaceLogVolume metric in
CloudWatch.

You can use the following query for RDS for PostgreSQL to find the size occupied by transaction
logs:

SELECT pg_size_pretty(COALESCE(sum(size), 0)) AS total_wal_generated_size
FROM pg_catalog.pg_ls_waldir();

If the DLV runs out of storage, the DB instance will enter the storage-full state, causing
downtime.

We recommend that you delete old log files before you run out of DLV storage.

Using a dedicated log volume (DLV) 838

Amazon Relational Database Service User Guide

Deleting a DB instance

You can delete a DB instance using the AWS Management Console, the AWS CLI, or the RDS API. If
you want to delete a DB instance in an Aurora DB cluster, see Deleting Aurora DB clusters and DB
instances.

Topics

• Prerequisites for deleting a DB instance

• Considerations when deleting a DB instance

• Deleting a DB instance

Prerequisites for deleting a DB instance

Before you try to delete your DB instance, make sure that deletion protection is turned off. By
default, deletion protection is turned on for a DB instance that was created with the console.

If your DB instance has deletion protection turned on, you can turn it off by modifying your
instance settings. Choose Modify in the database details page or call the modify-db-instance
command. This operation doesn't cause an outage. For more information, see Settings for DB
instances.

Considerations when deleting a DB instance

Deleting a DB instance has an effect on instance recoverability, backup availability, and read replica
status. Consider the following issues:

• You can choose whether to create a final DB snapshot. You have the following options:

• If you take a final snapshot, you can use it to restore your deleted DB instance. RDS retains
both the final snapshot and any manual snapshots that you took previously. You can't create a
final DB snapshot of your DB instance if it isn't in the Available state. For more information,
see Viewing Amazon RDS DB instance status.

• If you don't take a final snapshot, deletion of your instance is faster. The disadvantage is that
no final snapshot exists that you can restore later. If you decide to restore your deleted DB
instance, either retain automated backups or use an earlier manual snapshot to restore your
DB instance to the point in time of the earlier snapshot.

• You can choose whether to retain automated backups. You have the following options:

Deleting a DB instance 839

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_DeleteCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_DeleteCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• If you retain automated backups, RDS keeps them for the retention period that is in effect for
the DB instance at the time when you delete it. You can use automated backups to restore
your DB instance to a time during but not after your retention period. The retention period is
in effect regardless of whether you create a final DB snapshot. To delete a retained automated
backup, see Deleting retained automated backups.

• Retained automated backups and manual snapshots incur billing charges until they're deleted.
For more information, see Retention costs.

• If you don't retain automated backups, RDS deletes the automated backups that reside in the
same AWS Region as your DB instance. You can't recover these backups. If your automated
backups have been replicated to another AWS Region, RDS keeps them even if you don't
choose to retain automated backups. For more information, see Replicating automated
backups to another AWS Region.

Note

Typically, if you create a final DB snapshot, you don't need to retain automated
backups.

• When you delete your DB instance, RDS doesn't delete manual DB snapshots. For more
information, see Creating a DB snapshot for a Single-AZ DB instance for Amazon RDS.

• If you want to delete all RDS resources, note that the following resources incur billing charges:

• DB instances

• DB snapshots

• DB clusters

If you purchased reserved instances, then they are billed according to contract that you agreed to
when you purchased the instance. For more information, see Reserved DB instances for Amazon
RDS. You can get billing information for all your AWS resources by using the AWS Cost Explorer.
For more information, see Analyzing your costs with AWS Cost Explorer.

• If you delete a DB instance that has read replicas in the same AWS Region, each read replica is
automatically promoted to a standalone DB instance. For more information, see Promoting a
read replica to be a standalone DB instance. If your DB instance has read replicas in different
AWS Regions, see Cross-Region replication considerations for information related to deleting the
source DB instance for a cross-Region read replica.

Considerations when deleting a DB instance 840

https://docs.aws.amazon.com/cost-management/latest/userguide/ce-what-is.html

Amazon Relational Database Service User Guide

• When the status for a DB instance is deleting, its CA certificate value doesn't appear in the RDS
console or in output for AWS CLI commands or RDS API operations. For more information about
CA certificates, see Using SSL/TLS to encrypt a connection to a DB instance or cluster.

• The time required to delete a DB instance varies depending on the backup retention period (that
is, how many backups to delete), how much data is deleted, and whether a final snapshot is
taken.

Deleting a DB instance

You can delete a DB instance using the AWS Management Console, the AWS CLI, or the RDS API.
You must do the following:

• Provide the name of the DB instance

• Enable or disable the option to take a final DB snapshot of the instance

• Enable or disable the option to retain automated backups

Note

You can't delete a DB instance when deletion protection is turned on. For more
information, see Prerequisites for deleting a DB instance.

Console

To delete a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
delete.

3. For Actions, choose Delete.

4. To create a final DB snapshot for the DB instance, choose Create final snapshot?.

5. If you chose to create a final snapshot, enter the Final snapshot name.

6. To retain automated backups, choose Retain automated backups.

7. Enter delete me in the box.

Deleting a DB instance 841

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

8. Choose Delete.

AWS CLI

To find the instance IDs of the DB instances in your account, call the describe-db-instances
command:

aws rds describe-db-instances --query 'DBInstances[*].[DBInstanceIdentifier]' --output
 text

To delete a DB instance by using the AWS CLI, call the delete-db-instance command with the
following options:

• --db-instance-identifier

• --final-db-snapshot-identifier or --skip-final-snapshot

Example With a final snapshot and no retained automated backups

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier mydbinstance \
 --final-db-snapshot-identifier mydbinstancefinalsnapshot \
 --delete-automated-backups

For Windows:

aws rds delete-db-instance ^
 --db-instance-identifier mydbinstance ^
 --final-db-snapshot-identifier mydbinstancefinalsnapshot ^
 --delete-automated-backups

Example With retained automated backups and no final snapshot

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier mydbinstance \
 --skip-final-snapshot \

Deleting a DB instance 842

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html

Amazon Relational Database Service User Guide

 --no-delete-automated-backups

For Windows:

aws rds delete-db-instance ^
 --db-instance-identifier mydbinstance ^
 --skip-final-snapshot ^
 --no-delete-automated-backups

RDS API

To delete a DB instance by using the Amazon RDS API, call the DeleteDBInstance operation with
the following parameters:

• DBInstanceIdentifier

• FinalDBSnapshotIdentifier or SkipFinalSnapshot

Deleting a DB instance 843

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstance.html

Amazon Relational Database Service User Guide

Tutorial: Managing a MySQL DB instance environment from
development to production

Introduction

A common scenario when managing an Amazon RDS DB instance involves the oversight of its
lifecycle from initial development through to production deployment. This tutorial offers guidance
to handle key tasks to ensure your database performs optimally and adapts to meet your evolving
operational needs. Additionally, it outlines options to synchronize changes made between your
development and production environments to ensure consistency and reliability.

By completing these steps, you learn:

• How to perform specific tasks with MySQL DB instances, such as adding and updating Amazon
RDS tags, expanding storage, creating read replicas, and deleting resources.

• How to synchronize updates from a production environment to a development environment for
comprehensive testing and validation.

To complete this tutorial, carry out the following tasks:

1. Create a MySQL DB instance.

2. Add Amazon RDS tags to categorize your DB instance as a development environment.

3. Increase the storage capacity of your DB instance to accommodate increased workloads.

4. Create read replicas to enhance the resilience and availability of your DB instance.

5. Update Amazon RDS tags to categorize your DB instance as a production environment.

6. Delete DB instance that you no longer need so that they don’t incur additional costs.

7. Next Steps: Synchronize your development instance with production for consistency across
environments

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Tutorial: Managing a MySQL DB instance 844

Amazon Relational Database Service User Guide

Add tags to categorize your DB instance as a development environment

To categorize the DB instance as a development environment, add an Amazon RDS tag to the
instance you created. An Amazon RDS tag is a key-value pair that you define and associate with
your RDS instance. Tagging your AWS resources helps distinguish between your development and
production AWS resources. For more information on Amazon RDS tags, see Tagging Amazon RDS
resources.

1. In the Amazon RDS console, choose Databases.

2. Select the DB instance you want to tag.

3. In the details section, scroll to the Tags section.

4. Choose Manage tags and selectdd new tag.

5. Enter a value for Tag key and Value. For instance, you might use the tag key environment with
the value dev to specify that the database instance is part of the development environment.

6. Choose Add new tagand Save changes.

Your DB instance is now tagged as a development environment. This makes it easier to identify the
DB instance and to manage costs associated with this resource.

Increase the storage capacity of a DB instance to accommodate growing
data needs

Next, modify the storage capacity of the MySQL DB instance to accommodate additional data.
Initially, the storage capacity of your DB instance is set to meet the immediate needs of your
application. However, as data volumes grow, it might be necessary to adjust the storage settings
to ensure the database’s continued performance and stability. This process involves increasing the
allocated storage of your DB instance. For more information on modifying the storage capacity of
your DB instance, see Working with storage for Amazon RDS DB instances.

1. In the Amazon RDS console, choose Databases.

2. Select the DB instance you want to modify.

3. Choose Modify.

4. In Storage, increase the Allocated Storage. The modified storage value must be greater than
the current one.

5. Choose Continue.

Add tags to your DB instance 845

Amazon Relational Database Service User Guide

6. In Scheduling of modifications, you can either choose Apply immediately to apply the
storage changes to the DB instance immediately or choose Apply during the next scheduled
maintenance window to apply the changes during the next maintenance window.

7. When the settings are as you want them, choose Modify DB instance.

The storage capacity of your DB instance is now increased. This enables it to effectively handle
larger data volumes and ensures continued performance and stability as your application's data
needs grow.

Create read replicas to enhance the resilience and availability of a DB
instance

Create a read replica of the MySQL DB instance. Read replicas enhance the resilience and
availability of your DB instance. To reduce the read traffic on your primary DB instance, create a
read replica of your DB instance. This routes queries to the read replica, which can help distribute
the load and improve overall database performance. For more information on DB instance read
replicas, see Working with DB instance read replicas.

Before a MySQL DB instance can serve as a replication source, automatic backups must be enabled
on the source DB instance. This can be done by setting the backup retention period to a value other
than 0. For more information on MySQL read replicas, see Working with MySQL read replicas.

1. In the Amazon RDS console, choose Databases.

2. Select the DB instance you want to use as the source for the read replica.

3. In Actions, select Create read replica.

4. For DB instance identifier, enter a name for the read replica in all lowercase letters.

5. Choose your instance configuration. We recommend that you use the same or larger DB instance
class and storage type as the source DB instance for the read replica.

6. For AWS Region, specify the destination Region for the read replica.

7. Leave the default settings or modify them as you require.

8. Choose Create read replica.

The read replica appears underneath your source DB instance on the Databases page in the RDS
console. It shows Replica in the Role column.

Create read replicas 846

Amazon Relational Database Service User Guide

Update tags to categorize a DB instance as a production environment

When your DB instance is ready to move from the development phase to production, it is
important to update its tags to reflect its transition. To align your DB instance with your
operational and monitoring strategies, update the initial tags to indicate that the DB instance is
now part of the production environment. This ensures better visibility and management of the
database.

1. In the Amazon RDS console, choose Databases.

2. Select the DB instance you want to update

3. In the details section, scroll to the Tags section.

4. Select Manage tags.

5. Remove your initial tag signifying a development environment.

6. SelectAdd new tag.

7. Enter a new value for Tag key and Value. For instance, you might use the tag key environment
with the value prod to specify that the DB instance is part of the production environment.

8. Choose Add new tag and Save changes.

The tag on your DB instance is updated to signify the database’s transition to a production
environment.

Delete a DB instance when it is no longer needed to avoid incurring additional
costs

Before the end of this tutorial, it is crucial to address the management of your resources. If you
have any resources that are no longer required, you should proceed to delete them to prevent
incurring additional costs and optimize your cloud environment.

1. In the Amazon RDS console, choose Databases.

2. Select the DB instance you want to delete

3. In Actions, select Delete. Deleting a DB instance will permanently delete the instance with all its
content and related resources.

4. Confirm the deletion of the DB instance and select Delete.

Update tags 847

Amazon Relational Database Service User Guide

Alternatively, if you choose to maintain your DB instance for future use, you can continue to
manage it as part of your production environment. This involves maintaining a synchronized
development environment to facilitate comprehensive testing and validation. For more
information, see Next steps: Synchronize your development instance with production for
consistency across environments.

Next steps: Synchronize your development instance with production for
consistency across environments

Create a development environment

To manage a production environment, it’s important to maintain a synchronized development
environment for comprehensive testing and validation. To create a new development environment,
first create a DB snapshot of the current production DB instance. A DB snapshot captures the
entire DB instance by creating a storage volume snapshot. For instructions on how to create a DB
snapshot on the Amazon RDS console, see Creating a DB snapshot for a Single-AZ DB instance for
Amazon RDS.

After you create the DB snapshot of your production environment, create a new DB instance
for your development environment by restoring a DB snapshot. Restored DB instances are
automatically associated with the default DB parameter and option groups. However, you can
apply a custom parameter group and option group by specifying them during a restore. For
instructions on restoring a DB snapshot, see Tutorial: Restore an Amazon RDS DB instance from a
DB snapshot.

Finally, designate the new DB instance as your new development environment by updating its
Amazon RDS tags. For guidance on updating Amazon RDS tags to reflect this change, see the
previous section Update tags to categorize a DB instance as a production environment.

You now have a new development environment that mirrors the database configuration of your
production environment.

Synchronize a development environment with production environment

Once your new development environment is established, it is necessary to keep it synchronized
with any changes that occur in the production environment. This ensures that your development
environment accurately reflects the current state of production, which is essential for effective
testing, validation, and troubleshooting. Amazon RDS provides a variety of different ways to
keep your development environment up to date with your production environment. For more

Update tags 848

Amazon Relational Database Service User Guide

information on these options, see Orchestrating database refreshes for Amazon RDS and Amazon
Aurora.

One of the primary ways in which you can synchronize your development and production
environments is through creating and restoring DB snapshots. A DB snapshot allows you to create a
development environment that reflects the database configuration of the production environment
during the time the snapshot was created. For more information on DB snapshots, see Managing
manual backups. For more information on restoring a DB instance, see Restoring to a DB instance.

DB snapshots are particularly valuable for the following use cases.

• Initial setup of a development environment: DB snapshots are useful to create the initial
development environment for testing as it provides a consistent baseline that mirrors the exact
state of the production environment at the time of the snapshot.

• High traffic applications: In production environments where continuous operation is critical,
using Multi-AZ deployments for snapshots avoids I/O suspension on the primary database,
ensuring uninterrupted performance and high availability.

• Sharing data across different RDS accounts: DB snapshots can be shared across different
AWS accounts, facilitating the transfer of data between accounts or regions. This is useful for
collaborative projects or scenarios where data needs to be shared for various purposes. For more
information, see Sharing a DB snapshot for Amazon RDS.

In this tutorial, you explored essential tasks for managing your DB instance throughout its lifecycle.
You learned how to create a DB instance, add and update Amazon RDS tags, expand storage, and
create read replicas. You also learned ways to build on these fundamental operations and manage
your production environment effectively. This included establishing a development environment
for testing and synchronizing it with the production environment for consistency. These tasks help
maintain a resilient and scalable database infrastructure, ensuring your Amazon RDS environment
operates efficiently.

Update tags 849

https://aws.amazon.com/blogs/database/orchestrating-database-refreshes-for-amazon-rds-and-amazon-aurora/
https://aws.amazon.com/blogs/database/orchestrating-database-refreshes-for-amazon-rds-and-amazon-aurora/

Amazon Relational Database Service User Guide

Configuring and managing a Multi-AZ deployment for
Amazon RDS

Multi-AZ deployments can have one standby or two standby DB instances. When the deployment
has one standby DB instance, it's called a Multi-AZ DB instance deployment. A Multi-AZ DB instance
deployment has one standby DB instance that provides failover support, but doesn't serve read
traffic. When the deployment has two standby DB instances, it's called a Multi-AZ DB cluster
deployment. A Multi-AZ DB cluster deployment has standby DB instances that provide failover
support and can also serve read traffic.

You can use the AWS Management Console to determine whether a Multi-AZ deployment is a
Multi-AZ DB instance deployment or a Multi-AZ DB cluster deployment. In the navigation pane,
choose Databases, and then choose a DB identifier.

• A Multi-AZ DB instance deployment has the following characteristics:

• There is only one row for the DB instance.

• The value of Role is Instance or Primary.

• The value of Multi-AZ is Yes.

• A Multi-AZ DB cluster deployment has the following characteristics:

• There is a cluster-level row with three DB instance rows under it.

• For the cluster-level row, the value of Role is Multi-AZ DB cluster.

• For each instance-level row, the value of Role is Writer instance or Reader instance.

• For each instance-level row, the value of Multi-AZ is 3 Zones.

Topics

• Multi-AZ DB instance deployments for Amazon RDS

• Multi-AZ DB cluster deployments for Amazon RDS

In addition, the following topics apply to both DB instances and Multi-AZ DB clusters.

• the section called “Tagging RDS resources”

• the section called “ARNs in Amazon RDS”

• the section called “Working with storage”

850

Amazon Relational Database Service User Guide

• the section called “Maintaining a DB instance”

• the section called “Upgrading the engine version”

851

Amazon Relational Database Service User Guide

Multi-AZ DB instance deployments for Amazon RDS

Amazon RDS provides high availability and failover support for DB instances using Multi-AZ
deployments with a single standby DB instance. This type of deployment is called a Multi-AZ DB
instance deployment. Amazon RDS uses several different technologies to provide this failover
support. Multi-AZ deployments for MariaDB, MySQL, Oracle, PostgreSQL, and RDS Custom for
SQL Server DB instances use the Amazon failover technology. Microsoft SQL Server DB instances
use SQL Server Database Mirroring (DBM) or Always On Availability Groups (AGs). For information
on SQL Server version support for Multi-AZ, see Multi-AZ deployments for Amazon RDS for
Microsoft SQL Server. For information on working with RDS Custom for SQL Server for Multi-AZ,
see Managing a Multi-AZ deployment for RDS Custom for SQL Server.

In a Multi-AZ DB instance deployment, Amazon RDS automatically provisions and maintains
a synchronous standby replica in a different Availability Zone. The primary DB instance is
synchronously replicated across Availability Zones to a standby replica to provide data redundancy
and minimize latency spikes during system backups. Running a DB instance with high availability
can enhance availability during planned system maintenance. It can also help protect your
databases against DB instance failure and Availability Zone disruption. For more information on
Availability Zones, see Regions, Availability Zones, and Local Zones.

Note

The high availability option isn't a scaling solution for read-only scenarios. You can't use a
standby replica to serve read traffic. To serve read-only traffic, use a Multi-AZ DB cluster
or a read replica instead. For more information about Multi-AZ DB clusters, see Multi-AZ
DB cluster deployments for Amazon RDS. For more information about read replicas, see
Working with DB instance read replicas.

Multi-AZ DB instance deployments 852

Amazon Relational Database Service User Guide

Using the RDS console, you can create a Multi-AZ DB instance deployment by simply specifying
Multi-AZ when creating a DB instance. You can use the console to convert existing DB instances
to Multi-AZ DB instance deployments by modifying the DB instance and specifying the Multi-AZ
option. You can also specify a Multi-AZ DB instance deployment with the AWS CLI or Amazon RDS
API. Use the create-db-instance or modify-db-instance CLI command, or the CreateDBInstance or
ModifyDBInstance API operation.

The RDS console shows the Availability Zone of the standby replica (called the secondary AZ). You
can also use the describe-db-instances CLI command or the DescribeDBInstances API operation to
find the secondary AZ.

DB instances using Multi-AZ DB instance deployments can have increased write and commit
latency compared to a Single-AZ deployment. This can happen because of the synchronous data
replication that occurs. You might have a change in latency if your deployment fails over to the

Multi-AZ DB instance deployments 853

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

standby replica, although AWS is engineered with low-latency network connectivity between
Availability Zones. For production workloads, we recommend that you use Provisioned IOPS (input/
output operations per second) for fast, consistent performance. For more information about DB
instance classes, see DB instance classes.

Converting a DB instance to a Multi-AZ deployment for Amazon RDS

Modifying a DB instance to a Multi-AZ deployment improves availability by adding a standby
instance in another Availability Zone. The process involves minimal downtime and requires careful
planning around storage and performance impacts. This change enhances fault tolerance and
reduces recovery time in case of failures, making it ideal for high-availability environments.

If you have a DB instance in a Single-AZ deployment and modify it to a Multi-AZ DB instance
deployment, Amazon RDS performs the following actions:

1. Takes a snapshot of the primary DB instance's Amazon Elastic Block Store (EBS) volumes.

2. Creates new volumes for the standby replica from the snapshot. These volumes initialize in the
background, and maximum volume performance is achieved after the data is fully initialized.

3. Turns on synchronous block-level replication between the volumes of the primary and standby
replicas.

Important

Creating a standby DB instance from a snapshot during a Single-AZ to Multi-AZ conversion
avoids downtime but might impact performance, particularly for write-sensitive workloads.
The synchronous replication can increase I/O latency, affecting database performance. As a
best practice, avoid converting a production DB instance to a Multi-AZ DB instance.
Instead, create a read replica, enable backups on it, convert it to Multi-AZ, load data into
its volumes, and then promote it to the primary DB instance. For more information, see
Working with DB instance read replicas.

There are two ways to modify a DB instance to be a Multi-AZ DB instance deployment:

Topics

• Convert to a Multi-AZ DB instance deployment with the RDS console

• Modifying a DB instance to be a Multi-AZ DB instance deployment

Converting a DB instance to a Multi-AZ deployment 854

Amazon Relational Database Service User Guide

Convert to a Multi-AZ DB instance deployment with the RDS console

You can use the RDS console to convert a DB instance to a Multi-AZ DB instance deployment.

You can only use the console to complete the conversion. To use the AWS CLI or RDS API, follow
the instructions in Modifying a DB instance to be a Multi-AZ DB instance deployment.

To convert to a Multi-AZ DB instance deployment with the RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. From Actions, choose Convert to Multi-AZ deployment.

4. On the confirmation page, choose Apply immediately to apply the changes immediately.
Choosing this option doesn't cause downtime, but there is a possible performance impact.
Alternatively, you can choose to apply the update during the next maintenance window. For
more information, see Using the schedule modifications setting.

5. Choose Convert to Multi-AZ.

Modifying a DB instance to be a Multi-AZ DB instance deployment

You can modify a DB instance to be a Multi-AZ DB instance deployment in the following ways:

• Using the RDS console, modify the DB instance, and set Multi-AZ deployment to Yes.

• Using the AWS CLI, call the modify-db-instance command, and set the --multi-az option.

• Using the RDS API, call the ModifyDBInstance operation, and set the MultiAZ parameter to
true.

For information about modifying a DB instance, see Modifying an Amazon RDS DB instance. After
the modification is complete, Amazon RDS triggers an event (RDS-EVENT-0025) that indicates the
process is complete. You can monitor Amazon RDS events. For more information about events, see
Working with Amazon RDS event notification.

Converting a DB instance to a Multi-AZ deployment 855

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Failing over a Multi-AZ DB instance for Amazon RDS

If a planned or unplanned outage of your Multi-AZ DB instance results from an infrastructure
defect, Amazon RDS automatically switches to a standby replica in another Availability Zone.

The time that it takes for the failover to complete depends on the database activity and other
conditions at the time the primary DB instance became unavailable. Failover times are typically 60–
120 seconds. However, large transactions or a lengthy recovery process can increase failover time.
When the failover is complete, it can take additional time for the RDS console to reflect the new
Availability Zone.

Note

You can force a failover manually when you reboot a Multi-AZ DB instance. For more
information, see Rebooting a DB instance.

Amazon RDS handles failovers automatically so you can resume database operations as quickly as
possible without administrative intervention. The primary DB instance switches over automatically
to the standby replica if any of the conditions described in the following table occurs. You can view
these failover reasons in the event log.

Failover reason Description

The operating system underlying the RDS
database instance is being patched in an
offline operation.

A failover was triggered during the maintenan
ce window for an OS patch or a security
update.

For more information, see Maintaining a DB
instance.

The primary host of the RDS Multi-AZ instance
is unhealthy.

The Multi-AZ DB instance deployment
detected an impaired primary DB instance and
failed over.

The primary host of the RDS Multi-AZ instance
is unreachable due to loss of network con
nectivity.

RDS monitoring detected a network reachabil
ity failure to the primary DB instance and
triggered a failover.

Failing over a Multi-AZ DB instance 856

Amazon Relational Database Service User Guide

Failover reason Description

The RDS instance was modified by customer. An RDS DB instance modification triggered a
failover.

For more information, see Modifying an
Amazon RDS DB instance.

Failing over a Multi-AZ DB instance 857

Amazon Relational Database Service User Guide

Failover reason Description

The RDS Multi-AZ primary instance is busy and
unresponsive.

The primary DB instance is unresponsive. We
recommend that you do the following:

•
Examine the event and CloudWatch logs
for excessive CPU, memory, or swap space
usage. For more information, see Working
with Amazon RDS event notification and
Creating a rule that triggers on an Amazon
RDS event.

•
Evaluate your workload to determine
whether you're using the appropriate DB
instance class. For more information, see
DB instance classes.

•
Use Enhanced Monitoring for real-time
operating system metrics. For more
information, see Monitoring OS metrics with
Enhanced Monitoring.

•
Use Performance Insights to help analyze
any issues that affect your DB instance's
performance. For more information, see
Monitoring DB load with Performance
Insights on Amazon RDS.

For more information on these recommend
ations, see Monitoring tools for Amazon RDS
and Best practices for Amazon RDS.

The storage volume underlying the primary
host of the RDS Multi-AZ instance experienced
a failure.

The Multi-AZ DB instance deployment
detected a storage issue on the primary DB
instance and failed over.

Failing over a Multi-AZ DB instance 858

Amazon Relational Database Service User Guide

Failover reason Description

The user requested a failover of the DB
instance.

You rebooted the DB instance and chose
Reboot with failover.

For more information, see Rebooting a DB
instance.

To determine if your Multi-AZ DB instance has failed over, you can do the following:

• Set up DB event subscriptions to notify you by email or SMS that a failover has been initiated.
For more information about events, see Working with Amazon RDS event notification.

• View your DB events by using the RDS console or API operations.

• View the current state of your Multi-AZ DB instance deployment by using the RDS console or API
operations.

For information on how you can respond to failovers, reduce recovery time, and other best
practices for Amazon RDS, see Best practices for Amazon RDS.

Setting the JVM TTL for DNS name lookups

The failover mechanism automatically changes the Domain Name System (DNS) record of the DB
instance to point to the standby DB instance. As a result, you need to re-establish any existing
connections to your DB instance. In a Java virtual machine (JVM) environment, due to how the Java
DNS caching mechanism works, you might need to reconfigure JVM settings.

The JVM caches DNS name lookups. When the JVM resolves a host name to an IP address, it caches
the IP address for a specified period of time, known as the time-to-live (TTL).

Because AWS resources use DNS name entries that occasionally change, we recommend that you
configure your JVM with a TTL value of no more than 60 seconds. Doing this makes sure that when
a resource's IP address changes, your application can receive and use the resource's new IP address
by requerying the DNS.

On some Java configurations, the JVM default TTL is set so that it never refreshes DNS entries until
the JVM is restarted. Thus, if the IP address for an AWS resource changes while your application
is still running, it can't use that resource until you manually restart the JVM and the cached IP

Failing over a Multi-AZ DB instance 859

Amazon Relational Database Service User Guide

information is refreshed. In this case, it's crucial to set the JVM's TTL so that it periodically refreshes
its cached IP information.

You can get the JVM default TTL by retrieving the networkaddress.cache.ttl property value:

String ttl = java.security.Security.getProperty("networkaddress.cache.ttl");

Note

The default TTL can vary according to the version of your JVM and whether a security
manager is installed. Many JVMs provide a default TTL less than 60 seconds. If you're using
such a JVM and not using a security manager, you can ignore the rest of this topic. For
more information on security managers in Oracle, see The security manager in the Oracle
documentation.

To modify the JVM's TTL, set the networkaddress.cache.ttl property value. Use one of the
following methods, depending on your needs:

• To set the property value globally for all applications that use the JVM, set
networkaddress.cache.ttl in the $JAVA_HOME/jre/lib/security/java.security
file.

networkaddress.cache.ttl=60

• To set the property locally for your application only, set networkaddress.cache.ttl in your
application's initialization code before any network connections are established.

java.security.Security.setProperty("networkaddress.cache.ttl" , "60");

Failing over a Multi-AZ DB instance 860

https://docs.oracle.com/javase/7/docs/technotes/guides/net/properties.html
https://docs.oracle.com/javase/tutorial/essential/environment/security.html

Amazon Relational Database Service User Guide

Multi-AZ DB cluster deployments for Amazon RDS

A Multi-AZ DB cluster deployment is a semisynchronous, high availability deployment mode of
Amazon RDS with two readable replica DB instances. A Multi-AZ DB cluster has a writer DB instance
and two reader DB instances in three separate Availability Zones in the same AWS Region. Multi-AZ
DB clusters provide high availability, increased capacity for read workloads, and lower write latency
when compared to Multi-AZ DB instance deployments.

You can import data from an on-premises database to a Multi-AZ DB cluster by following the
instructions in Importing data to an Amazon RDS for MySQL database with reduced downtime.

You can purchase reserved DB instances for a Multi-AZ DB cluster. For more information, see
Reserved DB instances for a Multi-AZ DB cluster.

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability of Amazon RDS with Multi-
AZ DB clusters, see Supported Regions and DB engines for Multi-AZ DB clusters in Amazon RDS.

Topics

• Instance class availability for Multi-AZ DB clusters

• Multi-AZ DB cluster architecture

• Parameter groups for Multi-AZ DB clusters

• RDS Proxy with Multi-AZ DB clusters

• Replica lag and Multi-AZ DB clusters

• Multi-AZ DB cluster snapshots

• Creating a Multi-AZ DB cluster for Amazon RDS

• Connecting to a Multi-AZ DB cluster for Amazon RDS

• Automatically connecting an AWS compute resource and a Multi-AZ DB cluster for Amazon RDS

• Modifying a Multi-AZ DB cluster for Amazon RDS

• Upgrading the engine version of a Multi-AZ DB cluster for Amazon RDS

• Renaming a Multi-AZ DB cluster for Amazon RDS

• Rebooting a Multi-AZ DB cluster and reader DB instances for Amazon RDS

• Failing over a Multi-AZ DB cluster for Amazon RDS

• Setting up PostgreSQL logical replication with Multi-AZ DB clusters for Amazon RDS

• Working with Multi-AZ DB cluster read replicas for Amazon RDS

Multi-AZ DB cluster deployments 861

Amazon Relational Database Service User Guide

• Setting up external replication from Multi-AZ DB clusters for Amazon RDS

• Deleting a Multi-AZ DB cluster for Amazon RDS

• Limitations of Multi-AZ DB clusters for Amazon RDS

Important

Multi-AZ DB clusters aren't the same as Aurora DB clusters. For information about Aurora
DB clusters, see the Amazon Aurora User Guide.

Instance class availability for Multi-AZ DB clusters

Multi-AZ DB cluster deployments are supported for the following DB instance classes: db.m5d,
db.m6gd, db.m6id, db.m6idn, db.r5d, db.r6gd, db.x2iedn, db.r6id, and db.r6idn, and
db.c6gd.

Note

The c6gd instance classes are the only ones that support the medium instance size.

For more information about DB instance classes, see the section called “DB instance classes”.

Multi-AZ DB cluster architecture

With a Multi-AZ DB cluster, Amazon RDS replicates data from the writer DB instance to both of the
reader DB instances using the DB engine's native replication capabilities. When a change is made
on the writer DB instance, it's sent to each reader DB instance.

Multi-AZ DB cluster deployments use semisynchronous replication, which requires
acknowledgment from at least one reader DB instance in order for a change to be committed.
It doesn't require acknowledgment that events have been fully executed and committed on all
replicas.

Reader DB instances act as automatic failover targets and also serve read traffic to increase
application read throughput. If an outage occurs on your writer DB instance, RDS manages failover
to one of the reader DB instances. RDS does this based on which reader DB instance has the most
recent change record.

Instance class availability for Multi-AZ DB clusters 862

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html

Amazon Relational Database Service User Guide

The following diagram shows a Multi-AZ DB cluster.

Multi-AZ DB clusters typically have lower write latency when compared to Multi-AZ DB instance
deployments. They also allow read-only workloads to run on reader DB instances. The RDS console
shows the Availability Zone of the writer DB instance and the Availability Zones of the reader DB
instances. You can also use the describe-db-clusters CLI command or the DescribeDBClusters API
operation to find this information.

Important

To prevent replication errors in RDS for MySQL Multi-AZ DB clusters, we strongly
recommend that all tables have a primary key.

Multi-AZ DB cluster architecture 863

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Relational Database Service User Guide

Parameter groups for Multi-AZ DB clusters

In a Multi-AZ DB cluster, a DB cluster parameter group acts as a container for engine configuration
values that are applied to every DB instance in the Multi-AZ DB cluster.

In a Multi-AZ DB cluster, a DB parameter group is set to the default DB parameter group for the DB
engine and DB engine version. The settings in the DB cluster parameter group are used for all of
the DB instances in the cluster.

For information about parameter groups, see the section called “DB cluster parameter groups”.

RDS Proxy with Multi-AZ DB clusters

You can use Amazon RDS Proxy to create a proxy for your Multi-AZ DB clusters. By using RDS Proxy,
your applications can pool and share database connections to improve their ability to scale. Each
proxy performs connection multiplexing, also known as connection reuse. With multiplexing, RDS
Proxy performs all the operations for a transaction using one underlying database connection. RDS
Proxy can also reduce the downtime for a minor version upgrade of a Multi-AZ DB cluster to one
second or less. For more information about the benefits of RDS Proxy, see Amazon RDS Proxy.

To set up a proxy for a Multi-AZ DB cluster, choose Create an RDS Proxy when creating the cluster.
For instructions to create and manage RDS Proxy endpoints, see the section called “Working with
RDS Proxy endpoints”.

Replica lag and Multi-AZ DB clusters

Replica lag is the difference in time between the latest transaction on the writer DB instance
and the latest applied transaction on a reader DB instance. The Amazon CloudWatch metric
ReplicaLag represents this time difference. For more information about CloudWatch metrics, see
Monitoring Amazon RDS metrics with Amazon CloudWatch.

Although Multi-AZ DB clusters allow for high write performance, replica lag can still occur due
to the nature of engine-based replication. Because any failover must first resolve the replica
lag before it promotes a new writer DB instance, monitoring and managing this replica lag is a
consideration.

For RDS for MySQL Multi-AZ DB clusters, failover time depends on replica lag of both remaining
reader DB instances. Both the reader DB instances must apply unapplied transactions before one of
them is promoted to the new writer DB instance.

Parameter groups for Multi-AZ DB clusters 864

Amazon Relational Database Service User Guide

For RDS for PostgreSQL Multi-AZ DB clusters, failover time depends on the lowest replica lag of the
two remaining reader DB instances. The reader DB instance with the lowest replica lag must apply
unapplied transactions before it is promoted to the new writer DB instance.

For a tutorial that shows you how to create a CloudWatch alarm when replica lag exceeds a set
amount of time, see Tutorial: Creating an Amazon CloudWatch alarm for Multi-AZ DB cluster
replica lag for Amazon RDS.

Common causes of replica lag

In general, replica lag occurs when the write workload is too high for the reader DB instances to
apply the transactions efficiently. Various workloads can incur temporary or continuous replica lag.
Some examples of common causes are the following:

• High write concurrency or heavy batch updating on the writer DB instance, causing the apply
process on the reader DB instances to fall behind.

• Heavy read workload that is using resources on one or more reader DB instances. Running slow
or large queries can affect the apply process and can cause replica lag.

• Transactions that modify large amounts of data or DDL statements can sometimes cause a
temporary increase in replica lag because the database must preserve commit order.

Mitigating replica lag

For Multi-AZ DB clusters for RDS for MySQL and RDS for PostgreSQL, you can mitigate replica lag
by reducing the load on your writer DB instance. You can also use flow control to reduce replica
lag. Flow control works by throttling writes on the writer DB instance, which ensures that replica
lag doesn't continue to grow unbounded. Write throttling is accomplished by adding a delay into
the end of a transaction, which decreases the write throughput on the writer DB instance. Although
flow control doesn't guarantee lag elimination, it can help reduce overall lag in many workloads.
The following sections provide information about using flow control with RDS for MySQL and RDS
for PostgreSQL.

Mitigating replica lag with flow control for RDS for MySQL

When you are using RDS for MySQL Multi-AZ DB clusters, flow control is turned on by default using
the dynamic parameter rpl_semi_sync_master_target_apply_lag. This parameter specifies
the upper limit that you want for replica lag. As replica lag approaches this configured limit, flow
control throttles the write transactions on the writer DB instance to try to contain the replica lag

Replica lag and Multi-AZ DB clusters 865

Amazon Relational Database Service User Guide

below the specified value. In some cases, replica lag can exceed the specified limit. By default, this
parameter is set to 120 seconds. To turn off flow control, set this parameter to its maximum value
of 86,400 seconds (one day).

To view the current delay injected by flow control, show the parameter
Rpl_semi_sync_master_flow_control_current_delay by running the following query.

SHOW GLOBAL STATUS like '%flow_control%';

Your output should look similar to the following.

+---+-------+
| Variable_name | Value |
+---+-------+
| Rpl_semi_sync_master_flow_control_current_delay | 2010 |
+---+-------+
1 row in set (0.00 sec)

Note

The delay is shown in microseconds.

When you have Performance Insights turned on for an RDS for MySQL Multi-AZ DB cluster, you can
monitor the wait event corresponding to a SQL statement indicating that the queries were delayed
by a flow control. When a delay was introduced by a flow control, you can view the wait event /
wait/synch/cond/semisync/semi_sync_flow_control_delay_cond corresponding to the
SQL statement on the Performance Insights dashboard. To view these metrics, make sure that the
Performance Schema is turned on. For information about Performance Insights, see Monitoring DB
load with Performance Insights on Amazon RDS.

Mitigating replica lag with flow control for RDS for PostgreSQL

When you are using RDS for PostgreSQL Multi-AZ DB clusters, flow control is deployed as an
extension. It turns on a background worker for all DB instances in the DB cluster. By default, the
background workers on the reader DB instances communicate the current replica lag with the
background worker on the writer DB instance. If the lag exceeds two minutes on any reader DB
instance, the background worker on the writer DB instance adds a delay at the end of a transaction.
To control the lag threshold, use the parameter flow_control.target_standby_apply_lag.

Replica lag and Multi-AZ DB clusters 866

Amazon Relational Database Service User Guide

When a flow control throttles a PostgreSQL process, the Extension wait event
in pg_stat_activity and Performance Insights indicates that. The function
get_flow_control_stats displays details about how much delay is currently being added.

Flow control can benefit most online transaction processing (OLTP) workloads that have short but
highly concurrent transactions. If the lag is caused by long-running transactions, such as batch
operations, flow control doesn't provide as strong a benefit.

You can turn off flow control by removing the extension from the shared_preload_libraries
and rebooting your DB instance.

Multi-AZ DB cluster snapshots

Amazon RDS creates and saves automated backups of your Multi-AZ DB cluster during the
configured backup window. RDS creates a storage volume snapshot of your DB cluster, backing up
the entire cluster and not just individual instances.

You can also take manual backups of your Multi-AZ DB cluster. For very long-term backups,
consider exporting the snapshot data to Amazon S3. For more information, see the section called
“Creating a Multi-AZ DB cluster snapshot”.

You can restore a Multi-AZ DB cluster to a specific point in time, creating a new Multi-AZ DB cluster.
For instructions, see the section called “Restoring a Multi-AZ DB cluster to a specified time”.

Alternately, you can restore a Multi-AZ DB cluster snapshot to a Single-AZ deployment or Multi-
AZ DB instance deployment. For instructions, see the section called “Restoring from a Multi-AZ DB
cluster snapshot to a DB instance”.

Multi-AZ DB cluster snapshots 867

Amazon Relational Database Service User Guide

Creating a Multi-AZ DB cluster for Amazon RDS

A Multi-AZ DB cluster has a writer DB instance and two reader DB instances in three separate
Availability Zones. Multi-AZ DB clusters provide high availability, increased capacity for read
workloads, and lower latency when compared to Multi-AZ deployments. For more information
about Multi-AZ DB clusters, see Multi-AZ DB cluster deployments for Amazon RDS.

Note

Multi-AZ DB clusters are supported only for the MySQL and PostgreSQL DB engines.

DB cluster prerequisites

Important

Before you can create a Multi-AZ DB cluster, you must complete the tasks in Setting up
your Amazon RDS environment.

The following are prerequisites to complete before creating a Multi-AZ DB cluster.

Topics

• Configure the network for the DB cluster

• Additional prerequisites

Configure the network for the DB cluster

You can create a Multi-AZ DB cluster only in a virtual private cloud (VPC) based on the Amazon VPC
service. It must be in an AWS Region that has at least three Availability Zones. The DB subnet group
that you choose for the DB cluster must cover at least three Availability Zones. This configuration
ensures that each DB instance in the DB cluster is in a different Availability Zone.

To set up connectivity between your new DB cluster and an Amazon EC2 instance in the same VPC,
do so when you create the DB cluster. To connect to your DB cluster from resources other than EC2
instances in the same VPC, configure the network connections manually.

Topics

Creating a Multi-AZ DB cluster 868

Amazon Relational Database Service User Guide

• Configure automatic network connectivity with an EC2 instance

• Configure the network manually

Configure automatic network connectivity with an EC2 instance

When you create a Multi-AZ DB cluster, you can use the AWS Management Console to set up
connectivity between an EC2 instance and the new DB cluster. When you do so, RDS configures
your VPC and network settings automatically. The DB cluster is created in the same VPC as the EC2
instance so that the EC2 instance can access the DB cluster.

The following are requirements for connecting an EC2 instance with the DB cluster:

• The EC2 instance must exist in the AWS Region before you create the DB cluster.

If no EC2 instances exist in the AWS Region, the console provides a link to create one.

• The user who is creating the DB cluster must have permissions to perform the following
operations:

• ec2:AssociateRouteTable

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateRouteTable

• ec2:CreateSubnet

• ec2:CreateSecurityGroup

• ec2:DescribeInstances

• ec2:DescribeNetworkInterfaces

• ec2:DescribeRouteTables

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:ModifyNetworkInterfaceAttribute

• ec2:RevokeSecurityGroupEgress

Using this option creates a private DB cluster. The DB cluster uses a DB subnet group with only
private subnets to restrict access to resources within the VPC.
Creating a Multi-AZ DB cluster 869

Amazon Relational Database Service User Guide

To connect an EC2 instance to the DB cluster, choose Connect to an EC2 compute resource in the
Connectivity section on the Create database page.

When you choose Connect to an EC2 compute resource, RDS sets the following options
automatically. You can't change these settings unless you choose not to set up connectivity with an
EC2 instance by choosing Don't connect to an EC2 compute resource.

Console option Automatic setting

Virtual Private Cloud (VPC) RDS sets the VPC to the one associated with the EC2 instance.

DB subnet group
RDS requires a DB subnet group with a private subnet in the
same Availability Zone as the EC2 instance. If a DB subnet
group that meets this requirement exists, then RDS uses the
existing DB subnet group. By default, this option is set to
Automatic setup.

When you choose Automatic setup and there is no DB subnet
group that meets this requirement, the following action
happens. RDS uses three available private subnets in three
Availability Zones where one of the Availability Zones is the
same as the EC2 instance. If a private subnet isn’t available in

Creating a Multi-AZ DB cluster 870

Amazon Relational Database Service User Guide

Console option Automatic setting

an Availability Zone, RDS creates a private subnet in the Avai
lability Zone. Then RDS creates the DB subnet group.

When a private subnet is available, RDS uses the route table
associated with the subnet and adds any subnets it creates
to this route table. When no private subnet is available, RDS
creates a route table without internet gateway access and
adds the subnets it creates to the route table.

RDS also allows you to use existing DB subnet groups. Select
Choose existing if you want to use an existing DB subnet
group of your choice.

Public access RDS chooses No so that the DB cluster isn't publicly accessible.

For security, it is a best practice to keep the database private
and make sure it isn't accessible from the internet.

Creating a Multi-AZ DB cluster 871

Amazon Relational Database Service User Guide

Console option Automatic setting

VPC security group (firewall) RDS creates a new security group that is associated with the
DB cluster. The security group is named rds-ec2-n, where
n is a number. This security group includes an inbound rule
with the EC2 VPC security group (firewall) as the source. This
security group that is associated with the DB cluster allows the
EC2 instance to access the DB cluster.

RDS also creates a new security group that is associated with
the EC2 instance. The security group is named ec2-rds-n,
where n is a number. This security group includes an outbound
rule with the VPC security group of the DB cluster as the
source. This security group allows the EC2 instance to send
traffic to the DB cluster.

You can add another new security group by choosing Create
new and typing the name of the new security group.

You can add existing security groups by choosing Choose
existing and selecting security groups to add.

Availability Zone RDS chooses the Availability Zone of the EC2 instance for
one DB instance in the Multi-AZ DB cluster deployment. RDS
randomly chooses a different Availability Zone for both of
the other DB instances. The writer DB instance is created in
the same Availability Zone as the EC2 instance. There is the
possibility of cross Availability Zone costs if a failover occurs
and the writer DB instance is in a different Availability Zone.

For more information about these settings, see Settings for creating Multi-AZ DB clusters.

If you change these settings after the DB cluster is created, the changes might affect the
connection between the EC2 instance and the DB cluster.

Creating a Multi-AZ DB cluster 872

Amazon Relational Database Service User Guide

Configure the network manually

To connect to your DB cluster from resources other than EC2 instances in the same VPC, configure
the network connections manually. If you use the AWS Management Console to create your Multi-
AZ DB cluster, you can have Amazon RDS automatically create a VPC for you. Or you can use an
existing VPC or create a new VPC for your Multi-AZ DB cluster. Your VPC must have at least one
subnet in each of at least three Availability Zones for you to use it with a Multi-AZ DB cluster. For
information on VPCs, see Amazon VPC and Amazon RDS.

If you don't have a default VPC or you haven't created a VPC, and you don't plan to use the console,
do the following:

• Create a VPC with at least one subnet in each of at least three of the Availability Zones in the
AWS Region where you want to deploy your DB cluster. For more information, see Working with
a DB instance in a VPC.

• Specify a VPC security group that authorizes connections to your DB cluster. For more
information, see Provide access to your DB instance in your VPC by creating a security group and
Controlling access with security groups.

• Specify an RDS DB subnet group that defines at least three subnets in the VPC that can be used
by the Multi-AZ DB cluster. For more information, see Working with DB subnet groups.

For information about limitations that apply to Multi-AZ DB clusters, see Limitations of Multi-AZ
DB clusters for Amazon RDS.

If you want to connect to a resource that isn't in the same VPC as the Multi-AZ DB cluster, see the
appropriate scenarios in Scenarios for accessing a DB instance in a VPC.

Additional prerequisites

Before you create your Multi-AZ DB cluster, consider the following additional prerequisites:

• To tailor the configuration parameters for your DB cluster, specify a DB cluster parameter group
with the required parameter settings. For information about creating or modifying a DB cluster
parameter group, see Parameter groups for Multi-AZ DB clusters.

• Determine the TCP/IP port number to specify for your DB cluster. The firewalls at some
companies block connections to the default ports. If your company firewall blocks the default
port, choose another port for your DB cluster. All DB instances in a DB cluster use the same port.

Creating a Multi-AZ DB cluster 873

Amazon Relational Database Service User Guide

• If the major engine version for your database reached the RDS end of standard support date, you
must use the Extended Support CLI option or the RDS API parameter. For more information, see
RDS Extended Support in Settings for creating Multi-AZ DB clusters.

Creating a DB cluster

You can create a Multi-AZ DB cluster using the AWS Management Console, the AWS CLI, or the RDS
API.

Console

You can create a Multi-AZ DB cluster by choosing Multi-AZ DB cluster in the Availability and
durability section.

To create a Multi-AZ DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the DB cluster.

For information about the AWS Regions that support Multi-AZ DB clusters, see Limitations of
Multi-AZ DB clusters for Amazon RDS.

3. In the navigation pane, choose Databases.

4. Choose Create database.

To create a Multi-AZ DB cluster, make sure that Standard Create is selected and Easy Create
isn't.

5. In Engine type, choose MySQL or PostgreSQL.

6. For Version, choose the DB engine version.

For information about the DB engine versions that support Multi-AZ DB clusters, see
Limitations of Multi-AZ DB clusters for Amazon RDS.

7. In Templates, choose the appropriate template for your deployment.

8. In Availability and durability, choose Multi-AZ DB cluster.

Creating a Multi-AZ DB cluster 874

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

9. In DB cluster identifier, enter the identifier for your DB cluster.

10. In Master username, enter your master user name, or keep the default setting.

11. Enter your master password:

a. In the Settings section, open Credential Settings.

b. If you want to specify a password, clear the Auto generate a password box if it is selected.

c. (Optional) Change the Master username value.

d. Enter the same password in Master password and Confirm password.

12. For DB instance class, choose a DB instance class. For a list of supported DB instance classes,
see the section called “Instance class availability for Multi-AZ DB clusters”.

13. (Optional) Set up a connection to a compute resource for this DB cluster.

You can configure connectivity between an Amazon EC2 instance and the new DB cluster
during DB cluster creation. For more information, see Configure automatic network
connectivity with an EC2 instance.

14. In the Connectivity section under VPC security group (firewall), if you select Create new, a
VPC security group is created with an inbound rule that allows your local computer's IP address
to access the database.

15. For the remaining sections, specify your DB cluster settings. For information about each
setting, see Settings for creating Multi-AZ DB clusters.

16. Choose Create database.

If you chose to use an automatically generated password, the View credential details button
appears on the Databases page.

Creating a Multi-AZ DB cluster 875

Amazon Relational Database Service User Guide

To view the master user name and password for the DB cluster, choose View credential
details.

To connect to the DB cluster as the master user, use the user name and password that appear.

Important

You can't view the master user password again.

17. For Databases, choose the name of the new DB cluster.

On the RDS console, the details for the new DB cluster appear. The DB cluster has a status of
Creating until the DB cluster is created and ready for use. When the state changes to Available,
you can connect to the DB cluster. Depending on the DB cluster class and storage allocated, it can
take several minutes for the new DB cluster to be available.

AWS CLI

Before you create a Multi-AZ DB cluster using the AWS CLI, make sure to fulfill the required
prerequisites. These include creating a VPC and an RDS DB subnet group. For more information, see
DB cluster prerequisites.

To create a Multi-AZ DB cluster by using the AWS CLI, call the create-db-cluster command. Specify
the --db-cluster-identifier. For the --engine option, specify either mysql or postgres.

For information about each option, see Settings for creating Multi-AZ DB clusters.

For information about the AWS Regions, DB engines, and DB engine versions that support Multi-AZ
DB clusters, see Limitations of Multi-AZ DB clusters for Amazon RDS.

The create-db-cluster command creates the writer DB instance for your DB cluster, and two
reader DB instances. Each DB instance is in a different Availability Zone.

For example, the following command creates a MySQL 8.0 Multi-AZ DB cluster named mysql-
multi-az-db-cluster.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster \

Creating a Multi-AZ DB cluster 876

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Relational Database Service User Guide

 --db-cluster-identifier mysql-multi-az-db-cluster \
 --engine mysql \
 --engine-version 8.0.32 \
 --master-username admin \
 --manage-master-user-password \
 --port 3306 \
 --backup-retention-period 1 \
 --db-subnet-group-name default \
 --allocated-storage 4000 \
 --storage-type io1 \
 --iops 10000 \
 --db-cluster-instance-class db.m5d.xlarge

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier mysql-multi-az-db-cluster ^
 --engine mysql ^
 --engine-version 8.0.32 ^
 --manage-master-user-password ^
 --master-username admin ^
 --port 3306 ^
 --backup-retention-period 1 ^
 --db-subnet-group-name default ^
 --allocated-storage 4000 ^
 --storage-type io1 ^
 --iops 10000 ^
 --db-cluster-instance-class db.m5d.xlarge

The following command creates a PostgreSQL 13.4 Multi-AZ DB cluster named postgresql-
multi-az-db-cluster.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier postgresql-multi-az-db-cluster \
 --engine postgres \
 --engine-version 13.4 \
 --manage-master-user-password \
 --master-username postgres \
 --port 5432 \

Creating a Multi-AZ DB cluster 877

Amazon Relational Database Service User Guide

 --backup-retention-period 1 \
 --db-subnet-group-name default \
 --allocated-storage 4000 \
 --storage-type io1 \
 --iops 10000 \
 --db-cluster-instance-class db.m5d.xlarge

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier postgresql-multi-az-db-cluster ^
 --engine postgres ^
 --engine-version 13.4 ^
 --manage-master-user-password ^
 --master-username postgres ^
 --port 5432 ^
 --backup-retention-period 1 ^
 --db-subnet-group-name default ^
 --allocated-storage 4000 ^
 --storage-type io1 ^
 --iops 10000 ^
 --db-cluster-instance-class db.m5d.xlarge

RDS API

Before you can create a Multi-AZ DB cluster using the RDS API, make sure to fulfill the required
prerequisites, such as creating a VPC and an RDS DB subnet group. For more information, see DB
cluster prerequisites.

To create a Multi-AZ DB cluster by using the RDS API, call the CreateDBCluster operation. Specify
the DBClusterIdentifier. For the Engine parameter, specify either mysql or postgresql.

For information about each option, see Settings for creating Multi-AZ DB clusters.

The CreateDBCluster operation creates the writer DB instance for your DB cluster, and two
reader DB instances. Each DB instance is in a different Availability Zone.

Settings for creating Multi-AZ DB clusters

For details about settings that you choose when you create a Multi-AZ DB cluster, see the
following table. For more information about the AWS CLI options, see create-db-cluster. For more
information about the RDS API parameters, see CreateDBCluster.

Creating a Multi-AZ DB cluster 878

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Allocated
storage

The amount of storage to allocate
for each DB instance in your DB
cluster (in gibibyte). For more
information, see Amazon RDS DB
instance storage.

CLI option:

--allocated-storage

API parameter:

AllocatedStorage

Auto minor
version
upgrade

Enable auto minor version
upgrade to have your DB cluster
receive preferred minor DB engine
version upgrades automatically
when they become available.
Amazon RDS performs automatic
minor version upgrades in the
maintenance window.

CLI option:

--auto-minor-version-upgrad
e

--no-auto-minor-version-upg
rade

API parameter:

AutoMinorVersionUpgrade

Backup
retention
period

The number of days that you want
automatic backups of your DB
cluster to be retained. For a Multi-
AZ DB cluster, this value must be
set to 1 or greater.

For more information, see
Introduction to backups.

CLI option:

--backup-retention-period

API parameter:

BackupRetentionPeriod

Backup
window

The time period during which
Amazon RDS automatically takes
a backup of your DB cluster. U
nless you have a specific time that
you want to have your database
 backed up, use the default of No
 preference.

CLI option:

--preferred-backup-window

API parameter:

PreferredBackupWindow

Creating a Multi-AZ DB cluster 879

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

For more information, see
Introduction to backups.

Certificate
authority

The certificate authority (CA) for
the server certificate used by the
DB cluster.

For more information, see Using
SSL/TLS to encrypt a connection
to a DB instance or cluster.

CLI option:

--ca-certificate-identifier

RDS API parameter:

CACertificateIdentifier

Copy tags to
snapshots

This option copies any DB cluster
tags to a DB snapshot when you
create a snapshot.

For more information, see Tagging
Amazon RDS resources.

CLI option:

-copy-tags-to-snapshot

-no-copy-tags-to-snapshot

RDS API parameter:

CopyTagsToSnapshot

Database
authentication

The database authentication
option that you want to use.

Choose Password authentication
to authenticate database users
with database passwords only.

Choose Password and IAM DB
authentication to authenticate
database users with database
passwords and user credentials
through users and roles. For more
information, see IAM database
authentication for MariaDB,
MySQL, and PostgreSQL.

CLI option:

--enable-iam-database-authe
ntication

--no-enable-iam-database-au
thentication

RDS API parameter:

EnableIAMDatabaseAuthentica
tion

Creating a Multi-AZ DB cluster 880

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Database port The port that you want to access
the DB cluster through. The default
port is shown.

The port can't be changed after
the DB cluster is created.

The firewalls at some companies
block connections to the default
 ports. If your company firewall
blocks the default port, enter anot
her port for your DB cluster.

CLI option:

--port

RDS API parameter:

Port

DB cluster
identifier

The name for your DB cluster.
Name your DB clusters in the
same way that you name your on-
premises servers. Your DB cluster
 identifier can contain up to 63
alphanumeric characters, and must
be unique for your account in the
AWS Region you chose.

CLI option:

--db-cluster-identifier

RDS API parameter:

DBClusterIdentifier

Creating a Multi-AZ DB cluster 881

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

DB instance
class

The compute and memory capacity
of each DB instance in the Multi-
AZ DB cluster, for example
 db.m5d.xlarge .

If possible, choose a DB instance
class large enough that a typical
query working set can be held
in memory. When working sets
are held in memory the system
can avoid writing to disk, which
improves performance.

For a list of supported DB instance
classes, see the section called
“Instance class availability for
Multi-AZ DB clusters”.

CLI option:

--db-cluster-instance-class

RDS API parameter:

DBClusterInstanceClass

DB cluster
parameter
group

The DB cluster parameter group
that you want associated with the
DB cluster.

For more information, see
 Parameter groups for Multi-AZ DB
clusters.

CLI option:

--db-cluster-parameter-grou
p-name

RDS API parameter:

DBClusterParameterGroupName

DB engine
version

The version of database engine
that you want to use.

CLI option:

--engine-version

RDS API parameter:

EngineVersion

Creating a Multi-AZ DB cluster 882

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

DB cluster
parameter
group

The DB instance parameter group
to associate with the DB cluster.

For more information, see
Parameter groups for Multi-AZ DB
clusters.

CLI option:

--db-cluster-parameter-grou
p-name

RDS API parameter:

DBClusterParameterGroupName

DB subnet
group

The DB subnet group you want to
use for the DB cluster.
Select Choose existing to use an
existing DB subnet group. Then
choose the required subnet group
from the Existing DB subnet
groups dropdown list.

Choose Automatic setup to let
RDS select a compatible DB subnet
group. If none exist, RDS creates a
new subnet group for your cluster.

For more information, see
Working with DB subnet groups.

CLI option:

--db-subnet-group-name

RDS API parameter:

DBSubnetGroupName

Deletion
protection

Enable deletion protection to
prevent your DB cluster from
being deleted. If you create a
production DB cluster with the
console, deletion protection is
turned on by default.

For more information, see Deleting
a DB instance.

CLI option:

--deletion-protection

--no-deletion-protection

RDS API parameter:

DeletionProtection

Creating a Multi-AZ DB cluster 883

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Encryption Enable Encryption to turn on
encryption at rest for this DB
 cluster.

Encryption is turned on by default
for Multi-AZ DB clusters.

For more information, see
Encrypting Amazon RDS resources.

CLI options:

--kms-key-id

--storage-encrypted

--no-storage-encrypted

RDS API parameters:

KmsKeyId

StorageEncrypted

Enhanced
Monitoring

Enable enhanced monitoring to
turn on metrics gathering in real
 time for the operating system that
your DB cluster runs on.

For more information, see
Monitoring OS metrics with
Enhanced Monitoring.

CLI options:

--monitoring-interval

--monitoring-role-arn

RDS API parameters:

MonitoringInterval

MonitoringRoleArn

Creating a Multi-AZ DB cluster 884

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Initial database
name

The name for the database on your
DB cluster. If you don't provide a
name, Amazon RDS doesn't create
a database on the DB cluster for
MySQL. However, it does create
a database on the DB cluster for
PostgreSQL. The name can't be
a word reserved by the database
engine. It has other constraints
depending on the DB engine.

MySQL:

•
It must contain 1–64 alphanume
ric characters.

PostgreSQL:

•
It must contain 1–63 alphanume
ric characters.

•
It must begin with a letter or
an underscore. Subsequen
t characters can be letters,
underscores, or digits (0-9).

•
The initial database name is
postgres.

CLI option:

--database-name

RDS API parameter:

DatabaseName

Creating a Multi-AZ DB cluster 885

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Log exports The types of database log files to
publish to Amazon CloudWatch
Logs.

For more information, see
Publishing database logs to
Amazon CloudWatch Logs.

CLI option:

-enable-cloudwatch-logs-exp
orts

RDS API parameter:

EnableCloudwatchLogsExports

Maintenance
window

The 30-minute window in which
pending modifications to your
DB cluster are applied. If the time
period doesn't matter, choose No
preference.

For more information, see Amazon
RDS maintenance window.

CLI option:

--preferred-maintenance-win
dow

RDS API parameter:

PreferredMaintenanceWindow

Manage master
credentials in
AWS Secrets
Manager

Select Manage master credentia
ls in AWS Secrets Manager to
manage the master user password
in a secret in Secrets Manager.

Optionally, choose a KMS key
to use to protect the secret.
Choose from the KMS keys in your
account, or enter the key from a
different account.

For more information, see
Password management with
Amazon RDS and AWS Secrets
Manager.

CLI option:

--manage-master-user-passwo
rd | --no-manage-master-
user-password

--master-user-secret-kms-ke
y-id

RDS API parameter:

ManageMasterUserPassword

MasterUserSecretKmsKeyId

Creating a Multi-AZ DB cluster 886

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Master
password

The password for your master user
account.

CLI option:

--master-user-password

RDS API parameter:

MasterUserPassword

Master
username

The name that you use as the
master user name to log on to
your DB cluster with all database
privileges.

•
It can contain 1–16 alphanume
ric characters and underscores.

•
Its first character must be a
letter.

•
It can't be a word reserved by
the database engine.

You can't change the master user
name after the Multi-AZ DB cluster
is created.

For more information on privilege
s granted to the master user, see
Master user account privileges.

CLI option:

--master-username

RDS API parameter:

MasterUsername

Creating a Multi-AZ DB cluster 887

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Performance
Insights

Enable Performance Insights to
monitor your DB cluster load so
that you can analyze and troublesh
oot your database performance.

Choose a retention period to
determine how much Performan
ce Insights data history to keep.
The retention setting in the free
tier is Default (7 days). To retain
your performance data for longer,
specify 1–24 months. For more
information about retention
periods, see Pricing and data
retention for Performance Insights.

Choose a KMS key to use to protect
the key used to encrypt this
database volume. Choose from the
KMS keys in your account, or enter
the key from a different account.

For more information, see
Monitoring DB load with
Performance Insights on Amazon
RDS.

CLI options:

--enable-performance-insigh
ts

--no-enable-performance-ins
ights

--performance-insights-rete
ntion-period

--performance-insights-kms-
key-id

RDS API parameters:

EnablePerformanceInsights

PerformanceInsightsRetentio
nPeriod

PerformanceInsightsKMSKeyId

Provisioned
IOPS

The amount of Provisioned IOPS
(input/output operations per
second) to be initially allocated for
the DB cluster.

CLI option:

--iops

RDS API parameter:

Iops

Creating a Multi-AZ DB cluster 888

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Public access Publicly accessible to give the
DB cluster a public IP address,
meaning that it's accessible outside
the VPC. To be publicly accessibl
e, the DB cluster also has to be in a
public subnet in the VPC.

Not publicly accessible to make
the DB cluster accessible only from
inside the VPC.

For more information, see Hiding
a DB instance in a VPC from the
internet.

To connect to a DB cluster from
outside of its VPC, the DB cluster
must be publicly accessible.
Also, access must be granted
using the inbound rules of the
DB cluster's security group, and
other requirements must be
 met. For more information, see
Can't connect to Amazon RDS DB
instance.

If your DB cluster isn't publicly
accessible, you can use an AWS
Site-to-Site VPN connection or
an AWS Direct Connect connectio
n to access it from a private
network. For more information,
see Internetwork traffic privacy.

CLI option:

--publicly-accessible

--no-publicly-accessible

RDS API parameter:

PubliclyAccessible

Creating a Multi-AZ DB cluster 889

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

RDS Extended
Support

Select Enable RDS Extended
Support to allow supported
major engine versions to continue
running past the RDS end of
 standard support date.

When you create a DB cluster,
Amazon RDS defaults to RDS
Extended Support. To prevent the
creation of a new DB cluster after
the RDS end of standard support
date and to avoid charges for RDS
Extended Support, disable this
setting. Your existing DB clusters
won't incur charges until the RDS
Extended Support pricing start
date.

For more information, see Amazon
RDS Extended Support with
Amazon RDS.

CLI option:

--engine-lifecycle-support

RDS API parameter:

EngineLifecycleSupport

Storage
throughput

The storage throughput value
for the DB cluster. This setting is
visible only if you choose General
Purpose SSD (gp3) for the storage
type.

This setting is not configurable and
is automatically set based on the
IOPS that you specify.

For more information, see gp3
storage (recommended).

This value is automatically calculated
and doesn't have a CLI option.

Creating a Multi-AZ DB cluster 890

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

RDS Proxy Choose Create an RDS Proxy to
 create a proxy for your DB cluster.
Amazon RDS automatically creates
an IAM role and a Secrets Manager
secret for the proxy.

Not available when creating a DB
cluster.

Storage type The storage type for your DB
cluster.

Only General Purpose SSD (gp3),
Provisioned IOPS (io1), and
Provisioned IOPS SSD (io2) stor
age are supported.

For more information, see Amazon
RDS storage types.

CLI option:

--storage-type

RDS API parameter:

StorageType

Virtual Private
Cloud (VPC)

A VPC based on the Amazon VPC
service to associate with this DB
cluster.

For more information, see Amazon
VPC and Amazon RDS.

For the CLI and API, you specify the
VPC security group IDs.

VPC security
group (firewall
)

The security groups to associate
with the DB cluster.

For more information, see
Overview of VPC security groups.

CLI option:

--vpc-security-group-ids

RDS API parameter:

VpcSecurityGroupIds

Settings that don't apply when creating Multi-AZ DB clusters

The following settings in the AWS CLI command create-db-cluster and the RDS API operation
CreateDBCluster don't apply to Multi-AZ DB clusters.

Creating a Multi-AZ DB cluster 891

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Relational Database Service User Guide

You also can't specify these settings for Multi-AZ DB clusters in the console.

AWS CLI setting RDS API setting

--availability-zones AvailabilityZones

--backtrack-window BacktrackWindow

--character-set-name CharacterSetName

--domain Domain

--domain-iam-role-name DomainIAMRoleName

--enable-global-write-forwarding
| --no-enable-global-write-fo
rwarding

EnableGlobalWriteForwarding

--enable-http-endpoint | --no-
enable-http-endpoint

EnableHttpEndpoint

--global-cluster-identifier GlobalClusterIdentifier

--option-group-name OptionGroupName

--pre-signed-url PreSignedUrl

--replication-source-identifier ReplicationSourceIdentifier

--scaling-configuration ScalingConfiguration

Creating a Multi-AZ DB cluster 892

Amazon Relational Database Service User Guide

Connecting to a Multi-AZ DB cluster for Amazon RDS

A Multi-AZ DB cluster has three DB instances instead of a single DB instance. Each connection
is handled by a specific DB instance. When you connect to a Multi-AZ DB cluster, the hostname
and port that you specify point to a fully qualified domain name called an endpoint. The Multi-AZ
DB cluster uses the endpoint mechanism to abstract these connections so that you don't need to
specify exactly which DB instance in the DB cluster to connect to. Thus, you don't have to hardcode
all the hostnames or write your own logic for rerouting connections when some DB instances aren't
available.

The writer endpoint connects to the writer DB instance of the DB cluster, which supports both read
and write operations. The reader endpoint connects to either of the two reader DB instances, which
support only read operations.

Using endpoints, you can map each connection to the appropriate DB instance or group of DB
instances based on your use case. For example, to perform DDL and DML statements, you can
connect to whichever DB instance is the writer DB instance. To perform queries, you can connect to
the reader endpoint, with the Multi-AZ DB cluster automatically managing connections among the
reader DB instances. For diagnosis or tuning, you can connect to a specific DB instance endpoint to
examine details about a specific DB instance.

For information about connecting to a DB instance, see Connecting to an Amazon RDS DB instance.

For more information about connecting to Multi-AZ DB clusters, see the following topics.

Topics

• Cluster endpoints

• Reader endpoints

• Instance endpoints

• High availability connections

• Connecting to Multi-AZ DB clusters with the AWS drivers for Amazon RDS

Types of Multi-AZ DB cluster endpoints

An endpoint is represented by a unique identifier that contains a host address. The following types
of endpoints are available from a Multi-AZ DB cluster:

Connecting to a Multi-AZ DB cluster 893

Amazon Relational Database Service User Guide

Cluster endpoint

A cluster endpoint (or writer endpoint) for a Multi-AZ DB cluster connects to the current writer
DB instance for that DB cluster. This endpoint is the only one that can perform write operations
such as DDL and DML statements. This endpoint can also perform read operations.

Each Multi-AZ DB cluster has one cluster endpoint and one writer DB instance.

You use the cluster endpoint for all write operations on the DB cluster, including inserts,
updates, deletes, and DDL changes. You can also use the cluster endpoint for read operations,
such as queries.

If the current writer DB instance of a DB cluster fails, the Multi-AZ DB cluster automatically fails
over to a new writer DB instance. During a failover, the DB cluster continues to serve connection
requests to the cluster endpoint from the new writer DB instance, with minimal interruption of
service.

The following example illustrates a cluster endpoint for a Multi-AZ DB cluster.

mydbcluster.cluster-123456789012.us-east-1.rds.amazonaws.com

For more information about connecting to cluster endpoints, see Cluster endpoints.

Reader endpoint

A reader endpoint for a Multi-AZ DB cluster provides support for read-only connections to the
DB cluster. Use the reader endpoint for read operations, such as SELECT queries. By processing
those statements on the reader DB instances, this endpoint reduces the overhead on the writer
DB instance. It also helps the cluster to scale the capacity to handle simultaneous SELECT
queries. Each Multi-AZ DB cluster has one reader endpoint.

The reader endpoint sends each connection request to one of the reader DB instances. When
you use the reader endpoint for a session, you can only perform read-only statements such as
SELECT in that session.

The following example illustrates a reader endpoint for a Multi-AZ DB cluster. The read-only
intent of a reader endpoint is denoted by the -ro within the cluster endpoint name.

mydbcluster.cluster-ro-123456789012.us-east-1.rds.amazonaws.com

For more information about connecting to reader endpoints, see Reader endpoints.

Connecting to a Multi-AZ DB cluster 894

Amazon Relational Database Service User Guide

Instance endpoint

An instance endpoint connects to a specific DB instance within a Multi-AZ DB cluster. Each DB
instance in a DB cluster has its own unique instance endpoint. So there is one instance endpoint
for the current writer DB instance of the DB cluster, and there is one instance endpoint for each
of the reader DB instances in the DB cluster.

The instance endpoint provides direct control over connections to the DB cluster. This control
can help you address scenarios where using the cluster endpoint or reader endpoint might
not be appropriate. For example, your client application might require more fine-grained load
balancing based on workload type. In this case, you can configure multiple clients to connect to
different reader DB instances in a DB cluster to distribute read workloads.

The following example illustrates an instance endpoint for a DB instance in a Multi-AZ DB
cluster.

mydbinstance.123456789012.us-east-1.rds.amazonaws.com

For more information about connecting to instance endpoints, see Instance endpoints.

Viewing endpoints

Use the console, AWS CLI, or Amazon RDS API to view the cluster, reader, and instance endpoints.

Console

In the AWS Management Console, you see the cluster endpoint and the reader endpoint on the
details page for each Multi-AZ DB cluster. You see the instance endpoint in the details page for
each DB instance.

AWS CLI

With the AWS CLI, you see the writer and reader endpoints in the output of the describe-db-
clusters command. For example, the following command shows the endpoint attributes for all
clusters in your current AWS Region.

aws rds describe-db-cluster-endpoints

Connecting to a Multi-AZ DB cluster 895

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Relational Database Service User Guide

Amazon RDS API

With the Amazon RDS API, you retrieve the endpoints by calling the
DescribeDBClusterEndpoints action. The output also shows Amazon Aurora DB cluster
endpoints, if any exist.

Cluster endpoints

Each Multi-AZ DB cluster has a single built-in cluster endpoint, whose name and other attributes
are managed by Amazon RDS. You can't create, delete, or modify this kind of endpoint.

You use the cluster endpoint when you administer your DB cluster, perform extract, transform, load
(ETL) operations, or develop and test applications. The cluster endpoint connects to the writer DB
instance of the cluster. The writer DB instance is the only DB instance where you can create tables
and indexes, run INSERT statements, and perform other DDL and DML operations.

The physical IP address pointed to by the cluster endpoint changes when the failover mechanism
promotes a new DB instance to be the writer DB instance for the cluster. If you use any form of
connection pooling or other multiplexing, be prepared to flush or reduce the time-to-live for any
cached DNS information. Doing so ensures that you don't try to establish a read/write connection
to a DB instance that became unavailable or is now read-only after a failover.

Reader endpoints

You use the reader endpoint for read-only connections to your Multi-AZ DB cluster. This endpoint
helps your DB cluster handle a query-intensive workload. The reader endpoint is the endpoint
that you supply to applications that do reporting or other read-only operations on the cluster. The
reader endpoint sends connections to available reader DB instances in a Multi-AZ DB cluster.

Each Multi-AZ cluster has a single built-in reader endpoint, whose name and other attributes are
managed by Amazon RDS. You can't create, delete, or modify this kind of endpoint.

Instance endpoints

Each DB instance in a Multi-AZ DB cluster has its own built-in instance endpoint, whose name
and other attributes are managed by Amazon RDS. You can't create, delete, or modify this kind of
endpoint. With a Multi-AZ DB cluster, you typically use the writer and reader endpoints more often
than the instance endpoints.

Connecting to a Multi-AZ DB cluster 896

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterEndpoints.html

Amazon Relational Database Service User Guide

In day-to-day operations, the main way that you use instance endpoints is to diagnose capacity or
performance issues that affect one specific DB instance in a Multi-AZ DB cluster. While connected
to a specific DB instance, you can examine its status variables, metrics, and so on. Doing this can
help you determine what's happening for that DB instance that's different from what's happening
for other DB instances in the cluster.

High availability connections

For Multi-AZ DB clusters where high availability is important, use the writer endpoint for read/
write or general-purpose connections and the reader endpoint for read-only connections. The
writer and reader endpoints manage DB instance failover better than instance endpoints do. Unlike
the instance endpoints, the writer and reader endpoints automatically change which DB instance
they connect to if a DB instance in your cluster becomes unavailable.

If the writer DB instance of a DB cluster fails, Amazon RDS automatically fails over to a new writer
DB instance. It does so by promoting a reader DB instance to a new writer DB instance. If a failover
occurs, you can use the writer endpoint to reconnect to the newly promoted writer DB instance. Or
you can use the reader endpoint to reconnect to one of the reader DB instances in the DB cluster.
During a failover, the reader endpoint might direct connections to the new writer DB instance of a
DB cluster for a short time after a reader DB instance is promoted to the new writer DB instance. If
you design your own application logic to manage instance endpoint connections, you can manually
or programmatically discover the resulting set of available DB instances in the DB cluster.

Connecting to Multi-AZ DB clusters with the AWS drivers for Amazon RDS

The AWS suite of drivers has been designed to provide support for faster switchover and failover
times, and authentication with AWS Secrets Manager, AWS Identity and Access Management (IAM),
and Federated Identity. The AWS drivers rely on monitoring DB cluster status and being aware of
the cluster topology to determine the new writer. This approach reduces switchover and failover
times to single-digit seconds, compared to tens of seconds for open-source drivers.

As new service features are introduced, the goal of the AWS suite of drivers is to have built-in
support for these service features.

Connecting to Multi-AZ DB clusters with the Amazon Web Services (AWS) JDBC Driver

The Amazon Web Services (AWS) JDBC Driver is designed as an advanced JDBC wrapper to help
applications take advantage of the features of clustered databases. This wrapper is complementary
to and extends the functionality of an existing JDBC driver. The driver is drop-in compatible with
the following community drivers:

Connecting to a Multi-AZ DB cluster 897

Amazon Relational Database Service User Guide

• MySQL Connector/J

• MariaDB Connector/J

• pgJDBC

To install the AWS JDBC Driver, append the AWS JDBC Driver .jar file (located in the application
CLASSPATH), and keep references to the respective community driver. Update the respective
connection URL prefix as follows:

• jdbc:mysql:// to jdbc:aws-wrapper:mysql://

• jdbc:mariadb:// to jdbc:aws-wrapper:mariadb://

• jdbc:postgresql:// to jdbc:aws-wrapper:postgresql://

For more information about the AWS JDBC Driver and complete instructions for using it, see the
Amazon Web Services (AWS) JDBC Driver GitHub repository.

Connecting to Multi-AZ DB clusters with the Amazon Web Services (AWS) Python Driver

The Amazon Web Services (AWS) Python Driver is designed as an advanced Python wrapper.
This wrapper is complementary to and extends the functionality of the open-source Psycopg
driver. The AWS Python Driver supports Python versions 3.8 and higher. You can install the aws-
advanced-python-wrapper package using the pip command, along with the psycopg open-
source packages.

For more information about the AWS Python Driver and complete instructions for using it, see the
Amazon Web Services (AWS) Python Driver GitHub repository.

Connecting to a Multi-AZ DB cluster 898

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/awslabs/aws-advanced-python-wrapper

Amazon Relational Database Service User Guide

Automatically connecting an AWS compute resource and a Multi-AZ DB
cluster for Amazon RDS

You can automatically connect a Multi-AZ DB cluster and AWS compute resources such as Amazon
Elastic Compute Cloud (Amazon EC2) instances and AWS Lambda functions.

The following topics provide detailed instructions for configuring network settings, security groups,
and connection parameters to establish reliable connections to Amazon RDS DB instances within a
Multi-AZ DB cluster deployment. They focus on optimizing network connectivity and performance
for applications interacting with Multi-AZ DB cluster, ensuring secure and efficient data operations.

Topics

• Automatically connecting an EC2 instance and a Multi-AZ DB cluster

• Automatically connecting a Lambda function and a Multi-AZ DB cluster

Automatically connecting an EC2 instance and a Multi-AZ DB cluster

You can use the Amazon RDS console to simplify setting up a connection between an Amazon
Elastic Compute Cloud (Amazon EC2) instance and a Multi-AZ DB cluster. Often, your Multi-AZ DB
cluster is in a private subnet and your EC2 instance is in a public subnet within a VPC. You can use a
SQL client on your EC2 instance to connect to your Multi-AZ DB cluster. The EC2 instance can also
run web servers or applications that access your private Multi-AZ DB cluster.

Connecting an AWS compute resource and a Multi-AZ DB cluster 899

Amazon Relational Database Service User Guide

If you want to connect to an EC2 instance that isn't in the same VPC as the Multi-AZ DB cluster, see
the scenarios in the section called “Scenarios for accessing a DB instance in a VPC”.

Topics

• Overview of automatic connectivity with an EC2 instance

• Connecting an EC2 instance and a Multi-AZ DB cluster automatically

• Viewing connected compute resources

Overview of automatic connectivity with an EC2 instance

When you set up a connection between an EC2 instance and a Multi-AZ DB cluster automatically,
Amazon RDS configures the VPC security group for your EC2 instance and for your DB cluster.

The following are requirements for connecting an EC2 instance with a Multi-AZ DB cluster:

• The EC2 instance must exist in the same VPC as the Multi-AZ DB cluster.

If no EC2 instances exist in the same VPC, the console provides a link to create one.

Connecting an AWS compute resource and a Multi-AZ DB cluster 900

Amazon Relational Database Service User Guide

• The user who is setting up connectivity must have permissions to perform the following EC2
operations:

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateSecurityGroup

• ec2:DescribeInstances

• ec2:DescribeNetworkInterfaces

• ec2:DescribeSecurityGroups

• ec2:ModifyNetworkInterfaceAttribute

• ec2:RevokeSecurityGroupEgress

When you set up a connection to an EC2 instance, Amazon RDS acts according to the current
configuration of the security groups associated with the Multi-AZ DB cluster and EC2 instance, as
described in the following table.

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

There are one or more
security groups associated
with the Multi-AZ DB cluster
with a name that matches
the pattern rds-ec2-n
(where n is a number). A
 security group that matches
the pattern hasn't been
modified. This security group
has only one inbound rule
with the VPC security group
 of the EC2 instance as the
source.

There are one or more
security groups associated
with the EC2 instance with
a name that matches the
pattern rds-ec2-n (where
 n is a number). A securit
y group that matches the
pattern hasn't been modified.
This security group has only
one outbound rule with the
VPC security group of the
Multi-AZ DB cluster as the
source.

Amazon RDS takes no action.

A connection was already
configured automatically
between the EC2 instance and
Multi-AZ DB cluster. Because
a connection already exists
between the EC2 instance
and the RDS database, the
security groups aren't mo
dified.

Either of the following
conditions apply:

Either of the following
conditions apply:

RDS action: create new
security groups

Connecting an AWS compute resource and a Multi-AZ DB cluster 901

Amazon Relational Database Service User Guide

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

•
There is no security group
associated with the Multi-
AZ DB cluster with a name
that matches the pattern
 rds-ec2-n.

•
There are one or more
security groups associate
d with the Multi-AZ DB
cluster with a name that
matches the pattern rds-
ec2-n. However, none of
these security groups can
be used for the connection
with the EC2 instance. A
security group can't be
 used if it doesn't have
one inbound rule with the
VPC security group of
the EC2 instance as the
source. A security group
also can't be used if it has
been modified. Examples
 of modifications include
adding a rule or changing
the port of an existing rule.

•
There is no security group
associated with the EC2
instance with a name that
 matches the pattern ec2-
rds-n.

•
There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n.
 However, none of these
security groups can be used
for the connection with
the Multi-AZ DB cluster.
A security group can't be
used if it doesn't have one
outbound rule with the
 VPC security group of the
Multi-AZ DB cluster as the
source. A security group
also can't be used if it has
been modified.

Connecting an AWS compute resource and a Multi-AZ DB cluster 902

Amazon Relational Database Service User Guide

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

There are one or more
security groups associated
with the Multi-AZ DB cluster
with a name that matches
the pattern rds-ec2-n. A
 security group that matches
the pattern hasn't been
modified. This security group
has only one inbound rule
with the VPC security group
 of the EC2 instance as the
source.

There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n.
However, none of these
security groups can be used
for the connection with
the Multi-AZ DB cluster.
A security group can't be
used if it doesn't have one
outbound rule with the VPC
security group of the Multi-
AZ DB cluster as the source.
A security group also can't be
used if it has been modified.

RDS action: create new
security groups

There are one or more
security groups associated
with the Multi-AZ DB cluster
with a name that matches
the pattern rds-ec2-n. A
 security group that matches
the pattern hasn't been
modified. This security group
has only one inbound rule
with the VPC security group
 of the EC2 instance as the
source.

A valid EC2 security group for
the connection exists, but it is
not associated with the EC2
instance. This security group
has a name that matches the
pattern rds-ec2-n. It hasn't
 been modified. It has only
one outbound rule with the
VPC security group of the
Multi-AZ DB cluster as the
source.

RDS action: associate EC2
security group

Connecting an AWS compute resource and a Multi-AZ DB cluster 903

Amazon Relational Database Service User Guide

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

Either of the following
conditions apply:

•
There is no security group
associated with the Multi-
AZ DB cluster with a name
that matches the pattern
 rds-ec2-n.

•
There are one or more
security groups associate
d with the Multi-AZ DB
cluster with a name that
matches the pattern rds-
ec2-n. However, none of
these security groups can
be used for the connection
with the EC2 instance. A
security group can't be
 used if it doesn't have one
inbound rule with the VPC
 security group of the EC2
instance as the source.
A security group also
can't be used if it has been
modified.

There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern rds-ec2-n. A
security group that matches
the pattern hasn't been
modified. This security group
has only one outbound rule
with the VPC security group
of the Multi-AZ DB cluster as
the source.

RDS action: create new
security groups

 RDS action: create new security groups

Amazon RDS takes the following actions:

Connecting an AWS compute resource and a Multi-AZ DB cluster 904

Amazon Relational Database Service User Guide

• Creates a new security group that matches the pattern rds-ec2-n. This security group has an
inbound rule with the VPC security group of the EC2 instance as the source. This security group
is associated with the Multi-AZ DB cluster and allows the EC2 instance to access the Multi-AZ DB
cluster.

• Creates a new security group that matches the pattern ec2-rds-n. This security group has an
outbound rule with the VPC security group of the Multi-AZ DB cluster as the source. This security
group is associated with the EC2 instance and allows the EC2 instance to send traffic to the
Multi-AZ DB cluster.

 RDS action: associate EC2 security group

Amazon RDS associates the valid, existing EC2 security group with the EC2 instance. This security
group allows the EC2 instance to send traffic to the Multi-AZ DB cluster.

Connecting an EC2 instance and a Multi-AZ DB cluster automatically

Before setting up a connection between an EC2 instance and an RDS database, make sure you meet
the requirements described in Overview of automatic connectivity with an EC2 instance.

If you make changes to security groups after you configure connectivity, the changes might affect
the connection between the EC2 instance and the RDS database.

Note

You can only set up a connection between an EC2 instance and an RDS database
automatically by using the AWS Management Console. You can't set up a connection
automatically with the AWS CLI or RDS API.

To connect an EC2 instance and an RDS database automatically

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS database.

3. From Actions, choose Set up EC2 connection.

The Set up EC2 connection page appears.

4. On the Set up EC2 connection page, choose the EC2 instance.

Connecting an AWS compute resource and a Multi-AZ DB cluster 905

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

If no EC2 instances exist in the same VPC, choose Create EC2 instance to create one. In this
case, make sure the new EC2 instance is in the same VPC as the RDS database.

5. Choose Continue.

The Review and confirm page appears.

Connecting an AWS compute resource and a Multi-AZ DB cluster 906

Amazon Relational Database Service User Guide

6. On the Review and confirm page, review the changes that RDS will make to set up
connectivity with the EC2 instance.

If the changes are correct, choose Confirm and set up.

If the changes aren't correct, choose Previous or Cancel.

Connecting an AWS compute resource and a Multi-AZ DB cluster 907

Amazon Relational Database Service User Guide

Viewing connected compute resources

You can use the AWS Management Console to view the compute resources that are connected to
an RDS database. The resources shown include compute resource connections that were set up
automatically. You can set up connectivity with compute resources automatically in the following
ways:

• You can select the compute resource when you create the database.

For more information, see Creating an Amazon RDS DB instance and Creating a Multi-AZ DB
cluster for Amazon RDS.

• You can set up connectivity between an existing database and a compute resource.

For more information, see Automatically connecting an EC2 instance and an RDS database.

The listed compute resources don't include ones that were connected to the database manually.
For example, you can allow a compute resource to access a database manually by adding a rule to
the VPC security group associated with the database.

For a compute resource to be listed, the following conditions must apply:

• The name of the security group associated with the compute resource matches the pattern ec2-
rds-n (where n is a number).

• The security group associated with the compute resource has an outbound rule with the port
range set to the port that the RDS database uses.

• The security group associated with the compute resource has an outbound rule with the source
set to a security group associated with the RDS database.

• The name of the security group associated with the RDS database matches the pattern rds-
ec2-n (where n is a number).

• The security group associated with the RDS database has an inbound rule with the port range set
to the port that the RDS database uses.

• The security group associated with the RDS database has an inbound rule with the source set to a
security group associated with the compute resource.

Connecting an AWS compute resource and a Multi-AZ DB cluster 908

Amazon Relational Database Service User Guide

To view compute resources connected to an RDS database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the name of the RDS database.

3. On the Connectivity & security tab, view the compute resources in the Connected compute
resources.

Automatically connecting a Lambda function and a Multi-AZ DB cluster

You can use the RDS console to simplify setting up a connection between a Lambda function and
a Multi-AZ DB cluster. You can use the RDS console to simplify setting up a connection between a
Lambda function and a Multi-AZ DB cluster. Often, your Multi-AZ DB cluster is in a private subnet
within a VPC. The Lambda function can be used by applications to access your private Multi-AZ DB
cluster.

The following image shows a direct connection between your Multi-AZ DB cluster and your Lambda
function.

Connecting an AWS compute resource and a Multi-AZ DB cluster 909

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

You can set up the connection between your Lambda function and your database through RDS
Proxy to improve your database performance and resiliency. Often, Lambda functions make
frequent, short database connections that benefit from connection pooling that RDS Proxy offers.
You can take advantage of any IAM authentication that you already have for Lambda functions,
instead of managing database credentials in your Lambda application code. For more information,
see Amazon RDS Proxy.

You can use the console to automatically create a proxy for your connection. You can also select
existing proxies. The console updates the proxy security group to allow connections from your
database and Lambda function. You can input your database credentials or select the Secrets
Manager secret you require to access the database.

Connecting an AWS compute resource and a Multi-AZ DB cluster 910

Amazon Relational Database Service User Guide

Topics

• Overview of automatic connectivity with a Lambda function

• Automatically connecting a Lambda function and a Multi-AZ DB cluster

• Viewing connected compute resources

Overview of automatic connectivity with a Lambda function

When you set up a connection between a Lambda function and a Multi-AZ DB cluster
automatically, Amazon RDS configures the VPC security group for your Lambda function and for
your DB cluster.

The following are requirements for connecting a Lambda function with a Multi-AZ DB cluster:

• The Lambda function must exist in the same VPC as the Multi-AZ DB cluster.

If no Lambda function exists in the same VPC, the console provides a link to create one.

• The user who sets up connectivity must have permissions to perform the following Amazon RDS,
Amazon EC2, Lambda, Secrets Manager, and IAM operations:

• Amazon RDS

• rds:CreateDBProxies

• rds:DescribeDBInstances

• rds:DescribeDBProxies

Connecting an AWS compute resource and a Multi-AZ DB cluster 911

Amazon Relational Database Service User Guide

• rds:ModifyDBInstance

• rds:ModifyDBProxy

• rds:RegisterProxyTargets

• Amazon EC2

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateSecurityGroup

• ec2:DeleteSecurityGroup

• ec2:DescribeSecurityGroups

• ec2:RevokeSecurityGroupEgress

• ec2:RevokeSecurityGroupIngress

• Lambda

• lambda:CreateFunctions

• lambda:ListFunctions

• lambda:UpdateFunctionConfiguration

• Secrets Manager

• sercetsmanager:CreateSecret

• secretsmanager:DescribeSecret

• IAM

• iam:AttachPolicy

• iam:CreateRole

• iam:CreatePolicy

• AWS KMS

• kms:describeKey

When you set up a connection between a Lambda function and a Multi-AZ DB cluster, Amazon RDS
configures the VPC security group for your function and for your Multi-AZ DB cluster. If you use
RDS Proxy, then Amazon RDS also configures the VPC security group for the proxy. Amazon RDS
acts according to the current configuration of the security groups associated with the Multi-AZ DB
cluster and Lambda function, and proxy, as described in the following table.
Connecting an AWS compute resource and a Multi-AZ DB cluster 912

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Amazon RDS takes
no action because
security groups of
all resources follow
the correct naming
pattern and have the
right inbound and
 outbound rules.

There are one or
more security groups
associated with
the Multi-AZ DB
cluster with a name
that matches the
pattern rds-lambd
a- n (where n is a
number) or if the
TargetHealth of
an associated proxy
is AVAILABLE .

A security group that
matches the pattern
hasn't been modi
fied. This security
group has only one
inbound rule with
the VPC security
group of the Lambda
function or proxy as
the source.

There are one or
more security groups
associated with the
 Lambda function
with a name that
matches the pattern
 lambda-rds- n
or lambda-rd
sproxy- n (where n
is a number).

A security group that
matches the pattern
hasn't been modi
fied. This security
group has only one
outbound rule with
 either the VPC
security group of the
Multi-AZ DB cluster
or the proxy as the
 destination.

There are one or
more security groups
associated with the
 proxy with a name
that matches the
pattern rdsproxy-
lambda- n (where n
is a number).

A security group that
matches the pattern
hasn't been modi
fied. This security
group has inbound
and outbound
rules with the VPC
security groups of
the Lambda function
and the Multi-AZ DB
cluster.

Either of the
following conditions
apply:

•
There is no security
group associated
with the Multi-AZ

Either of the
following conditions
apply:

•
There is no security
group associated
with the Lambda

Either of the
following conditions
apply:

•
There is no security
group associate
d with the proxy
 with a name

RDS action: create
new security groups

Connecting an AWS compute resource and a Multi-AZ DB cluster 913

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

DB cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

•
There are one
or more security
groups associated
with the Multi-AZ
DB cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, Amazon
RDS can't use any
of these security
groups for the
connection with th
e Lambda function.

Amazon RDS can't
use a security group
that doesn't have one
inbound rule with

 function with a
name that matches
the pattern
 lambda-rds- n
 or lambda-rd
sproxy- n.

•
There are one
or more security
groups associated
with the Lambda
function with
a name that
matches the
pattern lambda-
rds- n or
lambda-rd
sproxy- n.
 However, Amazon
RDS can't use any
of these security
 groups for the
connection with
the Multi-AZ DB
cluster.

Amazon RDS can't
use a security group
if it doesn't have one
outbound rule with
the VPC security
group of the Multi-AZ

that matches
the pattern
 rdsproxy-
lambda- n.

•
There are one
or more security
groups associate
d with the proxy
with a name
that matches
 rdsproxy-
lambda- n.
 However, Amazon
RDS can't use any
of these security
 groups for the
connection with
the Multi-AZ DB
cluster or Lambda
function.

Amazon RDS can't
use a security group
that doesn't ha
ve inbound and
outbound rules with
the VPC security
group of the Multi-
AZ DB cluster and
the Lambda function.
Amazon RDS also

Connecting an AWS compute resource and a Multi-AZ DB cluster 914

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

the VPC security
group of the Lambda
function or proxy as
the source. Amazon
RDS also can't use
a security group
that has been modi
fied. Examples of
modifications include
adding a rule or
 changing the port of
an existing rule.

DB cluster or proxy as
the source. Amazon
RDS also can't use a
security group that
has been modified.

can't use a security
 group that has been
modified.

Connecting an AWS compute resource and a Multi-AZ DB cluster 915

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with
the Multi-AZ DB
cluster with a name
that matches the
pattern rds-
lambda- n or if the
TargetHealth of
an associated proxy
is AVAILABLE .

A security group that
matches the pattern
hasn't been modi
fied. This security
group has only one
inbound rule with
the VPC security
group of the Lambda
function or proxy as
the source.

There are one or
more security groups
associated with the
 Lambda function
with a name that
matches the pattern
 lambda-rds- n
or lambda-rd
sproxy- n.

However, Amazon
RDS can't use any of
these security groups
for the connection
with the Multi-AZ DB
cluster. Amazon RDS
can't use a security
group that doesn't
have one outbound
rule with the VPC
security group of the
Multi-AZ DB cluster
or proxy as the
destination. Amazon
RDS also can't use a
security group that
has been modified.

There are one or
more security groups
associated with the
 proxy with a name
that matches the
pattern rdsproxy-
lambda- n.

However, Amazon
RDS can't use any of
these security groups
for the connection
with the Multi-AZ
DB cluster or Lambda
function. Amazon
RDS can't use a
security group that
doesn't have inbound
and outbound rules
with the VPC security
group of the Multi-
AZ DB cluster and
the Lambda function.
Amazon RDS also
 can't use a security
group that has been
modified.

RDS action: create
new security groups

Connecting an AWS compute resource and a Multi-AZ DB cluster 916

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with
the Multi-AZ DB
cluster with a name
that matches the
pattern rds-
lambda- n or if the
TargetHealth of
an associated proxy
is AVAILABLE .

A security group that
matches the pattern
hasn't been modi
fied. This security
group has only one
inbound rule with
the VPC security
group of the Lambda
function or proxy as
the source.

A valid Lambda
security group for
the connection
exists, but it is not
associated with the
Lambda function.
This security group
 has a name that
matches the pattern
 lambda-rds- n
or lambda-rd
sproxy- n. It hasn't
been modified. It has
only one outbound
rule with the VPC
security group of the
Multi-AZ DB cluster
or proxy as the desti
nation.

A valid proxy
security group for
the connection
exists, but it is not
associated with the
proxy. This security
group has a name
 that matches the
pattern rdsproxy-
lambda- n. It hasn't
been modified. It
has inbound and
outbound rules with
 the VPC security
group of the Multi-
AZ DB cluster and the
Lambda function.

RDS action: associate
Lambda security
group

Connecting an AWS compute resource and a Multi-AZ DB cluster 917

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Either of the
following conditions
apply:

•
There is no security
group associated
with the Multi-AZ
DB cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

•
There are one
or more security
groups associate
d with the Multi-
AZ DB cluster
with a name that
 matches the
pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, Amazon
RDS can'can't

There are one or
more security groups
associated with the
 Lambda function
with a name that
matches the pattern
 lambda-rds- n
or lambda-rd
sproxy- n.

A security group that
matches the pattern
hasn't been modi
fied. This security
group has only one
outbound rule with
 the VPC security
group of the Multi-AZ
DB cluster or proxy as
the destination.

There are one or
more security groups
associated with the
 proxy with a name
that matches the
pattern rdsproxy-
lambda- n.

A security group that
matches the pattern
hasn't been modi
fied. This security
group has inbound
and outbound rules
 with the VPC security
group of the Multi-
AZ DB cluster and the
Lambda function.

RDS action: create
new security groups

Connecting an AWS compute resource and a Multi-AZ DB cluster 918

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

use any of these
security groups for
 the connection
with the Lambda
function or proxy.

Amazon RDS can't
use a security
group that doesn't
have one inbound
rule with the VPC
security group
of the Lambda
function or proxy
as the source.
Amazon RDS also
can't use a security
group that has
been modified.

Connecting an AWS compute resource and a Multi-AZ DB cluster 919

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with
the Multi-AZ DB
cluster with a name
that matches the
pattern rds-rdspr
oxy- n (where n is a
number).

Either of the
following conditions
apply:

•
There is no security
group associated
with the Lambda
 function with a
name that matches
the pattern
 lambda-rds- n
 or lambda-rd
sproxy- n.

•
There are one
or more security
groups associated
with the Lambda
function with
a name that
matches the
pattern lambda-
rds- n or
lambda-rd
sproxy- n.
 However, Amazon
RDS can't use any
of these security
 groups for the
connection with

Either of the
following conditions
apply:

•
There is no security
group associate
d with the proxy
 with a name
that matches
the pattern
 rdsproxy-
lambda- n.

•
There are one
or more security
groups associate
d with the proxy
with a name
that matches
 rdsproxy-
lambda- n.
 However, Amazon
RDS can't use any
of these security
 groups for the
connection with
the Multi-AZ DB
cluster or Lambda
function.

Amazon RDS can't
use a security group

RDS action: create
new security groups

Connecting an AWS compute resource and a Multi-AZ DB cluster 920

Amazon Relational Database Service User Guide

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

the Multi-AZ DB
cluster.

Amazon RDS can't
use a security group
that doesn't have
one outbound rule
with the VPC security
group of the Multi-AZ
DB cluster or proxy
as the destination.
Amazon RDS also
can't use a security
group that has been
 modified.

that doesn't ha
ve inbound and
outbound rules with
the VPC security
group of the Multi-
AZ DB cluster and
the Lambda function.
Amazon RDS also
can't use a security
 group that has been
modified.

 RDS action: create new security groups

Amazon RDS takes the following actions:

• Creates a new security group that matches the pattern rds-lambda-n.This security group has
an inbound rule with the VPC security group of the Lambda function or proxy as the source. This
security group is associated with the Multi-AZ DB cluster and allows the function or proxy to
access the Multi-AZ DB cluster.

• Creates a new security group that matches the pattern lambda-rds-n. This security group
has an outbound rule with the VPC security group of the Multi-AZ DB cluster or proxy as the
destination. This security group is associated with the Lambda function and allows the Lambda
function to send traffic to the Multi-AZ DB cluster or send traffic through a proxy.

• Creates a new security group that matches the pattern rdsproxy-lambda-n. This security
group has inbound and outbound rules with the VPC security group of the Multi-AZ DB cluster
and the Lambda function.

Connecting an AWS compute resource and a Multi-AZ DB cluster 921

Amazon Relational Database Service User Guide

 RDS action: associate Lambda security group

Amazon RDS associates the valid, existing Lambda security group with the Lambda function. This
security group allows the function to send traffic to the Multi-AZ DB cluster or send traffic through
a proxy.

Automatically connecting a Lambda function and a Multi-AZ DB cluster

You can use the Amazon RDS console to automatically connect a Lambda function to your Multi-AZ
DB cluster. This simplifies the process of setting up a connection between these resources.

You can also use RDS Proxy to include a proxy in your connection. Lambda functions make frequent
short database connections that benefit from the connection pooling that RDS Proxy offers. You
can also use any IAM authentication that you've already set up for your Lambda function, instead
of managing database credentials in your Lambda application code.

You can connect an existing Multi-AZ DB cluster to new and existing Lambda functions using the
Set up Lambda connection page. The setup process automatically sets up the required security
groups for you.

Before setting up a connection between a Lambda function and a Multi-AZ DB cluster, make sure
that:

• Your Lambda function and Multi-AZ DB cluster are in the same VPC.

• You have the right permissions for your user account. For more information about the
requirements, see Overview of automatic connectivity with a Lambda function.

If you change security groups after you configure connectivity, the changes might affect the
connection between the Lambda function and the Multi-AZ DB cluster.

Note

You can automatically set up a connection between a Multi-AZ DB cluster and a Lambda
function only in the AWS Management Console. To connect a Lambda function, all
instances in the Multi-AZ DB cluster must be in the Available state.

To automatically connect a Lambda function and a Multi-AZ DB cluster

<result>

Connecting an AWS compute resource and a Multi-AZ DB cluster 922

Amazon Relational Database Service User Guide

After you confirm the setup, Amazon RDS begins the process of connecting your Lambda function,
RDS Proxy (if you used a proxy), and Multi-AZ DB cluster. The console shows the Connection
details dialog box, which lists the security group changes that allow connections between your
resources.
</result>

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the Multi-AZ DB cluster that you
want to connect to a Lambda function.

3. For Actions, choose Set up Lambda connection.

4. On the Set up Lambda connection page, under Select Lambda function, do either of the
following:

• If you have an existing Lambda function in the same VPC as your Multi-AZ DB cluster,
choose Choose existing function, and then choose the function.

• If you don't have a Lambda function in the same VPC, choose Create new function, and
then enter a Function name. The default runtime is set to Nodejs.18. You can modify the
settings for your new Lambda function in the Lambda console after you complete the
connection setup.

5. (Optional) Under RDS Proxy, select Connect using RDS Proxy, and then do any of the
following:

• If you have an existing proxy that you want to use, choose Choose existing proxy, and
then choose the proxy.

• If you don't have a proxy, and you want Amazon RDS to automatically create one for you,
choose Create new proxy. Then, for Database credentials, do either of the following:

a. Choose Database username and password, and then enter the Username and
Password for your Multi-AZ DB cluster.

b. Choose Secrets Manager secret. Then, for Select secret, choose an AWS Secrets
Manager secret. If you don't have a Secrets Manager secret, choose Create new
Secrets Manager secret to create a new secret. After you create the secret, for Select
secret, choose the new secret.

After you create the new proxy, choose Choose existing proxy, and then choose the proxy.
Note that it might take some time for your proxy to be available for connection.

Connecting an AWS compute resource and a Multi-AZ DB cluster 923

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Relational Database Service User Guide

6. (Optional) Expand Connection summary and verify the highlighted updates for your
resources.

7. Choose Set up.

Viewing connected compute resources

You can use the AWS Management Console to view the compute resources that are connected to
your Multi-AZ DB cluster. The resources shown include compute resource connections that Amazon
RDS set up automatically.

The listed compute resources don't include those that are manually connected to the Multi-AZ DB
cluster. For example, you can allow a compute resource to access your Multi-AZ DB cluster manually
by adding a rule to your VPC security group associated with the cluster.

For the console to list a Lambda function, the following conditions must apply:

• The name of the security group associated with the compute resource matches the pattern
lambda-rds-n or lambda-rdsproxy-n (where n is a number).

• The security group associated with the compute resource has an outbound rule with the port
range set to the port of the Multi-AZ DB cluster or an associated proxy. The destination for the
outbound rule must be set to a security group associated with the Multi-AZ DB cluster or an
associated proxy.

• The name of the security group attached to the proxy associated with your database matches the
pattern rds-rdsproxy-n (where n is a number).

• The security group associated with the function has an outbound rule with the port set to the
port that the Multi-AZ DB cluster or associated proxy uses. The destination must be set to a
security group associated with the Multi-AZ DB cluster or associated proxy.

To view compute resources automatically connected to a Multi-AZ DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the Multi-AZ DB cluster.

3. On the Connectivity & security tab, view the compute resources under Connected compute
resources.

Connecting an AWS compute resource and a Multi-AZ DB cluster 924

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Modifying a Multi-AZ DB cluster for Amazon RDS

A Multi-AZ DB cluster has a writer DB instance and two reader DB instances in three separate
Availability Zones. Multi-AZ DB clusters provide high availability, increased capacity for read
workloads, and lower latency when compared to Multi-AZ deployments. For more information
about Multi-AZ DB clusters, see Multi-AZ DB cluster deployments for Amazon RDS.

You can modify a Multi-AZ DB cluster to change its settings. You can also perform operations on a
Multi-AZ DB cluster, such as taking a snapshot of it.

Important

You can't modify the DB instances within a Multi-AZ DB cluster. All modifications must be
done at the DB cluster level. The only operation you can perform on a DB instance within a
Multi-AZ DB cluster is rebooting it.

You can modify a Multi-AZ DB cluster using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To modify a Multi-AZ DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the Multi-AZ DB cluster that you
want to modify.

3. Choose Modify. The Modify DB cluster page appears.

4. Change any of the settings that you want. For information about each setting, see Settings for
modifying Multi-AZ DB clusters.

5. When all the changes are as you want them, choose Continue and check the summary of
modifications.

6. (Optional) Choose Apply immediately to apply the changes immediately. Choosing this option
can cause downtime in some cases. For more information, see Applying changes immediately.

7. On the confirmation page, review your changes. If they're correct, choose Modify DB cluster to
save your changes.

Modifying a Multi-AZ DB cluster 925

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To modify a Multi-AZ DB cluster by using the AWS CLI, call the modify-db-cluster command.
Specify the DB cluster identifier and the values for the options that you want to modify. For
information about each option, see Settings for modifying Multi-AZ DB clusters.

Example

The following code modifies my-multi-az-dbcluster by setting the backup retention period
to 1 week (7 days). The code turns on deletion protection by using --deletion-protection.
To turn off deletion protection, use --no-deletion-protection. The changes are applied
during the next maintenance window by using --no-apply-immediately. Use --apply-
immediately to apply the changes immediately. For more information, see Applying changes
immediately.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier my-multi-az-dbcluster \
 --backup-retention-period 7 \
 --deletion-protection \
 --no-apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier my-multi-az-dbcluster ^
 --backup-retention-period 7 ^
 --deletion-protection ^
 --no-apply-immediately

RDS API

To modify a Multi-AZ DB cluster by using the Amazon RDS API, call the ModifyDBCluster operation.
Specify the DB cluster identifier, and the parameters for the settings that you want to modify. For
information about each parameter, see Settings for modifying Multi-AZ DB clusters.

Modifying a Multi-AZ DB cluster 926

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

Applying changes immediately

When you modify a Multi-AZ DB cluster, you can apply the changes immediately. To apply changes
immediately, you choose the Apply Immediately option in the AWS Management Console. Or you
use the --apply-immediately option when calling the AWS CLI or set the ApplyImmediately
parameter to true when using the Amazon RDS API.

If you don't choose to apply changes immediately, the changes are put into the pending
modifications queue. During the next maintenance window, any pending changes in the queue are
applied. If you choose to apply changes immediately, your new changes and any changes in the
pending modifications queue are applied.

Important

If any of the pending modifications require the DB cluster to be temporarily unavailable
(downtime), choosing the apply immediately option can cause unexpected downtime.
When you choose to apply a change immediately, any pending modifications are also
applied immediately, instead of during the next maintenance window.
If you don't want a pending change to be applied in the next maintenance window, you
can modify the DB instance to revert the change. You can do this by using the AWS CLI and
specifying the --apply-immediately option.

Changes to some database settings are applied immediately, even if you choose to defer your
changes. To see how the different database settings interact with the apply immediately setting,
see Settings for modifying Multi-AZ DB clusters.

Settings for modifying Multi-AZ DB clusters

For details about settings that you can use to modify a Multi-AZ DB cluster, see the following table.
For more information about the AWS CLI options, see modify-db-cluster. For more information
about the RDS API parameters, see ModifyDBCluster.

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Allocated
storage

The amount
of storage to
allocate for each

CLI option: If you choose to
apply the change
immediately,

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 927

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

DB instance in
your DB cluster
(in gibibyte). For
more informati
on, see Amazon
RDS DB instance
storage.

--allocated-
storage

RDS API parameter
:

Allocated
Storage

it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Auto
minor
version
upgrade

Enable auto
minor version
upgrade to have
your DB cluster
receive preferred
minor DB engine
version upgrades
automatically
when they
become available
. Amazon
RDS performs
automatic minor
version upgrades
in the maintenan
ce window.

CLI option:

--auto-minor-
version-upgrad
e

--no-auto-
minor-version-
upgrade

RDS API parameter
:

AutoMinor
VersionUp
grade

The change occurs
immediately. This
setting ignores the
 apply immediately
setting.

Downtime occurs
during this change.

Modifying a Multi-AZ DB cluster 928

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Backup
retention
period

The number
of days that
automatic
backups of your
DB cluster are
 retained. This
value must be
greater than zero.

For more
information, see
Introduction to
backups.

CLI option:

--backup-
retention-
period

RDS API parameter
:

BackupRet
entionPeriod

If you choose to
apply the change
immediately,
it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime doesn't
occur during this
change.

Backup
window

The time period
during which
Amazon RDS
automatically
takes a backup of
your DB cluster.
Unless you have a
specific time that
you want to have
your database
backed up, use
the default of No
preference.

For more
information, see
Introduction to
backups.

CLI option:

--preferred-
backup-window

RDS API parameter
:

Preferred
BackupWindow

The change is
applied asynchron
ously, as soon as
possible.

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 929

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Certifica
te
authority

The certifica
te authority
(CA) for the
server certificate
used by the DB
cluster.

For more
information,
see Using SSL/
TLS to encrypt
a connection to
a DB instance or
cluster.

CLI option:

--ca-cert
ificate-i
dentifier

RDS API parameter
:

CACertifi
cateIdent
ifier

If you choose to
apply the change
immediately, it
occurs immediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime only
occurs if the DB
engine doesn't
support rotation
without restart.
You can use the
describe-db-engine
-versions AWS
CLI command to
determine whether
the DB engine
supports rotation
without restart.

Copy
tags to
snapshots

This option
copies any DB
cluster tags to
a DB snapshot
when you create
a snapshot.

For more
information, see
Tagging Amazon
RDS resources.

CLI option:

-copy-tags-to-
snapshot

-no-copy-tags-
to-snapshot

RDS API parameter
:

CopyTagsT
oSnapshot

The change occurs
immediately. This
setting ignores the
 apply immediately
setting.

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 930

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Database
authentic
ation

For Multi-AZ
DB clusters,
only Password
authentication is
supported.

None because
password authentic
ation is the default.

If you choose to
apply the change
immediately,
it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 931

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

DB
cluster
identifie
r

The DB cluster
identifier. This
value is stored
as a lowercase
string.

When you
change the
DB cluster
identifier, the DB
cluster endpoint
changes. The
 identifiers and
endpoints of the
DB instances in
the DB cluster
also change. The
new DB cluster
name must be
unique. The
maximum length
 is 63 characters.

The names of the
DB instances in
the DB cluster
are changed
to correspond
with the new
name of the DB
cluster. A new DB
instance name
can't be the same
as the name

CLI option:

--new-db-
cluster-i
dentifier

RDS API parameter
:

NewDBClus
terIdentifier

If you choose to
apply the change
immediately,
it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 932

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

of an existing
DB instance.
For example,
if you change
the DB cluster
name to maz,
a DB instance
name might be
changed to maz-
instance-1 .
In this case,
there can't be
an existing DB
instance named
maz-insta
nce-1 .

For more
information,
see Renaming
a Multi-AZ
DB cluster for
Amazon RDS.

Modifying a Multi-AZ DB cluster 933

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

DB
cluster
instance
class

The compute
and memory
capacity of each
DB instance
in the Multi-
AZ DB cluster,
for example
db.r6gd.x
large .

If possible,
choose a DB
instance class
large enough
that a typical qu
ery working set
can be held in
memory. When
working sets are
held in memory,
the system can
avoid writing
to disk, which
improves p
erformance.

For more
information,
see the section
called “Instance
class availability
for Multi-AZ DB
clusters”.

CLI option:

--db-cluster-
instance-class

RDS API parameter
:

DBCluster
InstanceClass

If you choose to
apply the change
immediately,
it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime occurs
during this change.

Modifying a Multi-AZ DB cluster 934

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

DB
cluster
parameter
group

The DB cluster
parameter group
that you want
 associated with
the DB cluster.

For more
information,
see Parameter
groups for Multi-
AZ DB clusters.

CLI option:

--db-cluster-
parameter-grou
p-name

RDS API parameter
:

DBCluster
Parameter
GroupName

The parameter
group change
occurs immediately.

Downtime doesn't
occur during this
change. When
you change the
parameter group,
 changes to some
parameters are
applied to the
DB instances
in the Multi-AZ
DB cluster im
mediately without
a reboot. Changes
to other parameter
s are applied
only after the
DB instances are
rebooted.

DB
engine
version

The version of
database engine
that you want to
use.

CLI option:

--engine-
version

RDS API parameter
:

EngineVersion

If you choose to
apply the change
immediately,
it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime occurs
during this change.

Modifying a Multi-AZ DB cluster 935

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Deletion
protectio
n

Enable deletion
protection to
prevent your
DB cluster from
being deleted.

For more
information, see
Deleting a DB
instance.

CLI option:

--deletion-
protection

--no-deletion-
protection

RDS API parameter
:

DeletionP
rotection

The change occurs
immediately. This
setting ignores the
 apply immediately
setting.

Downtime doesn't
occur during this
change.

Maintenan
ce
window

The 30-minute
window in
which pending
modifications to
your DB cluster
are applied. If
the time period
doesn't matter,
choose No
preference.

For more
information, see
Amazon RDS
maintenance
window.

CLI option:

--preferred-
maintenance-
window

RDS API parameter
:

Preferred
Maintenan
ceWindow

The change occurs
immediately. This
setting ignores the
 apply immediately
setting.

If there are one
or more pending
actions that cause
downtime, and
the maintenance
window is changed
to include the
current time, those
pending actions are
applied immediate
ly and downtime
occurs.

Modifying a Multi-AZ DB cluster 936

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Manage
master
credentia
ls in
AWS
Secrets
Manager

Select Manage
master credentia
ls in AWS Secrets
Manager to
manage the
master user
password in a
secret in Secrets
Manager.

Optionally,
choose a KMS
key to use to
protect the
secret. Choose
from the KMS
keys in your
account, or enter
the key from a
different account.

If RDS is already
managing the
master user
password for
the DB cluster,
you can rotate
the master
user password
by choosing
Rotate secret
immediately.

CLI option:

--manage-
master-user-
password | --
no-manage-
master-user-
password

--master-user-
secret-kms-ke
y-id

--rotate-
master-user-
password | --
no-rotate-
master-user-
password

RDS API parameter
:

ManageMas
terUserPa
ssword

MasterUse
rSecretKm
sKeyId

RotateMas
terUserPa
ssword

If you are turning
on or turning off
automatic master
user password
management, the
change occurs
immediately. This
change ignores the
apply immediately
setting.

If you are rotating
the master user
password, you must
specify that the
change is applied
immediately.

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 937

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

For more
information,
see Password
management
with Amazon RDS
and AWS Secrets
Manager.

New
master
password

The password for
your master user
account.

CLI option:

--master-user-
password

RDS API parameter
:

MasterUse
rPassword

The change is
applied asynchron
ously, as soon as
possible. This setti
ng ignores the
apply immediately
setting.

Downtime doesn't
occur during this
change.

Provision
ed
IOPS

The amount
of Provisioned
IOPS (input/ou
tput operation
s per second)
to be initially
allocated for the
DB cluster.

CLI option:

--iops

RDS API parameter
:

Iops

If you choose to
apply the change
immediately,
it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 938

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Public
access

Publicly
accessible to
give the DB
cluster a public
IP address, m
eaning that it's
accessible outside
its virtual private
cloud (VPC).
To be publicly
accessible, the
DB cluster also
has to be in a
 public subnet in
the VPC.

Not publicly
accessible to
make the DB
cluster accessible
only from inside
the VPC.

For more
information,
see Hiding a DB
instance in a
VPC from the
internet.

To connect to
a DB cluster
from outside
of its VPC, the

Not available when
modifying a DB
cluster.

The change occurs
immediately. This
setting ignores the
 apply immediately
setting.

Downtime doesn't
occur during this
change.

Modifying a Multi-AZ DB cluster 939

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

DB cluster must
be publicly
accessible. Also,
access must be
granted using
the inbound
rules of the DB
 cluster's security
group, and other
requirements
must be met. For
more informati
on, see Can't
connect to
Amazon RDS DB
instance.

If your DB cluster
isn't publicly
accessible, you
can use an AWS
Site-to-Site
VPN connec
tion or an AWS
Direct Connect
connection to
access it from
a private ne
twork. For more
information, see
Internetwork
traffic privacy.

Modifying a Multi-AZ DB cluster 940

Amazon Relational Database Service User Guide

Console
setting

Setting descripti
on

CLI option and
RDS API parameter

When the change
occurs

Downtime notes

Storage
type

The storage
type for your DB
cluster.

Only General
Purpose SSD
(gp3), Provision
ed IOPS (io1),
and Provision
ed IOPS SSD
(io2) storage are
supported.

For more
information, see
Amazon RDS
storage types.

CLI option:

--storage-type

RDS API parameter
:

StorageType

If you choose to
apply the change
immediately,
it occurs imm
ediately.

If you don't choose
to apply the
change immediate
ly, it occurs during
the next maintenan
ce window.

Downtime doesn't
occur during this
change.

VPC
security
group

The security
groups to
associate with
the DB cluster.

For more
information, see
Overview of VPC
security groups.

CLI option:

--vpc-sec
urity-group-
ids

RDS API parameter
:

VpcSecuri
tyGroupIds

The change is
applied asynchron
ously, as soon as
possible. This setti
ng ignores the
apply immediately
setting.

Downtime doesn't
occur during this
change.

Settings that don't apply when modifying Multi-AZ DB clusters

The following settings in the AWS CLI command modify-db-cluster and the RDS API operation
ModifyDBCluster don't apply to Multi-AZ DB clusters.

Modifying a Multi-AZ DB cluster 941

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

You also can't modify these settings for Multi-AZ DB clusters in the console.

AWS CLI setting RDS API setting

--backtrack-window BacktrackWindow

--cloudwatch-logs-export-co
nfiguration

CloudwatchLogsExportConfigu
ration

--copy-tags-to-snapshot | --no-
copy-tags-to-snapshot

CopyTagsToSnapshot

--db-instance-parameter-group-
name

DBInstanceParameterGroupName

--domain Domain

--domain-iam-role-name DomainIAMRoleName

--enable-global-write-forwarding
| --no-enable-global-write-fo
rwarding

EnableGlobalWriteForwarding

--enable-http-endpoint | --no-
enable-http-endpoint

EnableHttpEndpoint

--option-group-name OptionGroupName

--port Port

--scaling-configuration ScalingConfiguration

--storage-type StorageType

Modifying a Multi-AZ DB cluster 942

Amazon Relational Database Service User Guide

Upgrading the engine version of a Multi-AZ DB cluster for Amazon RDS

Amazon RDS provides newer versions of each supported database engine so that you can keep
your Multi-AZ DB cluster up to date. This topic explains the process of upgrading a Multi-AZ DB
cluster to newer versions.

Upgrading a Multi-AZ DB cluster involves selecting a new compatible engine version and planning
for potential downtime. The process ensures minimal disruption by utilizing the failover capabilities
of the Multi-AZ architecture. During the upgrade, the primary instance is updated first, followed
by a failover to the standby instance to maintain availability. Best practices include performing
upgrades during low-traffic periods, testing in non-production environments, and verifying
application compatibility with the new version.

Topics

• Minor version upgrades

• Major version upgrades

• Upgrading a Multi-AZ DB cluster

• Upgrading Multi-AZ DB cluster read replicas

Minor version upgrades

A minor version upgrade includes only changes that are backward-compatible with existing
applications. When you initiate a minor version upgrade, Amazon RDS first upgrades the reader
DB instances one at a time. Then, one of the reader DB instances switches to be the new writer DB
instance. Amazon RDS then upgrades the old writer instance (which is now a reader instance).

Downtime during the upgrade is limited to the time it takes for one of the reader DB instances
to become the new writer DB instance. This downtime acts like an automatic failover. For more
information, see the section called “Failing over a Multi-AZ DB cluster”. Note that the replica lag of
your Multi-AZ DB cluster might affect the downtime. For more information, see the section called
“Replica lag and Multi-AZ DB clusters”.

For RDS for PostgreSQL Multi-AZ DB cluster read replicas, Amazon RDS upgrades the cluster
member instances one at a time. The reader and writer cluster roles don't switch during the
upgrade. Therefore, your DB cluster might experience downtime while Amazon RDS upgrades the
cluster writer instance.

Upgrading a Multi-AZ DB cluster 943

Amazon Relational Database Service User Guide

Note

The downtime for a Multi-AZ DB cluster minor version upgrade is typically 35 seconds.
When used with RDS Proxy, you can further reduce downtime to one second or less.
For more information, see Amazon RDS Proxy. Alternately, you can use an open source
database proxy such as ProxySQL, PgBouncer, or the AWS Advanced JDBC Wrapper Driver.

Major version upgrades

A major version upgrade can introduce changes that aren't compatible with existing applications.

When you initiate a major version upgrade of an RDS for PostgreSQL Multi-AZ DB cluster, Amazon
RDS simultaneously upgrades the reader and writer instances. Therefore, your DB cluster might not
be available until the upgrade completes.

When you initiate a major version upgrade of an RDS for MySQL Multi-AZ DB cluster, Amazon RDS
upgrades the cluster member instances one at a time, so replication occurs from a lower engine
version to a higher one. It's important to ensure that your workload is compatible with both the
source and target engine versions during a major version upgrade, as engine versions might differ
in syntax and features.

Note

Like minor version upgrades, the downtime for an RDS for MySQL major version upgrade is
typically 35 seconds. When used with RDS Proxy, you can further reduce downtime to one
second or less. For more information, see Amazon RDS Proxy.

Upgrading a Multi-AZ DB cluster

The process for upgrading the engine version of a Multi-AZ DB cluster is the same as the process
for upgrading a DB instance engine version. For instructions, see the section called “Upgrading
the engine version”. The only difference is that when using the AWS Command Line Interface
(AWS CLI), you use the modify-db-cluster command and specify the --db-cluster-identifier
parameter (along with the --allow-major-version-upgrade parameter).

For more information about major and minor version upgrades, see the following documentation
for your DB engine:

Upgrading a Multi-AZ DB cluster 944

https://aws.amazon.com/blogs/database/achieve-one-second-or-less-of-downtime-with-proxysql-when-upgrading-amazon-rds-multi-az-deployments-with-two-readable-standbys/
https://aws.amazon.com/blogs/database/fast-switchovers-with-pgbouncer-on-amazon-rds-multi-az-deployments-with-two-readable-standbys-for-postgresql/
https://aws.amazon.com/blogs/database/achieve-one-second-or-less-downtime-with-the-advanced-jdbc-wrapper-driver-when-upgrading-amazon-rds-multi-az-db-clusters/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

• the section called “Upgrades of the PostgreSQL DB engine”

• the section called “Upgrades of the MySQL DB engine”

Upgrading Multi-AZ DB cluster read replicas

Amazon RDS doesn't automatically upgrade Multi-AZ DB cluster read replicas. For minor version
upgrades, you must first manually upgrade all read replicas and then upgrade the cluster.
Otherwise, the upgrade is blocked. When you perform a major version upgrade of a cluster, the
replication state of all read replicas changes to terminated. You must delete and recreate the read
replicas after the upgrade completes. For more information, see the section called “Monitoring
read replication”.

Upgrading a Multi-AZ DB cluster 945

Amazon Relational Database Service User Guide

Renaming a Multi-AZ DB cluster for Amazon RDS

You can rename a Multi-AZ DB cluster by using the AWS Management Console, the AWS CLI
modify-db-cluster command, or the Amazon RDS API ModifyDBCluster operation.
Renaming a Multi-AZ DB cluster can have significant effects. The following is a list of
considerations before you rename a Multi-AZ DB cluster.

• When you rename a Multi-AZ DB cluster, the cluster endpoints for the Multi-AZ DB cluster
change. These endpoints change because they include the name you assigned to the Multi-AZ DB
cluster. You can redirect traffic from an old endpoint to a new one. For more information about
Multi-AZ DB cluster endpoints, see Connecting to a Multi-AZ DB cluster for Amazon RDS.

• When you rename a Multi-AZ DB cluster, the old DNS name that was used by the Multi-AZ DB
cluster is deleted, although it could remain cached for a few minutes. The new DNS name for the
renamed Multi-AZ DB cluster becomes effective in about two minutes. The renamed Multi-AZ DB
cluster isn't available until the new name becomes effective.

• You can't use an existing Multi-AZ DB cluster name when renaming a cluster.

• Metrics and events associated with the name of a Multi-AZ DB cluster are maintained if you reuse
a DB cluster name.

• Multi-AZ DB cluster tags remain with the Multi-AZ DB cluster, regardless of renaming.

• DB cluster snapshots are retained for a renamed Multi-AZ DB cluster.

Note

A Multi-AZ DB cluster is an isolated database environment running in the cloud. A Multi-AZ
DB cluster can host multiple databases. For information about changing a database name,
see the documentation for your DB engine.

Renaming to replace an existing Multi-AZ DB cluster

The most common scenarios for renaming a Multi-AZ DB cluster include restoring data from a DB
cluster snapshot or performing point-in-time recovery (PITR). By renaming the Multi-AZ DB cluster,
you can replace the Multi-AZ DB cluster without changing any application code that references the
Multi-AZ DB cluster. In these cases, complete the following steps:

Renaming a Multi-AZ DB cluster 946

Amazon Relational Database Service User Guide

1. Stop all traffic going to the Multi-AZ DB cluster. You can redirect traffic from accessing the
databases on the Multi-AZ DB cluster, or choose another way to prevent traffic from accessing
your databases on the Multi-AZ DB cluster.

2. Rename the existing Multi-AZ DB cluster.

3. Create a new Multi-AZ DB cluster by restoring from a DB cluster snapshot or recovering to a
point in time. Then, give the new Multi-AZ DB cluster the name of the previous Multi-AZ DB
cluster.

If you delete the old Multi-AZ DB cluster, you are responsible for deleting any unwanted DB cluster
snapshots of the old Multi-AZ DB cluster.

Console

To rename a Multi-AZ DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Multi-AZ DB cluster that you want to rename.

4. Choose Modify.

5. In Settings, enter a new name for DB cluster identifier.

6. Choose Continue.

7. To apply the changes immediately, choose Apply immediately. Choosing this option can cause
an outage in some cases. For more information, see Applying changes immediately.

8. On the confirmation page, review your changes. If they are correct, choose Modify cluster to
save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to discard your changes.

AWS CLI

To rename a Multi-AZ DB cluster, use the AWS CLI command modify-db-cluster. Provide the
current --db-cluster-identifier value and --new-db-cluster-identifier parameter
with the new name of the Multi-AZ DB cluster.

Renaming a Multi-AZ DB cluster 947

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier DBClusterIdentifier \
 --new-db-cluster-identifier NewDBClusterIdentifier

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier DBClusterIdentifier ^
 --new-db-cluster-identifier NewDBClusterIdentifier

RDS API

To rename a Multi-AZ DB cluster, call the Amazon RDS API operation ModifyDBCluster with the
following parameters:

• DBClusterIdentifier – The existing name of the DB cluster.

• NewDBClusterIdentifier – The new name of the DB cluster.

Renaming a Multi-AZ DB cluster 948

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

Rebooting a Multi-AZ DB cluster and reader DB instances for Amazon
RDS

You might need to reboot your Multi-AZ DB cluster, usually for maintenance reasons. For example,
if you make certain modifications or change the DB cluster parameter group associated with a DB
cluster, you reboot the DB cluster. Doing so causes the changes to take effect.

If a DB cluster isn't using the latest changes to its associated DB cluster parameter group, the AWS
Management Console shows the DB cluster parameter group with a status of pending-reboot. The
pending-reboot parameter groups status doesn't result in an automatic reboot during the next
maintenance window. To apply the latest parameter changes to that DB cluster, manually reboot
the DB cluster. For more information about parameter groups, see Parameter groups for Multi-AZ
DB clusters.

Rebooting a DB cluster restarts the database engine service. Rebooting a DB cluster results in a
momentary outage, during which the DB cluster status is set to rebooting.

You can't reboot your DB cluster if it isn't in the Available state. Your database can be unavailable
for several reasons, such as an in-progress backup, a previously requested modification, or a
maintenance-window action.

The time required to reboot your DB cluster depends on the crash recovery process, the database
activity at the time of reboot, and the behavior of your specific DB cluster. To improve the reboot
time, we recommend that you reduce database activity as much as possible during the reboot
process. Reducing database activity reduces rollback activity for in-transit transactions.

Important

Multi-AZ DB clusters don't support reboot with a failover. When you reboot the writer
instance of a Multi-AZ DB cluster, it doesn't affect the reader DB instances in that DB cluster
and no failover occurs. When you reboot a reader DB instance, no failover occurs. To fail
over a Multi-AZ DB cluster, choose Failover in the console, call the AWS CLI command
failover-db-cluster, or call the API operation FailoverDBCluster.

Rebooting a Multi-AZ DB cluster 949

https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html

Amazon Relational Database Service User Guide

Console

To reboot a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the Multi-AZ DB cluster that you
want to reboot.

3. For Actions, choose Reboot.

The Reboot DB cluster page appears.

4. Choose Reboot to reboot your DB cluster.

Or choose Cancel.

AWS CLI

To reboot a Multi-AZ DB cluster by using the AWS CLI, call the reboot-db-cluster command.

aws rds reboot-db-cluster --db-cluster-identifier mymultiazdbcluster

RDS API

To reboot a Multi-AZ DB cluster by using the Amazon RDS API, call the RebootDBCluster operation.

Rebooting a Multi-AZ DB cluster 950

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBCluster.html

Amazon Relational Database Service User Guide

Failing over a Multi-AZ DB cluster for Amazon RDS

If there is a planned or unplanned outage of your writer DB instance in a Multi-AZ DB cluster,
Amazon RDS automatically fails over to a reader DB instance in different Availability Zone. This
ensures high availability with minimal disruption. Failovers can occur during hardware failures,
network issues, or manual requests. The topic outlines the automatic detection of failures, the
sequence of events during failover, and its impact on read and write operations. It also provides
best practices for monitoring and minimizing failover times.

The time it takes for the failover to complete depends on the database activity and other
conditions when the writer DB instance became unavailable. Failover times are typically under 35
seconds. Failover completes when both reader DB instances have applied outstanding transactions
from the failed writer. When the failover is complete, it can take additional time for the RDS
console to reflect the new Availability Zone.

Topics

• Automatic failovers

• Manually failing over a Multi-AZ DB cluster

• Determining whether a Multi-AZ DB cluster has failed over

• Setting the JVM TTL for DNS name lookups

Automatic failovers

Amazon RDS handles failovers automatically so you can resume database operations as quickly
as possible without administrative intervention. To fail over, the writer DB instance switches
automatically to a reader DB instance.

Manually failing over a Multi-AZ DB cluster

If you manually fail over a Multi-AZ DB cluster, RDS first terminates the primary DB instance. Then,
the internal monitoring system detects that the primary DB instance is unhealthy and promotes a
readable replica DB instance. Failover times are typically under 35 seconds.

You can fail over a Multi-AZ DB cluster manually using the AWS Management Console, the AWS
CLI, or the RDS API.

Failing over a Multi-AZ DB cluster 951

Amazon Relational Database Service User Guide

Console

To fail over a Multi-AZ DB cluster manually

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Multi-AZ DB cluster that you want to fail over.

4. For Actions, choose Failover.

The Failover DB cluster page appears.

5. Choose Failover to confirm the manual failover.

AWS CLI

To fail over a Multi-AZ DB cluster manually, use the AWS CLI command failover-db-cluster.

Example

aws rds failover-db-cluster --db-cluster-identifier mymultiazdbcluster

RDS API

To fail over a Multi-AZ DB cluster manually, call the Amazon RDS API FailoverDBCluster and specify
the DBClusterIdentifier.

Determining whether a Multi-AZ DB cluster has failed over

To determine if your Multi-AZ DB cluster has failed over, you can do the following:

• Set up DB event subscriptions to notify you by email or SMS that a failover has been initiated.
For more information about events, see Working with Amazon RDS event notification.

• View your DB events by using the Amazon RDS console or API operations.

• View the current state of your Multi-AZ DB cluster by using the Amazon RDS console, the AWS
CLI, and the RDS API.

For information on how you can respond to failovers, reduce recovery time, and other best
practices for Amazon RDS, see Best practices for Amazon RDS.

Failing over a Multi-AZ DB cluster 952

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html

Amazon Relational Database Service User Guide

Setting the JVM TTL for DNS name lookups

The failover mechanism automatically changes the Domain Name System (DNS) record of the
DB instance to point to the reader DB instance. As a result, you need to re-establish any existing
connections to your DB instance. In a Java virtual machine (JVM) environment, due to how the Java
DNS caching mechanism works, you might need to reconfigure JVM settings.

The JVM caches DNS name lookups. When the JVM resolves a host name to an IP address, it caches
the IP address for a specified period of time, known as the time-to-live (TTL).

Because AWS resources use DNS name entries that occasionally change, we recommend that you
configure your JVM with a TTL value of no more than 60 seconds. Doing this makes sure that when
a resource's IP address changes, your application can receive and use the resource's new IP address
by requerying the DNS.

On some Java configurations, the JVM default TTL is set so that it never refreshes DNS entries until
the JVM is restarted. Thus, if the IP address for an AWS resource changes while your application
is still running, it can't use that resource until you manually restart the JVM and the cached IP
information is refreshed. In this case, it's crucial to set the JVM's TTL so that it periodically refreshes
its cached IP information.

Note

The default TTL can vary according to the version of your JVM and whether a security
manager is installed. Many JVMs provide a default TTL less than 60 seconds. If you're using
such a JVM and not using a security manager, you can ignore the rest of this topic. For
more information on security managers in Oracle, see The security manager in the Oracle
documentation.

To modify the JVM's TTL, set the networkaddress.cache.ttl property value. Use one of the
following methods, depending on your needs:

• To set the property value globally for all applications that use the JVM, set
networkaddress.cache.ttl in the $JAVA_HOME/jre/lib/security/java.security
file.

networkaddress.cache.ttl=60

Failing over a Multi-AZ DB cluster 953

https://docs.oracle.com/javase/tutorial/essential/environment/security.html
https://docs.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Amazon Relational Database Service User Guide

• To set the property locally for your application only, set networkaddress.cache.ttl in your
application's initialization code before any network connections are established.

java.security.Security.setProperty("networkaddress.cache.ttl" , "60");

Failing over a Multi-AZ DB cluster 954

Amazon Relational Database Service User Guide

Setting up PostgreSQL logical replication with Multi-AZ DB clusters for
Amazon RDS

By using PostgreSQL logical replication with your Multi-AZ DB cluster, you can replicate and
synchronize individual tables rather than the entire database instance. Logical replication uses a
publish and subscribe model to replicate changes from a source to one or more recipients. It works
by using change records from the PostgreSQL write-ahead log (WAL). For more information, see
the section called “Performing logical replication”.

When you create a new logical replication slot on the writer DB instance of a Multi-AZ DB cluster,
the slot is asynchronously copied to each reader DB instance in the cluster. The slots on the reader
DB instances are continuously synchronized with those on the writer DB instance.

Logical replication is supported for Multi-AZ DB clusters running RDS for PostgreSQL version 14.8-
R2 and higher, and 15.3-R2 and higher.

Note

In addition to the native PostgreSQL logical replication feature, Multi-AZ DB clusters
running RDS for PostgreSQL also support the pglogical extension.

For more information about PostgreSQL logical replication, see Logical replication in the
PostgreSQL documentation.

Topics

• Prerequisites

• Setting up logical replication

• Limitations and recommendations

Prerequisites

To configure PostgreSQL logical replication for Multi-AZ DB clusters, you must meet the following
prerequisites.

• Your user account must be a member of the rds_superuser group and have rds_superuser
privileges. For more information, see the section called “Understanding PostgreSQL roles and
permissions”.

PostgreSQL logical replication with Multi-AZ DB clusters 955

https://www.postgresql.org/docs/current/logical-replication.html

Amazon Relational Database Service User Guide

• Your Multi-AZ DB cluster must be associated with a custom DB cluster parameter group so
that you can configure the parameter values described in the following procedure. For more
information, see the section called “DB cluster parameter groups”.

Setting up logical replication

To set up logical replication for a Multi-AZ DB cluster, you enable specific parameters within the
associated DB cluster parameter group, then create logical replication slots.

Note

Starting with PostgreSQL version 16, you can use reader DB instances of the Multi-AZ DB
cluster for logical replication.

To set up logical replication for an RDS for PostgreSQL Multi-AZ DB cluster

1. Open the custom DB cluster parameter group associated with your RDS for PostgreSQL Multi-
AZ DB cluster.

2. In the Parameters search field, locate the rds.logical_replication static parameter and
set its value to 1. This parameter change can increase WAL generation, so enable it only when
you’re using logical slots.

3. As part of this change, configure the following DB cluster parameters.

• max_wal_senders

• max_replication_slots

• max_connections

Depending on your expected usage, you might also need to change the values of the following
parameters. However, in many cases, the default values are sufficient.

• max_logical_replication_workers

• max_sync_workers_per_subscription

4. Reboot the Multi-AZ DB cluster for the parameter values to take effect. For instructions, see
the section called “Rebooting a Multi-AZ DB cluster”.

PostgreSQL logical replication with Multi-AZ DB clusters 956

Amazon Relational Database Service User Guide

5. Create a logical replication slot on the writer DB instance of the Multi-AZ DB cluster
as explained in the section called “Working with logical replication slots”. This process
requires that you specify a decoding plugin. Currently, RDS for PostgreSQL supports the
test_decoding, wal2json, and pgoutput plugins that ship with PostgreSQL.

The slot is asynchronously copied to each reader DB instance in the cluster.

6. Verify the state of the slot on all reader DB instances of the Multi-AZ DB cluster. To do so,
inspect the pg_replication_slots view on all reader DB instances and make sure that the
confirmed_flush_lsn state is making progress while the application is actively consuming
logical changes.

The following commands demonstrate how to inspect the replication state on the reader DB
instances.

% psql -h test-postgres-instance-2.abcdefabcdef.us-west-2.rds.amazonaws.com

postgres=> select slot_name, slot_type, confirmed_flush_lsn from
 pg_replication_slots;
 slot_name | slot_type | confirmed_flush_lsn
--------------+-----------+---------------------
 logical_slot | logical | 32/D0001700
(1 row)

postgres=> select slot_name, slot_type, confirmed_flush_lsn from
 pg_replication_slots;
 slot_name | slot_type | confirmed_flush_lsn
--------------+-----------+---------------------
 logical_slot | logical | 32/D8003628
(1 row)

% psql -h test-postgres-instance-3.abcdefabcdef.us-west-2.rds.amazonaws.com

postgres=> select slot_name, slot_type, confirmed_flush_lsn from
 pg_replication_slots;
 slot_name | slot_type | confirmed_flush_lsn
--------------+-----------+---------------------
 logical_slot | logical | 32/D0001700
(1 row)

postgres=> select slot_name, slot_type, confirmed_flush_lsn from
 pg_replication_slots;
 slot_name | slot_type | confirmed_flush_lsn

PostgreSQL logical replication with Multi-AZ DB clusters 957

Amazon Relational Database Service User Guide

--------------+-----------+---------------------
 logical_slot | logical | 32/D8003628
(1 row)

After you complete your replication tasks, stop the replication process, drop replication slots, and
turn off logical replication. To turn off logical replication, modify your DB cluster parameter group
and set the value of rds.logical_replication back to 0. Reboot the cluster for the parameter
change to take effect.

Limitations and recommendations

The following limitations and recommendations apply to using logical replication with Multi-AZ DB
clusters running PostgreSQL version 16:

• You can use only writer DB instances to create or drop logical replication slots. For example, the
CREATE SUBSCRIPTION command must use the cluster writer endpoint in the host connection
string.

• You must use the cluster writer endpoint during any table synchronization or resynchronization.
For example, you can use the following commands to resynchronize a newly added table:

Postgres=>ALTER SUBSCRIPTION subscription-name CONNECTION host=writer-endpoint
Postgres=>ALTER SUBSCRIPTION subscription-name REFRESH PUBLICATION

• You must wait for table synchronization to complete before using the reader DB instances for
logical replication. You can use the pg_subscription_rel catalog table to monitor table
synchronization. Table synchronization is complete when the srsubstate column is set to ready
(r).

• We recommend using instance endpoints for the logical replication connection once initial table
synchronization is complete. The following command reduces load on the writer DB instance by
offloading replication to one of the reader DB instances:

Postgres=>ALTER SUBSCRIPTION subscription-name CONNECTION host=reader-instance-
endpoint

You can't use the same slot on more than one DB instance at a time. When two or more
applications are replicating logical changes from different DB instances in the cluster, some
changes might be lost due to a cluster failover or network issue. In these situations, you can use

PostgreSQL logical replication with Multi-AZ DB clusters 958

https://www.postgresql.org/docs/current/catalog-pg-subscription-rel.html

Amazon Relational Database Service User Guide

instance endpoints for logical replication in the host connection string. The other application
using the same configuration will show the following error message:

replication slot slot_name is already active for PID x providing immediate feedback.

• While using the pglogical extension, you can only use the cluster writer endpoint. The
extension has known limitations that can create unused logical replication slots during table
synchronization. Stale replication slots reserve write-ahead log (WAL) files and can lead to disk
space problems.

PostgreSQL logical replication with Multi-AZ DB clusters 959

Amazon Relational Database Service User Guide

Working with Multi-AZ DB cluster read replicas for Amazon RDS

A DB cluster read replica is a special type of cluster that you create from a source DB instance.
After you create a read replica, any updates made to the primary DB instance are asynchronously
copied to the Multi-AZ DB cluster read replica. You can reduce the load on your primary DB
instance by routing read queries from your applications to the read replica. Using read replicas,
you can elastically scale out beyond the capacity constraints of a single DB instance for read-heavy
database workloads.

You can also create one or more DB instance read replicas from a Multi-AZ DB cluster. DB instance
read replicas let you scale beyond the compute or I/O capacity of the source Multi-AZ DB cluster by
directing excess read traffic to the read replicas. Currently, you can't create a Multi-AZ DB cluster
read replica from an existing Multi-AZ DB cluster.

When choosing between migrating to a Multi-AZ DB cluster using a read replica or creating a DB
instance read replica from a Multi-AZ DB cluster, consider your specific use case and performance
requirements.

Migrating to a Multi-AZ DB cluster using a read replica

This approach is ideal when you need to enhance the availability and durability of your
database while minimizing downtime. By using a read replica to transition to a Multi-AZ DB
cluster, you can ensure continuous operation and data consistency. This method is particularly
useful for production environments where maintaining availability and reducing impact on live
workloads are critical.

Creating a DB instance read replica from a Multi-AZ DB cluster

This method is suitable when you want to scale read operations or offload read traffic from your
primary database instance. By creating a read replica from an existing Multi-AZ DB cluster, you
can distribute read-heavy workloads and improve performance without affecting the primary
instance's stability.

Choosing the right approach depends on whether your priority is to ensure high availability and
durability or to scale read performance. Evaluate your workload characteristics and operational
requirements to make an informed decision.

Topics

• Migrating to a Multi-AZ DB cluster using a read replica

Working with Multi-AZ DB cluster read replicas 960

Amazon Relational Database Service User Guide

• Creating a DB instance read replica from a Multi-AZ DB cluster

Migrating to a Multi-AZ DB cluster using a read replica

To migrate a Single-AZ deployment or Multi-AZ DB instance deployment to a Multi-AZ DB cluster
deployment with reduced downtime, you can create a Multi-AZ DB cluster read replica. For the
source, you specify the DB instance in the Single-AZ deployment or the primary DB instance in
the Multi-AZ DB instance deployment. The DB instance can process write transactions during the
migration to a Multi-AZ DB cluster.

Consider the following before you create a Multi-AZ DB cluster read replica:

• The source DB instance must be on a version that supports Multi-AZ DB clusters. For more
information, see Supported Regions and DB engines for Multi-AZ DB clusters in Amazon RDS.

• The Multi-AZ DB cluster read replica must be on the same major version as its source, and the
same or higher minor version.

• You must turn on automatic backups on the source DB instance by setting the backup retention
period to a value other than 0.

• The allocated storage of the source DB instance must be 100 GiB or higher.

• For RDS for MySQL, both the gtid-mode and enforce_gtid_consistency parameters must
be set to ON for the source DB instance. You must use a custom parameter group, not the default
parameter group. For more information, see the section called “DB parameter groups”.

• An active, long-running transaction can slow the process of creating the read replica. We
recommend that you wait for long-running transactions to complete before creating a read
replica.

• If you delete the source DB instance for a Multi-AZ DB cluster read replica, the read replica is
promoted to a standalone Multi-AZ DB cluster.

Creating and promoting the Multi-AZ DB cluster read replica

You can create and promote a Multi-AZ DB cluster read replica using the AWS Management
Console, AWS CLI, or RDS API.

Note

We strongly recommend that you create all read replicas in the same virtual private cloud
(VPC) based on Amazon VPC of the source DB instance.

Working with Multi-AZ DB cluster read replicas 961

Amazon Relational Database Service User Guide

If you create a read replica in a different VPC from the source DB instance, Classless Inter-
Domain Routing (CIDR) ranges can overlap between the replica and the Amazon RDS
system. CIDR overlap makes the replica unstable, which can negatively impact applications
connecting to it. If you receive an error when creating the read replica, choose a different
destination DB subnet group. For more information, see Working with a DB instance in a
VPC.

Console

To migrate a Single-AZ deployment or Multi-AZ DB instance deployment to a Multi-AZ DB cluster
using a read replica, complete the following steps using the AWS Management Console.

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Create the Multi-AZ DB cluster read replica.

a. In the navigation pane, choose Databases.

b. Choose the DB instance that you want to use as the source for a read replica.

c. For Actions, choose Create read replica.

d. For Availability and durability, choose Multi-AZ DB cluster.

e. For DB instance identifier, enter a name for the read replica.

f. For the remaining sections, specify your DB cluster settings. For information about a
setting, see Settings for creating Multi-AZ DB clusters.

g. Choose Create read replica.

3. When you are ready, promote the read replica to be a standalone Multi-AZ DB cluster:

a. Stop any transactions from being written to the source DB instance, and then wait for all
updates to be made to the read replica.

Database updates occur on the read replica after they have occurred on the primary
DB instance. This replication lag can vary significantly. Use the ReplicaLag metric to
determine when all updates have been made to the read replica. For more information
about replica lag, see Monitoring read replication.

b. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Working with Multi-AZ DB cluster read replicas 962

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

c. In the Amazon RDS console, choose Databases.

The Databases pane appears. Each read replica shows Replica in the Role column.

d. Choose the Multi-AZ DB cluster read replica that you want to promote.

e. For Actions, choose Promote.

f. On the Promote read replica page, enter the backup retention period and the backup
window for the newly promoted Multi-AZ DB cluster.

g. When the settings are as you want them, choose Promote read replica.

h. Wait for the status of the promoted Multi-AZ DB cluster to be Available.

i. Direct your applications to use the promoted Multi-AZ DB cluster.

Optionally, delete the Single-AZ deployment or Multi-AZ DB instance deployment if it is no
longer needed. For instructions, see Deleting a DB instance.

AWS CLI

To migrate a Single-AZ deployment or Multi-AZ DB instance deployment to a Multi-AZ DB cluster
using a read replica, complete the following steps using the AWS CLI.

1. Create the Multi-AZ DB cluster read replica.

To create a read replica from the source DB instance, use the AWS CLI command create-db-
cluster. For --replication-source-identifier, specify the Amazon Resource Name
(ARN) of the source DB instance.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier mymultiazdbcluster \
 --replication-source-identifier arn:aws:rds:us-
east-2:123456789012:db:mydbinstance
 --engine postgres \
 --db-cluster-instance-class db.m5d.large \
 --storage-type io1 \
 --iops 1000 \
 --db-subnet-group-name defaultvpc \
 --backup-retention-period 1

Working with Multi-AZ DB cluster read replicas 963

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Relational Database Service User Guide

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier mymultiazdbcluster ^
 --replication-source-identifier arn:aws:rds:us-
east-2:123456789012:db:mydbinstance
 --engine postgres ^
 --db-cluster-instance-class db.m5d.large ^
 --storage-type io1 ^
 --iops 1000 ^
 --db-subnet-group-name defaultvpc ^
 --backup-retention-period 1

2. Stop any transactions from being written to the source DB instance, and then wait for all
updates to be made to the read replica.

Database updates occur on the read replica after they have occurred on the primary DB
instance. This replication lag can vary significantly. Use the Replica Lag metric to determine
when all updates have been made to the read replica. For more information about replica lag,
see Monitoring read replication.

3. When you are ready, promote the read replica to be a standalone Multi-AZ DB cluster.

To promote a Multi-AZ DB cluster read replica, use the AWS CLI command promote-read-
replica-db-cluster. For --db-cluster-identifier, specify the identifier of the Multi-
AZ DB cluster read replica.

aws rds promote-read-replica-db-cluster --db-cluster-identifier mymultiazdbcluster

4. Wait for the status of the promoted Multi-AZ DB cluster to be Available.

5. Direct your applications to use the promoted Multi-AZ DB cluster.

Optionally, delete the Single-AZ deployment or Multi-AZ DB instance deployment if it is no longer
needed. For instructions, see Deleting a DB instance.

RDS API

To migrate a Single-AZ deployment or Multi-AZ DB instance deployment to a Multi-AZ DB cluster
using a read replica, complete the following steps using the RDS API.

Working with Multi-AZ DB cluster read replicas 964

https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html

Amazon Relational Database Service User Guide

1. Create the Multi-AZ DB cluster read replica.

To create a Multi-AZ DB cluster read replica, use the CreateDBCluster operation with the
required parameter DBClusterIdentifier. For ReplicationSourceIdentifier, specify
the Amazon Resource Name (ARN) of the source DB instance.

2. Stop any transactions from being written to the source DB instance, and then wait for all
updates to be made to the read replica.

Database updates occur on the read replica after they have occurred on the primary DB
instance. This replication lag can vary significantly. Use the Replica Lag metric to determine
when all updates have been made to the read replica. For more information about replica lag,
see Monitoring read replication.

3. When you are ready, promote read replica to be a standalone Multi-AZ DB cluster.

To promote a Multi-AZ DB cluster read replica, use the PromoteReadReplicaDBCluster
operation with the required parameter DBClusterIdentifier. Specify the identifier of the
Multi-AZ DB cluster read replica.

4. Wait for the status of the promoted Multi-AZ DB cluster to be Available.

5. Direct your applications to use the promoted Multi-AZ DB cluster.

Optionally, delete the Single-AZ deployment or Multi-AZ DB instance deployment if it is no longer
needed. For instructions, see Deleting a DB instance.

Limitations for creating a Multi-AZ DB cluster read replica

The following limitations apply to creating a Multi-AZ DB cluster read replica from a Single-AZ
deployment or Multi-AZ DB instance deployment.

• You can't create a Multi-AZ DB cluster read replica in an AWS account that is different from the
AWS account that owns the source DB instance.

• You can't create a Multi-AZ DB cluster read replica in a different AWS Region from the source DB
instance.

• You can't recover a Multi-AZ DB cluster read replica to a point in time.

• Storage encryption must have the same settings on the source DB instance and Multi-AZ DB
cluster.

• If the source DB instance is encrypted, the Multi-AZ DB cluster read replica must be encrypted
using the same KMS key.

Working with Multi-AZ DB cluster read replicas 965

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplicaDBCluster.html

Amazon Relational Database Service User Guide

• If the source DB instance uses General Purpose SSD (gp3) storage and has less than 400 GiB of
allocated storage, you can't modify the provisioned IOPS for the Multi-AZ DB cluster read replica.

• To perform a minor version upgrade on the source DB instance, you must first perform the minor
version upgrade on the Multi-AZ DB cluster read replica.

• When you perform a minor version upgrade on an RDS for PostgreSQL Multi-AZ DB cluster
read replica, the reader DB instance doesn't switch to the writer DB instance after the upgrade.
Therefore, your DB cluster might experience downtime while Amazon RDS upgrades the writer
instance.

• You can't perform a major version upgrade on a Multi-AZ DB cluster read replica.

• You can perform a major version upgrade on the source DB instance of a Multi-AZ DB cluster
read replica, but replication to the read replica stops and can't be restarted.

• The Multi-AZ DB cluster read replica doesn't support cascading read replicas.

• For RDS for PostgreSQL, Multi-AZ DB cluster read replicas can't fail over.

Creating a DB instance read replica from a Multi-AZ DB cluster

You can create a DB instance read replica from a Multi-AZ DB cluster in order to scale beyond
the compute or I/O capacity of the cluster for read-heavy database workloads. You can direct
this excess read traffic to one or more DB instance read replicas. You can also use read replicas to
migrate from a Multi-AZ DB cluster to a DB instance.

To create a read replica, specify a Multi-AZ DB cluster as the replication source. One of the reader
instances of the Multi-AZ DB cluster is always the source of replication, not the writer instance. This
condition ensures that the replica is always in sync with the source cluster, even in cases of failover.

Topics

• Comparing reader DB instances and DB instance read replicas

• Considerations

• Creating a DB instance read replica

• Promoting the DB instance read replica

• Limitations for creating a DB instance read replica from a Multi-AZ DB cluster

Working with Multi-AZ DB cluster read replicas 966

Amazon Relational Database Service User Guide

Comparing reader DB instances and DB instance read replicas

A DB instance read replica of a Multi-AZ DB cluster is different than the reader DB instances of the
Multi-AZ DB cluster in the following ways:

• The reader DB instances act as automatic failover targets, while DB instance read replicas do not.

• Reader DB instances must acknowledge a change from the writer DB instance before the change
can be committed. For DB instance read replicas, however, updates are asynchronously copied to
the read replica without requiring acknowledgement.

• Reader DB instances always share the same instance class, storage type, and engine version
as the writer DB instance of the Multi-AZ DB cluster. DB instance read replicas, however, don’t
necessarily have to share the same configurations as the source cluster.

• You can promote a DB instance read replica to a standalone DB instance. You can’t promote a
reader DB instance of a Multi-AZ DB cluster to a standalone instance.

• The reader endpoint only routes requests to the reader DB instances of the Multi-AZ DB cluster.
It never routes requests to a DB instance read replica.

For more information about reader and writer DB instances, see the section called “Multi-AZ DB
cluster architecture”.

Considerations

Consider the following before you create a DB instance read replica from a Multi-AZ DB cluster:

• When you create the DB instance read replica, it must be on the same major version as its source
cluster, and the same or higher minor version. After you create it, you can optionally upgrade the
read replica to a higher minor version than the source cluster.

• When you create the DB instance read replica, the allocated storage must be the same as the
allocated storage of the source Multi-AZ DB cluster. You can change the allocated storage after
the read replica is created.

• For RDS for MySQL, the gtid-mode parameter must be set to ON for the source Multi-AZ DB
cluster. For more information, see the section called “DB cluster parameter groups”.

• An active, long-running transaction can slow the process of creating the read replica. We
recommend that you wait for long-running transactions to complete before creating a read
replica.

• If you delete the source Multi-AZ DB cluster for a DB instance read replica, any read replicas that
it's writing to are promoted to standalone DB instances.

Working with Multi-AZ DB cluster read replicas 967

Amazon Relational Database Service User Guide

Creating a DB instance read replica

You can create a DB instance read replica from a Multi-AZ DB cluster using the AWS Management
Console, AWS CLI, or RDS API.

Note

We strongly recommend that you create all read replicas in the same virtual private cloud
(VPC) based on Amazon VPC of the source Multi-AZ DB cluster.
If you create a read replica in a different VPC from the source Multi-AZ DB cluster, Classless
Inter-Domain Routing (CIDR) ranges can overlap between the replica and the RDS system.
CIDR overlap makes the replica unstable, which can negatively impact applications
connecting to it. If you receive an error when creating the read replica, choose a different
destination DB subnet group. For more information, see the section called “Working with a
DB instance in a VPC”.

Console

To create a DB instance read replica from a Multi-AZ DB cluster, complete the following steps using
the AWS Management Console.

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Multi-AZ DB cluster that you want to use as the source for a read replica.

4. For Actions, choose Create read replica.

5. For Replica source, make sure that the correct Multi-AZ DB cluster is selected.

6. For DB identifier, enter a name for the read replica.

7. For the remaining sections, specify your DB instance settings. For information about a setting,
see the section called “Available settings”.

Note

The allocated storage for the DB instance read replica must be the same as the
allocated storage for the source Multi-AZ DB cluster.

8. Choose Create read replica.

Working with Multi-AZ DB cluster read replicas 968

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To create a DB instance read replica from a Multi-AZ DB cluster, use the AWS CLI command
create-db-instance-read-replica. For --source-db-cluster-identifier, specify the
identifier of the Multi-AZ DB cluster.

For Linux, macOS, or Unix:

aws rds create-db-instance-read-replica \
 --db-instance-identifier myreadreplica \
 --source-db-cluster-identifier mymultiazdbcluster

For Windows:

aws rds create-db-instance-read-replica ^
 --db-instance-identifier myreadreplica ^
 --source-db-cluster-identifier mymultiazdbcluster

RDS API

To create a DB instance read replica from a Multi-AZ DB cluster, use the
CreateDBInstanceReadReplica operation.

Promoting the DB instance read replica

If you no longer need the DB instance read replica, you can promote it into a standalone DB
instance. When you promote a read replica, the DB instance is rebooted before it becomes
available. For instructions, see the section called “Promoting a read replica”.

If you're using the read replica to migrate a Multi-AZ DB cluster deployment to a Single-AZ or
Multi-AZ DB instance deployment, make sure to stop any transactions that are being written to
the source DB cluster. Then, wait for all updates to be made to the read replica. Database updates
occur on the read replica after they occur on one of the reader DB instances of the Multi-AZ DB
cluster. This replication lag can vary significantly. Use the ReplicaLag metric to determine when
all updates have been made to the read replica. For more information about replica lag, see the
section called “Monitoring read replication”.

After you promote the read replica, wait for the status of the promoted DB instance to be
Available before you direct your applications to use the promoted DB instance. Optionally,

Working with Multi-AZ DB cluster read replicas 969

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html

Amazon Relational Database Service User Guide

delete the Multi-AZ DB cluster deployment if you no longer need it. For instructions, see the
section called “Deleting a Multi-AZ DB cluster”.

Limitations for creating a DB instance read replica from a Multi-AZ DB cluster

The following limitations apply to creating a DB instance read replica from a Multi-AZ DB cluster
deployment.

• You can't create a DB instance read replica in an AWS account that's different from the AWS
account that owns the source Multi-AZ DB cluster.

• You can't create a DB instance read replica in a different AWS Region from the source Multi-AZ
DB cluster.

• You can't recover a DB instance read replica to a point in time.

• Storage encryption must have the same settings on the source Multi-AZ DB cluster and DB
instance read replica.

• If the source Multi-AZ DB cluster is encrypted, the DB instance read replica must be encrypted
using the same KMS key.

• To perform a minor version upgrade on the source Multi-AZ DB cluster, you must first perform
the minor version upgrade on the DB instance read replica.

• The DB instance read replica doesn't support cascading read replicas.

• For RDS for PostgreSQL, the source Multi-AZ DB cluster must be running PostgreSQL version
13.11, 14.8, or 15.2.R2 or higher in order to create a DB instance read replica.

• You can perform a major version upgrade on the source Multi-AZ DB cluster of a DB instance
read replica, but replication to the read replica stops and can't be restarted.

Working with Multi-AZ DB cluster read replicas 970

Amazon Relational Database Service User Guide

Setting up external replication from Multi-AZ DB clusters for Amazon
RDS

You can set up replication between a Multi-AZ DB cluster and a database that is external to
Amazon RDS.

External replication allows Multi-AZ DB clusters to replicate data between an RDS DB instance
and an external database, either on-premises or in another cloud environment. It's beneficial
for disaster recovery, data migration, and maintaining consistency between systems in different
locations. The section covers the prerequisites for setting up replication, how to configure the
process, and key considerations like replication latency, bandwidth, and compatibility with different
database engines.

RDS for MySQL

To set up external replication for an RDS for MySQL Multi-AZ DB cluster, you must retain binary log
files on the DB instances within the cluster for long enough to ensure that the changes are applied
to the replica before Amazon RDS deletes the binlog file. To do so, configure binary log retention
by calling the mysql.rds_set_configuration stored procedure and specifying the binlog
retention hours parameter. For more information, see the section called “binlog retention
hours”.

The default value for binlog retention hours is NULL, which means that binary logs aren't
retained (0 hours). If you want to set up external replication for a Multi-AZ DB cluster, you must set
the parameter to a value other than NULL.

You can only configure binary log retention from the writer DB instance of the Multi-AZ DB cluster,
and the setting is propagated to all reader DB instances asynchronously.

In addition, we highly recommend enabling GTID-based replication on your external replica. Then,
if one of the DB instances fails, you can resume replication from another healthy DB instance
within the cluster. For more information, see Replication with Global Transaction Identifiers in the
MySQL documentation.

RDS for PostgreSQL

To set up external replication for an RDS for PostgreSQL Multi-AZ DB cluster, you must enable
logical replication. For instructions, see the section called “PostgreSQL logical replication with
Multi-AZ DB clusters”.

Setting up external replication from Multi-AZ DB clusters 971

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids.html

Amazon Relational Database Service User Guide

Deleting a Multi-AZ DB cluster for Amazon RDS

You can delete a DB Multi-AZ DB cluster using the AWS Management Console, the AWS CLI, or the
RDS API.

The time required to delete a Multi-AZ DB cluster can vary depending on the following factors:

• Thee backup retention period (that is, how many backups to delete).

• How much data is deleted.

• Whether a final snapshot is taken.

Deletion protection must be disabled on the Multi-AZ DB cluster before you can delete it. For
more information, see the section called “Prerequisites for deleting a DB instance”. You can disable
deletion protection by modifying the Multi-AZ DB cluster. For more information, see the section
called “Modifying a Multi-AZ DB cluster”.

Console

To delete a Multi-AZ DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the Multi-AZ DB cluster that you
want to delete.

3. For Actions, choose Delete.

4. Choose Create final snapshot? to create a final DB snapshot for the Multi-AZ DB cluster.

If you create a final snapshot, enter a name for Final snapshot name.

5. Choose Retain automated backups to retain automated backups.

6. Enter delete me in the box.

7. Choose Delete.

AWS CLI

To delete a Multi-AZ DB cluster by using the AWS CLI, call the delete-db-cluster command with the
following options:

Deleting a Multi-AZ DB cluster 972

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster.html

Amazon Relational Database Service User Guide

• --db-cluster-identifier

• --final-db-snapshot-identifier or --skip-final-snapshot

Example With a final snapshot

For Linux, macOS, or Unix:

aws rds delete-db-cluster \
 --db-cluster-identifier mymultiazdbcluster \
 --final-db-snapshot-identifier mymultiazdbclusterfinalsnapshot

For Windows:

aws rds delete-db-cluster ^
 --db-cluster-identifier mymultiazdbcluster ^
 --final-db-snapshot-identifier mymultiazdbclusterfinalsnapshot

Example With no final snapshot

For Linux, macOS, or Unix:

aws rds delete-db-cluster \
 --db-cluster-identifier mymultiazdbcluster \
 --skip-final-snapshot

For Windows:

aws rds delete-db-cluster ^
 --db-cluster-identifier mymultiazdbcluster ^
 --skip-final-snapshot

RDS API

To delete a Multi-AZ DB cluster by using the Amazon RDS API, call the DeleteDBCluster operation
with the following parameters:

• DBClusterIdentifier

• FinalDBSnapshotIdentifier or SkipFinalSnapshot

Deleting a Multi-AZ DB cluster 973

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBCluster.html

Amazon Relational Database Service User Guide

Limitations of Multi-AZ DB clusters for Amazon RDS

A Multi-AZ DB cluster has a writer DB instance and two reader DB instances in three separate
Availability Zones. Multi-AZ DB clusters provide high availability, increased capacity for read
workloads, and lower latency when compared to Multi-AZ deployments. For more information
about Multi-AZ DB clusters, see Multi-AZ DB cluster deployments for Amazon RDS.

The following limitations apply to Multi-AZ DB clusters.

• Multi-AZ DB clusters don't support the following features:

• IPv6 connections (dual-stack mode)

• Cross-Region automated backups

• Kerberos authentication

• Modifying the port. As an alternative, you can restore a Multi-AZ DB cluster to a point in time
and specify a different port.

• Option groups

• Point-in-time-recovery (PITR) for deleted clusters

• Storage autoscaling by setting the maximum allocated storage. As an alternative, you can
scale storage manually.

• Stopping and starting the Multi-AZ DB cluster

• Copying a snapshot of a Multi-AZ DB cluster

• Encrypting an unencrypted Multi-AZ DB cluster

• RDS for MySQL Multi-AZ DB clusters support only the following system stored procedures:

• mysql.rds_rotate_general_log

• mysql.rds_rotate_slow_log

• mysql.rds_show_configuration

• mysql.rds_set_external_master_with_auto_position

• mysql.rds_set_configuration

• RDS for PostgreSQL Multi-AZ DB clusters don't support the following extensions: aws_s3 and
pg_transport.

• RDS for PostgreSQL Multi-AZ DB clusters don't support using a custom DNS server for outbound
network access.

Limitations of Multi-AZ DB clusters 974

Amazon Relational Database Service User Guide

Amazon RDS Extended Support with Amazon RDS

With Amazon RDS Extended Support, you can continue running your database on a major engine
version past the RDS end of standard support date for an additional cost. After the RDS end
of standard support date, if you didn't disable RDS Extended Support during the creation or
restoration of your DB instances, then Amazon RDS will automatically enroll them in RDS Extended
Support. Automatic enrollment into RDS Extended Support doesn't change the database engine
and doesn't impact the uptime or performance of your DB instance.

RDS Extended Support provides the following updates and technical support:

• Security updates for critical and high CVEs for your DB instance or DB cluster, including the
database engine

• Bug fixes and patches for critical issues

• The ability to open support cases and receive troubleshooting help within the standard Amazon
RDS service level agreement

This paid offering gives you more time to upgrade to a supported major engine version. For
example, the RDS end of standard support date for RDS for MySQL version 5.7 is February 29,
2024. However, you aren't ready to manually upgrade to RDS for MySQL version 8.0 before that
date. In this case, Amazon RDS automatically enrolls your databases in RDS Extended Support
on February 29, 2024, and you can continue to run RDS for MySQL version 5.7. Starting March 1,
2024, Amazon RDS automatically charges you for RDS Extended Support.

RDS Extended Support is available for up to 3 years past the RDS end of standard support date
for a major engine version. After this time, if you haven't upgraded your major engine version to
a supported version, then Amazon RDS will automatically upgrade your major engine version. We
recommend that you upgrade to a supported major engine version as soon as possible.

For more information about the RDS end of standard support dates and the RDS end of Extended
Support dates, see Supported MySQL major versions on Amazon RDS and Release calendar for
Amazon RDS for PostgreSQL.

Topics

• Overview of Amazon RDS Extended Support

• Amazon RDS Extended Support charges

975

https://nvd.nist.gov/vuln-metrics/cvss
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html#Release.Calendar
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html#Release.Calendar

Amazon Relational Database Service User Guide

• Versions with Amazon RDS Extended Support

• Amazon RDS and customer responsibilities with Amazon RDS Extended Support

• Creating a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support

• Viewing the enrollment of your DB instances or Multi-AZ DB clusters in Amazon RDS Extended
Support

• Restoring a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support

Overview of Amazon RDS Extended Support

After the RDS end of standard support date, if you didn't disable RDS Extended Support during
the creation or restoration of your DB instances, then Amazon RDS will automatically enroll them
in RDS Extended Support. Amazon RDS automatically upgrades your DB instance to the last
minor version released before the RDS end of standard support date, if you aren't already running
that version. Amazon RDS won't upgrade your minor version until after the RDS end of standard
support date for your major engine version.

You can create new databases with major engine versions that have reached the RDS end of
standard support date. RDS automatically enrolls these new databases in RDS Extended Support
and charges you for this offering.

If you upgrade to an engine that's still under RDS standard support before the RDS end of standard
support date, Amazon RDS won't enroll your engine in RDS Extended Support.

If you attempt to restore a snapshot of a database compatible with an engine that's past the RDS
end of standard support date but isn't enrolled in RDS Extended Support, then Amazon RDS will
attempt to upgrade the snapshot to be compatible with the latest engine version that is still under
RDS standard support. If the restore fails, then Amazon RDS will automatically enroll your engine
in RDS Extended Support with a version that's compatible with the snapshot.

You can end enrollment in RDS Extended Support at any time. To end enrollment, upgrade each
enrolled engine to a newer engine version that's still under RDS standard support. The end of RDS
Extended Support enrollment will be effective the day that you complete an upgrade to a newer
engine version that's still under RDS standard support.

For more information about the RDS end of standard support dates and the RDS end of Extended
Support dates, see Supported MySQL major versions on Amazon RDS and Release calendar for
Amazon RDS for PostgreSQL.

RDS Extended Support overview 976

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html#Release.Calendar
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html#Release.Calendar

Amazon Relational Database Service User Guide

Amazon RDS Extended Support charges

You will incur charges for all engines enrolled in RDS Extended Support beginning the day after the
RDS end of standard support date. For the RDS end of standard support date, see Major versions
and Release calendar for Amazon RDS for PostgreSQL. RDS Extended Support charges apply to
standby instances in Multi-AZ deployments.

The additional charge for RDS Extended Support automatically stops when you take one of the
following actions:

• Upgrade to an engine version that's covered under standard support.

• Delete the database that's running a major version past the RDS end of standard support date.

The charges will restart if your target engine version enters RDS Extended Support in the future.

For example, RDS for PostgreSQL 11 enters Extended Support on March 1, 2024, but charges
don't start until April 1, 2024. You upgrade your RDS for PostgreSQL 11 database to RDS for
PostgreSQL 12 on April 30, 2024. You will only be charged for 30 days of Extended Support on
RDS for PostgreSQL 11. You continue running RDS for PostgreSQL 12 on this DB instance past
the RDS end of standard support date of February 28, 2025. Your database will again incur RDS
Extended Support charges starting on March 1, 2025.

For more information, see Amazon RDS for MySQL pricing and Amazon RDS for PostgreSQL
pricing.

Avoiding charges for Amazon RDS Extended Support

You can avoid being charged for RDS Extended Support by preventing RDS from creating or
restoring a DB instance or a Multi-AZ DB cluster past the RDS end of standard support date. To do
this, use the AWS CLI or the RDS API.

In the AWS CLI, specify open-source-rds-extended-support-disabled for the --engine-
lifecycle-support option. In the RDS API, specify open-source-rds-extended-support-
disabled for the LifeCycleSupport parameter. For more information, see Creating a DB
instance or a Multi-AZ DB cluster or Restoring a DB instance or a Multi-AZ DB cluster.

Versions with Amazon RDS Extended Support

RDS Extended Support is only available for major versions. It isn't available for minor versions.

RDS Extended Support charges 977

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html
https://aws.amazon.com/rds/mysql/pricing/
https://aws.amazon.com/rds/postgresql/pricing/
https://aws.amazon.com/rds/postgresql/pricing/

Amazon Relational Database Service User Guide

RDS Extended Support is available for RDS for MySQL 5.7 and 8.0, and for RDS for PostgreSQL 11
and higher. For more information, see Major versions and Release calendar for Amazon RDS for
PostgreSQL in the Amazon RDS for PostgreSQL Release Notes.

Amazon RDS Extended Support version naming

Amazon RDS will release new minor versions with fixes and CVE patches for engines on RDS
Extended Support. For more information, see Amazon RDS Extended Support versions for RDS for
MySQL and Amazon RDS Extended Support updates for RDS for PostgreSQL in the Amazon RDS for
PostgreSQL Release Notes.

The names of these minor releases will be in the form major.minor-
RDS.YYYYMMDD.patch.YYYYMMDD, for example, 5.7.44-RDS.20240208.R2.20240210 (for RDS for
MySQL) or 11.22-RDS.20240208.R2.20240210 (for RDS for PostgreSQL).

major

For MySQL, the major version number is both the integer and the first fractional part of the
version number, for example, 8.0. A major version upgrade increases the major part of the
version number. For example, an upgrade from 5.7.44 to 8.0.33 is a major version upgrade,
where 5.7 and 8.0 are the major version numbers.

For PostgreSQL, the major version number is the integer, for example, 11.

minor-RDS.YYYYMMDD

For MySQL, the minor version number is the third part of the version number, for example, the
44-RDS.20240208 in 5.7.44-RDS.20240208.

For PostgeSQL, the minor version number is the second part of version number, for example,
the 22-RDS.20240208in 11.22-RDS.20240208.

The date is when Amazon RDS created the Amazon RDS minor version.

patch

The patch version is what follows the date when Amazon RDS created the Amazon RDS minor
version, for example, the R2 in 5.7.44-RDS.20240208.R2 or 11.22-RDS.20240208.R2.

An Amazon RDS patch version includes important bug fixes added to an Amazon RDS minor
version after its release.

RDS Extended Support version naming 978

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extendedsupport.html

Amazon Relational Database Service User Guide

YYYYMMDD

The date is when Amazon RDS created the patch version, for example, the 20240210 in 5.7.44-
RDS.20240208.R2.20240210 or 11.22-RDS.20240208.R2.20240210.

An Amazon RDS dated version is a security patch that includes important security fixes added
to a minor version after its release. It doesn't include any fixes that might change an engine's
behavior.

Amazon RDS and customer responsibilities with Amazon RDS
Extended Support

The following content describes the responsibilities of Amazon RDS and your responsibilities with
RDS Extended Support.

Topics

• Amazon RDS responsibilities

• Your responsibilities

Amazon RDS responsibilities

After the RDS end of standard support date, Amazon RDS will supply patches, bug fixes, and
upgrades for engines that are enrolled in RDS Extended Support. This will occur for up to 3 years,
or until you stop using the engines, whichever happens first.

The patches will be for Critical and High CVEs as defined by the National Vulnerability Database
(NVD) CVSS severity ratings. For more information, see Vulnerability Metrics.

Your responsibilities

You're responsible for applying the patches, bug fixes, and upgrades given for DB instances or
Multi-AZ DB clusters enrolled in RDS Extended Support. Amazon RDS reserves the right to change,
replace, or withdraw such patches, bug fixes, and upgrades at any time. If a patch is necessary
to address security or critical stability issues, Amazon RDS reserves the right to update your DB
instances or Multi-AZ DB clusters with the patch, or to require that you install the patch.

You're also responsible for upgrading your engine to a newer engine version before the RDS end of
Extended Support date. The RDS end of Extended Support date is typically 3 years after the RDS

Responsibilities with RDS Extended Support 979

https://nvd.nist.gov/vuln-metrics/cvss#

Amazon Relational Database Service User Guide

standard support date. For the RDS end of Extended Support date for your database major engine
version, see Major versions and Release calendar for Amazon RDS for PostgreSQL.

If you don't upgrade your engine, then after the RDS end of Extended Support date, Amazon
RDS will attempt to upgrade your engine to a newer engine version that's supported under RDS
standard support. If the upgrade fails, then Amazon RDS reserves the right to delete the DB
instance or Multi-AZ DB cluster that's running the engine past the RDS end of standard support
date. However, before doing so, Amazon RDS will preserve your data from that engine.

Creating a DB instance or a Multi-AZ DB cluster with Amazon
RDS Extended Support

When you create a DB instance or a Multi-AZ DB cluster, select Enable RDS Extended Support
in the console, or use the Extended Support option in the AWS CLI or the parameter in the RDS
API. When you enroll a DB instance or a Multi-AZ DB cluster in Amazon RDS Extended Support, it
is permanently enrolled in RDS Extended Support for the life of the DB instance or Multi-AZ DB
cluster.

If you use the console, you must select Enable RDS Extended Support. The setting isn't selected by
default.

If you use the AWS CLI or the RDS API and don't specify the RDS Extended Support setting,
Amazon RDS defaults to enabling RDS Extended Support. When you automate by using AWS
CloudFormation or other services, this default behavior maintains the availability of your database
past the RDS end of standard support date.

You can prevent enrollment in RDS Extended Support by using the AWS CLI or the RDS API to
create a DB instance or a Multi-AZ DB cluster.

Topics

• RDS Extended Support behavior

• Considerations for RDS Extended Support

• Create a DB instance or a Multi-AZ DB cluster with RDS Extended Support

RDS Extended Support behavior

The following table summarizes what happens when a major engine version reaches the RDS end
of standard support.

Creating a DB instance or a Multi-AZ DB cluster 980

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html#aws-resource-rds-dbinstance-return-values:~:text=EngineLifecycleSupport
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html#aws-resource-rds-dbinstance-return-values:~:text=EngineLifecycleSupport

Amazon Relational Database Service User Guide

RDS Extended
Support status*

Behavior

Enabled Amazon RDS charges you for RDS Extended Support.

Disabled Amazon RDS upgrades your DB instance or Multi-AZ DB cluster to a
supported engine version. This upgrade takes place on or shortly after
the RDS end of standard support date.

* In the RDS console, the RDS Extended Support status appears as Yes or No. In the AWS CLI or RDS
API, the RDS Extended Support status appears as open-source-rds-extended-support or
open-source-rds-extended-support-disabled.

Considerations for RDS Extended Support

Before creating a DB instance or a Multi-AZ DB cluster, consider the following items:

• After the RDS end of standard support date has passed, you can prevent the creation of a new
DB instance or a new Multi-AZ DB cluster and avoid RDS Extended Support charges. To do
this, use the AWS CLI or the RDS API. In the AWS CLI, specify open-source-rds-extended-
support-disabled for the --engine-lifecycle-support option. In the RDS API, specify
open-source-rds-extended-support-disabled for the LifeCycleSupport parameter. If
you specify open-source-rds-extended-support-disabled and the RDS end of standard
support date has passed, creating a DB instance or a Multi-AZ DB cluster will always fail.

• RDS Extended Support is set at the cluster level. Members of a cluster will always have the same
setting for RDS Extended Support in the RDS console, --engine-lifecycle-support in the
AWS CLI, and EngineLifecycleSupport in the RDS API.

For more information, see MySQL versions and Release calendars for Amazon RDS for PostgreSQL.

Create a DB instance or a Multi-AZ DB cluster with RDS Extended
Support

You can create a DB instance or a Multi-AZ DB cluster with an RDS Extended Support version using
the AWS Management Console, the AWS CLI, or the RDS API.

Considerations for RDS Extended Support 981

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html

Amazon Relational Database Service User Guide

Console

When you create a DB instance or a Multi-AZ DB cluster, in the Engine options section, select
Enable RDS Extended Support. This setting isn't selected by default.

The following image shows the Enable RDS Extended Support setting:

AWS CLI

When you run the create-db-instance or create-db-cluster (Multi-AZ DB cluster) AWS CLI command,
select RDS Extended Support by specifying open-source-rds-extended-support for the
--engine-lifecycle-support option. By default, this option is set to open-source-rds-
extended-support.

To prevent the creation of a new DB instance or a Multi-AZ DB cluster after the RDS end of
standard support date, specify open-source-rds-extended-support-disabled for the --
engine-lifecycle-support option. By doing so, you will avoid any associated RDS Extended
Support charges.

RDS API

When you use the CreateDBInstance or CreateDBCluster (Multi-AZ DB cluster) Amazon RDS API
operation, select RDS Extended Support by setting the EngineLifecycleSupport parameter
to open-source-rds-extended-support. By default, this parameter is set to open-source-
rds-extended-support.

To prevent the creation of a new DB instance or a Multi-AZ DB cluster after the RDS end of
standard support date, specify open-source-rds-extended-support-disabled for the
EngineLifecycleSupport parameter. By doing so, you will avoid any associated RDS Extended
Support charges.

For more information, see the following topics:

• To create a DB instance, follow the instructions for your DB engine in Creating an Amazon RDS
DB instance.

Create a DB instance or a Multi-AZ DB cluster with RDS Extended Support 982

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Relational Database Service User Guide

• To create a Multi-AZ DB cluster, follow the instructions for your DB engine in Creating a Multi-AZ
DB cluster for Amazon RDS.

Viewing the enrollment of your DB instances or Multi-AZ DB
clusters in Amazon RDS Extended Support

You can view the enrollment of your DB instances or Multi-AZ DB clusters in RDS Extended Support
using the AWS Management Console, the AWS CLI, or the RDS API.

Note

The RDS Extended Support column in the console, the --engine-lifecycle-support
option in the AWS CLI, and the EngineLifecycleSupport parameter in the RDS API only
indicate enrollment in RDS Extended Support. Charges for RDS Extended Support only
start when your DB engine version has reached the RDS end of standard support. For more
information, see Major versions and Release calendar for Amazon RDS for PostgreSQL in
the Amazon RDS for PostgreSQL Release Notes.
For example, you have an RDS for MySQL 5.7 database that is enrolled in RDS Extended
Support. On March 1, 2024, Amazon RDS started charging you for RDS Extended Support
for this database. On July 31, 2024, you upgraded this database to RDS for MySQL 8.0.
The RDS Extended Support status for this database remains enabled. However, the RDS
Extended Support charges for this database stopped because RDS for MySQL 8.0 hadn't
reached RDS end of standard support yet. Amazon RDS won't charge you for RDS Extended
Support for this database until August 1, 2026, which is when RDS standard support ends
for RDS for MySQL 8.0.

Console

To view the enrollment of your DB instances or Multi-AZ DB clusters in RDS Extended Support

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases. The value under RDS Extended Support indicates if
a DB instance or Multi-AZ DB cluster is enrolled in RDS Extended Support. If no value appears,
then RDS Extended Support isn't available for your database.

Viewing RDS Extended Support enrollment 983

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Tip

If the RDS Extended Support column doesn't appear, choose the Preferences icon, and
then turn on RDS Extended Support.

3. You can also view the enrollment on the Configuration tab for each database. Choose a
database under DB identifier. On the Configuration tab, look under Extended Support to see
if the database is enrolled or not.

Viewing RDS Extended Support enrollment 984

Amazon Relational Database Service User Guide

AWS CLI

To view the enrollment of your databases in RDS Extended Support by using the AWS CLI, run the
describe-db-instances or describe-db-clusters (Multi-AZ DB clusters) command.

If RDS Extended Support is available for a database, then the response includes the parameter
EngineLifecycleSupport. The value open-source-rds-extended-support indicates that a
DB instance or Multi-AZ DB cluster is enrolled in RDS Extended Support. The value open-source-
rds-extended-support-disabled indicates that enrollment of the DB instance or Multi-AZ DB
cluster in RDS Extended Support was disabled.

Example

The following command returns information for all of your DB instances:

aws rds describe-db-instances

The following response shows that a PostgreSQL engine running on the DB instance database-1
is enrolled in RDS Extended Support:

Viewing RDS Extended Support enrollment 985

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Relational Database Service User Guide

{
 "DBInstanceIdentifier": "database-1",
 "DBInstanceClass": "db.t3.large",
 "Engine": "postgres",
 ...
 "EngineLifecycleSupport": "open-source-rds-extended-support"
}

RDS API

To view the enrollment of your databases in RDS Extended Support by using the Amazon RDS API,
use the DescribeDBInstances or DescribeDBClusters operation.

If RDS Extended Support is available for a database, then the response includes the parameter
EngineLifecycleSupport. The value open-source-rds-extended-support indicates that a
DB instance or Multi-AZ DB cluster is enrolled in RDS Extended Support. The value open-source-
rds-extended-support-disabled indicates that enrollment of the DB instance or Multi-AZ DB
cluster in RDS Extended Support was disabled.

Restoring a DB instance or a Multi-AZ DB cluster with Amazon
RDS Extended Support

When you restore a DB instance or a Multi-AZ DB cluster, select Enable RDS Extended Support in
the console, or use the Extended Support option in the AWS CLI or the parameter in the RDS API.
When you enroll a DB instance or Multi-AZ DB cluster in RDS Extended Support, it is permanently
enrolled in RDS Extended Support for the life of the DB instance or Multi-AZ DB cluster.

The default for the RDS Extended Support setting depends on whether you use the console, the
AWS CLI, or the RDS API to restore your database. If you use the console, you don't select Enable
RDS Extended Support, and the major engine version you are restoring is past the RDS end of
standard support, then Amazon RDS automatically upgrades your DB instance to a newer engine
version. If you use the AWS CLI or the RDS API and you don't specify the RDS Extended Support
setting, then Amazon RDS defaults to enabling RDS Extended Support. When you automate by
using AWS CloudFormation or other services, this default behavior maintains the availability of
your database past the RDS end of standard support date. You can disable RDS Extended Support
by using the AWS CLI or the RDS API.

Topics

Restoring a DB instance or a Multi-AZ DB cluster 986

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html#aws-resource-rds-dbinstance-return-values:~:text=EngineLifecycleSupport

Amazon Relational Database Service User Guide

• RDS Extended Support behavior

• Considerations for RDS Extended Support

• Restore a DB instance or a Multi-AZ DB cluster with RDS Extended Support

RDS Extended Support behavior

The following table summarizes what happens when a major engine version of a DB instance or a
Multi-AZ DB cluster that you are restoring has reached the RDS end of standard support.

RDS Extended
Support status*

Behavior

Enabled Amazon RDS charges you for RDS Extended Support.

Disabled** After the restore finishes, Amazon RDS automatically upgrades your DB
instance or Multi-AZ DB cluster to a newer engine version (in a future
maintenance window).

* In the RDS console, the RDS Extended Support status appears as Yes or No. In the AWS CLI or RDS
API, the RDS Extended Support status appears as open-source-rds-extended-support or
open-source-rds-extended-support-disabled.

** This option is only available when restoring a DB instance or a Multi-AZ DB cluster running
PostgreSQL 12 and higher or MySQL 8 and higher.

Considerations for RDS Extended Support

Before restoring a DB instance or a Multi-AZ DB cluster, consider the following items:

• After the RDS end of standard support date has passed, if you want to restore a DB instance or
a Multi-AZ DB cluster from Amazon S3, you can only do so by using the AWS CLI or the RDS API.
Use the --engine-lifecycle-support option in the restore-db-cluster-from-s3 AWS CLI
command or the EngineLifecycleSupport parameter in the RestoreDBClusterFromS3 RDS
API operation.

• If you want to prevent RDS from restoring your databases to RDS Extended Support versions,
specify open-source-rds-extended-support-disabled in the AWS CLI or the RDS API. By
doing so, you will avoid any associated RDS Extended Support charges.

RDS Extended Support behavior 987

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html

Amazon Relational Database Service User Guide

If you specify this setting, Amazon RDS will automatically upgrade your restored database to
a newer, supported major version. If the upgrade fails pre-upgrade checks, Amazon RDS will
safely roll back to the RDS Extended Support engine version. This database will remain in RDS
Extended Support mode, and Amazon RDS will charge you for RDS Extended Support until you
manually upgrade your database.

For example, if you restore a MySQL 5.7 snapshot without using RDS Extended Support, Amazon
RDS will attempt to automatically upgrade your database to MySQL 8.0. If this upgrade fails
because of an issue that you need to resolve, Amazon RDS will roll back the database to MySQL
5.7. Amazon RDS will keep the database on RDS Extended Support until you can fix the issue. For
example, an upgrade might fail because of insufficient storage space. After you fix the issue, you
must initiate the upgrade. After the first attempt to upgrade your database, Amazon RDS won't
attempt to upgrade it again.

• RDS Extended Support is set at the cluster level. Members of a cluster will always have the same
setting for RDS Extended Support in the RDS console, --engine-lifecycle-support in the
AWS CLI, and EngineLifecycleSupport in the RDS API.

For more information, see MySQL versions and Release calendars for Amazon RDS for PostgreSQL.

Restore a DB instance or a Multi-AZ DB cluster with RDS Extended
Support

You can restore a DB instance or a Multi-AZ DB cluster with an RDS Extended Support version using
the AWS Management Console, the AWS CLI, or the RDS API.

Console

When you restore a DB instance or a Multi-AZ DB cluster, select Enable RDS Extended Support in
the Engine options section. If you don't select this setting and the major engine version that you
are restoring is past the RDS end of standard support, then Amazon RDS automatically upgrades
your DB instance or Multi-AZ DB cluster to a version under RDS standard support.

The following image shows the Enable RDS Extended Support setting:

Restore a DB instance or a Multi-AZ DB cluster with RDS Extended Support 988

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html

Amazon Relational Database Service User Guide

AWS CLI

When you run the restore-db-instance-from-db-snapshot or restore-db-cluster-from-snapshot
AWS CLI command, select RDS Extended Support by specifying open-source-rds-extended-
support for the --engine-lifecycle-support option.

If you want to avoid charges associated with RDS Extended Support, set the --engine-
lifecycle-support option to open-source-rds-extended-support-disabled. By default,
this option is set to open-source-rds-extended-support.

You can also specify this value using the following AWS CLI commands:

• restore-db-cluster-from-s3

• restore-db-cluster-to-point-in-time

• restore-db-instance-from-s3

• restore-db-instance-to-point-in-time

RDS API

When you use the RestoreDBInstanceFromDBSnapshot or RestoreDBClusterFromSnapshot Amazon
RDS API operation, select RDS Extended Support by setting the EngineLifecycleSupport
parameter to open-source-rds-extended-support.

If you want to avoid charges associated with RDS Extended Support, set the
EngineLifecycleSupport parameter to open-source-rds-extended-support-disabled.
By default, this parameter is set to open-source-rds-extended-support.

You can also specify this value using the following RDS API operations:

• RestoreDBClusterFromS3

• RestoreDBClusterToPointInTime

• RestoreDBInstanceFromS3

• RestoreDBInstanceToPointInTime

For more information about restoring a DB instance or a Multi-AZ DB cluster, follow the
instructions for your DB engine in Restoring to a DB instance.

Restore a DB instance or a Multi-AZ DB cluster with RDS Extended Support 989

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Using Amazon RDS Blue/Green Deployments for
database updates

A blue/green deployment copies a production database environment to a separate, synchronized
staging environment. By using Amazon RDS Blue/Green Deployments, you can make changes
to the database in the staging environment without affecting the production environment. For
example, you can upgrade the major or minor DB engine version or change database parameters in
the staging environment. When you're ready, you can promote the staging environment to be the
new production database environment, with downtime typically under one minute.

Note

Currently, Blue/Green Deployments are supported for RDS for MariaDB, RDS for MySQL,
and RDS for PostgreSQL only. For Amazon Aurora availability, see Using Amazon Aurora
Blue/Green Deployments for database updates in the Amazon Aurora User Guide.

Topics

• Overview of Amazon RDS Blue/Green Deployments

• Creating a blue/green deployment in Amazon RDS

• Viewing a blue/green deployment in Amazon RDS

• Switching a blue/green deployment in Amazon RDS

• Deleting a blue/green deployment in Amazon RDS

990

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html

Amazon Relational Database Service User Guide

Overview of Amazon RDS Blue/Green Deployments

By using Amazon RDS Blue/Green Deployments, you can make and test database changes
before implementing them in a production environment. A blue/green deployment creates a
staging environment that copies the production environment. In a blue/green deployment, the
blue environment is the current production environment. The green environment is the staging
environment and stays in sync with the current production environment.

You can make changes to the RDS DB instances in the green environment without affecting
production workloads. For example, you can upgrade the major or minor DB engine version,
upgrade the underlying file system configuration, or change database parameters in the staging
environment. You can thoroughly test changes in the green environment. When ready, you can
switch over the environments to transition the green environment to be the new production
environment. The switchover typically takes under a minute with no data loss and no need for
application changes.

Because the green environment is a copy of the topology of the production environment, the
green environment includes the features used by the DB instance. These features include the read
replicas, the storage configuration, DB snapshots, automated backups, Performance Insights, and
Enhanced Monitoring. If the blue DB instance is a Multi-AZ DB instance deployment, then the green
DB instance is also a Multi-AZ DB instance deployment.

Note

Currently, blue/green deployments are supported only for RDS for MariaDB, RDS for
MySQL, and RDS for PostgreSQL. For Amazon Aurora availability, see Overview of Amazon
Aurora Blue/Green Deployments in the Amazon Aurora User Guide.
Under certain conditions, RDS for PostgreSQL uses logical replication instead of physical
replication to keep the green environment in sync with the blue environment. For more
information, see the section called “PostgreSQL replication methods”.

Topics

• Region and version availability

• Benefits of using Amazon RDS Blue/Green Deployments

• Workflow of a blue/green deployment

• Authorizing access to Amazon RDS blue/green deployment operations

Overview of Blue/Green Deployments 991

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments-overview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments-overview.html

Amazon Relational Database Service User Guide

• Limitations and considerations for Amazon RDS blue/green deployments

• Best practices for Amazon RDS blue/green deployments

• PostgreSQL replication methods for blue/green deployments

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information, see the section called “Blue/Green Deployments”.

Benefits of using Amazon RDS Blue/Green Deployments

By using Amazon RDS Blue/Green Deployments, you can stay current on security patches, improve
database performance, and adopt newer database features with short, predictable downtime.
Blue/green deployments reduce the risks and downtime for database updates, such as major or
minor engine version upgrades.

Blue/green deployments provide the following benefits:

• Easily create a production-ready staging environment.

• Automatically replicate database changes from the production environment to the staging
environment.

• Test database changes in a safe staging environment without affecting the production
environment.

• Stay current with database patches and system updates.

• Implement and test newer database features.

• Switch over your staging environment to be the new production environment without changes to
your application.

• Safely switch over through the use of built-in switchover guardrails.

• Eliminate data loss during switchover.

• Switch over quickly, typically under a minute depending on your workload.

Workflow of a blue/green deployment

Complete the following major steps when you use a blue/green deployment for database updates.

Region and version availability 992

Amazon Relational Database Service User Guide

1. Identify a production environment that requires updates.

For example, the production environment in this image has a Multi-AZ DB instance deployment
(mydb1) and a read replica (mydb2).

2. Create the blue/green deployment. For instructions, see Creating a blue/green deployment in
Amazon RDS.

The following image shows an example of a blue/green deployment of the production
environment from step 1. While creating the blue/green deployment, RDS copies the complete
topology and configuration of the primary DB instance to create the green environment. The
copied DB instance names are appended with -green-random-characters. The staging
environment in the image contains a Multi-AZ DB instance deployment (mydb1-green-abc123)
and a read replica (mydb2-green-abc123).

Workflow 993

Amazon Relational Database Service User Guide

When you create the blue/green deployment, you can upgrade your DB engine version and
specify a different DB parameter group for the DB instances in the green environment. RDS also

Workflow 994

Amazon Relational Database Service User Guide

configures replication from the primary DB instance in the blue environment to the primary DB
instance in the green environment.

After you create the blue/green deployment, the DB instance in the green environment is read-
only by default.

3. Make additional changes to the staging environment, if required. For example, you might change
the DB instance class used by one or more DB instances in the green environment.

For information about modifying a DB instance, see Modifying an Amazon RDS DB instance.

4. Test your staging environment.

During testing, we recommend that you keep your databases in the green environment read
only. Enable write operations on the green environment with caution because they can result in
replication conflicts. They can also result in unintended data in the production databases after
switchover. To enable write operations for RDS for MySQL, set the read_only parameter to 0,
then reboot the DB instance. For RDS for PostgreSQL deployments that use logical replication,
set the default_transaction_read_only parameter to off at the session level. For those
that use physical replication, you can't enable write operations on the green environment.

5. When ready, switch over to transition the staging environment to be the new production
environment. For instructions, see Switching a blue/green deployment in Amazon RDS.

The switchover results in downtime. The downtime is usually under one minute, but it can be
longer depending on your workload.

The following image shows the DB instances after the switchover.

Workflow 995

Amazon Relational Database Service User Guide

After the switchover, the DB instances that were in the green environment become the new
production DB instances. The names and endpoints in the current production environment are
assigned to the newly switched over production environment, requiring no changes to your

Workflow 996

Amazon Relational Database Service User Guide

application. As a result, your production traffic now flows to the new production environment.
The DB instances in the previous blue environment are renamed by appending -oldn to the
current name, where n is a number. For example, assume the name of the DB instance in the
blue environment is mydb1. After switchover, the DB instance name will be mydb1-old1.

In the example in the image, the following changes occur during switchover:

• The green environment Multi-AZ DB instance deployment named mydb1-green-abc123
becomes the production Multi-AZ DB instance deployment named mydb1.

• The green environment read replica named mydb2-green-abc123 becomes the production
read replica mydb2.

• The blue environment Multi-AZ DB instance deployment named mydb1 becomes mydb1-
old1.

• The blue environment read replica named mydb2 becomes mydb2-old1.

6. If you no longer need a blue/green deployment, you can delete it. For instructions, see Deleting
a blue/green deployment in Amazon RDS.

After switchover, the previous production environment isn't deleted so that you can use it for
regression testing, if necessary.

Authorizing access to Amazon RDS blue/green deployment operations

Users must have the required permissions to perform operations related to blue/green
deployments. You can create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. You can then attach those policies to the IAM
permission sets or roles that require those permissions. For more information, see Identity and
access management for Amazon RDS.

The user who creates a blue/green deployment must have permissions to perform the following
RDS operations:

• rds:CreateBlueGreenDeployment

• rds:AddTagsToResource

• rds:CreateDBInstanceReadReplica

The user who switches over a blue/green deployment must have permissions to perform the
following RDS operations:

Authorizing access 997

Amazon Relational Database Service User Guide

• rds:SwitchoverBlueGreenDeployment

• rds:ModifyDBInstance

• rds:PromoteReadReplica

The user who deletes a blue/green deployment must have permissions to perform the following
RDS operation:

• rds:DeleteBlueGreenDeployment

• rds:DeleteDBInstance

Amazon RDS provisions and modifies resources in the staging environment on your behalf. These
resources include DB instances that use an internally defined naming convention. Therefore,
attached IAM policies can't contain partial resource name patterns such as my-db-prefix-*. Only
wildcards (*) are supported. In general, we recommend using resource tags and other supported
attributes to control access to these resources, rather than wildcards. For more information, see
Actions, resources, and condition keys for Amazon RDS.

Limitations and considerations for Amazon RDS blue/green
deployments

Blue/green deployments in Amazon RDS require careful consideration of factors such as replication
slots, resource management, instance sizing, and potential impacts on database performance.
The following sections provide guidance to help you optimize your deployment strategy to
ensure minimal downtime, seamless transitions, and effective management of your database
environment.

Topics

• Limitations for blue/green deployments

• Considerations for blue/green deployments

Limitations for blue/green deployments

The following limitations apply to blue/green deployments.

Topics

• General limitations for blue/green deployments

Limitations and considerations 998

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html

Amazon Relational Database Service User Guide

• RDS for MySQL limitations for blue/green deployments

• RDS for PostgreSQL limitations for blue/green deployments with physical replication

• RDS for PostgreSQL limitations for blue/green deployments with logical replication

General limitations for blue/green deployments

The following general limitations apply to blue/green deployments:

• Blue/green deployments don't support managing master user passwords with AWS Secrets
Manager.

• If dedicated log volume (DLV) is enabled on the blue database, it must be enabled on all DB
instances, including read replicas.

• During switchover, the blue and green environments can't have zero-ETL integrations with
Amazon Redshift. You must delete the integration first and switch over, then recreate the
integration.

• The Event Scheduler (event_scheduler parameter) must be disabled on the green
environment when you create a blue/green deployment. This prevents events from being
generated in the green environment and causing inconsistencies.

• You can't change an unencrypted DB instance into an encrypted DB instance. In addition, you
can't change an encrypted DB instance into an unencrypted DB instance.

• You can't change a blue DB instance to a higher engine version than its corresponding green DB
instance.

• The resources in the blue environment and green environment must be in the same AWS
account.

• Blue/green deployments aren't supported for the following features:

• Amazon RDS Proxy

• Cascading read replicas

• Cross-Region read replicas

• AWS CloudFormation

• Multi-AZ DB cluster deployments

Blue/green deployments are supported for Multi-AZ DB instance deployments. For more
information about Multi-AZ deployments, see Configuring and managing a Multi-AZ
deployment for Amazon RDS.

Limitations and considerations 999

Amazon Relational Database Service User Guide

RDS for MySQL limitations for blue/green deployments

The following limitations apply to RDS for MySQL blue/green deployments:

• The blue DB instance can't be an external binlog replica.

• If the source database is associated with a custom option group, you can't specify a major version
upgrade when you create the blue/green deployment.

In this case, you can create a blue/green deployment without specifying a major version
upgrade. Then, you can upgrade the database in the green environment. For more information,
see Upgrading a DB instance engine version.

• Blue/green deployments don't support the AWS JDBC Driver for MySQL. For more information,
see Known Limitations on GitHub.

RDS for PostgreSQL limitations for blue/green deployments with physical replication

The following limitations apply to RDS for PostgreSQL blue/green deployments that use physical
replication. For an explanation of when blue/green deployments use physical replication instead of
logical replication, see the section called “PostgreSQL replication methods”.

• After the green environment is created, you can't perform a manual major version upgrade.

• Blue/green deployments that use physical replication don't support schema changes on the
green environment, as it is strictly read-only.

• The blue DB instance can't be a logical source (publisher) or replica (subscriber).

RDS for PostgreSQL limitations for blue/green deployments with logical replication

The following limitations apply to RDS for PostgreSQL blue/green deployments that use logical
replication. For an explanation of when blue/green deployments use logical replication instead of
physical replication, see the section called “PostgreSQL replication methods”.

• Unlogged tables aren't replicated to the green environment.

• The blue DB instance can't be a logical source (publisher) or replica (subscriber).

• If the blue DB instance is configured as the foreign server of a foreign data wrapper (FDW)
extension, you must use the instance endpoint name instead of IP addresses. This allows the
configuration to remain functional after switchover.

Limitations and considerations 1000

https://github.com/awslabs/aws-mysql-jdbc?tab=readme-ov-file#known-limitations
https://www.postgresql.org/docs/16/sql-createtable.html#SQL-CREATETABLE-UNLOGGED

Amazon Relational Database Service User Guide

• In a blue/green deployment, each database requires a logical replication slot. As the number
of databases grows, resource overhead increases and can potentially lead to replication lag,
especially if the DB instance isn't sufficiently scaled. The impact depends on factors such as
database workload and the number of connections. To mitigate this, consider scaling up your DB
instance class or reducing the number of databases on the source instance.

• The logical replication apply process in the green environment is single-threaded. If the blue
environment generates a high volume of write traffic, the green environment might not be able
to keep up. This can lead to replication lag or failure, especially for workloads that produce
continuous high write throughput. Make sure to test your workloads thoroughly. For scenarios
that require major version upgrades and handling high-volume write workloads, consider
alternative approaches such as using AWS Database Migration Service (AWS DMS).

• The following limitations apply to PostgreSQL extensions:

• The pg_partman extension must be disabled in the blue environment when you create a blue/
green deployment. The extension performs DDL operations such as CREATE TABLE, which
break logical replication from the blue environment to the green environment.

• The pg_cron extension must remain disabled on all green databases after the blue/green
deployment is created. The extension has background workers that run as superuser and
bypass the read-only setting of the green environment, which might cause replication
conflicts.

• The pglogical and pgactive extensions must be disabled on the blue environment when
you create a blue/green deployment. After you switch over the green environment to be
the new production environment, you can enable the extensions again. In addition, the blue
database can’t be a logical subscriber of an external instance.

• If you're using the pgAudit extension, it must remain in the shared libraries
(shared_preload_libraries) on the custom DB parameter groups for both the blue and
the green DB instances. For more information, see the section called “Setting up the pgAudit
extension”.

Logical replication-specific limitations for blue/green deployments

PostgreSQL has certain restrictions related to logical replication, which translate to limitations
when creating blue/green deployments for RDS for PostgreSQL DB instances.

The following table describes logical replication limitations that apply to blue/green deployments
for RDS for PostgreSQL. For more information, see Restrictions in the PostgreSQL logical
replication documentation.

Limitations and considerations 1001

https://www.postgresql.org/docs/current/logical-replication-architecture.html
https://docs.aws.amazon.com/dms/latest/userguide/data-migrations.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html

Amazon Relational Database Service User Guide

Limitation Explanation

Data definitio
n language
(DDL) statement
s, such as
CREATE TABLE
and CREATE
SCHEMA, aren't
replicated
from the blue
environment
to the green
environment.

If Amazon RDS detects a DDL change in the blue environment, your green
databases enter a state of Replication degraded. You must delete the blue/
green deployment and all green databases, then recreate it.

NEXTVAL
operations on
sequence objects
aren't synchroni
zed between the
blue environme
nt and the green
environment.

During switchover, Amazon RDS increments sequence values in the
green environment to match those in the blue environment. If you have
thousands of sequences, this can delay switchover.

Creation or
modification of
large objects
in the blue
environment
aren't replicate
d to the green
environment.

If Amazon RDS detects the creation or modification of large objects in the
blue environment that are stored in the pg_largeobject system table,
your green databases enter a state of Replication degraded. You must
delete the blue/green deployment and all green databases, then recreate it.

Materialized
views aren’t
automatically
refreshed in the

Refreshing materialized views in the blue environment doesn't refresh them
in the green environment. After switchover, you can manually refresh them
using the REFRESH MATERIALIZED VIEW command, or schedule a refresh.

Limitations and considerations 1002

https://www.postgresql.org/docs/current/sql-refreshmaterializedview.html

Amazon Relational Database Service User Guide

Limitation Explanation

green environme
nt.

UPDATE
and DELETE
operations aren't
permitted on
tables that don't
have a primary
key.

Before you create a blue/green deployment, make sure that all tables
have a primary key or use REPLICA IDENTITY FULL. However, only
use REPLICA IDENTITY FULL if no primary or unique key exists, as it
affects replication performance. For more information, see the PostgreSQL
documentation.

Considerations for blue/green deployments

Amazon RDS tracks resources in blue/green deployments with the DbiResourceId of each
resource. This resource ID is an AWS Region-unique, immutable identifier for the resource.

The resource ID is separate from the DB instance ID. Each one is listed in the database configuration
in the RDS console.

The name (instance ID) of a resource changes when you switch over a blue/green deployment, but
each resource keeps the same resource ID. For example, a DB instance identifier might be mydb in
the blue environment. After switchover, the same DB instance might be renamed to mydb-old1.
However, the resource ID of the DB instance doesn't change during switchover. So, when you switch
over the green resources to be the new production resources, their resource IDs don't match the
blue resource IDs that were previously in production.

After you switch over a blue/green deployment, consider updating the resource IDs to those of the
newly transitioned production resources for integrated features and services that you used with the
production resources. Specifically, consider the following updates:

• If you perform filtering using the RDS API and resource IDs, adjust the resource IDs used in
filtering after switchover.

• If you use CloudTrail for auditing resources, adjust the consumers of the CloudTrail to track the
new resource IDs after switchover. For more information, see Monitoring Amazon RDS API calls in
AWS CloudTrail.

Limitations and considerations 1003

https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html

Amazon Relational Database Service User Guide

• If you use the Performance Insights API, adjust the resource IDs in calls to the API after
switchover. For more information, see Monitoring DB load with Performance Insights on Amazon
RDS.

You can monitor a database with the same name after switchover, but it doesn't contain the data
from before the switchover.

• If you use resource IDs in IAM policies, make sure you add the resource IDs of the newly
transitioned resources when necessary. For more information, see Identity and access
management for Amazon RDS.

• If you have IAM roles associated with your DB instance, make sure to reassociate them after
switchover. Attached roles aren't automatically copied to the green environment.

• If you authenticate to your DB instance using IAM database authentication, make sure that the
IAM policy used for database access has both the blue and the green databases listed under the
Resource element of the policy. This is required in order to connect to the green database after
switchover. For more information, see the section called “Creating and using an IAM policy for
IAM database access”.

• If you use AWS Backup to manage automated backups of resources in a blue/green deployment,
adjust the resource IDs used by AWS Backup after switchover. For more information, see Using
AWS Backup to manage automated backups for Amazon RDS.

• If you want to restore a manual or automated DB snapshot for a DB instance that was part of a
blue/green deployment, make sure you restore the correct DB snapshot by examining the time
when the snapshot was taken. For more information, see Restoring to a DB instance.

• If you want to describe a previous blue environment DB instance automated backup or restore it
to a point in time, use the resource ID for the operation.

Because the name of the DB instance changes during switchover, you can't use its previous name
for DescribeDBInstanceAutomatedBackups or RestoreDBInstanceToPointInTime
operations.

For more information, see Restoring a DB instance to a specified time for Amazon RDS.

• When you add a read replica to a DB instance in the green environment of a blue/green
deployment, the new read replica won't replace a read replica in the blue environment when you
switch over. However, the new read replica is retained in the new production environment after
switchover.

Limitations and considerations 1004

Amazon Relational Database Service User Guide

• After you switch over, AWS Database Migration Service (AWS DMS) replication tasks can't resume
because the checkpoint from the blue environment is invalid in the green environment. You must
recreate the DMS task with a new checkpoint to continue replication.

• When you delete a DB instance in the green environment of a blue/green deployment, you can't
create a new DB instance to replace it in the blue/green deployment.

If you create a new DB instance with the same name and Amazon Resource Name (ARN) as the
deleted DB instance, it has a different DbiResourceId, so it isn't part of the green environment.

The following behavior results if you delete a DB instance in the green environment:

• If the DB instance in the blue environment with the same name exists, it won't be switched
over to the DB instance in the green environment. This DB instance won't be renamed by
adding -oldn to the DB instance name.

• Any application that points to the DB instance in the blue environment continues to use the
same DB instance after switchover.

The same behavior applies to DB instances and read replicas.

Best practices for Amazon RDS blue/green deployments

The following are best practices for blue/green deployments.

Topics

• General best practices for blue/green deployments

• RDS for MySQL best practices for blue/green deployments

• RDS for PostgreSQL best practices for blue/green deployments

General best practices for blue/green deployments

Consider the following general best practices when you create a blue/green deployment.

• Thoroughly test the DB instances in the green environment before switching over.

• Keep your databases in the green environment read only. We recommend that you enable
write operations on the green environment with caution because they can result in replication
conflicts. They can also result in unintended data in the production databases after switchover.

Best practices 1005

Amazon Relational Database Service User Guide

• If you use a blue/green deployment to implement schema changes, make only replication-
compatible changes.

For example, you can add new columns at the end of a table without disrupting replication from
the blue deployment to the green deployment. However, schema changes, such as renaming
columns or renaming tables, break replication to the green deployment.

For more information about replication-compatible changes, see Replication with Differing
Table Definitions on Source and Replica in the MySQL documentation and Restrictions in the
PostgreSQL logical replication documentation.

Note

This limitation doesn't apply to RDS for PostgreSQL blue/green deployments that use
physical replication. For more information, see the section called “RDS for PostgreSQL
limitations for blue/green deployments with physical replication”.

• After you create the blue/green deployment, handle lazy loading if necessary. Make sure data
loading is complete before switching over. For more information, see Lazy loading and storage
initialization for blue/green deployments.

• When you switch over a blue/green deployment, follow the switchover best practices. For more
information, see the section called “Switchover best practices”.

RDS for MySQL best practices for blue/green deployments

Consider the following best practices when you create a blue/green deployment from an RDS for
MySQL DB instance.

• Avoid using non-transactional storage engines, such as MyISAM, that aren't optimized for
replication.

• Optimize read replicas and the green environment for binary log replication. If supported by
your DB engine, enable GTID, parallel, and crash-safe replication to ensure data consistency and
durability before you create your blue/green deployment. For more information, see Using GTID-
based replication.

• If the green environment experiences replica lag, consider the following:

• Temporarily set the innodb_flush_log_at_trx_commit parameter to 2 in the green
DB parameter group. After replication catches up, revert to the default value of 1 before

Best practices 1006

https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html

Amazon Relational Database Service User Guide

switchover. If an unexpected shutdown or crash occurs with the temporary parameter value,
rebuild the green environment to avoid undetected data corruption.

• To reduce write latency and improve replication throughput, temporarily change green Multi-
AZ DB instances to Single-AZ DB instances. Re-enable Multi-AZ right before switchover.

RDS for PostgreSQL best practices for blue/green deployments

Consider the following best practices when you create a blue/green deployment from an RDS for
PostgreSQL DB instance.

Topics

• RDS for PostgreSQL general best practices for blue/green deployments

• RDS for PostgreSQL best practices for blue/green deployments with physical replication

• RDS for PostgreSQL best practices for blue/green deployments with logical replication

RDS for PostgreSQL general best practices for blue/green deployments

Consider the following general best practices when you create a blue/green deployment from an
RDS for PostgreSQL DB instance.

• Update all of your PostgreSQL extensions to the latest version before you create a blue/green
deployment. For more information, see the section called “Upgrading PostgreSQL extensions”.

• Long-running transactions can cause significant replica lag. To reduce replica lag, consider doing
the following:

• Reduce long-running transactions that can be delayed until after the green environment
catches up to the blue environment.

• Reduce bulk operations on the blue environment until after the green environment catches up
to the blue environment.

• Initiate a manual vacuum freeze operation on busy tables prior to creating the blue/green
deployment.

• For PostgreSQL version 12 and higher, disable the index_cleanup parameter on large
or busy tables to increase the rate of normal maintenance on blue databases. For more
information, see the section called “Vacuuming a table as quickly as possible”.

Best practices 1007

Amazon Relational Database Service User Guide

Note

Regularly skipping index cleanup during vacuuming can lead to index bloat, which
might degrade scan performance. As a best practice, use this approach only while
using a blue/green deployment. Once the deployment is complete, we recommend
resuming regular index maintenance and cleanup.

• Slow replication can cause senders and receivers to restart often, which delays synchronization.
To ensure that they remain active, disable timeouts by setting the wal_sender_timeout
parameter to 0 in the blue environment, and the wal_receiver_timeout parameter to 0 in
the green environment.

• To prevent write-ahead log (WAL) segments from being removed from the blue environment, set
the wal_keep_segments parameter to 15625 for PostgreSQL version 13 and lower. For version
14 and higher, set the wal_keep_size parameter too 1 TiB, if there's enough free storage
space.

RDS for PostgreSQL best practices for blue/green deployments with physical replication

With physical replication, Amazon RDS creates a read replica of the source DB instance. For related
parameters, monitoring, tuning, and troubleshooting, see the section called “Working with read
replicas for RDS for PostgreSQL”.

For an explanation of when blue/green deployments use physical replication instead of logical
replication, see the section called “PostgreSQL replication methods”.

RDS for PostgreSQL best practices for blue/green deployments with logical replication

Consider the following best practices when you create a blue/green deployment that uses logical
replication. For an explanation of when blue/green deployments use logical replication instead of
physical replication, see the section called “PostgreSQL replication methods”.

• If your database has sufficient freeable memory, increase the value of the
logical_decoding_work_mem DB parameter in the blue environment. Doing so allows for
less decoding on disk and instead uses memory. For more information, see the PostgreSQL
documentation.

• You can monitor transaction overflow being written to disk using the
ReplicationSlotDiskUsage CloudWatch metric. This metric offers insights into the

Best practices 1008

https://www.postgresql.org/docs/13/runtime-config-resource.html#GUC-LOGICAL-DECODING-WORK-MEM
https://www.postgresql.org/docs/13/runtime-config-resource.html#GUC-LOGICAL-DECODING-WORK-MEM

Amazon Relational Database Service User Guide

disk usage of replication slots, helping identify when transaction data exceeds memory
capacity and is stored on disk. You can monitor freeable memory with the FreeableMemory
CloudWatch metric. For more information, see the section called “Amazon CloudWatch
instance-level metrics for Amazon RDS”.

• In RDS for PostgreSQL version 14 and higher, you can monitor the size of logical overflow files
using the pg_stat_replication_slots system view.

• If you’re using the aws_s3 extension, give the green DB instance access to Amazon S3 through
an IAM role after the green environment is created. This allows the import and export commands
to continue functioning after switchover. For instructions, see the section called “Setting up
access to an Amazon S3 bucket”.

• Review the performance of your UPDATE and DELETE statements and evaluate whether creating
an index on the column used in the WHERE clause can optimize these queries. This can enhance
performance when the operations are replayed in the green environment.

• If you're using triggers, make sure they don't interfere with the creating, updating, and
dropping of pg_catalog.pg_publication, pg_catalog.pg_subscription, and
pg_catalog.pg_replication_slots objects whose names start with 'rds'.

• If you specify a higher engine version for the green environment, run the ANALYZE operation on
all databases to refresh the pg_statistic table. Optimizer statistics aren't transferred during
a major version upgrade, so you must regenerate all statistics to avoid performance issues. For
additional best practices during major version upgrades, see the section called “How to perform
a major version upgrade”.

• Avoid configuring triggers as ENABLE REPLICA or ENABLE ALWAYS if the trigger is used on the
source to manipulate data. Otherwise, the replication system propagates changes and executes
the trigger, which leads to duplication.

PostgreSQL replication methods for blue/green deployments

Amazon RDS for PostgreSQL primarily uses physical replication for blue/green deployments.
However, if you request a major version upgrade when you create the blue/green deployment, and
your source DB instance runs one of the PostgreSQL versions listed in the table below, Amazon RDS
uses logical replication instead.

The following table outlines when Amazon RDS uses physical versus logical replication for
PostgreSQL blue/green deployments.

PostgreSQL replication methods 1009

https://www.postgresql.org/docs/14/monitoring-stats.html#MONITORING-PG-STAT-REPLICATION-SLOTS-VIEW

Amazon Relational Database Service User Guide

Source PostgreSQL DB
instance version

Upgrade action in
blue/green deploymen
t

Replication method

• 16.1 and all higher major and
minor versions

• 15.4 and higher 15 versions

• 14.9 and higher 14 versions

• 13.12 and higher 13 versions

• 12.16 and higher 12 versions

• 11.21 and higher 11 versions

Major version upgrade

(green instance on
higher major engine
version than blue)

Logical replication

All supported versions Minor version upgrade,
or no upgrade

(green instance on
same major engine
version as blue)

Physical replication

Note

Major version upgrades are not supported for blue/green deployments with source RDS for
PostgreSQL versions 15.3 and lower, 14.8 and lower, 13.11 and lower, 12.15 and lower, or
11.20 and lower.

For information about the limitations of blue/green deployments that use physical and logical
replication, see the following sections:

• the section called “RDS for PostgreSQL limitations for blue/green deployments with physical
replication”

• the section called “RDS for PostgreSQL limitations for blue/green deployments with logical
replication”

PostgreSQL replication methods 1010

Amazon Relational Database Service User Guide

Creating a blue/green deployment in Amazon RDS

When you create a blue/green deployment, you specify the source DB instance to copy in the
deployment. The DB instance you choose is the production DB instance, and it becomes the
primary DB instance in the blue environment. This DB instance is copied to the green environment,
and RDS configures replication from the DB instance in the blue environment to the DB instance in
the green environment.

RDS copies the blue environment's topology and features to a staging area. If the blue DB instance
has read replicas, they are copied as replicas of the green instance. The allocated storage of all
green replicas matches the green primary instance, while other storage parameters are inherited
from the blue replicas.

If the blue DB instance is a Multi-AZ DB instance deployment, then the green DB instance is created
as a Multi-AZ DB instance deployment.

Topics

• Preparing for a blue/green deployment

• Specifying changes when creating a blue/green deployment

• Lazy loading and storage initialization for blue/green deployments

• Creating a blue/green deployment

• Settings for creating blue/green deployments

Preparing for a blue/green deployment

There are certain steps you must take before you create a blue/green deployment, depending on
the engine that your DB instance is running.

Topics

• Preparing an RDS for MySQL or RDS for MariaDB DB instance for a blue/green deployment

• Preparing an RDS for PostgreSQL DB instance for a blue/green deployment with physical
replication

• Preparing an RDS for PostgreSQL DB instance for a blue/green deployment with logical
replication

Creating a blue/green deployment 1011

Amazon Relational Database Service User Guide

Preparing an RDS for MySQL or RDS for MariaDB DB instance for a blue/green
deployment

Before you create a blue/green deployment for an RDS for MySQL or RDS for MariaDB DB instance,
you must enable automated backups. For instructions, see the section called “Enabling automated
backups”.

Preparing an RDS for PostgreSQL DB instance for a blue/green deployment with
physical replication

Before you create an RDS for PostgreSQL blue/green deployment that uses physical replication,
make sure to do the following. For a list of versions that use physical replication versus logical
replication, see the section called “PostgreSQL replication methods”.

• Enable automated backups on the DB instance. For instructions, see the section called “Enabling
automated backups”.

• Confirm that the DB instance isn't the source or target of external replication. For more
information, see the section called “General limitations”.

Preparing an RDS for PostgreSQL DB instance for a blue/green deployment with
logical replication

Before you create an RDS for PostgreSQL blue/green deployment that uses logical replication,
make sure to do the following. For a list of versions that use logical replication versus physical
replication, see the section called “PostgreSQL replication methods”.

• Associate the instance with a custom DB parameter group with logical replication
(rds.logical_replication) turned on. Logical replication is required for replication from the
blue environment to the green environment. For instructions, see the section called “Modifying
parameters in a DB parameter group”.

Because blue/green deployments require at least one background worker per database, make
sure to tune the following configuration settings according to your workload. For instructions to
tune each setting, see Configuration Settings in the PostgreSQL documentation.

• max_replication_slots

• max_wal_senders

• max_logical_replication_workers

Preparing for a blue/green deployment 1012

https://www.postgresql.org/docs/current/logical-replication-config.html

Amazon Relational Database Service User Guide

• max_worker_processes

After you enable logical replication and set all configuration options, make sure to reboot the DB
instance so that your changes take effect. Blue/green deployments require that the DB instance
be in sync with the DB parameter group, otherwise creation fails. For more information, see the
section called “Rebooting a DB instance”.

• Confirm that the DB instance isn't the source or target of external replication. For more
information, see the section called “General limitations”.

• Make sure that all tables in the DB instance have a primary key. PostgreSQL logical replication
doesn't allow UPDATE or DELETE operations on tables that don't have a primary key.

• RDS for PostgreSQL uses PostgreSQL's native logical replication, storing write-ahead logs (WAL)
segments on the blue instance until they're replayed on the green environment. Before you
create a blue/green deployment, verify that the blue instance has adequate capacity by checking
the following metrics:

• FreeStorageSpace

• TransactionLogsGeneration

• TransactionLogsDiskUsage

• OldestReplicationSlotLag

To estimate the additional storage required on the blue instance, monitor the
TransactionLogsGeneration CloudWatch metric during peak workload periods. For example,
if your workload generates 100 GB of WAL data over 24 hours, ensure you have at least 100 GB
of extra storage to accommodate one day's worth of WAL segments. For more information, see
Monitoring metrics in a DB instance.

Specifying changes when creating a blue/green deployment

You can make the following changes to the DB instance in the green environment when you create
the blue/green deployment.

You can make other modifications to the DB instance in the green environment after it is deployed.
For example, you might specify a higher engine version or a different parameter group.

For information about modifying a DB instance, see Modifying an Amazon RDS DB instance.

Topics

Specifying changes 1013

Amazon Relational Database Service User Guide

• Specify a higher engine version

• Specify a different DB parameter group

• Modify storage and performance settings

• Enable RDS Optimized Writes

• Upgrade the storage configuration

Specify a higher engine version

You can specify a higher engine version if you want to test a DB engine upgrade. Upon switchover,
the database is upgraded to the major or minor DB engine version that you specify.

Specify a different DB parameter group

You can test how parameter changes affect the DB instances in the green environment or specify a
parameter group for a new major DB engine version in the case of an upgrade.

If you specify a different DB parameter group, the specified DB parameter group is associated
with all of the DB instances in the green environment. If you don't specify a different parameter
group, each DB instance in the green environment is associated with the parameter group of its
corresponding blue DB instance.

Modify storage and performance settings

Adjust storage and performance settings in the green environment to optimize resource allocation.
These settings include allocated storage, provisioned IOPS, storage type, and storage throughput
(for gp3 storage).

You can change the storage type of the green DB instance to gp2, gp3, io1, or io2. For gp3 storage,
you can also adjust storage throughput to enhance data transfer performance for high-demand
workloads, or to reduce costs for less intensive applications. For more information, see Amazon
RDS DB instance storage.

You can also choose to increase or decrease allocated storage in the green environment. However,
a storage reduction only occurs if the target allocated storage is at least 20% more than the
current storage usage. If you decrease the allocated storage, Amazon RDS initiates a storage
configuration upgrade. For more information, see the section called “Upgrade the storage
configuration”.

Specifying changes 1014

Amazon Relational Database Service User Guide

If the blue DB instance uses magnetic storage, you must change the green DB instance to a General
Purpose or Provisioned IOPS storage type in order to increase or decrease the allocated storage.

Enable RDS Optimized Writes

You can use a blue/green deployment to upgrade to a DB instance class that supports RDS
Optimized Writes. You can only enable RDS Optimized Writes on a database that was created with
a supported DB instance class. Thus, this option creates a green database that uses a supported DB
instance class, which enables you to turn on RDS Optimized Writes on the green DB instance.

If you're upgrading from a DB instance class that doesn't support RDS Optimized Writes to one
that does, you must also upgrade the storage configuration of the green DB instance. For more
information, see the section called “Upgrade the storage configuration”.

You can only upgrade the DB instance class of the primary green DB instance. By default, read
replicas in the green environment inherit the DB instance settings from the blue environment. After
the green environment is successfully created, you must manually modify the DB instance class of
the read replicas in the green environment.

Some instance class upgrades aren't supported depending on the engine version and instance class
of the blue DB instance. For more information about DB instance classes, see the section called “DB
instance classes”.

Upgrade the storage configuration

If your blue database isn't on the latest storage configuration, RDS can migrate the green DB
instance from the older storage configuration (32-bit file system) to the preferred configuration.
You can use RDS Blue/Green Deployments to overcome the scaling limitations on storage and file
size for older 32-bit file systems. In addition, this setting changes the storage configuration to
be compatible with RDS Optimized Writes if the specified DB instance class supports Optimized
Writes.

Note

Upgrading the storage configuration is an I/O-intensive operation and leads to longer
creation times for blue/green deployments. The storage upgrade process is faster if the
blue DB instance uses Provisioned IOPS SSD (io1 or io2 Block Express) storage, and if
you provisoned the green environment with an instance size of 4xlarge or larger. Storage
upgrades involving General Purpose SSD (gp2) storage can deplete your I/O credit balance,

Specifying changes 1015

Amazon Relational Database Service User Guide

resulting in longer upgrade times. For more information, see the section called “DB
instance storage”.
During the storage upgrade, the green DB instance is temporarily unavailable, while the
blue DB instance remains available. Replication pauses during this time. Monitor storage
on the blue instance, and consider scaling if storage reaches 90%, as the green instance
automatically scales by 10% after the upgrade.

This option is only available if your blue database is not on the latest storage configuration, or if
you're changing the DB instance class within the same request. You can only upgrade the storage
configuration when initially creating a blue/green deployment.

Lazy loading and storage initialization for blue/green deployments

When you create a blue/green deployment, Amazon RDS creates the primary DB instance in the
green environment by restoring from a DB snapshot. After it's created, the green DB instance and
its read replicas continue to load data in the background through a process known as lazy loading.

Lazy loading only loads data blocks as applications request them. If you attempt to access
data that hasn't been loaded yet, Amazon EBS immediately retrieves it from Amazon S3, while
remaining data continues to load in the background. For more information, see Amazon EBS
snapshots.

To accelerate full volume performance, Amazon RDS provides storage initialization, which reads
all blocks in the green environment volume. Amazon EBS proactively downloads blocks from
Amazon S3, providing maximum volume performance from the first use. Storage initialization
occurs entirely in the background, ensuring no impact on your DB instance availability or ongoing
activities, such as patching or upgrades.

Storage initialization is available only for instances in blue/green deployments with gp2, gp3, io1,
and io2 volume types. It supports all instance classes except the t3 and t4 families. If you modify
a green DB instance in a Single-AZ deployment to a Multi-AZ DB instance deployment, storage
initialization includes the secondary node in the Multi-AZ configuration.

During storage initialization, the instance remains fully available and usable for database
operations, though storage might not reach full performance until initialization completes. While
the storage initialization is underway, the overall instance status changes to Storage-initialization,
and the progress indicator reflects the minimum initialization level across all volumes of the DB
instance.

Lazy loading and storage initialization 1016

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html

Amazon Relational Database Service User Guide

Use the console, AWS CLI, or Amazon RDS API to monitor storage initialization.

Console

In the AWS Management Console, you see the progress of storage initialization with the DB
instance status.

AWS CLI

With the AWS CLI, you can monitor storage initialization with the describe-db-instances
command. The PercentProgress field in the response shows what percentage of data has
been retrieved from Amazon S3.

aws rds describe-db-instances --db-instance-identifier my-db-instance

{
 "DBInstances": [
 {
 "DBInstanceIdentifier": "my-db-instance",
 "DBInstanceClass": "db.m5.2xlarge",
 "Engine": "postgres",
 "DBInstanceStatus": "storage-initialization",
 ...
 "PercentProgress": "34"
 }
]
}

Amazon RDS API

With the Amazon RDS API, you retrieve the status of storage initialization by calling the
DescribeDBInstances action.

Lazy loading and storage initialization 1017

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

The progress indicator updates as the background initialization job advances, allowing you to
track storage readiness before full storage initialization completes. Storage initialization enables
optimized performance as your green DB instance becomes fully operational.

Creating a blue/green deployment

You can create a blue/green deployment using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To create a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
copy to a green environment.

3. Choose Actions, Create blue/green deployment.

The Create blue/green deployment page appears.

Creating a blue/green deployment 1018

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. Review the blue database identifiers. Make sure that they match the DB instances that you
expect in the blue environment. If they don't, choose Cancel.

5. For Blue/green deployment name, enter a name for your blue/green deployment.

6. In the remaining sections, specify the settings for the green environment. For information
about each setting, see the section called “Available settings”.

You can make other modifications to the databases in the green environment after it is
deployed.

7. Choose Create.

Creating a blue/green deployment 1019

Amazon Relational Database Service User Guide

AWS CLI

To create a blue/green deployment using the AWS CLI, use the create-blue-green-deployment
command. For information about all available options, see the section called “Available settings”.

Example

For Linux, macOS, or Unix:

aws rds create-blue-green-deployment \
 --blue-green-deployment-name my-blue-green-deployment \
 --source arn:aws:rds:us-east-2:123456789012:db:mydb1 \
 --target-engine-version 8.0.31 \
 --target-db-parameter-group-name mydbparametergroup

For Windows:

aws rds create-blue-green-deployment ^
 --blue-green-deployment-name my-blue-green-deployment ^
 --source arn:aws:rds:us-east-2:123456789012:db:mydb1 ^
 --target-engine-version 8.0.31 ^
 --target-db-parameter-group-name mydbparametergroup

RDS API

To create a blue/green deployment by using the Amazon RDS API, use the
CreateBlueGreenDeployment operation. For information about each option, see the section
called “Available settings”.

Settings for creating blue/green deployments

The following table explains the settings that you can choose when you create a blue/green
deployment. For more information about the AWS CLI options, see create-blue-green-deployment.
For more information about the RDS API parameters, see CreateBlueGreenDeployment.

Console setting Setting description CLI option and RDS API parameter

Allocated
storage

The amount of storage to allocate
for your green DB instance (in
gibibytes). You can choose to

CLI option:

--target-allocated-storage

Available settings 1020

https://docs.aws.amazon.com/cli/latest/reference/rds/create-blue-green-deployment.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateBlueGreenDeployment.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-blue-green-deployment.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateBlueGreenDeployment.html

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

increase or decrease the allocated
storage.

If your blue DB instance uses
magnetic (standard) storage, you
must change the green DB instance
to a General Purpose or Provision
ed IOPS storage type in order to
modify the allocated storage in the
green environment.

For more information, see Amazon
RDS DB instance storage.

API parameter:

TargetAllocatedStorage

Blue/Green
Deployment
identifier

A name for the blue/green
deployment.

CLI option:

--blue-green-deployment-nam
e

API parameter:

BlueGreenDeploymentName

Blue database
identifier

The identifier of the instance that
you want to copy to the green
environment. When using the
CLI or API, specify the instance
Amazon Resource Name (ARN).

CLI option:

--source

API parameter:

Source

Available settings 1021

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

DB parameter
group
for green
databases

A parameter group to associate
with the databases in the green
environment.

CLI option:

--target-db-parameter-group
-name

--target-db-cluster-paramet
er-group-name

API parameter:

TargetDBParameterGroupName

TargetDBClusterParameterGro
upName

Enable
Optimized
Writes for
green database

Enable RDS Optimized Writes on
the green primary DB instance. For
more information, see the section
called “Enable RDS Optimized
Writes”.

If you're changing from a DB
instance class that doesn't support
Optimized Writes to one that does,
you also need to perform a storage
configuration upgrade. For more
information, see the section called
“Upgrade the storage configura
tion”.

For the CLI and API, specifying a
target DB instance class that supports
RDS Optimized Writes automatically
enables it on the green primary DB
instance.

Available settings 1022

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Engine version
for green
databases

Upgrade the databases in the
green environment to the specified
DB engine version.

If not specified, each database in
the green environment is created
with the same engine version as
the corresponding DB instance in
the blue environment.

If you choose an RDS for
PostgreSQL DB instance that uses
logical replication, review and
acknowledge the logical replicati
on limitations. For more informati
on, see the section called “Logical
replication-specific limitations for
blue/green deployments”.

CLI option:

--target-engine-version

RDS API parameter:

TargetEngineVersion

Green DB
instance class

The compute and memory
capacity of each DB instance in the
green environment, for example
db.m5d.xlarge .

This option is only visible when
you enable RDS Optimized Writes
for the green database.

CLI option:

--target-db-instance-class

RDS API parameter:

TargetDBInstanceClass

Provisioned
IOPS

The amount of provisioned input/
output operations per second
(IOPS) to be initially allocated for
the green database.

This value applies only to the
green primary DB instance, not
green replicas.

CLI option:

--target-iops

RDS API parameter:

TargetIops

Available settings 1023

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Storage
configuration
upgrade

Choose whether to upgrade your
storage file system configuration.
If you enable this setting, RDS
migrates the green database from
the old storage file system to the
preferred configuration.

This option is only available if your
blue database is not on the latest
storage configuration, or if you're
enabling RDS Optimized Writes
within the same request. You can
only upgrade the storage configura
tion when initially creating a blue/
green deployment.

For more information, see the
section called “Upgrading the
storage file system”.

CLI option:

--upgrade-target-storage-co
nfig

RDS API parameter:

UpgradeTargetStorageConfig

Storage
throughput

The storage throughput value for
the green database. This setting is
visible only if you choose General
Purpose SSD (gp3) for the storage
type.

This value applies only to the
green primary DB instance, not
green replicas.

For more information, see gp3
storage (recommended).

CLI option:

--target-storage-throughput

RDS API parameter:

TargetStorageThroughput

Available settings 1024

Amazon Relational Database Service User Guide

Console setting Setting description CLI option and RDS API parameter

Storage type The storage type for the green
database. The following storage
types are supported:

• General Purpose SSD (gp2)

• General Purpose SSD (gp3)

• Provisioned IOPS (io1)

• Provisioned IOPS SSD (io2)

This value applies only to the
green primary DB instance, not
green replicas.

For more information, see Amazon
RDS storage types.

CLI option:

--target-storage-type

RDS API parameter:

TargetStorageType

Viewing a blue/green deployment in Amazon RDS

You can view the details about a blue/green deployment using the AWS Management Console, the
AWS CLI, or the RDS API.

You can also view and subscribe to events for information about a blue/green deployment. For
more information, see Blue/green deployment events.

Console

To view the details about a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then find the blue/green deployment in the
list.

Viewing a blue/green deployment 1025

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The Role value for the blue/green deployment is Blue/Green Deployment.

3. Choose the name of blue/green deployment that you want to view to display its details.

Each tab has a section for the blue deployment and a section for the green deployment. For
example, on the Configuration tab, the DB engine version might be different in the blue
environment and in the green environment if you're upgrading the DB engine version in the
green environment.

The following image shows an example of the Connectivity & security tab:

Viewing a blue/green deployment 1026

Amazon Relational Database Service User Guide

The Connectivity & security tab also includes a section called Replication, which shows the
current state of replication and replica lag between the blue and green environments. If the
replication state is Replicating, the blue/green deployment is replicating successfully.

For RDS for PostgreSQL blue/green deployments that use logical replication, the replication
state can change to Replication degraded if you make unsupported DDL or large object
changes in the blue environment. For more information, see the section called “Logical
replication-specific limitations for blue/green deployments”.

The following image shows an example of the Configuration tab:

The following image shows an example of the Status tab:

Viewing a blue/green deployment 1027

Amazon Relational Database Service User Guide

AWS CLI

To view the details about a blue/green deployment by using the AWS CLI, use the describe-blue-
green-deployments command.

Example View the details about a blue/green deployment by filtering on its name

When you use the describe-blue-green-deployments command, you can filter on the --blue-
green-deployment-name.

The following example shows the details for a blue/green deployment named my-blue-green-
deployment.

aws rds describe-blue-green-deployments \
 --filters Name=blue-green-deployment-name,Values=my-blue-green-deployment

Viewing a blue/green deployment 1028

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html

Amazon Relational Database Service User Guide

Example View the details about a blue/green deployment by specifying its identifier

When you use the describe-blue-green-deployments command, you can specify the --blue-
green-deployment-identifier option.

The following example shows the details for a blue/green deployment with the identifier
bgd-1234567890abcdef.

aws rds describe-blue-green-deployments \
 --blue-green-deployment-identifier bgd-1234567890abcdef

RDS API

To view the details about a blue/green deployment by using the Amazon RDS
API, use the DescribeBlueGreenDeployments operation and specify the
BlueGreenDeploymentIdentifier.

Switching a blue/green deployment in Amazon RDS

A switchover transitions the green environment to be the new production environment. When the
green DB instance has read replicas, they are also transitioned. Before you switch over, production
traffic is routed to the DB instance and read replicas in the blue environment. After you switch over,
production traffic is routed to the DB instance and read replicas in the green environment.

Switching over a blue/green deployment is not the same as promoting the green DB instance within
the blue/green deployment. If you manually promote the green DB instance by choosing Promote
from the Actions menu, replication between the blue and green environments breaks and the
blue/green deployment enters a state of Invalid configuration.

Topics

• Switchover timeout

• Switchover guardrails

• Switchover actions

• Switchover best practices

• Verifying CloudWatch metrics before switchover

• Monitoring replica lag prior to switchover

Switching a blue/green deployment 1029

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeBlueGreenDeployments.html

Amazon Relational Database Service User Guide

• Switching over a blue/green deployment

• After switchover

Switchover timeout

You can specify a switchover timeout period between 30 seconds and 3,600 seconds (one hour). If
the switchover takes longer than the specified duration, then any changes are rolled back and no
changes are made to either environment. The default timeout period is 300 seconds (five minutes).

Switchover guardrails

When you start a switchover, Amazon RDS runs some basic checks to test the readiness of the blue
and green environments for switchover. These checks are known as switchover guardrails. These
switchover guardrails prevent a switchover if the environments aren't ready for it. Therefore, they
avoid longer than expected downtime and prevent the loss of data between the blue and green
environments that might result if the switchover started.

Amazon RDS runs the following guardrail checks on the green environment:

• Replication health – Checks if green primary DB instance replication status is healthy. The green
primary DB instance is a replica of the blue primary DB instance.

• Replication lag – Checks if the replica lag of the green primary DB instance is within allowable
limits for switchover. The allowable limits are based on the specified timeout period. Replica lag
indicates how far the green primary DB instance is lagging behind its blue primary DB instance.
For more information, see the section called “Monitoring replica lag prior to switchover”.

• Active writes – Makes sure there are no active writes on the green primary DB instance.

Amazon RDS runs the following guardrail checks on the blue environment:

• External replication – For RDS for PostgreSQL, makes sure that the blue environment isn't
a self-managed logical source (publisher) or replica (subscriber). If it is, we recommend that
you drop the self-managed replication slots and subscriptions across all databases in the blue
environment, proceed with switchover, then recreate them to resume replication. For RDS for
MySQL and RDS for MariaDB, checks whether the blue database isn't an external binlog replica. If
it is, make sure that it is not actively replicating.

• Long-running active writes – Makes sure there are no long-running active writes on the blue
primary DB instance because they can increase replica lag.

Switchover timeout 1030

Amazon Relational Database Service User Guide

• Long-running DDL statements – Makes sure there are no long-running DDL statements on the
blue primary DB instance because they can increase replica lag.

• Unsupported PostgreSQL changes – For RDS for PostgreSQL blue/green deployments that use
logical replication, makes sure that no DDL changes and no additions or modifications of large
objects have been performed on the blue environment. For more information, see the section
called “Logical replication-specific limitations for blue/green deployments”.

If Amazon RDS detects unsupported PostgreSQL changes, it changes the replication state to
Replication degraded and notifies you that switchover is not available for the blue/green
deployment. To proceed with switchover, we recommend that you delete and recreate the
blue/green deployment and all green databases. To do so, choose Actions, Delete with green
databases.

Switchover actions

When you switch over a blue/green deployment, RDS performs the following actions:

1. Runs guardrail checks to verify if the blue and green environments are ready for switchover.

2. Stops new write operations on the primary DB instance in both environments.

3. Drops connections to the DB instances in both environments and doesn't allow new connections.

4. Waits for replication to catch up in the green environment so that the green environment is in
sync with the blue environment.

5. Renames the DB instances in the both environments.

RDS renames the DB instances in the green environment to match the corresponding DB
instances in the blue environment. For example, assume the name of a DB instance in the blue
environment is mydb. Also assume the name of the corresponding DB instance in the green
environment is mydb-green-abc123. During switchover, the name of the DB instance in the
green environment is changed to mydb.

RDS renames the DB instances in the blue environment by appending -oldn to the current
name, where n is a number. For example, assume the name of a DB instance in the blue
environment is mydb. After switchover, the DB instance name might be mydb-old1.

RDS also renames the endpoints in the green environment to match the corresponding
endpoints in the blue environment so that application changes aren't required.

6. Allows connections to databases in both environments.

Switchover actions 1031

Amazon Relational Database Service User Guide

7. Allows write operations on the primary DB instance in the new production environment.

After switchover, the previous production primary DB instance only allows read
operations until you set the read_only parameter (for RDS for MySQL) or the
default_transaction_read_only parameter (for RDS for PostgreSQL) to 0 and reboot the
DB instance.

You can monitor the status of a switchover using Amazon EventBridge. For more information, see
the section called “Blue/green deployment events”.

If you have tags configured in the blue environment, these tags are copied to the new production
environment during switchover. For more information about tags, see Tagging Amazon RDS
resources.

If the switchover starts and then stops before finishing for any reason, then any changes are rolled
back, and no changes are made to either environment.

Switchover best practices

Before you switch over, we strongly recommend that you adhere to best practices by completing
the following tasks:

• Thoroughly test the resources in the green environment. Make sure they function properly and
efficiently.

• Monitor relevant Amazon CloudWatch metrics. For more information, see the section called
“Verifying CloudWatch metrics before switchover”.

• Identify the best time for the switchover.

During the switchover, writes are cut off from databases in both environments. Identify a time
when traffic is lowest on your production environment. Long-running transactions, such as
active DDLs, can increase your switchover time, resulting in longer downtime for your production
workloads.

If there's a large number of connections on your DB instances, consider manually reducing
them to the minimum amount necessary for your application before you switch over the blue/
green deployment. One way to achieve this is to create a script that monitors the status of the
blue/green deployment and starts cleaning up connections when it detects that the status has
changed to SWITCHOVER_IN_PROGRESS.

Switchover best practices 1032

Amazon Relational Database Service User Guide

• Make sure the DB instances in both environments are in Available state.

• Make sure the primary DB instance in the green environment is healthy and replicating.

• Make sure that your network and client configurations don’t increase the DNS cache Time-To-
Live (TTL) beyond five seconds, which is the default for RDS DNS zones.
Otherwise, applications will continue to send write traffic to the blue environment after
switchover.

• Make sure data loading is complete before switching over. For more information, see the section
called “Lazy loading and storage initialization”.

• For RDS for PostgreSQL blue/green deployments that use logical replication, do the following:

• Review the logical replication limitations and take any required actions prior to switchover. For
more information, see the section called “Logical replication-specific limitations for blue/green
deployments”.

• Run the ANALYZE operation to refresh the pg_statistics table. This reduces the risk of
performance issues after switchover.

Note

During a switchover, you can't modify any DB instances included in the switchover.

Verifying CloudWatch metrics before switchover

Before you switch over a blue/green deployment, we recommend that you check the value of the
following metric within Amazon CloudWatch.

• DatabaseConnections – Use this metric to estimate the level of activity on the blue/green
deployment, and make sure that the value is at an acceptable level for your deployment before
you switch over. If Performance Insights is turned on, DBLoad is a more accurate metric.

For more information, see the section called “CloudWatch metrics for RDS”.

Monitoring replica lag prior to switchover

Before you switch over a blue/green deployment, make sure that replica lag is close to zero in
order to reduce downtime.

Verifying CloudWatch metrics before switchover 1033

Amazon Relational Database Service User Guide

RDS for MySQL and RDS for MariaDB

For MySQL and MariaDB blue/green deployments, check the ReplicaLag CloudWatch metric in
the green environment to identify the current replica lag. For more information, see the section
called “Diagnosing and resolving lag between read replicas”.

RDS for PostgreSQL

For PostgreSQL blue/green deployments that use physical replication, see the section called
“Monitoring and tuning the replication process” for instructions to identify the current replica lag.

For PostgreSQL blue/green deployments that use logical replication, check the
OldestReplicationSlotLag CloudWatch metric in the blue environment to identify the current
replica lag. For more information, see the section called “Amazon CloudWatch instance-level
metrics for Amazon RDS”.

In addition, you can run the following SQL query in the blue environment:

SELECT slot_name,
 confirmed_flush_lsn as flushed,
 pg_current_wal_lsn(),
 (pg_current_wal_lsn() - confirmed_flush_lsn) AS lsn_distance
FROM pg_catalog.pg_replication_slots
WHERE slot_type = 'logical';

slot_name | flushed | pg_current_wal_lsn | lsn_distance
-----------------+---------------+--------------------+------------
logical_replica1 | 47D97/CF32980 | 47D97/CF3BAC8 | 37192

The confirmed_flush_lsn represents the last log sequence number (LSN) that was sent to the
replica. The pg_current_wal_lsn represents where the database is now. An lsn_distance of 0
means that the replica is caught up.

For an explanation of when blue/green deployments use physical replication versus logical
replication, see the section called “PostgreSQL replication methods”.

Switching over a blue/green deployment

You can switch over a blue/green deployment using the AWS Management Console, the AWS CLI,
or the RDS API.

Switching over a blue/green deployment 1034

Amazon Relational Database Service User Guide

Console

To switch over a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the blue/green deployment that
you want to switch over.

3. For Actions, choose Switch over.

The Switch over page appears.

Switching over a blue/green deployment 1035

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. On the Switch over page, review the switchover summary. Make sure the resources in both
environments match what you expect. If they don't, choose Cancel.

5. For Timeout settings, enter the time limit for switchover.

6. If your instance is running RDS for PostgreSQL, review and acknowledge the pre-switchover
recommendations. For more information, see the section called “Logical replication-specific
limitations for blue/green deployments”.

7. Choose Switch over.

Switching over a blue/green deployment 1036

Amazon Relational Database Service User Guide

AWS CLI

To switch over a blue/green deployment by using the AWS CLI, use the switchover-blue-green-
deployment command with the following options:

• --blue-green-deployment-identifier – Specify the resource ID of the blue/green
deployment.

• --switchover-timeout – Specify the time limit for the switchover, in seconds. The default is
300.

Example Switch over a blue/green deployment

For Linux, macOS, or Unix:

aws rds switchover-blue-green-deployment \
 --blue-green-deployment-identifier bgd-1234567890abcdef \
 --switchover-timeout 600

For Windows:

aws rds switchover-blue-green-deployment ^
 --blue-green-deployment-identifier bgd-1234567890abcdef ^
 --switchover-timeout 600

RDS API

To switch over a blue/green deployment by using the Amazon RDS API, use the
SwitchoverBlueGreenDeployment operation with the following parameters:

• BlueGreenDeploymentIdentifier – Specify the resource ID of the blue/green deployment.

• SwitchoverTimeout – Specify the time limit for the switchover, in seconds. The default is 300.

After switchover

After a switchover, the DB instances in the previous blue environment are retained. Standard costs
apply to these resources. Replication between the blue and green environments stops.

RDS renames the DB instances in the blue environment by appending -oldn to the
current resource name, where n is a number. The DB instances in the old blue environment

After switchover 1037

https://docs.aws.amazon.com/cli/latest/reference/rds/switchover-blue-green-deployment.html
https://docs.aws.amazon.com/cli/latest/reference/rds/switchover-blue-green-deployment.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_SwitchoverBlueGreenDeployment.html

Amazon Relational Database Service User Guide

are read-only until you set the read_only parameter (for RDS for MySQL) or the
default_transaction_read_only parameter (for RDS for PostgreSQL) to 0. RDS names the
DB instances in the green environment -newn.

If you delete the blue/green deployment resource, RDS retains the -oldn and -newn resources.

Updating the parent node for consumers

RDS offers fully managed read replicas. However, it also provides the option to set up self-
managed replicas, also known as external replicas. External replicas allow you to use third-party
resources as replication targets.

After you switch over an RDS for MariaDB or RDS for MySQL blue/green deployment, if the blue
DB instance had any external replicas or binary log consumers prior to switchover, you must update
their parent node after switchover in order to maintain replication continuity.

To update the parent node

1. After switchover, the DB instance that was previously in the green environment emits an event
that contains the master log file name and master log position. To locate the event, navigate
to the RDS console and choose Events from the left navigation pane.

2. Filter by events where the source is the name of the old green DB instance, before switchover.

3. Locate the event that contains the binary log coordinates. The event message is similar to:
Binary log coordinates in green environment after switchover: file
mysql-bin-changelog.000003 and position 40134574.

After switchover 1038

Amazon Relational Database Service User Guide

4. Make sure that the consumer or replica has applied all binary logs from the old blue
environment. Then, use the provided binary log coordinates to resume replication on the
consumers. For example, if you're running a MySQL replica on EC2, you can use the following
commands:

MySQL 8.0.22 and lower major and minor versions

CHANGE MASTER TO MASTER_HOST='{new-writer-endpoint}', MASTER_LOG_FILE='mysql-bin-
changelog.000003', MASTER_LOG_POS=40134574;

MySQL 8.0.23 and higher major and minor versions

CHANGE REPLICATION SOURCE TO SOURCE_HOST='{new-writer-endpoint}',
 SOURCE_LOG_FILE='mysql-bin-changelog.000003', SOURCE_LOG_POS=40134574;

If the consumer is another RDS for MySQL or RDS for MariaDB DB instance, run the following
stored procedures in order:

1. the section called “mysql.rds_stop_replication”

2. mysql.rds_reset_external_master (for version 8.0 and lower) or mysql_rds_reset_external_source
(for version 8.4 and higher)

3. mysql.rds_set_external_master (for version 8.0 and lower) or mysql_rds_set_external_source (for
version 8.4 and higher)

4. the section called “mysql.rds_start_replication”

Deleting a blue/green deployment in Amazon RDS

You can delete a blue/green deployment before or after you switch it over.

When you delete a blue/green deployment before switching it over, Amazon RDS optionally
deletes the DB instances in the green environment:

• If you choose to delete the DB instances in the green environment (--delete-target), they
must have deletion protection turned off.

• If you don't delete the DB instances in the green environment (--no-delete-target), the
instances are retained, but they're no longer part of a blue/green deployment. For RDS for

Deleting a blue/green deployment 1039

Amazon Relational Database Service User Guide

MySQL, replication continues between the environments. For RDS for PostgreSQL, the green
environment is promoted to a standalone environment, so replication stops.

The option to delete the green databases isn't available in the console after switchover. When
you delete blue/green deployments using the AWS CLI, you can't specify the --delete-target
option if the deployment status is SWITCHOVER_COMPLETED.

Important

Deleting a blue/green deployment doesn't affect the blue environment.

You can delete a blue/green deployment using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To delete a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the blue/green deployment that
you want to delete.

3. For Actions, choose Delete.

The Delete blue/green deployment? window appears.

Deleting a blue/green deployment 1040

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_BlueGreenDeployment.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To delete the green databases, select Delete the green databases in this blue/green
deployment.

4. Enter delete me in the box.

5. Choose Delete.

AWS CLI

To delete a blue/green deployment by using the AWS CLI, use the delete-blue-green-deployment
command with the following options:

• --blue-green-deployment-identifier – The resource ID of the blue/green deployment to
be deleted.

• --delete-target – Specifies that the DB instances in the green environment are deleted. You
can't specify this option if the blue/green deployment has a status of SWITCHOVER_COMPLETED.

• --no-delete-target – Specifies that the DB instances in the green environment are retained.

Example Delete a blue/green deployment and the DB instances in the green environment

For Linux, macOS, or Unix:

aws rds delete-blue-green-deployment \

Deleting a blue/green deployment 1041

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-blue-green-deployment.html

Amazon Relational Database Service User Guide

 --blue-green-deployment-identifier bgd-1234567890abcdef \
 --delete-target

For Windows:

aws rds delete-blue-green-deployment ^
 --blue-green-deployment-identifier bgd-1234567890abcdef ^
 --delete-target

Example Delete a blue/green deployment but retain the DB instances in the green environment

For Linux, macOS, or Unix:

aws rds delete-blue-green-deployment \
 --blue-green-deployment-identifier bgd-1234567890abcdef \
 --no-delete-target

For Windows:

aws rds delete-blue-green-deployment ^
 --blue-green-deployment-identifier bgd-1234567890abcdef ^
 --no-delete-target

RDS API

To delete a blue/green deployment by using the Amazon RDS API, use the
DeleteBlueGreenDeployment operation with the following parameters:

• BlueGreenDeploymentIdentifier – The resource ID of the blue/green deployment to be
deleted.

• DeleteTarget – Specify TRUE to delete the DB instances in the green environment or
FALSE to retain them. Cannot be TRUE if the blue/green deployment has a status of
SWITCHOVER_COMPLETED.

Deleting a blue/green deployment 1042

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteBlueGreenDeployment.html

Amazon Relational Database Service User Guide

Backing up, restoring, and exporting data

This section shows how to back up, restore, and export data from an Amazon RDS DB instance or
Multi-AZ DB cluster.

For information about backing up your Amazon RDS DB instance or Multi-AZ DB cluster, see the
following topics.

• Introduction to backups

• Managing automated backups

• Managing manual backups

For information about restoring your Amazon RDS DB instance or Multi-AZ DB cluster, see
Restoring to a DB instance.

For information about copying, sharing, or exporting DB snapshots, see the following topics.

• Copying a DB snapshot for Amazon RDS

• Sharing a DB snapshot for Amazon RDS

• Exporting DB snapshot data to Amazon S3 for Amazon RDS

For information about viewing automated backups managed by AWS Backup, see Using AWS
Backup to manage automated backups for Amazon RDS.

1043

Amazon Relational Database Service User Guide

Introduction to backups

Amazon RDS creates and saves automated backups of your DB instance or Multi-AZ DB cluster
during the backup window of your DB instance. RDS creates a storage volume snapshot of your
DB instance, backing up the entire DB instance and not just individual databases. RDS saves the
automated backups of your DB instance according to the backup retention period that you specify.
If necessary, you can recover your DB instance to any point in time during the backup retention
period.

Automated backups follow these rules:

• Your DB instance must be in the available state for automated backups to occur. Automated
backups don't occur while your DB instance is in a state other than available, for example,
storage_full.

• Automated backups don't occur while a DB snapshot copy is running in the same AWS Region for
the same database.

You can also back up your DB instance manually by creating a DB snapshot. For more information
about manually creating a DB snapshot, see Creating a DB snapshot for a Single-AZ DB instance for
Amazon RDS.

The first snapshot of a DB instance contains the data for the full database. Subsequent snapshots
of the same database are incremental, which means that only the data that has changed after your
most recent snapshot is saved.

You can copy both automatic and manual DB snapshots, and share manual DB snapshots. For more
information about copying a DB snapshot, see Copying a DB snapshot for Amazon RDS. For more
information about sharing a DB snapshot, see Sharing a DB snapshot for Amazon RDS.

Backup storage

Your Amazon RDS backup storage for each AWS Region is composed of the automated backups
and manual DB snapshots for that Region. Total backup storage space equals the sum of the
storage for all backups in that Region. Moving a DB snapshot to another Region increases the
backup storage in the destination Region. Backups are stored in Amazon S3.

For more information about backup storage costs, see Amazon RDS pricing.

Introduction to backups 1044

https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

If you choose to retain automated backups when you delete a DB instance, the automated backups
are saved for the full retention period. If you don't choose Retain automated backups when you
delete a DB instance, all automated backups are deleted with the DB instance. After they are
deleted, the automated backups can't be recovered. If you choose to have Amazon RDS create a
final DB snapshot before it deletes your DB instance, you can use that to recover your DB instance.
Optionally, you can use a previously created manual snapshot. Manual snapshots are not deleted.
You can have up to 100 manual snapshots per Region.

Backup storage 1045

Amazon Relational Database Service User Guide

Managing automated backups

This section shows how to manage automated backups for DB instances and Multi-AZ DB clusters.

Topics

• Backup window

• Backup retention period

• Enabling automated backups

• Retaining automated backups

• Deleting retained automated backups

• Automated backups with unsupported MySQL storage engines

• Automated backups with unsupported MariaDB storage engines

• Replicating automated backups to another AWS Region

Backup window

Automated backups occur daily during the preferred backup window. If the backup requires more
time than allotted to the backup window, the backup continues after the window ends until
it finishes. The backup window can't overlap with the weekly maintenance window for the DB
instance or Multi-AZ DB cluster.

During the automatic backup window, storage I/O might be suspended briefly while the backup
process initializes (typically under a few seconds). You might experience elevated latencies for
a few minutes during backups for Multi-AZ deployments. For MariaDB, MySQL, Oracle, and
PostgreSQL, I/O activity isn't suspended on your primary during backup for Multi-AZ deployments
because the backup is taken from the standby. For SQL Server, I/O activity is suspended briefly
during backup for both Single-AZ and Multi-AZ deployments because the backup is taken from the
primary. For Db2, I/O activity is also suspended briefly during backup even though the backup is
taken from the standby.

Automated backups might occasionally be skipped if the DB instance or cluster has a heavy
workload at the time a backup is supposed to start. If a backup is skipped, you can still do a point-
in-time-recovery (PITR), and a backup is still attempted during the next backup window. For more
information on PITR, see Restoring a DB instance to a specified time for Amazon RDS.

Managing automated backups 1046

Amazon Relational Database Service User Guide

If you don't specify a preferred backup window when you create the DB instance or Multi-AZ DB
cluster, Amazon RDS assigns a default 30-minute backup window. This window is selected at
random from an 8-hour block of time for each AWS Region. The following table lists the time
blocks for each AWS Region from which the default backup windows are assigned.

Region Name Region Time Block

US East (N. Virginia) us-east-1 03:00–11:00 UTC

US East (Ohio) us-east-2 03:00–11:00 UTC

US West (N. Californi
a)

us-west-1 06:00–14:00 UTC

US West (Oregon) us-west-2 06:00–14:00 UTC

Africa (Cape Town) af-south-1 03:00–11:00 UTC

Asia Pacific (Hong
Kong)

ap-east-1 06:00–14:00 UTC

Asia Pacific
(Hyderabad)

ap-south-2 06:30–14:30 UTC

Asia Pacific (Jakarta) ap-southeast-3 08:00–16:00 UTC

Asia Pacific (Malaysia
)

ap-southeast-5 09:00–17:00 UTC

Asia Pacific
(Melbourne)

ap-southeast-4 11:00–19:00 UTC

Asia Pacific (Mumbai) ap-south-1 16:30–00:30 UTC

Asia Pacific (Osaka) ap-northeast-3 00:00–08:00 UTC

Asia Pacific (Seoul) ap-northeast-2 13:00–21:00 UTC

Asia Pacific (Singapor
e)

ap-southeast-1 14:00–22:00 UTC

Backup window 1047

Amazon Relational Database Service User Guide

Region Name Region Time Block

Asia Pacific (Sydney) ap-southeast-2 12:00–20:00 UTC

Asia Pacific (Tokyo) ap-northeast-1 13:00–21:00 UTC

Canada (Central) ca-central-1 03:00–11:00 UTC

Canada West
(Calgary)

ca-west-1 18:00–02:00 UTC

China (Beijing) cn-north-1 06:00–14:00 UTC

China (Ningxia) cn-northwest-1 06:00–14:00 UTC

Europe (Frankfurt) eu-central-1 20:00–04:00 UTC

Europe (Ireland) eu-west-1 22:00–06:00 UTC

Europe (London) eu-west-2 22:00–06:00 UTC

Europe (Milan) eu-south-1 02:00–10:00 UTC

Europe (Paris) eu-west-3 07:29–14:29 UTC

Europe (Spain) eu-south-2 02:00–10:00 UTC

Europe (Stockholm) eu-north-1 23:00–07:00 UTC

Europe (Zurich) eu-central-2 02:00–10:00 UTC

Israel (Tel Aviv) il-central-1 03:00–11:00 UTC

Middle East (Bahrain) me-south-1 06:00–14:00 UTC

Middle East (UAE) me-central-1 05:00–13:00 UTC

South America (São
Paulo)

sa-east-1 23:00–07:00 UTC

AWS GovCloud (US-
East)

us-gov-east-1 17:00–01:00 UTC

Backup window 1048

Amazon Relational Database Service User Guide

Region Name Region Time Block

AWS GovCloud (US-
West)

us-gov-west-1 06:00–14:00 UTC

Backup retention period

You can set the backup retention period when you create a DB instance or Multi-AZ DB cluster. If
you create a DB instance using the Amazon RDS API or the AWS CLI and if you don't set the backup
retention period, the default backup retention period is one day. If you create a DB instance using
the console, the default backup retention period is seven days.

After you create a DB instance or cluster, you can modify the backup retention period. You can
set the backup retention period of a DB instance to between 0 and 35 days. Setting the backup
retention period to 0 disables automated backups. For a Multi-AZ DB cluster, you can set the
backup retention period to between 1 and 35 days. Manual snapshot limits (100 per Region) don't
apply to automated backups.

Important

An outage occurs if you change the backup retention period of a DB instance from 0 to a
nonzero value or from a nonzero value to 0.

RDS doesn't include time spent in the stopped state when the backup retention period is
calculated. Automated backups aren't created while a DB instance or cluster is stopped. Backups
can be retained longer than the backup retention period if a DB instance has been stopped.

Enabling automated backups

If your DB instance doesn't have automated backups enabled, you can enable them at any time.
You enable automated backups by setting the backup retention period to a positive nonzero
value. When automated backups are turned on, your DB instance is taken offline and a backup is
immediately created.

Backup retention period 1049

Amazon Relational Database Service User Guide

Note

If you manage your backups in AWS Backup, you can't enable automated backups. For more
information, see Using AWS Backup to manage automated backups for Amazon RDS.

Console

To enable automated backups immediately

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance or Multi-AZ DB
cluster that you want to modify.

3. Choose Modify.

4. For Backup retention period, choose a positive nonzero value, for example 3 days.

5. Choose Continue.

6. Choose Apply immediately.

7. Choose Modify DB instance or Modify cluster to save your changes and enable automated
backups.

AWS CLI

To enable automated backups, use the AWS CLI modify-db-instance or modify-db-cluster
command.

Include the following parameters:

• --db-instance-identifier (or --db-cluster-identifier for a Multi-AZ DB cluster)

• --backup-retention-period

• --apply-immediately or --no-apply-immediately

In the following example, we enable automated backups by setting the backup retention period to
three days. The changes are applied immediately.

Enabling automated backups 1050

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --backup-retention-period 3 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --backup-retention-period 3 ^
 --apply-immediately

RDS API

To enable automated backups, use the RDS API ModifyDBInstance or ModifyDBCluster
operation with the following required parameters:

• DBInstanceIdentifier or DBClusterIdentifier

• BackupRetentionPeriod

Viewing automated backups

To view your automated backups, choose Automated backups in the navigation pane. To view
individual snapshots associated with an automated backup, choose Snapshots in the navigation
pane. Alternatively, you can describe individual snapshots associated with an automated backup.
From there, you can restore a DB instance directly from one of those snapshots.

Automated snapshot names follow the pattern rds:<database-name>-yyyy-mm-dd-hh-mm,
with yyyy-mm-dd-hh-mm representing the date and time the snapshot was created.

To describe the automated backups for your existing DB instances using the AWS CLI, use one of
the following commands:

aws rds describe-db-instance-automated-backups --db-instance-
identifier DBInstanceIdentifier

Enabling automated backups 1051

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

or

aws rds describe-db-instance-automated-backups --dbi-resource-id DbiResourceId

To describe the retained automated backups for your existing DB instances using the RDS API, call
the DescribeDBInstanceAutomatedBackups action with one of the following parameters:

• DBInstanceIdentifier

• DbiResourceId

Retaining automated backups

Note

You can only retain automated backups of DB instances, not Multi-AZ DB clusters.

When you delete a DB instance, you can choose to retain automated backups. Automated backups
can be retained for a number of days equal to the backup retention period configured for the DB
instance at the time when you delete it.

Retained automated backups contain system snapshots and transaction logs from a DB instance.
They also include your DB instance properties like allocated storage and DB instance class, which
are required to restore it to an active instance.

Retained automated backups and manual snapshots incur billing charges until they're deleted. For
more information, see Retention costs.

You can retain automated backups for RDS instances running the Db2, MariaDB, MySQL,
PostgreSQL, Oracle, and Microsoft SQL Server engines.

You can restore or remove retained automated backups using the AWS Management Console, RDS
API, and AWS CLI.

Topics

• Retention period

• Viewing retained backups

• Restoration

Retaining automated backups 1052

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstanceAutomatedBackups.html

Amazon Relational Database Service User Guide

• Retention costs

• Limitations

Retention period

The system snapshots and transaction logs in a retained automated backup expire the same way
that they expire for the source DB instance. Because there are no new snapshots or logs created for
this instance, the retained automated backups eventually expire completely. Effectively, they live
as long their last system snapshot would have done, based on the settings for retention period the
source instance had when you deleted it. Retained automated backups are removed by the system
after their last system snapshot expires.

You can remove a retained automated backup in the same way that you can delete a DB instance.
You can remove retained automated backups using the console or the RDS API operation
DeleteDBInstanceAutomatedBackup.

Final snapshots are independent of retained automated backups. We strongly suggest that you
take a final snapshot even if you retain automated backups because the retained automated
backups eventually expire. The final snapshot doesn't expire.

Viewing retained backups

To view your retained automated backups, choose Automated backups in the navigation pane,
then choose Retained. To view individual snapshots associated with a retained automated backup,
choose Snapshots in the navigation pane. Alternatively, you can describe individual snapshots
associated with a retained automated backup. From there, you can restore a DB instance directly
from one of those snapshots.

To describe your retained automated backups using the AWS CLI, use the following command:

aws rds describe-db-instance-automated-backups --dbi-resource-id DbiResourceId

To describe your retained automated backups using the RDS API, call the
DescribeDBInstanceAutomatedBackups action with the DbiResourceId parameter.

Restoration

For information on restoring DB instances from automated backups, see Restoring a DB instance to
a specified time for Amazon RDS.

Retaining automated backups 1053

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstanceAutomatedBackups.html

Amazon Relational Database Service User Guide

Retention costs

The cost of a retained automated backup is the cost of total storage of the system snapshots that
are associated with it. There is no additional charge for transaction logs or instance metadata. All
other pricing rules for backups apply to restorable instances.

For example, suppose that your total allocated storage of running instances is 100 GB. Suppose
also that you have 50 GB of manual snapshots plus 75 GB of system snapshots associated with a
retained automated backup. In this case, you are charged only for the additional 25 GB of backup
storage, like this: (50 GB + 75 GB) – 100 GB = 25 GB.

Limitations

The following limitations apply to retained automated backups:

• The maximum number of retained automated backups in one AWS Region is 40. It's not included
in the DB instances quota. You can have 40 running DB instances and an additional 40 retained
automated backups at the same time.

• Retained automated backups don't contain information about parameters or option groups.

• You can restore a deleted instance to a point in time that is within the retention period at the
time of deletion.

• You can't modify a retained automated backup. That's because it consists of system backups,
transaction logs, and the DB instance properties that existed at the time that you deleted the
source instance.

Deleting retained automated backups

You can delete retained automated backups when they are no longer needed.

Console

To delete a retained automated backup

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. On the Retained tab, choose the retained automated backup that you want to delete.

Deleting retained automated backups 1054

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. For Actions, choose Delete.

5. On the confirmation page, enter delete me and choose Delete.

AWS CLI

You can delete a retained automated backup by using the AWS CLI command delete-db-instance-
automated-backup with the following option:

• --dbi-resource-id – The resource identifier for the source DB instance.

You can find the resource identifier for the source DB instance of a retained automated backup
by running the AWS CLI command describe-db-instance-automated-backups.

Example

The following example deletes the retained automated backup with source DB instance resource
identifier db-123ABCEXAMPLE.

For Linux, macOS, or Unix:

aws rds delete-db-instance-automated-backup \
 --dbi-resource-id db-123ABCEXAMPLE

For Windows:

aws rds delete-db-instance-automated-backup ^
 --dbi-resource-id db-123ABCEXAMPLE

RDS API

You can delete a retained automated backup by using the Amazon RDS API operation
DeleteDBInstanceAutomatedBackup with the following parameter:

• DbiResourceId – The resource identifier for the source DB instance.

You can find the resource identifier for the source DB instance of a retained automated backup
using the Amazon RDS API operation DescribeDBInstanceAutomatedBackups.

Deleting retained automated backups 1055

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instance-automated-backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstanceAutomatedBackup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstanceAutomatedBackups.html

Amazon Relational Database Service User Guide

Disabling automated backups

You might want to temporarily disable automated backups in certain situations, for example while
loading large amounts of data.

Important

We highly discourage disabling automated backups because it disables point-in-time
recovery. Disabling automatic backups for a DB instance or Multi-AZ DB cluster deletes all
existing automated backups for the database. If you disable and then re-enable automated
backups, you can restore starting only from the time you re-enabled automated backups.

Console

To disable automated backups immediately

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance or Multi-AZ DB
cluster that you want to modify.

3. Choose Modify.

4. For Backup retention period, choose 0 days.

5. Choose Continue.

6. Choose Apply immediately.

7. Choose Modify DB instance or Modify cluster to save your changes and disable automated
backups.

AWS CLI

To disable automated backups immediately, use the modify-db-instance or modify-db-cluster
command and set the backup retention period to 0 with --apply-immediately.

Example

The following example immediately disables automatic backups on a Multi-AZ DB cluster.

Deleting retained automated backups 1056

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --backup-retention-period 0 \
 --apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --backup-retention-period 0 ^
 --apply-immediately

To know when the modification is in effect, call describe-db-instances for the DB instance (or
describe-db-clusters for a Multi-AZ DB cluster) until the value for backup retention period is
0 and mydbcluster status is available.

aws rds describe-db-clusters --db-cluster-identifier mydcluster

RDS API

To disable automated backups immediately, call the ModifyDBInstance or ModifyDBCluster
operation with the following parameters:

• DBInstanceIdentifier = mydbinstance (or DBClusterIdentifier = mydbcluster)

• BackupRetentionPeriod = 0

Example

https://rds.amazonaws.com/
 ?Action=ModifyDBInstance
 &DBInstanceIdentifier=mydbinstance
 &BackupRetentionPeriod=0
 &SignatureVersion=2
 &SignatureMethod=HmacSHA256
 &Timestamp=2009-10-14T17%3A48%3A21.746Z
 &AWSAccessKeyId=<&AWS; Access Key ID>
 &Signature=<Signature>

Deleting retained automated backups 1057

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

Automated backups with unsupported MySQL storage engines

For the MySQL DB engine, automated backups are only supported for the InnoDB storage engine.
Using these features with other MySQL storage engines, including MyISAM, can lead to unreliable
behavior when you're restoring from backups. Specifically, since storage engines like MyISAM
don't support reliable crash recovery, your tables can be corrupted in the event of a crash. For this
reason, we encourage you to use the InnoDB storage engine.

• To convert existing MyISAM tables to InnoDB tables, you can use the ALTER TABLE command,
for example: ALTER TABLE table_name ENGINE=innodb, ALGORITHM=COPY;

• If you choose to use MyISAM, you can attempt to manually repair tables that become damaged
after a crash by using the REPAIR command. For more information, see REPAIR TABLE statement
in the MySQL documentation. However, as noted in the MySQL documentation, there is a good
chance that you might not be able to recover all your data.

• If you want to take a snapshot of your MyISAM tables before restoring, follow these steps:

1. Stop all activity to your MyISAM tables (that is, close all sessions).

You can close all sessions by calling the mysql.rds_kill command for each process that is
returned from the SHOW FULL PROCESSLIST command.

2. Lock and flush each of your MyISAM tables. For example, the following commands lock and
flush two tables named myisam_table1 and myisam_table2:

mysql> FLUSH TABLES myisam_table, myisam_table2 WITH READ LOCK;

3. Create a snapshot of your DB instance or Multi-AZ DB cluster. When the snapshot has
completed, release the locks and resume activity on the MyISAM tables. You can release the
locks on your tables using the following command:

mysql> UNLOCK TABLES;

These steps force MyISAM to flush data stored in memory to disk, which ensures a clean start
when you restore from a DB snapshot. For more information on creating a DB snapshot, see
Creating a DB snapshot for a Single-AZ DB instance for Amazon RDS.

Unsupported MySQL storage engines 1058

https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html

Amazon Relational Database Service User Guide

Automated backups with unsupported MariaDB storage engines

For the MariaDB DB engine, automated backups are only supported with the InnoDB storage
engine. Using these features with other MariaDB storage engines, including Aria, can lead to
unreliable behavior when you're restoring from backups. Even though Aria is a crash-resistant
alternative to MyISAM, your tables can still be corrupted in the event of a crash. For this reason, we
encourage you to use the InnoDB storage engine.

• To convert existing Aria tables to InnoDB tables, you can use the ALTER TABLE command. For
example: ALTER TABLE table_name ENGINE=innodb, ALGORITHM=COPY;

• If you choose to use Aria, you can attempt to manually repair tables that become damaged after
a crash by using the REPAIR TABLE command. For more information, see http://mariadb.com/
kb/en/mariadb/repair-table/.

• If you want to take a snapshot of your Aria tables before restoring, follow these steps:

1. Stop all activity to your Aria tables (that is, close all sessions).

2. Lock and flush each of your Aria tables.

3. Create a snapshot of your DB instance or Multi-AZ DB cluster. When the snapshot has
completed, release the locks and resume activity on the Aria tables. These steps force Aria to
flush data stored in memory to disk, thereby ensuring a clean start when you restore from a
DB snapshot.

Unsupported MariaDB storage engines 1059

http://mariadb.com/kb/en/mariadb/repair-table/
http://mariadb.com/kb/en/mariadb/repair-table/

Amazon Relational Database Service User Guide

Replicating automated backups to another AWS Region

For added disaster recovery capability, you can configure your Amazon RDS database instance to
replicate snapshots and transaction logs to a destination AWS Region of your choice. When backup
replication is configured for a DB instance, RDS initiates a cross-Region copy of all snapshots and
transaction logs as soon as they are ready on the DB instance.

DB snapshot copy charges apply to the data transfer. After the DB snapshot is copied, standard
charges apply to storage in the destination Region. For more details, see RDS Pricing.

For an example of using backup replication, see the AWS online tech talk Managed Disaster
Recovery with Amazon RDS for Oracle Cross-Region Automated Backups.

For information about configuring and managing automated backups for Amazon RDS, see the
following topics.

Topics

• Enabling cross-Region automated backups for Amazon RDS

• Finding information about replicated backups for Amazon RDS

• Restoring to a specified time from a replicated backup for Amazon RDS

• Stopping automated backup replication for Amazon RDS

• Deleting replicated backups for Amazon RDS

Region and version availability

Feature availability and support varies across specific versions of each database engine, and
across AWS Regions. For more information on version and Region availability with cross-Region
automated backups, see Supported Regions and DB engines for cross-Region automated backups
in Amazon RDS.

Source and destination AWS Region support

Backup replication is supported between the following AWS Regions.

Source Region Destination Regions available

Africa (Cape Town) Europe (Frankfurt), Europe (Ireland), Europe (London)

Cross-Region automated backups 1060

https://aws.amazon.com/rds/oracle/pricing/
https://pages.awscloud.com/Managed-Disaster-Recovery-with-Amazon-RDS-for-Oracle-Cross-Region-Automated-Backups_2021_0908-DAT_OD.html
https://pages.awscloud.com/Managed-Disaster-Recovery-with-Amazon-RDS-for-Oracle-Cross-Region-Automated-Backups_2021_0908-DAT_OD.html

Amazon Relational Database Service User Guide

Source Region Destination Regions available

Asia Pacific (Hong Kong) Asia Pacific (Singapore), Asia Pacific (Tokyo)

Asia Pacific (Hyderabad) Asia Pacific (Mumbai)

Asia Pacific (Melbourne) Asia Pacific (Sydney)

Asia Pacific (Malaysia) Asia Pacific (Singapore)

Asia Pacific (Mumbai) Asia Pacific (Hyderabad), Asia Pacific (Singapore)

US East (N. Virginia), US East (Ohio), US West (Oregon)

Asia Pacific (Osaka) Asia Pacific (Tokyo)

Asia Pacific (Seoul) Asia Pacific (Singapore), Asia Pacific (Tokyo)

US East (N. Virginia), US East (Ohio), US West (Oregon)

Asia Pacific (Singapore) Asia Pacific (Hong Kong), Asia Pacific (Malaysia), Asia Pacific
(Mumbai), Asia Pacific (Seoul), Asia Pacific (Sydney), Asia Pacific
(Tokyo)

US East (N. Virginia), US East (Ohio), US West (Oregon)

Asia Pacific (Sydney) Asia Pacific (Melbourne), Asia Pacific (Singapore)

US East (N. Virginia), US West (N. California), US West (Oregon)

Asia Pacific (Tokyo) Asia Pacific (Hong Kong), Asia Pacific (Osaka), Asia Pacific (Seoul),
Asia Pacific (Singapore)

US East (N. Virginia), US East (Ohio), US West (Oregon)

Canada (Central) Canada West (Calgary)

Europe (Ireland)

US East (N. Virginia), US East (Ohio), US West (N. California), US
West (Oregon)

Cross-Region automated backups 1061

Amazon Relational Database Service User Guide

Source Region Destination Regions available

Canada West (Calgary) Canada (Central)

China (Beijing) China (Ningxia)

China (Ningxia) China (Beijing)

Europe (Frankfurt) Africa (Cape Town)

Europe (Ireland), Europe (London), Europe (Paris), Europe (Stockhol
m), Europe (Zurich)

US East (N. Virginia), US East (Ohio), US West (Oregon)

Europe (Ireland) Africa (Cape Town)

Canada (Central)

Europe (Frankfurt), Europe (London), Europe (Paris), Europe
(Stockholm), Europe (Zurich)

US East (N. Virginia), US East (Ohio), US West (N. California), US
West (Oregon)

Europe (London) Africa (Cape Town)

Europe (Frankfurt), Europe (Ireland), Europe (Paris), Europe
(Stockholm)

US East (N. Virginia)

Europe (Paris) Europe (Frankfurt), Europe (Ireland), Europe (London), Europe
(Stockholm)

US East (N. Virginia)

Europe (Stockholm) Europe (Frankfurt), Europe (Ireland), Europe (London), Europe
(Paris)

US East (N. Virginia)

Cross-Region automated backups 1062

Amazon Relational Database Service User Guide

Source Region Destination Regions available

Europe (Zurich) Europe (Frankfurt), Europe (Ireland)

South America (São
Paulo)

US East (N. Virginia), US East (Ohio)

AWS GovCloud (US-East) AWS GovCloud (US-West)

AWS GovCloud (US-West) AWS GovCloud (US-East)

US East (N. Virginia) Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore),
Asia Pacific (Sydney), Asia Pacific (Tokyo)

Canada (Central)

Europe (Frankfurt), Europe (Ireland), Europe (London), Europe
(Paris), Europe (Stockholm)

South America (São Paulo)

US East (Ohio), US West (N. California), US West (Oregon)

US East (Ohio) Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore),
Asia Pacific (Tokyo)

Canada (Central)

Europe (Frankfurt), Europe (Ireland)

South America (São Paulo)

US East (N. Virginia), US West (N. California), US West (Oregon)

US West (N. California) Asia Pacific (Sydney)

Canada (Central)

Europe (Ireland)

US East (N. Virginia), US East (Ohio), US West (Oregon)

Cross-Region automated backups 1063

Amazon Relational Database Service User Guide

Source Region Destination Regions available

US West (Oregon) Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore),
Asia Pacific (Sydney), Asia Pacific (Tokyo)

Canada (Central)

Europe (Frankfurt), Europe (Ireland)

US East (N. Virginia), US East (Ohio), US West (N. California)

You can also use the describe-source-regions AWS CLI command to find out which AWS
Regions can replicate to each other. For more information, see Finding information about
replicated backups for Amazon RDS.

Limitations

Following are limitations for cross–Region automated backups for Amazon RDS.

• Automated backup replication is not supported for Multi-AZ DB clusters.

• By default, you can have up to 20 cross–Region automated backups per AWS account.

Enabling cross-Region automated backups for Amazon RDS

You can enable backup replication on new or existing DB instances using the Amazon RDS console.
You can also use the start-db-instance-automated-backups-replication AWS CLI
command or the StartDBInstanceAutomatedBackupsReplication RDS API operation. You
can replicate up to 20 backups to each destination AWS Region for each AWS account.

Note

To be able to replicate automated backups, make sure to enable them. For more
information, see Enabling automated backups.

Console

You can enable backup replication for a new or existing DB instance:

Cross-Region automated backups 1064

Amazon Relational Database Service User Guide

• For a new DB instance, enable it when you launch the instance. For more information, see
Settings for DB instances.

• For an existing DB instance, use the following procedure.

To enable backup replication for an existing DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. On the Current Region tab, choose the DB instance for which you want to enable backup
replication.

4. For Actions, choose Manage cross-Region replication.

5. Under Backup replication, choose Enable replication to another AWS Region.

6. Choose the Destination Region.

7. Choose the Replicated backup retention period.

8. If you've enabled encryption on the source DB instance, choose the AWS KMS key for
encrypting the backups or enter a key ARN.

9. Choose Save.

In the source Region, replicated backups are listed on the Current Region tab of the Automated
backups page. In the destination Region, replicated backups are listed on the Replicated backups
tab of the Automated backups page.

AWS CLI

Enable backup replication by using the start-db-instance-automated-backups-
replication AWS CLI command.

The following CLI example replicates automated backups from a DB instance in the US West
(Oregon) Region to the US East (N. Virginia) Region. It also encrypts the replicated backups, using
an AWS KMS key in the destination Region.

To enable backup replication

• Run one of the following commands.

Cross-Region automated backups 1065

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-instance-automated-backups-replication.html
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-instance-automated-backups-replication.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds start-db-instance-automated-backups-replication \
--region us-east-1 \
--source-db-instance-arn "arn:aws:rds:us-west-2:123456789012:db:mydatabase" \
--kms-key-id "arn:aws:kms:us-east-1:123456789012:key/AKIAIOSFODNN7EXAMPLE" \
--backup-retention-period 7

For Windows:

aws rds start-db-instance-automated-backups-replication ^
--region us-east-1 ^
--source-db-instance-arn "arn:aws:rds:us-west-2:123456789012:db:mydatabase" ^
--kms-key-id "arn:aws:kms:us-east-1:123456789012:key/AKIAIOSFODNN7EXAMPLE" ^
--backup-retention-period 7

The --source-region option is required when you encrypt backups between the AWS
GovCloud (US-East) and AWS GovCloud (US-West) Regions. For --source-region, specify
the AWS Region of the source DB instance.

If --source-region isn't specified, make sure to specify a --pre-signed-url value. A
presigned URL is a URL that contains a Signature Version 4 signed request for the start-db-
instance-automated-backups-replication command that is called in the source AWS
Region. To learn more about the pre-signed-url option, see start-db-instance-automated-
backups-replication in the AWS CLI Command Reference.

RDS API

Enable backup replication by using the StartDBInstanceAutomatedBackupsReplication
RDS API operation with the following parameters:

• Region (if you aren't calling the API operation from the destination Region)

• SourceDBInstanceArn

• BackupRetentionPeriod

• KmsKeyId (optional)

• PreSignedUrl (required if you use KmsKeyId)

Cross-Region automated backups 1066

https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-instance-automated-backups-replication.html
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-instance-automated-backups-replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartDBInstanceAutomatedBackupsReplication.html

Amazon Relational Database Service User Guide

Note

If you encrypt the backups, you must also include a presigned URL. For more information
on presigned URLs, see Authenticating Requests: Using Query Parameters (AWS Signature
Version 4) in the Amazon Simple Storage Service API Reference and Signature Version 4
signing process in the AWS General Reference.

Finding information about replicated backups for Amazon RDS

You can use the following CLI commands to find information about replicated backups:

• describe-source-regions

• describe-db-instances

• describe-db-instance-automated-backups

The following describe-source-regions example lists the source AWS Regions from which
automated backups can be replicated to the US West (Oregon) destination Region.

To show information about source Regions

• Run the following command.

aws rds describe-source-regions --region us-west-2

The output shows that backups can be replicated from US East (N. Virginia), but not from US East
(Ohio) or US West (N. California), into US West (Oregon).

{
 "SourceRegions": [
 ...
 {
 "RegionName": "us-east-1",
 "Endpoint": "https://rds.us-east-1.amazonaws.com",
 "Status": "available",
 "SupportsDBInstanceAutomatedBackupsReplication": true
 },
 {

Cross-Region automated backups 1067

https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-source-regions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instance-automated-backups.html

Amazon Relational Database Service User Guide

 "RegionName": "us-east-2",
 "Endpoint": "https://rds.us-east-2.amazonaws.com",
 "Status": "available",
 "SupportsDBInstanceAutomatedBackupsReplication": false
 },
 "RegionName": "us-west-1",
 "Endpoint": "https://rds.us-west-1.amazonaws.com",
 "Status": "available",
 "SupportsDBInstanceAutomatedBackupsReplication": false
 }
]
}

The following describe-db-instances example shows the automated backups for a DB
instance.

To show the replicated backups for a DB instance

• Run one of the following commands.

For Linux, macOS, or Unix:

aws rds describe-db-instances \
--db-instance-identifier mydatabase

For Windows:

aws rds describe-db-instances ^
--db-instance-identifier mydatabase

The output includes the replicated backups.

{
 "DBInstances": [
 {
 "StorageEncrypted": false,
 "Endpoint": {
 "HostedZoneId": "Z1PVIF0B656C1W",
 "Port": 1521,
 ...

Cross-Region automated backups 1068

Amazon Relational Database Service User Guide

 "BackupRetentionPeriod": 7,
 "DBInstanceAutomatedBackupsReplications":
 [{"DBInstanceAutomatedBackupsArn": "arn:aws:rds:us-east-1:123456789012:auto-backup:ab-
L2IJCEXJP7XQ7HOJ4SIEXAMPLE"}]
 }
]
}

The following describe-db-instance-automated-backups example shows the automated
backups for a DB instance.

To show automated backups for a DB instance

• Run one of the following commands.

For Linux, macOS, or Unix:

aws rds describe-db-instance-automated-backups \
--db-instance-identifier mydatabase

For Windows:

aws rds describe-db-instance-automated-backups ^
--db-instance-identifier mydatabase

The output shows the source DB instance and automated backups in US West (Oregon), with
backups replicated to US East (N. Virginia).

{
 "DBInstanceAutomatedBackups": [
 {
 "DBInstanceArn": "arn:aws:rds:us-west-2:868710585169:db:mydatabase",
 "DbiResourceId": "db-L2IJCEXJP7XQ7HOJ4SIEXAMPLE",
 "DBInstanceAutomatedBackupsArn": "arn:aws:rds:us-west-2:123456789012:auto-
backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE",
 "BackupRetentionPeriod": 7,
 "DBInstanceAutomatedBackupsReplications":
 [{"DBInstanceAutomatedBackupsArn": "arn:aws:rds:us-east-1:123456789012:auto-backup:ab-
L2IJCEXJP7XQ7HOJ4SIEXAMPLE"}]
 "Region": "us-west-2",
 "DBInstanceIdentifier": "mydatabase",

Cross-Region automated backups 1069

Amazon Relational Database Service User Guide

 "RestoreWindow": {
 "EarliestTime": "2020-10-26T01:09:07Z",
 "LatestTime": "2020-10-31T19:09:53Z",
 }
 ...
 }
]
}

The following describe-db-instance-automated-backups example uses the --db-
instance-automated-backups-arn option to show the replicated backups in the destination
Region.

To show replicated backups

• Run one of the following commands.

For Linux, macOS, or Unix:

aws rds describe-db-instance-automated-backups \
--db-instance-automated-backups-arn "arn:aws:rds:us-east-1:123456789012:auto-
backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE"

For Windows:

aws rds describe-db-instance-automated-backups ^
--db-instance-automated-backups-arn "arn:aws:rds:us-east-1:123456789012:auto-
backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE"

The output shows the source DB instance in US West (Oregon), with replicated backups in US East
(N. Virginia).

{
 "DBInstanceAutomatedBackups": [
 {
 "DBInstanceArn": "arn:aws:rds:us-west-2:868710585169:db:mydatabase",
 "DbiResourceId": "db-L2IJCEXJP7XQ7HOJ4SIEXAMPLE",
 "DBInstanceAutomatedBackupsArn": "arn:aws:rds:us-east-1:123456789012:auto-
backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE",
 "Region": "us-west-2",

Cross-Region automated backups 1070

Amazon Relational Database Service User Guide

 "DBInstanceIdentifier": "mydatabase",
 "RestoreWindow": {
 "EarliestTime": "2020-10-26T01:09:07Z",
 "LatestTime": "2020-10-31T19:01:23Z"
 },
 "AllocatedStorage": 50,
 "BackupRetentionPeriod": 7,
 "Status": "replicating",
 "Port": 1521,
 ...
 }
]
}

Restoring to a specified time from a replicated backup for Amazon RDS

You can restore a DB instance to a specific point in time from a replicated backup using the
Amazon RDS console. You can also use the restore-db-instance-to-point-in-time AWS
CLI command or the RestoreDBInstanceToPointInTime RDS API operation.

For general information on point-in-time recovery (PITR), see Restoring a DB instance to a specified
time for Amazon RDS.

Note

Note the following DB engine restrictions when automated backups are replicated across
AWS Regions:

• On RDS for SQL Server, option groups aren't copied.

• On RDS for Oracle, the following options aren't copied: NATIVE_NETWORK_ENCRYPTION,
OEM, OEM_AGENT, and SSL.

If you've associated a custom option group with your DB instance, you can re-create that
option group in the destination Region. Then restore the DB instance in the destination
Region and associate the custom option group with it. For more information, see Working
with option groups.

Cross-Region automated backups 1071

Amazon Relational Database Service User Guide

Console

To restore a DB instance to a specified time from a replicated backup

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the destination Region (where backups are replicated to) from the Region selector.

3. In the navigation pane, choose Automated backups.

4. On the Replicated backups tab, choose the DB instance that you want to restore.

5. For Actions, choose Restore to point in time.

6. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

If you chose Custom, enter the date and time that you want to restore the instance to.

Note

Times are shown in your local time zone, which is indicated by an offset from
Coordinated Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/
Central Daylight Time.

7. For DB instance identifier, enter the name of the target restored DB instance.

8. (Optional) Choose other options as needed, such as enabling autoscaling.

9. Choose Restore to point in time.

AWS CLI

Use the restore-db-instance-to-point-in-time AWS CLI command to create a new DB
instance.

To restore a DB instance to a specified time from a replicated backup

• Run one of the following commands.

For Linux, macOS, or Unix:

aws rds restore-db-instance-to-point-in-time \

Cross-Region automated backups 1072

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

 --source-db-instance-automated-backups-arn "arn:aws:rds:us-
east-1:123456789012:auto-backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE" \
 --target-db-instance-identifier mytargetdbinstance \
 --restore-time 2020-10-14T23:45:00.000Z

For Windows:

aws rds restore-db-instance-to-point-in-time ^
 --source-db-instance-automated-backups-arn "arn:aws:rds:us-
east-1:123456789012:auto-backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE" ^
 --target-db-instance-identifier mytargetdbinstance ^
 --restore-time 2020-10-14T23:45:00.000Z

RDS API

To restore a DB instance to a specified time, call the RestoreDBInstanceToPointInTime
Amazon RDS API operation with the following parameters:

• SourceDBInstanceAutomatedBackupsArn

• TargetDBInstanceIdentifier

• RestoreTime

Stopping automated backup replication for Amazon RDS

You can stop backup replication for DB instances using the Amazon RDS console. You can also
use the stop-db-instance-automated-backups-replication AWS CLI command or the
StopDBInstanceAutomatedBackupsReplication RDS API operation.

Replicated backups are retained, subject to the backup retention period set when they were
created.

Console

Stop backup replication from the Automated backups page in the source Region.

To stop backup replication to an AWS Region

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Cross-Region automated backups 1073

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Choose the source Region from the Region selector.

3. In the navigation pane, choose Automated backups.

4. On the Current Region tab, choose the DB instance for which you want to stop backup
replication.

5. For Actions, choose Manage cross-Region replication.

6. Under Backup replication, clear the Enable replication to another AWS Region check box.

7. Choose Save.

Replicated backups are listed on the Retained tab of the Automated backups page in the
destination Region.

AWS CLI

Stop backup replication by using the stop-db-instance-automated-backups-replication
AWS CLI command.

The following CLI example stops automated backups of a DB instance from replicating in the US
West (Oregon) Region.

To stop backup replication

• Run one of the following commands.

For Linux, macOS, or Unix:

aws rds stop-db-instance-automated-backups-replication \
--region us-east-1 \
--source-db-instance-arn "arn:aws:rds:us-west-2:123456789012:db:mydatabase"

For Windows:

aws rds stop-db-instance-automated-backups-replication ^
--region us-east-1 ^
--source-db-instance-arn "arn:aws:rds:us-west-2:123456789012:db:mydatabase"

Cross-Region automated backups 1074

https://docs.aws.amazon.com/cli/latest/reference/rds/stop-db-instance-automated-backups-replication.html

Amazon Relational Database Service User Guide

RDS API

Stop backup replication by using the StopDBInstanceAutomatedBackupsReplication RDS
API operation with the following parameters:

• Region

• SourceDBInstanceArn

Deleting replicated backups for Amazon RDS

You can delete replicated backups for DB instances using the Amazon RDS console. You
can also use the delete-db-instance-automated-backups AWS CLI command or the
DeleteDBInstanceAutomatedBackup RDS API operation.

Console

Delete replicated backups in the destination Region from the Automated backups page.

To delete replicated backups

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the destination Region from the Region selector.

3. In the navigation pane, choose Automated backups.

4. On the Replicated backups tab, choose the DB instance for which you want to delete the
replicated backups.

5. For Actions, choose Delete.

6. On the confirmation page, enter delete me and choose Delete.

AWS CLI

Delete replicated backups by using the delete-db-instance-automated-backup AWS CLI
command.

You can use the describe-db-instances CLI command to find the Amazon Resource Names
(ARNs) of the replicated backups. For more information, see Finding information about replicated
backups for Amazon RDS.

Cross-Region automated backups 1075

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StopDBInstanceAutomatedBackupsReplication.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

To delete replicated backups

• Run one of the following commands.

For Linux, macOS, or Unix:

aws rds delete-db-instance-automated-backup \
--db-instance-automated-backups-arn "arn:aws:rds:us-east-1:123456789012:auto-
backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE"

For Windows:

aws rds delete-db-instance-automated-backup ^
--db-instance-automated-backups-arn "arn:aws:rds:us-east-1:123456789012:auto-
backup:ab-L2IJCEXJP7XQ7HOJ4SIEXAMPLE"

RDS API

Delete replicated backups by using the DeleteDBInstanceAutomatedBackup RDS API operation
with the DBInstanceAutomatedBackupsArn parameter.

Cross-Region automated backups 1076

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstanceAutomatedBackup.html

Amazon Relational Database Service User Guide

Managing manual backups

This section shows how to manage manual backups for DB instances and DB clusters.

For information about creating a DB snapshot for a Single-AZ DB instance, see Creating a DB
snapshot for a Single-AZ DB instance for Amazon RDS.

For information about creating a DB snapshot for a Multi-AZ DB cluster, see Creating a Multi-AZ DB
cluster snapshot for Amazon RDS.

For information about deleting a DB snapshot, see Deleting a DB snapshot for Amazon RDS.

Managing manual backups 1077

Amazon Relational Database Service User Guide

Creating a DB snapshot for a Single-AZ DB instance for Amazon RDS

Amazon RDS creates a storage volume snapshot of your DB instance, backing up the entire DB
instance and not just individual databases. Creating this DB snapshot on a Single-AZ DB instance
results in a brief I/O suspension that can last from a few seconds to a few minutes, depending on
the size and class of your DB instance. For MariaDB, MySQL, Oracle, and PostgreSQL, I/O activity
is not suspended on your primary during backup for Multi-AZ deployments, because the backup is
taken from the standby. For SQL Server, I/O activity is suspended briefly during backup for Multi-
AZ deployments.

When you create a DB snapshot, you need to identify which DB instance you are going to back up,
and then give your DB snapshot a name so you can restore from it later. The amount of time it
takes to create a snapshot varies with the size of your databases. Since the snapshot includes the
entire storage volume, the size of files, such as temporary files, also affects the amount of time it
takes to create the snapshot.

Note

Your DB instance must be in the available state to take a DB snapshot.
For PostgreSQL DB instances, data in unlogged tables might not be restored from
snapshots. For more information, see Best practices for working with PostgreSQL.

Unlike automated backups, manual snapshots aren't subject to the backup retention period.
Snapshots don't expire.

For very long-term backups of MariaDB, MySQL, and PostgreSQL data, we recommend exporting
snapshot data to Amazon S3. If the major version of your DB engine is no longer supported, you
can't restore to that version from a snapshot. For more information, see Exporting DB snapshot
data to Amazon S3 for Amazon RDS.

You can create a DB snapshot using the AWS Management Console, the AWS CLI, or the RDS API.

Console

To create a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Creating a DB snapshot for a Single-AZ DB instance 1078

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Snapshots.

The Manual snapshots list appears.

3. Choose Take snapshot.

The Take DB snapshot window appears.

4. Choose the DB instance for which you want to take a snapshot.

5. Enter the Snapshot name.

6. Choose Take snapshot.

The Manual snapshots list appears, with the new DB snapshot's status shown as Creating. After
its status is Available, you can see its creation time.

AWS CLI

When you create a DB snapshot using the AWS CLI, you need to identify which DB instance you are
going to back up, and then give your DB snapshot a name so you can restore from it later. You can
do this by using the AWS CLI create-db-snapshot command with the following parameters:

• --db-instance-identifier

• --db-snapshot-identifier

In this example, you create a DB snapshot called mydbsnapshot for a DB instance called
mydbinstance.

Example

For Linux, macOS, or Unix:

aws rds create-db-snapshot \
 --db-instance-identifier mydbinstance \
 --db-snapshot-identifier mydbsnapshot

For Windows:

aws rds create-db-snapshot ^
 --db-instance-identifier mydbinstance ^
 --db-snapshot-identifier mydbsnapshot

Creating a DB snapshot for a Single-AZ DB instance 1079

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html

Amazon Relational Database Service User Guide

RDS API

When you create a DB snapshot using the Amazon RDS API, you need to identify which DB instance
you are going to back up, and then give your DB snapshot a name so you can restore from it later.
You can do this by using the Amazon RDS API CreateDBSnapshot command with the following
parameters:

• DBInstanceIdentifier

• DBSnapshotIdentifier

Creating a DB snapshot for a Single-AZ DB instance 1080

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBSnapshot.html

Amazon Relational Database Service User Guide

Creating a Multi-AZ DB cluster snapshot for Amazon RDS

When you create a Multi-AZ DB cluster snapshot, make sure to identify which Multi-AZ DB cluster
you are going to back up, and then give your DB cluster snapshot a name so you can restore from
it later. You can also share a Multi-AZ DB cluster snapshot. For instructions, see the section called
“Sharing a DB snapshot”.

You can create a Multi-AZ DB cluster snapshot using the AWS Management Console, the AWS CLI,
or the RDS API.

For very long-term backups, we recommend exporting snapshot data to Amazon S3. If the major
version of your DB engine is no longer supported, you can't restore to that version from a snapshot.
For more information, see Exporting DB snapshot data to Amazon S3 for Amazon RDS.

Console

To create a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. In the list, choose the Multi-AZ DB cluster for which you want to take a snapshot.

4. For Actions, choose Take snapshot.

The Take DB snapshot window appears.

5. For Snapshot name, enter the name of the snapshot.

6. Choose Take snapshot.

The Snapshots page appears, with the new Multi-AZ DB cluster snapshot's status shown as
Creating. After its status is Available, you can see its creation time.

AWS CLI

You can create a Multi-AZ DB cluster snapshot by using the AWS CLI create-db-cluster-snapshot
command with the following options:

• --db-cluster-identifier

• --db-cluster-snapshot-identifier

Creating a Multi-AZ DB cluster snapshot 1081

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-snapshot.html

Amazon Relational Database Service User Guide

In this example, you create a Multi-AZ DB cluster snapshot called
mymultiazdbclustersnapshot for a DB cluster called mymultiazdbcluster.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster-snapshot \
 --db-cluster-identifier mymultiazdbcluster \
 --db-cluster-snapshot-identifier mymultiazdbclustersnapshot

For Windows:

aws rds create-db-cluster-snapshot ^
 --db-cluster-identifier mymultiazdbcluster ^
 --db-cluster snapshot-identifier mymultiazdbclustersnapshot

RDS API

You can create a Multi-AZ DB cluster snapshot by using the Amazon RDS API
CreateDBClusterSnapshot operation with the following parameters:

• DBClusterIdentifier

• DBClusterSnapshotIdentifier

Deleting a Multi-AZ DB cluster snapshot

You can delete Multi-AZ DB snapshots managed by Amazon RDS when you no longer need them.
For instructions, see the section called “Deleting a DB snapshot”.

Creating a Multi-AZ DB cluster snapshot 1082

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterSnapshot.html

Amazon Relational Database Service User Guide

Deleting a DB snapshot for Amazon RDS

You can delete DB snapshots managed by Amazon RDS when you no longer need them.

Note

To delete backups managed by AWS Backup, use the AWS Backup console. For information
about AWS Backup, see the AWS Backup Developer Guide.

Deleting a DB snapshot

You can delete a manual, shared, or public DB snapshot using the AWS Management Console, the
AWS CLI, or the RDS API.

To delete a shared or public snapshot, you must sign in to the AWS account that owns the
snapshot.

If you have automated DB snapshots that you want to delete without deleting the DB instance,
change the backup retention period for the DB instance to 0. The automated snapshots are deleted
when the change is applied. You can apply the change immediately if you don't want to wait until
the next maintenance period. After the change is complete, you can then re-enable automatic
backups by setting the backup retention period to a number greater than 0. For information about
modifying a DB instance, see Modifying an Amazon RDS DB instance.

Retained automated backups and manual snapshots incur billing charges until they're deleted. For
more information, see Retention costs.

If you deleted a DB instance, you can delete its automated DB snapshots by removing the
automated backups for the DB instance. For information about automated backups, see
Introduction to backups.

Console

To delete a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

Deleting a DB snapshot 1083

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The Manual snapshots list appears.

3. Choose the DB snapshot that you want to delete.

4. For Actions, choose Delete snapshot.

5. Choose Delete on the confirmation page.

AWS CLI

You can delete a DB snapshot by using the AWS CLI command delete-db-snapshot.

The following options are used to delete a DB snapshot.

• --db-snapshot-identifier – The identifier for the DB snapshot.

Example

The following code deletes the mydbsnapshot DB snapshot.

For Linux, macOS, or Unix:

aws rds delete-db-snapshot \
 --db-snapshot-identifier mydbsnapshot

For Windows:

aws rds delete-db-snapshot ^
 --db-snapshot-identifier mydbsnapshot

RDS API

You can delete a DB snapshot by using the Amazon RDS API operation DeleteDBSnapshot.

The following parameters are used to delete a DB snapshot.

• DBSnapshotIdentifier – The identifier for the DB snapshot.

Deleting a DB snapshot 1084

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBSnapshot.html

Amazon Relational Database Service User Guide

Restoring to a DB instance

This section shows how to restore to a DB instance. This page shows how to restore to an Amazon
RDS DB instance from a DB snapshot.

Amazon RDS creates a storage volume snapshot of your DB instance, backing up the entire DB
instance and not just individual databases. You can create a new DB instance by restoring from a
DB snapshot. You provide the name of the DB snapshot to restore from, and then provide a name
for the new DB instance that is created from the restore. You can't restore from a DB snapshot to
an existing DB instance; a new DB instance is created when you restore.

You can use the restored DB instance as soon as its status is available. The DB instance continues
to load data in the background. This is known as lazy loading.

If you access data that hasn't been loaded yet, the DB instance immediately downloads the
requested data from Amazon S3, and then continues loading the rest of the data in the
background. For more information, see Amazon EBS snapshots.

To help mitigate the effects of lazy loading on tables to which you require quick access, you can
perform operations that involve full-table scans, such as SELECT *. This allows Amazon RDS to
download all of the backed-up table data from S3.

You can restore a DB instance and use a different storage type than the source DB snapshot. In this
case, the restoration process is slower because of the additional work required to migrate the data
to the new storage type. If you restore to or from magnetic storage, the migration process is the
slowest. That's because magnetic storage doesn't have the IOPS capability of Provisioned IOPS or
General Purpose (SSD) storage.

You can use AWS CloudFormation to restore a DB instance from a DB instance snapshot. For more
information, see AWS::RDS::DBInstance in the AWS CloudFormation User Guide.

Note

You can't restore a DB instance from a DB snapshot that is both shared and encrypted.
Instead, you can make a copy of the DB snapshot and restore the DB instance from the
copy. For more information, see Copying a DB snapshot for Amazon RDS.

For information about restoring a DB instance with an RDS Extended Support version, see
Restoring a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support.

Restoring to a DB instance 1085

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html

Amazon Relational Database Service User Guide

Restoring from a snapshot

You can restore a DB instance from a DB snapshot using the AWS Management Console, the AWS
CLI, or the RDS API.

Note

You can't reduce the amount of storage when you restore a DB instance. When you increase
the allocated storage, it must be by at least 10 percent. If you try to increase the value
by less than 10 percent, you get an error. You can't increase the allocated storage when
restoring RDS for SQL Server DB instances.

Console

To restore a DB instance from a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

5. On the Restore snapshot page, for DB instance identifier, enter the name for your restored
DB instance.

6. Specify other settings, such as allocated storage size.

For information about each setting, see Settings for DB instances.

7. Choose Restore DB instance.

AWS CLI

To restore a DB instance from a DB snapshot, use the AWS CLI command restore-db-instance-from-
db-snapshot.

In this example, you restore from a previously created DB snapshot named mydbsnapshot. You
restore to a new DB instance named mynewdbinstance. This example also sets the allocated
storage size.

Restoring from a snapshot 1086

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html

Amazon Relational Database Service User Guide

You can specify other settings. For information about each setting, see Settings for DB instances.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-db-snapshot \
 --db-instance-identifier mynewdbinstance \
 --db-snapshot-identifier mydbsnapshot \
 --allocated-storage 100

For Windows:

aws rds restore-db-instance-from-db-snapshot ^
 --db-instance-identifier mynewdbinstance ^
 --db-snapshot-identifier mydbsnapshot ^
 --allocated-storage 100

This command returns output similar to the following:

DBINSTANCE mynewdbinstance db.t3.small MySQL 50 sa creating
 3 n 8.0.28 general-public-license

RDS API

To restore a DB instance from a DB snapshot, call the Amazon RDS API function
RestoreDBInstanceFromDBSnapshot with the following parameters:

• DBInstanceIdentifier

• DBSnapshotIdentifier

Considerations

For considerations when restoring to a DB instance from a DB snapshot, see the following topics.

Topics

• Parameter group considerations

• Security group considerations

Considerations 1087

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html

Amazon Relational Database Service User Guide

• Option group considerations

• Resource tagging considerations

• Db2 considerations

• Microsoft SQL Server considerations

• MySQL considerations

• Oracle Database considerations

Parameter group considerations

We recommend that you retain the DB parameter group for any DB snapshots you create, so that
you can associate your restored DB instance with the correct parameter group.

The default DB parameter group is associated with the restored instance, unless you choose a
different one. No custom parameter settings are available in the default parameter group.

You can specify the parameter group when you restore the DB instance.

For more information about DB parameter groups, see Parameter groups for Amazon RDS.

Security group considerations

When you restore a DB instance, the default virtual private cloud (VPC), DB subnet group, and VPC
security group are associated with the restored instance, unless you choose different ones.

• If you're using the Amazon RDS console, you can specify a custom VPC security group to
associate with the instance or create a new VPC security group.

• If you're using the AWS CLI, you can specify a custom VPC security group to associate with
the instance by including the --vpc-security-group-ids option in the restore-db-
instance-from-db-snapshot command.

• If you're using the Amazon RDS API, you can include the
VpcSecurityGroupIds.VpcSecurityGroupId.N parameter in the
RestoreDBInstanceFromDBSnapshot action.

As soon as the restore is complete and your new DB instance is available, you can also change the
VPC settings by modifying the DB instance. For more information, see Modifying an Amazon RDS
DB instance.

Considerations 1088

Amazon Relational Database Service User Guide

Option group considerations

When you restore a DB instance, the default DB option group is associated with the restored DB
instance in most cases.

The exception is when the source DB instance is associated with an option group that contains a
persistent or permanent option. For example, if the source DB instance uses Oracle Transparent
Data Encryption (TDE), the restored DB instance must use an option group that has the TDE option.

If you restore a DB instance into a different VPC, you must do one of the following to assign a DB
option group:

• Assign the default option group for that VPC group to the instance.

• Assign another option group that is linked to that VPC.

• Create a new option group and assign it to the DB instance. With persistent or permanent
options, such as Oracle TDE, you must create a new option group that includes the persistent or
permanent option.

For more information about DB option groups, see Working with option groups.

Resource tagging considerations

When you restore a DB instance from a DB snapshot, RDS checks whether you specify new tags.
If yes, the new tags are added to the restored DB instance. If there are no new tags, RDS adds the
tags from the source DB instance at the time of snapshot creation to the restored DB instance.

For more information, see Copying tags to DB snapshots.

Db2 considerations

With the BYOL model, your Amazon RDS for Db2 DB instances must be associated with a custom
parameter group that contains your IBM Site ID and your IBM Customer ID. Otherwise, attempts to
restore a DB instance from a snapshot will fail. Your Amazon RDS for Db2 DB instances must also
be associated with an AWS License Manager self-managed license. For more information, see Bring
Your Own License for Db2.

With the Db2 license through AWS Marketplace model, you need an active AWS Marketplace
subscription for the particular IBM Db2 edition that you want to use. If you don't already have one,

Considerations 1089

Amazon Relational Database Service User Guide

subscribe to Db2 in AWS Marketplace for that IBM Db2 edition. For more information, see Db2
license through AWS Marketplace.

Microsoft SQL Server considerations

When you restore an RDS for Microsoft SQL Server DB snapshot to a new instance, you can always
restore to the same edition as your snapshot. In some cases, you can also change the edition of the
DB instance. The following limitations apply when you change editions:

• The DB snapshot must have enough storage allocated for the new edition.

• Only the following edition changes are supported:

• From Standard Edition to Enterprise Edition

• From Web Edition to Standard Edition or Enterprise Edition

• From Express Edition to Web Edition, Standard Edition, or Enterprise Edition

If you want to change from one edition to a new edition that isn't supported by restoring a
snapshot, you can try using the native backup and restore feature. SQL Server verifies whether
your database is compatible with the new edition based on what SQL Server features you have
enabled on the database. For more information, see Importing and exporting SQL Server databases
using native backup and restore.

MySQL considerations

To restore from a RDS for MySQL DB snapshot with an unsupported engine version, you might
have to upgrade your DB snapshot more than once. For more information about upgrade options,
see Upgrade options for DB snapshots with unsupported engine versions for RDS for MySQL.

For more information about upgrading the engine version of a RDS for MySQL DB snapshot,
Upgrading a MySQL DB snapshot engine version.

Oracle Database considerations

When you restore an Oracle database from a DB snapshot, consider the following:

• Before you restore a DB snapshot, you can upgrade it to a later Oracle database release. For
more information, see Upgrading an Oracle DB snapshot.

• If you restore a snapshot of a CDB instance that uses the single-tenant configuration, you can
change the PDB name. You can't change the PDB names when your CDB instance uses the multi-
tenant configuration. For more information, see Backing up and restoring a CDB.

Considerations 1090

Amazon Relational Database Service User Guide

• You can't change the CDB name, which is always RDSCDB. This CDB name is the same for all CDB
instances.

• You can't directly interact with the tenant databases in a DB snapshot. If you restore a snapshot
of a CDB instance that uses the multi-tenant configuration, you restore all its tenant databases.
You can use describe-db-snapshot-tenant-databases to inspect the tenant databases within a DB
snapshot before restoring it.

• If you use Oracle GoldenGate, always retain the parameter group with the compatible
parameter. When you restore a DB instance from a DB snapshot, specify a parameter group that
has a matching or greater compatible value.

• You might choose to rename your database when you restore a DB snapshot. If the total size
of online redo log is greater than 20GB, RDS might reset your online redo log size to its default
settings of 512MB (4 x 128MB). The smaller size allows the restore operation to complete in a
reasonable time. You can re-create the online redo logs later and change the size.

• You can manage your master user password in AWS Secrets Manager. For more information, see
Overview of managing master user passwords with AWS Secrets Manager.

Considerations 1091

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshot-tenant-databases.html

Amazon Relational Database Service User Guide

Restoring a DB instance to a specified time for Amazon RDS

You can restore a DB instance to a specific point in time, creating a new DB instance without
modifying the source DB instance.

When you restore a DB instance to a point in time, you can choose the default virtual private cloud
(VPC) security group. Or you can apply a custom VPC security group to your DB instance.

Restored DB instances are automatically associated with the default DB parameter and option
groups. However, you can apply a custom parameter group and option group by specifying them
during a restore.

If the source DB instance has resource tags, RDS adds the latest tags to the restored DB instance.

RDS uploads transaction logs for DB instances to Amazon S3 every five minutes. To see the latest
restorable time for a DB instance, use the AWS CLI describe-db-instances command and look at
the value returned in the LatestRestorableTime field for the DB instance. To see the latest
restorable time for each DB instance in the Amazon RDS console, choose Automated backups.

You can restore to any point in time within your backup retention period. To see the earliest
restorable time for each DB instance, choose Automated backups in the Amazon RDS console.

Point-in-time recovery 1092

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

Note

We recommend that you restore to the same or similar DB instance size—and IOPS if
using Provisioned IOPS storage—as the source DB instance. You might get an error if, for
example, you choose a DB instance size with an incompatible IOPS value.

For information about restoring a DB instance with an RDS Extended Support version, see
Restoring a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support.

Some Amazon RDS database engines have special considerations when restoring from a point in
time:

• If you use password authentication with an Amazon RDS for Db2 DB instance, user management
actions, including rdsadmin.add_user, won't be captured in the logs. These actions require a
full snapshot backup.

With the BYOL model, your RDS for Db2 DB instances must be associated with a custom
parameter group that contains your IBM Site ID and your IBM Customer ID. Otherwise, attempts
to restore a DB instance to a specific point in time will fail. Your Amazon RDS for Db2 DB
instances must also be associated with an AWS License Manager self-managed license. For more
information, see Bring Your Own License for Db2.

With the Db2 license through AWS Marketplace model, you need an active AWS Marketplace
subscription for the particular IBM Db2 edition that you want to use. If you don't already have
one, subscribe to Db2 in AWS Marketplace for that IBM Db2 edition. For more information, see
Db2 license through AWS Marketplace.

• When you restore an RDS for Oracle DB instance to a point in time, you can specify a different DB
engine, license model, and DBName (SID) for the restored DB instance. You can also specify that
RDS should store manage master user passwords in AWS Secrets Manager. For more information,
see Overview of managing master user passwords with AWS Secrets Manager.

• When you restore a Microsoft SQL Server DB instance to a point in time, each database within
that instance is restored to a point in time within 1 second of each other database within the
instance. Transactions that span multiple databases within the instance might be restored
inconsistently.

Point-in-time recovery 1093

Amazon Relational Database Service User Guide

• For a SQL Server DB instance, the OFFLINE, EMERGENCY, and SINGLE_USER modes aren't
supported. Setting any database into one of these modes causes the latest restorable time to
stop moving ahead for the whole instance.

• Some actions, such as changing the recovery model of a SQL Server database, can break the
sequence of logs that are used for point-in-time recovery. In some cases, Amazon RDS can
detect this issue and the latest restorable time is prevented from moving forward. In other cases,
such as when a SQL Server database uses the BULK_LOGGED recovery model, the break in log
sequence isn't detected. It might not be possible to restore a SQL Server DB instance to a point
in time if there is a break in the log sequence. For these reasons, Amazon RDS doesn't support
changing the recovery model of SQL Server databases.

You can also use AWS Backup to manage backups of Amazon RDS DB instances. If your DB instance
is associated with a backup plan in AWS Backup, that backup plan is used for point-in-time
recovery. Backups that were created with AWS Backup have names ending in awsbackup:AWS-
Backup-job-number. For information about AWS Backup, see the AWS Backup Developer Guide.

Note

Information in this topic applies to Amazon RDS. For information on restoring an Amazon
Aurora DB cluster, see Restoring a DB cluster to a specified time.

You can restore a DB instance to a point in time using the AWS Management Console, the AWS CLI,
or the RDS API.

Note

You can't reduce the amount of storage when you restore a DB instance. When you increase
the allocated storage, it must be by at least 10 percent. If you try to increase the value
by less than 10 percent, you get an error. You can't increase the allocated storage when
restoring RDS for SQL Server DB instances.

Point-in-time recovery 1094

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-pitr.html

Amazon Relational Database Service User Guide

Console

To restore a DB instance to a specified time

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

The automated backups are displayed on the Current Region tab.

3. Choose the DB instance that you want to restore.

4. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

5. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

If you chose Custom, enter the date and time to which you want to restore the instance.

Note

Times are shown in your local time zone, which is indicated by an offset from
Coordinated Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/
Central Daylight Time.

6. For DB instance identifier, enter the name of the target restored DB instance. The name must
be unique.

7. Choose other options as needed, such as DB instance class, storage, and whether you want to
use storage autoscaling.

For information about each setting, see Settings for DB instances.

8. Choose Restore to point in time.

AWS CLI

To restore a DB instance to a specified time, use the AWS CLI command restore-db-instance-to-
point-in-time to create a new DB instance. This example also sets the allocated storage size and
enables storage autoscaling.

Point-in-time recovery 1095

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

Resource tagging is supported for this operation. When you use the --tags option, the source
DB instance tags are ignored and the provided ones are used. Otherwise, the latest tags from the
source instance are used.

You can specify other settings. For information about each setting, see Settings for DB instances.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-to-point-in-time \
 --source-db-instance-identifier mysourcedbinstance \
 --target-db-instance-identifier mytargetdbinstance \
 --restore-time 2017-10-14T23:45:00.000Z \
 --allocated-storage 100 \
 --max-allocated-storage 1000

For Windows:

aws rds restore-db-instance-to-point-in-time ^
 --source-db-instance-identifier mysourcedbinstance ^
 --target-db-instance-identifier mytargetdbinstance ^
 --restore-time 2017-10-14T23:45:00.000Z ^
 --allocated-storage 100 ^
 --max-allocated-storage 1000

RDS API

To restore a DB instance to a specified time, call the Amazon RDS API
RestoreDBInstanceToPointInTime operation with the following parameters:

• SourceDBInstanceIdentifier

• TargetDBInstanceIdentifier

• RestoreTime

Point-in-time recovery 1096

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Restoring a Multi-AZ DB cluster to a specified time

You can restore a Multi-AZ DB cluster to a specific point in time, creating a new Multi-AZ DB cluster.

RDS uploads transaction logs for Multi-AZ DB clusters to Amazon S3 continuously. You can restore
to any point in time within your backup retention period. To see the earliest restorable time for a
Multi-AZ DB cluster, use the AWS CLI describe-db-clusters command. Look at the value returned
in the EarliestRestorableTime field for the DB cluster. To see the latest restorable time for a
Multi-AZ DB cluster, look at the value returned in the LatestRestorableTime field for the DB
cluster.

When you restore a Multi-AZ DB cluster to a point in time, you can choose the default VPC security
group for your Multi-AZ DB cluster, or you can apply a custom VPC security group to your Multi-AZ
DB cluster.

Restored Multi-AZ DB clusters are automatically associated with the default DB cluster parameter
group. However, you can apply a custom DB cluster parameter group by specifying it during a
restore.

If the source DB cluster has resource tags, RDS adds the latest tags to the restored DB cluster.

Note

We recommend that you restore to the same or similar Multi-AZ DB cluster size as the
source DB cluster. We also recommend that you restore with the same or similar IOPS value
if you're using Provisioned IOPS storage. You might get an error if, for example, you choose
a DB cluster size with an incompatible IOPS value.
If the source Multi-AZ DB cluster uses General Purpose SSD (gp3) storage and has less than
400 GiB of allocated storage, you can't modify the provisioned IOPS for the restored DB
cluster.

For information about restoring a Multi-AZ DB cluster with an RDS Extended Support version, see
Restoring a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support.

You can restore a Multi-AZ DB cluster to a point in time using the AWS Management Console, the
AWS CLI, or the RDS API.

Restoring a Multi-AZ DB cluster to a specified time 1097

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Relational Database Service User Guide

Console

To restore a Multi-AZ DB cluster to a specified time

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Multi-AZ DB cluster that you want to restore.

4. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

5. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

If you chose Custom, enter the date and time to which you want to restore the Multi-AZ DB
cluster.

Note

Times are shown in your local time zone, which is indicated by an offset from
Coordinated Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/
Central Daylight Time.

6. For DB cluster identifier, enter the name for your restored Multi-AZ DB cluster.

7. In Availability and durability, choose Multi-AZ DB cluster.

8. In DB instance class, choose a DB instance class.

Restoring a Multi-AZ DB cluster to a specified time 1098

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Currently, Multi-AZ DB clusters only support db.m6gd and db.r6gd DB instance classes. For
more information about DB instance classes, see DB instance classes.

9. For the remaining sections, specify your DB cluster settings. For information about each
setting, see Settings for creating Multi-AZ DB clusters.

10. Choose Restore to point in time.

AWS CLI

To restore a Multi-AZ DB cluster to a specified time, use the AWS CLI command restore-db-cluster-
to-point-in-time to create a new Multi-AZ DB cluster.

Currently, Multi-AZ DB clusters only support db.m6gd and db.r6gd DB instance classes. For more
information about DB instance classes, see DB instance classes.

Example

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier mysourcemultiazdbcluster \
 --db-cluster-identifier mytargetmultiazdbcluster \
 --restore-to-time 2021-08-14T23:45:00.000Z \
 --db-cluster-instance-class db.r6gd.xlarge

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier mysourcemultiazdbcluster ^
 --db-cluster-identifier mytargetmultiazdbcluster ^
 --restore-to-time 2021-08-14T23:45:00.000Z ^
 --db-cluster-instance-class db.r6gd.xlarge

RDS API

To restore a DB cluster to a specified time, call the Amazon RDS API
RestoreDBClusterToPointInTime operation with the following parameters:

• SourceDBClusterIdentifier

• DBClusterIdentifier

Restoring a Multi-AZ DB cluster to a specified time 1099

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Relational Database Service User Guide

• RestoreToTime

Restoring a Multi-AZ DB cluster to a specified time 1100

Amazon Relational Database Service User Guide

Restoring from a snapshot to a Multi-AZ DB cluster

You can restore a snapshot to a Multi-AZ DB cluster using the AWS Management Console, the AWS
CLI, or the RDS API. You can restore each of these types of snapshots to a Multi-AZ DB cluster:

• A snapshot of a Single-AZ deployment

• A snapshot of a Multi-AZ DB cluster deployment with a single DB instance

• A snapshot of a Multi-AZ DB cluster

For information about Multi-AZ deployments, see Configuring and managing a Multi-AZ
deployment for Amazon RDS.

Tip

You can migrate a Single-AZ deployment or a Multi-AZ DB cluster deployment to a Multi-
AZ DB cluster deployment by restoring a snapshot.

For information about restoring Multi-AZ DB cluster with an RDS Extended Support version, see
Restoring a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support.

Console

To restore a snapshot to a Multi-AZ DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

5. On the Restore snapshot page, in Availability and durability, choose Multi-AZ DB cluster.

Restoring from a snapshot to a Multi-AZ DB cluster 1101

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. For DB cluster identifier, enter the name for your restored Multi-AZ DB cluster.

7. For the remaining sections, specify your DB cluster settings. For information about each
setting, see Settings for creating Multi-AZ DB clusters.

8. Choose Restore DB instance.

AWS CLI

To restore a snapshot to a Multi-AZ DB cluster, use the AWS CLI command restore-db-cluster-from-
snapshot.

In the following example, you restore from a previously created snapshot named mysnapshot.
You restore to a new Multi-AZ DB cluster named mynewmultiazdbcluster. You also specify
the DB instance class used by the DB instances in the Multi-AZ DB cluster. Specify either mysql or
postgres for the DB engine.

For the --snapshot-identifier option, you can use either the name or the Amazon Resource
Name (ARN) to specify a DB cluster snapshot. However, you can use only the ARN to specify a DB
snapshot.

For the --db-cluster-instance-class option, specify the DB instance class for the new Multi-
AZ DB cluster. Multi-AZ DB clusters only support specific DB instance classes, such as the db.m6gd
and db.r6gd DB instance classes. For more information about DB instance classes, see DB instance
classes.

You can also specify other options.

Restoring from a snapshot to a Multi-AZ DB cluster 1102

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewmultiazdbcluster \
 --snapshot-identifier mysnapshot \
 --engine mysql|postgres \
 --db-cluster-instance-class db.r6gd.xlarge

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier mynewmultiazdbcluster ^
 --snapshot-identifier mysnapshot ^
 --engine mysql|postgres ^
 --db-cluster-instance-class db.r6gd.xlarge

After you restore the DB cluster, you can add the Multi-AZ DB cluster to the security group
associated with the DB cluster or DB instance that you used to create the snapshot, if applicable.
Completing this action provides the same functions of the previous DB cluster or DB instance.

RDS API

To restore a snapshot to a Multi-AZ DB cluster, call the RDS API operation
RestoreDBClusterFromSnapshot with the following parameters:

• DBClusterIdentifier

• SnapshotIdentifier

• Engine

You can also specify other optional parameters.

After you restore the DB cluster, you can add the Multi-AZ DB cluster to the security group
associated with the DB cluster or DB instance that you used to create the snapshot, if applicable.
Completing this action provides the same functions of the previous DB cluster or DB instance.

Restoring from a snapshot to a Multi-AZ DB cluster 1103

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html

Amazon Relational Database Service User Guide

Restoring from a Multi-AZ DB cluster snapshot to a DB instance

A Multi-AZ DB cluster snapshot is a storage volume snapshot of your DB cluster, backing up the
entire DB cluster and not just individual databases. You can restore a Multi-AZ DB cluster snapshot
to a Single-AZ deployment or Multi-AZ DB instance deployment. For information about Multi-AZ
deployments, see Configuring and managing a Multi-AZ deployment for Amazon RDS.

Note

You can also restore a Multi-AZ DB cluster snapshot to a new Multi-AZ DB cluster. For
instructions, see Restoring from a snapshot to a Multi-AZ DB cluster.

For information about restoring a Multi-AZ DB cluster with an RDS Extended Support version, see
Restoring a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support.

Use the AWS Management Console, the AWS CLI, or the RDS API to restore a Multi-AZ DB cluster
snapshot to a Single-AZ deployment or Multi-AZ DB instance deployment.

Console

To restore a Multi-AZ DB cluster snapshot to a Single-AZ deployment or Multi-AZ DB instance
deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the Multi-AZ DB cluster snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

5. On the Restore snapshot page, in Availability and durability, choose one of the following:

• Single DB instance – Restores the snapshot to one DB instance with no standby DB instance.

• Multi-AZ DB instance – Restores the snapshot to a Multi-AZ DB instance deployment with
one primary DB instance and one standby DB instance.

6. For DB instance identifier, enter the name for your restored DB instance.

7. For the remaining sections, specify your DB instance settings. For information about each
setting, see Settings for DB instances.

Restoring from a Multi-AZ DB cluster snapshot to a DB instance 1104

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

8. Choose Restore DB instance.

AWS CLI

To restore a Multi-AZ DB cluster snapshot to a DB instance deployment, use the AWS CLI command
restore-db-instance-from-db-snapshot.

In the following example, you restore from a previously created Multi-AZ DB cluster snapshot
named myclustersnapshot. You restore to a new Multi-AZ DB instance deployment with a
primary DB instance named mynewdbinstance. For the --db-cluster-snapshot-identifier
option, specify the name of the Multi-AZ DB cluster snapshot.

For the --db-instance-class option, specify the DB instance class for the new DB instance
deployment. For more information about DB instance classes, see DB instance classes.

You can also specify other options.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-db-snapshot \
 --db-instance-identifier mynewdbinstance \
 --db-cluster-snapshot-identifier myclustersnapshot \
 --engine mysql \
 --multi-az \
 --db-instance-class db.r6g.xlarge

For Windows:

aws rds restore-db-instance-from-db-snapshot ^
 --db-instance-identifier mynewdbinstance ^
 --db-cluster-snapshot-identifier myclustersnapshot ^
 --engine mysql ^
 --multi-az ^
 --db-instance-class db.r6g.xlarge

After you restore the DB instance, you can add it to the security group associated with the Multi-AZ
DB cluster that you used to create the snapshot, if applicable. Completing this action provides the
same functions of the previous Multi-AZ DB cluster.

Restoring from a Multi-AZ DB cluster snapshot to a DB instance 1105

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html

Amazon Relational Database Service User Guide

RDS API

To restore a Multi-AZ DB cluster snapshot to a DB instance deployment, call the RDS API operation
RestoreDBInstanceFromDBSnapshot with the following parameters:

• DBInstanceIdentifier

• DBClusterSnapshotIdentifier

• Engine

You can also specify other optional parameters.

After you restore the DB instance, you can add it to the security group associated with the Multi-AZ
DB cluster that you used to create the snapshot, if applicable. Completing this action provides the
same functions of the previous Multi-AZ DB cluster.

Restoring from a Multi-AZ DB cluster snapshot to a DB instance 1106

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html

Amazon Relational Database Service User Guide

Tutorial: Restore an Amazon RDS DB instance from a DB snapshot

Often, when working with Amazon RDS you might have a DB instance that you work with
occasionally but don't need full time. For example, suppose that you have a quarterly customer
survey that uses an Amazon EC2 instance to host a customer survey website. You also have a DB
instance that is used to store the survey results. One way to save money on such a scenario is
to take a DB snapshot of the DB instance after the survey is completed. You then delete the DB
instance and restore it when you need to conduct the survey again.

When you restore the DB instance, you provide the name of the DB snapshot to restore from. You
then provide a name for the new DB instance that's created from the restore operation.

For more detailed information on restoring DB instances from snapshots, see Restoring to a DB
instance.

For information about AWS KMS key management for Amazon RDS, see AWS KMS key
management.

Restoring a DB instance from a DB snapshot

Use the following procedure to restore from a snapshot in the AWS Management Console.

To restore a DB instance from a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

The Restore snapshot page appears.

Tutorial: Restore a DB instance from a DB snapshot 1107

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Under DB instance settings, use the default settings for DB engine and License model (for
Oracle or Microsoft SQL Server).

6. Under Settings, for DB instance identifier enter the unique name that you want to use for the
restored DB instance, for example mynewdbinstance.

If you're restoring from a DB instance that you deleted after you made the DB snapshot, you
can use the name of that DB instance.

7. Under Availability & durability, choose whether to create a standby instance in another
Availability Zone.

For this tutorial, don't create a standby instance.

8. Under Connectivity, use the default settings for the following:

• Virtual private cloud (VPC)

• DB subnet group

• Public access

• VPC security group (firewall)

9. Choose the DB instance class.

Tutorial: Restore a DB instance from a DB snapshot 1108

Amazon Relational Database Service User Guide

For this tutorial, choose Burstable classes (includes t classes), and then choose db.t3.small.

10. For Encryption, use the default settings.

If the source DB instance for the snapshot was encrypted, the restored DB instance is also
encrypted. You can't make it unencrypted.

11. Expand Additional configuration at the bottom of the page.

12. Do the following under Database options:

a. Choose the DB parameter group.

For this tutorial, use the default parameter group.

b. Choose the Option group.

Tutorial: Restore a DB instance from a DB snapshot 1109

Amazon Relational Database Service User Guide

For this tutorial, use the default option group.

Important

In some cases, you might restore from a DB snapshot of a DB instance that uses a
persistent or permanent option. If so, make sure to choose an option group that
uses the same option.

c. For Deletion protection, choose the Enable deletion protection check box.

13. Choose Restore DB instance.

The Databases page displays the restored DB instance, with a status of Creating.

Tutorial: Restore a DB instance from a DB snapshot 1110

Amazon Relational Database Service User Guide

Copying a DB snapshot for Amazon RDS

With Amazon RDS, you can copy automated backups or manual DB snapshots. After you copy a
snapshot, the copy is a manual snapshot. You can make multiple copies of an automated backup or
manual snapshot, but each copy must have a unique identifier.

You can copy a snapshot within the same AWS Region, you can copy a snapshot across AWS
Regions, and you can copy shared snapshots.

Copying a DB snapshot

For each AWS account, you can copy up to 20 DB snapshots at a time from one AWS Region to
another. If you copy a DB snapshot to another AWS Region, you create a manual DB snapshot
that is retained in that AWS Region. Copying a DB snapshot out of the source AWS Region incurs
Amazon RDS data transfer charges.

For more information about data transfer pricing, see Amazon RDS pricing.

After the DB snapshot copy has been created in the new AWS Region, the DB snapshot copy
behaves the same as all other DB snapshots in that AWS Region.

You can copy a DB snapshot using the AWS Management Console, the AWS CLI, or the RDS API.

Console

The following procedure copies an encrypted or unencrypted DB snapshot, in the same AWS
Region or across Regions, by using the AWS Management Console.

To copy a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the DB snapshot that you want to copy.

4. For Actions, choose Copy snapshot.

The Copy snapshot page appears.

Copying a DB snapshot 1111

https://aws.amazon.com/rds/pricing/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. For Target option group (optional), choose a new option group if you want.

Copying a DB snapshot 1112

Amazon Relational Database Service User Guide

Specify this option if you are copying a snapshot from one AWS Region to another, and your
DB instance uses a nondefault option group.

If your source DB instance uses Transparent Data Encryption for Oracle or Microsoft SQL
Server, you must specify this option when copying across Regions. For more information, see
Considerations for option groups.

6. (Optional) To copy the DB snapshot to a different AWS Region, for Destination Region, choose
the new AWS Region.

Note

The destination AWS Region must have the same database engine version available as
the source AWS Region.

7. For New DB snapshot identifier, type the name of the DB snapshot copy.

You can make multiple copies of an automated backup or manual snapshot, but each copy
must have a unique identifier.

8. (Optional) Select Copy Tags to copy tags and values from the snapshot to the copy of the
snapshot.

9. (Optional) For Encryption, do the following:

a. Choose Enable Encryption if the DB snapshot isn't encrypted but you want to encrypt the
copy.

Note

If the DB snapshot is encrypted, you must encrypt the copy, so the check box is
already selected.

b. For AWS KMS key, specify the KMS key identifier to use to encrypt the DB snapshot copy.

10. Choose Copy snapshot.

AWS CLI

You can copy a DB snapshot by using the AWS CLI command copy-db-snapshot. If you are copying
the snapshot to a new AWS Region, run the command in the new AWS Region.

Copying a DB snapshot 1113

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-snapshot.html

Amazon Relational Database Service User Guide

The following options are used to copy a DB snapshot. Not all options are required for all scenarios.
Use the descriptions and the examples that follow to determine which options to use.

• --source-db-snapshot-identifier – The identifier for the source DB snapshot.

• If the source snapshot is in the same AWS Region as the copy, specify a valid DB snapshot
identifier. For example, rds:mysql-instance1-snapshot-20130805.

• If the source snapshot is in the same AWS Region as the copy, and has been shared with
your AWS account, specify a valid DB snapshot ARN. For example, arn:aws:rds:us-
west-2:123456789012:snapshot:mysql-instance1-snapshot-20130805.

• If the source snapshot is in a different AWS Region than the copy, specify a valid DB snapshot
ARN. For example, arn:aws:rds:us-west-2:123456789012:snapshot:mysql-
instance1-snapshot-20130805.

• If you are copying from a shared manual DB snapshot, this parameter must be the Amazon
Resource Name (ARN) of the shared DB snapshot.

• If you are copying an encrypted snapshot this parameter must be in the ARN format for
the source AWS Region, and must match the SourceDBSnapshotIdentifier in the
PreSignedUrl parameter.

• --target-db-snapshot-identifier – The identifier for the new copy of the encrypted DB
snapshot.

• --copy-option-group – Copy the option group from a snapshot that has been shared with
your AWS account.

• --copy-tags – Include the copy tags option to copy tags and values from the snapshot to the
copy of the snapshot.

• --option-group-name – The option group to associate with the copy of the snapshot.

Specify this option if you are copying a snapshot from one AWS Region to another, and your DB
instance uses a non-default option group.

If your source DB instance uses Transparent Data Encryption for Oracle or Microsoft SQL
Server, you must specify this option when copying across Regions. For more information, see
Considerations for option groups.

• --kms-key-id – The KMS key identifier for an encrypted DB snapshot. The KMS key identifier is
the Amazon Resource Name (ARN), key identifier, or key alias for the KMS key.

• If you copy an encrypted DB snapshot from your AWS account, you can specify a value for
this parameter to encrypt the copy with a new KMS key. If you don't specify a value for this

Copying a DB snapshot 1114

Amazon Relational Database Service User Guide

parameter, then the copy of the DB snapshot is encrypted with the same KMS key as the
source DB snapshot.

• If you copy an encrypted DB snapshot that is shared from another AWS account, then you
must specify a value for this parameter.

• If you specify this parameter when you copy an unencrypted snapshot, the copy is encrypted.

• If you copy an encrypted snapshot to a different AWS Region, then you must specify a KMS key
for the destination AWS Region. KMS keys are specific to the AWS Region that they are created
in, and you cannot use encryption keys from one AWS Region in another AWS Region.

Example from unencrypted, to the same Region

The following code creates a copy of a snapshot, with the new name mydbsnapshotcopy, in the
same AWS Region as the source snapshot. When the copy is made, the DB option group and tags
on the original snapshot are copied to the snapshot copy.

For Linux, macOS, or Unix:

aws rds copy-db-snapshot \
 --source-db-snapshot-identifier arn:aws:rds:us-west-2:123456789012:snapshot:mysql-
instance1-snapshot-20130805 \
 --target-db-snapshot-identifier mydbsnapshotcopy \
 --copy-option-group \
 --copy-tags

For Windows:

aws rds copy-db-snapshot ^
 --source-db-snapshot-identifier arn:aws:rds:us-west-2:123456789012:snapshot:mysql-
instance1-snapshot-20130805 ^
 --target-db-snapshot-identifier mydbsnapshotcopy ^
 --copy-option-group ^
 --copy-tags

Example from unencrypted, across Regions

The following code creates a copy of a snapshot, with the new name mydbsnapshotcopy, in the
AWS Region in which the command is run.

For Linux, macOS, or Unix:

Copying a DB snapshot 1115

Amazon Relational Database Service User Guide

aws rds copy-db-snapshot \
 --source-db-snapshot-identifier arn:aws:rds:us-east-1:123456789012:snapshot:mysql-
instance1-snapshot-20130805 \
 --target-db-snapshot-identifier mydbsnapshotcopy

For Windows:

aws rds copy-db-snapshot ^
 --source-db-snapshot-identifier arn:aws:rds:us-east-1:123456789012:snapshot:mysql-
instance1-snapshot-20130805 ^
 --target-db-snapshot-identifier mydbsnapshotcopy

Example from encrypted, across Regions

The following code example copies an encrypted DB snapshot from the US West (Oregon) Region
in the US East (N. Virginia) Region. Run the command in the destination (us-east-1) Region.

For Linux, macOS, or Unix:

aws rds copy-db-snapshot \
 --source-db-snapshot-identifier arn:aws:rds:us-west-2:123456789012:snapshot:mysql-
instance1-snapshot-20161115 \
 --target-db-snapshot-identifier mydbsnapshotcopy \
 --kms-key-id my-us-east-1-key \
 --option-group-name custom-option-group-name

For Windows:

aws rds copy-db-snapshot ^
 --source-db-snapshot-identifier arn:aws:rds:us-west-2:123456789012:snapshot:mysql-
instance1-snapshot-20161115 ^
 --target-db-snapshot-identifier mydbsnapshotcopy ^
 --kms-key-id my-us-east-1-key ^
 --option-group-name custom-option-group-name

The --source-region parameter is required when you're copying an encrypted snapshot
between the AWS GovCloud (US-East) and AWS GovCloud (US-West) Regions. For --source-
region, specify the AWS Region of the source DB instance.

If --source-region isn't specified, specify a --pre-signed-url value. A presigned URL is a URL
that contains a Signature Version 4 signed request for the copy-db-snapshot command that's

Copying a DB snapshot 1116

Amazon Relational Database Service User Guide

called in the source AWS Region. To learn more about the pre-signed-url option, see copy-db-
snapshot in the AWS CLI Command Reference.

RDS API

You can copy a DB snapshot by using the Amazon RDS API operation CopyDBSnapshot. If you are
copying the snapshot to a new AWS Region, perform the action in the new AWS Region.

The following parameters are used to copy a DB snapshot. Not all parameters are required for all
scenarios. Use the descriptions and the examples that follow to determine which parameters to
use.

• SourceDBSnapshotIdentifier – The identifier for the source DB snapshot.

• If the source snapshot is in the same AWS Region as the copy, specify a valid DB snapshot
identifier. For example, rds:mysql-instance1-snapshot-20130805.

• If the source snapshot is in the same AWS Region as the copy, and has been shared with
your AWS account, specify a valid DB snapshot ARN. For example, arn:aws:rds:us-
west-2:123456789012:snapshot:mysql-instance1-snapshot-20130805.

• If the source snapshot is in a different AWS Region than the copy, specify a valid DB snapshot
ARN. For example, arn:aws:rds:us-west-2:123456789012:snapshot:mysql-
instance1-snapshot-20130805.

• If you are copying from a shared manual DB snapshot, this parameter must be the Amazon
Resource Name (ARN) of the shared DB snapshot.

• If you are copying an encrypted snapshot this parameter must be in the ARN format for
the source AWS Region, and must match the SourceDBSnapshotIdentifier in the
PreSignedUrl parameter.

• TargetDBSnapshotIdentifier – The identifier for the new copy of the encrypted DB
snapshot.

• CopyOptionGroup – Set this parameter to true to copy the option group from a shared
snapshot to the copy of the snapshot. The default is false.

• CopyTags – Set this parameter to true to copy tags and values from the snapshot to the copy
of the snapshot. The default is false.

• OptionGroupName – The option group to associate with the copy of the snapshot.

Specify this parameter if you are copying a snapshot from one AWS Region to another, and your
DB instance uses a non-default option group.

Copying a DB snapshot 1117

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBSnapshot.html

Amazon Relational Database Service User Guide

If your source DB instance uses Transparent Data Encryption for Oracle or Microsoft SQL Server,
you must specify this parameter when copying across Regions. For more information, see
Considerations for option groups.

• KmsKeyId – The KMS key identifier for an encrypted DB snapshot. The KMS key identifier is the
Amazon Resource Name (ARN), key identifier, or key alias for the KMS key.

• If you copy an encrypted DB snapshot from your AWS account, you can specify a value for
this parameter to encrypt the copy with a new KMS key. If you don't specify a value for this
parameter, then the copy of the DB snapshot is encrypted with the same KMS key as the
source DB snapshot.

• If you copy an encrypted DB snapshot that is shared from another AWS account, then you
must specify a value for this parameter.

• If you specify this parameter when you copy an unencrypted snapshot, the copy is encrypted.

• If you copy an encrypted snapshot to a different AWS Region, then you must specify a KMS key
for the destination AWS Region. KMS keys are specific to the AWS Region that they are created
in, and you can't use encryption keys from one AWS Region in another AWS Region.

• PreSignedUrl – The URL that contains a Signature Version 4 signed request for the
CopyDBSnapshot API operation in the source AWS Region that contains the source DB snapshot
to copy.

Specify this parameter when you copy an encrypted DB snapshot from another AWS Region by
using the Amazon RDS API. You can specify the source Region option instead of this parameter
when you copy an encrypted DB snapshot from another AWS Region by using the AWS CLI.

The presigned URL must be a valid request for the CopyDBSnapshot API operation that can be
run in the source AWS Region containing the encrypted DB snapshot to be copied. The presigned
URL request must contain the following parameter values:

• DestinationRegion – The AWS Region that the encrypted DB snapshot will be copied
to. This AWS Region is the same one where the CopyDBSnapshot operation is called that
contains this presigned URL.

For example, suppose that you copy an encrypted DB snapshot from the us-west-2 Region to
the us-east-1 Region. You then call the CopyDBSnapshot operation in the us-east-1 Region
and provide a presigned URL that contains a call to the CopyDBSnapshot operation in the us-
west-2 Region. For this example, the DestinationRegion in the presigned URL must be set
to the us-east-1 Region.

Copying a DB snapshot 1118

Amazon Relational Database Service User Guide

• KmsKeyId – The KMS key identifier for the key to use to encrypt the copy of the DB snapshot
in the destination AWS Region. This is the same identifier for both the CopyDBSnapshot
operation that is called in the destination AWS Region, and the operation contained in the
presigned URL.

• SourceDBSnapshotIdentifier – The DB snapshot identifier for the encrypted snapshot
to be copied. This identifier must be in the Amazon Resource Name (ARN) format for the
source AWS Region. For example, if you're copying an encrypted DB snapshot from the
us-west-2 Region, then your SourceDBSnapshotIdentifier looks like the following
example: arn:aws:rds:us-west-2:123456789012:snapshot:mysql-instance1-
snapshot-20161115.

For more information on Signature Version 4 signed requests, see the following:

• Authenticating requests: Using query parameters (AWS signature version 4) in the Amazon
Simple Storage Service API Reference

• Signature version 4 signing process in the AWS General Reference

Example from unencrypted, to the same Region

The following code creates a copy of a snapshot, with the new name mydbsnapshotcopy, in the
same AWS Region as the source snapshot. When the copy is made, all tags on the original snapshot
are copied to the snapshot copy.

https://rds.us-west-1.amazonaws.com/
 ?Action=CopyDBSnapshot
 &CopyTags=true
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBSnapshotIdentifier=mysql-instance1-snapshot-20130805
 &TargetDBSnapshotIdentifier=mydbsnapshotcopy
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20140429/us-west-1/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

Copying a DB snapshot 1119

https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Relational Database Service User Guide

Example from unencrypted, across Regions

The following code creates a copy of a snapshot, with the new name mydbsnapshotcopy, in the
US West (N. California) Region.

https://rds.us-west-1.amazonaws.com/
 ?Action=CopyDBSnapshot
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBSnapshotIdentifier=arn%3Aaws%3Ards%3Aus-east-1%3A123456789012%3Asnapshot
%3Amysql-instance1-snapshot-20130805
 &TargetDBSnapshotIdentifier=mydbsnapshotcopy
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20140429/us-west-1/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

Example from encrypted, across Regions

The following code creates a copy of a snapshot, with the new name mydbsnapshotcopy, in the
US East (N. Virginia) Region.

https://rds.us-east-1.amazonaws.com/
 ?Action=CopyDBSnapshot
 &KmsKeyId=my-us-east-1-key
 &OptionGroupName=custom-option-group-name
 &PreSignedUrl=https%253A%252F%252Frds.us-west-2.amazonaws.com%252F
 %253FAction%253DCopyDBSnapshot
 %2526DestinationRegion%253Dus-east-1
 %2526KmsKeyId%253Dmy-us-east-1-key
 %2526SourceDBSnapshotIdentifier%253Darn%25253Aaws%25253Ards%25253Aus-
west-2%25253A123456789012%25253Asnapshot%25253Amysql-instance1-snapshot-20161115
 %2526SignatureMethod%253DHmacSHA256
 %2526SignatureVersion%253D4
 %2526Version%253D2014-10-31
 %2526X-Amz-Algorithm%253DAWS4-HMAC-SHA256
 %2526X-Amz-Credential%253DAKIADQKE4SARGYLE%252F20161117%252Fus-west-2%252Frds
%252Faws4_request
 %2526X-Amz-Date%253D20161117T215409Z
 %2526X-Amz-Expires%253D3600

Copying a DB snapshot 1120

Amazon Relational Database Service User Guide

 %2526X-Amz-SignedHeaders%253Dcontent-type%253Bhost%253Buser-agent%253Bx-amz-
content-sha256%253Bx-amz-date
 %2526X-Amz-Signature
%253D255a0f17b4e717d3b67fad163c3ec26573b882c03a65523522cf890a67fca613
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBSnapshotIdentifier=arn%3Aaws%3Ards%3Aus-west-2%3A123456789012%3Asnapshot
%3Amysql-instance1-snapshot-20161115
 &TargetDBSnapshotIdentifier=mydbsnapshotcopy
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20161117T221704Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=da4f2da66739d2e722c85fcfd225dc27bba7e2b8dbea8d8612434378e52adccf

Limitations

The following are some limitations when you copy snapshots:

• You can't copy a snapshot to or from the China (Beijing) Region or the China (Ningxia) Region.

• You can copy a snapshot between AWS GovCloud (US-East) and AWS GovCloud (US-West).
However, you can't copy a snapshot between these GovCloud (US) Regions and Regions that
aren't GovCloud (US) Regions.

• If you delete a source snapshot before the target snapshot becomes available, the snapshot copy
might fail. Verify that the target snapshot has a status of AVAILABLE before you delete a source
snapshot.

• You can have up to 20 snapshot copy requests in progress to a single destination Region per
account.

• When you request multiple snapshot copies for the same source DB instance, they're queued
internally. The copies requested later won't start until the previous snapshot copies are
completed. For more information, see Why is my EC2 AMI or EBS snapshot creation slow? in the
AWS Knowledge Center.

• Depending on the AWS Regions involved and the amount of data to be copied, a cross-Region
snapshot copy can take hours to complete. In some cases, there might be a large number of
cross-Region snapshot copy requests from a given source Region. In such cases, Amazon RDS
might put new cross-Region copy requests from that source Region into a queue until some in-

Limitations 1121

https://aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-ec2-ami-creation-slow/

Amazon Relational Database Service User Guide

progress copies complete. No progress information is displayed about copy requests while they
are in the queue. Progress information is displayed when the copy starts.

• If a copy is still pending when you start another copy, the second copy doesn't start until the first
copy finishes.

• You can't copy a snapshot of a Multi-AZ DB cluster.

• You can only copy snapshots of DB instances that use io2 volumes to AWS Regions where io2
Block Express volumes are available. For more information, see Amazon RDS DB instance storage.

Considerations

For considerations when copying a DB snapshot, see the following topics.

Topics

• Snapshot retention

• Considerations for shared snapshot copying

• Considerations for encryption snapshot copying

• Considerations for incremental snapshot copying

• Considerations for cross-Region snapshot copying

• Considerations for option groups

• Considerations for parameter group

Snapshot retention

Amazon RDS deletes automated backups in several situations:

• At the end of their retention period.

• When you disable automated backups for a DB instance.

• When you delete a DB instance.

If you want to keep an automated backup for a longer period, copy it to create a manual snapshot,
which is retained until you delete it. Amazon RDS storage costs might apply to manual snapshots if
they exceed your default storage space.

For more information about backup storage costs, see Amazon RDS pricing.

Considerations 1122

https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

Considerations for shared snapshot copying

You can copy snapshots shared to you by other AWS accounts. In some cases, you might copy an
encrypted snapshot that has been shared from another AWS account. In these cases, you must
have access to the AWS KMS key that was used to encrypt the snapshot.

Note

Amazon RDS storage costs apply to shared snapshots you copy. Amazon RDS might attach
the ARN of the source DB instance to the snapshot you copied.

You can copy a shared DB snapshot across AWS Regions if the snapshot is unencrypted. However, if
the shared DB snapshot is encrypted, you can only copy it in the same Region.

Note

Copying shared incremental snapshots in the same AWS Region is supported when they're
unencrypted, or encrypted using the same KMS key as the initial full snapshot. If you use
a different KMS key to encrypt subsequent snapshots when copying them, those shared
snapshots are full snapshots. For more information, see Considerations for incremental
snapshot copying.

Considerations for encryption snapshot copying

You can copy a snapshot that has been encrypted using a KMS key. If you copy an encrypted
snapshot, the copy of the snapshot must also be encrypted. If you copy an encrypted snapshot
within the same AWS Region, you can encrypt the copy with the same KMS key as the original
snapshot. Or you can specify a different KMS key.

If you copy an encrypted snapshot across Regions, you must specify a KMS key valid in the
destination AWS Region. It can be a Region-specific KMS key, or a multi-Region key. For more
information on multi-Region KMS keys, see Using multi-Region keys in AWS KMS.

The source snapshot remains encrypted throughout the copy process. For more information, see
Limitations of Amazon RDS encrypted DB instances.

You can also encrypt a copy of an unencrypted snapshot. This way, you can quickly add encryption
to a previously unencrypted DB instance. To do this, you create a snapshot of your DB instance

Considerations 1123

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

Amazon Relational Database Service User Guide

when you are ready to encrypt it. You then create a copy of that snapshot and specify a KMS key
to encrypt that snapshot copy. You can then restore an encrypted DB instance from the encrypted
snapshot.

For more information about AWS KMS key management for Amazon RDS, see AWS KMS key
management.

Considerations for incremental snapshot copying

An incremental snapshot contains only the data that has changed after the most recent snapshot
of the same DB instance. Incremental snapshot copying is faster and results in lower storage costs
than full snapshot copying.

Whether a snapshot copy is incremental is determined by the most recently completed snapshot
copy and the source snapshot. If the most recent snapshot copy was deleted, the next copy is a
full copy, not an incremental copy. A snapshot copy will be the same type as the source snapshot.
If the source snapshot is an incremental snapshot, then the snapshot copy will be an incremental
snapshot.

When you copy a snapshot across AWS accounts, the copy is an incremental copy only if all of the
following conditions are met:

• The most recent snapshot copy is of the same source DB instance and still exists in the
destination account.

• All copies of the snapshot in the destination account are either unencrypted, or were encrypted
using the same KMS key.

• If the source DB instance is a Multi-AZ instance, it hasn't failed over to another AZ since the last
snapshot was taken from it.

The following examples illustrate the difference between full and incremental snapshots. They
apply to both shared and unshared snapshots.

Snapshot Encryption key Full or incremental

S1 K1 Full

S2 K1 Incremental of S1

S3 K1 Incremental of S2

Considerations 1124

Amazon Relational Database Service User Guide

Snapshot Encryption key Full or incremental

S4 K1 Incremental of S3

Copy of S1 (S1C) K2 Full

Copy of S2 (S2C) K3 Full

Copy of S3 (S3C) K3 Incremental of S2C

Copy of S4 (S4C) K3 Incremental of S3C

Copy 2 of S4 (S4C2) K4 Full

Note

In these examples, snapshots S2, S3, and S4 are incremental only if the previous snapshot
still exists.
The same applies to copies. Snapshot copies S3C and S4C are incremental only if the
previous copy still exists.

For information on copying incremental snapshots across AWS Regions, see Full and incremental
copies.

Considerations for cross-Region snapshot copying

You can copy DB snapshots across AWS Regions. However, there are certain constraints and
considerations for cross-Region snapshot copying.

Requesting a cross-Region DB snapshot copy

To communicate with the source Region to request a cross-Region DB snapshot copy, the requester
(IAM role or IAM user) must have access to the source DB snapshot and the source Region.

Certain conditions in the requester's IAM policy can cause the request to fail. The following
examples assume that you're copying the DB snapshot from US East (Ohio) to US East (N. Virginia).
These examples show conditions in the requester's IAM policy that cause the request to fail:

• The requester's policy has a condition for aws:RequestedRegion.

Considerations 1125

Amazon Relational Database Service User Guide

...
"Effect": "Allow",
"Action": "rds:CopyDBSnapshot",
"Resource": "*",
"Condition": {
 "StringEquals": {
 "aws:RequestedRegion": "us-east-1"
 }
}

The request fails because the policy doesn't allow access to the source Region. For a successful
request, specify both the source and destination Regions.

...
"Effect": "Allow",
"Action": "rds:CopyDBSnapshot",
"Resource": "*",
"Condition": {
 "StringEquals": {
 "aws:RequestedRegion": [
 "us-east-1",
 "us-east-2"
]
 }
}

• The requester's policy doesn't allow access to the source DB snapshot.

...
"Effect": "Allow",
"Action": "rds:CopyDBSnapshot",
"Resource": "arn:aws:rds:us-east-1:123456789012:snapshot:target-snapshot"
...

For a successful request, specify both the source and target snapshots.

...
"Effect": "Allow",
"Action": "rds:CopyDBSnapshot",
"Resource": [
 "arn:aws:rds:us-east-1:123456789012:snapshot:target-snapshot",

Considerations 1126

Amazon Relational Database Service User Guide

 "arn:aws:rds:us-east-2:123456789012:snapshot:source-snapshot"
]
...

• The requester's policy denies aws:ViaAWSService.

...
"Effect": "Allow",
"Action": "rds:CopyDBSnapshot",
"Resource": "*",
"Condition": {
 "Bool": {"aws:ViaAWSService": "false"}
}

Communication with the source Region is made by RDS on the requester's behalf. For a
successful request, don't deny calls made by AWS services.

• The requester's policy has a condition for aws:SourceVpc or aws:SourceVpce.

These requests might fail because when RDS makes the call to the remote Region, it isn't from
the specified VPC or VPC endpoint.

If you need to use one of the previous conditions that would cause a request to fail, you can
include a second statement with aws:CalledVia in your policy to make the request succeed. For
example, you can use aws:CalledVia with aws:SourceVpce as shown here:

...
"Effect": "Allow",
"Action": "rds:CopyDBSnapshot",
"Resource": "*",
"Condition": {
 "Condition" : {
 "ForAnyValue:StringEquals" : {
 "aws:SourceVpce": "vpce-1a2b3c4d"
 }
 }
},
{
 "Effect": "Allow",
 "Action": [
 "rds:CopyDBSnapshot"
],

Considerations 1127

Amazon Relational Database Service User Guide

 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": [
 "rds.amazonaws.com"
]
 }
 }
}

For more information, see Policies and permissions in IAM in the IAM User Guide.

Authorizing the snapshot copy

After a cross-Region DB snapshot copy request returns success, RDS starts the copy in the
background. An authorization for RDS to access the source snapshot is created. This authorization
links the source DB snapshot to the target DB snapshot, and allows RDS to copy only to the
specified target snapshot.

The authorization is verified by RDS using the rds:CrossRegionCommunication permission in
the service-linked IAM role. If the copy is authorized, RDS communicates with the source Region
and completes the copy.

RDS doesn't have access to DB snapshots that weren't authorized previously by a
CopyDBSnapshot request. The authorization is revoked when copying completes.

RDS uses the service-linked role to verify the authorization in the source Region. If you delete the
service-linked role during the copy process, the copy fails.

For more information, see Using service-linked roles in the IAM User Guide.

Using AWS Security Token Service credentials

Session tokens from the global AWS Security Token Service (AWS STS) endpoint are valid only in
AWS Regions that are enabled by default (commercial Regions). If you use credentials from the
assumeRole API operation in AWS STS, use the regional endpoint if the source Region is an opt-in
Region. Otherwise, the request fails. This happens because your credentials must be valid in both
Regions, which is true for opt-in Regions only when the regional AWS STS endpoint is used.

To use the global endpoint, make sure that it's enabled for both Regions in the operations. Set the
global endpoint to Valid in all AWS Regions in the AWS STS account settings.

Considerations 1128

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon Relational Database Service User Guide

The same rule applies to credentials in the presigned URL parameter.

For more information, see Managing AWS STS in an AWS Region in the IAM User Guide.

Latency and multiple copy requests

Depending on the AWS Regions involved and the amount of data to be copied, a cross-Region
snapshot copy can take hours to complete.

In some cases, there might be a large number of cross-Region snapshot copy requests from a
given source AWS Region. In such cases, Amazon RDS might put new cross-Region copy requests
from that source AWS Region into a queue until some in-progress copies complete. No progress
information is displayed about copy requests while they are in the queue. Progress information is
displayed when the copying starts.

Full and incremental copies

When you copy a snapshot to a different AWS Region from the source snapshot, the first copy is
a full snapshot copy, even if you copy an incremental snapshot. A full snapshot copy contains all
of the data and metadata required to restore the DB instance. After the first snapshot copy, you
can copy incremental snapshots of the same DB instance to the same destination Region within
the same AWS account. For more information on incremental snapshots, see Considerations for
incremental snapshot copying.

Incremental snapshot copying across AWS Regions is supported for both unencrypted and
encrypted snapshots.

When you copy a snapshot across AWS Regions, the copy is an incremental copy if the following
conditions are met:

• The snapshot was previously copied to the destination Region.

• The most recent snapshot copy still exists in the destination Region.

• All copies of the snapshot in the destination Region are either unencrypted, or were encrypted
using the same KMS key.

Considerations for option groups

DB option groups are specific to the AWS Region that they are created in, and you can't use an
option group from one AWS Region in another AWS Region.

Considerations 1129

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon Relational Database Service User Guide

For Oracle databases, you can use the AWS CLI or RDS API to copy the custom DB option group
from a snapshot that has been shared with your AWS account. You can only copy option groups
within the same AWS Region. The option group isn't copied if it has already been copied to the
destination account and no changes have been made to it since being copied. If the source option
group has been copied before, but has changed since being copied, RDS copies the new version to
the destination account. Default option groups aren't copied.

When you copy a snapshot across Regions, you can specify a new option group for the snapshot.
We recommend that you prepare the new option group before you copy the snapshot. In the
destination AWS Region, create an option group with the same settings as the original DB instance.
If one already exists in the new AWS Region, you can use that one.

In some cases, you might copy a snapshot and not specify a new option group for the snapshot. In
these cases, when you restore the snapshot the DB instance gets the default option group. To give
the new DB instance the same options as the original, do the following:

1. In the destination AWS Region, create an option group with the same settings as the original DB
instance. If one already exists in the new AWS Region, you can use that one.

2. After you restore the snapshot in the destination AWS Region, modify the new DB instance and
add the new or existing option group from the previous step.

Considerations for parameter group

When you copy a snapshot across Regions, the copy doesn't include the parameter group used
by the original DB instance. When you restore a snapshot to create a new DB instance, that DB
instance gets the default parameter group for the AWS Region it is created in. To give the new DB
instance the same parameters as the original, do the following:

1. In the destination AWS Region, create a DB parameter group with the same settings as the
original DB instance. If one already exists in the new AWS Region, you can use that one.

2. After you restore the snapshot in the destination AWS Region, modify the new DB instance and
add the new or existing parameter group from the previous step.

Considerations 1130

Amazon Relational Database Service User Guide

Sharing a DB snapshot for Amazon RDS

Using Amazon RDS, you can share a manual DB snapshot in the following ways:

• Sharing a manual DB snapshot, whether encrypted or unencrypted, enables authorized AWS
accounts to copy the snapshot.

• Sharing an unencrypted manual DB snapshot enables authorized AWS accounts to directly
restore a DB instance from the snapshot instead of taking a copy of it and restoring from that.
However, you can't restore a DB instance from a DB snapshot that is both shared and encrypted.
Instead, you can make a copy of the DB snapshot and restore the DB instance from the copy.

Note

To share an automated DB snapshot, create a manual DB snapshot by copying the
automated snapshot, and then share that copy. This process also applies to AWS Backup–
generated resources.

For more information on copying a snapshot, see Copying a DB snapshot for Amazon RDS. For
more information on restoring a DB instance from a DB snapshot, see Restoring to a DB instance.

You can share a manual snapshot with up to 20 other AWS accounts.

The following limitations apply when sharing manual snapshots with other AWS accounts:

• When you restore a DB instance from a shared snapshot using the AWS Command Line Interface
(AWS CLI) or Amazon RDS API, you must specify the Amazon Resource Name (ARN) of the shared
snapshot as the snapshot identifier.

• You can't share a DB snapshot that uses an option group with permanent or persistent options,
except for Oracle DB instances that have the Timezone or OLS option (or both).

A permanent option can't be removed from an option group. Option groups with persistent
options can't be removed from a DB instance once the option group has been assigned to the DB
instance.

The following table lists permanent and persistent options and their related DB engines.

Sharing a DB snapshot 1131

Amazon Relational Database Service User Guide

Option name Persistent Permanent DB engine

TDE Yes No Microsoft SQL Server
Enterprise Edition

TDE Yes Yes Oracle Enterprise Edition

Timezone Yes Yes
Oracle Enterprise Edition

Oracle Standard Edition

Oracle Standard Edition One

Oracle Standard Edition 2

For Oracle DB instances, you can copy shared DB snapshots that have the Timezone or OLS
option (or both). To do so, specify a target option group that includes these options when you
copy the DB snapshot. The OLS option is permanent and persistent only for Oracle DB instances
running Oracle version 12.2 or higher. For more information about these options, see Oracle time
zone and Oracle Label Security.

• You can't share a snapshot of a Multi-AZ DB cluster.

See the following topics for information about sharing public snapshots, sharing encrypted
snapshots, and stopping snapshot sharing.

Topics

• Sharing public snapshots for Amazon RDS

• Sharing encrypted snapshots for Amazon RDS

• Stopping snapshot sharing for Amazon RDS

Sharing a snapshot

You can share a DB snapshot using the AWS Management Console, the AWS CLI, or the RDS API.

Sharing a snapshot 1132

Amazon Relational Database Service User Guide

Console

Using the Amazon RDS console, you can share a manual DB snapshot with up to 20 AWS accounts.
You can also use the console to stop sharing a manual snapshot with one or more accounts.

To share a manual DB snapshot by using the Amazon RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the manual snapshot that you want to share.

4. For Actions, choose Share snapshot.

5. Choose one of the following options for DB snapshot visibility.

• If the source is unencrypted, choose Public to permit all AWS accounts to restore a DB
instance from your manual DB snapshot, or choose Private to permit only AWS accounts
that you specify to restore a DB instance from your manual DB snapshot.

Warning

If you set DB snapshot visibility to Public, all AWS accounts can restore a DB
instance from your manual DB snapshot and have access to your data. Do not share
any manual DB snapshots that contain private information as Public.
For more information, see Sharing public snapshots for Amazon RDS.

• If the source is encrypted, DB snapshot visibility is set as Private because encrypted
snapshots can't be shared as public.

Note

Snapshots that have been encrypted with the default AWS KMS key can't be shared.
For information on how to work around this issue, see Sharing encrypted snapshots
for Amazon RDS.

6. For AWS Account ID, enter the AWS account identifier for an account that you want to permit
to restore a DB instance from your manual snapshot, and then choose Add. Repeat to include
additional AWS account identifiers, up to 20 AWS accounts.

Sharing a snapshot 1133

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

If you make an error when adding an AWS account identifier to the list of permitted accounts,
you can delete it from the list by choosing Delete at the right of the incorrect AWS account
identifier.

7. After you have added identifiers for all of the AWS accounts that you want to permit to restore
the manual snapshot, choose Save to save your changes.

AWS CLI

To share a DB snapshot, use the aws rds modify-db-snapshot-attribute command. Use the
--values-to-add parameter to add a list of the IDs for the AWS accounts that are authorized to
restore the manual snapshot.

Example of sharing a snapshot with a single account

The following example enables AWS account identifier 123456789012 to restore the DB snapshot
named db7-snapshot.

For Linux, macOS, or Unix:

aws rds modify-db-snapshot-attribute \

Sharing a snapshot 1134

Amazon Relational Database Service User Guide

--db-snapshot-identifier db7-snapshot \
--attribute-name restore \
--values-to-add 123456789012

For Windows:

aws rds modify-db-snapshot-attribute ^
--db-snapshot-identifier db7-snapshot ^
--attribute-name restore ^
--values-to-add 123456789012

Example of sharing a snapshot with multiple accounts

The following example enables two AWS account identifiers, 111122223333 and 444455556666,
to restore the DB snapshot named manual-snapshot1.

For Linux, macOS, or Unix:

aws rds modify-db-snapshot-attribute \
--db-snapshot-identifier manual-snapshot1 \
--attribute-name restore \
--values-to-add {"111122223333","444455556666"}

For Windows:

aws rds modify-db-snapshot-attribute ^
--db-snapshot-identifier manual-snapshot1 ^
--attribute-name restore ^
--values-to-add "[\"111122223333\",\"444455556666\"]"

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

To list the AWS accounts enabled to restore a snapshot, use the describe-db-snapshot-
attributes AWS CLI command.

Sharing a snapshot 1135

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshot-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshot-attributes.html

Amazon Relational Database Service User Guide

RDS API

You can also share a manual DB snapshot with other AWS accounts by using the Amazon
RDS API. To do so, call the ModifyDBSnapshotAttribute operation. Specify restore for
AttributeName, and use the ValuesToAdd parameter to add a list of the IDs for the AWS
accounts that are authorized to restore the manual snapshot.

To make a manual snapshot public and restorable by all AWS accounts, use the value all.
However, take care not to add the all value for any manual snapshots that contain private
information that you don't want to be available to all AWS accounts. Also, don't specify all for
encrypted snapshots, because making such snapshots public isn't supported.

To list all of the AWS accounts permitted to restore a snapshot, use the
DescribeDBSnapshotAttributes API operation.

Sharing public snapshots for Amazon RDS

You can share an unencrypted manual snapshot as public, which makes the snapshot available
to all AWS accounts. Make sure when sharing a snapshot as public that none of your private
information is included in the public snapshot.

When a snapshot is shared publicly, it gives all AWS accounts permission both to copy the snapshot
and to create DB instances from it.

You aren't billed for the backup storage of public snapshots owned by other accounts. You're billed
only for snapshots that you own.

If you copy a public snapshot, you own the copy. You're billed for the backup storage of your
snapshot copy. If you create a DB instance from a public snapshot, you're billed for that DB
instance. For Amazon RDS pricing information, see the Amazon RDS product page.

You can delete only the public snapshots that you own. To delete a shared or public snapshot,
make sure to log into the AWS account that owns the snapshot.

Viewing public snapshots owned by other AWS accounts

You can view public snapshots owned by other accounts in a particular AWS Region on the Public
tab of the Snapshots page in the Amazon RDS console. Your snapshots (those owned by your
account) don't appear on this tab.

Sharing public snapshots 1136

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBSnapshotAttribute.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshotAttributes.html
https://aws.amazon.com/rds/pricing

Amazon Relational Database Service User Guide

To view public snapshots

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the Public tab.

The public snapshots appear. You can see which account owns a public snapshot in the Owner
column.

Note

You might have to modify the page preferences, by selecting the gear icon at the upper
right of the Public snapshots list, to see this column.

Viewing your own public snapshots

You can use the following AWS CLI command (Unix only) to view the public snapshots owned by
your AWS account in a particular AWS Region.

aws rds describe-db-snapshots --snapshot-type public --include-public |
 grep account_number

The output returned is similar to the following example if you have public snapshots.

"DBSnapshotArn": "arn:aws:rds:us-east-1:123456789012:snapshot:mysnapshot1",
"DBSnapshotArn": "arn:aws:rds:us-east-1:123456789012:snapshot:mysnapshot2",

Note

You might see duplicate entries for DBSnapshotIdentifier or
SourceDBSnapshotIdentifier.

Sharing public snapshots from deprecated DB engine versions

Restoring or copying public snapshots from deprecated DB engine versions isn't supported.

Sharing public snapshots 1137

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The RDS for Oracle and RDS for PostgreSQL DB engines support upgrading DB snapshot engine
versions directly. You can upgrade your snapshots, then re-share them publicly. For more
information, see the following:

• Upgrading an Oracle DB snapshot

• Upgrading a PostgreSQL DB snapshot engine version

For other DB engines, perform the following steps to make your existing unsupported public
snapshot available to restore or copy:

1. Mark the snapshot as private.

2. Restore the snapshot.

3. Upgrade the restored DB instance to a supported engine version.

4. Create a new snapshot.

5. Re-share the snapshot publicly.

Sharing encrypted snapshots for Amazon RDS

You can share DB snapshots that have been encrypted "at rest" using the AES-256 encryption
algorithm, as described in Encrypting Amazon RDS resources.

The following restrictions apply to sharing encrypted snapshots:

• You can't share encrypted snapshots as public.

• You can't share Oracle or Microsoft SQL Server snapshots that are encrypted using Transparent
Data Encryption (TDE).

• You can't share a snapshot that has been encrypted using the default KMS key of the AWS
account that shared the snapshot.

For more information about AWS KMS key management for Amazon RDS, see AWS KMS key
management.

To work around the default KMS key issue, perform the following tasks:

1. Create a customer managed key and give access to it.

2. Copy and share the snapshot from the source account.

Sharing encrypted snapshots 1138

Amazon Relational Database Service User Guide

3. Copy the shared snapshot in the target account.

Create a customer managed key and give access to it

First you create a custom KMS key in the same AWS Region as the encrypted DB snapshot. While
creating the customer managed key, you give access to it for another AWS account.

Note

You can also use a KMS key from another AWS account when the key policy grants access to
the source and target accounts.

To create a customer managed key and give access to it

1. Sign in to the AWS Management Console from the source AWS account.

2. Open the AWS KMS console at https://console.aws.amazon.com/kms.

3. To change the AWS Region, use the Region selector in the upper-right corner of the page.

4. In the navigation pane, choose Customer managed keys.

5. Choose Create key.

6. On the Configure key page:

a. For Key type, select Symmetric.

b. For Key usage, select Encrypt and decrypt.

c. Expand Advanced options.

d. For Key material origin, select KMS.

e. For Regionality, select Single-Region key.

f. Choose Next.

7. On the Add labels page:

a. For Alias. enter a display name for your KMS key, for example share-snapshot.

b. (Optional) Enter a description for your KMS key.

c. (Optional) Add tags to your KMS key.

d. Choose Next.

8. On the Define key administrative permissions page, choose Next.

Sharing encrypted snapshots 1139

https://console.aws.amazon.com/kms

Amazon Relational Database Service User Guide

9. On the Define key usage permissions page:

a. For Other AWS accounts, choose Add another AWS account.

b. Enter the ID of the AWS account to which you want to give access.

You can give access to multiple AWS accounts.

c. Choose Next.

10. Review your KMS key, then choose Finish.

Copy and share the snapshot from the source account

Next you copy the source DB snapshot to a new snapshot using the customer managed key. Then
you share it with the target AWS account.

To copy and share the snapshot

1. Sign in to the AWS Management Console from the source AWS account.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/

3. In the navigation pane, choose Snapshots.

4. Select the DB snapshot you want to copy.

5. For Actions, choose Copy snapshot.

6. On the Copy snapshot page:

a. For Destination Region, choose the AWS Region where you created the customer
managed key in the previous procedure.

b. Enter the name of the DB snapshot copy in New DB Snapshot Identifier.

c. For AWS KMS key, choose the customer managed key that you created.

Sharing encrypted snapshots 1140

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

d. Choose Copy snapshot.

7. When the snapshot copy is available, select it.

8. For Actions, choose Share snapshot.

9. On the Snapshot permissions page:

Sharing encrypted snapshots 1141

Amazon Relational Database Service User Guide

a. Enter the AWS account ID with which you're sharing the snapshot copy, then choose Add.

b. Choose Save.

The snapshot is shared.

Copy the shared snapshot in the target account

Now you can copy the shared snapshot in the target AWS account.

To copy the shared snapshot

1. Sign in to the AWS Management Console from the target AWS account.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/

3. In the navigation pane, choose Snapshots.

4. Choose the Shared with me tab.

5. Select the shared snapshot.

6. For Actions, choose Copy snapshot.

7. Choose your settings for copying the snapshot as in the previous procedure, but use an AWS
KMS key that belongs to the target account.

Choose Copy snapshot.

Stopping snapshot sharing for Amazon RDS

To stop sharing a DB snapshot, you remove permission from the target AWS account.

Console

To stop sharing a manual DB snapshot with an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the manual snapshot that you want to stop sharing.

4. Choose Actions, and then choose Share snapshot.

Stopping snapshot sharing 1142

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. To remove permission for an AWS account, choose Delete for the AWS account identifier for
that account from the list of authorized accounts.

6. Choose Save to save your changes.

CLI

To remove an AWS account identifier from the list, use the --values-to-remove parameter.

Example of stopping snapshot sharing

The following example prevents AWS account ID 444455556666 from restoring the snapshot.

For Linux, macOS, or Unix:

aws rds modify-db-snapshot-attribute \
--db-snapshot-identifier manual-snapshot1 \
--attribute-name restore \
--values-to-remove 444455556666

For Windows:

aws rds modify-db-snapshot-attribute ^
--db-snapshot-identifier manual-snapshot1 ^
--attribute-name restore ^
--values-to-remove 444455556666

RDS API

To remove sharing permission for an AWS account, use the ModifyDBSnapshotAttribute
operation with AttributeName set to restore and the ValuesToRemove parameter. To mark a
manual snapshot as private, remove the value all from the values list for the restore attribute.

Stopping snapshot sharing 1143

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterSnapshotAttribute.html

Amazon Relational Database Service User Guide

Exporting DB snapshot data to Amazon S3 for Amazon RDS

You can export DB snapshot data to an Amazon S3 bucket. The export process runs in the
background and doesn't affect the performance of your active database.

When you export a DB snapshot, Amazon RDS extracts data from the snapshot and stores it in
an Amazon S3 bucket. The data is stored in an Apache Parquet format that is compressed and
consistent.

You can export all types of DB snapshots—including manual snapshots, automated system
snapshots, and snapshots created by the AWS Backup service. By default, all data in the snapshot is
exported. However, you can choose to export specific sets of databases, schemas, or tables.

After the data is exported, you can analyze the exported data directly through tools like Amazon
Athena or Amazon Redshift Spectrum. For more information on using Athena to read Parquet
data, see Parquet SerDe in the Amazon Athena User Guide. For more information on using Redshift
Spectrum to read Parquet data, see COPY from columnar data formats in the Amazon Redshift
Database Developer Guide.

Warning

You can't restore exported snapshot data from S3 to a new DB instance or import snapshot
data from S3 into an existing DB instance. However, you can process the data using Amazon
Athena or Redshift Spectrum for analysis. Additionally, you can use AWS Glue to transform
the data and then import it into Amazon RDS using tools like AWS DMS or custom scripts.

For more information about exporting DB snapshots to Amazon S3, see the following topics.

Topics

• Monitoring snapshot exports for Amazon RDS

• Canceling a snapshot export task for Amazon RDS

• Failure messages for Amazon S3 export tasks for Amazon RDS

• Troubleshooting RDS for PostgreSQL permissions errors

• File naming conventions for exports to Amazon S3 for Amazon RDS

• Data conversion when exporting to an Amazon S3 bucket for Amazon RDS

Exporting DB snapshot data to Amazon S3 1144

https://docs.aws.amazon.com/athena/latest/ug/parquet-serde.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-usage_notes-copy-from-columnar.html

Amazon Relational Database Service User Guide

Overview of exporting snapshot data

You use the following process to export DB snapshot data to an Amazon S3 bucket. For more
details, see the following sections.

1. Identify the snapshot to export.

Use an existing automated or manual snapshot, or create a manual snapshot of a DB instance
or Multi-AZ DB cluster.

2. Set up access to the Amazon S3 bucket.

A bucket is a container for Amazon S3 objects or files. To provide the information to access a
bucket, take the following steps:

a. Identify the S3 bucket where the snapshot is to be exported to. The S3 bucket must be in
the same AWS Region as the snapshot. For more information, see Identifying the Amazon
S3 bucket for export.

b. Create an AWS Identity and Access Management (IAM) role that grants the snapshot
export task access to the S3 bucket. For more information, see Providing access to an
Amazon S3 bucket using an IAM role.

3. Create a symmetric encryption AWS KMS key for the server-side encryption. The KMS key is
used by the snapshot export task to set up AWS KMS server-side encryption when writing the
export data to S3.

The KMS key policy must include both the kms:CreateGrant and kms:DescribeKey
permissions. For more information on using KMS keys in Amazon RDS, see AWS KMS key
management.

If you have a deny statement in your KMS key policy, make sure to explicitly exclude the AWS
service principal export.rds.amazonaws.com.

You can use a KMS key within your AWS account, or you can use a cross-account KMS key. For
more information, see Using a cross-account AWS KMS key for encrypting Amazon S3 exports.

4. Export the snapshot to Amazon S3 using the console or the start-export-task CLI
command. For more information, see Exporting a DB snapshot to an Amazon S3 bucket.

5. To access your exported data in the Amazon S3 bucket, see Uploading, downloading, and
managing objects in the Amazon Simple Storage Service User Guide.

Overview of exporting snapshot data 1145

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html

Amazon Relational Database Service User Guide

Setting up access to an Amazon S3 bucket

To export DB snapshot data to an Amazon S3 file, you first give the snapshot permission to access
the Amazon S3 bucket. You then create an IAM role to allow the Amazon RDS service to write to
the Amazon S3 bucket.

Topics

• Identifying the Amazon S3 bucket for export

• Providing access to an Amazon S3 bucket using an IAM role

• Using a cross-account Amazon S3 bucket

• Using a cross-account AWS KMS key for encrypting Amazon S3 exports

Identifying the Amazon S3 bucket for export

Identify the Amazon S3 bucket to export the DB snapshot to. Use an existing S3 bucket or create a
new S3 bucket.

Note

The S3 bucket to export to must be in the same AWS Region as the snapshot.

For more information about working with Amazon S3 buckets, see the following in the Amazon
Simple Storage Service User Guide:

• How do I view the properties for an S3 bucket?

• How do I enable default encryption for an Amazon S3 bucket?

• How do I create an S3 bucket?

Providing access to an Amazon S3 bucket using an IAM role

Before you export DB snapshot data to Amazon S3, give the snapshot export tasks write-access
permission to the Amazon S3 bucket.

To grant this permission, create an IAM policy that provides access to the bucket, then create an
IAM role and attach the policy to the role. You later assign the IAM role to your snapshot export
task.

Setting up access to an S3 bucket 1146

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-bucket-properties.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Relational Database Service User Guide

For information about other Amazon S3 access management tools, see Access control in Amazon
S3 in the Amazon S3 User Guide.

Important

If you plan to use the AWS Management Console to export your snapshot, you can choose
to create the IAM policy and the role automatically when you export the snapshot. For
instructions, see Exporting a DB snapshot to an Amazon S3 bucket.

To give DB snapshot tasks access to Amazon S3

1. Create an IAM policy. This policy provides the bucket and object permissions that allow your
snapshot export task to access Amazon S3.

In the policy, include the following required actions to allow the transfer of files from Amazon
RDS to an S3 bucket:

• s3:PutObject*

• s3:GetObject*

• s3:ListBucket

• s3:DeleteObject*

• s3:GetBucketLocation

In the policy, include the following resources to identify the S3 bucket and objects in the
bucket. The following list of resources shows the Amazon Resource Name (ARN) format for
accessing Amazon S3.

• arn:aws:s3:::amzn-s3-demo-bucket

• arn:aws:s3:::amzn-s3-demo-bucket/*

For more information on creating an IAM policy for Amazon RDS, see Creating and using an
IAM policy for IAM database access. See also Tutorial: Create and attach your first customer
managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named ExportPolicy with these
options. It grants access to a bucket named amzn-s3-demo-bucket.

Setting up access to an S3 bucket 1147

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-management.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Relational Database Service User Guide

Note

After you create the policy, note the ARN of the policy. You need the ARN for a
subsequent step when you attach the policy to an IAM role.

aws iam create-policy --policy-name ExportPolicy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExportPolicy",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
}'

2. Create an IAM role, so that Amazon RDS can assume this IAM role on your behalf to access
your Amazon S3 buckets. For more information, see Creating a role to delegate permissions to
an IAM user in the IAM User Guide.

The following example shows using the AWS CLI command to create a role named rds-s3-
export-role.

aws iam create-role --role-name rds-s3-export-role --assume-role-policy-document
 '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Setting up access to an S3 bucket 1148

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Relational Database Service User Guide

 "Principal": {
 "Service": "export.rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created earlier to the role named rds-
s3-export-role. Replace your-policy-arn with the policy ARN that you noted in an
earlier step.

aws iam attach-role-policy --policy-arn your-policy-arn --role-name rds-s3-
export-role

Using a cross-account Amazon S3 bucket

You can use Amazon S3 buckets across AWS accounts. To use a cross-account bucket, add a bucket
policy to allow access to the IAM role that you're using for the S3 exports. For more information,
see Example 2: Bucket owner granting cross-account bucket permissions.

Attach a bucket policy to your bucket, as shown in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/Admin"
 },
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation"
],
 "Resource": [

Setting up access to an S3 bucket 1149

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html

Amazon Relational Database Service User Guide

 "arn:aws:s3:::amzn-s3-demo-destination-bucket",
 "arn:aws:s3:::amzn-s3-demo-destination-bucket/*"
]
 }
]
}

Using a cross-account AWS KMS key for encrypting Amazon S3 exports

You can use a cross-account AWS KMS key to encrypt Amazon S3 exports. First, you add a
key policy to the local account, then you add IAM policies in the external account. For more
information, see Allowing users in other accounts to use a KMS key.

To use a cross-account KMS key

1. Add a key policy to the local account.

The following example gives ExampleRole and ExampleUser in the external account
444455556666 permissions in the local account 123456789012.

{
 "Sid": "Allow an external account to use this KMS key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:role/ExampleRole",
 "arn:aws:iam::444455556666:user/ExampleUser"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:RetireGrant"
],
 "Resource": "*"
}

2. Add IAM policies to the external account.

Setting up access to an S3 bucket 1150

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

Amazon Relational Database Service User Guide

The following example IAM policy allows the principal to use the KMS key in account
123456789012 for cryptographic operations. To give this permission to ExampleRole and
ExampleUser in account 444455556666, attach the policy to them in that account.

{
 "Sid": "Allow use of KMS key in account 123456789012",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:RetireGrant"
],
 "Resource": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
}

Exporting a DB snapshot to an Amazon S3 bucket

You can have up to five concurrent DB snapshot export tasks in progress per AWS account.

Note

Exporting RDS snapshots can take a while depending on your database type and size.
The export task first restores and scales the entire database before extracting the data
to Amazon S3. The task's progress during this phase displays as Starting. When the task
switches to exporting data to S3, progress displays as In progress.
The time it takes for the export to complete depends on the data stored in the database.
For example, tables with well-distributed numeric primary key or index columns export the
fastest. Tables that don't contain a column suitable for partitioning and tables with only
one index on a string-based column take longer. This longer export time occurs because the
export uses a slower single-threaded process.

Exporting a DB snapshot 1151

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

Amazon Relational Database Service User Guide

You can export a DB snapshot to Amazon S3 using the AWS Management Console, the AWS CLI, or
the RDS API. To export a DB snapshot to a cross-account Amazon S3 bucket, use the AWS CLI or the
RDS API.

If you use a Lambda function to export a snapshot, add the kms:DescribeKey action to the
Lambda function policy. For more information, see AWS Lambda permissions.

Console

The Export to Amazon S3 console option appears only for snapshots that can be exported to
Amazon S3. A snapshot might not be available for export because of the following reasons:

• The DB engine isn't supported for S3 export.

• The DB engine version isn't supported for S3 export.

• S3 export isn't supported in the AWS Region where the snapshot was created.

To export a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. From the tabs, choose the type of snapshot that you want to export.

4. In the list of snapshots, choose the snapshot that you want to export.

5. For Actions, choose Export to Amazon S3.

The Export to Amazon S3 window appears.

6. For Export identifier, enter a name to identify the export task. This value is also used for the
name of the file created in the S3 bucket.

7. Choose the data to be exported:

• Choose All to export all data in the snapshot.

• Choose Partial to export specific parts of the snapshot. To identify which parts of the
snapshot to export, enter one or more databases, schemas, or tables for Identifiers,
separated by spaces.

Use the following format:

Exporting a DB snapshot 1152

https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

database[.schema][.table] database2[.schema2][.table2] ... databasen[.scheman]
[.tablen]

For example:

mydatabase mydatabase2.myschema1 mydatabase2.myschema2.mytable1
 mydatabase2.myschema2.mytable2

8. For S3 bucket, choose the bucket to export to.

To assign the exported data to a folder path in the S3 bucket, enter the optional path for S3
prefix.

9. For IAM role, either choose a role that grants you write access to your chosen S3 bucket, or
create a new role.

• If you created a role by following the steps in Providing access to an Amazon S3 bucket
using an IAM role, choose that role.

• If you didn't create a role that grants you write access to your chosen S3 bucket, then choose
Create a new role to create the role automatically. Next, enter a name for the role in IAM
role name.

10. For AWS KMS key, enter the ARN for the key to use for encrypting the exported data.

11. Choose Export to Amazon S3.

AWS CLI

To export a DB snapshot to Amazon S3 using the AWS CLI, use the start-export-task command with
the following required options:

• --export-task-identifier

• --source-arn

• --s3-bucket-name

• --iam-role-arn

• --kms-key-id

Exporting a DB snapshot 1153

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html

Amazon Relational Database Service User Guide

In the following examples, the snapshot export task is named my-snapshot-export, which
exports a snapshot to an S3 bucket named amzn-s3-demo-bucket.

Example

For Linux, macOS, or Unix:

aws rds start-export-task \
 --export-task-identifier my-snapshot-export \
 --source-arn arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name \
 --s3-bucket-name amzn-s3-demo-bucket \
 --iam-role-arn iam-role \
 --kms-key-id my-key

For Windows:

aws rds start-export-task ^
 --export-task-identifier my-snapshot-export ^
 --source-arn arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name ^
 --s3-bucket-name amzn-s3-demo-bucket ^
 --iam-role-arn iam-role ^
 --kms-key-id my-key

Sample output follows.

{
 "Status": "STARTING",
 "IamRoleArn": "iam-role",
 "ExportTime": "2019-08-12T01:23:53.109Z",
 "S3Bucket": "my-export-bucket",
 "PercentProgress": 0,
 "KmsKeyId": "my-key",
 "ExportTaskIdentifier": "my-snapshot-export",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-11-13T19:46:00.173Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name"
}

To provide a folder path in the S3 bucket for the snapshot export, include the --s3-prefix
option in the start-export-task command.

Exporting a DB snapshot 1154

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html

Amazon Relational Database Service User Guide

RDS API

To export a DB snapshot to Amazon S3 using the Amazon RDS API, use the StartExportTask
operation with the following required parameters:

• ExportTaskIdentifier

• SourceArn

• S3BucketName

• IamRoleArn

• KmsKeyId

Region and version availability

Feature availability and support varies across specific versions of each database engine and across
AWS Regions. For more information on version and Region availability with exporting snapshots to
S3, see Supported Regions and DB engines for exporting snapshots to S3 in Amazon RDS.

Limitations

Exporting DB snapshot data to Amazon S3 has the following limitations:

• You can't run multiple export tasks for the same DB snapshot simultaneously. This applies to
both full and partial exports.

• Exporting snapshots from databases that use magnetic storage isn't supported.

• Exports to S3 don't support S3 prefixes containing a colon (:).

• The following characters in the S3 file path are converted to underscores (_) during export:

\ ` " (space)

• If a database, schema, or table has characters in its name other than the following, partial export
isn't supported. However, you can export the entire DB snapshot.

• Latin letters (A–Z)

• Digits (0–9)

• Dollar symbol ($)

• Underscore (_)

Region and version availability 1155

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartExportTask.html

Amazon Relational Database Service User Guide

• Spaces () and certain characters aren't supported in database table column names. Tables with
the following characters in column names are skipped during export:

, ; { } () \n \t = (space)

• Tables with slashes (/) in their names are skipped during export.

• RDS for PostgreSQL temporary and unlogged tables are skipped during export.

• If the data contains a large object, such as a BLOB or CLOB, that is close to or greater than 500
MB, then the export fails.

• If a table contains a large row that is close to or greater than 2 GB, then the table is skipped
during export.

• For partial exports, the ExportOnly list has a maximum size of 200 KB.

• We strongly recommend that you use a unique name for each export task. If you don't use a
unique task name, you might receive the following error message:

ExportTaskAlreadyExistsFault: An error occurred (ExportTaskAlreadyExists) when calling the
StartExportTask operation: The export task with the ID xxxxx already exists.

• You can delete a snapshot while you're exporting its data to S3, but you're still charged for the
storage costs for that snapshot until the export task has completed.

• You can't restore exported snapshot data from S3 to a new DB instance or import snapshot data
from S3 into an existing DB instance.

• You can have up to five concurrent DB snapshot export tasks in progress per AWS account.

• To export a DB snapshot to a cross-account Amazon S3 bucket, you must use the AWS CLI or the
RDS API.

• After Amazon RDS completes an export task, you might have to wait a short time to start
another export task from the same DB snapshot.

Monitoring snapshot exports for Amazon RDS

You can monitor DB snapshot exports using the AWS Management Console, the AWS CLI, or the
RDS API.

Monitoring snapshot exports 1156

Amazon Relational Database Service User Guide

Console

To monitor DB snapshot exports

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. To view the list of snapshot exports, choose the Exports in Amazon S3 tab.

4. To view information about a specific snapshot export, choose the export task.

AWS CLI

To monitor DB snapshot exports using the AWS CLI, use the describe-export-tasks command.

The following example shows how to display current information about all of your snapshot
exports.

Example

aws rds describe-export-tasks

{
 "ExportTasks": [
 {
 "Status": "CANCELED",
 "TaskEndTime": "2019-11-01T17:36:46.961Z",
 "S3Prefix": "something",
 "ExportTime": "2019-10-24T20:23:48.364Z",
 "S3Bucket": "amzn-s3-demo-bucket",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/K7MDENG/
bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "anewtest",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-10-25T19:10:58.885Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:parameter-
groups-test"
 },
{
 "Status": "COMPLETE",

Monitoring snapshot exports 1157

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html

Amazon Relational Database Service User Guide

 "TaskEndTime": "2019-10-31T21:37:28.312Z",
 "WarningMessage": "{\"skippedTables\":[],\"skippedObjectives\":[],\"general
\":[{\"reason\":\"FAILED_TO_EXTRACT_TABLES_LIST_FOR_DATABASE\"}]}",
 "S3Prefix": "",
 "ExportTime": "2019-10-31T06:44:53.452Z",
 "S3Bucket": "amzn-s3-demo-bucket1",
 "PercentProgress": 100,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "thursday-events-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 263,
 "TaskStartTime": "2019-10-31T20:58:06.998Z",
 "SourceArn":
 "arn:aws:rds:AWS_Region:123456789012:snapshot:rds:example-1-2019-10-31-06-44"
 },
 {
 "Status": "FAILED",
 "TaskEndTime": "2019-10-31T02:12:36.409Z",
 "FailureCause": "The S3 bucket edgcuc-export isn't located in the current
 AWS Region. Please, review your S3 bucket name and retry the export.",
 "S3Prefix": "",
 "ExportTime": "2019-10-30T06:45:04.526Z",
 "S3Bucket": "amzn-s3-demo-bucket2",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "wednesday-afternoon-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-10-30T22:43:40.034Z",
 "SourceArn":
 "arn:aws:rds:AWS_Region:123456789012:snapshot:rds:example-1-2019-10-30-06-45"
 }
]
}

To display information about a specific snapshot export, include the --export-task-
identifier option with the describe-export-tasks command. To filter the output, include
the --Filters option. For more options, see the describe-export-tasks command.

Monitoring snapshot exports 1158

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html

Amazon Relational Database Service User Guide

RDS API

To display information about DB snapshot exports using the Amazon RDS API, use the
DescribeExportTasks operation.

To track completion of the export workflow or to initiate another workflow, you can subscribe to
Amazon Simple Notification Service topics. For more information on Amazon SNS, see Working
with Amazon RDS event notification.

Canceling a snapshot export task for Amazon RDS

You can cancel a DB snapshot export task using the AWS Management Console, the AWS CLI, or the
RDS API.

Note

Canceling a snapshot export task doesn't remove any data that was exported to Amazon
S3. For information about how to delete the data using the console, see How do I delete
objects from an S3 bucket? To delete the data using the CLI, use the delete-object
command.

Console

To cancel a snapshot export task

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the Exports in Amazon S3 tab.

4. Choose the snapshot export task that you want to cancel.

5. Choose Cancel.

6. Choose Cancel export task on the confirmation page.

AWS CLI

To cancel a snapshot export task using the AWS CLI, use the cancel-export-task command. The
command requires the --export-task-identifier option.

Canceling a snapshot export 1159

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeExportTasks.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/delete-object.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/cancel-export-task.html

Amazon Relational Database Service User Guide

Example

aws rds cancel-export-task --export-task-identifier my_export
{
 "Status": "CANCELING",
 "S3Prefix": "",
 "ExportTime": "2019-08-12T01:23:53.109Z",
 "S3Bucket": "amzn-s3-demo-bucket",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "my_export",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-11-13T19:46:00.173Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:export-example-1"
}

RDS API

To cancel a snapshot export task using the Amazon RDS API, use the CancelExportTask operation
with the ExportTaskIdentifier parameter.

Failure messages for Amazon S3 export tasks for Amazon RDS

The following table describes the messages that are returned when Amazon S3 export tasks fail.

Failure message Description

An unknown internal error occurred. The task has failed because of an unknown error,
exception, or failure.

An unknown internal error occurred
writing the export task's metadata to
the S3 bucket [bucket name].

The task has failed because of an unknown error,
exception, or failure.

The RDS export failed to write the
export task's metadata because it can't
assume the IAM role [role ARN].

The export task assumes your IAM role to validate
whether it is allowed to write metadata to your S3
bucket. If the task can't assume your IAM role, it fails.

The RDS export failed to write the
export task's metadata to the S3

One or more permissions are missing, so the export
task can't access the S3 bucket. This failure message

Failure messages 1160

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CancelExportTask.html

Amazon Relational Database Service User Guide

Failure message Description

bucket [bucket name] using the IAM
role [role ARN] with the KMS key [key
ID]. Error code: [error code]

is raised when receiving one of the following error
codes:

• AWSSecurityTokenServiceException with
the error code AccessDenied

• AmazonS3Exception with the error code
NoSuchBucket , AccessDenied , KMS.KMSIn
validStateException , 403 Forbidden ,
or KMS.DisabledException

These error codes indicate settings are misconfigured
for the IAM role, S3 bucket, or KMS key.

The IAM role [role ARN] isn't authorize
d to call [S3 action] on the S3 bucket
[bucket name]. Review your permissio
ns and retry the export.

The IAM policy is misconfigured. Permission for the
specific S3 action on the S3 bucket is missing, which
causes the export task to fail.

KMS key check failed. Check the
credentials on your KMS key and try
again.

The KMS key credential check failed.

S3 credential check failed. Check the
permissions on your S3 bucket and IAM
policy.

The S3 credential check failed.

The S3 bucket [bucket name] isn't
valid. Either it isn't located in the
current AWS Region or it doesn't exist.
Review your S3 bucket name and retry
the export.

The S3 bucket is invalid.

The S3 bucket [bucket name] isn't
located in the current AWS Region.
Review your S3 bucket name and retry
the export.

The S3 bucket is in the wrong AWS Region.

Failure messages 1161

Amazon Relational Database Service User Guide

Troubleshooting RDS for PostgreSQL permissions errors

When exporting PostgreSQL databases to Amazon S3, you might see a
PERMISSIONS_DO_NOT_EXIST error stating that certain tables were skipped. This error usually
occurs when the superuser, which you specified when creating the database, doesn't have
permissions to access those tables.

To fix this error, run the following command:

GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA schema_name TO superuser_name

For more information on superuser privileges, see Master user account privileges.

File naming conventions for exports to Amazon S3 for Amazon RDS

Exported data for specific tables is stored in the format base_prefix/files, where the base
prefix is the following:

export_identifier/database_name/schema_name.table_name/

For example:

export-1234567890123-459/rdststdb/rdststdb.DataInsert_7ADB5D19965123A2/

There are two conventions for how files are named.

• Current convention:

batch_index/part-partition_index-random_uuid.format-based_extension

The batch index is a sequence number that represents a batch of data read from the table. If
we can't partition your table into small chunks to be exported in parallel, there will be multiple
batch indexes. The same thing happens if your table is partitioned into multiple tables. There will
be multiple batch indexes, one for each of the table partitions of your main table.

If we can partition your table into small chunks to be read in parallel, there will be only the batch
index 1 folder.

Troubleshooting PostgreSQL permissions errors 1162

Amazon Relational Database Service User Guide

Inside the batch index folder, there are one or more Parquet files that contain your table's data.
The prefix of the Parquet filename is part-partition_index. If your table is partitioned,
there will be multiple files starting with the partition index 00000.

There can be gaps in the partition index sequence. This happens because each partition is
obtained from a ranged query in your table. If there is no data in the range of that partition, then
that sequence number is skipped.

For example, suppose that the id column is the table's primary key, and its minimum and
maximum values are 100 and 1000. When we try to export this table with nine partitions, we
read it with parallel queries such as the following:

SELECT * FROM table WHERE id <= 100 AND id < 200
SELECT * FROM table WHERE id <= 200 AND id < 300

This should generate nine files, from part-00000-random_uuid.gz.parquet to
part-00008-random_uuid.gz.parquet. However, if there are no rows with IDs between 200
and 350, one of the completed partitions is empty, and no file is created for it. In the previous
example, part-00001-random_uuid.gz.parquet isn't created.

• Older convention:

part-partition_index-random_uuid.format-based_extension

This is the same as the current convention, but without the batch_index prefix, for example:

part-00000-c5a881bb-58ff-4ee6-1111-b41ecff340a3-c000.gz.parquet
part-00001-d7a881cc-88cc-5ab7-2222-c41ecab340a4-c000.gz.parquet
part-00002-f5a991ab-59aa-7fa6-3333-d41eccd340a7-c000.gz.parquet

The file naming convention is subject to change. Therefore, when reading target tables, we
recommend that you read everything inside the base prefix for the table.

File naming conventions 1163

Amazon Relational Database Service User Guide

Data conversion when exporting to an Amazon S3 bucket for Amazon
RDS

When you export a DB snapshot to an Amazon S3 bucket, Amazon RDS converts data to, exports
data in, and stores data in the Parquet format. For more information about Parquet, see the
Apache Parquet website.

Parquet stores all data as one of the following primitive types:

• BOOLEAN

• INT32

• INT64

• INT96

• FLOAT

• DOUBLE

• BYTE_ARRAY – A variable-length byte array, also known as binary

• FIXED_LEN_BYTE_ARRAY – A fixed-length byte array used when the values have a constant size

The Parquet data types are few to reduce the complexity of reading and writing the format.
Parquet provides logical types for extending primitive types. A logical type is implemented as an
annotation with the data in a LogicalType metadata field. The logical type annotation explains
how to interpret the primitive type.

When the STRING logical type annotates a BYTE_ARRAY type, it indicates that the byte array
should be interpreted as a UTF-8 encoded character string. After an export task completes,
Amazon RDS notifies you if any string conversion occurred. The underlying data exported is always
the same as the data from the source. However, due to the encoding difference in UTF-8, some
characters might appear different from the source when read in tools such as Athena.

For more information, see Parquet logical type definitions in the Parquet documentation.

Topics

• MySQL and MariaDB data type mapping to Parquet

• PostgreSQL data type mapping to Parquet

Data conversion 1164

https://parquet.apache.org/docs/
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md

Amazon Relational Database Service User Guide

MySQL and MariaDB data type mapping to Parquet

The following table shows the mapping from MySQL and MariaDB data types to Parquet data types
when data is converted and exported to Amazon S3.

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

Numeric data types

BIGINT INT64

BIGINT UNSIGNED FIXED_LEN
_BYTE_ARRAY(9)

DECIMAL(20,0) Parquet supports
only signed types, so
the mapping requires
an additional byte (8
plus 1) to store the
BIGINT_UNSIGNED
 type.

BIT BYTE_ARRAY

INT32 DECIMAL(p,s) If the source value
is less than 231, it's
stored as INT32.

INT64 DECIMAL(p,s) If the source value
is 231 or greater, b
ut less than 263, it's
stored as INT64.

FIXED_LEN
_BYTE_ARRAY(N)

DECIMAL(p,s) If the source value
is 263 or greater, it's
stored as FIXED_LEN
_BYTE_ARRAY(N).

DECIMAL

BYTE_ARRAY STRING Parquet doesn't
support Decimal
precision greater

Data conversion 1165

Amazon Relational Database Service User Guide

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

than 38. The Decimal
value is converted
to a string in a
BYTE_ARRAY type
and encoded as
UTF8.

DOUBLE DOUBLE

FLOAT DOUBLE

INT INT32

INT UNSIGNED INT64

MEDIUMINT INT32

MEDIUMINT
UNSIGNED

INT64

INT32 DECIMAL(p,s)
If the source value
is less than 231, it's
stored as INT32.

INT64 DECIMAL(p,s) If the source value
is 231 or greater, b
ut less than 263, it's
stored as INT64.

NUMERIC

FIXED_LEN_ARRAY(N) DECIMAL(p,s) If the source value
is 263 or greater, it's
stored as FIXED_LEN
_BYTE_ARRAY(N).

Data conversion 1166

Amazon Relational Database Service User Guide

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

BYTE_ARRAY STRING Parquet doesn't
support Numeric
precision greater than
38. This Numeric
value is converted
to a string in a
BYTE_ARRAY type
and encoded as
UTF8.

SMALLINT INT32

SMALLINT UNSIGNED INT32

TINYINT INT32

TINYINT UNSIGNED INT32 INT(16, true)

String data types

BINARY BYTE_ARRAY

BLOB BYTE_ARRAY

CHAR BYTE_ARRAY

ENUM BYTE_ARRAY STRING

LINESTRING BYTE_ARRAY

LONGBLOB BYTE_ARRAY

LONGTEXT BYTE_ARRAY STRING

MEDIUMBLOB BYTE_ARRAY

MEDIUMTEXT BYTE_ARRAY STRING

Data conversion 1167

Amazon Relational Database Service User Guide

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

MULTILINESTRING BYTE_ARRAY

SET BYTE_ARRAY STRING

TEXT BYTE_ARRAY STRING

TINYBLOB BYTE_ARRAY

TINYTEXT BYTE_ARRAY STRING

VARBINARY BYTE_ARRAY

VARCHAR BYTE_ARRAY STRING

Date and time data types

DATE BYTE_ARRAY STRING A date is converted
to a string in a
BYTE_ARRAY type
and encoded as
UTF8.

DATETIME INT64 TIMESTAMP_MICROS

TIME BYTE_ARRAY STRING A TIME type is
converted to a string
in a BYTE_ARRAY and
encoded as UTF8.

TIMESTAMP INT64 TIMESTAMP_MICROS

YEAR INT32

Geometric data types

GEOMETRY BYTE_ARRAY

Data conversion 1168

Amazon Relational Database Service User Guide

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

GEOMETRYC
OLLECTION

BYTE_ARRAY

MULTIPOINT BYTE_ARRAY

MULTIPOLYGON BYTE_ARRAY

POINT BYTE_ARRAY

POLYGON BYTE_ARRAY

JSON data type

JSON BYTE_ARRAY STRING

PostgreSQL data type mapping to Parquet

The following table shows the mapping from PostgreSQL data types to Parquet data types when
data is converted and exported to Amazon S3.

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

Numeric data types

BIGINT INT64

BIGSERIAL INT64

DECIMAL BYTE_ARRAY STRING A DECIMAL type is
converted to a string
in a BYTE_ARRAY
type and encoded as
UTF8.

Data conversion 1169

Amazon Relational Database Service User Guide

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

This conversion is to
avoid complications
due to data precision
and data values that
are not a number (N
aN).

DOUBLE PRECISION DOUBLE

INTEGER INT32

MONEY BYTE_ARRAY STRING

REAL FLOAT

SERIAL INT32

SMALLINT INT32 INT(16, true)

SMALLSERIAL INT32 INT(16, true)

String and related data types

ARRAY BYTE_ARRAY STRING
An array is converted
to a string and
encoded as BINARY
 (UTF8).

This conversion is
to avoid complicat
ions due to data prec
ision, data values that
are not a number
(NaN), and time data
values.

Data conversion 1170

Amazon Relational Database Service User Guide

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

BIT BYTE_ARRAY STRING

BIT VARYING BYTE_ARRAY STRING

BYTEA BINARY

CHAR BYTE_ARRAY STRING

CHAR(N) BYTE_ARRAY STRING

ENUM BYTE_ARRAY STRING

NAME BYTE_ARRAY STRING

TEXT BYTE_ARRAY STRING

TEXT SEARCH BYTE_ARRAY STRING

VARCHAR(N) BYTE_ARRAY STRING

XML BYTE_ARRAY STRING

Date and time data types

DATE BYTE_ARRAY STRING

INTERVAL BYTE_ARRAY STRING

TIME BYTE_ARRAY STRING

TIME WITH TIME
ZONE

BYTE_ARRAY STRING

TIMESTAMP BYTE_ARRAY STRING

TIMESTAMP WITH
TIME ZONE

BYTE_ARRAY STRING

Geometric data types

Data conversion 1171

Amazon Relational Database Service User Guide

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

BOX BYTE_ARRAY STRING

CIRCLE BYTE_ARRAY STRING

LINE BYTE_ARRAY STRING

LINESEGMENT BYTE_ARRAY STRING

PATH BYTE_ARRAY STRING

POINT BYTE_ARRAY STRING

POLYGON BYTE_ARRAY STRING

JSON data types

JSON BYTE_ARRAY STRING

JSONB BYTE_ARRAY STRING

Other data types

BOOLEAN BOOLEAN

CIDR BYTE_ARRAY STRING Network data type

COMPOSITE BYTE_ARRAY STRING

DOMAIN BYTE_ARRAY STRING

INET BYTE_ARRAY STRING Network data type

MACADDR BYTE_ARRAY STRING

OBJECT IDENTIFIER N/A

PG_LSN BYTE_ARRAY STRING

RANGE BYTE_ARRAY STRING

Data conversion 1172

Amazon Relational Database Service User Guide

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

UUID BYTE_ARRAY STRING

Data conversion 1173

Amazon Relational Database Service User Guide

Using AWS Backup to manage automated backups for Amazon
RDS

AWS Backup is a fully managed backup service that makes it easy to centralize and automate the
backup of data across AWS services in the cloud and on premises. You can manage backups of your
Amazon RDS databases in AWS Backup.

Note

Backups managed by AWS Backup are considered manual DB snapshots, but don't count
toward the DB snapshot quota for RDS. Backups that were created with AWS Backup have
names ending in awsbackup:backup-job-number.

For more information about AWS Backup, see the AWS Backup Developer Guide.

To view backups managed by AWS Backup

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the Backup service tab.

Your AWS Backup backups are listed under Backup service snapshots.

Using AWS Backup 1174

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Monitoring metrics in an Amazon RDS instance

In the following sections, you can find an overview of Amazon RDS monitoring and an explanation
about how to access metrics. To learn how to monitor events, logs, and database activity streams,
see Monitoring events, logs, and streams in an Amazon RDS DB instance.

Topics

• Monitoring plan

• Performance baseline

• Performance guidelines

• Monitoring tools for Amazon RDS

• Viewing instance status

• Recommendations from Amazon RDS

• Viewing metrics in the Amazon RDS console

• Viewing combined metrics with the Performance Insights dashboard

• Monitoring Amazon RDS metrics with Amazon CloudWatch

• Monitoring Amazon RDS databases with CloudWatch Database Insights

• Monitoring DB load with Performance Insights on Amazon RDS

• Analyzing performance anomalies with Amazon DevOps Guru for Amazon RDS

• Monitoring OS metrics with Enhanced Monitoring

• Metrics reference for Amazon RDS

Monitoring plan

Before you start monitoring Amazon RDS, create a monitoring plan. This plan should answer the
following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

Monitoring plan 1175

Amazon Relational Database Service User Guide

• Whom should be notified when something goes wrong?

Performance baseline

To achieve your monitoring goals, you need to establish a baseline. To do this, measure
performance under different load conditions at various times in your Amazon RDS environment.
You can monitor metrics such as the following:

• Network throughput

• Client connections

• I/O for read, write, or metadata operations

• Burst credit balances for your DB instances

We recommend that you store historical performance data for Amazon RDS. Using the stored
data, you can compare current performance against past trends. You can also distinguish normal
performance patterns from anomalies, and devise techniques to address issues.

Performance guidelines

In general, acceptable values for performance metrics depend on what your application is doing
relative to your baseline. Investigate consistent or trending variances from your baseline. The
following metrics are often the source of performance issues:

• High CPU or RAM consumption – High values for CPU or RAM consumption might be
appropriate, if they're in keeping with your goals for your application (like throughput or
concurrency) and are expected.

• Disk space consumption – Investigate disk space consumption if space used is consistently at or
above 85 percent of the total disk space. See if it is possible to delete data from the instance or
archive data to a different system to free up space.

• Network traffic – For network traffic, talk with your system administrator to understand what
expected throughput is for your domain network and internet connection. Investigate network
traffic if throughput is consistently lower than expected.

• Database connections – If you see high numbers of user connections and also decreases in
instance performance and response time, consider constraining database connections. The
best number of user connections for your DB instance varies based on your instance class and

Performance baseline 1176

Amazon Relational Database Service User Guide

the complexity of the operations being performed. To determine the number of database
connections, associate your DB instance with a parameter group where the User Connections
parameter is set to a value other than 0 (unlimited). You can either use an existing parameter
group or create a new one. For more information, see Parameter groups for Amazon RDS.

• IOPS metrics – The expected values for IOPS metrics depend on disk specification and server
configuration, so use your baseline to know what is typical. Investigate if values are consistently
different than your baseline. For best IOPS performance, make sure that your typical working set
fits into memory to minimize read and write operations.

When performance falls outside your established baseline, you might need to make changes to
optimize your database availability for your workload. For example, you might need to change the
instance class of your DB instance. Or you might need to change the number of DB instances and
read replicas that are available for clients.

Performance guidelines 1177

Amazon Relational Database Service User Guide

Monitoring tools for Amazon RDS

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon RDS and your other AWS solutions. AWS provides various monitoring tools to watch
Amazon RDS, report when something is wrong, and take automatic actions when appropriate.

Topics

• Automated monitoring tools

• Manual monitoring tools

Automated monitoring tools

We recommend that you automate monitoring tasks as much as possible.

Topics

• Amazon RDS instance status and recommendations

• Amazon CloudWatch metrics for Amazon RDS

• Amazon RDS Performance Insights and operating-system monitoring

• Integrated services

Amazon RDS instance status and recommendations

You can use the following automated tools to watch Amazon RDS and report when something is
wrong:

• Amazon RDS instance status — View details about the current status of your instance by using
the Amazon RDS console, the AWS CLI, or the RDS API.

• Amazon RDS recommendations — Respond to automated recommendations for database
resources, such as DB instances, read replicas, and DB parameter groups. For more information,
see Recommendations from Amazon RDS.

Amazon CloudWatch metrics for Amazon RDS

Amazon RDS integrates with Amazon CloudWatch for additional monitoring capabilities.

Monitoring tools 1178

Amazon Relational Database Service User Guide

• Amazon CloudWatch – This service monitors your AWS resources and the applications you run
on AWS in real time. You can use the following Amazon CloudWatch features with Amazon RDS:

• Amazon CloudWatch metrics – Amazon RDS automatically sends metrics to CloudWatch every
minute for each active database. You don't get additional charges for Amazon RDS metrics
in CloudWatch. For more information, see Monitoring Amazon RDS metrics with Amazon
CloudWatch.

• Amazon CloudWatch alarms – You can watch a single Amazon RDS metric over a specific time
period. You can then perform one or more actions based on the value of the metric relative
to a threshold that you set. For more information, see Monitoring Amazon RDS metrics with
Amazon CloudWatch.

Amazon RDS Performance Insights and operating-system monitoring

You can use the following automated tools to monitor Amazon RDS performance:

• Amazon RDS Performance Insights – Assess the load on your database, and determine when
and where to take action. For more information, see Monitoring DB load with Performance
Insights on Amazon RDS.

• Amazon RDS Enhanced Monitoring – Look at metrics in real time for the operating system. For
more information, see Monitoring OS metrics with Enhanced Monitoring.

Integrated services

The following AWS services are integrated with Amazon RDS:

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. For more information, see Monitoring Amazon
RDS events.

• Amazon CloudWatch Logs lets you monitor, store, and access your log files from Amazon RDS
instances, CloudTrail, and other sources. For more information, see Monitoring Amazon RDS log
files.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. For more information, see
Monitoring Amazon RDS API calls in AWS CloudTrail.

Automated monitoring tools 1179

Amazon Relational Database Service User Guide

• Database Activity Streams is an Amazon RDS feature that provides a near-real-time stream of
the activity in your Oracle DB instance. For more information, see Monitoring Amazon RDS with
Database Activity Streams.

Manual monitoring tools

You need to manually monitor those items that the CloudWatch alarms don't cover. The Amazon
RDS, CloudWatch, AWS Trusted Advisor and other AWS console dashboards provide an at-a-glance
view of the state of your AWS environment. We recommend that you also check the log files on
your DB instance.

• From the Amazon RDS console, you can monitor the following items for your resources:

• The number of connections to a DB instance

• The amount of read and write operations to a DB instance

• The amount of storage that a DB instance is currently using

• The amount of memory and CPU being used for a DB instance

• The amount of network traffic to and from a DB instance

• From the Trusted Advisor dashboard, you can review the following cost optimization, security,
fault tolerance, and performance improvement checks:

• Amazon RDS Idle DB Instances

• Amazon RDS Security Group Access Risk

• Amazon RDS Backups

• Amazon RDS Multi-AZ

For more information on these checks, see Trusted Advisor best practices (checks).

• CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services that you care about.

• Graph metric data to troubleshoot issues and discover trends.

• Search and browse all your AWS resource metrics.
Manual monitoring tools 1180

https://aws.amazon.com/premiumsupport/trustedadvisor/best-practices/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon Relational Database Service User Guide

• Create and edit alarms to be notified of problems.

Manual monitoring tools 1181

Amazon Relational Database Service User Guide

Viewing instance status

Using the Amazon RDS console, you can quickly access the status of your DB instance.

Topics

• Viewing Amazon RDS DB instance status

Viewing instance status 1182

Amazon Relational Database Service User Guide

Viewing Amazon RDS DB instance status

The status of a DB instance indicates the health of the DB instance. You can use the following
procedures to view the DB instance status in the Amazon RDS console, the AWS CLI command, or
the API operation.

Note

Amazon RDS also uses another status called maintenance status, which is shown in the
Maintenance column of the Amazon RDS console. This value indicates the status of any
maintenance patches that need to be applied to a DB instance. Maintenance status is
independent of DB instance status. For more information about maintenance status, see
Applying updates to a DB instance.

Find the possible status values for DB instances in the following table. This table also shows
whether you will be billed for the DB instance and storage, billed only for storage, or not billed. For
all DB instance statuses, you are always billed for backup usage.

DB instance status Billed Description

available Billed The DB instance is healthy and available.

backing-up Billed The DB instance is currently being backed up.

configuring-enhanc
ed-monitoring

Billed Enhanced Monitoring is being enabled or disabled for this DB
instance.

configuring-iam-da
tabase-auth

Billed AWS Identity and Access Management (IAM) database
authentication is being enabled or disabled for this DB
instance.

configuring-log-ex
ports

Billed Publishing log files to Amazon CloudWatch Logs is being
enabled or disabled for this DB instance.

converting-to-vpc Billed The DB instance is being converted from a DB instance that
is not in an Amazon Virtual Private Cloud (Amazon VPC) to a
DB instance that is in an Amazon VPC.

Viewing Amazon RDS DB instance status 1183

Amazon Relational Database Service User Guide

DB instance status Billed Description

creating Not
billed

The DB instance is being created. The DB instance is inaccessi
ble while it is being created.

delete-precheck Not
billed

Amazon RDS is validating that read replicas are healthy and
are safe to delete.

deleting Not
billed

The DB instance is being deleted.

failed Not
billed

The DB instance has failed and Amazon RDS can't recover it.
Perform a point-in-time restore to the latest restorable time
of the DB instance to recover the data.

inaccessible-encry
ption-credentials

Not
billed

The AWS KMS key used to encrypt or decrypt the DB instance
 can't be accessed or recovered.

inaccessible-encry
ption-credentials-
recoverable

Billed
for
storage

The KMS key used to encrypt or decrypt the DB instance can't
be accessed. However, if the KMS key is active, restarting the
DB instance can recover it.

For more information, see Encrypting a DB instance.

incompatible-create Not
billed

Amazon RDS is attempting to create a DB instance but can't
do so because resources are incompatible with your DB
instance. This status can occur if, for example, the instance
profile for your DB instance doesn't have the correct permissio
ns.

incompatible-netwo
rk

Not
billed

Amazon RDS is attempting to perform a recovery action on a
DB instance but can't do so because the VPC is in a state that
prevents the action from being completed. This status can
occur if, for example, all available IP addresses in a subnet
are in use and Amazon RDS can't get an IP address for the DB
instance.

Viewing Amazon RDS DB instance status 1184

Amazon Relational Database Service User Guide

DB instance status Billed Description

incompatible-option-
group

Billed Amazon RDS attempted to apply an option group change but
can't do so, and Amazon RDS can't roll back to the previous
option group state. For more information, check the Recent
Events list for the DB instance. This status can occur if, for
example, the option group contains an option such as TDE
and the DB instance doesn't contain encrypted information.

incompatible-param
eters

Billed Amazon RDS can't start the DB instance because the
parameters specified in the DB instance's DB parameter group
aren't compatible with the DB instance. Revert the parameter
changes or make them compatible with the DB instance to
regain access to your DB instance. For more information about
the incompatible parameters, check the Recent Events list for
the DB instance.

incompatible-restore Not
billed

Amazon RDS can't do a point-in-time restore. Common causes
for this status include using temp tables, using MyISAM
tables with MySQL, or using Aria tables with MariaDB.

insufficient-capacity Not
billed

Amazon RDS can’t create your instance because sufficient
capacity isn’t currently available. To create your DB instance
in the same AZ with the same instance type, delete your DB
instance, wait a few hours, and try to create again. Alternati
vely, create a new instance using a different instance class or
AZ.

maintenance Billed Amazon RDS is applying a maintenance update to the DB
instance. This status is used for instance-level maintenance
that RDS schedules well in advance.

modifying Billed The DB instance is being modified because of a customer
request to modify the DB instance.

moving-to-vpc Billed The DB instance is being moved to a new Amazon Virtual
Private Cloud (Amazon VPC).

Viewing Amazon RDS DB instance status 1185

Amazon Relational Database Service User Guide

DB instance status Billed Description

rebooting Billed The DB instance is being rebooted because of a customer
request or an Amazon RDS process that requires the
rebooting of the DB instance.

resetting-master-c
redentials

Billed The master credentials for the DB instance are being reset
because of a customer request to reset them.

renaming Billed The DB instance is being renamed because of a customer
request to rename it.

restore-error Billed The DB instance encountered an error attempting to restore
to a point-in-time or from a snapshot.

starting Billed
for
storage

The DB instance is starting.

stopped Billed
for
storage

The DB instance is stopped.

stopping Billed
for
storage

The DB instance is being stopped.

storage-config-upg
rade

Billed The storage file system configuration of the DB instance is
being upgraded. This status only applies to green databases
within a blue/green deployment, or to DB instance read
replicas.

storage-full Billed The DB instance has reached its storage capacity allocatio
n. This is a critical status, and we recommend that you fix
this issue immediately. To do so, scale up your storage
by modifying the DB instance. To avoid this situation, set
Amazon CloudWatch alarms to warn you when storage space
is getting low.

Viewing Amazon RDS DB instance status 1186

Amazon Relational Database Service User Guide

DB instance status Billed Description

storage-initialization Billed The DB instance is loading data blocks from Amazon S3 to
optimize volume performance after being restored from a
snapshot. It remains available for operations, but perform
ance mights not be at its fullest until initialization completes.

storage-optimization Billed Amazon RDS is optimizing the storage of your DB instance.
The storage optimization process is usually short, but can
sometimes take up to and even beyond 24 hours.

During storage optimization, the DB instance remains
available. Storage optimization is a background process that
doesn't affect the instance's availability.

upgrading Billed The database engine or operating system version is being
upgraded.

Console

To view the status of a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

The Databases page appears with the list of DB instances. For each DB instance , the status
value is displayed.

Viewing Amazon RDS DB instance status 1187

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

CLI

To view DB instance and its status information by using the AWS CLI, use the describe-db-instances
command. For example, the following AWS CLI command lists all the DB instances information .

aws rds describe-db-instances

To view a specific DB instance and its status, call the describe-db-instances command with the
following option:

• DBInstanceIdentifier – The name of the DB instance.

aws rds describe-db-instances --db-instance-identifier mydbinstance

To view just the status of all the DB instances, use the following query in AWS CLI.

aws rds describe-db-instances --query 'DBInstances[*].
[DBInstanceIdentifier,DBInstanceStatus]' --output table

API

To view the status of the DB instance using the Amazon RDS API, call the DescribeDBInstances
operation.

Viewing Amazon RDS DB instance status 1188

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

Recommendations from Amazon RDS

Amazon RDS provides automated recommendations for database resources, such as DB instances,
read replicas, and DB parameter groups. These recommendations provide best practice guidance by
analyzing DB instance configuration, usage, and performance data.

Amazon RDS Performance Insights monitors specific metrics and automatically creates thresholds
by analyzing what levels are considered potentially problematic for a specified resource. When
new metric values cross a predefined threshold over a given period of time, Performance Insights
generates a proactive recommendation. This recommendation helps to prevent future database
performance impact. For example, the "Idle In Transaction" recommendation is generated for
RDS for PostgreSQL instances when the sessions connected to the database are not performing
active work, but can keep database resources blocked. To receive proactive recommendations,
you must turn on Performance Insights with a paid tier retention period. For information about
turning on Performance Insights, see Turning Performance Insights on and off for Amazon RDS.
For information about pricing and data retention for Performance Insights see Pricing and data
retention for Performance Insights.

DevOps Guru for RDS monitors certain metrics to detect when the metric's behavior becomes
highly unusual or anomalous. These anomalies are reported as reactive insights with
recommendations. For example, DevOps Guru for RDS might recommend you to consider
increasing CPU capacity or investigate wait events that are contributing to DB load. DevOps Guru
for RDS also provides threshold based proactive recommendations. For these recommendations,
you must turn on DevOps Guru for RDS. For information about turning on DevOps Guru for RDS,
see Turning on DevOps Guru and specifying resource coverage.

Recommendations will be in any of the following status: active, dismissed, pending, or resolved.
Resolved recommendations are available for 365 days.

You can view or dismiss the recommendations. You can apply a configuration based active
recommendation immediately, schedule it in the next maintenance window, or dismiss it. For
threshold based proactive and machine learning based reactive recommendations, you need to
review the suggested cause of the issue and then perform the recommended actions to fix the
issue.

Recommendations are supported in the following AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

Recommendations from Amazon RDS 1189

Amazon Relational Database Service User Guide

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• South America (São Paulo)

Learn to view, apply, dismiss, and modify recommendations from Amazon RDS in the following
sections.

Topics

• Viewing Amazon RDS recommendations

• Applying Amazon RDS recommendations

• Dismissing Amazon RDS recommendations

• Modifying dismissed Amazon RDS recommendations to active recommendations

• Recommendations from Amazon RDS reference

Recommendations from Amazon RDS 1190

Amazon Relational Database Service User Guide

Viewing Amazon RDS recommendations

Using the Amazon RDS console, you can view Amazon RDS recommendations for your database
resources.

Console

To view the Amazon RDS recommendations

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, do any of the following:

• Choose Recommendations. The number of active recommendations for your resources and
the number of recommendations with the highest severity generated in the last month are
available next to Recommendations. To find the number of active recommendations for
each severity, choose the number that shows the highest severity.

Viewing recommendations 1191

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

By default, the Recommendations page displays a list of new recommendations in the last
month. Amazon RDS gives recommendations for all the resources in your account and sorts
the recommendations by their severity.

Viewing recommendations 1192

Amazon Relational Database Service User Guide

You can choose a recommendation to view a section at the bottom of the page which
contains the affected resources and details of how the recommendation will be applied.

• In the Databases page, choose Recommendations for a resource.

The Recommendations tab displays the recommendations and its details for the selected
resource.

Viewing recommendations 1193

Amazon Relational Database Service User Guide

The following details are available for the recommendations:

• Severity – The implication level of the issue. The severity levels are High, Medium, Low, and
Informational.

• Detection – The number of affected resources and a short description of the issue. Choose
this link to view the recommendation and the analysis details.

• Recommendation – A short description of the recommended action to apply.

• Impact – A short description of the possible impact when the recommendation isn't applied.

• Category – The type of recommendation. The categories are Performance efficiency,
Security, Reliability, Cost optimization, Operational excellence, and Sustainability.

• Status – The current status of the recommendation. The possible statuses are All, Active,
Dismissed, Resolved, and Pending.

• Start time – The time when the issue began. For example, 18 hours ago.

• Last modified – The time when the recommendation was last updated by the system
because of a change in the Severity, or the time you responded to the recommendation. For
example, 10 hours ago.

• End time – The time when the issue ended. The time won't display for any continuing issues.

• Resource identifier – The name of one or more resources.

3. (Optional) Choose Severity or Category operators in the field to filter the list of
recommendations.

Viewing recommendations 1194

Amazon Relational Database Service User Guide

The recommendations for the selected operation appear.

4. (Optional) Choose any of the following recommendation status:

• Active (default) – Shows the current recommendations that you can apply, schedule it for
the next maintenance window, or dismiss.

• All – Shows all the recommendations with the current status.

• Dismissed – Shows the dismissed recommendations.

• Resolved – Shows the recommendations that are resolved.

• Pending – Shows the recommendations whose recommended actions are in progress or
scheduled for the next maintenance window.

Viewing recommendations 1195

Amazon Relational Database Service User Guide

5. (Optional) Choose Relative mode or Absolute mode in Last modified to modify the time
period. The Recommendations page displays the recommendations generated in the time
period. The default time period is the last month. In the Absolute mode, you can choose the
time period, or enter the time in Start date and End date fields.

Viewing recommendations 1196

Amazon Relational Database Service User Guide

The recommendations for the set time period display.

Note that you can see all recommendations for resources in your account by setting the range
to All.

6. (Optional) Choose Preferences in the right to customize the details to display. You can choose
a page size, wrap the lines of the text, and allow or hide the columns.

7. (Optional) Choose a recommendation and then choose View details.

Viewing recommendations 1197

Amazon Relational Database Service User Guide

The recommendation details page appears. The title provides the total count of the resources
with the issue detected and the severity.

For information about the components on the details page for an anomaly based reactive
recommendation, see Viewing reactive anomalies in the Amazon DevOps Guru User Guide.

For information about the components on the details page for a threshold based proactive
recommendation, see Viewing Performance Insights proactive recommendations.

The other automated recommendations display the following components on the
recommendation details page:

• Recommendation – A summary of the recommendation and whether downtime is required
to apply the recommendation.

• Resources affected – Details of the affected resources.

Viewing recommendations 1198

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.analyzing.metrics.html

Amazon Relational Database Service User Guide

• Recommendation details – Supported engine information, any required associated cost to
apply the recommendation, and documentation link to learn more.

CLI

To view Amazon RDS recommendations of the DB instances, use the following command in AWS
CLI.

aws rds describe-db-recommendations

RDS API

To view Amazon RDS recommendations using the Amazon RDS API, use the
DescribeDBRecommendations operation.

Applying Amazon RDS recommendations

To apply Amazon RDS recommendations using the Amazon RDS console, select a configuration
based recommendation or an affected resource in the details page. Then, choose to apply the
recommendation immediately or schedule it for the next maintenance window. The resource might
need to restart for the change to take effect. For a few DB parameter group recommendations, you
might need to restart the resources.

Applying recommendations 1199

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBRecommendations.html

Amazon Relational Database Service User Guide

The threshold based proactive or anomaly based reactive recommendations won't have the apply
option and might need additional review.

Console

To apply a configuration based recommendation

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, perform any of the following:

• Choose Recommendations.

The Recommendations page appears with the list of all recommendations.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The details appear in the Recommendations tab for the selected recommendation.

• Choose Detection for an active recommendation in the Recommendations page or the
Recommendations tab in the Databases page.

The recommendation details page appears.

3. Choose a recommendation, or one or more affected resources in the recommendation details
page, and do any of the following:

• Choose Apply and then choose Apply immediately to apply the recommendation
immediately.

• Choose Apply and then choose Apply in next maintenance window to schedule in the next
maintenance window.

The selected recommendation status is updated to pending until the next maintenance
window.

Applying recommendations 1200

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

A confirmation window appears.

4. Choose Confirm application to apply the recommendation. This window confirms whether the
resources need an automatic or manual restart for the changes to take effect.

The following example shows the confirmation window to apply the recommendation
immediately.

Applying recommendations 1201

Amazon Relational Database Service User Guide

The following example shows the confirmation window to schedule applying the
recommendation in the next maintenance window.

Applying recommendations 1202

Amazon Relational Database Service User Guide

A banner displays a message when the recommendation applied is successful or has failed.

The following example shows the banner with the successful message.

The following example shows the banner with the failure message.

Applying recommendations 1203

Amazon Relational Database Service User Guide

RDS API

To apply a configuration based RDS recommendation using the Amazon RDS API

1. Use the DescribeDBRecommendations operation. The RecommendedActions in the output
can have one or more recommended actions.

2. Use the RecommendedAction object for each recommended action from step 1. The output
contains Operation and Parameters.

The following example shows the output with one recommended action.

 "RecommendedActions": [
 {
 "ActionId": "0b19ed15-840f-463c-a200-b10af1b552e3",
 "Title": "Turn on auto backup", // localized
 "Description": "Turn on auto backup for my-mysql-instance-1", //
 localized
 "Operation": "ModifyDbInstance",
 "Parameters": [
 {
 "Key": "DbInstanceIdentifier",
 "Value": "my-mysql-instance-1"
 },
 {
 "Key": "BackupRetentionPeriod",
 "Value": "7"
 }
],
 "ApplyModes": ["immediately", "next-maintenance-window"],
 "Status": "applied"
 },
 ... // several others
],

3. Use the operation for each recommended action from the output in step 2 and input the
Parameters values.

4. After the operation in step 2 is successful, use the ModifyDBRecommendation operation to
modify the recommendation status.

Applying recommendations 1204

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBRecommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RecommendedAction.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBRecommendation.html

Amazon Relational Database Service User Guide

Dismissing Amazon RDS recommendations

You can dismiss one or more Amazon RDS recommendations using the Amazon RDS console, AWS
CLI, or Amazon RDS API.

Console

To dismiss one or more recommendations

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, perform any of the following:

• Choose Recommendations.

The Recommendations page appears with the list of all recommendations.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The details appear in the Recommendations tab for the selected recommendation.

• Choose Detection for an active recommendation in the Recommendations page or the
Recommendations tab in the Databases page.

The recommendation details page displays the list of affected resources.

3. Choose one or more recommendation, or one or more affected resources in the
recommendation details page, and then choose Dismiss.

The following example shows the Recommendations page with multiple active
recommendations selected to dismiss.

Dismissing recommendations 1205

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

A banner displays a message when the selected one or more recommendations are dismissed.

The following example shows the banner with the successful message.

The following example shows the banner with the failure message.

CLI

To dismiss a RDS recommendation using the AWS CLI

1. Run the command aws rds describe-db-recommendations --filters
"Name=status,Values=active".

The output provides a list of recommendations in active status.

2. Find the recommendationId for the recommendation that you want to dismiss from step 1.

3. Run the command >aws rds modify-db-recommendation --status dismissed
--recommendationId <ID> with the recommendationId from step 2 to dismiss the
recommendation.

Dismissing recommendations 1206

Amazon Relational Database Service User Guide

RDS API

To dismiss a RDS recommendation using the Amazon RDS API, use the ModifyDBRecommendation
operation.

Modifying dismissed Amazon RDS recommendations to active
recommendations

You can move one or more dismissed Amazon RDS recommendations to active recommendations
using the Amazon RDS console, AWS CLI, or Amazon RDS API.

Console

To move one or more dismissed recommendations to active recommendations

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, perform any of the following:

• Choose Recommendations.

The Recommendations page displays a list of recommendations sorted by the severity for
all the resources in your account.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The Recommendations tab displays the recommendations and its details for the selected
resource.

3. Choose one or more dismissed recommendations from the list and then choose Move to
active.

Modifying dismissed recommendations to active 1207

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBRecommendation.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

A banner displays a successful or failure message when the moving the selected
recommendations from dismissed to active status.

The following example shows the banner with the successful message.

The following example shows the banner with the failure message.

CLI

To change a dismissed RDS recommendation to active recommendation using the AWS CLI

1. Run the command aws rds describe-db-recommendations --filters
"Name=status,Values=dismissed".

The output provides a list of recommendations in dismissed status.

2. Find the recommendationId for the recommendation that you want to change the status
from step 1.

3. Run the command >aws rds modify-db-recommendation --status active --
recommendationId <ID> with the recommendationId from step 2 to change to active
recommendation.

RDS API

To change a dismissed RDS recommendation to active recommendation using the Amazon RDS API,
use the ModifyDBRecommendation operation.

Recommendations from Amazon RDS reference

Amazon RDS generates recommendations for a resource when the resource is created or modified.
You can find examples of recommendations from Amazon RDS in the following table.

Recommendations reference 1208

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBRecommendation.html

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

Magnetic
volume is in
use

Your DB instances
are using magnetic
storage. Magnetic
storage isn't
recommended for
most of the DB
instances. Choose
a different storage
type: General
Purpose (SSD) or
Provisioned IOPS.

Choose a different
storage type: General
Purpose (SSD) or
Provisioned IOPS.

Yes Previous generatio
n volumes in
the Amazon EC2
documentation.

Resource
Automated
backups is
turned off

Automated backups
aren't turned on for
your DB instances.
Automated backups
are recommend
ed because they
enable point-in-time
recovery of your DB
instances.

Turn on automated
backups with a
retention period of
up to 14 days.

Yes Enabling automated
 backups

Demystifying
Amazon RDS backup
storage costs on the
AWS Database Blog

Engine minor
version
upgrade is
required

Your database
resources aren't
running the latest
minor DB engine
version. The latest
minor version
contains the latest
security fixes and
other improvements.

Upgrade to latest
engine version.

Yes Upgrading a DB
instance engine
version

Recommendations reference 1209

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#vol-type-prev
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#vol-type-prev
https://aws.amazon.com/blogs/database/demystifying-amazon-rds-backup-storage-costs/
https://aws.amazon.com/blogs/database/demystifying-amazon-rds-backup-storage-costs/
https://aws.amazon.com/blogs/database/demystifying-amazon-rds-backup-storage-costs/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

Enhanced
Monitoring is
turned off

Your database
resources don't have
Enhanced Monitoring
turned on. Enhanced
Monitoring provides
real-time operating
system metrics for
monitoring and
troubleshooting.

Turn on Enhanced
Monitoring.

No Monitoring OS
metrics with
Enhanced Monitoring

Recommendations reference 1210

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

Storage
encryption is
turned off

Amazon RDS
supports encryptio
n at rest for all
the database
engines by using
the keys that you
manage in AWS Key
Management Service
(AWS KMS). On an
active DB instance
with Amazon RDS
encryption, the
data stored at rest
in the storage is
encrypted, similar to
automated backups,
read replicas, and
snapshots.

If encryption isn't
turned on while
creating a DB
instance, you will
need to create and
restore an encrypted
copy of the decrypted
 snapshot of the DB
instance before you
turn on the encryptio
n.

Turn on encryption of
data at rest for your
DB instance.

Yes Security in Amazon
RDS

Copying a DB
snapshot for Amazon
RDS

Recommendations reference 1211

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

Performan
ce Insights is
turned off

Performance Insights
monitors your DB
instance load to help
you analyze and
resolve database
performance issues.
We recommend
that you turn on
Performance Insights.

Turn on Performance
Insights.

No Monitoring DB load
with Performance
Insights on Amazon
RDS

DB instances
have storage
autoscaling
turned off

Storage autoscaling
isn't turned on for
your DB instance.
When the database
workload increases,
RDS storage autoscali
ng automatically
scales the storage
capacity with zero
downtime.

Turn on Amazon RDS
storage autoscali
ng with a specified
maximum storage
threshold

No Managing capacity
automatically with
Amazon RDS storage
autoscaling

RDS
resources
major
versions
update is
required

Databases with the
current major version
for the DB engine
won't be supported.
We recommend that
you upgrade to the
latest major version
which includes new
functionality and
enhancements.

Upgrade to the latest
major version for the
DB engine.

Yes Upgrading a DB
instance engine
version

Using Amazon
RDS Blue/Green
Deployments for
database updates

Recommendations reference 1212

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

RDS
resources
instance class
update is
required

Your DB instance is
running an earlier
generation DB
instance class. We
have replaced DB
instance classes from
an earlier generatio
n with DB instance
classes with better
cost, performance, or
both. We recommend
that you run your DB
instance with a DB
instance class from a
newer generation.

Upgrade the DB
instance class.

Yes Supported DB
engines for DB
instance classes

RDS
resources
using end
of support
engine
edition under
license-i
ncluded

We recommend that
you upgrade the
major version to
the latest engine
version supported
by Amazon RDS
to continue with
the current license
support. The engine
version of your
database won't be
supported with the
current license.

We recommend that
you upgrade your
database to the latest
supported version
in Amazon RDS to
continue using the
licensed model.

Yes Oracle major version
upgrades

Recommendations reference 1213

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

DB instances
not using
Multi-AZ
deployment

We recommend that
you use Multi-AZ
deployment. The
Multi-AZ deploymen
ts enhance the
availability and
durability of the DB
instance.

Set up Multi-AZ for
the impacted DB
instances

No

Downtime
doesn't
occur
during
this
change.
However,
there
is a
possible
performan
ce
impact.
For
more
informati
on,
see
Convertin
g a
DB
instance
to a
Multi-
AZ
deplo
yment
for
Amazon
RDS

Pricing for Amazon
RDS Multi-AZ

Recommendations reference 1214

https://aws.amazon.com/rds/features/multi-az/#Pricing
https://aws.amazon.com/rds/features/multi-az/#Pricing

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

DB memory
parameters
are diverging
from default

The memory
parameters of the DB
instances are significa
ntly different from
the default values.
These settings can
impact performance
and cause errors.

We recommend that
you reset the custom
memory parameters
for the DB instance to
their default values
in the DB parameter
group.

Reset the memory
parameters to their
default values.

No Best practices
for configuring
performance
parameters for
Amazon RDS for
MySQL on the AWS
Database Blog

Recommendations reference 1215

https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

InnoDB_Ch
ange_Buff
ering
parameter
using
less than
optimum
value

Change buffering
allows a MySQL DB
instance to defer a
few writes, which are
required to maintain
secondary indexes.
This feature was
useful in environme
nts with slow disks.
The change buffering
configuration
improved the DB
performance slightly
but caused a delay in
crash recovery and
long shutdown times
during upgrade. Set
to OFF by default in
MySQL version 8.4.

Set InnoDB_Ch
ange_Buffering
parameter value
to NONE in your DB
parameter groups.

No Best practices
for configuring
performance
parameters for
Amazon RDS for
MySQL on the AWS
Database Blog

Recommendations reference 1216

https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

Query cache
parameter is
turned on

When changes
require that your
query cache is
purged, your DB
instance will appear
to stall. Most
workloads don't
benefit from a query
cache. The query
cache was removed
from MySQL 8.0 and
higher versions. We
recommend that you
set the query_cac
he_type parameter to
0.

Set the query_cac
he_type parameter
value to 0 in your DB
parameter groups.

Yes Best practices
for configuring
performance
parameters for
Amazon RDS for
MySQL on the AWS
Database Blog

log_outpu
t parameter
is set to table

When log_output
is set to TABLE, more
storage is used than
when log_outpu
t is set to FILE. We
recommend that you
set the parameter
to FILE, to avoid
reaching the storage
size limit. Set to
FILE by default
in MySQL 8.4 and
higher versions.

Set the log_outpu
t parameter value
to FILE in your DB
parameter groups.

No MySQL database log
files

Recommendations reference 1217

https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

Parameter
groups not
using huge
pages

Large pages can
increase database
scalability, but your
DB instance isn't
using large pages. We
recommend that you
set the use_large
_pages parameter
value to ONLY in the
DB parameter group
for your DB instance.

Set the use_large
_pages parameter
value to ONLY in your
DB parameter groups.

Yes Turning on
HugePages for an
RDS for Oracle
instance

autovacuu
m parameter
is turned off

The autovacuum
parameter is turned
off for your DB
instances. Turning
autovacuum off
increases the table
and index bloat
and impacts the
performance.

We recommend
that you turn on
autovacuum in your
DB parameter groups.

Turn on the
autovacuum
parameter in your DB
parameter groups.

No Understanding
autovacuum in
Amazon RDS
for PostgreSQL
environments on the
AWS Database Blog

Recommendations reference 1218

https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

synchrono
us_commit

 parameter
is turned off

When synchrono
us_commit
parameter is turned
off, data can be lost
in a database crash.
The durability of the
database is at risk.

We recommend
that you turn on
the synchrono
us_commit
parameter.

Turn on synchrono
us_commit
parameter in your DB
parameter groups.

Yes Amazon Aurora
PostgreSQL
parameters: Replicati
on, security, and
logging on the AWS
Database Blog

track_cou
nts
parameter is
turned off

When the
track_counts
parameter is turned
off, the database
doesn't collect the
database activity
statistics. Autovacuu
m requires these
statistics to work
correctly.

We recommend that
you set track_cou
nts parameter to 1.

Set track_counts
parameter to 1.

No Run-time Statistics
for PostgreSQL

Recommendations reference 1219

https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-COUNTS
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-COUNTS

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

enable_in
dexonlysc
an
parameter is
turned off

The query planner or
optimizer can't use
the index-only scan
plan type when it is
turned off.

We recommend
that you set
the enable_in
dexonlyscan
parameter value to 1.

Set the enable_in
dexonlyscan
parameter value to 1.

No Planner Method
Configuration for
PostgreSQL

enable_in
dexscan
parameter is
turned off

The query planner or
optimizer can't use
the index scan plan
type when it is turned
off.

We recommend
that you set
the enable_in
dexscan value to 1.

Set the enable_in
dexscan parameter
value to 1.

No Planner Method
Configuration for
PostgreSQL

Recommendations reference 1220

https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

innodb_fl
ush_log_a
t_trx
parameter is
turned off

The value of
the innodb_fl
ush_log_at_trx
parameter of your
DB instance isn't
safe value. This
parameter controls
the persistence of
commit operations to
disk.

We recommend
that you set
the innodb_fl
ush_log_at_trx
parameter to 1.

Set the innodb_fl
ush_log_at_trx
parameter value to 1.

No Best practices
for configuring
performance
parameters for
Amazon RDS for
MySQL on the AWS
Database Blog

sync_binl
og
parameter is
turned off

The synchronization
of the binary log to
disk isn't enforced
before the transacti
on commits are
acknowledged in your
DB instance.

We recommend
that you set the
sync_binlog
parameter value to 1.

Set the sync_binl
og parameter value
to 1.

No Best practices for
configuring replicati
on parameters for
Amazon RDS for
MySQL on the AWS
Database Blog

Recommendations reference 1221

https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

innodb_st
ats_persi
stent
parameter is
turned off

Your DB instance
isn't configured to
persist the InnoDB
statistics to the disk.
When the statistics
aren't stored, they
are recalculated each
time the instance
restarts and the table
accessed. This leads
to variations in the
query execution plan.
You can modify the
value of this global
parameter at the
table level.

We recommend
that you set
the innodb_st
ats_persistent
parameter value to
ON.

Set the innodb_st
ats_persistent
parameter value to
ON.

No Best practices
for configuring
performance
parameters for
Amazon RDS for
MySQL on the AWS
Database Blog

Recommendations reference 1222

https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

innodb_op
en_files
parameter is
low

The innodb_op
en_files
parameter controls
the number of files
InnoDB can open at
one time. InnoDB
opens all of the log
and system tablespac
e files when mysqld is
running.

Your DB instance has
a low value for the
maximum number
of files InnoDB can
open at one time. We
recommend that you
set the innodb_op
en_files
parameter to a
minimum value of
65.

Set the innodb_op
en_files
parameter to a
minimum value of
65.

Yes InnoDB open files for
MySQL

Recommendations reference 1223

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_open_files
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_open_files

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

max_user_
connectio
ns
parameter is
low

Your DB instance has
a low value for the
maximum number
of simultaneous
connections for each
database account.

We recommend
setting the
max_user_
connections
parameter to a
number greater than
5.

Increase the value
of the max_user_
connections
parameter to a
number greater than
5.

Yes Setting Account
Resource Limits for
MySQL

Read Replicas
are open
in writable
mode

Your DB instance
has a read replica in
writable mode, which
allows updates from
clients.

We recommend
that you set the
read_only
parameter to
TrueIfReplica so
that the read replicas
isn't in writable
mode.

Set the read_only
 parameter value to

TrueIfReplica .

No Best practices for
configuring replicati
on parameters for
Amazon RDS for
MySQL on the AWS
Database Blog

Recommendations reference 1224

https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-2-parameters-related-to-replication/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-2-parameters-related-to-replication/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-2-parameters-related-to-replication/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-2-parameters-related-to-replication/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-2-parameters-related-to-replication/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

innodb_de
fault_row
_format
parameter
setting is
unsafe

Your DB instance
encounters a known
issue: A table created
in a MySQL version
lower than 8.0.26
with the row_forma
t set to COMPACT
or REDUNDANT will
be inaccessible and
unrecoverable when
the index exceeds
767 bytes.

We recommend
that you set
the innodb_de
fault_row
_format parameter
value to DYNAMIC.

Set the innodb_de
fault_row
_format parameter
value to DYNAMIC.

No Changes in MySQL
8.0.26

Recommendations reference 1225

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-26.html#mysqld-8-0-26-bug
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-26.html#mysqld-8-0-26-bug

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

general_l
ogging
parameter is
turned on

The general logging
is turned on for your
DB instance. This
setting is useful while
troubleshooting
the database issues.
However, turning
on general logging
increases the amount
of I/O operations
and allocated storage
space, which might
result in contentio
n and performance
degradation.

Check your requireme
nts for general
logging usage. We
recommend that you
set the general_l
ogging parameter
value to 0.

Check your requireme
nts for general
logging usage. If
it isn't mandatory
, we recommend
that you to set the
general_logging
parameter value to 0.

No Overview of RDS for
MySQL database logs

Recommendations reference 1226

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

RDS instance
under-pro
visioned
for system
memory
capacity

We recommend that
you tune your queries
to use lesser memory
or use a DB instance
type with higher
allocated memory.
When the instance
is running low on
memory, then the
database performan
ce is impacted.

Use a DB instance
with higher memory
capacity

Yes Scaling Your Amazon
RDS Instance Verticall
y and Horizontally on
the AWS Database
Blog

Amazon RDS instance
types

Amazon RDS pricing

RDS instance
under-pro
visioned for
system CPU
capacity

We recommend
that you tune your
queries to use less
CPU or modify your
DB instance to use
a DB instance class
with higher allocated
vCPUs. Database
performance might
decline when a DB
instance is running
low on CPU.

Use a DB instance
with higher CPU
capacity

Yes Scaling Your Amazon
RDS Instance Verticall
y and Horizontally on
the AWS Database
Blog

Amazon RDS instance
types

Amazon RDS pricing

Recommendations reference 1227

https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

RDS
resources are
not utilizing
connectio
n pooling
correctly

We recommend that
you enable Amazon
RDS Proxy to efficient
ly pool and share
existing database
connections. If you
are already using
a proxy for your
database, configure it
correctly to improve
connection pooling
and load balancing
across multiple DB
instances. RDS Proxy
can help reduce the
risk of connectio
n exhaustion and
downtime while
improving availability
and scalability.

Enable RDS Proxy or
modify your existing
proxy configuration

No Scaling Your Amazon
RDS Instance Verticall
y and Horizontally on
the AWS Database
Blog

Amazon RDS Proxy

Amazon RDS Proxy
Pricing

Recommendations reference 1228

https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/rds/proxy/pricing/
https://aws.amazon.com/rds/proxy/pricing/

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

RDS
instances
are creating
excessive
temporary
 objects

We recommend
that you tune your
workload to prevent
creating excessive
temporary objects,
or switch to RDS
instance classes
supporting optimized
reads. RDS Optimized
Reads improves
database performan
ce for workloads
involving a large
number of temporary
 objects and/or
large temporary
objects. Evaluate
your workload to
determine if using
an instance with
RDS Optimized
Reads benefits your
database workload.

Use a DB instance
type with RDS
Optimized Reads

Yes Amazon RDS instance
types

Improving query
performance for
RDS for MySQL
with Amazon RDS
Optimized Reads

Improving query
performance for
RDS for MariaDB
with Amazon RDS
Optimized Reads

Improving query
performance for
RDS for PostgreSQ
L with Amazon RDS
Optimized Reads

Recommendations reference 1229

https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

RDS
instances are
under-pro
visioned for
system IOPS
capacity

We recommend
tuning the database
workload to reduce
IOPS or scale up the
DB instance to a type
with a higher default
IOPS limit. The
current DB instance
can't support the
Provisioned IOPS,
or the database
workload has high
IOPS utilization.

Use a DB instance
type with higher
default IOPS limits

Yes Amazon RDS instance
types

Amazon RDS DB
instance storage

Database load

RDS
instances
have under-
provisioned
Amazon EBS
volumes

We recommend
tuning the database
workload to reduce
IOPS or increase the
Provisioned IOPS
for the database.
When IOPS utilizati
on approaches the
Provisioned IOPS,
database performan
ce might decline.

Provision more IOPS
for the DB instance

Yes Amazon RDS instance
types

Amazon RDS DB
instance storage

Database load

Recommendations reference 1230

https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Overview.ActiveSessions.html
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Overview.ActiveSessions.html

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

RDS
instances are
under-pro
visioned for
throughput
capacity

We recommend
tuning the database
workload to reduce
throughput or
increase the provision
ed throughput
for the database.
When throughput
utilization approache
s the provisioned
throughput, database
performance might
be impacted.

Provision more
throughput for the
DB instance

Yes Amazon RDS instance
types

Amazon RDS DB
instance storage

Database load

Recommendations reference 1231

https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Overview.ActiveSessions.html

Amazon Relational Database Service User Guide

Type Description Recommendation Downtime
required

Additional informati
on

RDS
instances are
under-pro
visioned for
EBS I/O

We recommend
tuning the database
workload to reduce
I/O operations
or modifying the
DB instance to
use Amazon RDS
io2 Block Express
volumes which
are designed for
database workloads
that require high
performance, high
throughput, and low
latency. With the
current workload, the
database might not
be able to process
I/O operations at
the required rate
which can lead
to performance
degradation.

Use Amazon RDS
io2 Block Express
volumes for the RDS
instance

No Amazon RDS DB
instance storage

Amazon CloudWatch
metrics for Amazon
RDS

Provisioned IOPS
SSD volumes in the
Amazon EBS User
Guide

Recommendations reference 1232

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-metrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-metrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-metrics.html
https://docs.aws.amazon.com/ebs/latest/userguide/provisioned-iops.html
https://docs.aws.amazon.com/ebs/latest/userguide/provisioned-iops.html

Amazon Relational Database Service User Guide

Viewing metrics in the Amazon RDS console

Amazon RDS integrates with Amazon CloudWatch to display a variety of RDS DB instance metrics
in the RDS console. For descriptions of these metrics, see Metrics reference for Amazon RDS.

For your DB instance, the following categories of metrics are monitored:

• CloudWatch – Shows the Amazon CloudWatch metrics for RDS that you can access in the RDS
console. You can also access these metrics in the CloudWatch console. Each metric includes
a graph that shows the metric monitored over a specific time span. For a list of CloudWatch
metrics, see Amazon CloudWatch metrics for Amazon RDS.

• Enhanced monitoring – Shows a summary of operating-system metrics when your RDS
DB instance has turned on Enhanced Monitoring. RDS delivers the metrics from Enhanced
Monitoring to your Amazon CloudWatch Logs account. Each OS metric includes a graph showing
the metric monitored over a specific time span. For an overview, see Monitoring OS metrics with
Enhanced Monitoring. For a list of Enhanced Monitoring metrics, see OS metrics in Enhanced
Monitoring.

• OS Process list – Shows details for each process running in your DB instance.

• Performance Insights – Opens the Amazon RDS Performance Insights dashboard for a DB
instance. For an overview of Performance Insights, see Monitoring DB load with Performance
Insights on Amazon RDS. For a list of Performance Insights metrics, see Amazon CloudWatch
metrics for Amazon RDS Performance Insights.

Amazon RDS now provides a consolidated view of Performance Insights and CloudWatch metrics in
the Performance Insights dashboard. Performance Insights must be turned on for your DB instance
to use this view. You can choose the new monitoring view in the Monitoring tab or Performance
Insights in the navigation pane. To view the instructions for choosing this view, see Viewing
combined metrics with the Performance Insights dashboard.

Viewing metrics in the Amazon RDS console 1233

Amazon Relational Database Service User Guide

Viewing combined metrics with the Performance Insights
dashboard

Amazon RDS provides a consolidated view of Performance Insights and CloudWatch metrics for
your DB instance in the Performance Insights dashboard. You can use the preconfigured dashboard
or create a custom dashboard. The preconfigured dashboard provides the most commonly used
metrics to help diagnose performance issues for a database engine. Alternatively, you can create
a custom dashboard with the metrics for a database engine that meet your analysis requirements.
Then, use this dashboard for all the DB instances of that database engine type in your AWS
account.

You can choose the monitoring view in the Monitoring tab or Performance Insights in the
navigation pane.

Performance Insights must be turned on for your DB instance to view the combined metrics in the
Performance Insights dashboard. For more information about turning on Performance Insights, see
Turning Performance Insights on and off for Amazon RDS.

In the following sections, you can learn to display Performance Insights and CloudWatch metrics.

Topics

• Choosing the new monitoring view from the Monitoring tab

• Choosing the new monitoring view from the Performance Insights page

• Creating a custom dashboard with Performance Insights

• Choosing the preconfigured dashboard with Performance Insights

Choosing the new monitoring view from the Monitoring tab

From the Amazon RDS console, you can choose the new monitoring view to view Performance
Insights and CloudWatch metrics for your DB instance.

To choose the new monitoring view in the Monitoring tab

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Databases.

Viewing the Performance Insights dashboard 1234

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. Choose the DB instance that you want to monitor.

4. Scroll down and choose the Monitoring tab.

A banner appears with the option to choose the new monitoring view. The following example
shows the banner to choose the new monitoring view.

5. Choose Go to new monitoring view to open the Performance Insights dashboard with
Performance Insights and CloudWatch metrics for your DB instance.

6. (Optional) If Performance Insights is turned off for your DB instance, a banner appears with
the option to modify your DB cluster and turn on Performance Insights.

The following example shows the banner to modify the DB cluster in the Monitoring tab .

Choose Modify to modify your DB cluster and turn on Performance Insights. For more
information about turning on Performance Insights, see Turning Performance Insights on and
off for Amazon RDS

Choosing the new monitoring view from the Performance Insights page

From the Amazon RDS console, you can choose the new monitoring view to view Performance
Insights and CloudWatch metrics for your DB instance.

To choose the new monitoring view with Performance Insights in the navigation pane

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance to view the Performance Insights dashboard that shows both
Performance Insights and CloudWatch metrics for your DB instance.

Choosing the new monitoring view from the Performance Insights page 1235

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Creating a custom dashboard with Performance Insights

In the new monitoring view, you can create a custom dashboard with the metrics you need to meet
your analysis requirements.

You can create a custom dashboard by selecting Performance Insights and CloudWatch metrics for
your DB instance. You can use this custom dashboard for other DB instances of the same database
engine type in your AWS account.

Note

The customized dashboard supports up to 50 metrics.

Use the widget settings menu to edit or delete the dashboard, and move or resize the widget
window.

Creating a custom dashboard 1236

Amazon Relational Database Service User Guide

To create a custom dashboard with Performance Insights in the navigation pane

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Scroll down to the Metrics tab in the window.

5. Select the custom dashboard from the drop down list. The following example shows the
custom dashboard creation.

6. Choose Add widget to open the Add widget window. You can open and view the available
operating system (OS) metrics, database metrics, and CloudWatch metrics in the window.

The following example shows the Add widget window with the metrics.

Creating a custom dashboard 1237

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. Select the metrics that you want to view in the dashboard and choose Add widget. You can
use the search field to find a specific metric.

The selected metrics appear on your dashboard.

Creating a custom dashboard 1238

Amazon Relational Database Service User Guide

8. (Optional) If you want to modify or delete your dashboard, choose the settings icon on the
upper right of the widget, and then select one of the following actions in the menu.

• Edit – Modify the metrics list in the window. Choose Update widget after you select the
metrics for your dashboard.

• Delete – Deletes the widget. Choose Delete in the confirmation window.

Choosing the preconfigured dashboard with Performance Insights

You can view the most commonly used metrics with the preconfigured dashboard. This dashboard
helps diagnose performance issues with a database engine and reduce the average recovery time
from hours to minutes.

Note

This dashboard can't be edited.

To choose the preconfigured dashboard with Performance Insights in the navigation pane

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Scroll down to the Metrics tab in the window

5. Select a preconfigured dashboard from the drop down list.

You can view the metrics for the DB instance in the dashboard. The following example shows a
preconfigured metrics dashboard.

Choosing the preconfigured dashboard 1239

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Choosing the preconfigured dashboard 1240

Amazon Relational Database Service User Guide

Monitoring Amazon RDS metrics with Amazon CloudWatch

Amazon CloudWatch is a metrics repository. The repository collects and processes raw data from
Amazon RDS into readable, near real-time metrics. For a complete list of Amazon RDS metrics sent
to CloudWatch, see Metrics reference for Amazon RDS.

To analyze and troubleshoot the performance of your databases at scale, use CloudWatch Database
Insights.

Topics

• Overview of Amazon RDS and Amazon CloudWatch

• Viewing DB instance metrics in the CloudWatch console and AWS CLI

• Exporting Performance Insights metrics to CloudWatch

• Creating CloudWatch alarms to monitor Amazon RDS

• Tutorial: Creating an Amazon CloudWatch alarm for Multi-AZ DB cluster replica lag for Amazon
RDS

Monitoring RDS with CloudWatch 1241

https://docs.aws.amazon.com/en_us/AmazonRDS/latest/UserGuide/metrics-reference.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html

Amazon Relational Database Service User Guide

Overview of Amazon RDS and Amazon CloudWatch

By default, Amazon RDS automatically sends metric data to CloudWatch in 1-minute periods.
For example, the CPUUtilization metric records the percentage of CPU utilization for a DB
instance over time. Data points with a period of 60 seconds (1 minute) are available for 15 days.
This means that you can access historical information and see how your web application or service
is performing.

You can now export Performance Insights metrics dashboards from Amazon RDS to Amazon
CloudWatch. You can export either the preconfigured or customized metrics dashboards as a new
dashboard or add them to an existing CloudWatch dashboard. The exported dashboard is available
to view in the CloudWatch console. For more information on how to export the Performance
Insights metrics dashboards to CloudWatch, see Exporting Performance Insights metrics to
CloudWatch.

As shown in the following diagram, you can set up alarms for your CloudWatch metrics. For
example, you might create an alarm that signals when the CPU utilization for an instance is over
70%. You can configure Amazon Simple Notification Service to email you when the threshold is
passed.

Overview of Amazon RDS and Amazon CloudWatch 1242

Amazon Relational Database Service User Guide

Amazon RDS publishes the following types of metrics to Amazon CloudWatch:

• Metrics for your RDS DB instances

For a table of these metrics, see Amazon CloudWatch metrics for Amazon RDS.

• Performance Insights metrics

For a table of these metrics, see Amazon CloudWatch metrics for Amazon RDS Performance
Insights and Performance Insights counter metrics.

• Enhanced Monitoring metrics (published to Amazon CloudWatch Logs)

For a table of these metrics, see OS metrics in Enhanced Monitoring.

• Usage metrics for the Amazon RDS service quotas in your AWS account

For a table of these metrics, see Amazon CloudWatch usage metrics for Amazon RDS. For more
information about Amazon RDS quotas, see Quotas and constraints for Amazon RDS.

Overview of Amazon RDS and Amazon CloudWatch 1243

Amazon Relational Database Service User Guide

For more information about CloudWatch, see What is Amazon CloudWatch? in the Amazon
CloudWatch User Guide. For more information about CloudWatch metrics retention, see Metrics
retention.

Viewing DB instance metrics in the CloudWatch console and AWS CLI

Following, you can find details about how to view metrics for your DB instance using CloudWatch.
For information on monitoring metrics for your DB instance's operating system in real time using
CloudWatch Logs, see Monitoring OS metrics with Enhanced Monitoring.

When you use Amazon RDS resources, Amazon RDS sends metrics and dimensions to Amazon
CloudWatch every minute.

You can now export Performance Insights metrics dashboards from Amazon RDS to Amazon
CloudWatch and view these metrics in the CloudWatch console. For more information on how to
export the Performance Insights metrics dashboards to CloudWatch, see Exporting Performance
Insights metrics to CloudWatch.

Use the following procedures to view the metrics for Amazon RDS in the CloudWatch console and
CLI.

Console

To view metrics using the Amazon CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

The CloudWatch overview home page appears.

Viewing CloudWatch metrics 1244

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#metrics-retention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#metrics-retention
https://console.aws.amazon.com/cloudwatch/

Amazon Relational Database Service User Guide

2. If necessary, change the AWS Region. From the navigation bar, choose the AWS Region where
your AWS resources are. For more information, see Regions and endpoints.

3. In the navigation pane, choose Metrics and then All metrics.

4. Scroll down and choose the RDS metric namespace.

Viewing CloudWatch metrics 1245

https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Relational Database Service User Guide

The page displays the Amazon RDS dimensions. For descriptions of these dimensions, see
Amazon CloudWatch dimensions for Amazon RDS.

5. Choose a metric dimension, for example By Database Class.

6. Do any of the following actions:

• To sort the metrics, use the column heading.

• To graph a metric, select the check box next to the metric.

• To filter by resource, choose the resource ID, and then choose Add to search.

• To filter by metric, choose the metric name, and then choose Add to search.

Viewing CloudWatch metrics 1246

Amazon Relational Database Service User Guide

The following example filters on the db.t3.medium class and graphs the CPUUtilization
metric.

AWS CLI

To obtain metric information by using the AWS CLI, use the CloudWatch command list-metrics.
In the following example, you list all metrics in the AWS/RDS namespace.

aws cloudwatch list-metrics --namespace AWS/RDS

To obtain metric data, use the command get-metric-data.

The following example gets CPUUtilization statistics for instance my-instance over the
specific 24-hour period, with a 5-minute granularity.

Create a JSON file CPU_metric.json with the following contents.

{
 "StartTime" : "2023-12-25T00:00:00Z",

Viewing CloudWatch metrics 1247

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-data.html

Amazon Relational Database Service User Guide

 "EndTime" : "2023-12-26T00:00:00Z",
 "MetricDataQueries" : [{
 "Id" : "cpu",
 "MetricStat" : {
 "Metric" : {
 "Namespace" : "AWS/RDS",
 "MetricName" : "CPUUtilization",
 "Dimensions" : [{ "Name" : "DBInstanceIdentifier" , "Value" : my-instance}]
 },
 "Period" : 360,
 "Stat" : "Minimum"
 }
 }]
}

Example

For Linux, macOS, or Unix:

aws cloudwatch get-metric-data \
 --cli-input-json file://CPU_metric.json

For Windows:

aws cloudwatch get-metric-data ^
 --cli-input-json file://CPU_metric.json

Sample output appears as follows:

{
 "MetricDataResults": [
 {
 "Id": "cpu",
 "Label": "CPUUtilization",
 "Timestamps": [
 "2023-12-15T23:48:00+00:00",
 "2023-12-15T23:42:00+00:00",
 "2023-12-15T23:30:00+00:00",
 "2023-12-15T23:24:00+00:00",
 ...
],
 "Values": [

Viewing CloudWatch metrics 1248

Amazon Relational Database Service User Guide

 13.299778337027714,
 13.677507543049558,
 14.24976250395827,
 13.02521708695145,
 ...
],
 "StatusCode": "Complete"
 }
],
 "Messages": []
}

For more information, see Getting statistics for a metric in the Amazon CloudWatch User Guide.

Exporting Performance Insights metrics to CloudWatch

Performance Insights lets you export the preconfigured or custom metrics dashboard for your DB
instance to Amazon CloudWatch. You can export the metrics dashboard as a new dashboard or
add it to an existing CloudWatch dashboard. When you choose to add the dashboard to an existing
CloudWatch dashboard, you can create a header label so that the metrics appear in a separate
section in the CloudWatch dashboard.

You can view the exported metrics dashboard in the CloudWatch console. If you add new metrics
to a Performance Insights metrics dashboard after you export it, you must export this dashboard
again to view the new metrics in the CloudWatch console.

You can also select a metric widget in the Performance Insights dashboard and view the metrics
data in the CloudWatch console.

For more information about viewing the metrics in the CloudWatch console, see Viewing DB
instance metrics in the CloudWatch console and AWS CLI.

In the following sections, export Performance Insights metrics to CloudWatch as a new or existing
dashboard and view Performance Insights metrics in CloudWatch.

Topics

• Exporting Performance Insights metrics as a new dashboard to CloudWatch

• Adding Performance Insights metrics to an existing CloudWatch dashboard

• Viewing a Performance Insights metric widget in CloudWatch

Exporting Performance Insights metrics to CloudWatch 1249

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/getting-metric-data.html

Amazon Relational Database Service User Guide

Exporting Performance Insights metrics as a new dashboard to CloudWatch

Choose a preconfigured or custom metrics dashboard from the Performance Insights dashboard
and export it as a new dashboard to CloudWatch. You can view the exported dashboard in the
CloudWatch console.

To export a Performance Insights metric dashboard as a new dashboard to CloudWatch

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Metrics.

By default, the preconfigured dashboard with Performance Insights metrics appears.

5. Choose a preconfigured or custom dashboard and then choose Export to CloudWatch.

The Export to CloudWatch window appears.

6. Choose Export as new dashboard.

Exporting Performance Insights metrics to CloudWatch 1250

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. Enter a name for the new dashboard in the Dashboard name field and choose Confirm.

A banner displays a message after the dashboard export is successful.

8. Choose the link or View in CloudWatch in the banner to view the metrics dashboard in the
CloudWatch console.

Adding Performance Insights metrics to an existing CloudWatch dashboard

Add a preconfigured or custom metrics dashboard to an existing CloudWatch dashboard. You can
add a label to the metrics dashboard to appear in a separate section in the CloudWatch dashboard.

Exporting Performance Insights metrics to CloudWatch 1251

Amazon Relational Database Service User Guide

To export the metrics to an existing CloudWatch dashboard

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Metrics.

By default, the preconfigured dashboard with Performance Insights metrics appears.

5. Choose the preconfigured or custom dashboard and then choose Export to CloudWatch.

The Export to CloudWatch window appears.

6. Choose Add to existing dashboard.

Exporting Performance Insights metrics to CloudWatch 1252

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. Specify the dashboard destination and label, and then choose Confirm.

• CloudWatch dashboard destination - Choose an existing CloudWatch dashboard.

• CloudWatch dashboard section label - optional - Enter a name for the Performance
Insights metrics to appear in this section in the CloudWatch dashboard.

A banner displays a message after the dashboard export is successful.

8. Choose the link or View in CloudWatch in the banner to view the metrics dashboard in the
CloudWatch console.

Exporting Performance Insights metrics to CloudWatch 1253

Amazon Relational Database Service User Guide

Viewing a Performance Insights metric widget in CloudWatch

Select a Performance Insights metric widget in the Amazon RDS Performance Insights dashboard
and view the metric data in the CloudWatch console.

To export a metric widget and view the metrics data in the CloudWatch console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down to Metrics.

By default, the preconfigured dashboard with Performance Insights metrics appears.

5. Choose a metric widget and then choose View in CloudWatch in the menu.

The metric data appears in the CloudWatch console.

Exporting Performance Insights metrics to CloudWatch 1254

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Creating CloudWatch alarms to monitor Amazon RDS

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period that you specify. The alarm can also
perform one or more actions based on the value of the metric relative to a given threshold over a
number of time periods. The action is a notification sent to an Amazon SNS topic or Amazon EC2
Auto Scaling policy.

Alarms invoke actions for sustained state changes only. CloudWatch alarms don't invoke actions
simply because they are in a particular state. The state must have changed and have been
maintained for a specified number of time periods.

You can use the DB_PERF_INSIGHTS metric math function in the CloudWatch console to query
Amazon RDS for Performance Insights counter metrics. The DB_PERF_INSIGHTS function also
includes the DBLoad metric at sub-minute intervals. You can set CloudWatch alarms on these
metrics.

For more details on how to create an alarm, see Create an alarm on Performance Insights counter
metrics from an AWS database.

To set an alarm using the AWS CLI

• Call put-metric-alarm. For more information, see AWS CLI Command Reference.

To set an alarm using the CloudWatch API

• Call PutMetricAlarm. For more information, see Amazon CloudWatch API Reference

For more information about setting up Amazon SNS topics and creating alarms, see Using Amazon
CloudWatch alarms.

Tutorial: Creating an Amazon CloudWatch alarm for Multi-AZ DB
cluster replica lag for Amazon RDS

You can create an Amazon CloudWatch alarm that sends an Amazon SNS message when replica lag
for a Multi-AZ DB cluster has exceeded a threshold. An alarm watches the ReplicaLag metric over
a time period that you specify. The action is a notification sent to an Amazon SNS topic or Amazon
EC2 Auto Scaling policy.

Creating CloudWatch alarms 1255

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-alarm.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Relational Database Service User Guide

To set a CloudWatch alarm for Multi-AZ DB cluster replica lag

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Alarms, All alarms.

3. Choose Create alarm.

4. On the Specify metric and conditions page, choose Select metric.

5. In the search box, enter the name of your Multi-AZ DB cluster and press Enter.

The following image shows the Select metric page with a Multi-AZ DB cluster named rds-
cluster entered.

6. Choose RDS, Per-Database Metrics.

7. In the search box, enter ReplicaLag and press Enter, then select each DB instance in the DB
cluster.

The following image shows the Select metric page with the DB instances selected for the
ReplicaLag metric.

Tutorial: Creating a CloudWatch alarm for DB cluster replica lag 1256

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Relational Database Service User Guide

This alarm considers the replica lag for all three of the DB instances in the Multi-AZ DB cluster.
The alarm responds when any DB instance exceeds the threshold. It uses a math expression
that returns the maximum value of the three metrics. Start by sorting by metric name, and
then choose all three ReplicaLag metrics.

8. From Add math, choose All functions, MAX.

Tutorial: Creating a CloudWatch alarm for DB cluster replica lag 1257

Amazon Relational Database Service User Guide

9. Choose the Graphed metrics tab, and edit the details for Expression1 to MAX([m1,m2,m3]).

10. For all three ReplicaLag metrics, change the Period to 1 minute.

11. Clear selection from all metrics except for Expression1.

The Select metric page should look similar to the following image.

Tutorial: Creating a CloudWatch alarm for DB cluster replica lag 1258

Amazon Relational Database Service User Guide

12. Choose Select metric.

13. On the Specify metric and conditions page, change the label to a meaningful name, such
as ClusterReplicaLag, and enter a number of seconds in Define the threshold value. For
this tutorial, enter 1200 seconds (20 minutes). You can adjust this value for your workload
requirements.

The Specify metric and conditions page should look similar to the following image.

Tutorial: Creating a CloudWatch alarm for DB cluster replica lag 1259

Amazon Relational Database Service User Guide

14. Choose Next, and the Configure actions page appears.

Tutorial: Creating a CloudWatch alarm for DB cluster replica lag 1260

Amazon Relational Database Service User Guide

15. Keep In alarm selected, choose Create new topic, and enter the topic name and a valid email
address.

16. Choose Create topic, and then choose Next.

17. On the Add name and description page, enter the Alarm name and Alarm description, and
then choose Next.

Tutorial: Creating a CloudWatch alarm for DB cluster replica lag 1261

Amazon Relational Database Service User Guide

18. Preview the alarm that you're about to create on the Preview and create page, and then
choose Create alarm.

Tutorial: Creating a CloudWatch alarm for DB cluster replica lag 1262

Amazon Relational Database Service User Guide

Monitoring Amazon RDS databases with CloudWatch Database
Insights

Monitor the database load (DB Load) for your fleet of Amazon RDS DB instances with Database
Insights. DB Load measures the level of session activity in your database. You can use Database
Insights to analyze and troubleshoot the performance of your Amazon RDS databases at scale.

With Database Insights, you can visualize the DB Load on your fleet of databases and filter the load
by waits, SQL statements, hosts, or users.

By default, RDS enables the Standard mode of Database Insights for your Amazon RDS databases.

For information about using Database Insights in the Amazon CloudWatch console, see
CloudWatch Database Insights in the Amazon CloudWatch User Guide.

Pricing

For information about pricing, see Amazon CloudWatch Pricing.

Topics

• Amazon RDS DB engine, Region, and instance class support for Database Insights

• Turning on the Advanced mode of Database Insights for Amazon RDS

• Turning on the Standard mode of Database Insights for Amazon RDS

• Configuring your database to monitor slow SQL queries with Database Insights for Amazon RDS

• Considerations for Database Insights for Amazon RDS

Amazon RDS DB engine, Region, and instance class support for
Database Insights

The following table provides Amazon RDS DB engines that support Database Insights.

Amazon RDS DB
engine

Supported engine versions and
Regions

Instance class restrictions

Amazon RDS for
MariaDB

For more information on version
and Region availability of

Database Insights isn't supported
for the following instance classes:

Monitoring with Database Insights 1263

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Database-Insights.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon Relational Database Service User Guide

Amazon RDS DB
engine

Supported engine versions and
Regions

Instance class restrictions

Database Insights with RDS for
MariaDB, see Supported Regions
and DB engines for Performance
Insights in Amazon RDS.

•
db.t2.micro

•
db.t2.small

•
db.t3.micro

•
db.t3.small

•
db.t4g.micro

•
db.t4g.small

RDS for MySQL For more information on version
and Region availability of
Database Insights with RDS for
MySQL, see Supported Regions
and DB engines for Performance
Insights in Amazon RDS.

Database Insights isn't supported
for the following instance classes:

•
db.t2.micro

•
db.t2.small

•
db.t3.micro

•
db.t3.small

•
db.t4g.micro

•
db.t4g.small

Amazon RDS for
Microsoft SQL
Server

For more information on version
and Region availability of
Database Insights with RDS
for SQL Server, see Supported
 Regions and DB engines for
Performance Insights in Amazon
RDS.

N/A

Engine, Region, and instance class support 1264

Amazon Relational Database Service User Guide

Amazon RDS DB
engine

Supported engine versions and
Regions

Instance class restrictions

Amazon RDS for
PostgreSQL

For more information on version
and Region availability of
Database Insights with RDS for
PostgreSQL, see Supported
 Regions and DB engines for
Performance Insights in Amazon
RDS.

N/A

Amazon RDS for
Oracle

For more information on version
and Region availability of
Database Insights with RDS for
Oracle, see Supported Regions
and DB engines for Performance
Insights in Amazon RDS.

N/A

Amazon RDS supports Database Insights in the following AWS Regions.

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Hyderabad)

• Asia Pacific (Jakarta)

• Asia Pacific (Malaysia)

• Asia Pacific (Melbourne)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

Engine, Region, and instance class support 1265

Amazon Relational Database Service User Guide

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Canada West (Calgary)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Spain)

• Europe (Stockholm)

• Europe (Zurich)

• Israel (Tel Aviv)

• Middle East (Bahrain)

• Middle East (UAE)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Turning on the Advanced mode of Database Insights for Amazon RDS

To turn on the Advanced mode of Database Insights for Amazon RDS, use the following
procedures.

Turning on the Advanced mode of Database Insights when creating a DB instance
or Multi-AZ DB cluster

Turn on the Advanced mode of Database Insights when creating a database for Amazon RDS.

Console

In the console, you can turn on the Advanced mode of Database Insights when you create a DB
instance or Multi-AZ DB cluster.

Turning on the Advanced mode 1266

Amazon Relational Database Service User Guide

To turn on the Advanced mode of Database Insights when creating a DB instance or Multi-AZ
DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose Create database.

4. In the Database Insights section, select Advanced mode. Then, choose the following
options:

• Retention – The amount of time to retain Performance Insights data. The retention
period must be 15-24 months for the Advanced mode of Database Insights.

• AWS KMS key – Specify your KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more
information, see Encrypting Amazon RDS resources.

5. Choose Create database.

AWS CLI

To turn on the Advanced mode of Database Insights when creating a DB instance or Multi-AZ
DB cluster, call the create-db-instance or create-db-cluster AWS CLI command and supply the
following values:

• --database-insights-mode advanced to turn on the Advanced mode of Database
Insights.

• --engine – The database engine for the DB instance.

• --db-instance-identifier – The identifier for the DB instance or --db-cluster-
identifier – The identifier for the Multi-AZ DB cluster.

• --enable-performance-insights to turn on Performance Insights for Database Insights.

• --performance-insights-retention-period – The retention period for data for your
DB instance or Multi-AZ DB cluster. To turn on Database Insights, the retention period must
be at least 465 days.

The following example enables the Advanced mode of Database Insights when creating a DB
instance.

Turning on the Advanced mode 1267

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --database-insights-mode advanced \
 --engine postgresql \
 --db-instance-identifier sample-db-identifier \
 --enable-performance-insights \
 --performance-insights-retention-period 465

For Windows:

aws rds create-db-instance ^
 --database-insights-mode advanced ^
 --engine postgresql ^
 --db-instance-identifier sample-db-identifier ^
 --enable-performance-insights ^
 --performance-insights-retention-period 465

RDS API

To turn on the Advanced mode of Database Insights when you create a DB instance or Multi-
AZ DB cluster, specify the following parameters for your CreateDBInstance or CreateDBCluster
Amazon RDS API operation.

• DatabaseInsightsMode to advanced

• EnablePerformanceInsights to True

• PerformanceInsightsRetentionPeriod to at least 465 days

Turning on the Advanced mode of Database Insights when modifying a DB
instance or Multi-AZ DB cluster

Turn on Database Insights when modifying a database for Amazon RDS.

Note

To enable Database Insights, each DB instance in a Multi-AZ DB cluster must have the same
Performance Insights and Enhanced Monitoring settings.

Turning on the Advanced mode 1268

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Relational Database Service User Guide

Console

In the console, you can turn on the Advanced mode of Database Insights when you modify a DB
instance or Multi-AZ DB cluster.

To turn on the Advanced mode of Database Insights when modifying a DB instance or Multi-
AZ DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose a DB instance or Multi-AZ DB cluster, and choose Modify.

4. In the Database Insights section, select Advanced mode. Then, choose the following
options:

• Retention – The amount of time to retain Performance Insights data. The retention
period must be 15-24 months for the Advanced mode of Database Insights.

• AWS KMS key – Specify your KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more
information, see Encrypting Amazon RDS resources.

5. Choose Continue.

6. For Scheduling of Modifications, choose Apply immediately. If you choose Apply during
the next scheduled maintenance window, your database ignores this setting and turns on
the Advanced mode of Database Insights immediately.

7. Choose Modify instance.

AWS CLI

To turn on the Advanced mode of Database Insights when modifying a DB instance or Multi-AZ
DB cluster, call the modify-db-instance or modify-db-cluster AWS CLI command and supply the
following values:

• --database-insights-mode advanced to turn on the Advanced mode of Database
Insights.

• --db-instance-identifier – The identifier for the DB instance or --db-cluster-
identifier – The identifier for the Multi-AZ DB cluster.

Turning on the Advanced mode 1269

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

• --enable-performance-insights to turn on Performance Insights for Database Insights.

• --performance-insights-retention-period – The retention period for data for your
DB instance. To turn on the Advanced mode of Database Insights, the retention period must
be at least 465 days.

The following example enables the Advanced mode of Database Insights when modifying a DB
instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --database-insights-mode advanced \
 --db-instance-identifier sample-db-identifier \
 --enable-performance-insights \
 --performance-insights-retention-period 465

For Windows:

aws rds modify-db-instance ^
 --database-insights-mode advanced ^
 --db-instance-identifier sample-db-identifier ^
 --enable-performance-insights ^
 --performance-insights-retention-period 465

RDS API

To turn on the Advanced mode of Database Insights when you modify a DB instance or Multi-
AZ DB cluster, specify the following parameters for your ModifyDBInstance or ModifyDBCluster
Amazon RDS API operation.

• DatabaseInsightsMode to advanced

• EnablePerformanceInsights to True

• PerformanceInsightsRetentionPeriod to at least 465 days

Turning on the Standard mode of Database Insights for Amazon RDS

To turn on the Standard mode of Database Insights for Amazon RDS, use the following procedures.

Turning on the Standard mode 1270

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

Turning on the Standard mode of Database Insights when creating a DB instance
or Multi-AZ DB cluster

Turn on the Standard mode of Database Insights when creating a database for Amazon RDS.

Console

In the console, you can turn on the Standard mode of Database Insights when you create a DB
instance or Multi-AZ DB cluster.

To turn on the Standard mode of Database Insights when creating a DB instance or Multi-AZ
DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose Create database.

4. In the Database Insights section, select Standard mode. Then, choose from the following
options to turn Performance Insights on or off:

• To turn off Performance Insights, deselect Enable Performance Insights.

• To turn on Performance Insights, select Enable Performance Insights. To configure
Performance Insights, specify the following options:

• Retention – The amount of time to retain Performance Insights data. The retention
period must be at least 7 days.

• AWS KMS key – Specify your KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more
information, see Encrypting Amazon RDS resources.

5. Choose Create database.

AWS CLI

To turn on the Standard mode of Database Insights when creating a DB instance or Multi-AZ
DB cluster, call the create-db-instance or create-db-cluster AWS CLI command and supply the
following values:

Turning on the Standard mode 1271

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Relational Database Service User Guide

• --database-insights-mode standard to turn on the Standard mode of Database
Insights.

• --engine – The database engine for the DB instance.

• --db-instance-identifier – The identifier for the DB instance or --db-cluster-
identifier – The identifier for the Multi-AZ DB cluster.

• --enable-performance-insights or --no-enable-performance-insights to turn
Performance Insights on or off. If you specify --enable-performance-insights, you
must also specify the --performance-insights-retention-period – The retention
period for data for your DB instance. The retention period must be at least 7 days.

The following example enables the Standard mode of Database Insights and Performance
Insights when creating a DB instance.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --database-insights-mode standard \
 --engine postgresql \
 --db-instance-identifier sample-db-identifier \
 --enable-performance-insights \
 --performance-insights-retention-period 7

For Windows:

aws rds create-db-instance ^
 --database-insights-mode standard ^
 --engine postgresql ^
 --db-instance-identifier sample-db-identifier ^
 --enable-performance-insights ^
 --performance-insights-retention-period 7

The following example enables the Standard mode of Database Insights and disables
Performance Insights when creating a DB instance.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --database-insights-mode standard \

Turning on the Standard mode 1272

Amazon Relational Database Service User Guide

 --engine postgresql \
 --db-instance-identifier sample-db-identifier \
 --no-enable-performance-insights

For Windows:

aws rds create-db-instance ^
 --database-insights-mode standard ^
 --engine postgresql ^
 --db-instance-identifier sample-db-identifier ^
 --no-enable-performance-insights

RDS API

To turn on the Standard mode of Database Insights when you create a DB instance or Multi-
AZ DB cluster, specify the following parameters for your CreateDBInstance or CreateDBCluster
Amazon RDS API operation.

• DatabaseInsightsMode to standard

• EnablePerformanceInsights to True or False. If you
set EnablePerformanceInsights to True, you must set
PerformanceInsightsRetentionPeriod to at least 7 days.

Turning on the Standard mode of Database Insights when modifying a DB
instance or Multi-AZ DB cluster

Turn on Standard mode of Database Insights when modifying a database for Amazon RDS.

Note

To enable Database Insights, each DB instance in a Multi-AZ DB cluster must have the same
Performance Insights and Enhanced Monitoring settings.

Console

In the console, you can turn on the Standard mode of Database Insights when you modify a DB
instance or Multi-AZ DB cluster.

Turning on the Standard mode 1273

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Relational Database Service User Guide

To turn on the Standard mode of Database Insights when modifying a DB instance or Multi-
AZ DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose a DB instance or Multi-AZ DB cluster, and choose Modify.

4. In the Database Insights section, select Standard mode. Then, choose from the following
options:

• To turn off Performance Insights, deselect Enable Performance Insights.

• To turn on Performance Insights, select Enable Performance Insights. To configure
Performance Insights, specify the following options:

• Retention – The amount of time to retain Performance Insights data. The retention
period must be at least 7 days.

• AWS KMS key – Specify your KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more
information, see Encrypting Amazon RDS resources.

5. Choose Continue.

6. For Scheduling of Modifications, choose Apply immediately. If you choose Apply during
the next scheduled maintenance window, your database ignores this setting and turns on
the Standard mode of Database Insights immediately.

7. Choose Modify instance.

AWS CLI

To turn on the Standard mode of Database Insights when modifying a DB instance or Multi-AZ
DB cluster, call the modify-db-instance or modify-db-cluster AWS CLI command and supply the
following values:

• --database-insights-mode standard to turn on the Standard mode of Database
Insights.

• --db-instance-identifier – The identifier for the DB instance or --db-cluster-
identifier – The identifier for the Multi-AZ DB cluster.

Turning on the Standard mode 1274

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

• --enable-performance-insights or --no-enable-performance-insights to turn
Performance Insights on or off. If you specify --enable-performance-insights, you
must also specify the --performance-insights-retention-period – The retention
period for data for your DB instance or Multi-AZ DB cluster. The retention period must be at
least 7 days.

The following example enables the Standard mode of Database Insights and enables
Performance Insights when modifying a DB instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --database-insights-mode standard \
 --db-instance-identifier sample-db-identifier \
 --enable-performance-insights \
 --performance-insights-retention-period 7

For Windows:

aws rds modify-db-instance ^
 --database-insights-mode standard ^
 --db-instance-identifier sample-db-identifier ^
 --enable-performance-insights ^
 --performance-insights-retention-period 7

The following example enables the Standard mode of Database Insights and disables
Performance Insights when modifying a DB instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --database-insights-mode standard \
 --db-instance-identifier sample-db-identifier \
 --no-enable-performance-insights

For Windows:

aws rds modify-db-instance ^
 --database-insights-mode standard ^
 --db-instance-identifier sample-db-identifier ^

Turning on the Standard mode 1275

Amazon Relational Database Service User Guide

 --no-enable-performance-insights

RDS API

To turn on the Standard mode of Database Insights when you modify a DB instance or Multi-
AZ DB cluster, specify the following parameters for your ModifyDBInstance or ModifyDBCluster
Amazon RDS API operation.

• DatabaseInsightsMode to standard

• EnablePerformanceInsights to True or False. If you
set EnablePerformanceInsights to True, you must set
PerformanceInsightsRetentionPeriod to at least 7 days.

Configuring your database to monitor slow SQL queries with Database
Insights for Amazon RDS

To monitor slow SQL queries for your database, you can use the Slow SQL Queries section in the
Database Insights dashboard. Before configuring your database to monitor slow SQL queries, the
Slow SQL Queries section is blank.

For more information about monitoring slow SQL queries in the Database Insights dashboard,
see Viewing the Database Instance Dashboard for CloudWatch Database Insights in the Amazon
CloudWatch User Guide.

To configure your database to monitor slow SQL queries with Database Insights, create or modify
the DB parameter group for your DB instance.

To create or modify your DB parameter group, see the following topics.

• Creating a DB parameter group in Amazon RDS

• Modifying parameters in a DB parameter group in Amazon RDS

RDS for MariaDB

To configure your RDS for MariaDB DB instance to monitor slow SQL queries, set the following
parameters.

• log_slow_query – set to 1

Monitor slow queries 1276

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Database-Insights-Database-Instance-Dashboard.html

Amazon Relational Database Service User Guide

• log_slow_query_time – set to 1.0

• log_output – set to FILE

RDS for MySQL

To configure your RDS for MySQL DB instance to monitor slow SQL queries, set the following
parameters.

• slow_query_log – set to 1

• long_query_time – set to 1.0

• log_output – set to FILE

RDS for PostgreSQL

To configure your RDS for PostgreSQL DB instance to monitor slow SQL queries, set the
following parameters. Note that setting these parameters might reduce the performance of
your DB instance.

• log_min_duration_statement – set to 1

• log_statement – set to none

• log_destination – set to stderr

Note

For RDS for MySQL, you can configure the parameter long_query_time with 1‐
microsecond granularity. For example, you can set this parameter to 0.000001.
Depending on the amount of queries on the DB instance, the value of the parameter
long_query_time can reduce performance. Start with the value 1.0, and adjust it based
on your workload. When you set this parameter to 0, Database Insights logs all queries.

For information about RDS for MariaDB, RDS for MySQL, and RDS for PostgreSQL logs, see the
following.

• MariaDB database log files

• MySQL database log files

Monitor slow queries 1277

Amazon Relational Database Service User Guide

• RDS for PostgreSQL database log files

Considerations for Database Insights for Amazon RDS

Following are considerations for Database Insights for Amazon RDS.

• You can't manage Database Insights for a DB instance in a Multi-AZ DB cluster.

• To enable the Advanced mode of Database Insights, you must enable Performance Insights
and set the Performance Insights retention period to at least 465 days (15 months). There is no
additional cost to set the Performance Insights retention period to 15 months besides the cost of
Database Insights. For information about pricing for Database Insights, see Amazon CloudWatch
Pricing.

• To enable Database Insights, each DB instance in a Multi-AZ DB cluster must have the same
Performance Insights and Enhanced Monitoring settings.

Considerations 1278

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

Amazon Relational Database Service User Guide

Monitoring DB load with Performance Insights on Amazon RDS

Performance Insights expands on existing Amazon RDS monitoring features to illustrate and
help you analyze your database performance. With the Performance Insights dashboard, you can
visualize the database load on your Amazon RDS DB instance load and filter the load by waits,
SQL statements, hosts, or users. For information about using Performance Insights with Amazon
DocumentDB, see Amazon DocumentDB Developer Guide.

Topics

• Overview of Performance Insights on Amazon RDS

• Turning Performance Insights on and off for Amazon RDS

• Overview of the Performance Schema for Performance Insights on Amazon RDS for MariaDB or
MySQL

• Configuring access policies for Performance Insights

• Analyzing metrics with the Performance Insights dashboard

• Viewing Performance Insights proactive recommendations

• Retrieving metrics with the Performance Insights API for Amazon RDS

• Logging Performance Insights calls using AWS CloudTrail

• Performance Insights API and interface VPC endpoints (AWS PrivateLink)

Overview of Performance Insights on Amazon RDS

By default, RDS enables Performance Insights in the console create wizard for all Amazon RDS
engines. If you have more than one database on a DB instance, Performance Insights aggregates
performance data.

You can find an overview of Performance Insights for Amazon RDS in the following video.

Using Performance Insights to Analyze Performance of Amazon Aurora PostgreSQL

Important

The following topics describe using Amazon RDS Performance Insights with non-Aurora
DB engines. For information about using Amazon RDS Performance Insights with Amazon
Aurora, see Using Amazon RDS Performance Insights in the Amazon Aurora User Guide.

Monitoring DB load with Performance Insights 1279

https://docs.aws.amazon.com/documentdb/latest/developerguide/performance-insights.html
https://www.youtube.com/embed/yOeWcPBT458
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html

Amazon Relational Database Service User Guide

Topics

• Database load

• Maximum CPU

• Amazon RDS DB engine, Region, and instance class support for Performance Insights

• Pricing and data retention for Performance Insights

Database load

Database load (DB load) measures the level of session activity in your database. DBLoad is the key
metric in Performance Insights, and Performance Insights collects DB load every second.

Topics

• Active sessions

• Average active sessions

• Average active executions

• Dimensions

Active sessions

A database session represents an application's dialogue with a relational database. An active session
is a connection that has submitted work to the DB engine and is waiting for a response.

A session is active when it's either running on CPU or waiting for a resource to become available so
that it can proceed. For example, an active session might wait for a page (or block) to be read into
memory, and then consume CPU while it reads data from the page.

Average active sessions

The average active sessions (AAS) is the unit for the DBLoad metric in Performance Insights. It
measures how many sessions are concurrently active on the database.

Every second, Performance Insights samples the number of sessions concurrently running a query.
For each active session, Performance Insights collects the following data:

• SQL statement

• Session state (running on CPU or waiting)

Overview of Performance Insights 1280

Amazon Relational Database Service User Guide

• Host

• User running the SQL

Performance Insights calculates the AAS by dividing the total number of sessions by the number of
samples for a specific time period. For example, the following table shows 5 consecutive samples of
a running query taken at 1-second intervals.

Sample Number of sessions
running query

AAS Calculation

1 2 2 2 total sessions / 1 sample

2 0 1 2 total sessions / 2 samples

3 4 2 6 total sessions / 3 samples

4 0 1.5 6 total sessions / 4 samples

5 4 2 10 total sessions / 5
samples

In the preceding example, the DB load for the time interval was 2 AAS. This measurement means
that, on average, 2 sessions were active at any given time during the interval when the 5 samples
were taken.

Average active executions

The average active executions (AAE) per second is related to AAS. To calculate the AAE, Performance
Insights divides the total execution time of a query by the time interval. The following table shows
the AAE calculation for the same query in the preceding table.

Elapsed time
(sec)

Total execution time
(sec)

AAE Calculation

60 120 2 120 execution
seconds/60 elapsed
seconds

Overview of Performance Insights 1281

Amazon Relational Database Service User Guide

Elapsed time
(sec)

Total execution time
(sec)

AAE Calculation

120 120 1 120 execution
seconds/120 elapsed
seconds

180 380 2.11 380 execution
seconds/180 elapsed
seconds

240 380 1.58 380 execution
seconds/240 elapsed
seconds

300 600 2 600 execution
seconds/300 elapsed
seconds

In most cases, the AAS and AAE for a query are approximately the same. However, because the
inputs to the calculations are different data sources, the calculations often vary slightly.

Dimensions

The db.load metric is different from the other time-series metrics because you can break it into
subcomponents called dimensions. You can think of dimensions as "slice by" categories for the
different characteristics of the DBLoad metric.

When you are diagnosing performance issues, the following dimensions are often the most useful:

Topics

• Wait events

• Top SQL

• Plans

For a complete list of dimensions for the Amazon RDS engines, see DB load sliced by dimensions.

Overview of Performance Insights 1282

Amazon Relational Database Service User Guide

Wait events

A wait event causes a SQL statement to wait for a specific event to happen before it can continue
running. Wait events are an important dimension, or category, for DB load because they indicate
where work is impeded.

Every active session is either running on the CPU or waiting. For example, sessions consume CPU
when they search memory for a buffer, perform a calculation, or run procedural code. When
sessions aren't consuming CPU, they might be waiting for a memory buffer to become free, a data
file to be read, or a log to be written to. The more time that a session waits for resources, the less
time it runs on the CPU.

When you tune a database, you often try to find out the resources that sessions are waiting for. For
example, two or three wait events might account for 90 percent of DB load. This measure means
that, on average, active sessions are spending most of their time waiting for a small number of
resources. If you can find out the cause of these waits, you can attempt a solution.

Wait events vary by DB engine:

• For information about all MariaDB and MySQL wait events, see Wait Event Summary Tables in
the MySQL documentation.

• For information about all PostgreSQL wait events, see The Statistics Collector > Wait Event
tables in the PostgreSQL documentation.

• For information about all Oracle wait events, see Descriptions of Wait Events in the Oracle
documentation.

• For information about all SQL Server wait events, see Types of Waits in the SQL Server
documentation.

Note

For Oracle, background processes sometimes do work without an associated SQL
statement. In these cases, Performance Insights reports the type of background process
concatenated with a colon and the wait class associated with that background process.
Types of background process include LGWR, ARC0, PMON, and so on.
For example, when the archiver is performing I/O, the Performance Insights report for it is
similar to ARC1:System I/O. Occasionally, the background process type is also missing,
and Performance Insights only reports the wait class, for example :System I/O.

Overview of Performance Insights 1283

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-wait-summary-tables.html
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE
https://docs.oracle.com/database/121/REFRN/GUID-2FDDFAA4-24D0-4B80-A157-A907AF5C68E2.htm#REFRN-GUID-2FDDFAA4-24D0-4B80-A157-A907AF5C68E2
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql?view=sql-server-2017#WaitTypes

Amazon Relational Database Service User Guide

Top SQL

Where wait events show bottlenecks, top SQL shows which queries are contributing the most to
DB load. For example, many queries might be currently running on the database, but a single query
might consume 99 percent of the DB load. In this case, the high load might indicate a problem with
the query.

By default, the Performance Insights console displays top SQL queries that are contributing to
the database load. The console also shows relevant statistics for each statement. To diagnose
performance problems for a specific statement, you can examine its execution plan.

Plans

An execution plan, also called simply a plan, is a sequence of steps that access data. For example, a
plan for joining tables t1 and t2 might loop through all rows in t1 and compare each row to a row
in t2. In a relational database, an optimizer is built-in code that determines the most efficient plan
for a SQL query.

For DB instances, Performance Insights collects execution plans automatically. To diagnose SQL
performance problems, examine the captured plans for high-resource SQL queries. The plans show
how the database has parsed and run queries.

To learn how to analyze DB load using plans, see:

• Oracle: Analyzing Oracle execution plans using the Performance Insights dashboard for Amazon
RDS

• SQL Server: Analyzing SQL Server execution plans using the Performance Insights dashboard for
Amazon RDS

Plan capture

Every five minutes, Performance Insights identifies the most resource-intensive queries and
captures their plans. Thus, you don't need to manually collect and manage a huge number of plans.
Instead, you can use the Top SQL tab to focus on the plans for the most problematic queries.

Overview of Performance Insights 1284

Amazon Relational Database Service User Guide

Note

Performance Insights doesn't capture plans for queries whose text exceeds the maximum
collectable query text limit. For more information, see Accessing more SQL text in the
Performance Insights dashboard.

The retention period for execution plans is the same as for your Performance Insights data. The
retention setting in the free tier is Default (7 days). To retain your performance data for longer,
specify 1–24 months. For more information about retention periods, see Pricing and data retention
for Performance Insights.

Digest queries

The Top SQL tab shows digest queries by default. A digest query doesn't itself have a plan,
but all queries that use literal values have plans. For example, a digest query might include
the text WHERE `email`=?. The digest might contain two queries, one with the text WHERE
email=user1@example.com and another with WHERE email=user2@example.com. Each of
these literal queries might include multiple plans.

When you select a digest query, the console shows all plans for child statements of the selected
digest. Thus, you don't need to look through all the child statements to find the plan. You might
see plans that aren’t in the displayed list of top 10 child statements. The console shows plans for
all child queries for which plans have been collected, regardless of whether the queries are in the
top 10.

Maximum CPU

In the dashboard, the Database load chart collects, aggregates, and displays session information.
To see whether active sessions are exceeding the maximum CPU, look at their relationship to the
Max vCPU line. Performance Insights determines the Max vCPU value by the number of vCPU
(virtual CPU) cores for your DB instance.

One process can run on a vCPU at a time. If the number of processes exceeds the number of vCPUs,
the processes start queuing. When queuing increases, database performance decreases. If the DB
load is often above the Max vCPU line, and the primary wait state is CPU, the CPU is overloaded.
In this case, you might want to throttle connections to the instance, tune any SQL queries with a
high CPU load, or consider a larger instance class. High and consistent instances of any wait state

Overview of Performance Insights 1285

Amazon Relational Database Service User Guide

indicate that there might be bottlenecks or resource contention issues to resolve. This can be true
even if the DB load doesn't cross the Max vCPU line.

Amazon RDS DB engine, Region, and instance class support for Performance
Insights

The following table provides Amazon RDS DB engines that support Performance Insights.

Note

For Amazon Aurora, see Amazon Aurora DB engine support for Performance Insights in
Amazon Aurora User Guide.

Amazon RDS DB
engine

Supported engine versions and
Regions

Instance class restrictions

Amazon RDS for
MariaDB

For more information on version
and Region availability of
Performance Insights with RDS for
MariaDB, see Supported Regions
and DB engines for Performance
Insights in Amazon RDS.

Performance Insights isn't
supported for the following
instance classes:

•
db.t2.micro

•
db.t2.small

•
db.t3.micro

•
db.t3.small

•
db.t4g.micro

•
db.t4g.small

RDS for MySQL For more information on version
and Region availability of
Performance Insights with RDS for
MySQL, see Supported Regions

Performance Insights isn't
supported for the following
instance classes:

•

Overview of Performance Insights 1286

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.Overview.Engines.html

Amazon Relational Database Service User Guide

Amazon RDS DB
engine

Supported engine versions and
Regions

Instance class restrictions

and DB engines for Performance
Insights in Amazon RDS.

db.t2.micro

•
db.t2.small

•
db.t3.micro

•
db.t3.small

•
db.t4g.micro

•
db.t4g.small

Amazon RDS for
Microsoft SQL
Server

For more information on version
and Region availability of
Performance Insights with RDS
for SQL Server, see Supported
 Regions and DB engines for
Performance Insights in Amazon
RDS.

N/A

Amazon RDS for
PostgreSQL

For more information on version
and Region availability of
Performance Insights with RDS
for PostgreSQL, see Supported
 Regions and DB engines for
Performance Insights in Amazon
RDS.

N/A

Amazon RDS for
Oracle

For more information on version
and Region availability of
Performance Insights with RDS
for Oracle, see Supported Regions
and DB engines for Performance
Insights in Amazon RDS.

N/A

Overview of Performance Insights 1287

Amazon Relational Database Service User Guide

Amazon RDS DB engine, Region, and instance class support for Performance Insights features

The following table provides Amazon RDS DB engines that support Performance Insights features.

Feature Pricing tier Supported
regions

Supported DB
engines

Supported
instance classes

SQL statistics
for Performance
Insights

All All All All

Analyzing
Oracle execution
plans using the
Performance Ins
ights dashboard
for Amazon RDS

All All RDS for Oracle All

Analyzing
database
performance for
a period of time

Paid tier only All • RDS for
MariaDB

• RDS for
MySQL

• RDS for
PostgreSQL

All

Viewing
Performan
ce Insights
proactive
recommend
ations

Paid tier only • US East (Ohio)

• US East (N.
Virginia)

• US West (N.
California)

• US West
(Oregon)

• Asia Pacific
(Mumbai)

• Asia Pacific
(Seoul)

All All

Overview of Performance Insights 1288

https://aws.amazon.com/rds/performance-insights/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Concepts.DBInstance
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Concepts.DBInstance
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Relational Database Service User Guide

Feature Pricing tier Supported
regions

Supported DB
engines

Supported
instance classes

• Asia Pacific
(Singapore)

• Asia Pacific
(Sydney)

• Asia Pacific
(Tokyo)

• Canada
(Central)

• Europe
(Frankfurt)

• Europe
(Ireland)

• Europe
(London)

• Europe (Paris)

• Europe
(Stockholm)

• South America
(São Paulo)

Pricing and data retention for Performance Insights

By default, Performance Insights offers a free tier that includes 7 days of performance data
history and 1 million API requests per month. You can also purchase longer retention periods. For
complete pricing information, see Performance Insights Pricing.

In the RDS console, you can choose any of the following retention periods for your Performance
Insights data:

• Default (7 days)

• n months, where n is a number from 1–24

Overview of Performance Insights 1289

https://aws.amazon.com/rds/performance-insights/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Concepts.DBInstance
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Concepts.DBInstance
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://aws.amazon.com/rds/performance-insights/pricing/

Amazon Relational Database Service User Guide

To learn how to set a retention period using the AWS CLI, see Turning Performance Insights on and
off for Amazon RDS.

Overview of Performance Insights 1290

Amazon Relational Database Service User Guide

Note

Stopping a DB instance or Multi-AZ DB cluster with Performance Insights enabled doesn't
affect data retention. While a DB instance or Multi-AZ DB cluster is stopped, Performance
Insights won't collect any data.

Turning Performance Insights on and off for Amazon RDS

You can turn on Performance Insights for your DB instance or Multi-AZ DB cluster when you create
it. If needed, you can turn it off later by modifying your DB instance from the console. Turning
Performance Insights on and off doesn't cause downtime, a reboot, or a failover.

Note

Performance Schema is an optional performance tool used by Amazon RDS for MariaDB
or MySQL. If you turn Performance Schema on or off, you need to reboot. If you turn
Performance Insights on or off, however, you don't need to reboot. For more information,
see Overview of the Performance Schema for Performance Insights on Amazon RDS for
MariaDB or MySQL.

The Performance Insights agent consumes limited CPU and memory on the DB host. When the DB
load is high, the agent limits the performance impact by collecting data less frequently.

Console

In the console, you can turn Performance Insights on or off when you create or modify a DB
instance or Multi-AZ DB cluster.

Turning Performance Insights on or off when creating a DB instance or Multi-AZ DB cluster

After creating a new DB instance or Multi-AZ DB cluster, Amazon RDS enables Performance
Insights by default. To turn off Performance Insights, choose the option Database Insights –
Standard and deselect the option Enable Performance Insights.

For more information, see the following topics.

• To create a DB instance, follow the instructions for your DB engine in Creating an Amazon
RDS DB instance.

Turning Performance Insights on and off 1291

Amazon Relational Database Service User Guide

• To create a Multi-AZ DB cluster, follow the instructions for your DB engine in Creating a Multi-
AZ DB cluster for Amazon RDS.

The following screenshot shows the Performance Insights section.

If you choose Enable Performance Insights, you have the following options:

• Retention (for the Standard mode of Database Insights only) – The amount of time to retain
Performance Insights data. The retention setting in the free tier is Default (7 days). To
retain your performance data for longer, specify 1–24 months. For more information about
retention periods, see Pricing and data retention for Performance Insights.

• AWS KMS key – Specify your AWS KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more
information, see Changing an AWS KMS policy for Performance Insights.

Turning Performance Insights on or off when modifying a DB instance or Multi-AZ DB
cluster

In the console, you can modify a DB instance or Multi-AZ DB cluster to manage Performance
Insights.

To manage Performance Insights for a DB instance or Multi-AZ DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Turning Performance Insights on and off 1292

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. Choose Databases.

3. Choose a DB instance or Multi-AZ DB cluster, and choose Modify.

4. To turn on Performance Insights, select Enable Performance Insights. To turn off
Performance Insights, choose the option Database Insights – Standard and deselect the
option Enable Performance Insights.

If you choose Enable Performance Insights, you have the following options:

• Retention (for the Standard mode of Database Insights only) – The amount of time
to retain Performance Insights data. The retention setting in the free tier is Default
(7 days). To retain your performance data for longer, specify 1–24 months. For more
information about retention periods, see Pricing and data retention for Performance
Insights.

• AWS KMS key – Specify your KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more
information, see Encrypting Amazon RDS resources.

5. Choose Continue.

6. For Scheduling of Modifications, choose Apply immediately. If you choose Apply during
the next scheduled maintenance window, your instance ignores this setting and turns on
Performance Insights immediately.

7. Choose Modify instance.

AWS CLI

When you use the create-db-instance AWS CLI command, turn on Performance Insights by
specifying --enable-performance-insights and set --database-insights-mode
to either advanced or standard. To turn off Performance Insights, specify --no-enable-
performance-insights and set database-insights-mode to standard.

You can also specify these values using the following AWS CLI commands:

• create-db-cluster

• modify-db-cluster

• create-db-instance-read-replica

• modify-db-instance

• restore-db-instance-from-s3

Turning Performance Insights on and off 1293

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html

Amazon Relational Database Service User Guide

When you turn on Performance Insights in the CLI, you can optionally specify the number of
days to retain Performance Insights data with the --performance-insights-retention-
period option. You can specify 7, month * 31 (where month is a number from 1–23), or 731.
For example, if you want to retain your performance data for 3 months, specify 93, which is 3
* 31. The default is 7 days. For more information about retention periods, see Pricing and data
retention for Performance Insights.

The following example turns on Performance Insights for sample-db-cluster and specifies
that Performance Insights data is retained for 93 days (3 months).

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --database-insights-mode standard \
 --db-cluster-identifier sample-db-instance \
 --enable-performance-insights \
 --performance-insights-retention-period 93

For Windows:

aws rds modify-db-cluster ^
 --database-insights-mode standard ^
 --db-cluster-identifier sample-db-instance ^
 --enable-performance-insights ^
 --performance-insights-retention-period 93

If you specify a retention period such as 94 days, which isn't a valid value, RDS issues an error.

An error occurred (InvalidParameterValue) when calling the CreateDBInstance
 operation:
Invalid Performance Insights retention period. Valid values are: [7, 31, 62, 93,
 124, 155, 186, 217,
248, 279, 310, 341, 372, 403, 434, 465, 496, 527, 558, 589, 620, 651, 682, 713, 731]

Note

You can only toggle Performance Insights for an instance in a DB cluster where
Performance Insights is not managed at the cluster level.

Turning Performance Insights on and off 1294

Amazon Relational Database Service User Guide

RDS API

When you create a new DB instance using the CreateDBInstance operation Amazon RDS API
operation, turn on Performance Insights by setting EnablePerformanceInsights to True.
To turn off Performance Insights, set EnablePerformanceInsights to False and set
DatabaseInsightsMode to standard.

You can also specify the EnablePerformanceInsights value using the following API
operations:

• CreateDBCluster (Multi-AZ DB cluster)

• ModifyDBCluster (Multi-AZ DB cluster)

• ModifyDBInstance

• CreateDBInstanceReadReplica

• RestoreDBInstanceFromS3

When you turn on Performance Insights, you can optionally specify the amount of time, in
days, to retain Performance Insights data with the PerformanceInsightsRetentionPeriod
parameter. You can specify 7, month * 31 (where month is a number from 1–23), or 731. For
example, if you want to retain your performance data for 3 months, specify 93, which is 3 *
31. The default is 7 days. For more information about retention periods, see Pricing and data
retention for Performance Insights.

Overview of the Performance Schema for Performance Insights on
Amazon RDS for MariaDB or MySQL

The Performance Schema is an optional feature for monitoring Amazon RDS for MariaDB or MySQL
runtime performance at a low level of detail. The Performance Schema is designed to have minimal
impact on database performance. Performance Insights is a separate feature that you can use with
or without the Performance Schema.

Topics

• Overview of the Performance Schema

• Performance Insights and the Performance Schema

• Automatic management of the Performance Schema by Performance Insights

Performance Schema for MariaDB or MySQL 1295

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html

Amazon Relational Database Service User Guide

• Effect of a reboot on the Performance Schema

• Determining whether Performance Insights is managing the Performance Schema

• Turn on the Performance Schema for Amazon RDS for MariaDB or MySQL

Overview of the Performance Schema

The Performance Schema monitors events in MariaDB and MySQL databases. An event is a
database server action that consumes time and has been instrumented so that timing information
can be collected. Examples of events include the following:

• Function calls

• Waits for the operating system

• Stages of SQL execution

• Groups of SQL statements

The PERFORMANCE_SCHEMA storage engine is a mechanism for implementing the Performance
Schema feature. This engine collects event data using instrumentation in the database source code.
The engine stores events in memory-only tables in the performance_schema database. You can
query performance_schema just as you can query any other tables. For more information, see
MySQL Performance Schema in the MySQL Reference Manual.

Performance Insights and the Performance Schema

Performance Insights and the Performance Schema are separate features, but they are connected.
The behavior of Performance Insights for Amazon RDS for MariaDB or MySQL depends on whether
the Performance Schema is turned on, and if so, whether Performance Insights manages the
Performance Schema automatically. The following table describes the behavior.

Performance
Schema turned
on

Performan
ce Insights
management
mode

Performance Insights behavior

Yes Automatic •
Collects detailed, low-level monitoring information

•

Performance Schema for MariaDB or MySQL 1296

https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html

Amazon Relational Database Service User Guide

Performance
Schema turned
on

Performan
ce Insights
management
mode

Performance Insights behavior

Collects active session metrics every second

•
Displays DB load categorized by detailed wait events,
which you can use to identify bottlenecks

Yes Manual •
Collects wait events and per-SQL metrics

•
Collects active session metrics every second

•
Reports user states such as inserting and sending,
which don't help you identify bottlenecks

No N/A •
Doesn't collect wait events, per-SQL metrics, or other
detailed, low-level monitoring information

•
Collects active session metrics every five seconds
instead of every second

•
Reports user states such as inserting and sending,
which don't help you identify bottlenecks

Automatic management of the Performance Schema by Performance Insights

When you create an Amazon RDS for MariaDB or MySQL DB instance with Performance Insights
turned on, the Performance Schema is also turned on. In this case, Performance Insights
automatically manages your Performance Schema parameters. This is the recommended
configuration.

When Performance Insights manages the Performance Schema automatically, the Source of
performance_schema is System default.

Performance Schema for MariaDB or MySQL 1297

Amazon Relational Database Service User Guide

Note

Automatic management of the Performance Schema isn't supported for the t4g.medium
instance class.

If you change the performance_schema parameter value manually, and then later want to
change to automatic management, see Turn on the Performance Schema for Amazon RDS for
MariaDB or MySQL.

Important

When Performance Insights turns on the Performance Schema, it doesn't change the
parameter group values. However, the values are changed on the DB instances that are
running. The only way to see the changed values is to run the SHOW GLOBAL VARIABLES
command.

Effect of a reboot on the Performance Schema

Performance Insights and the Performance Schema differ in their requirements for DB instance
reboots:

Performance Schema

To turn this feature on or off, you must reboot the DB instance.

Performance Insights

To turn this feature on or off, you don't need to reboot the DB instance.

If the Performance Schema isn't currently turned on, and you turn on Performance Insights without
rebooting the DB instance, the Performance Schema won't be turned on.

Determining whether Performance Insights is managing the Performance Schema

To find out whether Performance Insights is currently managing the Performance Schema for all
supported major engine versions, review the following table.

Performance Schema for MariaDB or MySQL 1298

Amazon Relational Database Service User Guide

Setting of performan
ce_schema parameter

Setting of the Source
column

Performance Insights is
managing the Performance
Schema?

0 System default Yes

0 or 1 Modified No

In the following procedure, you determine whether Performance Insights is managing the
Performance Schema automatically.

To determine whether Performance Insights is managing the Performance Schema
automatically

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups.

3. Select the name of the parameter group for your DB instance.

4. Enter performance_schema in the search bar.

5. Check whether Source is the system default and Value is 0. If so, Performance Insights is
managing the Performance Schema automatically.

In the example shown here, Performance Insights isn't managing the Performance Schema
automatically.

Turn on the Performance Schema for Amazon RDS for MariaDB or MySQL

Assume that Performance Insights is turned on for your DB instance or Multi-AZ DB cluster but
isn't currently managing the Performance Schema. If you want to allow Performance Insights to
manage the Performance Schema automatically, complete the following steps.

Performance Schema for MariaDB or MySQL 1299

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To configure the Performance Schema for automatic management

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups.

3. Select the name of the parameter group for your DB instance or Multi-AZ DB cluster.

4. Choose Edit.

5. Enter performance_schema in the search bar.

6. Select the performance_schema parameter.

7. Choose Set to default value.

8. Confirm by choosing Set values to default.

9. Choose Save Changes.

10. Reboot the DB instance or Multi-AZ DB cluster.

Important

Whenever you turn the Performance Schema on or off, make sure to reboot the DB
instance or Multi-AZ DB cluster.

For more information about modifying instance parameters, see Modifying parameters in a DB
parameter group in Amazon RDS. For more information about the dashboard, see Analyzing
metrics with the Performance Insights dashboard. For more information about the MySQL
performance schema, see MySQL Performance Schema (for 8.0) and MySQL Performance Schema
(for 8.4) in the MySQL documentation.

Configuring access policies for Performance Insights

To access Performance Insights, a principal must have the appropriate permissions from AWS
Identity and Access Management (IAM). You can grant access in the following ways:

• Attach the AmazonRDSPerformanceInsightsReadOnly managed policy to a permission set
or role to access all read-only operations of the Performance Insights API. Attach the following
CloudWatch permssions: GetMetricStatistics, ListMetrics, and GetMetricData.
For more information about CloudWatch permissions, see Amazon CloudWatch permissions
reference.

Performance Insights policies 1300

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.4/en/performance-schema.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html

Amazon Relational Database Service User Guide

• Attach the AmazonRDSPerformanceInsightsFullAccess managed policy to a permission
set or role to access all operations of the Performance Insights API. Attach the following
CloudWatch permssions: GetMetricStatistics, ListMetrics, and GetMetricData.
For more information about CloudWatch permissions, see Amazon CloudWatch permissions
reference.

• Create a custom IAM policy and attach it to a permission set or role.

If you specified a customer managed key when you turned on Performance Insights, make sure that
users in your account have the kms:Decrypt and kms:GenerateDataKey permissions on the
AWS KMS key.

In the following sections, attach an AWS managed policy to an IAM principal, create a custom IAM
policy, change an AWS KMS policy, and grant fine-grained access for Performance Insights.

Topics

• Attaching the AmazonRDSPerformanceInsightsReadOnly policy to an IAM principal

• Attaching the AmazonRDSPerformanceInsightsFullAccess policy to an IAM principal

• Creating a custom IAM policy for Performance Insights

• Changing an AWS KMS policy for Performance Insights

• Granting fine-grained access for Performance Insights

Attaching the AmazonRDSPerformanceInsightsReadOnly policy to an IAM
principal

AmazonRDSPerformanceInsightsReadOnly is an AWS managed policy that grants access to all
read-only operations of the Amazon RDS Performance Insights API.

If you attach AmazonRDSPerformanceInsightsReadOnly to a permission set or role, the
recipient can use Performance Insights with other console features.

For more information, see AWS managed policy: AmazonRDSPerformanceInsightsReadOnly.

Attaching the AmazonRDSPerformanceInsightsFullAccess policy to an IAM
principal

AmazonRDSPerformanceInsightsFullAccess is an AWS managed policy that grants access to
all operations of the Amazon RDS Performance Insights API.

Performance Insights policies 1301

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html

Amazon Relational Database Service User Guide

If you attach AmazonRDSPerformanceInsightsFullAccess to a permission set or role, the
recipient can use Performance Insights with other console features.

For more information, see AWS managed policy: AmazonRDSPerformanceInsightsFullAccess.

Creating a custom IAM policy for Performance Insights

For users who don't have either the AmazonRDSPerformanceInsightsReadOnly or
AmazonRDSPerformanceInsightsFullAccess policy, you can grant access to Performance
Insights by creating or modifying a user-managed IAM policy. When you attach the policy to an
IAM permission set or role, the recipient can use Performance Insights.

To create a custom policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Create Policy page, choose the JSON option.

5. Copy and paste the text provided in the JSON policy document section in the AWS
Managed Policy Reference Guide for AmazonRDSPerformanceInsightsReadOnly or
AmazonRDSPerformanceInsightsFullAccess policy.

6. Choose Review policy.

7. Provide a name for the policy and optionally a description, and then choose Create policy.

You can now attach the policy to a permission set or role. The following procedure assumes that
you already have a user available for this purpose.

To attach the policy to a user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose an existing user from the list.

Important

To use Performance Insights, make sure that you have access to
Amazon RDS in addition to the custom policy. For example, the

Performance Insights policies 1302

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsReadOnly.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsFullAccess.html
https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

AmazonRDSPerformanceInsightsReadOnly predefined policy provides read-only
access to Amazon RDS. For more information, see Managing access using policies.

4. On the Summary page, choose Add permissions.

5. Choose Attach existing policies directly. For Search, type the first few characters of your
policy name, as shown in the following image.

6. Choose your policy, and then choose Next: Review.

7. Choose Add permissions.

Changing an AWS KMS policy for Performance Insights

Performance Insights uses an AWS KMS key to encrypt sensitive data. When you enable
Performance Insights through the API or the console, you can do either of the following:

• Choose the default AWS managed key.

Amazon RDS uses the AWS managed key for your new DB instance. Amazon RDS creates an AWS
managed key for your AWS account. Your AWS account has a different AWS managed key for
Amazon RDS for each AWS Region.

• Choose a customer managed key.

If you specify a customer managed key, users in your account that call the Performance Insights
API need the kms:Decrypt and kms:GenerateDataKey permissions on the KMS key. You can

Performance Insights policies 1303

Amazon Relational Database Service User Guide

configure these permissions through IAM policies. However, we recommend that you manage
these permissions through your KMS key policy. For more information, see Key policies in AWS
KMS in the AWS Key Management Service Developer Guide.

Example

The following example shows how to add statements to your KMS key policy. These statements
allow access to Performance Insights. Depending on how you use the KMS key, you might want to
change some restrictions. Before adding statements to your policy, remove all comments.

{
"Version" : "2012-10-17",
 "Id" : "your-policy",
 "Statement" : [{
 //This represents a statement that currently exists in your policy.
 }
,
 //Starting here, add new statement to your policy for Performance Insights.
 //We recommend that you add one new statement for every RDS instance
{
 "Sid" : "Allow viewing RDS Performance Insights",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 //One or more principals allowed to access Performance Insights
 "arn:aws:iam::444455556666:role/Role1"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition" : {
 "StringEquals" : {
 //Restrict access to only RDS APIs (including Performance Insights).
 //Replace region with your AWS Region.
 //For example, specify us-west-2.
 "kms:ViaService" : "rds.region.amazonaws.com"
 },
 "ForAnyValue:StringEquals": {
 //Restrict access to only data encrypted by Performance Insights.

Performance Insights policies 1304

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon Relational Database Service User Guide

 "kms:EncryptionContext:aws:pi:service": "rds",
 "kms:EncryptionContext:service": "pi",

 //Restrict access to a specific RDS instance.
 //The value is a DbiResourceId.
 "kms:EncryptionContext:aws:rds:db-id": "db-AAAAABBBBBCCCCDDDDDEEEEE"
 }
 }
}

How Performance Insights uses AWS KMS customer managed key

Performance Insights uses customer managed keys to encrypt sensitive data. When you turn on
Performance Insights, you can provide an AWS KMS key through the API. Performance Insights
creates KMS permissions on this key. It uses the key and performs the necessary operations to
process sensitive data. Sensitive data includes fields such as user, database, application, and SQL
query text. Performance Insights ensures that the data remains encrypted both at rest and in-
flight.

How Performance Insights IAM works with AWS KMS

IAM gives permissions to specific APIs. Performance Insights has the following public APIs, which
you can restrict using IAM policies:

• DescribeDimensionKeys

• GetDimensionKeyDetails

• GetResourceMetadata

• GetResourceMetrics

• ListAvailableResourceDimensions

• ListAvailableResourceMetrics

You can use the following API requests to get sensitive data.

• DescribeDimensionKeys

• GetDimensionKeyDetails

• GetResourceMetrics

Performance Insights policies 1305

Amazon Relational Database Service User Guide

When you use the API to get sensitive data, Performance Insights leverages the caller's credentials.
This check ensures that access to sensitive data is limited to those with access to the KMS key.

When calling these APIs, you need permissions to call the API through the IAM policy and
permissions to invoke the kms:decrypt action through the AWS KMS key policy.

The GetResourceMetrics API can return both sensitive and non-sensitive data. The request
parameters determine whether the response should include sensitive data. The API returns
sensitive data when the request includes a sensitive dimension in either the filter or group-by
parameters.

For more information about the dimensions that you can use with the GetResourceMetrics API,
see DimensionGroup.

Example Examples

The following example requests the sensitive data for the db.user group:

POST / HTTP/1.1
Host: <Hostname>
Accept-Encoding: identity
X-Amz-Target: PerformanceInsightsv20180227.GetResourceMetrics
Content-Type: application/x-amz-json-1.1
User-Agent: <UserAgentString>
X-Amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
Content-Length: <PayloadSizeBytes>
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "MetricQueries": [
 {
 "Metric": "db.load.avg",
 "GroupBy": {
 "Group": "db.user",
 "Limit": 2
 }
 }
],
 "StartTime": 1693872000,

Performance Insights policies 1306

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Relational Database Service User Guide

 "EndTime": 1694044800,
 "PeriodInSeconds": 86400
}

Example

The following example requests the non-sensitive data for the db.load.avg metric:

POST / HTTP/1.1
Host: <Hostname>
Accept-Encoding: identity
X-Amz-Target: PerformanceInsightsv20180227.GetResourceMetrics
Content-Type: application/x-amz-json-1.1
User-Agent: <UserAgentString>
X-Amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
Content-Length: <PayloadSizeBytes>
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "MetricQueries": [
 {
 "Metric": "db.load.avg"
 }
],
 "StartTime": 1693872000,
 "EndTime": 1694044800,
 "PeriodInSeconds": 86400
}

Granting fine-grained access for Performance Insights

Fine-grained access control offers additional ways of controlling access to Performance Insights.
This access control can allow or deny access to individual dimensions for GetResourceMetrics,
DescribeDimensionKeys, and GetDimensionKeyDetails Performance Insights actions.
To use fine-grained access, specify dimensions in the IAM policy by using condition keys. The
evaluation of the access follows the IAM policy evaluation logic. For more information, see Policy
evaluation logic in the IAM User Guide. If the IAM policy statement doesn't specify any dimension,

Performance Insights policies 1307

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Relational Database Service User Guide

then the statement controls access to all the dimensions for the specified action. For the list of
available dimensions, see DimensionGroup.

To find out the dimensions that your credentials are authorized to access, use the
AuthorizedActions parameter in ListAvailableResourceDimensions and specify the
action. The allowed values for AuthorizedActions are as follows:

• GetResourceMetrics

• DescribeDimensionKeys

• GetDimensionKeyDetails

For example, if you specify GetResourceMetrics to the AuthorizedActions
parameter, ListAvailableResourceDimensions returns the list of dimensions that the
GetResourceMetrics action is authorized to access. If you specify multiple actions in the
AuthorizedActions parameter, then ListAvailableResourceDimensions returns an
intersection of dimensions that those actions are authorized to access.

Example

The following example provides access to the specified dimensions for GetResourceMetrics and
DescribeDimensionKeys actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowToDiscoverDimensions",
 "Effect": "Allow",
 "Action": [
 "pi:ListAvailableResourceDimensions"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
]
 },
 {
 "Sid": "SingleAllow",
 "Effect": "Allow",
 "Action": [

Performance Insights policies 1308

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Relational Database Service User Guide

 "pi:GetResourceMetrics",
 "pi:DescribeDimensionKeys"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 // only these dimensions are allowed. Dimensions not included in
 // a policy with "Allow" effect will be denied
 "pi:Dimensions": [
 "db.sql_tokenized.id",
 "db.sql_tokenized.statement"
]
 }
 }
 }

]
}

The following is the response for the requested dimension:

 // ListAvailableResourceDimensions API
// Request
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "Metrics": ["db.load"],
 "AuthorizedActions": ["DescribeDimensionKeys"]
}

// Response
{
 "MetricDimensions": [{
 "Metric": "db.load",
 "Groups": [
 {
 "Group": "db.sql_tokenized",

Performance Insights policies 1309

Amazon Relational Database Service User Guide

 "Dimensions": [
 { "Identifier": "db.sql_tokenized.id" },
 // { "Identifier": "db.sql_tokenized.db_id" }, // not included
 because not allows in the IAM Policy
 { "Identifier": "db.sql_tokenized.statement" }
]
 }

] }
]
}

The following example specifies one allow and two deny access for the dimensions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowToDiscoverDimensions",
 "Effect": "Allow",
 "Action": [
 "pi:ListAvailableResourceDimensions"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
]
 },

 {
 "Sid": "O01AllowAllWithoutSpecifyingDimensions",
 "Effect": "Allow",
 "Action": [
 "pi:GetResourceMetrics",
 "pi:DescribeDimensionKeys"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
]
 },

 {

Performance Insights policies 1310

Amazon Relational Database Service User Guide

 "Sid": "O01DenyAppDimensionForAll",
 "Effect": "Deny",
 "Action": [
 "pi:GetResourceMetrics",
 "pi:DescribeDimensionKeys"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "pi:Dimensions": [
 "db.application.name"
]
 }
 }
 },

 {
 "Sid": "O01DenySQLForGetResourceMetrics",
 "Effect": "Deny",
 "Action": [
 "pi:GetResourceMetrics"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "pi:Dimensions": [
 "db.sql_tokenized.statement"
]
 }
 }
 }
]
}

The following are the responses for the requested dimensions:

Performance Insights policies 1311

Amazon Relational Database Service User Guide

 // ListAvailableResourceDimensions API
// Request
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "Metrics": ["db.load"],
 "AuthorizedActions": ["GetResourceMetrics"]
}

// Response
{
 "MetricDimensions": [{
 "Metric": "db.load",
 "Groups": [
 {
 "Group": "db.application",
 "Dimensions": [

 // removed from response because denied by the IAM Policy
 // { "Identifier": "db.application.name" }
]
 },
 {
 "Group": "db.sql_tokenized",
 "Dimensions": [
 { "Identifier": "db.sql_tokenized.id" },
 { "Identifier": "db.sql_tokenized.db_id" },

 // removed from response because denied by the IAM Policy
 // { "Identifier": "db.sql_tokenized.statement" }
]
 },
 ...
] }
]
}

// ListAvailableResourceDimensions API
// Request
{
 "ServiceType": "RDS",

Performance Insights policies 1312

Amazon Relational Database Service User Guide

 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "Metrics": ["db.load"],
 "AuthorizedActions": ["DescribeDimensionKeys"]
}

// Response
{
 "MetricDimensions": [{
 "Metric": "db.load",
 "Groups": [
 {
 "Group": "db.application",
 "Dimensions": [
 // removed from response because denied by the IAM Policy
 // { "Identifier": "db.application.name" }
]
 },
 {
 "Group": "db.sql_tokenized",
 "Dimensions": [
 { "Identifier": "db.sql_tokenized.id" },
 { "Identifier": "db.sql_tokenized.db_id" },

 // allowed for DescribeDimensionKeys because our IAM Policy
 // denies it only for GetResourceMetrics
 { "Identifier": "db.sql_tokenized.statement" }
]
 },
 ...
] }
]
}

Analyzing metrics with the Performance Insights dashboard

The Performance Insights dashboard contains database performance information to help you
analyze and troubleshoot performance issues. On the main dashboard page, you can view
information about the database load. You can "slice" DB load by dimensions such as wait events or
SQL.

Performance Insights dashboard

• Overview of the Performance Insights dashboard

Analyzing metrics with the Performance Insights dashboard 1313

Amazon Relational Database Service User Guide

• Accessing the Performance Insights dashboard

• Analyzing DB load by wait events

• Analyzing database performance for a period of time

• Analyzing queries with the Top SQL tab in Performance Insights

• Analyzing top Oracle PDB load

• Analyzing execution plans using the Performance Insights dashboard for Amazon RDS

Overview of the Performance Insights dashboard

The dashboard is the easiest way to interact with Performance Insights. The following example
shows the dashboard for a PostgreSQL DB instance.

Analyzing metrics with the Performance Insights dashboard 1314

Amazon Relational Database Service User Guide

Topics

• Time range filter

• Counter metrics chart

• Database load chart

• Top dimensions table

Analyzing metrics with the Performance Insights dashboard 1315

Amazon Relational Database Service User Guide

Time range filter

By default, the Performance Insights dashboard shows DB load for the last hour. You can adjust
this range to be as short as 5 minutes or as long as 2 years. You can also select a custom relative
range.

You can select an absolute range with a beginning and ending date and time. The following
example shows the time range beginning at midnight on 9/25/24 and ending at 11:59 PM on
9/28/24.

Analyzing metrics with the Performance Insights dashboard 1316

Amazon Relational Database Service User Guide

By default, the time zone for the Performance Insights dashboard is Coordinated Universal Time
(UTC). You can also choose the local time zone.

Counter metrics chart

With counter metrics, you can customize the Performance Insights dashboard to include up to 10
additional graphs. These graphs show a selection of dozens of operating system and database
performance metrics. You can correlate this information with DB load to help identify and analyze
performance problems.

The Counter metrics chart displays data for performance counters. The default metrics depend on
the DB engine:

Analyzing metrics with the Performance Insights dashboard 1317

Amazon Relational Database Service User Guide

• MySQL and MariaDB – db.SQL.Innodb_rows_read.avg

• Oracle – db.User.user calls.avg

• Microsoft SQL Server – db.Databases.Active Transactions(_Total).avg

• PostgreSQL – db.Transactions.xact_commit.avg

To change the performance counters, choose Manage Metrics. You can select multiple OS metrics
or Database metrics, as shown in the following screenshot. To see details for any metric, hover
over the metric name.

Analyzing metrics with the Performance Insights dashboard 1318

Amazon Relational Database Service User Guide

For descriptions of the counter metrics that you can add for each DB engine, see Performance
Insights counter metrics.

Database load chart

The Database load chart shows how the database activity compares to DB instance capacity as
represented by the Max vCPU line. By default, the stacked line chart represents DB load as average
active sessions per unit of time. The DB load is sliced (grouped) by wait states.

Analyzing metrics with the Performance Insights dashboard 1319

Amazon Relational Database Service User Guide

DB load sliced by dimensions

You can choose to display load as active sessions grouped by any supported dimensions. The
following table shows which dimensions are supported for the different engines.

Dimension Oracle SQL Server PostgreSQL MySQL

Host Yes Yes Yes Yes

SQL Yes Yes Yes Yes

User Yes Yes Yes Yes

Waits Yes Yes Yes Yes

Plans Yes No No No

Application No No Yes No

Database No No Yes Yes

Session type No No Yes No

Analyzing metrics with the Performance Insights dashboard 1320

Amazon Relational Database Service User Guide

The following image shows the dimensions for a PostgreSQL DB instance.

DB load details for a dimension item

To see details about a DB load item within a dimension, hover over the item name. The following
image shows details for a SQL statement.

Analyzing metrics with the Performance Insights dashboard 1321

Amazon Relational Database Service User Guide

To see details for any item for the selected time period in the legend, hover over that item.

Top dimensions table

The Top dimensions table slices DB load by different dimensions. A dimension is a category or
"slice by" for different characteristics of DB load. If the dimension is SQL, Top SQL shows the SQL
statements that contribute the most to DB load.

Choose any of the following dimension tabs.

Analyzing metrics with the Performance Insights dashboard 1322

Amazon Relational Database Service User Guide

Tab Description Supported engines

Top SQL The SQL statements that are
currently running

All

Top waits The event for which the
database backend is waiting

All

Top hosts The host name of the
connected client

All

Top users The user logged in to the
database

All

Top databases The name of the database to
which the client is connected

PostgreSQL, MySQL, MariaDB,
and SQL Server only

Top applications The name of the applicati
on that is connected to the
database

PostgreSQL and SQL Server
only

Top session types The type of the current
session

PostgreSQL only

To learn how to analyze queries by using the Top SQL tab, see Overview of the Top SQL tab.

Accessing the Performance Insights dashboard

Amazon RDS provides a consolidated view of Performance Insights and CloudWatch metrics in the
Performance Insights dashboard.

To access the Performance Insights dashboard, use the following procedure.

To view the Performance Insights dashboard in the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

Analyzing metrics with the Performance Insights dashboard 1323

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

For DB instances with Performance Insights turned on, you can also access the Performance
Insights dashboard by choosing the Sessions item in the list of DB instances. Under Current
activity, the Sessions item shows the database load in average active sessions over the last
five minutes. The bar graphically shows the load. When the bar is empty, the DB instance is
idle. As the load increases, the bar fills with blue. When the load passes the number of virtual
CPUs (vCPUs) on the DB instance class, the bar turns red, indicating a potential bottleneck.

4. (Optional) Choose the date or time range in the upper right and specify a different relative
or absolute time interval. You can now specify a time period, and generate a database
performance analysis report. The report provides the identified insights and recommendations.
For more information, see Creating a performance analysis report in Performance Insights.

Analyzing metrics with the Performance Insights dashboard 1324

Amazon Relational Database Service User Guide

In the following screenshot, the DB load interval is 5 hours.

5. (Optional) To zoom in on a portion of the DB load chart, choose the start time and drag to the
end of the time period you want.

The selected area is highlighted in the DB load chart.

When you release the mouse, the DB load chart zooms in on the selected AWS Region, and the
Top dimensions table is recalculated.

Analyzing metrics with the Performance Insights dashboard 1325

Amazon Relational Database Service User Guide

6. (Optional) To refresh your data automatically, select Auto refresh.

The Performance Insights dashboard automatically refreshes with new data. The refresh rate
depends on the amount of data displayed:

• 5 minutes refreshes every 10 seconds.

• 1 hour refreshes every 5 minutes.

• 5 hours refreshes every 5 minutes.

• 24 hours refreshes every 30 minutes.

• 1 week refreshes every day.

Analyzing metrics with the Performance Insights dashboard 1326

Amazon Relational Database Service User Guide

• 1 month refreshes every day.

Analyzing DB load by wait events

If the Database load chart shows a bottleneck, you can find out where the load is coming from. To
do so, look at the top load items table below the Database load chart. Choose a particular item,
like a SQL query or a user, to drill down into that item and see details about it.

DB load grouped by waits and top SQL queries is the default Performance Insights dashboard view.
This combination typically provides the most insight into performance issues. DB load grouped by
waits shows if there are any resource or concurrency bottlenecks in the database. In this case, the
SQL tab of the top load items table shows which queries are driving that load.

Your typical workflow for diagnosing performance issues is as follows:

1. Review the Database load chart and see if there are any incidents of database load exceeding
the Max CPU line.

2. If there is, look at the Database load chart and identify which wait state or states are primarily
responsible.

3. Identify the digest queries causing the load by seeing which of the queries the SQL tab on the
top load items table are contributing most to those wait states. You can identify these by the DB
Load by Wait column.

4. Choose one of these digest queries in the SQL tab to expand it and see the child queries that it is
composed of.

For example, in the dashboard following, log file sync waits account for most of the DB load. The
LGWR all worker groups wait is also high. The Top SQL chart shows what is causing the log file
sync waits: frequent COMMIT statements. In this case, committing less frequently will reduce DB
load.

Analyzing metrics with the Performance Insights dashboard 1327

Amazon Relational Database Service User Guide

Analyzing database performance for a period of time

Analyze database performance with on-demand analysis by creating a performance analysis
report for a period of time. View performance analysis reports to find performance issues, such
as resource bottlenecks or changes in a query in your DB instance. The Performance Insights
dashboard allows you to select a time period and create a performance analysis report. You can
also add one or more tags to the report.

To use this feature, you must be using the paid tier retention period. For more information, see
Pricing and data retention for Performance Insights

The report is available in the Performance analysis reports - new tab to select and view. The
report contains the insights, related metrics, and recommendations to resolve the performance
issue. The report is available to view for the duration of Performance Insights retention period.

The report is deleted if the start time of the report analysis period is outside of the retention
period. You can also delete the report before the retention period ends.

Analyzing metrics with the Performance Insights dashboard 1328

Amazon Relational Database Service User Guide

To detect the performance issues and generate the analysis report for your DB instance, you must
turn on Performance Insights. For more information about turning on Performance Insights, see
Turning Performance Insights on and off for Amazon RDS.

For the region, DB engine, and instance class support information for this feature, see Amazon RDS
DB engine, Region, and instance class support for Performance Insights features

In the following sections, you can create, view, add tags, and delete a performance analysis report.

Topics

• Creating a performance analysis report in Performance Insights

• Viewing a performance analysis report in Performance Insights

• Adding tags to a performance analysis report in Performance Insights

• Deleting a performance analysis report in Performance Insights

Creating a performance analysis report in Performance Insights

You can create a performance analysis report for a specific period in the Performance Insights
dashboard. You can select a time period and add one or more tags to the analysis report.

The analysis period can range from 5 minutes to 6 days. There must be at least 24 hours of
performance data before the analysis start time.

For the region, DB engine, and instance class support information for this feature, see Amazon RDS
DB engine, Region, and instance class support for Performance Insights features

To create a performance analysis report for a time period

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Choose Analyze performance in Database load section on the Performance Insights
dashboard.

The fields to set the time period and add one or more tags to the performance analysis report
are displayed.

Analyzing metrics with the Performance Insights dashboard 1329

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Choose the time period. If you set a time period in the Relative range or Absolute range in
the upper right, you can only enter or select the analysis report date and time within this time
period. If you select the analysis period outside of this time period, an error message displays.

To set the time period, you can do any of the following:

• Press and drag any of the sliders on the DB load chart.

The Performance analysis period box displays the selected time period and DB load chart
highlights the selected time period.

• Choose the Start date, Start time, End date, and End time in the Performance analysis
period box.

Analyzing metrics with the Performance Insights dashboard 1330

Amazon Relational Database Service User Guide

6. (Optional) Enter Key and Value-optional to add a tag for the report.

Analyzing metrics with the Performance Insights dashboard 1331

Amazon Relational Database Service User Guide

7. Choose Analyze performance.

A banner displays a message whether the report generation is successful or failed. The
message also provides the link to view the report.

The following example shows the banner with the report creation successful message.

The report is available to view in Performance analysis reports - new tab.

You can create a performance analysis report using the AWS CLI. For an example on how to create
a report using AWS CLI, see Creating a performance analysis report for a time period.

Viewing a performance analysis report in Performance Insights

The Performance analysis reports - new tab lists all the reports that are created for the DB
instance. The following are displayed for each report:

• ID: Unique identifier of the report.

• Name: Tag key added to the report.

• Report creation time: Time you created the report.

• Analysis start time: Start time of the analysis in the report.

• Analysis end time: End time of the analysis in the report.

To view a performance analysis report

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance for which you want to view the analysis report.

4. Scroll down and choose Performance analysis reports - new tab in the Performance Insights
dashboard.

All the analysis reports for the different time periods are displayed.

5. Choose ID of the report you want to view.

Analyzing metrics with the Performance Insights dashboard 1332

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The DB load chart displays the entire analysis period by default if more than one insight is
identified. If the report has identified one insight then the DB load chart displays the insight by
default.

The dashboard also lists the tags for the report in the Tags section.

The following example shows the entire analysis period for the report.

6. Choose the insight in the Database load insights list you want to view if more than one insight
is identified in the report.

The dashboard displays the insight message, DB load chart highlighting the time period of the
insight, analysis and recommendations, and the list of report tags.

The following example shows the DB load insight in the report.

Analyzing metrics with the Performance Insights dashboard 1333

Amazon Relational Database Service User Guide

Adding tags to a performance analysis report in Performance Insights

You can add a tag when you create or view a report. You can add up to 50 tags for a report.

You need permissions to add the tags. For more information about the access policies for
Performance Insights, see Configuring access policies for Performance Insights

To add one or more tags while creating a report, see step 6 in the procedure Creating a
performance analysis report in Performance Insights.

To add one or more tags when viewing a report

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Performance analysis reports - new tab.

5. Choose the report for which you want to add the tags.

The dashboard displays the report.

6. Scroll down to Tags and choose Manage tags.

7. Choose Add new tag.

8. Enter the Key and Value - optional, and choose Add new tag.

The following example provides the option to add a new tag for the selected report.

Analyzing metrics with the Performance Insights dashboard 1334

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

A new tag is created for the report.

The list of tags for the report is displayed in the Tags section on the dashboard. If you want to
remove a tag from the report, choose Remove next to the tag.

Deleting a performance analysis report in Performance Insights

You can delete a report from the list of reports displayed in the Performance analysis reports tab
or while viewing a report.

To delete a report

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Performance analysis reports - new tab.

5. Select the report you want to delete and choose Delete in the upper right.

Analyzing metrics with the Performance Insights dashboard 1335

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

A confirmation window is displayed. The report is deleted after you choose confirm.

6. (Optional) Choose ID of the report you want to delete.

In the report page, choose Delete in the upper right.

A confirmation window is displayed. The report is deleted after you choose confirm.

Analyzing queries with the Top SQL tab in Performance Insights

In the Amazon RDS Performance Insights dashboard, you can find information about running and
recent queries in the Top SQL tab in the Top dimensions table. You can use this information to
tune your queries.

Topics

• Overview of the Top SQL tab

• Accessing more SQL text in the Performance Insights dashboard

• Viewing SQL statistics in the Performance Insights dashboard

Overview of the Top SQL tab

By default, the Top SQL tab shows the 25 queries that are contributing the most to DB load. To
help tune your queries, you can analyze information such as the query text and SQL statistics. You
can also choose the statistics that you want to appear in the Top SQL tab.

Topics

• SQL text

• SQL statistics

• Load by waits (AAS)

Analyzing metrics with the Performance Insights dashboard 1336

Amazon Relational Database Service User Guide

• View SQL information

• Choose statistics preferences

SQL text

By default, each row in the Top SQL table shows 500 bytes of text for each statement.

To learn how to see more than the default 500 bytes of SQL text, see Accessing more SQL text in
the Performance Insights dashboard.

A SQL digest is a composite of multiple actual queries that are structurally similar but might have
different literal values. The digest replaces hardcoded values with a question mark. For example, a
digest might be SELECT * FROM emp WHERE lname= ?. This digest might include the following
child queries:

SELECT * FROM emp WHERE lname = 'Sanchez'
SELECT * FROM emp WHERE lname = 'Olagappan'
SELECT * FROM emp WHERE lname = 'Wu'

To see the literal SQL statements in a digest, select the query, and then choose the plus symbol (+).
In the following example, the selected query is a digest.

Analyzing metrics with the Performance Insights dashboard 1337

Amazon Relational Database Service User Guide

Note

A SQL digest groups similar SQL statements, but doesn't redact sensitive information.

Performance Insights can show Oracle SQL text as Unknown. The text has this status in the
following situations:

• An Oracle database user other than SYS is active but not currently executing SQL. For example,
when a parallel query completes, the query coordinator waits for helper processes to send their
session statistics. For the duration of the wait, the query text shows Unknown.

• For an RDS for Oracle instance on Standard Edition 2, Oracle Resource Manager limits the
number of parallel threads. The background process doing this work causes the query text to
show as Unknown.

SQL statistics

SQL statistics are performance-related metrics about SQL queries. For example, Performance
Insights might show executions per second or rows processed per second. Performance Insights
collects statistics for only the most common queries. Typically, these match the top queries by load
shown in the Performance Insights dashboard.

Every line in the Top SQL table shows relevant statistics for the SQL statement or digest, as shown
in the following example.

Analyzing metrics with the Performance Insights dashboard 1338

Amazon Relational Database Service User Guide

Performance Insights can report 0.00 and - (unknown) for SQL statistics. This situation occurs
under the following conditions:

• Only one sample exists. For example, Performance Insights calculates rates of change for RDS
PostgreSQL queries based on multiple samples from the pg_stat_statements view. When
a workload runs for a short time, Performance Insights might collect only one sample, which
means that it can't calculate a rate of change. The unknown value is represented with a dash (-).

• Two samples have the same values. Performance Insights can't calculate a rate of change
because no change has occurred, so it reports the rate as 0.00.

• An RDS PostgreSQL statement lacks a valid identifier. PostgreSQL creates a identifier for a
statement only after parsing and analysis. Thus, a statement can exist in the PostgreSQL internal
in-memory structures with no identifier. Because Performance Insights samples internal in-
memory structures once per second, low-latency queries might appear for only a single sample.
If the query identifier isn't available for this sample, Performance Insights can't associate this
statement with its statistics. The unknown value is represented with a dash (-).

For a description of the SQL statistics for the Amazon RDS engines, see SQL statistics for
Performance Insights.

Load by waits (AAS)

In Top SQL, the Load by waits (AAS) column illustrates the percentage of the database load
associated with each top load item. This column reflects the load for that item by whatever
grouping is currently selected in the DB Load Chart. For more information about Average active
sessions (AAS), see Average active sessions.

For example, you might group the DB load chart by wait states. You examine SQL queries in the
top load items table. In this case, the DB Load by Waits bar is sized, segmented, and color-coded to

Analyzing metrics with the Performance Insights dashboard 1339

Amazon Relational Database Service User Guide

show how much of a given wait state that query is contributing to. It also shows which wait states
are affecting the selected query.

View SQL information

In the Top SQL table, you can open a statement to view its information. The information appears in
the bottom pane.

Analyzing metrics with the Performance Insights dashboard 1340

Amazon Relational Database Service User Guide

The following types of identifiers (IDs) that are associated with SQL statements:

• Support SQL ID – A hash value of the SQL ID. This value is only for referencing a SQL ID when
you are working with AWS Support. AWS Support doesn't have access to your actual SQL IDs and
SQL text.

• Support Digest ID – A hash value of the digest ID. This value is only for referencing a digest ID
when you are working with AWS Support. AWS Support doesn't have access to your actual digest
IDs and SQL text.

Analyzing metrics with the Performance Insights dashboard 1341

Amazon Relational Database Service User Guide

Choose statistics preferences

You can control the statistics displayed in the Top SQL tab by choosing the Preferences icon.

When you choose the Preferences icon, the Preferences window opens. The following screenshot
is an example of the Preferences window.

Analyzing metrics with the Performance Insights dashboard 1342

Amazon Relational Database Service User Guide

To enable the statistics that you want to appear in the Top SQL tab, use your mouse to scroll to the
bottom of the window, and then choose Continue.

For more information about per-second or per-call statistics for the Amazon RDS engines, see the
engine specific SQL statistics section in SQL statistics for Performance Insights

Accessing more SQL text in the Performance Insights dashboard

By default, each row in the Top SQL table shows 500 bytes of SQL text for each SQL statement.

Analyzing metrics with the Performance Insights dashboard 1343

Amazon Relational Database Service User Guide

When a SQL statement exceeds 500 bytes, you can view more text in the SQL text section below
the Top SQL table. In this case, the maximum length for the text displayed in SQL text is 4 KB. This
limit is introduced by the console and is subject to the limits set by the database engine. To save
the text shown in SQL text, choose Download.

Topics

• Text size limits for Amazon RDS engines

• Setting the SQL text limit for Amazon RDS for PostgreSQL DB instances

• Viewing and downloading SQL text in the Performance Insights dashboard

Text size limits for Amazon RDS engines

When you download SQL text, the database engine determines its maximum length. You can
download SQL text up to the following per-engine limits.

DB engine Maximum length of downloaded text

Amazon RDS for MySQL and MariaDB The length is fixed at 4,096 bytes when
the Performance Schema is enabled. If the
Performance Schema isn't enabled, the length
is fixed at 65,535 bytes.

Amazon RDS for Microsoft SQL Server 4,096 characters

Amazon RDS for Oracle 1,000 bytes

The SQL text section of the Performance Insights console displays up to the maximum that the
engine returns. For example, if MySQL returns at most 1 KB to Performance Insights, it can only
collect and show 1 KB, even if the original query is larger. Thus, when you view the query in SQL
text or download it, Performance Insights returns the same number of bytes.

If you use the AWS CLI or API, Performance Insights doesn't have the 4 KB limit enforced by the
console. DescribeDimensionKeys and GetResourceMetrics return at most 500 bytes.

Analyzing metrics with the Performance Insights dashboard 1344

Amazon Relational Database Service User Guide

Note

GetDimensionKeyDetails returns the full query, but the size is subject to the engine
limit.

Setting the SQL text limit for Amazon RDS for PostgreSQL DB instances

Amazon RDS for PostgreSQL handles text differently. You can set the text size limit with the
DB instance parameter track_activity_query_size. This parameter has the following
characteristics:

Default text size

On Amazon RDS for PostgreSQL version 9.6, the default setting for the
track_activity_query_size parameter is 1,024 bytes. On Amazon RDS for PostgreSQL
version 10 or higher, the default is 4,096 bytes.

Maximum text size

The limit for track_activity_query_size is 102,400 bytes for Amazon RDS for PostgreSQL
version 12 and lower. The maximum is 1 MB for version 13 and higher.

If the engine returns 1 MB to Performance Insights, the console displays only the first 4 KB. If
you download the query, you get the full 1 MB. In this case, viewing and downloading return
different numbers of bytes. For more information about the track_activity_query_size
DB instance parameter, see Run-time Statistics in the PostgreSQL documentation.

To increase the SQL text size, increase the track_activity_query_size limit. To modify
the parameter, change the parameter setting in the parameter group that is associated with the
Amazon RDS for PostgreSQL DB instance.

To change the setting when the instance uses the default parameter group

1. Create a new DB instance parameter group for the appropriate DB engine and DB engine
version.

2. Set the parameter in the new parameter group.

3. Associate the new parameter group with the DB instance.

Analyzing metrics with the Performance Insights dashboard 1345

https://www.postgresql.org/docs/current/runtime-config-statistics.html

Amazon Relational Database Service User Guide

For information about setting a DB instance parameter, see Modifying parameters in a DB
parameter group in Amazon RDS.

Viewing and downloading SQL text in the Performance Insights dashboard

In the Performance Insights dashboard, you can view or download SQL text.

To view more SQL text in the Performance Insights dashboard

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Scroll down to the Top SQL tab in the Performance Insights dashboard.

5. Choose the plus sign to expand a SQL digest and choose one of the digest's child queries.

SQL statements with text larger than 500 bytes look similar to the following image.

6. Scroll down to the SQL text tab.

Analyzing metrics with the Performance Insights dashboard 1346

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The Performance Insights dashboard can display up to 4,096 bytes for each SQL statement.

7. (Optional) Choose Copy to copy the displayed SQL statement, or choose Download to
download the SQL statement to view the SQL text up to the DB engine limit.

Note

To copy or download the SQL statement, disable pop-up blockers.

Viewing SQL statistics in the Performance Insights dashboard

In the Performance Insights dashboard, SQL statistics are available in the Top SQL tab of the
Database load chart.

To view SQL statistics

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. At the top of the page, choose the database whose SQL statistics you want to see.

4. Scroll to the bottom of the page and choose the Top SQL tab.

5. Choose an individual statement or digest query.

Analyzing metrics with the Performance Insights dashboard 1347

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. Choose which statistics to display by choosing the gear icon in the upper-right corner of the
chart. For descriptions of the SQL statistics for the Amazon RDS engines, see SQL statistics for
Performance Insights.

The following example shows the statistics preferences for Oracle DB instances.

Analyzing metrics with the Performance Insights dashboard 1348

Amazon Relational Database Service User Guide

The following example shows the preferences for MariaDB and MySQL DB instances.

Analyzing metrics with the Performance Insights dashboard 1349

Amazon Relational Database Service User Guide

7. Choose Save to save your preferences.

The Top SQL table refreshes.

The following example shows statistics for an Oracle SQL query.

Analyzing metrics with the Performance Insights dashboard 1350

Amazon Relational Database Service User Guide

Analyzing top Oracle PDB load

When analyzing the load on an Oracle container DB (CDB), you might want to identify which
pluggable databases (PDBs) contribute the most to DB load. You might also want to compare the
performance of individual PDBs that are running similar queries to fine tune performance. For
more information about Oracle CDBs, see RDS for Oracle database architecture.

In the Amazon RDS Performance Insights dashboard, you can find information about pluggable
databases (PDBs) under Top PDB tab in the Dimensions tab.

For the region, DB engine, and instance class support information for this feature, see Amazon RDS
DB engine, Region, and instance class support for Performance Insights features.

To analyze Top PDB load in an Oracle CDB

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, select Performance Insights.

3. Choose an Oracle CDB instance.

The Performance Insights dashboard appears for the DB instance.

4. In the Database load (DB load) section, choose Pluggable database (PDB) next to Slice by.

The Average active sessions chart shows the PDB with the highest load. The PDB identifiers
appear to the right of the color-coded squares. Each identifier uniquely identifies a PDB.

Analyzing metrics with the Performance Insights dashboard 1351

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Scroll down to the Top SQL tab.

In the following example, you can see the same SQL query and the load it drives to multiple
PDBs.

Analyzing metrics with the Performance Insights dashboard 1352

Amazon Relational Database Service User Guide

In the following example, a single PDB is handling higher load than other PDBs in the CDB.

For more information about Oracle CDBs, see CDBs and PDBs.

Analyzing execution plans using the Performance Insights dashboard for Amazon
RDS

In the Amazon RDS Performance Insights dashboard, you can find information about execution
plans for Oracle and SQL Server DB instances. You can use this information to know which plans
contribute the most to DB load.

To analyze Oracle or SQL Server execution plans, see the following topics.

Analyzing execution plans

• Analyzing Oracle execution plans using the Performance Insights dashboard for Amazon RDS

• Analyzing SQL Server execution plans using the Performance Insights dashboard for Amazon
RDS

Overview of analyzing execution plans for Amazon RDS

You can use the Amazon RDS Performance Insights dashboard to know which plans contribute the
most to DB load for Oracle and SQL Server DB instances.

Analyzing metrics with the Performance Insights dashboard 1353

https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/CDBs-and-PDBs.html#GUID-FC2EB562-ED31-49EF-8707-C766B6FE66B8

Amazon Relational Database Service User Guide

For example, the top SQL statements at a given time might be using the plans shown in the
following table.

Top SQL Plan

SELECT SUM(amount_sold) FROM sales WHERE prod_id =
10

Plan A

SELECT SUM(amount_sold) FROM sales WHERE prod_id =
521

Plan B

SELECT SUM(s_total) FROM sales WHERE region = 10 Plan A

SELECT * FROM emp WHERE emp_id = 1000 Plan C

SELECT SUM(amount_sold) FROM sales WHERE prod_id =
72

Plan A

With the plan feature of Performance Insights, you can do the following:

• Find out which plans are used by the top SQL queries.

For example, you might find out that most of the DB load is generated by queries using plan A
and plan B, with only a small percentage using plan C.

• Compare different plans for the same query.

In the preceding example, three queries are identical except for the product ID. Two queries
use plan A, but one query uses plan B. To see the difference in the two plans, you can use
Performance Insights.

• Find out when a query switched to a new plan.

You might see that a query used plan A and then switched to plan B at a certain time. Was there
a change in the database at this point? For example, if a table is empty, the optimizer might
choose a full table scan. If the table is loaded with a million rows, the optimizer might switch to
an index range scan.

• Drill down to the specific steps of a plan with the highest cost.

Analyzing metrics with the Performance Insights dashboard 1354

Amazon Relational Database Service User Guide

For example, the for a long-running query might show a missing a join condition in an equi-join.
This missing condition forces a Cartesian join, which joins all rows of two tables.

You can perform the preceding tasks by using the plan capture feature of Performance Insights.
Just as you can slice queries by wait events and top SQL, you can slice them by the plan dimension.

Analyzing Oracle execution plans using the Performance Insights dashboard for Amazon RDS

When analyzing DB load on an Oracle Database, you might want to know which plans are
contributing the most to DB load. You can determine which plans are contributing the most to DB
load by using the plan capture feature of Performance Insights.

To analyze Oracle execution plans using the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose an Oracle DB instance. The Performance Insights dashboard is displayed for that DB
instance.

4. In the Database load (DB load) section, choose Plans next to Slice by.

The Average active sessions chart shows the plans used by your top SQL statements. The plan
hash values appear to the right of the color-coded squares. Each hash value uniquely identifies
a plan.

Analyzing metrics with the Performance Insights dashboard 1355

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Scroll down to the Top SQL tab.

In the following example, the top SQL digest has two plans. You can tell that it's a digest by
the question mark in the statement.

6. Choose the digest to expand it into its component statements.

Analyzing metrics with the Performance Insights dashboard 1356

Amazon Relational Database Service User Guide

In the following example, the SELECT statement is a digest query. The component queries in
the digest use two different plans. The colors of the plans correspond to the database load
chart. The total number of plans in the digest is shown in the second column.

7. Scroll down and choose two Plans to compare from Plans for digest query list.

You can view either one or two plans for a query at a time. The following screenshot compares
the two plans in the digest, with hash 2032253151 and hash 1117438016. In the following
example, 62% of the average active sessions running this digest query are using the plan on
the left, whereas 38% are using the plan on the right.

In this example, the plans differ in an important way. Step 2 in plan 2032253151 uses an index
scan, whereas plan 1117438016 uses a full table scan. For a table with a large number of rows,
a query of a single row is almost always faster with an index scan.

Analyzing metrics with the Performance Insights dashboard 1357

Amazon Relational Database Service User Guide

8. (Optional) Choose Copy to copy the plan to the clipboard, or Download to save the plan to
your hard drive.

Analyzing SQL Server execution plans using the Performance Insights dashboard for Amazon
RDS

When analyzing DB load on a SQL Server Database, you might want to know which plans are
contributing the most to DB load. You can determine which plans are contributing the most to DB
load by using the plan capture feature of Performance Insights.

To analyze SQL Server execution plans using the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a SQL Server DB instance. The Performance Insights dashboard is displayed for that DB
instance.

4. In the Database load (DB load) section, choose Plans next to Slice by.

The Average active sessions chart shows the plans used by your top SQL statements. The plan
hash values appear to the right of the color-coded squares. Each hash value uniquely identifies
a plan.

Analyzing metrics with the Performance Insights dashboard 1358

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Scroll down to the Top SQL tab.

In the following example, the top SQL digest has three plans. The presence of a question mark
in the SQL statement indicates that the statement is a digest. To view the full SQL statement,
choose a value in the SQL statements column.

6. Choose the digest to expand it into its component statements.

In the following example, the SELECT statement is a digest query. The component queries in
the digest use three different execution plans. The colors assigned to the plans correspond to
the database load chart.

Analyzing metrics with the Performance Insights dashboard 1359

Amazon Relational Database Service User Guide

7. Scroll down and choose two Plans to compare from Plans for digest query list.

You can view either one or two plans for a query at a time. The following screenshot compares
two plans in the digest. In the following example, 40% of the average active sessions running
this digest query are using the plan on the left, whereas 28% are using the plan on the right.

Analyzing metrics with the Performance Insights dashboard 1360

Amazon Relational Database Service User Guide

In the previous example, the plans differ in an important way. Step 2 in the plan on the left
uses an table scan, whereas the plan on the right uses a clustered index scan. For a table with
a large number of rows, a query retrieving a single row is almost always faster with a clustered
index scan.

8. (Optional) Choose the Settings icon on the Plan Details table to customize the visibility and
order of columns. The following screenshot shows the Plan Details table with the Output list
column as the second column.

Analyzing metrics with the Performance Insights dashboard 1361

Amazon Relational Database Service User Guide

9. (Optional) Choose Copy to copy the plan to the clipboard, or Download to save the plan to
your hard drive.

Note

Performance Insights displays estimated execution plans using a hierarchical tree table. The
table includes the partial execution information for each statement. For more information
about the columns in the Plan Details table, see SET SHOWPLAN_ALL in the SQL Server
documentation. To display the full execution information for an estimated execution
plan, choose Download to download the plan and then upload the plan to SQL Server
Management Studio. For more information about displaying an estimated execution plan
using SQL Server Management Studio, see Display an Estimated Execution Plan in the SQL
Server documentation.

Viewing Performance Insights proactive recommendations

Amazon RDS Performance Insights monitors specific metrics and automatically creates thresholds
by analyzing what levels might be potentially problematic for a specified resource. When the
new metric values cross a predefined threshold over a given period of time, Performance Insights
generates a proactive recommendation. This recommendation helps to prevent future database
performance impact. To receive these proactive recommendations, you must turn on Performance
Insights with a paid tier retention period.

Viewing Performance Insights proactive recommendations 1362

https://learn.microsoft.com/en-us/sql/t-sql/statements/set-showplan-all-transact-sql
https://learn.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan

Amazon Relational Database Service User Guide

For more information about turning on Performance Insights, see Turning Performance Insights
on and off for Amazon RDS. For information about pricing and data retention for Performance
Insights, see Pricing and data retention for Performance Insights.

To find out the regions, DB engines, and instance classes supported for the proactive
recommendations, see Amazon RDS DB engine, Region, and instance class support for Performance
Insights features.

You can view the detailed analysis and recommended investigations of proactive recommendations
in the recommendation details page.

For more information about recommendations, see Recommendations from Amazon RDS.

To view the detailed analysis of a proactive recommendation

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, do any of the following:

• Choose Recommendations.

The Recommendations page displays a list of recommendations sorted by the severity for
all the resources in your account.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The Recommendations tab displays the recommendations and its details for the selected
resource.

3. Find a proactive recommendation and choose View details.

The recommendation details page appears. The title provides the name of the affected
resource with the issue detected and the severity.

The following are the components on the recommendation details page:

• Recommendation summary – The detected issue, recommendation and issue status, issue
start and end time, recommendation modified time, and the engine type.

Viewing Performance Insights proactive recommendations 1363

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• Metrics – The graphs of the detected issue. Each graph displays a threshold determined by
the resource's baseline behavior and data of the metric reported from the issue start time.

• Analysis and recommendations – The recommendation and the reason for the suggested
recommendation.

Viewing Performance Insights proactive recommendations 1364

Amazon Relational Database Service User Guide

You can review the cause of the issue and then perform the suggested recommended actions
to fix the issue, or choose Dismiss in the upper right to dismiss the recommendation.

Retrieving metrics with the Performance Insights API for Amazon RDS

When Performance Insights is turned on, the API provides visibility into instance performance.
Amazon CloudWatch Logs provides the authoritative source for vended monitoring metrics for
AWS services.

Performance Insights offers a domain-specific view of database load measured as average active
sessions (AAS). This metric appears to API consumers as a two-dimensional time-series dataset. The
time dimension of the data provides DB load data for each time point in the queried time range.
Each time point decomposes overall load in relation to the requested dimensions, such as SQL,
Wait-event, User, or Host, measured at that time point.

Amazon RDS Performance Insights monitors your Amazon RDS DB instance so that you can analyze
and troubleshoot database performance. One way to view Performance Insights data is in the AWS
Management Console. Performance Insights also provides a public API so that you can query your
own data. You can use the API to do the following:

• Offload data into a database

• Add Performance Insights data to existing monitoring dashboards

• Build monitoring tools

To use the Performance Insights API, enable Performance Insights on one of your Amazon RDS DB
instances. For information about enabling Performance Insights, see Turning Performance Insights
on and off for Amazon RDS. For more information about the Performance Insights API, see the
Amazon RDS Performance Insights API Reference.

The Performance Insights API provides the following operations.

Performance Insights action AWS CLI command Description

CreatePerformanceA
nalysisReport

aws pi create-p
erformance-analysi
s-report

Creates a performance
analysis report for a specific
time period for the DB

Retrieving metrics with the Performance Insights API 1365

https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/CreatePerformanceAnalysisReport.html

Amazon Relational Database Service User Guide

Performance Insights action AWS CLI command Description

instance. The result is
AnalysisReportId which
is the unique identifier of the
report.

DeletePerformanceA
nalysisReport

aws pi delete-p
erformance-analysi
s-report

Deletes a performance
analysis report.

DescribeDimensionK
eys

aws pi describe-
dimension-keys

Retrieves the top N dimension
keys for a metric for a specific
time period.

GetDimensionKeyDet
ails

aws pi get-di
mension-key-details

Retrieves the attributes of
the specified dimension
group for a DB instance or
data source. For example
, if you specify a SQL ID,
and if the dimension details
are available, GetDimens
ionKeyDetails retrieves
the full text of the dimension
 db.sql.statement
associated with this ID. This
operation is useful because
 GetResourceMetrics
and DescribeDimensionK
eys don't support retrieval
of large SQL statement text.

GetPerformanceAnal
ysisReport

aws pi get-perf
ormance-analysis-r
eport

Retrieves the report including
the insights for the report.
The result includes the report
status, report ID, report
time details, insights, and
 recommendations.

Retrieving metrics with the Performance Insights API 1366

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DescribeDimensionKeys.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DescribeDimensionKeys.html
https://docs.aws.amazon.com/cli/latest/reference/pi/describe-dimension-keys.html
https://docs.aws.amazon.com/cli/latest/reference/pi/describe-dimension-keys.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetDimensionKeyDetails.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetDimensionKeyDetails.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-dimension-key-details.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-dimension-key-details.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/GetPerformanceAnalysisReport.html

Amazon Relational Database Service User Guide

Performance Insights action AWS CLI command Description

GetResourceMetadata aws pi get-re
source-metadata

Retrieve the metadata
for different features. For
example, the metadata might
indicate that a feature is
turned on or off on a specific
DB instance.

GetResourceMetrics aws pi get-res
ource-metrics

Retrieves Performance
Insights metrics for a set
of data sources over a time
period. You can provide
specific dimension groups
and dimensions, and provide
aggregation and filtering
criteria for each group.

ListAvailableResou
rceDimensions

aws pi list-a
vailable-resource-
dimensions

Retrieve the dimensions
that can be queried for each
specified metric type on a
specified instance.

ListAvailableResou
rceMetrics

aws pi list-a
vailable-resource-
metrics

Retrieve all available metrics
of the specified metric types
that can be queried for a
specified DB instance.

ListPerformanceAna
lysisReports

aws pi list-per
formance-analysis-
reports

Retrieves all the analysis
reports available for the DB
instance. The reports are
listed based on the start time
of each report.

ListTagsForResource aws pi list-tags-
for-resource

Lists all the metadata tags
added to the resource. The
list includes the name and
value of the tag.

Retrieving metrics with the Performance Insights API 1367

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metadata.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceDimensions.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceDimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceMetrics.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceMetrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListPerformanceAnalysisReports.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListPerformanceAnalysisReports.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-performance-analysis-reports.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-performance-analysis-reports.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-performance-analysis-reports.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-tags-for-resource.html

Amazon Relational Database Service User Guide

Performance Insights action AWS CLI command Description

TagResource aws pi tag-resource Adds metadata tags to the
Amazon RDS resource. The
tag includes a name and a
value.

UntagResource aws pi untag-re
source

Removes the metadata tag
from the resource.

For more information about retrieving time-series metrics and AWS CLI examples for Performance
Insights, see the following topics.

Topics

• Retrieving time-series metrics for Performance Insights

• AWS CLI examples for Performance Insights

Retrieving time-series metrics for Performance Insights

The GetResourceMetrics operation retrieves one or more time-series metrics from the
Performance Insights data. GetResourceMetrics requires a metric and time period, and returns
a response with a list of data points.

For example, the AWS Management Console uses GetResourceMetrics to populate the Counter
Metrics chart and the Database Load chart, as seen in the following image.

Retrieving metrics with the Performance Insights API 1368

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/tag-resource.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/untag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/untag-resource.html

Amazon Relational Database Service User Guide

All metrics returned by GetResourceMetrics are standard time-series metrics, with the
exception of db.load. This metric is displayed in the Database Load chart. The db.load metric is
different from the other time-series metrics because you can break it into subcomponents called
dimensions. In the previous image, db.load is broken down and grouped by the waits states that
make up the db.load.

Note

GetResourceMetrics can also return the db.sampleload metric, but the db.load
metric is appropriate in most cases.

For information about the counter metrics returned by GetResourceMetrics, see Performance
Insights counter metrics.

The following calculations are supported for the metrics:

• Average – The average value for the metric over a period of time. Append .avg to the metric
name.

• Minimum – The minimum value for the metric over a period of time. Append .min to the metric
name.

Retrieving metrics with the Performance Insights API 1369

Amazon Relational Database Service User Guide

• Maximum – The maximum value for the metric over a period of time. Append .max to the metric
name.

• Sum – The sum of the metric values over a period of time. Append .sum to the metric name.

• Sample count – The number of times the metric was collected over a period of time. Append
.sample_count to the metric name.

For example, assume that a metric is collected for 300 seconds (5 minutes), and that the metric is
collected one time each minute. The values for each minute are 1, 2, 3, 4, and 5. In this case, the
following calculations are returned:

• Average – 3

• Minimum – 1

• Maximum – 5

• Sum – 15

• Sample count – 5

For information about using the get-resource-metrics AWS CLI command, see get-
resource-metrics.

For the --metric-queries option, specify one or more queries that you want to get results for.
Each query consists of a mandatory Metric and optional GroupBy and Filter parameters. The
following is an example of a --metric-queries option specification.

{
 "Metric": "string",
 "GroupBy": {
 "Group": "string",
 "Dimensions": ["string", ...],
 "Limit": integer
 },
 "Filter": {"string": "string"
 ...}

AWS CLI examples for Performance Insights

In the following sections, learn more about the AWS Command Line Interface (AWS CLI) for
Performance Insights and use AWS CLI examples.

Retrieving metrics with the Performance Insights API 1370

https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html

Amazon Relational Database Service User Guide

Topics

• Built-in help for the AWS CLI for Performance Insights

• Retrieving counter metrics

• Retrieving the DB load average for top wait events

• Retrieving the DB load average for top SQL

• Retrieving the DB load average filtered by SQL

• Retrieving the full text of a SQL statement

• Creating a performance analysis report for a time period

• Retrieving a performance analysis report

• Listing all the performance analysis reports for the DB instance

• Deleting a performance analysis report

• Adding tag to a performance analysis report

• Listing all the tags for a performance analysis report

• Deleting tags from a performance analysis report

Built-in help for the AWS CLI for Performance Insights

You can view Performance Insights data using the AWS CLI. You can view help for the AWS CLI
commands for Performance Insights by entering the following on the command line.

aws pi help

If you don't have the AWS CLI installed, see Installing the AWS CLI in the AWS CLI User Guide for
information about installing it.

Retrieving counter metrics

The following screenshot shows two counter metrics charts in the AWS Management Console.

Retrieving metrics with the Performance Insights API 1371

https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon Relational Database Service User Guide

The following example shows how to gather the same data that the AWS Management Console
uses to generate the two counter metric charts.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" },
 {"Metric": "os.cpuUtilization.idle.avg"}]'

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" },
 {"Metric": "os.cpuUtilization.idle.avg"}]'

Retrieving metrics with the Performance Insights API 1372

Amazon Relational Database Service User Guide

You can also make a command easier to read by specifying a file for the --metrics-query
option. The following example uses a file called query.json for the option. The file has the
following contents.

[
 {
 "Metric": "os.cpuUtilization.user.avg"
 },
 {
 "Metric": "os.cpuUtilization.idle.avg"
 }
]

Run the following command to use the file.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The preceding example specifies the following values for the options:

• --service-type – RDS for Amazon RDS

• --identifier – The resource ID for the DB instance

• --start-time and --end-time – The ISO 8601 DateTime values for the period to query, with
multiple supported formats

Retrieving metrics with the Performance Insights API 1373

Amazon Relational Database Service User Guide

It queries for a one-hour time range:

• --period-in-seconds – 60 for a per-minute query

• --metric-queries – An array of two queries, each just for one metric.

The metric name uses dots to classify the metric in a useful category, with the final element
being a function. In the example, the function is avg for each query. As with Amazon
CloudWatch, the supported functions are min, max, total, and avg.

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1540857600.0,
 "AlignedEndTime": 1540861200.0,
 "MetricList": [
 { //A list of key/datapoints
 "Key": {
 "Metric": "os.cpuUtilization.user.avg" //Metric1
 },
 "DataPoints": [
 //Each list of datapoints has the same timestamps and same number of
 items
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 4.0
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 4.0
 },
 {
 "Timestamp": 1540857780.0, //Minute 3
 "Value": 10.0
 }
 //... 60 datapoints for the os.cpuUtilization.user.avg metric
]
 },
 {
 "Key": {
 "Metric": "os.cpuUtilization.idle.avg" //Metric2
 },

Retrieving metrics with the Performance Insights API 1374

Amazon Relational Database Service User Guide

 "DataPoints": [
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 12.0
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 13.5
 },
 //... 60 datapoints for the os.cpuUtilization.idle.avg metric
]
 }
] //end of MetricList
} //end of response

The response has an Identifier, AlignedStartTime, and AlignedEndTime. B the --period-
in-seconds value was 60, the start and end times have been aligned to the minute. If the --
period-in-seconds was 3600, the start and end times would have been aligned to the hour.

The MetricList in the response has a number of entries, each with a Key and a DataPoints
entry. Each DataPoint has a Timestamp and a Value. Each Datapoints list has 60 data
points because the queries are for per-minute data over an hour, with Timestamp1/Minute1,
Timestamp2/Minute2, and so on, up to Timestamp60/Minute60.

Because the query is for two different counter metrics, there are two elements in the response
MetricList.

Retrieving the DB load average for top wait events

The following example is the same query that the AWS Management Console uses to generate
a stacked area line graph. This example retrieves the db.load.avg for the last hour with load
divided according to the top seven wait events. The command is the same as the command in
Retrieving counter metrics. However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.wait_event", "Limit": 7 }
 }
]

Run the following command.

Retrieving metrics with the Performance Insights API 1375

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events.
For details about valid values for this example, see DimensionGroup in the Performance Insights API
Reference.

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1540857600.0,
 "AlignedEndTime": 1540861200.0,
 "MetricList": [
 { //A list of key/datapoints
 "Key": {
 //A Metric with no dimensions. This is the total db.load.avg
 "Metric": "db.load.avg"
 },
 "DataPoints": [
 //Each list of datapoints has the same timestamps and same number of
 items
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 0.5166666666666667

Retrieving metrics with the Performance Insights API 1376

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Relational Database Service User Guide

 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 0.38333333333333336
 },
 {
 "Timestamp": 1540857780.0, //Minute 3
 "Value": 0.26666666666666666
 }
 //... 60 datapoints for the total db.load.avg key
]
 },
 {
 "Key": {
 //Another key. This is db.load.avg broken down by CPU
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.name": "CPU",
 "db.wait_event.type": "CPU"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 0.35
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 0.15
 },
 //... 60 datapoints for the CPU key
]
 },
 //... In total we have 8 key/datapoints entries, 1) total, 2-8) Top Wait Events
] //end of MetricList
} //end of response

In this response, there are eight entries in the MetricList. There is one entry for the total
db.load.avg, and seven entries each for the db.load.avg divided according to one of the top
seven wait events. Unlike in the first example, because there was a grouping dimension, there must
be one key for each grouping of the metric. There can't be only one key for each metric, as in the
basic counter metric use case.

Retrieving metrics with the Performance Insights API 1377

Amazon Relational Database Service User Guide

Retrieving the DB load average for top SQL

The following example groups db.wait_events by the top 10 SQL statements. There are two
different groups for SQL statements:

• db.sql – The full SQL statement, such as select * from customers where customer_id
= 123

• db.sql_tokenized – The tokenized SQL statement, such as select * from customers
where customer_id = ?

When analyzing database performance, it can be useful to consider SQL statements that only
differ by their parameters as one logic item. So, you can use db.sql_tokenized when querying.
However, especially when you're interested in explain plans, sometimes it's more useful to examine
full SQL statements with parameters, and query grouping by db.sql. There is a parent-child
relationship between tokenized and full SQL, with multiple full SQL (children) grouped under the
same tokenized SQL (parent).

The command in this example is the similar to the command in Retrieving the DB load average for
top wait events. However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.sql_tokenized", "Limit": 10 }
 }
]

The following example uses db.sql_tokenized.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-29T00:00:00Z \
 --end-time 2018-10-30T00:00:00Z \
 --period-in-seconds 3600 \
 --metric-queries file://query.json

For Windows:

Retrieving metrics with the Performance Insights API 1378

Amazon Relational Database Service User Guide

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-29T00:00:00Z ^
 --end-time 2018-10-30T00:00:00Z ^
 --period-in-seconds 3600 ^
 --metric-queries file://query.json

This example queries over 24 hours, with a one hour period-in-seconds.

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events.
For details about valid values for this example, see DimensionGroup in the Performance Insights API
Reference.

The response looks similar to the following.

{
 "AlignedStartTime": 1540771200.0,
 "AlignedEndTime": 1540857600.0,
 "Identifier": "db-XXX",

 "MetricList": [//11 entries in the MetricList
 {
 "Key": { //First key is total
 "Metric": "db.load.avg"
 }
 "DataPoints": [//Each DataPoints list has 24 per-hour Timestamps and a
 value
 {
 "Value": 1.6964980544747081,
 "Timestamp": 1540774800.0
 },
 //... 24 datapoints
]
 },
 {
 "Key": { //Next key is the top tokenized SQL
 "Dimensions": {
 "db.sql_tokenized.statement": "INSERT INTO authors (id,name,email)
 VALUES\n(nextval(?) ,?,?)",
 "db.sql_tokenized.db_id": "pi-2372568224",
 "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE"
 },

Retrieving metrics with the Performance Insights API 1379

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Relational Database Service User Guide

 "Metric": "db.load.avg"
 },
 "DataPoints": [//... 24 datapoints
]
 },
 // In total 11 entries, 10 Keys of top tokenized SQL, 1 total key
] //End of MetricList
} //End of response

This response has 11 entries in the MetricList (1 total, 10 top tokenized SQL), with each entry
having 24 per-hour DataPoints.

For tokenized SQL, there are three entries in each dimensions list:

• db.sql_tokenized.statement – The tokenized SQL statement.

• db.sql_tokenized.db_id – Either the native database ID used to refer to the SQL, or a
synthetic ID that Performance Insights generates for you if the native database ID isn't available.
This example returns the pi-2372568224 synthetic ID.

• db.sql_tokenized.id – The ID of the query inside Performance Insights.

In the AWS Management Console, this ID is called the Support ID. It's named this because the
ID is data that AWS Support can examine to help you troubleshoot an issue with your database.
AWS takes the security and privacy of your data extremely seriously, and almost all data is stored
encrypted with your AWS KMS key. Therefore, nobody inside AWS can look at this data. In the
example preceding, both the tokenized.statement and the tokenized.db_id are stored
encrypted. If you have an issue with your database, AWS Support can help you by referencing the
Support ID.

When querying, it might be convenient to specify a Group in GroupBy. However, for finer-grained
control over the data that's returned, specify the list of dimensions. For example, if all that is
needed is the db.sql_tokenized.statement, then a Dimensions attribute can be added to
the query.json file.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": {
 "Group": "db.sql_tokenized",
 "Dimensions":["db.sql_tokenized.statement"],

Retrieving metrics with the Performance Insights API 1380

Amazon Relational Database Service User Guide

 "Limit": 10
 }
 }
]

Retrieving the DB load average filtered by SQL

The preceding image shows that a particular query is selected, and the top average active sessions
stacked area line graph is scoped to that query. Although the query is still for the top seven overall
wait events, the value of the response is filtered. The filter causes it to take into account only
sessions that are a match for the particular filter.

The corresponding API query in this example is similar to the command in Retrieving the DB load
average for top SQL. However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.wait_event", "Limit": 5 },
 "Filter": { "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE" }
 }
]

Retrieving metrics with the Performance Insights API 1381

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1556215200.0,
 "MetricList": [
 {
 "Key": {
 "Metric": "db.load.avg"
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 1.4878117913832196
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 1.192823803967328
 }
]
 },
 {
 "Key": {

Retrieving metrics with the Performance Insights API 1382

Amazon Relational Database Service User Guide

 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "io",
 "db.wait_event.name": "wait/io/aurora_redo_log_flush"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 1.1360544217687074
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 1.058051341890315
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "io",
 "db.wait_event.name": "wait/io/table/sql/handler"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.16241496598639457
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.05163360560093349
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "synch",
 "db.wait_event.name": "wait/synch/mutex/innodb/
aurora_lock_thread_slot_futex"
 }

Retrieving metrics with the Performance Insights API 1383

Amazon Relational Database Service User Guide

 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.11479591836734694
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.013127187864644107
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "CPU",
 "db.wait_event.name": "CPU"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.05215419501133787
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.05805134189031505
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "synch",
 "db.wait_event.name": "wait/synch/mutex/innodb/lock_wait_mutex"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.017573696145124718
 },

Retrieving metrics with the Performance Insights API 1384

Amazon Relational Database Service User Guide

 {
 "Timestamp": 1556222400.0,
 "Value": 0.002333722287047841
 }
]
 }
],
 "AlignedEndTime": 1556222400.0
} //end of response

In this response, all values are filtered according to the contribution of tokenized SQL
AKIAIOSFODNN7EXAMPLE specified in the query.json file. The keys also might follow a different
order than a query without a filter, because it's the top five wait events that affected the filtered
SQL.

Retrieving the full text of a SQL statement

The following example retrieves the full text of a SQL statement for DB instance
db-10BCD2EFGHIJ3KL4M5NO6PQRS5. The --group is db.sql, and the --group-identifier
is db.sql.id. In this example, my-sql-id represents a SQL ID retrieved by invoking pi get-
resource-metrics or pi describe-dimension-keys.

Run the following command.

For Linux, macOS, or Unix:

aws pi get-dimension-key-details \
 --service-type RDS \
 --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 \
 --group db.sql \
 --group-identifier my-sql-id \
 --requested-dimensions statement

For Windows:

aws pi get-dimension-key-details ^
 --service-type RDS ^
 --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 ^
 --group db.sql ^
 --group-identifier my-sql-id ^
 --requested-dimensions statement

Retrieving metrics with the Performance Insights API 1385

Amazon Relational Database Service User Guide

In this example, the dimensions details are available. Thus, Performance Insights retrieves the full
text of the SQL statement, without truncating it.

{
 "Dimensions":[
 {
 "Value": "SELECT e.last_name, d.department_name FROM employees e, departments d
 WHERE e.department_id=d.department_id",
 "Dimension": "db.sql.statement",
 "Status": "AVAILABLE"
 },
 ...
]
}

Creating a performance analysis report for a time period

The following example creates a performance analysis report with the 1682969503 start time and
1682979503 end time for the db-loadtest-0 database.

aws pi create-performance-analysis-report \
 --service-type RDS \
 --identifier db-loadtest-0 \
 --start-time 1682969503 \
 --end-time 1682979503 \
 --region us-west-2

The response is the unique identifier report-0234d3ed98e28fb17 for the report.

{
 "AnalysisReportId": "report-0234d3ed98e28fb17"
}

Retrieving a performance analysis report

The following example retrieves the analysis report details for the report-0d99cc91c4422ee61
report.

aws pi get-performance-analysis-report \
--service-type RDS \
--identifier db-loadtest-0 \
--analysis-report-id report-0d99cc91c4422ee61 \

Retrieving metrics with the Performance Insights API 1386

Amazon Relational Database Service User Guide

--region us-west-2

The response provides the report status, ID, time details, and insights.

 {
 "AnalysisReport": {
 "Status": "Succeeded",
 "ServiceType": "RDS",
 "Identifier": "db-loadtest-0",
 "StartTime": 1680583486.584,
 "AnalysisReportId": "report-0d99cc91c4422ee61",
 "EndTime": 1680587086.584,
 "CreateTime": 1680587087.139,
 "Insights": [
 ... (Condensed for space)
]
 }
}

Listing all the performance analysis reports for the DB instance

The following example lists all the available performance analysis reports for the db-loadtest-0
database.

aws pi list-performance-analysis-reports \
--service-type RDS \
--identifier db-loadtest-0 \
--region us-west-2

The response lists all the reports with the report ID, status, and time period details.

{
 "AnalysisReports": [
 {
 "Status": "Succeeded",
 "EndTime": 1680587086.584,
 "CreationTime": 1680587087.139,
 "StartTime": 1680583486.584,
 "AnalysisReportId": "report-0d99cc91c4422ee61"
 },
 {

Retrieving metrics with the Performance Insights API 1387

Amazon Relational Database Service User Guide

 "Status": "Succeeded",
 "EndTime": 1681491137.914,
 "CreationTime": 1681491145.973,
 "StartTime": 1681487537.914,
 "AnalysisReportId": "report-002633115cc002233"
 },
 {
 "Status": "Succeeded",
 "EndTime": 1681493499.849,
 "CreationTime": 1681493507.762,
 "StartTime": 1681489899.849,
 "AnalysisReportId": "report-043b1e006b47246f9"
 },
 {
 "Status": "InProgress",
 "EndTime": 1682979503.0,
 "CreationTime": 1682979618.994,
 "StartTime": 1682969503.0,
 "AnalysisReportId": "report-01ad15f9b88bcbd56"
 }
]
}

Deleting a performance analysis report

The following example deletes the analysis report for the db-loadtest-0 database.

aws pi delete-performance-analysis-report \
--service-type RDS \
--identifier db-loadtest-0 \
--analysis-report-id report-0d99cc91c4422ee61 \
--region us-west-2

Adding tag to a performance analysis report

The following example adds a tag with a key name and value test-tag to the
report-01ad15f9b88bcbd56 report.

aws pi tag-resource \
--service-type RDS \
--resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/
report-01ad15f9b88bcbd56 \
--tags Key=name,Value=test-tag \

Retrieving metrics with the Performance Insights API 1388

Amazon Relational Database Service User Guide

--region us-west-2

Listing all the tags for a performance analysis report

The following example lists all the tags for the report-01ad15f9b88bcbd56 report.

aws pi list-tags-for-resource \
--service-type RDS \
--resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/
report-01ad15f9b88bcbd56 \
--region us-west-2

The response lists the value and key for all the tags added to the report:

{
 "Tags": [
 {
 "Value": "test-tag",
 "Key": "name"
 }
]
}

Deleting tags from a performance analysis report

The following example deletes the name tag from the report-01ad15f9b88bcbd56 report.

aws pi untag-resource \
--service-type RDS \
--resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/
report-01ad15f9b88bcbd56 \
--tag-keys name \
--region us-west-2

After the tag is deleted, calling the list-tags-for-resource API doesn't list this tag.

Logging Performance Insights calls using AWS CloudTrail

Performance Insights runs with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Performance Insights. CloudTrail captures all API calls for
Performance Insights as events. This capture includes calls from the Amazon RDS console and from
code calls to the Performance Insights API operations.

Logging Performance Insights calls using AWS CloudTrail 1389

Amazon Relational Database Service User Guide

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Performance Insights. If you don't configure a trail, you can still view
the most recent events in the CloudTrail console in Event history. Using the data collected by
CloudTrail, you can determine certain information. This information includes the request that was
made to Performance Insights, the IP address the request was made from, who made the request,
and when it was made. It also includes additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Working with Performance Insights information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Performance Insights, that activity is recorded in a CloudTrail event along with other AWS service
events in the CloudTrail console in Event history. You can view, search, and download recent
events in your AWS account. For more information, see Viewing Events with CloudTrail Event
History in AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for Performance Insights,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all AWS Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that
you specify. Additionally, you can configure other AWS services to further analyze and act upon
the event data collected in CloudTrail logs. For more information, see the following topics in AWS
CloudTrail User Guide:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Performance Insights operations are logged by CloudTrail and are documented in the
Performance Insights API Reference. For example, calls to the DescribeDimensionKeys and
GetResourceMetrics operations generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

Logging Performance Insights calls using AWS CloudTrail 1390

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html

Amazon Relational Database Service User Guide

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Performance Insights log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source. Each event includes information about the requested operation, the date
and time of the operation, request parameters, and so on. CloudTrail log files aren't an ordered
stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the GetResourceMetrics
operation.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2019-12-18T19:28:46Z",
 "eventSource": "pi.amazonaws.com",
 "eventName": "GetResourceMetrics",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.21.198.67",
 "userAgent": "aws-cli/1.16.240 Python/3.7.4 Darwin/18.7.0 botocore/1.12.230",
 "requestParameters": {
 "identifier": "db-YTDU5J5V66X7CXSCVDFD2V3SZM",
 "metricQueries": [
 {
 "metric": "os.cpuUtilization.user.avg"
 },
 {
 "metric": "os.cpuUtilization.idle.avg"

Logging Performance Insights calls using AWS CloudTrail 1391

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Relational Database Service User Guide

 }
],
 "startTime": "Dec 18, 2019 5:28:46 PM",
 "periodInSeconds": 60,
 "endTime": "Dec 18, 2019 7:28:46 PM",
 "serviceType": "RDS"
 },
 "responseElements": null,
 "requestID": "9ffbe15c-96b5-4fe6-bed9-9fccff1a0525",
 "eventID": "08908de0-2431-4e2e-ba7b-f5424f908433",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Performance Insights API and interface VPC endpoints (AWS
PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and Amazon RDS
Performance Insights. You can access Performance Insights as if it were in your VPC, without
the use of an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
Instances in your VPC don't need public IP addresses to access Performance Insights.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for Performance Insights.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for Performance Insights

Before you set up an interface endpoint for Performance Insights, review Considerations in the
AWS PrivateLink Guide.

Performance Insights supports making calls to all of its API actions through the interface endpoint.

By default, full access to Performance Insights is allowed through the interface endpoint. To
control traffic to Performance Insights through the interface endpoint, associate a security group
with the endpoint network interfaces.

VPC endpoints (AWS PrivateLink) 1392

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints

Amazon Relational Database Service User Guide

Availability

Performance Insights API currently supports VPC endpoints in AWS Regions that support
Performance Insights. For information about Performance Insights availability, see Supported
Regions and DB engines for Performance Insights in Amazon RDS .

Create an interface endpoint for Performance Insights

You can create an interface endpoint for Performance Insights using either the Amazon VPC
console or the AWS Command Line Interface (AWS CLI). For more information, see Create an
interface endpoint in the AWS PrivateLink Guide.

Create an interface endpoint for Performance Insights using the following service name:

If you enable private DNS for the interface endpoint, you can make API requests to Performance
Insights using its default Regional DNS name. For example, pi.us-east-1.amazonaws.com.

Creating a VPC endpoint policy for Performance Insights API

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to Performance Insights through the interface endpoint. To
control the access allowed to Performance Insights from your VPC, attach a custom endpoint policy
to the interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for Performance Insights actions

The following is an example of a custom endpoint policy. When you attach this policy to your
interface endpoint, it grants access to the listed Performance Insights actions for all principals on
all resources.

VPC endpoints (AWS PrivateLink) 1393

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Relational Database Service User Guide

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "rds:CreatePerformanceAnalysisReport",
 "rds:DeletePerformanceAnalysisReport",
 "rds:GetPerformanceAnalysisReport"
],
 "Resource":"*"
 }
]
}

Example: VPC endpoint policy that denies all access from a specified AWS account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources
using the endpoint. The policy allows all actions from other accounts.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": { "AWS": ["123456789012"] }
 }
]
}

IP addressing for Performance Insights

IP addresses enable resources in your VPC to communicate with each other, and with resources
over the internet. Performance Insights supports both IPv4 and IPv6 addressing protocols. By
default, Performance Insights and Amazon VPC use the IPv4 addressing protocol. You can't turn off

VPC endpoints (AWS PrivateLink) 1394

Amazon Relational Database Service User Guide

this behavior. When you create a VPC, make sure to specify an IPv4 CIDR block (a range of private
IPv4 addresses).

You can optionally assign an IPv6 CIDR block to your VPC and subnets, and assign IPv6 addresses
from that block to RDS resources in your subnet. Support for the IPv6 protocol expands the
number of supported IP addresses. By using the IPv6 protocol, you ensure that you have sufficient
available addresses for the future growth of the internet. New and existing RDS resources can
use IPv4 and IPv6 addresses within your VPC. Configuring, securing, and translating network
traffic between the two protocols used in different parts of an application can cause operational
overhead. You can standardize on the IPv6 protocol for Amazon RDS resources to simplify your
network configuration. For more information about service endpoints and quotas, see Amazon
Relational Database Service endpoints and quotas.

For more information about Amazon RDS IP addressing, see Amazon RDS IP addressing.

VPC endpoints (AWS PrivateLink) 1395

https://docs.aws.amazon.com/general/latest/gr/rds-service.html
https://docs.aws.amazon.com/general/latest/gr/rds-service.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.IP_addressing

Amazon Relational Database Service User Guide

Analyzing performance anomalies with Amazon DevOps Guru
for Amazon RDS

Amazon DevOps Guru is a fully managed operations service that helps developers and operators
improve the performance and availability of their applications. DevOps Guru offloads the tasks
associated with identifying operational issues so that you can quickly implement recommendations
to improve your application. For more information, see What is Amazon DevOps Guru? in the
Amazon DevOps Guru User Guide.

DevOps Guru detects, analyzes, and makes recommendations for existing operational issues
for all Amazon RDS DB engines. DevOps Guru for RDS extends this capability by applying
machine learning to Performance Insights metrics for RDS for PostgreSQL databases. These
monitoring features allow DevOps Guru for RDS to detect and diagnose performance bottlenecks
and recommend specific corrective actions. DevOps Guru for RDS can also detect problematic
conditions in your RDS for PostgreSQL database before they occur.

You can now view these recommendations in RDS console. For more information, see
Recommendations from Amazon RDS.

The following video is an overview of DevOps Guru for RDS.

For a deep dive on this subject, see Amazon DevOps Guru for RDS under the hood.

Topics

• Benefits of DevOps Guru for RDS

• How DevOps Guru for RDS works

• Setting up DevOps Guru for RDS

Benefits of DevOps Guru for RDS

If you're responsible for RDS for PostgreSQL database, you might not know that an event or
regression that is affecting that database is occurring. When you learn about the issue, you might
not know why it's occurring or what to do about it. Rather than turning to a database administrator
(DBA) for help or relying on third-party tools, you can follow recommendations from DevOps Guru
for RDS.

You gain the following advantages from the detailed analysis of DevOps Guru for RDS:

Analyzing performance with DevOps Guru for RDS 1396

https://docs.aws.amazon.com/devops-guru/latest/userguide/welcome.html
https://aws.amazon.com/blogs/database/amazon-devops-guru-for-rds-under-the-hood/

Amazon Relational Database Service User Guide

Fast diagnosis

DevOps Guru for RDS continuously monitors and analyzes database telemetry. Performance
Insights, Enhanced Monitoring, and Amazon CloudWatch collect telemetry data for your
database instance. DevOps Guru for RDS uses statistical and machine learning techniques to
mine this data and detect anomalies. To learn more about telemetry data, see Monitoring DB
load with Performance Insights on Amazon RDS and Monitoring OS metrics with Enhanced
Monitoring in the Amazon RDS User Guide.

Fast resolution

Each anomaly identifies the performance issue and suggests avenues of investigation or
corrective actions. For example, DevOps Guru for RDS might recommend that you investigate
specific wait events. Or it might recommend that you tune your application pool settings to
limit the number of database connections. Based on these recommendations, you can resolve
performance issues more quickly than by troubleshooting manually.

Proactive insights

DevOps Guru for RDS uses metrics from your resources to detect potentially problematic
behavior before it becomes a bigger problem. For example, it can detect when your database
is using an increasing number of on-disk temporary tables, which could start to impact
performance. DevOps Guru then provides recommendations to help you address issues before
they become bigger problems.

Deep knowledge of Amazon engineers and machine learning

To detect performance issues and help you resolve bottlenecks, DevOps Guru for RDS relies
on machine learning (ML) and advanced mathematical formulas. Amazon database engineers
contributed to the development of the DevOps Guru for RDS findings, which encapsulate
many years of managing hundreds of thousands of databases. By drawing on this collective
knowledge, DevOps Guru for RDS can teach you best practices.

How DevOps Guru for RDS works

DevOps Guru for RDS collects data about your RDS for PostgreSQL databases from Amazon RDS
Performance Insights. The most important metric is DBLoad. DevOps Guru for RDS consumes the
Performance Insights metrics, analyzes them with machine learning, and publishes insights to the
dashboard.

An insight is a collection of related anomalies that were detected by DevOps Guru.

How DevOps Guru for RDS works 1397

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html

Amazon Relational Database Service User Guide

In DevOps Guru for RDS, an anomaly is a pattern that deviates from what is considered normal
performance for your RDS for PostgreSQL database.

Proactive insights

A proactive insight lets you know about problematic behavior before it occurs. It contains anomalies
with recommendations and related metrics to help you address issues in your RDS for PostgreSQL
databases before become bigger problems. These insights are published in the DevOps Guru
dashboard.

For example, DevOps Guru might detect that your RDS for PostgreSQL database is creating many
on-disk temporary tables. If not addressed, this trend might lead to performance issues. Each
proactive insight includes recommendations for corrective behavior and links to relevant topics in
Tuning RDS for PostgreSQL with Amazon DevOps Guru proactive insights. For more information,
see Working with insights in DevOps Guru in the Amazon DevOps Guru User Guide.

Reactive insights

A reactive insight identifies anomalous behavior as it occurs. If DevOps Guru for RDS finds
performance issues in your RDS for PostgreSQL DB instances, it publishes a reactive insight in the
DevOps Guru dashboard. For more information, see Working with insights in DevOps Guru in the
Amazon DevOps Guru User Guide.

Causal anomalies

A causal anomaly is a top-level anomaly within a reactive insight. Database load (DB load) is the
causal anomaly for DevOps Guru for RDS.

An anomaly measures performance impact by assigning a severity level of High, Medium, or Low.
To learn more, see Key concepts for DevOps Guru for RDS in the Amazon DevOps Guru User Guide.

If DevOps Guru detects a current anomaly on your DB instance, you're alerted in the Databases
page of the RDS console. The console also alerts you to anomalies that occurred in the past 24
hours. To go to the anomaly page from the RDS console, choose the link in the alert message. The
RDS console also alerts you in the page for your RDS for PostgreSQL DB instance.

Contextual anomalies

A contextual anomaly is a finding within Database load (DB load) that is related to a reactive
insight. Each contextual anomaly describes a specific RDS for PostgreSQL performance issue that

How DevOps Guru for RDS works 1398

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-insights.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-insights.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.definitions.html

Amazon Relational Database Service User Guide

requires investigation. For example, DevOps Guru for RDS might recommend that you consider
increasing CPU capacity or investigate wait events that are contributing to DB load.

Important

We recommend that you test any changes on a test instance before modifying a production
instance. In this way, you understand the impact of the change.

To learn more, see Analyzing anomalies in Amazon RDS in the Amazon DevOps Guru User Guide.

Setting up DevOps Guru for RDS

To allow DevOps Guru for Amazon RDS to publish insights for a RDS for PostgreSQL database,
complete the following tasks.

Topics

• Configuring IAM access policies for DevOps Guru for RDS

• Turning on Performance Insights for your RDS for PostgreSQL DB instances

• Turning on DevOps Guru and specifying resource coverage

Configuring IAM access policies for DevOps Guru for RDS

To view alerts from DevOps Guru in the RDS console, your AWS Identity and Access Management
(IAM) user or role must have either of the following policies:

• The AWS managed policy AmazonDevOpsGuruConsoleFullAccess

• The AWS managed policy AmazonDevOpsGuruConsoleReadOnlyAccess and either of the
following policies:

• The AWS managed policy AmazonRDSFullAccess

• A customer managed policy that includes pi:GetResourceMetrics and
pi:DescribeDimensionKeys

For more information, see Configuring access policies for Performance Insights.

Setting up DevOps Guru for RDS 1399

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.analyzing.html

Amazon Relational Database Service User Guide

Turning on Performance Insights for your RDS for PostgreSQL DB instances

DevOps Guru for RDS relies on Performance Insights for its data. Without Performance Insights,
DevOps Guru publishes anomalies, but doesn't include the detailed analysis and recommendations.

When you create or modify a RDS for PostgreSQL DB instance, you can turn on Performance
Insights. For more information, see Turning Performance Insights on and off for Amazon RDS.

Turning on DevOps Guru and specifying resource coverage

You can turn on DevOps Guru to have it monitor your RDS for PostgreSQL databases in either of
the following ways.

Topics

• Turning on DevOps Guru in the RDS console

• Adding RDS for PostgreSQL resources in the DevOps Guru console

• Adding RDS for PostgreSQL resources using AWS CloudFormation

Turning on DevOps Guru in the RDS console

You can take multiple paths in the Amazon RDS console to turn on DevOps Guru.

Topics

• Turning on DevOps Guru when you create an RDS for PostgreSQL database

• Turning on DevOps Guru from the notification banner

• Responding to a permissions error when you turn on DevOps Guru

Turning on DevOps Guru when you create an RDS for PostgreSQL database

The creation workflow includes a setting that turns on DevOps Guru coverage for your database.
This setting is turned on by default when you choose the Production template.

To turn on DevOps Guru when you create an RDS for PostgreSQL database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Follow the steps in Creating a DB instance, up to but not including the step where you choose
monitoring settings.

Setting up DevOps Guru for RDS 1400

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. In Monitoring, choose Turn on Performance Insights. For DevOps Guru for RDS to provide
detailed analysis of performance anomalies, Performance Insights must be turned on.

4. Choose Turn on DevOps Guru.

5. Create a tag for your database so that DevOps Guru can monitor it. Do the following:

• In the text field for Tag key, enter a name that begins with Devops-Guru-.

• In the text field for Tag value, enter any value. For example, if you enter rds-database-1
for the name of your RDS for PostgreSQL database, you can also enter rds-database-1 as
the tag value.

Setting up DevOps Guru for RDS 1401

Amazon Relational Database Service User Guide

For more information about tags, see "Use tags to identify resources in your DevOps Guru
applications" in the Amazon DevOps Guru User Guide.

6. Complete the remaining steps in Creating a DB instance.

Turning on DevOps Guru from the notification banner

If your resources aren't covered by DevOps Guru, Amazon RDS notifies you with a banner in the
following locations:

• The Monitoring tab of a DB cluster instance

• The Performance Insights dashboard

To turn on DevOps Guru for your RDS for PostgreSQL database

1. In the banner, choose Turn on DevOps Guru for RDS.

2. Enter a tag key name and value. For more information about tags, see "Use tags to identify
resources in your DevOps Guru applications" in the Amazon DevOps Guru User Guide.

Setting up DevOps Guru for RDS 1402

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html

Amazon Relational Database Service User Guide

3. Choose Turn on DevOps Guru.

Responding to a permissions error when you turn on DevOps Guru

If you turn on DevOps Guru from the RDS console when you create a database, RDS might display
the following banner about missing permissions.

To respond to a permissions error

1. Grant your IAM user or role the user managed role
AmazonDevOpsGuruConsoleFullAccess. For more information, see Configuring IAM access
policies for DevOps Guru for RDS.

2. Open the RDS console.

3. In the navigation pane, choose Performance Insights.

4. Choose a DB instance in the cluster that you just created.

5. Choose the switch to turn on DevOps Guru for RDS.

Setting up DevOps Guru for RDS 1403

Amazon Relational Database Service User Guide

6. Choose a tag value. For more information, see "Use tags to identify resources in your
DevOps Guru applications" in the Amazon DevOps Guru User Guide.

7. Choose Turn on DevOps Guru.

Adding RDS for PostgreSQL resources in the DevOps Guru console

You can specify your DevOps Guru resource coverage on the DevOps Guru console. Follow the step
described in Specify your DevOps Guru resource coverage in the Amazon DevOps Guru User Guide.
When you edit your analyzed resources, choose one of the following options:

• Choose All account resources to analyze all supported resources, including the RDS for
PostgreSQL databases, in your AWS account and Region.

• Choose CloudFormation stacks to analyze the RDS for PostgreSQL databases that are in stacks
you choose. For more information, see Use AWS CloudFormation stacks to identify resources in
your DevOps Guru applications in the Amazon DevOps Guru User Guide.

• Choose Tags to analyze the RDS for PostgreSQL databases that you have tagged. For more
information, see Use tags to identify resources in your DevOps Guru applications in the Amazon
DevOps Guru User Guide.

Setting up DevOps Guru for RDS 1404

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/choose-coverage.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-cfn-stacks.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-cfn-stacks.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html

Amazon Relational Database Service User Guide

For more information, see Enable DevOps Guru in the Amazon DevOps Guru User Guide.

Adding RDS for PostgreSQL resources using AWS CloudFormation

You can use tags to add coverage for your RDS for PostgreSQL resources to your CloudFormation
templates. The following procedure assumes that you have a CloudFormation template both for
your RDS for PostgreSQL DB instance and DevOps Guru stack.

To specify an RDS for PostgreSQL DB instance using a CloudFormation tag

1. In the CloudFormation template for your DB instance, define a tag using a key/value pair.

The following example assigns the value my-db-instance1 to Devops-guru-cfn-default
for an RDS for PostgreSQL DB instance.

MyDBInstance1:
 Type: "AWS::RDS::DBInstance"
 Properties:
 DBInstanceIdentifier: my-db-instance1
 Tags:
 - Key: Devops-guru-cfn-default
 Value: devopsguru-my-db-instance1

2. In the CloudFormation template for your DevOps Guru stack, specify the same tag in your
resource collection filter.

The following example configures DevOps Guru to provide coverage for the resource with the
tag value my-db-instance1.

DevOpsGuruResourceCollection:
 Type: AWS::DevOpsGuru::ResourceCollection
 Properties:
 ResourceCollectionFilter:
 Tags:
 - AppBoundaryKey: "Devops-guru-cfn-default"
 TagValues:
 - "devopsguru-my-db-instance1"

The following example provides coverage for all resources within the application boundary
Devops-guru-cfn-default.

DevOpsGuruResourceCollection:

Setting up DevOps Guru for RDS 1405

https://docs.aws.amazon.com/devops-guru/latest/userguide/getting-started-enable-service.html

Amazon Relational Database Service User Guide

 Type: AWS::DevOpsGuru::ResourceCollection
 Properties:
 ResourceCollectionFilter:
 Tags:
 - AppBoundaryKey: "Devops-guru-cfn-default"
 TagValues:
 - "*"

For more information, see AWS::DevOpsGuru::ResourceCollection and AWS::RDS::DBInstance in the
AWS CloudFormation User Guide.

Setting up DevOps Guru for RDS 1406

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-devopsguru-resourcecollection.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html

Amazon Relational Database Service User Guide

Monitoring OS metrics with Enhanced Monitoring

With Enhanced Monitoring, you can monitor the operating system of your DB instance in real
time. When you want to see how different processes or threads use the CPU, Enhanced Monitoring
metrics are useful.

Topics

• Overview of Enhanced Monitoring

• Setting up and enabling Enhanced Monitoring

• Viewing OS metrics in the RDS console

• Viewing OS metrics using CloudWatch Logs

Overview of Enhanced Monitoring

Amazon RDS provides metrics in real time for the operating system (OS) that your DB instance runs
on. You can view all the system metrics and process information for your RDS DB instances on the
console. You can manage which metrics you want to monitor for each instance and customize the
dashboard according to your requirements. For descriptions of the Enhanced Monitoring metrics,
see OS metrics in Enhanced Monitoring.

RDS delivers the metrics from Enhanced Monitoring into your Amazon CloudWatch Logs account.
You can create metrics filters in CloudWatch from CloudWatch Logs and display the graphs on the
CloudWatch dashboard. You can consume the Enhanced Monitoring JSON output from CloudWatch
Logs in a monitoring system of your choice. For more information, see Enhanced Monitoring in the
Amazon RDS FAQs.

Topics

• Enhanced Monitoring availability

• Differences between CloudWatch and Enhanced Monitoring metrics

• Retention of Enhanced Monitoring metrics

• Cost of Enhanced Monitoring

Enhanced Monitoring availability

Enhanced Monitoring is available for the following database engines:

Monitoring the OS with Enhanced Monitoring 1407

https://aws.amazon.com/rds/faqs/#Enhanced_Monitoring

Amazon Relational Database Service User Guide

• Db2

• MariaDB

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

Differences between CloudWatch and Enhanced Monitoring metrics

A hypervisor creates and runs virtual machines (VMs). Using a hypervisor, an instance can support
multiple guest VMs by virtually sharing memory and CPU. CloudWatch gathers metrics about CPU
utilization from the hypervisor for a DB instance. In contrast, Enhanced Monitoring gathers its
metrics from an agent on the DB instance.

You might find differences between the CloudWatch and Enhanced Monitoring measurements,
because the hypervisor layer performs a small amount of work. The differences can be greater if
your DB instances use smaller instance classes. In this scenario, more virtual machines (VMs) are
probably managed by the hypervisor layer on a single physical instance.

For descriptions of the Enhanced Monitoring metrics, see OS metrics in Enhanced Monitoring. For
more information about CloudWatch metrics, see the Amazon CloudWatch User Guide.

Retention of Enhanced Monitoring metrics

By default, Enhanced Monitoring metrics are stored for 30 days in the CloudWatch Logs. This
retention period is different from typical CloudWatch metrics.

To modify the amount of time the metrics are stored in the CloudWatch Logs, change the retention
for the RDSOSMetrics log group in the CloudWatch console. For more information, see Change
log data retention in CloudWatch logs in the Amazon CloudWatch Logs User Guide.

Cost of Enhanced Monitoring

Enhanced Monitoring metrics are stored in the CloudWatch Logs instead of in CloudWatch metrics.
The cost of Enhanced Monitoring depends on the following factors:

• You are charged for Enhanced Monitoring only if you exceed the free tier provided by Amazon
CloudWatch Logs. Charges are based on CloudWatch Logs data transfer and storage rates.

Overview of Enhanced Monitoring 1408

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Relational Database Service User Guide

• The amount of information transferred for an RDS instance is directly proportional to the
defined granularity for the Enhanced Monitoring feature. A smaller monitoring interval results in
more frequent reporting of OS metrics and increases your monitoring cost. To manage costs, set
different granularities for different instances in your accounts.

• Usage costs for Enhanced Monitoring are applied for each DB instance that Enhanced Monitoring
is enabled for. Monitoring a large number of DB instances is more expensive than monitoring
only a few.

• DB instances that support a more compute-intensive workload have more OS process activity to
report and higher costs for Enhanced Monitoring.

For more information about pricing, see Amazon CloudWatch pricing.

Setting up and enabling Enhanced Monitoring

To use Enhanced Monitoring, you must create an IAM role, and then enable Enhanced Monitoring.

Topics

• Creating an IAM role for Enhanced Monitoring

• Turning Enhanced Monitoring on and off

• Protecting against the confused deputy problem

Creating an IAM role for Enhanced Monitoring

Enhanced Monitoring requires permission to act on your behalf to send OS metric information to
CloudWatch Logs. You grant Enhanced Monitoring permissions using an AWS Identity and Access
Management (IAM) role. You can either create this role when you enable Enhanced Monitoring or
create it beforehand.

Topics

• Creating the IAM role when you enable Enhanced Monitoring

• Creating the IAM role before you enable Enhanced Monitoring

Setting up and enabling Enhanced Monitoring 1409

https://aws.amazon.com/cloudwatch/pricing/

Amazon Relational Database Service User Guide

Creating the IAM role when you enable Enhanced Monitoring

When you enable Enhanced Monitoring in the RDS console, Amazon RDS can create the required
IAM role for you. The role is named rds-monitoring-role. RDS uses this role for the specified
DB instance, read replica, or Multi-AZ DB cluster.

To create the IAM role when enabling Enhanced Monitoring

1. Follow the steps in Turning Enhanced Monitoring on and off.

2. Set Monitoring Role to Default in the step where you choose a role.

Creating the IAM role before you enable Enhanced Monitoring

You can create the required role before you enable Enhanced Monitoring. When you enable
Enhanced Monitoring, specify your new role's name. You must create this required role if you
enable Enhanced Monitoring using the AWS CLI or the RDS API.

The user that enables Enhanced Monitoring must be granted the PassRole permission. For more
information, see Example 2 in Granting a user permissions to pass a role to an AWS service in the
IAM User Guide.

To create an IAM role for Amazon RDS enhanced monitoring

1. Open the IAM console at https://console.aws.amazon.com.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Choose the AWS service tab, and then choose RDS from the list of services.

5. Choose RDS - Enhanced Monitoring, and then choose Next.

6. Ensure that the Permissions policies shows AmazonRDSEnhancedMonitoringRole, and then
choose Next.

7. For Role name, enter a name for your role. For example, enter emaccess.

The trusted entity for your role is the AWS service monitoring.rds.amazonaws.com.

8. Choose Create role.

Setting up and enabling Enhanced Monitoring 1410

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://console.aws.amazon.com/iam/home?#home
https://console.aws.amazon.com/

Amazon Relational Database Service User Guide

Turning Enhanced Monitoring on and off

You can manage Enhanced Monitoring using the AWS Management Console, AWS CLI, or RDS API.
You can set different granularities for metric collection on each DB instance.

Console

You can turn on Enhanced Monitoring when you create a DB instance, Multi-AZ DB cluster, or read
replica, or when you modify a DB instance or Multi-AZ DB cluster. If you modify a DB instance to
turn on Enhanced Monitoring, you don't need to reboot your DB instance for the change to take
effect.

You can turn on Enhanced Monitoring in the RDS console when you do one of the following actions
in the Databases page:

• Create a DB instance or Multi-AZ DB cluster – Choose Create database.

• Create a read replica – Choose Actions, then Create read replica.

• Modify a DB instance or Multi-AZ DB cluster – Choose Modify.

To turn Enhanced Monitoring on or off in the RDS console

1. Scroll to Additional configuration.

2. In Monitoring, choose Enable Enhanced Monitoring for your DB instance or read replica.
Deselect the option to disable Enhanced Monitoring.

3. Set the Monitoring Role property to the IAM role that you created to permit Amazon RDS to
communicate with Amazon CloudWatch Logs for you, or choose Default to have RDS create a
role for you named rds-monitoring-role.

4. Set the Granularity property to the interval, in seconds, between points when metrics are
collected for your DB instance or read replica. The Granularity property can be set to one of
the following values: 1, 5, 10, 15, 30, or 60.

The fastest that the RDS console refreshes is every 5 seconds. If you set the granularity to 1
second in the RDS console, you still see updated metrics only every 5 seconds. You can retrieve
1-second metric updates by using CloudWatch Logs.

Setting up and enabling Enhanced Monitoring 1411

Amazon Relational Database Service User Guide

AWS CLI

To turn on Enhanced Monitoring using the AWS CLI, in the following commands, set the --
monitoring-interval option to a value other than 0 and set the --monitoring-role-arn
option to the role you created in Creating an IAM role for Enhanced Monitoring.

• create-db-instance

• create-db-instance-read-replica

• modify-db-instance

• create-db-cluster (Multi-AZ DB cluster)

• modify-db-cluster (Multi-AZ DB cluster)

The --monitoring-interval option specifies the interval, in seconds, between points when
Enhanced Monitoring metrics are collected. Valid values for the option are 0, 1, 5, 10, 15, 30, and
60.

To turn off Enhanced Monitoring using the AWS CLI, set the --monitoring-interval option to
0 in these commands.

Example

The following example turns on Enhanced Monitoring for a DB instance:

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --monitoring-interval 30 \
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --monitoring-interval 30 ^
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

Example

The following example turns on Enhanced Monitoring for a Multi-AZ DB cluster:

Setting up and enabling Enhanced Monitoring 1412

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --monitoring-interval 30 \
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --monitoring-interval 30 ^
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

RDS API

To turn on Enhanced Monitoring using the RDS API, set the MonitoringInterval parameter to a
value other than 0 and set the MonitoringRoleArn parameter to the role you created in Creating
an IAM role for Enhanced Monitoring. Set these parameters in the following actions:

• CreateDBInstance

• CreateDBInstanceReadReplica

• ModifyDBInstance

• CreateDBCluster (Multi-AZ DB cluster)

• ModifyDBCluster (Multi-AZ DB cluster)

The MonitoringInterval parameter specifies the interval, in seconds, between points when
Enhanced Monitoring metrics are collected. Valid values are 0, 1, 5, 10, 15, 30, and 60.

To turn off Enhanced Monitoring using the RDS API, set MonitoringInterval to 0.

Protecting against the confused deputy problem

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should

Setting up and enabling Enhanced Monitoring 1413

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account. For more information, see The confused deputy problem.

To limit the permissions to the resource that Amazon RDS can give another service, we recommend
using the aws:SourceArn and aws:SourceAccount global condition context keys in a trust
policy for your Enhanced Monitoring role. If you use both global condition context keys, they must
use the same account ID.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. For Amazon RDS,
set aws:SourceArn to arn:aws:rds:Region:my-account-id:db:dbname.

The following example uses the aws:SourceArn and aws:SourceAccount global condition
context keys in a trust policy to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "monitoring.rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:rds:Region:my-account-id:db:dbname"
 },
 "StringEquals": {
 "aws:SourceAccount": "my-account-id"
 }
 }
 }
]
}

Viewing OS metrics in the RDS console

You can view OS metrics reported by Enhanced Monitoring in the RDS console by choosing
Enhanced monitoring for Monitoring.

Viewing OS metrics in the RDS console 1414

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

The following example shows the Enhanced Monitoring page. For descriptions of the Enhanced
Monitoring metrics, see OS metrics in Enhanced Monitoring.

Some DB instances use more than one disk for the DB instance's data storage volume. On those
DB instances, the Physical Devices graphs show metrics for each one of the disks. For example, the
following graph shows metrics for four disks.

Note

Currently, Physical Devices graphs are not available for Microsoft SQL Server DB instances.

When you are viewing aggregated Disk I/O and File system graphs, the rdsdev device relates to
the /rdsdbdata file system, where all database files and logs are stored. The filesystem device

Viewing OS metrics in the RDS console 1415

Amazon Relational Database Service User Guide

relates to the / file system (also known as root), where files related to the operating system are
stored.

If the DB instance is a Multi-AZ deployment, you can view the OS metrics for the primary DB
instance and its Multi-AZ standby replica. In the Enhanced monitoring view, choose primary to
view the OS metrics for the primary DB instance, or choose secondary to view the OS metrics for
the standby replica.

For more information about Multi-AZ deployments, see Configuring and managing a Multi-AZ
deployment for Amazon RDS.

Viewing OS metrics in the RDS console 1416

Amazon Relational Database Service User Guide

Note

Currently, viewing OS metrics for a Multi-AZ standby replica is not supported for MariaDB
DB instances.

If you want to see details for the processes running on your DB instance, choose OS process list for
Monitoring.

The Process List view is shown following.

The Enhanced Monitoring metrics shown in the Process list view are organized as follows:

• RDS child processes – Shows a summary of the RDS processes that support the DB instance, for
example mysqld for MySQL DB instances. Process threads appear nested beneath the parent
process. Process threads show CPU utilization only as other metrics are the same for all threads
for the process. The console displays a maximum of 100 processes and threads. The results
are a combination of the top CPU consuming and memory consuming processes and threads.
If there are more than 50 processes and more than 50 threads, the console displays the top
50 consumers in each category. This display helps you identify which processes are having the
greatest impact on performance.

• RDS processes – Shows a summary of the resources used by the RDS management agent,
diagnostics monitoring processes, and other AWS processes that are required to support RDS DB
instances.

• OS processes – Shows a summary of the kernel and system processes, which generally have
minimal impact on performance.

Viewing OS metrics in the RDS console 1417

Amazon Relational Database Service User Guide

The items listed for each process are:

• VIRT – Displays the virtual size of the process.

• RES – Displays the actual physical memory being used by the process.

• CPU% – Displays the percentage of the total CPU bandwidth being used by the process.

• MEM% – Displays the percentage of the total memory being used by the process.

The monitoring data that is shown in the RDS console is retrieved from Amazon CloudWatch Logs.
You can also retrieve the metrics for a DB instance as a log stream from CloudWatch Logs. For more
information, see Viewing OS metrics using CloudWatch Logs.

Enhanced Monitoring metrics are not returned during the following:

• A failover of the DB instance.

• Changing the instance class of the DB instance (scale compute).

Enhanced Monitoring metrics are returned during a reboot of a DB instance because only the
database engine is rebooted. Metrics for the operating system are still reported.

Viewing OS metrics using CloudWatch Logs

After you have enabled Enhanced Monitoring for your DB instance or Multi-AZ DB cluster, you
can view the metrics for it using CloudWatch Logs, with each log stream representing a single
DB instance or DB cluster being monitored. The log stream identifier is the resource identifier
(DbiResourceId) for the DB instance or DB cluster.

To view Enhanced Monitoring log data

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, choose the AWS Region that your DB instance or Multi-AZ DB cluster is in. For
more information, see Regions and endpoints in the Amazon Web Services General Reference.

3. Choose Logs in the navigation pane.

4. Choose RDSOSMetrics from the list of log groups.

In a Multi-AZ DB instance deployment, log files with -secondary appended to the name are
for the Multi-AZ standby replica.

Viewing OS metrics using CloudWatch Logs 1418

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/general/latest/gr/index.html?rande.html

Amazon Relational Database Service User Guide

5. Choose the log stream that you want to view from the list of log streams.

Viewing OS metrics using CloudWatch Logs 1419

Amazon Relational Database Service User Guide

Metrics reference for Amazon RDS

In this reference, you can find descriptions of Amazon RDS metrics for Amazon CloudWatch,
Performance Insights, and Enhanced Monitoring.

Topics

• Amazon CloudWatch metrics for Amazon RDS

• Amazon CloudWatch dimensions for Amazon RDS

• Amazon CloudWatch metrics for Amazon RDS Performance Insights

• Performance Insights counter metrics

• SQL statistics for Performance Insights

• OS metrics in Enhanced Monitoring

Amazon CloudWatch metrics for Amazon RDS

Amazon CloudWatch metrics provide insights into the performance and health of Amazon RDS
instances and clusters, allowing you to monitor system behavior and make data-driven decisions.
These metrics help track resource utilization, database activity, and operational efficiency, offering
visibility into how your instances are performing.

This reference outlines the specific metrics available for Amazon RDS and explains how to interpret
and use them to optimize database performance, troubleshoot issues, and ensure high availability.

Amazon RDS publishes metrics to Amazon CloudWatch in the AWS/RDS and AWS/Usage
namespaces.

Topics

• Amazon CloudWatch instance-level metrics for Amazon RDS

• Amazon CloudWatch usage metrics for Amazon RDS

Amazon CloudWatch instance-level metrics for Amazon RDS

The AWS/RDS namespace in Amazon CloudWatch includes the following instance-level metrics.

RDS metrics reference 1420

Amazon Relational Database Service User Guide

Note

The Amazon RDS console might display metrics in units that are different from the units
sent to Amazon CloudWatch. For example, the Amazon RDS console might display a metric
in megabytes (MB), while the metric is sent to Amazon CloudWatch in bytes.

Metric Description Applies to Units

BinLogDis
kUsage

The amount of disk space occupied
by binary logs. If automatic backups
are enabled for MySQL and MariaDB
instances, including read replicas,
binary logs are created.

MariaDB

MySQL

Bytes

BurstBala
nce

The percent of General Purpose
SSD (gp2) burst-bucket I/O credits
available.

All Percent

Checkpoin
tLag

The amount of time since the most
recent checkpoint.

Seconds

Connectio
nAttempts

The number of attempts to connect to
an instance, whether successful or not.

MySQL Count

CPUUtiliz
ation

The percentage of CPU utilization. All Percent

CPUCredit
Usage

The number of CPU credits spent by
the instance for CPU utilization. One
CPU credit equals one vCPU running
at 100 percent utilization for one
minute or an equivalent combination
of vCPUs, utilization, and time. For
example, you might have one vCPU
running at 50 percent utilization for
two minutes or two vCPUs running at
25 percent utilization for two minutes.

Credits (vCPU-
minutes)

CloudWatch metrics for RDS 1421

Amazon Relational Database Service User Guide

Metric Description Applies to Units

This metric applies only to db.t2,
db.t3, and db.t4g instances.

Note

We recommend using the
T DB instance classes only
for development and test
servers, or other non-produ
ction servers. For more details
on the T instance classes, see
DB instance class types

CPU credit metrics are available at
a five-minute frequency only. If you
specify a period greater than five
minutes, use the Sum statistic instead
of the Average statistic.

CloudWatch metrics for RDS 1422

Amazon Relational Database Service User Guide

Metric Description Applies to Units

CPUCredit
Balance

The number of earned CPU credits
that an instance has accrued since
it was launched or started. For T2
Standard, the CPUCreditBalance
also includes the number of launch
credits that have been accrued.

Credits are accrued in the credit
balance after they are earned, and
removed from the credit balance when
they are spent. The credit balance has
a maximum limit, determined by the
instance size. After the limit is reached,
any new credits that are earned are
discarded. For T2 Standard, launch
credits don't count towards the limit.

The credits in the CPUCredit
Balance are available for the
instance to spend to burst beyond its
baseline CPU utilization.

When an instance is running, credits
in the CPUCreditBalance don't
expire. When the instance stops,
the CPUCreditBalance does not
persist, and all accrued credits are lost.

CPU credit metrics are available at a
five-minute frequency only.
This metric applies only to db.t2,
db.t3, and db.t4g instances.

Credits (vCPU-
minutes)

CloudWatch metrics for RDS 1423

Amazon Relational Database Service User Guide

Metric Description Applies to Units

Note

We recommend using the
T DB instance classes only
for development and test
servers, or other non-produ
ction servers. For more details
on the T instance classes, see
DB instance class types

Launch credits work the same way in
Amazon RDS as they do in Amazon
EC2. For more information, see Launch
credits in the Amazon Elastic Compute
Cloud User Guide for Linux Instances.

CPUSurplu
sCreditBa
lance

The number of surplus credits that
have been spent by an unlimited
instance when its CPUCredit
Balance value is zero.

The CPUSurplusCreditBalance
value is paid down by earned CPU
credits. If the number of surplus
credits exceeds the maximum number
of credits that the instance can earn
in a 24-hour period, the spent surplus
credits above the maximum incur an
additional charge.

CPU credit metrics are available at a 5-
minute frequency only.

All Credits (vCPU-
minutes)

CloudWatch metrics for RDS 1424

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-mode-concepts.html#launch-credits
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-mode-concepts.html#launch-credits

Amazon Relational Database Service User Guide

Metric Description Applies to Units

CPUSurplu
sCreditsC
harged

The number of spent surplus credits
that are not paid down by earned
CPU credits, and which thus incur an
additional charge.

Spent surplus credits are charged
when any of the following occurs:

• The spent surplus credits exceed the
maximum number of credits that
the instance can earn in a 24-hour
period. Spent surplus credits above
the maximum are charged at the
end of the hour.

• The instance is stopped or terminate
d.

• The instance is switched from
unlimited to standard.

CPU credit metrics are available at a 5-
minute frequency only.

All Credits (vCPU-
minutes)

CloudWatch metrics for RDS 1425

Amazon Relational Database Service User Guide

Metric Description Applies to Units

DatabaseC
onnections

The number of client network
connections to the database instance.

The number of database sessions
can be higher than the metric value
because the metric value doesn't
include the following:

• Sessions that no longer have a
network connection but which the
database hasn't cleaned up

• Sessions created by the database
engine for its own purposes

• Sessions created by the database
engine's parallel execution capabilit
ies

• Sessions created by the database
engine job scheduler

• Amazon RDS connections

All Count

DiskQueue
Depth

The number of outstanding I/Os (read/
write requests) waiting to access the
disk.

All Count

DiskQueue
DepthLogV
olume

The number of outstanding I/Os (read/
write requests) waiting to access the
log volume disk.

DB instances
with dedicated
log volume
enabled

Count

CloudWatch metrics for RDS 1426

Amazon Relational Database Service User Guide

Metric Description Applies to Units

EBSByteBa
lance%

The percentage of throughput credits
remaining in the burst bucket of your
RDS database. This metric is available
 for basic monitoring only.

The metric value is based on the
throughput of all volumes, including
the root volume, rather than on only
those volumes containing database
files.

To find the instance sizes that support
this metric, see the instance sizes with
an asterisk (*) in the EBS optimized
by default table in Amazon EC2 User
Guide. The Sum statistic is not applicabl
e to this metric.

All Percent

CloudWatch metrics for RDS 1427

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current

Amazon Relational Database Service User Guide

Metric Description Applies to Units

EBSIOBala
nce%

The percentage of I/O credits
remaining in the burst bucket of your
RDS database. This metric is available
for basic monitoring only.

The metric value is based on the IOPS
of all volumes, including the root
volume, rather than on only those
volumes containing database files.

To find the instance sizes that support
this metric, see Amazon EBS–optim
ized instance types in Amazon EC2
User Guide. The Sum statistic isn't
applicable to this metric.

This metric is different from
BurstBalance . To learn how to use
this metric, see Improving application
performance and reducing costs with
Amazon EBS-Optimized Instance burst
capability.

All Percent

FailedSQL
ServerAge
ntJobsCou
nt

The number of failed Microsoft SQL
Server Agent jobs during the last
minute.

Microsoft SQL
Server

Count per
minute

FreeableM
emory

The amount of available random
access memory.

For MariaDB, MySQL, Oracle, and
PostgreSQL DB instances, this metric
reports the value of the MemAvaila
ble field of /proc/meminfo .

All Bytes

CloudWatch metrics for RDS 1428

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
https://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
https://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
https://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/

Amazon Relational Database Service User Guide

Metric Description Applies to Units

FreeLocal
Storage

The amount of available local storage
space.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Bytes

FreeLocal
StoragePe
rcent

The percentage of available local
storage space.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Percent

FreeStora
geSpace

The amount of available storage space. All Bytes

CloudWatch metrics for RDS 1429

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes

Amazon Relational Database Service User Guide

Metric Description Applies to Units

FreeStora
geSpaceLo
gVolume

The amount of available storage space
on the log volume.

DB instances
with dedicated
log volume
enabled

Bytes

IamDbAuth
Connectio
nRequests

The number of connection requests
using IAM authentication to the DB
instance.

All Count

MaximumUs
edTransac
tionIDs

The maximum transaction IDs that
have been used.

PostgreSQL Count

NetworkRe
ceiveThro
ughput

The incoming (receive) network traffic
on the DB instance, including both
customer database traffic and Amazon
RDS traffic used for monitoring and
replication.

All Bytes per
second

NetworkTr
ansmitThr
oughput

The outgoing (transmit) network
traffic on the DB instance, including
both customer database traffic and
Amazon RDS traffic used for monitorin
g and replication.

All Bytes per
second

OldestRep
licationS
lotLag

The lagging size of the replica lagging
the most in terms of write-ahead log
(WAL) data received.

PostgreSQL Bytes

ReadIOPS The average number of disk read I/O
operations per second.

All Count per
second

CloudWatch metrics for RDS 1430

Amazon Relational Database Service User Guide

Metric Description Applies to Units

ReadIOPSL
ocalStora
ge

The average number of disk read I/O
operations to local storage per second.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Count per
second

ReadIOPSL
ogVolume

The average number of disk read I/
O operations per second for the log
volume.

DB instances
with dedicated
log volume
enabled

Count per
second

ReadLatency The average amount of time taken per
disk I/O operation.

All Seconds

CloudWatch metrics for RDS 1431

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes

Amazon Relational Database Service User Guide

Metric Description Applies to Units

ReadLaten
cyLocalSt
orage

The average amount of time taken per
disk I/O operation for local storage.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Seconds

ReadLaten
cyLogVolu
me

The average amount of time taken per
disk I/O operation for the log volume.

DB instances
with dedicated
log volume
enabled

Seconds

ReadThrou
ghput

The average number of bytes read
from disk per second.

All Bytes per
second

CloudWatch metrics for RDS 1432

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes

Amazon Relational Database Service User Guide

Metric Description Applies to Units

ReadThrou
ghputLoca
lStorage

The average number of bytes read
from disk per second for local storage.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Bytes per
second

ReadThrou
ghputLogV
olume

The average number of bytes read
from disk per second for the log
volume.

DB instances
with dedicated
log volume
enabled

Bytes per
second

ReplicaLag For read replica configurations, the
amount of time a read replica DB
instance lags behind the source DB
instance. Applies to MariaDB, Microsoft
SQL Server, MySQL, Oracle, and
PostgreSQL read replicas.

For Multi-AZ DB clusters, the differenc
e in time between the latest transacti
on on the writer DB instance and the
latest applied transaction on a reader
DB instance.

Seconds

CloudWatch metrics for RDS 1433

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes

Amazon Relational Database Service User Guide

Metric Description Applies to Units

Replicati
onChannel
Lag

For multi-source replica configura
tions, the amount of time a particula
r channel on the multi-source replica
lags behind the source DB instance.
For more information, see the section
called “Monitoring multi-source
replication channels”.

MySQL Seconds

Replicati
onSlotDis
kUsage

The disk space used by replication slot
files.

PostgreSQL Bytes

SwapUsage The amount of swap space used on the
DB instance.

MariaDB

MySQL

Oracle

PostgreSQL

Bytes

TempDbAva
ilableDat
aSpace

The amount of available data space on
the tempdb.

SQL Server Bytes

TempDbAva
ilableLog
Space

The amount of available log space on
the tempdb.

SQL Server Bytes

TempDbDat
aFileUsage

The percentage of data files used on
the tempdb.

SQL Server Percent

TempDbLog
FileUsage

The percentage of log files used on the
tempdb.

SQL Server Percent

Transacti
onLogsDis
kUsage

The disk space used by transaction
logs.

PostgreSQL Bytes

CloudWatch metrics for RDS 1434

Amazon Relational Database Service User Guide

Metric Description Applies to Units

Transacti
onLogsGen
eration

The size of transaction logs generated
per second.

PostgreSQL Bytes per
second

WriteIOPS The average number of disk write I/O
operations per second.

All Count per
second

WriteIOPS
LocalStor
age

The average number of disk write
I/O operations per second on local
storage.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Count per
second

WriteIOPS
LogVolume

The average number of disk write I/
O operations per second for the log
volume.

DB instances
with dedicated
log volume
enabled

Count per
second

WriteLate
ncy

The average amount of time taken per
disk I/O operation.

All Seconds

CloudWatch metrics for RDS 1435

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes

Amazon Relational Database Service User Guide

Metric Description Applies to Units

WriteLate
ncyLocalS
torage

The average amount of time taken per
disk I/O operation on local storage.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Seconds

WriteLate
ncyLogVol
ume

The average amount of time taken per
disk I/O operation for the log volume.

DB instances
with dedicated
log volume
enabled

Seconds

WriteThro
ughput

The average number of bytes written
to disk per second.

All Bytes per
second

WriteThro
ughputLog
Volume

The average number of bytes written
to disk per second for the log volume.

DB instances
with dedicated
log volume
enabled

Bytes per
second

CloudWatch metrics for RDS 1436

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes

Amazon Relational Database Service User Guide

Metric Description Applies to Units

WriteThro
ughputLoc
alStorage

The average number of bytes written
to disk per second for local storage.

This metric only applies to DB instance
classes with NVMe SSD instance
store volumes. For information about
Amazon EC2 instances with NVMe SSD
instance store volumes, see Instance
store volumes. The equivalent RDS
DB instance classes have the same
instance store volumes. For example,
the db.m6gd and db.r6gd DB instance
classes have NVMe SSD instance store
volumes.

Bytes per
second

Amazon CloudWatch usage metrics for Amazon RDS

The AWS/Usage namespace in Amazon CloudWatch includes account-level usage metrics for your
Amazon RDS service quotas. CloudWatch collects usage metrics automatically for all AWS Regions.

For more information, see CloudWatch usage metrics in the Amazon CloudWatch User Guide. For
more information about quotas, see Quotas and constraints for Amazon RDS and Requesting a
quota increase in the Service Quotas User Guide.

Metric Description Units*

AllocatedStorage The total storage for all DB instances. The sum excludes
temporary migration instances.

Gigabytes

Authoriza
tionsPerD
BSecurityGroup

The number of ingress rules per DB security group in your
AWS account. The used value is the highest number of
ingress rules in a DB security group in the account. Other
DB security groups in the account might have a lower
number of ingress rules.

Count

CloudWatch metrics for RDS 1437

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Usage-Metrics.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Relational Database Service User Guide

Metric Description Units*

CustomEnd
pointsPer
DBCluster

The number of custom endpoints per DB cluster in your
AWS account. The used value is the highest number of
custom endpoints in a DB cluster in the account. Other
DB clusters in the account might have a lower number of
custom endpoints.

Count

CustomEng
ineVersions

The number of custom engine versions (CEVs) for Amazon
RDS Custom in your AWS account.

Count

DBCluster
ParameterGroups

The number of DB cluster parameter groups in your AWS
account. The count excludes default parameter groups.

Count

DBClusterRoles The number of associated AWS Identity and Access
Management (IAM) roles per DB cluster in your AWS
account. The used value is the highest number of
associated IAM roles for a DB cluster in the account. Other
DB clusters in the account might have a lower number of
associated IAM roles.

Count

DBClusters The number of Amazon Aurora DB clusters in your AWS
account.

Count

DBInstanceRoles The number of associated AWS Identity and Access
Management (IAM) roles per DB instance in your AWS
account. The used value is the highest number of
associated IAM roles for a DB instance in the account.
Other DB instances in the account might have a lower
number of associated IAM roles.

Count

DBInstances The number of DB instances in your AWS account. Count

DBParamet
erGroups

The number of DB parameter groups in your AWS
account. The count excludes the default DB parameter
groups.

Count

CloudWatch metrics for RDS 1438

Amazon Relational Database Service User Guide

Metric Description Units*

DBSecurityGroups The number of security groups in your AWS account. The
count excludes the default security group and the default
VPC security group.

Count

DBSubnetGroups The number of DB subnet groups in your AWS account.
The count excludes the default subnet group.

Count

Integrations The number of zero-ETL integrations with Amazon
Redshift in your AWS account.

Count

EventSubs
criptions

The number of event notification subscriptions in your
AWS account.

Count

Integrations The number of zero-ETL integrations with Amazon
Redshift in your AWS account.

Count

ManualClu
sterSnapshots

The number of manually created DB cluster snapshots in
your AWS account. The count excludes invalid snapshots.

Count

ManualSnapshots The number of manually created DB snapshots in your
AWS account. The count excludes invalid snapshots.

Count

OptionGroups The number of option groups in your AWS account. The
count excludes the default option groups.

Count

Proxies The number of RDS proxies in your AWS account. Count

ReadRepli
casPerMaster

The number of read replicas per DB instance in your
account. The used value is the highest number of read
replicas for a DB instance in the account. Other DB
instances in the account might have a lower number of
read replicas.

Count

ReservedD
BInstances

The number of reserved DB instances in your AWS
account. The count excludes retired or declined instances.

Count

CloudWatch metrics for RDS 1439

Amazon Relational Database Service User Guide

Metric Description Units*

SubnetsPe
rDBSubnetGroup

The number of subnets per DB subnet group in your AWS
account. The highest number of subnets for a DB subnet
group in the account. Other DB subnet groups in the
account might have a lower number of subnets.

Count

Note

Amazon RDS doesn't publish units for usage metrics to CloudWatch. The units only appear
in the documentation.

Amazon CloudWatch dimensions for Amazon RDS

You can filter Amazon RDS metrics data by using any dimension in the following table.

Dimension Filters the requested data for . . .

DBInstanceIdentifier A specific DB instance.

DatabaseClass All instances in a database class. For example, you can
aggregate metrics for all instances that belong to the database
class db.r5.large .

EngineName The identified engine name only. For example, you can
aggregate metrics for all instances that have the engine name
postgres.

SourceRegion The specified Region only. For example, you can aggregate
metrics for all DB instances in the us-east-1 Region.

Amazon CloudWatch metrics for Amazon RDS Performance Insights

Performance Insights automatically publishes some metrics to Amazon CloudWatch. The same
data can be queried from Performance Insights, but having the metrics in CloudWatch makes it

CloudWatch dimensions for RDS 1440

Amazon Relational Database Service User Guide

easy to add CloudWatch alarms. It also makes it easy to add the metrics to existing CloudWatch
Dashboards.

Metric Description

DBLoad The number of active sessions for the
database. Typically, you want the data for
the average number of active sessions. In
Performance Insights, this data is queried as
db.load.avg .

DBLoadCPU The number of active sessions where the wait
event type is CPU. In Performance Insights,
this data is queried as db.load.avg , filtered
by the wait event type CPU.

DBLoadNonCPU The number of active sessions where the wait
event type is not CPU.

DBLoadRelativeToNumVCPUs The ratio of the DB load to the number of
virtual CPUs for the database.

Note

These metrics are published to CloudWatch only if there is load on the DB instance.

You can examine these metrics using the CloudWatch console, the AWS CLI, or the CloudWatch
API. You can also examine other Performance Insights counter metrics using a special metric
math function. For more information, see Querying other Performance Insights counter metrics in
CloudWatch.

For example, you can get the statistics for the DBLoad metric by running the get-metric-statistics
command.

aws cloudwatch get-metric-statistics \
 --region us-west-2 \
 --namespace AWS/RDS \

CloudWatch metrics for Performance Insights 1441

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html

Amazon Relational Database Service User Guide

 --metric-name DBLoad \
 --period 60 \
 --statistics Average \
 --start-time 1532035185 \
 --end-time 1532036185 \
 --dimensions Name=DBInstanceIdentifier,Value=db-loadtest-0

This example generates output similar to the following.

{
 "Datapoints": [
 {
 "Timestamp": "2021-07-19T21:30:00Z",
 "Unit": "None",
 "Average": 2.1
 },
 {
 "Timestamp": "2021-07-19T21:34:00Z",
 "Unit": "None",
 "Average": 1.7
 },
 {
 "Timestamp": "2021-07-19T21:35:00Z",
 "Unit": "None",
 "Average": 2.8
 },
 {
 "Timestamp": "2021-07-19T21:31:00Z",
 "Unit": "None",
 "Average": 1.5
 },
 {
 "Timestamp": "2021-07-19T21:32:00Z",
 "Unit": "None",
 "Average": 1.8
 },
 {
 "Timestamp": "2021-07-19T21:29:00Z",
 "Unit": "None",
 "Average": 3.0
 },
 {
 "Timestamp": "2021-07-19T21:33:00Z",

CloudWatch metrics for Performance Insights 1442

Amazon Relational Database Service User Guide

 "Unit": "None",
 "Average": 2.4
 }
],
 "Label": "DBLoad"
 }

For more information about CloudWatch, see What is Amazon CloudWatch? in the Amazon
CloudWatch User Guide.

Querying other Performance Insights counter metrics in CloudWatch

Note

If you enable the Advanced mode of Database Insights, Amazon RDS publishes
Performance Insights counter metrics to Amazon CloudWatch. With Database Insights,
you don't need to use the DB_PERF_INSIGHTS metric math function. You can use the
CloudWatch Database Insights dashboard to search, query, and set alarms for Performance
Insights counter metrics.

You can query, alarm, and graphs on RDS Performance Insights metrics from CloudWatch. You can
access information about your DB instance by using the DB_PERF_INSIGHTS metric math function
for CloudWatch. This function allows you to use the Performance Insights metrics that are not
directly reported to CloudWatch to create a new time series.

You can use the new Metric Math function by clicking on the Add Math drop-down menu in
the Select metric screen in the CloudWatch console. You can use it to create alarms and graphs
on Performance Insights metrics or on combinations of CloudWatch and Performance Insights
metrics, including high-resolution alarms for sub-minute metrics. You can also use the function
programmatically by including the Metric Math expression in a get-metric-data request. For
more information, see Metric math syntax and functions and Create an alarm on Performance
Insights counter metrics from an AWS database.

Performance Insights counter metrics

Counter metrics are operating system and database performance metrics in the Performance
Insights dashboard. To help identify and analyze performance problems, you can correlate counter
metrics with DB load. You must append a statistic function to the metric to get the metric values.

Counter metrics for Performance Insights 1443

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-data.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html#metric-math-syntax-functions-list
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html

Amazon Relational Database Service User Guide

For example, the supported functions for os.memory.active metric are .avg, .min, .max, .sum,
and .sample_count.

The counter metrics are collected one time each minute. The OS metrics collection depends
on whether Enhanced Monitoring is turned on or off. If Enhanced Monitoring is turned off, the
OS metrics are collected one time each minute. If Enhanced Monitoring is turned on, the OS
metrics are collected for the selected time period. For more information about turning Enhanced
Monitoring on or off, see Turning Enhanced Monitoring on and off.

Topics

• Performance Insights operating system counters

• Performance Insights counters for Amazon RDS for MariaDB and MySQL

• Performance Insights counters for Amazon RDS for Microsoft SQL Server

• Performance Insights counters for Amazon RDS for Oracle

• Performance Insights counters for Amazon RDS for PostgreSQL

Performance Insights operating system counters

The following operating system counters, which are prefixed with os, are available with
Performance Insights for all RDS engines except RDS for SQL Server .

You can use ListAvailableResourceMetrics API for the list of available counter metrics for
your DB instance. For more information, see ListAvailableResourceMetrics in the Amazon RDS
Performance Insights API Reference guide.

Counter Type Unit Metric Description

Active Memory Kilobytes os.memory
.active

The amount
of assigned
memory, in
kilobytes.

Buffers Memory Kilobytes os.memory
.buffers

The amount of
memory used
for buffering I/
O requests prior
to writing to the

Counter metrics for Performance Insights 1444

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceMetrics

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

storage device,
in kilobytes.

Cached Memory Kilobytes os.memory
.cached

The amount of
memory used
for caching file
system–based I/
O, in kilobytes.

DB Cache Memory Bytes os.memory
.db.cache

The amount of
memory used
for page cache
by database
process in
cluding tmpfs
(shmem), in
bytes.

DB Resident Set
Size

Memory Bytes os.memory
.db.resid
entSetSize

The amount of
memory used
for anonymous
and swap cache
by database
 process not
including tmpfs
(shmem), in
bytes.

DB Swap Memory Bytes os.memory
.db.swap

The amount
of memory
used for swap
by database
process, in
 bytes.

Counter metrics for Performance Insights 1445

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Dirty Memory Kilobytes os.memory.dirty The amount
of memory
pages in RAM
that have been
modified but not
written to their
related data
block in storage,
in kilobytes.

Free Memory Kilobytes os.memory.free The amount
of unassigne
d memory, in
kilobytes.

Huge Pages Free Memory Pages os.memory
.hugePagesFree

The number of
free huge pages.
Huge pages are
a feature of the
Linux kernel.

Huge Pages
Rsvd

Memory Pages os.memory
.hugePagesRsvd

The number of
committed huge
pages.

Huge Pages Size Memory Kilobytes os.memory
.hugePagesSize

The size for each
huge pages unit,
in kilobytes.

Huge Pages Surp Memory Pages os.memory
.hugePagesSurp

The number of
available surplus
huge pages over
the total.

Counter metrics for Performance Insights 1446

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Huge Pages
Total

Memory Pages os.memory
.hugePagesTotal

The total
number of huge
pages.

Inactive Memory Kilobytes os.memory
.inactive

The amount
of least-fre
quently used
memory pages,
in kilobytes.

Mapped Memory Kilobytes os.memory
.mapped

The total
amount of file-
system contents
that is memory
mapped inside
a process
address space, in
kilobytes.

Out of Memory
Kill Count

Memory Kills os.memory
.outOfMem
oryKillCount

The number of
OOM kills that
happened over
the last collectio
n interval.

Page Tables Memory Kilobytes os.memory
.pageTables

The amount of
memory used by
page tables, in
kilobytes.

Slab Memory Kilobytes os.memory.slab The amount of
reusable kernel
data structures,
in kilobytes.

Counter metrics for Performance Insights 1447

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Total Memory Kilobytes os.memory.total The total
amount of
memory, in
kilobytes.

Writeback Memory Kilobytes os.memory
.writeback

The amount
of dirty pages
in RAM that
are still being
written to the
backing storage,
in kilobytes.

Guest Cpu Utilization Percentage os.cpuUti
lization.guest

The percentage
of CPU in use by
guest programs.

Idle Cpu Utilization Percentage os.cpuUti
lization.idle

The percentag
e of CPU that is
idle.

Irq Cpu Utilization Percentage os.cpuUti
lization.irq

The percentag
e of CPU in use
by software
interrupts.

Nice Cpu Utilization Percentage os.cpuUti
lization.nice

The percentag
e of CPU in use
by programs
running at
lowest priority.

Steal Cpu Utilization Percentage os.cpuUti
lization.steal

The percentag
e of CPU in use
by other virtual
machines.

Counter metrics for Performance Insights 1448

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

System Cpu Utilization Percentage os.cpuUti
lization.system

The percentage
of CPU in use by
the kernel.

Total Cpu Utilization Percentage os.cpuUti
lization.total

The total
percentage
of the CPU in
use. This value
includes the nice
value.

User Cpu Utilization Percentage os.cpuUti
lization.user

The percentage
of CPU in use by
user programs.

Wait Cpu Utilization Percentage os.cpuUti
lization.wait

The percentage
of CPU unused
while waiting for
I/O access.

Read IOs PS
Disk IO Requests per

second os.diskIO
.<devicen
ame>.readIOsPS

The number of
read operations
per second.

Write IOs PS
Disk IO Requests per

second os.diskIO
.<devicen
ame>.writ
eIOsPS

The number of
write operations
per second.

Avg Queue Len Disk IO Requests
os.diskIO
.<devicen
ame>.avgQ
ueueLen

The number
of requests
waiting in the
I/O device's
queue.

Counter metrics for Performance Insights 1449

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Avg Req Sz
Disk IO Requests

os.diskIO
.<devicen
ame>.avgReqSz

The number
of requests
waiting in the
I/O device's
queue.

Await
Disk IO Milliseconds

os.diskIO
.<devicen
ame>.await

The number
of milliseco
nds required
to respond
to requests,
including queue
time and service
time.

Read IOs PS
Disk IO Requests

os.diskIO
.<devicen
ame>.readIOsPS

The number of
read operations
per second.

Read KB
Disk IO Kilobytes

os.diskIO
.<devicen
ame>.readKb

The total
number of
kilobytes read.

Read KB PS
Disk IO Kilobytes per

second os.diskIO
.<devicen
ame>.readKbPS

The number of
kilobytes read
per second.

Rrqm PS
Disk IO Requests per

second os.diskIO
.<devicen
ame>.rrqmPS

The number of
merged read
requests queued
per second.

Counter metrics for Performance Insights 1450

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

TPS
Disk IO Transactions per

second os.diskIO
.<devicen
ame>.tps

The number of
I/O transactions
per second.

Util
Disk IO Percentage

os.diskIO
.<devicen
ame>.util

The percentag
e of CPU time
during which
requests were
issued.

Write KB
Disk IO Kilobytes

os.diskIO
.<devicen
ame>.writeKb

The total
number of
kilobytes
written.

Write KB PS
Disk IO Kilobytes per

second os.diskIO
.<devicen
ame>.writeKbPS

The number of
kilobytes written
per second.

Wrqm PS
Disk IO Requests per

second os.diskIO
.<devicen
ame>.wrqmPS

The number of
merged write
requests queued
per second.

Blocked Tasks Tasks os.tasks.blocked The number of
tasks that are
blocked.

Running Tasks Tasks os.tasks.running The number of
tasks that are
running.

Sleeping Tasks Tasks os.tasks.sleeping The number of
tasks that are
sleeping.

Counter metrics for Performance Insights 1451

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Stopped Tasks Tasks os.tasks.stopped The number of
tasks that are
stopped.

Total Tasks Tasks os.tasks.total The total
number of tasks.

Zombie Tasks Tasks os.tasks.zombie The number of
child tasks that
are inactive with
an active parent
task.

One Load Average
Minute

Processes os.loadAv
erageMinute.one

The number
of processes
requesting CPU
time over the
last minute.

Fifteen Load Average
Minute

Processes os.loadAv
erageMinu
te.fifteen

The number
of processes
requesting CPU
time over the
last 15 minutes.

Five Load Average
Minute

Processes os.loadAv
erageMinute.five

The number
of processes
requesting CPU
time over the
last 5 minutes.

Cached Swap Kilobytes os.swap.cached The amount of
swap memory,
in kilobytes,
used as cache
memory.

Counter metrics for Performance Insights 1452

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Free Swap Kilobytes os.swap.free The amount of
swap memory
free, in kilobytes
.

In Swap Kilobytes os.swap.in The amount
of memory,
in kilobytes,
swapped in from
disk.

Out Swap Kilobytes os.swap.out The amount
of memory,
in kilobytes,
swapped out to
disk.

Total Swap Kilobytes os.swap.total The total
amount of
swap memory
available in
kilobytes.

Max Files File Sys Files os.fileSy
s.maxFiles

The maximum
number of files
that can be
created for the
file system.

Used Files File Sys Files os.fileSys.usedFil
es

The number of
files in the file
system.

Used File
Percent

File Sys Files os.fileSys.usedFil
ePercent

The percentage
of available files
in use.

Counter metrics for Performance Insights 1453

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Used Percent File Sys Percentage os.fileSy
s.usedPercent

The percentage
of the file-syst
em disk space in
use.

Used File Sys Kilobytes os.fileSys.used The amount of
disk space used
by files in the
file system, in
kilobytes.

Total File Sys Kilobytes os.fileSys.total The total
number of
disk space
available for the
file system, in
kilobytes.

Rx Network Bytes per second os.network.rx The number of
bytes received
per second.

Tx Network Bytes per second os.network.tx The number of
bytes uploaded
per second.

Acu Utilization General Percentage os.genera
l.acuUtilization

The percentag
e of current
capacity out of
the maximum
configured
 capacity.

Counter metrics for Performance Insights 1454

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description

Max Configured
Acu

General ACUs os.genera
l.maxConf
iguredAcu

The maximum
capacity
configured by
the user, in
Aurora capacity
units (ACUs).

Min Configured
Acu

General ACUs os.genera
l.minConf
iguredAcu

The minimum
capacity
configured by
the user, in
ACUs.

Num VCPUs General vCPUs os.genera
l.numVCPUs

The number of
virtual CPUs
(vCPUs) for the
DB instance.

Serverles
s Database
Capacity

General ACUs os.genera
l.serverl
essDataba
seCapacity

The current
capacity of the
instance, in
ACUs.

Performance Insights counters for Amazon RDS for MariaDB and MySQL

The following database counters are available with Performance Insights for Amazon RDS for
MariaDB and MySQL.

Topics

• Native counters for RDS for MariaDB and RDS for MySQL

• Non-native counters for Amazon RDS for MariaDB and MySQL

Counter metrics for Performance Insights 1455

Amazon Relational Database Service User Guide

Native counters for RDS for MariaDB and RDS for MySQL

Native metrics are defined by the database engine and not by Amazon RDS. For definitions of these
native metrics, see Server Status Variables (for 8.0) and Server Status Variables (for 8.4) in the
MySQL documentation.

Counter Type Unit Metric

Com_analyze SQL Queries per
second

db.SQL.Com_analyze

Com_optimize SQL Queries per
second

db.SQL.Com_optimize

Com_select SQL Queries per
second

db.SQL.Com_select

Connections SQL The number
of connectio
n attempts
per minute
(successful
or not) to
the MySQL
 server

db.Users.Connections

Innodb_rows_deleted SQL Rows per
second

db.SQL.Innodb_rows_deleted

Innodb_rows_inserted SQL Rows per
second

db.SQL.Innodb_rows_inserted

Innodb_rows_read SQL Rows per
second

db.SQL.Innodb_rows_read

Innodb_rows_updated SQL Rows per
second

db.SQL.Innodb_rows_updated

Counter metrics for Performance Insights 1456

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.4/en/server-status-variables.html

Amazon Relational Database Service User Guide

Counter Type Unit Metric

Select_full_join SQL Queries per
second

db.SQL.Select_full_join

Select_full_range_join SQL Queries per
second

db.SQL.Select_full_range_join

Select_range SQL Queries per
second

db.SQL.Select_range

Select_range_check SQL Queries per
second

db.SQL.Select_range_check

Select_scan SQL Queries per
second

db.SQL.Select_scan

Slow_queries SQL Queries per
second

db.SQL.Slow_queries

Sort_merge_passes SQL Queries per
second

db.SQL.Sort_merge_passes

Sort_range SQL Queries per
second

db.SQL.Sort_range

Sort_rows SQL Queries per
second

db.SQL.Sort_rows

Sort_scan SQL Queries per
second

db.SQL.Sort_scan

Questions SQL Queries per
second

db.SQL.Questions

Innodb_row_lock_time Locks Milliseconds
(average)

db.Locks.Innodb_row_lock_time

Table_locks_immediate Locks Requests
per second

db.Locks.Table_locks_immedi
ate

Counter metrics for Performance Insights 1457

Amazon Relational Database Service User Guide

Counter Type Unit Metric

Table_locks_waited Locks Requests
per second

db.Locks.Table_locks_waited

Aborted_clients Users Connections db.Users.Aborted_clients

Aborted_connects Users Connections db.Users.Aborted_connects

max_connections Users Connections db.User.max_connections

Threads_created Users Connections db.Users.Threads_created

Threads_running Users Connections db.Users.Threads_running

Innodb_data_writes I/O Operations
per second

db.IO.Innodb_data_writes

Innodb_dblwr_writes I/O Operations
per second

db.IO.Innodb_dblwr_writes

Innodb_log_write_requests I/O Operations
per second

db.IO.Innodb_log_write_requ
ests

Innodb_log_writes I/O Operations
per second

db.IO.Innodb_log_writes

Innodb_pages_written I/O Pages per
second

db.IO.Innodb_pages_written

Created_tmp_disk_tables Temp Tables per
second

db.Temp.Created_tmp_disk_ta
bles

Created_tmp_tables Temp Tables per
second

db.Temp.Created_tmp_tables

Innodb_buffer_pool_pages_da
ta

Cache Pages db.Cache.Innodb_buffer_pool
_pages_data

Counter metrics for Performance Insights 1458

Amazon Relational Database Service User Guide

Counter Type Unit Metric

Innodb_buffer_pool_pages_to
tal

Cache Pages db.Cache.Innodb_buffer_pool
_pages_total

Innodb_buffer_pool_read_req
uests

Cache Pages per
second

db.Cache.Innodb_buffer_pool
_read_requests

Innodb_buffer_pool_reads Cache Pages per
second

db.Cache.Innodb_buffer_pool
_reads

Opened_tables Cache Tables db.Cache.Opened_tables

Opened_table_definitions Cache Tables db.Cache.Opened_table_defin
itions

Qcache_hits Cache Queries db.Cache.Qcache_hits

Non-native counters for Amazon RDS for MariaDB and MySQL

Non-native counter metrics are counters defined by Amazon RDS. A non-native metric can be a
metric that you get with a specific query. A non-native metric also can be a derived metric, where
two or more native counters are used in calculations for ratios, hit rates, or latencies.

Counter Type Unit Metric Descripti
on

Definition

innodb_bu
ffer_pool_hits

Cache Reads db.Cache.
innoDB_bu
ffer_pool_hits

The
number
of reads
that
InnoDB
could
satisfy
from the
buffer
pool.

innodb_bu
ffer_pool
_read_req
uests -
innodb_bu
ffer_pool
_reads

Counter metrics for Performance Insights 1459

Amazon Relational Database Service User Guide

Counter Type Unit Metric Descripti
on

Definition

innodb_bu
ffer_pool_hit_rate

Cache Percentag
e

db.Cache.
innoDB_bu
ffer_pool
_hit_rate

The
percentag
e of reads
that
InnoDB
could
satisfy
from the
buffer
pool.

100 * innodb_bu
ffer_pool
_read_req
uests /
(innodb_b
uffer_poo
l_read_re
quests +
 innodb_
buffer_po
ol_reads)

Counter metrics for Performance Insights 1460

Amazon Relational Database Service User Guide

Counter Type Unit Metric Descripti
on

Definition

innodb_bu
ffer_pool_usage

Cache Percentag
e

db.Cache.
innoDB_bu
ffer_pool_usage

The
percentag
e of the
InnoDB
buffer
pool that
contains
data
(pages).

Note

When
using
compresse
d
tables,
this
value
can
vary.
For
more
informati
on,
see
the
info
rmation
about
Innodb_bu
ffer_pool
_pages_da

Innodb_bu
ffer_pool
_pages_da
ta / Innodb_bu
ffer_pool
_pages_total
* 100.0

Counter metrics for Performance Insights 1461

Amazon Relational Database Service User Guide

Counter Type Unit Metric Descripti
on

Definition

ta
and
Innodb_bu
ffer_pool
_pages_to
tal
in
Server
Status
Variables
(for
8.0)
and
Server
Status
Variables
(for
8.4)
in
the
MySQL
do
cumentati
on.

query_cac
he_hit_rate

Cache Percentag
e

db.Cache.
query_cac
he_hit_rate

MySQL
result
set cache
(query
cache) hit
ratio.

Qcache_hits /
(QCache_hits +
Com_select) *
100

Counter metrics for Performance Insights 1462

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.4/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.4/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.4/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.4/en/server-status-variables.html

Amazon Relational Database Service User Guide

Counter Type Unit Metric Descripti
on

Definition

innodb_da
tafile_writes_to_d
isk

I/O Writes db.IO.inn
oDB_dataf
ile_write
s_to_disk

The
number
of InnoDB
data file
writes
to disk,
excluding
double
write
and redo
logging
 write
operation
s.

Innodb_da
ta_writes
- Innodb_lo
g_writes
- Innodb_db
lwr_writes

innodb_ro
ws_changed

SQL Rows db.SQL.in
nodb_rows
_changed

The total
InnoDB
row
operation
s.

db.SQL.In
nodb_rows
_inserted
+ db.SQL.In
nodb_rows
_deleted +
 db.SQL.
Innodb_ro
ws_updated

active_transaction
s

Transacti
ons

Transacti
ons

db.Transa
ctions.active_tran
sactions

The total
active
transacti
ons.

SELECT COUNT(1)
AS active_tr
ansactions
FROM INFOR
MATION_SC
HEMA.INNO
DB_TRX

Counter metrics for Performance Insights 1463

Amazon Relational Database Service User Guide

Counter Type Unit Metric Descripti
on

Definition

trx_rseg_history_l
en

Transacti
ons

None db.Transa
ctions.trx_rseg_hi
story_len

A list
of the
undo log
pages for
committed
transacti
ons that is
maintaine
d by the
 InnoDB
transacti
on
system to
implement
multi-
version
concurren
cy control
. For more
informati
on about
undo log
records
details,
see
 InnoDB
Multi-Ver
sioning
(for 8.0)
and
InnoDB
Multi-Ver
sioning

SELECT COUNT
AS trx_rseg_
history_len
FROM INFORMATI
ON_SCHEMA
.INNODB_M
ETRICS WHERE
NAME='trx
_rseg_his
tory_len'

Counter metrics for Performance Insights 1464

https://dev.mysql.com/doc/refman/8.0/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.4/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.4/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.4/en/innodb-multi-versioning.html

Amazon Relational Database Service User Guide

Counter Type Unit Metric Descripti
on

Definition

(for 8.4)
in the
MySQL
 docu
mentation
.

innodb_deadlocks Locks Locks db.Locks.
innodb_de
adlocks

The total
number
of
deadlocks
.

SELECT COUNT
AS innodb_de
adlocks FROM
INFORMATI
ON_SCHEMA
.INNODB_M
ETRICS WHERE
 NAME='lock_d
eadlocks'

innodb_lo
ck_timeouts

Locks Locks db.Locks.
innodb_lo
ck_timeouts

The total
number
of locks
that
timed out.

SELECT COUNT
AS innodb_lo
ck_timeouts
FROM INFORMATI
ON_SCHEMA
.INNODB_M
ETRICS WHERE
 NAME='lock_t
imeouts'

Counter metrics for Performance Insights 1465

Amazon Relational Database Service User Guide

Counter Type Unit Metric Descripti
on

Definition

innodb_ro
w_lock_waits

Locks Locks db.Locks.
innodb_ro
w_lock_waits

The total
number
of row
locks that
resulted
in a wait.

SELECT COUNT
AS innodb_ro
w_lock_waits
FROM INFORMATI
ON_SCHEMA
.INNODB_M
ETRICS WHERE
 NAME='lock_r
ow_lock_w
aits'

Performance Insights counters for Amazon RDS for Microsoft SQL Server

The following database counters are available with Performance Insights for RDS for Microsoft SQL
Server.

Native counters for RDS for Microsoft SQL Server

Native metrics are defined by the database engine and not by Amazon RDS. You can find
definitions for these native metrics in Use SQL Server Objects in the Microsoft SQL Server
documentation.

Counter Type Unit Metric

Forwarded Records Access Methods Records per second db.Access Methods.F
orwarded Records

Page Splits Access Methods Splits per second db.Access Methods.P
age Splits

Buffer cache hit ratio Buffer Manager Ratio db.Buffer Manager.B
uffer cache hit ratio

Page life expectancy Buffer Manager Expectancy in
seconds

db.Buffer Manager.P
age life expectancy

Counter metrics for Performance Insights 1466

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-access-methods-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-access-methods-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-buffer-manager-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-buffer-manager-object?view=sql-server-2017

Amazon Relational Database Service User Guide

Counter Type Unit Metric

Page lookups Buffer Manager Lookups per second db.Buffer Manager.P
age lookups

Page reads Buffer Manager Reads per second db.Buffer Manager.P
age reads

Page writes Buffer Manager Writes per second db.Buffer Manager.P
age writes

Active Transactions Databases Transactions db.Databases.Active
Transactions (_Total)

Log Bytes Flushed Databases Bytes flushed per
second

db.Databases.Log
Bytes Flushed (_Total)

Log Flush Waits Databases Waits per second db.Databases.Log
Flush Waits (_Total)

Log Flushes Databases Flushes per second db.Databases.Log
Flushes (_Total)

Write Transactions Databases Transactions per
second

db.Databases.Write
Transactions (_Total)

Processes blocked General Statistics Processes blocked db.General Statistic
s.Processes blocked

User Connections General Statistics Connections db.General Statistic
s.User Connections

Latch Waits Latches Waits per second db.Latches.Latch
Waits

Number of Deadlocks Locks Deadlocks per second db.Locks.Number of
Deadlocks (_Total)

Counter metrics for Performance Insights 1467

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-buffer-manager-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-buffer-manager-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-buffer-manager-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-general-statistics-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-general-statistics-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-latches-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-locks-object?view=sql-server-2017

Amazon Relational Database Service User Guide

Counter Type Unit Metric

Memory Grants
Pending

Memory Manager Memory grants db.Memory
Manager.Memory
Grants Pending

Batch Requests SQL Statistics Requests per second db.SQL Statistic
s.Batch Requests

SQL Compilations SQL Statistics Compilations per
second

db.SQL Statistics.SQL
Compilations

SQL Re-Compilations SQL Statistics Re-compilations per
second

db.SQL Statistics.SQL
Re-Compilations

Performance Insights counters for Amazon RDS for Oracle

The following database counters are available with Performance Insights for RDS for Oracle.

Native counters for RDS for Oracle

Native metrics are defined by the database engine and not by Amazon RDS. You can find
definitions for these native metrics in Statistics Descriptions in the Oracle documentation.

Note

For the CPU used by this session counter metric, the unit has been transformed
from the native centiseconds to active sessions to make the value easier to use. For
example, CPU send in the DB Load chart represents the demand for CPU. The counter
metric CPU used by this session represents the amount of CPU used by Oracle
sessions. You can compare CPU send to the CPU used by this session counter metric.
When demand for CPU is higher than CPU used, sessions are waiting for CPU time.

Counter Type Unit Metric

CPU used by this
session

User Active sessions db.User.CPU used by
this session

Counter metrics for Performance Insights 1468

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-memory-manager-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-sql-statistics-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-sql-statistics-object?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-sql-statistics-object?view=sql-server-2017
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/refrn/statistics-descriptions-2.html#GUID-2FBC1B7E-9123-41DD-8178-96176260A639

Amazon Relational Database Service User Guide

Counter Type Unit Metric

SQL*Net roundtrips
to/from client

User Roundtrips per
second

db.User.SQL*Net
roundtrips to/from
client

Bytes received via
SQL*Net from client

User Bytes per second db.User.bytes
received via SQL*Net
from client

User commits User Commits per second db.User.user commits

Logons cumulative User Logons per second db.User.logons
cumulative

User calls User Calls per second db.User.user calls

Bytes sent via
SQL*Net to client

User Bytes per second db.User.bytes sent via
SQL*Net to client

User rollbacks User Rollbacks per second db.User.user rollbacks

Redo size Redo Bytes per second db.Redo.redo size

Parse count (total) SQL Parses per second db.SQL.parse count
(total)

Parse count (hard) SQL Parses per second db.SQL.parse count
(hard)

Table scan rows
gotten

SQL Rows per second db.SQL.table scan
rows gotten

Sorts (memory) SQL Sorts per second db.SQL.sorts
(memory)

Sorts (disk) SQL Sorts per second db.SQL.sorts (disk)

Sorts (rows) SQL Sorts per second db.SQL.sorts (rows)

Counter metrics for Performance Insights 1469

Amazon Relational Database Service User Guide

Counter Type Unit Metric

Physical read bytes Cache Bytes per second db.Cache.physical
read bytes

DB block gets Cache Blocks per second db.Cache.db block
gets

DBWR checkpoints Cache Checkpoints per
minute

db.Cache.DBWR
checkpoints

Physical reads Cache Reads per second db.Cache.physical
reads

Consistent gets from
cache

Cache Gets per second db.Cache.consistent
gets from cache

DB block gets from
cache

Cache Gets per second db.Cache.db block
gets from cache

Consistent gets Cache Gets per second db.Cache.consistent
gets

Performance Insights counters for Amazon RDS for PostgreSQL

The following database counters are available with Performance Insights for Amazon RDS for
PostgreSQL.

Topics

• Native counters for Amazon RDS for PostgreSQL

• Non-native counters for Amazon RDS for PostgreSQL

Native counters for Amazon RDS for PostgreSQL

Native metrics are defined by the database engine and not by Amazon RDS. You can find
definitions for these native metrics in Viewing Statistics in the PostgreSQL documentation.

Counter metrics for Performance Insights 1470

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-STATS-VIEWS

Amazon Relational Database Service User Guide

Counter Type Unit Metric

blks_hit Cache Blocks per second db.Cache.blks_hit

buffers_alloc Cache Blocks per second db.Cache.buffers_alloc

buffers_checkpoint Checkpoin
t

Blocks per second db.Checkpoint.buffers_check
point

checkpoint_sync_time Checkpoin
t

Milliseconds per
checkpoint

db.Checkpoint.checkpoint_sy
nc_time

checkpoint_write_time Checkpoin
t

Milliseconds per
checkpoint

db.Checkpoint.checkpoint_wr
ite_time

checkpoints_req Checkpoin
t

Checkpoints per
minute

db.Checkpoint.checkpoints_req

checkpoints_timed Checkpoin
t

Checkpoints per
minute

db.Checkpoint.checkpoints_t
imed

maxwritten_clean Checkpoin
t

Bgwriter clean
stops per minute

db.Checkpoint.maxwritten_clean

deadlocks Concurren
cy

Deadlocks per
minute

db.Concurrency.deadlocks

blk_read_time I/O Milliseconds db.IO.blk_read_time

blks_read I/O Blocks per second db.IO.blks_read

buffers_backend I/O Blocks per second db.IO.buffers_backend

buffers_backend_fsync I/O Blocks per second db.IO.buffers_backend_fsync

buffers_clean I/O Blocks per second db.IO.buffers_clean

tup_deleted SQL Tuples per second db.SQL.tup_deleted

tup_fetched SQL Tuples per second db.SQL.tup_fetched

Counter metrics for Performance Insights 1471

Amazon Relational Database Service User Guide

Counter Type Unit Metric

tup_inserted SQL Tuples per second db.SQL.tup_inserted

tup_returned SQL Tuples per second db.SQL.tup_returned

tup_updated SQL Tuples per second db.SQL.tup_updated

temp_bytes Temp Bytes per second db.Temp.temp_bytes

temp_files Temp Files per minute db.Temp.temp_files

xact_commit Transacti
ons

Commits per
second

db.Transactions.xact_commit

xact_rollback Transacti
ons

Rollbacks per
second

db.Transactions.xact_rollback

numbackends User Connections db.User.numbackends

archived_count Write-
ahead log
(WAL)

Files per minute db.WAL.archived_count

Non-native counters for Amazon RDS for PostgreSQL

Non-native counter metrics are counters defined by Amazon RDS. A non-native metric can be a
metric that you get with a specific query. A non-native metric also can be a derived metric, where
two or more native counters are used in calculations for ratios, hit rates, or latencies.

Counter Type Unit Metric Description Definition

checkpoin
t_sync_la
tency

Checkpoin
t

db.Checkp
oint.chec
kpoint_sy
nc_latenc
y

 The total amount
of time that
has been spent
in the portion
of checkpoint
processing where

checkpoin
t_sync_ti
me /
(checkpoi
nts_timed
+ checkpoin
ts_req)

Counter metrics for Performance Insights 1472

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description Definition

files are synchroni
zed to disk.

checkpoin
t_write_l
atency

Checkpoin
t

db.Checkp
oint.chec
kpoint_wr
ite_laten
cy

The total amount
of time that has
been spent in the
portion of checkpoin
t processing where
 files are written to
disk.

checkpoin
t_write_t
ime /
(checkpoi
nts_timed
+ checkpoin
ts_req)

read_latency I/O db.IO.rea
d_latency

The time spent
reading data file
blocks by backends
in this instance.

blk_read_
time /
blks_read

idle_in_t
ransactio
n_aborted
_count

State Sessionsdb.state.idle_in_t
ransaction_aborted
_count

The number
of sessions in
the idle in
transacti
on (aborted)

 state.

Not applicable

idle_in_t
ransactio
n_count

State Sessionsdb.state.idle_in_t
ransaction_count

The number
of sessions in
the idle in
transaction
state.

Not applicable

idle_in_t
ransactio
n_max_time

State Secondsdb.state.idle_in_t
ransaction_max_time

The duration
of the longest
running transacti
on in the idle
in transacti
on state, in
seconds.

Not applicable

Counter metrics for Performance Insights 1473

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description Definition

active_tr
ansactions

Transacti
ons

Transacti
ons

db.Transactions.ac
tive_transactions

The number of
active transacti
ons.

Not applicable

blocked_t
ransactions

Transacti
ons

Transacti
ons

db.Transactions.bl
ocked_transactions

The number of
blocked transacti
ons.

Not applicable

oldest_ac
tive_logi
cal_repli
cation_sl
ot_xid_age

Transacti
ons

db.Transa
ctions.ol
dest_acti
ve_logica
l_replica
tion_slot
_xid_age

The age of the
oldest transaction
in an active logical
replication slot.

For more informati
on, see Logical
replication slot.

–

oldest_in
active_lo
gical_rep
lication_
slot_xid_age

Transacti
ons

db.Transa
ctions.ol
dest_inac
tive_logi
cal_repli
cation_sl
ot_xid_ag
e

The age of the oldest
transaction in an
inactive logical
replication slot.

For more informati
on, see Logical
replication slot.

–

oldest_pr
epared_tr
ansaction
_xid_age

Transacti
ons

db.Transa
ctions.ol
dest_prep
ared_tran
saction_x
id_age

The age of the oldest
prepared transaction.

For more informati
on, see Prepared
transaction.

–

Counter metrics for Performance Insights 1474

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description Definition

oldest_ru
nning_tra
nsaction_
xid_age

Transacti
ons

db.Transa
ctions.ol
dest_runn
ing_trans
action_xi
d_age

The age of the oldest
running transaction.

For more informati
on, see Active
statement for the
oldest running active
transaction and Idle
in transaction for the
oldest running idle-
in-transaction.

–

oldest_ho
t_standby
_feedback
_xid_age

Transacti
ons

db.Transa
ctions.ol
dest_hot_
standby_f
eedback_x
id_age

The age of the oldest
running transacti
on on a read replica
with hot_stand
by_feedback
enabled.

For more informati
on, see Read replicas.

–

max_used_
xact_ids

Transacti
ons

Transacti
ons

db.Transactions.ma
x_used_xact_ids

The number of
transactions that
haven't been
vacuumed.

Not applicable

max_conne
ctions

Users Connectio
ns

db.User.max_connec
tions

The maximum
number of
connections
allowed for a
DB instance as
configured in
max_conne
ctions
parameter.

Not applicable

Counter metrics for Performance Insights 1475

Amazon Relational Database Service User Guide

Counter Type Unit Metric Description Definition

archive_f
ailed_count

WAL Files
per
minute

db.WAL.archive_fai
led_count

The number of
failed attempts
for archiving WAL
files, in files per
minute.

Not applicable

SQL statistics for Performance Insights

SQL statistics are performance-related metrics about SQL queries that are collected by
Performance Insights. Performance Insights gathers statistics for each second that a query is
running and for each SQL call. The SQL statistics are an average for the selected time range.

A SQL digest is a composite of all queries having a given pattern but not necessarily having the
same literal values. The digest replaces literal values with a question mark. For example, SELECT *
FROM emp WHERE lname= ?. This digest might consist of the following child queries:

SELECT * FROM emp WHERE lname = 'Sanchez'
SELECT * FROM emp WHERE lname = 'Olagappan'
SELECT * FROM emp WHERE lname = 'Wu'

All engines support SQL statistics for digest queries.

For the region, DB engine, and instance class support information for this feature, see Amazon RDS
DB engine, Region, and instance class support for Performance Insights features

Topics

• SQL statistics for MariaDB and MySQL

• SQL statistics for Amazon RDS for Oracle

• SQL statistics for Amazon RDS for SQL Server

• SQL statistics for RDS PostgreSQL

SQL statistics for MariaDB and MySQL

MariaDB and MySQL collect SQL statistics only at the digest level. No statistics are shown at the
statement level.

SQL statistics for Performance Insights 1476

Amazon Relational Database Service User Guide

Topics

• Digest statistics for MariaDB and MySQL

• Per-second statistics for MariaDB and MySQL

• Per-call statistics for MariaDB and MySQL

• Primary statistics for MariaDB and MySQL

Digest statistics for MariaDB and MySQL

Performance Insights collects SQL digest statistics from the
events_statements_summary_by_digest table. The
events_statements_summary_by_digest table is managed by your database.

The digest table doesn't have an eviction policy. When the table is full, the AWS Management
Console shows the following message:

Performance Insights is unable to collect SQL Digest statistics on new queries because
 the table events_statements_summary_by_digest is full.
Please truncate events_statements_summary_by_digest table to clear the issue. Check the
 User Guide for more details.

In this situation, MariaDB and MySQL don't track SQL queries. To address this issue, Performance
Insights automatically truncates the digest table when both of the following conditions are met:

• The table is full.

• Performance Insights manages the Performance Schema automatically.

For automatic management, the performance_schema parameter must be set to 0 and the
Source must not be set to user. If Performance Insights isn't managing the Performance
Schema automatically, see Overview of the Performance Schema for Performance Insights on
Amazon RDS for MariaDB or MySQL.

In the AWS CLI, check the source of a parameter value by running the describe-db-parameters
command.

Per-second statistics for MariaDB and MySQL

The following SQL statistics are available for MariaDB and MySQL DB instances.

SQL statistics for Performance Insights 1477

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.count_star_per_sec Calls per second

db.sql_tokenized.stats.sum_timer_wai
t_per_sec

Average latency per second (in ms)

db.sql_tokenized.stats.sum_select_full_join_p
er_sec

Select full join per second

db.sql_tokenized.stats.sum_select_ra
nge_check_per_sec

Select range check per second

db.sql_tokenized.stats.sum_select_sc
an_per_sec

Select scan per second

db.sql_tokenized.stats.sum_sort_merg
e_passes_per_sec

Sort merge passes per second

db.sql_tokenized.stats.sum_sort_scan_per_sec Sort scans per second

db.sql_tokenized.stats.sum_sort_rang
e_per_sec

Sort ranges per second

db.sql_tokenized.stats.sum_sort_rows_per_sec Sort rows per second

db.sql_tokenized.stats.sum_rows_affe
cted_per_sec

Rows affected per second

db.sql_tokenized.stats.sum_rows_exam
ined_per_sec

Rows examined per second

db.sql_tokenized.stats.sum_rows_sent_per_sec Rows sent per second

db.sql_tokenized.stats.sum_created_t
mp_disk_tables_per_sec

Created temporary disk tables per second

db.sql_tokenized.stats.sum_created_t
mp_tables_per_sec

Created temporary tables per second

SQL statistics for Performance Insights 1478

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.sum_lock_time_per_sec Lock time per second (in ms)

Per-call statistics for MariaDB and MySQL

The following metrics provide per call statistics for a SQL statement.

Metric Unit

db.sql_tokenized.stats.sum_timer_wai
t_per_call

Average latency per call (in ms)

db.sql_tokenized.stats.sum_select_full_join_p
er_call

Select full joins per call

db.sql_tokenized.stats.sum_select_ra
nge_check_per_call

Select range check per call

db.sql_tokenized.stats.sum_select_sc
an_per_call

Select scans per call

db.sql_tokenized.stats.sum_sort_merg
e_passes_per_call

Sort merge passes per call

db.sql_tokenized.stats.sum_sort_scan_per_call Sort scans per call

db.sql_tokenized.stats.sum_sort_rang
e_per_call

Sort ranges per call

db.sql_tokenized.stats.sum_sort_rows_per_call Sort rows per call

db.sql_tokenized.stats.sum_rows_affe
cted_per_call

Rows affected per call

db.sql_tokenized.stats.sum_rows_exam
ined_per_call

Rows examined per call

SQL statistics for Performance Insights 1479

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.sum_rows_sent
_per_call

Rows sent per call

db.sql_tokenized.stats.sum_created_t
mp_disk_tables_per_call

Created temporary disk tables per call

db.sql_tokenized.stats.sum_created_t
mp_tables_per_call

Created temporary tables per call

db.sql_tokenized.stats.sum_lock_time_per_call Lock time per call (in ms)

Primary statistics for MariaDB and MySQL

The following SQL statistics are available for MariaDB and MySQL DB instances.

Metric Unit

db.sql_tokenized.stats.count_star Calls

db.sql_tokenized.stats.sum_timer_wait Wait time (in ms)

db.sql_tokenized.stats.sum_select_full_join Select full join

db.sql_tokenized.stats.sum_select_ra
nge_check

Select range checks

db.sql_tokenized.stats.sum_select_scan Select scans

db.sql_tokenized.stats.sum_sort_merg
e_passes

Sort merge passes

db.sql_tokenized.stats.sum_sort_scan Sort scans

db.sql_tokenized.stats.sum_sort_range Sort ranges

db.sql_tokenized.stats.sum_sort_rows Sort rows

db.sql_tokenized.stats.sum_rows_affected Rows affected

SQL statistics for Performance Insights 1480

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.sum_rows_examined Rows examined

db.sql_tokenized.stats.sum_rows_sent Rows sent

db.sql_tokenized.stats.sum_created_t
mp_disk_tables

Created temporary disk tables

db.sql_tokenized.stats.sum_created_t
mp_tables

Created temporary tables

db.sql_tokenized.stats.sum_lock_time Lock time (in ms)

SQL statistics for Amazon RDS for Oracle

Amazon RDS for Oracle collects SQL statistics both at the statement and digest level. At the
statement level, the ID column represents the value of V$SQL.SQL_ID. At the digest level, the ID
column shows the value of V$SQL.FORCE_MATCHING_SIGNATURE.

If the ID is 0 at the digest level, Oracle Database has determined that this statement is not suitable
for reuse. In this case, the child SQL statements could belong to different digests. However, the
statements are grouped together under the digest_text for the first SQL statement collected.

Topics

• Per-second statistics for Oracle

• Per-call statistics for Oracle

• Primary statistics for Oracle

Per-second statistics for Oracle

The following metrics provide per-second statistics for an Oracle SQL query.

Metric Unit

db.sql.stats.executions_per_sec Number of executions per second

db.sql.stats.elapsed_time_per_sec Average active executions (AAE)

SQL statistics for Performance Insights 1481

Amazon Relational Database Service User Guide

Metric Unit

db.sql.stats.rows_processed_per_sec Rows processed per second

db.sql.stats.buffer_gets_per_sec Buffer gets per second

db.sql.stats.physical_read_requests_per_sec Physical reads per second

db.sql.stats.physical_write_requests_per_sec Physical writes per second

db.sql.stats.total_sharable_mem_per_sec Total shareable memory per second (in bytes)

db.sql.stats.cpu_time_per_sec CPU time per second (in ms)

The following metrics provide per-second statistics for an Oracle SQL digest query.

Metric Unit

db.sql_tokenized.stats.executions_per_sec Number of executions per second

db.sql_tokenized.stats.elapsed_time_per_sec Average active executions (AAE)

db.sql_tokenized.stats.rows_processe
d_per_sec

Rows processed per second

db.sql_tokenized.stats.buffer_gets_per_sec Buffer gets per second

db.sql_tokenized.stats.physical_read_requests
_per_sec

Physical reads per second

db.sql_tokenized.stats.physical_write_request
s_per_sec

Physical writes per second

db.sql_tokenized.stats.total_sharabl
e_mem_per_sec

Total shareable memory per second (in bytes)

db.sql_tokenized.stats.cpu_time_per_sec CPU time per second (in ms)

SQL statistics for Performance Insights 1482

Amazon Relational Database Service User Guide

Per-call statistics for Oracle

The following metrics provide per-call statistics for an Oracle SQL statement.

Metric Unit

db.sql.stats.elapsed_time_per_exec Elapsed time per executions (in ms)

db.sql.stats.rows_processed_per_exec Rows processed per execution

db.sql.stats.buffer_gets_per_exec Buffer gets per execution

db.sql.stats.physical_read_requests_per_exec Physical reads per execution

db.sql.stats.physical_write_requests_per_exec Physical writes per execution

db.sql.stats.total_sharable_mem_per_exec Total shareable memory per execution (in
bytes)

db.sql.stats.cpu_time_per_exec CPU time per execution (in ms)

The following metrics provide per-call statistics for an Oracle SQL digest query.

Metric Unit

db.sql_tokenized.stats.elapsed_time_per_exec Elapsed time per executions (in ms)

db.sql_tokenized.stats.rows_processe
d_per_exec

Rows processed per execution

db.sql_tokenized.stats.buffer_gets_per_exec Buffer gets per execution

db.sql_tokenized.stats.physical_read_requests
_per_exec

Physical reads per execution

db.sql_tokenized.stats.physical_write_request
s_per_exec

Physical writes per execution

db.sql_tokenized.stats.total_sharabl
e_mem_per_exec

Total shareable memory per execution (in
bytes)

SQL statistics for Performance Insights 1483

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.cpu_time_per_exec CPU time per execution (in ms)

Primary statistics for Oracle

The following metrics provide primary statistics for an Oracle SQL query.

Metric Unit

db.sql.stats.executions Number of executions

db.sql.stats.elapsed_time Elapsed time (in ms)

db.sql.stats.rows_processed Rows processed

db.sql.stats.buffer_gets Buffer gets

db.sql.stats.physical_read_requests Physical reads

db.sql.stats.physical_write_requests Physical writes

db.sql.stats.total_sharable_mem Total shareable memory (in bytes)

db.sql.stats.cpu_time CPU time (in ms)

The following metrics provide primary statistics for an Oracle SQL digest query.

Metric Unit

db.sql_tokenized.stats.executions Number of executions

db.sql_tokenized.stats.elapsed_time Elapsed time (in ms)

db.sql_tokenized.stats.rows_processed Rows processed

db.sql_tokenized.stats.buffer_gets Buffer gets

db.sql_tokenized.stats.physical_read_requests Physical reads

SQL statistics for Performance Insights 1484

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.physical_write_requests Physical writes

db.sql_tokenized.stats.total_sharable_mem Total shareable memory (in bytes)

db.sql_tokenized.stats.cpu_time CPU time (in ms)

SQL statistics for Amazon RDS for SQL Server

Amazon RDS for SQL Server collects SQL statistics both at the statement and digest level. At the
statement level, the ID column represents the value of sql_handle. At the digest level, the ID
column shows the value of query_hash.

SQL Server returns NULL values for query_hash for a few statements. For example, ALTER INDEX,
CHECKPOINT, UPDATE STATISTICS, COMMIT TRANSACTION, FETCH NEXT FROM Cursor, and a
few INSERT statements, SELECT @<variable>, conditional statements, and executable stored
procedures. In this case, the sql_handle value is displayed as the ID at the digest level for that
statement.

Topics

• Per-second statistics for SQL Server

• Per-call statistics for SQL Server

• Primary statistics for SQL Server

Per-second statistics for SQL Server

The following metrics provide per-second statistics for a SQL Server SQL query.

Metric Unit

db.sql.stats.execution_count_per_sec Number of executions per second

db.sql.stats.total_elapsed_time_per_sec Total elapsed time per second

db.sql.stats.total_rows_per_sec Total rows processed per second

db.sql.stats.total_logical_reads_per_sec Total logical reads per second

SQL statistics for Performance Insights 1485

Amazon Relational Database Service User Guide

Metric Unit

db.sql.stats.total_logical_writes_per_sec Total logical writes per second

db.sql.stats.total_physical_reads_per_sec Total physical reads per second

db.sql.stats.total_worker_time_per_sec Total CPU time (in ms)

The following metrics provide per-second statistics for a SQL Server SQL digest query.

Metric Unit

db.sql_tokenized.stats.execution_cou
nt_per_sec

Number of execution per second

db.sql_tokenized.stats.total_elapsed_time_per
_sec

Total elapsed time per second

db.sql_tokenized.stats.total_rows_per_sec Total rows processed per second

db.sql_tokenized.stats.total_logical_reads_pe
r_sec

Total logical reads per second

db.sql_tokenized.stats.total_logical_writes_p
er_sec

Total logical writes per second

db.sql_tokenized.stats.total_physical_reads_p
er_sec

Total physical reads per second

db.sql_tokenized.stats.total_worker_time_per_
sec

Total CPU time (in ms)

Per-call statistics for SQL Server

The following metrics provide per-call statistics for a SQL Server SQL statement.

SQL statistics for Performance Insights 1486

Amazon Relational Database Service User Guide

Metric Unit

db.sql.stats.total_elapsed_time_per_call Total elapsed time per execution (in ms)

db.sql.stats.total_rows_per_call Total rows processed per execution

db.sql.stats.total_logical_reads_per_call Total logical reads per execution

db.sql.stats.total_logical_writes_per_call Total logical writes per execution

db.sql.stats.total_physical_reads_per_call Total physical reads per execution

db.sql.stats.total_worker_time_per_call Total CPU time per execution (in ms)

The following metrics provide per-call statistics for a SQL Server SQL digest query.

Metric Unit

db.sql_tokenized.stats.total_elapsed_time_per
_call

Total elapsed time per execution

db.sql_tokenized.stats.total_rows_per_call Total rows processed per execution

db.sql_tokenized.stats.total_logical_reads_pe
r_call

Total logical reads per execution

db.sql_tokenized.stats.total_logical_writes_p
er_call

Total logical writes per execution

db.sql_tokenized.stats.total_physical_reads_p
er_call

Total physical reads per execution

db.sql_tokenized.stats.total_worker_time_per_
call

Total CPU time per execution (in ms)

Primary statistics for SQL Server

The following metrics provide primary statistics for a SQL Server SQL query.

SQL statistics for Performance Insights 1487

Amazon Relational Database Service User Guide

Metric Unit

db.sql.stats.execution_count Number of executions

db.sql.stats.total_elapsed_time Total elapsed time (in ms)

db.sql.stats.total_rows Total rows processed

db.sql.stats.total_logical_reads Total logical reads

db.sql.stats.total_logical_writes Total logical writes

db.sql.stats.total_physical_reads Total physical reads

db.sql.stats.total_worker_time Total CPU time (in ms)

The following metrics provide primary statistics for a SQL Server SQL digest query.

Metric Unit

db.sql_tokenized.stats.execution_count Number of execution

db.sql_tokenized.stats.total_elapsed_time Total elapsed time (in ms)

db.sql_tokenized.stats.total_rows Total rows processed

db.sql_tokenized.stats.total_logical_reads Total logical reads

db.sql_tokenized.stats.total_logical_writes Total logical writes

db.sql_tokenized.stats.total_physical_reads Total physical reads

db.sql_tokenized.stats.total_worker_time Total CPU time (in ms)

SQL statistics for RDS PostgreSQL

For each SQL call and for each second that a query runs, Performance Insights collects SQL
statistics. RDS for PostgreSQL collect SQL statistics only at the digest–level. No statistics are shown
at the statement-level.

SQL statistics for Performance Insights 1488

Amazon Relational Database Service User Guide

Following, you can find information about digest-level statistics for RDS for PostgreSQL.

Topics

• Digest statistics for RDS PostgreSQL

• Per-second digest statistics for RDS PostgreSQL

• Per-call digest statistics for RDS PostgreSQL

• Primary statistics for RDS PostgreSQL

Digest statistics for RDS PostgreSQL

To view SQL digest statistics, RDS PostgreSQL must load the pg_stat_statements library. For
PostgreSQL DB instances that are compatible with PostgreSQL 11 or later, the database loads
this library by default. For PostgreSQL DB instances that are compatible with PostgreSQL 10
or earlier, enable this library manually. To enable it manually, add pg_stat_statements to
shared_preload_libraries in the DB parameter group associated with the DB instance. Then
reboot your DB instance. For more information, see Parameter groups for Amazon RDS.

Note

Performance Insights can only collect statistics for queries in pg_stat_activity that
aren't truncated. By default, PostgreSQL databases truncate queries longer than 1,024
bytes. To increase the query size, change the track_activity_query_size parameter
in the DB parameter group associated with your DB instance. When you change this
parameter, a DB instance reboot is required.

Per-second digest statistics for RDS PostgreSQL

The following SQL digest statistics are available for PostgreSQL DB instances.

Metric Unit

db.sql_tokenized.stats.calls_per_sec Calls per second

db.sql_tokenized.stats.rows_per_sec Rows per second

db.sql_tokenized.stats.total_time_per_sec Average active executions per second (AAE)

SQL statistics for Performance Insights 1489

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.shared_blks_hit_per_se
c

Block hits per second

db.sql_tokenized.stats.shared_blks_read_per_s
ec

Block reads per second

db.sql_tokenized.stats.shared_blks_dirtied_pe
r_sec

Blocks dirtied per second

db.sql_tokenized.stats.shared_blks_written_pe
r_sec

Block writes per second

db.sql_tokenized.stats.local_blks_hit_per_sec Local block hits per second

db.sql_tokenized.stats.local_blks_read_per_se
c

Local block reads per second

db.sql_tokenized.stats.local_blks_dirtied_per
_sec

Local block dirtied per second

db.sql_tokenized.stats.local_blks_written_per
_sec

Local block writes per second

db.sql_tokenized.stats.temp_blks_wri
tten_per_sec

Temporary writes per second

db.sql_tokenized.stats.temp_blks_rea
d_per_sec

Temporary reads per second

db.sql_tokenized.stats.blk_read_time_per_sec Average concurrent reads per second

db.sql_tokenized.stats.blk_write_time_per_sec Average concurrent writes per second

Per-call digest statistics for RDS PostgreSQL

The following metrics provide per call statistics for a SQL statement.

SQL statistics for Performance Insights 1490

Amazon Relational Database Service User Guide

Metric Unit

db.sql_tokenized.stats.rows_per_call Rows per call

db.sql_tokenized.stats.avg_latency_per_call Average latency per call (in ms)

db.sql_tokenized.stats.shared_blks_hit_per_ca
ll

Block hits per call

db.sql_tokenized.stats.shared_blks_read_per_c
all

Block reads per call

db.sql_tokenized.stats.shared_blks_written_pe
r_call

Block writes per call

db.sql_tokenized.stats.shared_blks_dirtied_pe
r_call

Blocks dirtied per call

db.sql_tokenized.stats.local_blks_hit_per_call Local block hits per call

db.sql_tokenized.stats.local_blks_read_per_ca
ll

Local block reads per call

db.sql_tokenized.stats.local_blks_dirtied_per
_call

Local block dirtied per call

db.sql_tokenized.stats.local_blks_written_per
_call

Local block writes per call

db.sql_tokenized.stats.temp_blks_wri
tten_per_call

Temporary block writes per call

db.sql_tokenized.stats.temp_blks_rea
d_per_call

Temporary block reads per call

db.sql_tokenized.stats.blk_read_time_per_call Read time per call (in ms)

db.sql_tokenized.stats.blk_write_time_per_call Write time per call (in ms)

SQL statistics for Performance Insights 1491

Amazon Relational Database Service User Guide

Primary statistics for RDS PostgreSQL

The following SQL statistics are available for PostgreSQL DB instances.

Metric Unit

db.sql_tokenized.stats.calls Calls

db.sql_tokenized.stats.rows Rows

db.sql_tokenized.stats.total_time Total time (in ms)

db.sql_tokenized.stats.shared_blks_hit Block hits

db.sql_tokenized.stats.shared_blks_read Block reads

db.sql_tokenized.stats.shared_blks_dirtied Blocks dirtied

db.sql_tokenized.stats.shared_blks_written Block writes

db.sql_tokenized.stats.local_blks_hit Local block hits

db.sql_tokenized.stats.local_blks_read Local block reads

db.sql_tokenized.stats.local_blks_dirtied Local blocks dirtied

db.sql_tokenized.stats.local_blks_written Local block writes

db.sql_tokenized.stats.temp_blks_written Temporary writes

db.sql_tokenized.stats.temp_blks_read Temporary reads

db.sql_tokenized.stats.blk_read_time Average concurrent reads (in ms)

db.sql_tokenized.stats.blk_write_time Average concurrent writes (in ms)

For more information about these metrics, see pg_stat_statements in the PostgreSQL
documentation.

SQL statistics for Performance Insights 1492

https://www.postgresql.org/docs/current/pgstatstatements.html

Amazon Relational Database Service User Guide

OS metrics in Enhanced Monitoring

Amazon RDS provides metrics in real time for the operating system (OS) that your DB instance runs
on. RDS delivers the metrics from Enhanced Monitoring to your Amazon CloudWatch Logs account.
The following tables list the OS metrics available using Amazon CloudWatch Logs.

Topics

• OS metrics for Db2, MariaDB, MySQL, Oracle, and PostgreSQL

• OS metrics for Microsoft SQL Server

OS metrics for Db2, MariaDB, MySQL, Oracle, and PostgreSQL

Group Metric Console
name

Description

engine Not
applicable

The database engine for the DB instance.

instanceI
D

Not
applicable

The DB instance identifier.

instanceR
esourceID

Not
applicable

An immutable identifier for the DB instance that is
unique to an AWS Region, also used as the log stream
identifier.

numVCPUs Not
applicable

The number of virtual CPUs for the DB instance.

timestamp Not
applicable

The time at which the metrics were taken.

uptime Not
applicable

The amount of time that the DB instance has been
active.

General

version Not
applicable

The version of the OS metrics' stream JSON format.

OS metrics in Enhanced Monitoring 1493

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

guest CPU Guest The percentage of CPU in use by guest programs.

idle CPU Idle The percentage of CPU that is idle.

irq CPU IRQ The percentage of CPU in use by software interrupts.

nice CPU Nice The percentage of CPU in use by programs running at
lowest priority.

steal CPU Steal The percentage of CPU in use by other virtual
machines.

system CPU
System

The percentage of CPU in use by the kernel.

total CPU Total The total percentage of the CPU in use. This value
includes the nice value.

user CPU User The percentage of CPU in use by user programs.

cpuUtiliz
ation

wait CPU Wait The percentage of CPU unused while waiting for I/O
access.

avgQueueL
en

Avg Queue
Size

The number of requests waiting in the I/O device's
queue.

avgReqSz Ave
Request
Size

The average request size, in kilobytes.

await Disk I/O
Await

The number of milliseconds required to respond to
requests, including queue time and service time.

diskIO

device Not
applicable

The identifier of the disk device in use.

OS metrics in Enhanced Monitoring 1494

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

readIOsPS Read IO/s The number of read operations per second.

readKb Read Total The total number of kilobytes read.

readKbPS Read Kb/s The number of kilobytes read per second.

readLaten
cy

Read
Latency

The elapsed time between the submission of a read I/
O request and its completion, in milliseconds.

This metric is only available for Amazon Aurora.

readThrou
ghput

Read
Throughpu
t

The amount of network throughput used by requests
to the DB cluster, in bytes per second.

This metric is only available for Amazon Aurora.

rrqmPS Rrqms The number of merged read requests queued per
second.

tps TPS The number of I/O transactions per second.

util Disk I/O
Util

The percentage of CPU time during which requests
were issued.

writeIOsP
S

Write IO/s The number of write operations per second.

writeKb Write
Total

The total number of kilobytes written.

writeKbPS Write Kb/s The number of kilobytes written per second.

OS metrics in Enhanced Monitoring 1495

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

writeLate
ncy

Write
Latency

The average elapsed time between the submission of
a write I/O request and its completion, in milliseco
nds.

This metric is only available for Amazon Aurora.

writeThro
ughput

Write
Throughpu
t

The amount of network throughput used by
responses from the DB cluster, in bytes per second.

This metric is only available for Amazon Aurora.

wrqmPS Wrqms The number of merged write requests queued per
second.

avgQueueL
en

Physical
Devices
Avg Queue
Size

The number of requests waiting in the I/O device's
queue.

avgReqSz Physical
Devices
Ave
Request
Size

The average request size, in kilobytes.

await Physical
Devices
Disk I/O
Await

The number of milliseconds required to respond to
requests, including queue time and service time.

device Not
applicable

The identifier of the disk device in use.

physicalD
eviceIO

readIOsPS Physical
Devices
Read IO/s

The number of read operations per second.

OS metrics in Enhanced Monitoring 1496

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

readKb Physical
Devices
Read Total

The total number of kilobytes read.

readKbPS Physical
Devices
Read Kb/s

The number of kilobytes read per second.

rrqmPS Physical
Devices
Rrqms

The number of merged read requests queued per
second.

tps Physical
Devices
TPS

The number of I/O transactions per second.

util Physical
Devices
Disk I/O
Util

The percentage of CPU time during which requests
were issued.

writeIOsP
S

Physical
Devices
Write IO/s

The number of write operations per second.

writeKb Physical
Devices
Write
Total

The total number of kilobytes written.

writeKbPS Physical
Devices
Write Kb/s

The number of kilobytes written per second.

OS metrics in Enhanced Monitoring 1497

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

wrqmPS Physical
Devices
Wrqms

The number of merged write requests queued per
second.

maxFiles Max
Inodes

The maximum number of files that can be created for
the file system.

mountPoin
t

Not
applicable

The path to the file system.

name Not
applicable

The name of the file system.

total Total
Filesystem

The total number of disk space available for the file
system, in kilobytes.

used Used
Filesystem

The amount of disk space used by files in the file
system, in kilobytes.

usedFileP
ercent

Used
Inodes

The percentage of available files in use.

usedFiles Used% The number of files in the file system.

fileSys

usedPerce
nt

Used
Filesystem

The percentage of the file-system disk space in use.

fifteen Load Avg
15 min

The number of processes requesting CPU time over
the last 15 minutes.

five Load Avg
5 min

The number of processes requesting CPU time over
the last 5 minutes.

loadAvera
geMinute

one Load Avg
1 min

The number of processes requesting CPU time over
the last minute.

OS metrics in Enhanced Monitoring 1498

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

active Active
Memory

The amount of assigned memory, in kilobytes.

buffers Buffered
Memory

The amount of memory used for buffering I/O
requests prior to writing to the storage device, in
kilobytes.

cached Cached
Memory

The amount of memory used for caching file system–
based I/O.

dirty Dirty
Memory

The amount of memory pages in RAM that have been
modified but not written to their related data block in
storage, in kilobytes.

free Free
Memory

The amount of unassigned memory, in kilobytes.

hugePages
Free

Huge
Pages Free

The number of free huge pages. Huge pages are a
feature of the Linux kernel.

hugePages
Rsvd

Huge
Pages
Rsvd

The number of committed huge pages.

hugePages
Size

Huge
Pages Size

The size for each huge pages unit, in kilobytes.

hugePages
Surp

Huge
Pages
Surp

The number of available surplus huge pages over the
total.

memory

hugePages
Total

Huge
Pages
Total

The total number of huge pages.

OS metrics in Enhanced Monitoring 1499

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

inactive Inactive
Memory

The amount of least-frequently used memory pages,
in kilobytes.

mapped Mapped
Memory

The total amount of file-system contents that is
memory mapped inside a process address space, in
kilobytes.

pageTable
s

Page
Tables

The amount of memory used by page tables, in
kilobytes.

slab Slab
Memory

The amount of reusable kernel data structures, in
kilobytes.

total Total
Memory

The total amount of memory, in kilobytes.

writeback Writeback
Memory

The amount of dirty pages in RAM that are still being
written to the backing storage, in kilobytes.

interface Not
applicable

The identifier for the network interface being used
for the DB instance.

rx RX The number of bytes received per second.

network

tx TX The number of bytes uploaded per second.

cpuUsedPc CPU % The percentage of CPU used by the process.

id Not
applicable

The identifier of the process.

memoryUse
dPc

MEM% The percentage of memory used by the process.

processLi
st

name Not
applicable

The name of the process.

OS metrics in Enhanced Monitoring 1500

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

parentID Not
applicable

The process identifier for the parent process of the
process.

rss RES The amount of RAM allocated to the process, in
kilobytes.

tgid Not
applicable

The thread group identifier, which is a number
representing the process ID to which a thread
belongs. This identifier is used to group threads from
the same process.

vss VIRT The amount of virtual memory allocated to the
process, in kilobytes.

total Swap The amount of swap memory available, in kilobytes.

in Swaps in The amount of memory, in kilobytes, swapped in
from disk.

out Swaps out The amount of memory, in kilobytes, swapped out to
disk.

free Free Swap The amount of swap memory free, in kilobytes.

swap

cached Committed
Swap

The amount of swap memory, in kilobytes, used as
cache memory.

blocked Tasks
Blocked

The number of tasks that are blocked.

running Tasks
Running

The number of tasks that are running.

tasks

sleeping Tasks
Sleeping

The number of tasks that are sleeping.

OS metrics in Enhanced Monitoring 1501

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

stopped Tasks
Stopped

The number of tasks that are stopped.

total Tasks
Total

The total number of tasks.

zombie Tasks
Zombie

The number of child tasks that are inactive with an
active parent task.

OS metrics for Microsoft SQL Server

Group Metric Console
name

Description

engine Not applicabl
e

The database engine for the DB instance.

instanceI
D

Not applicabl
e

The DB instance identifier.

instanceR
esourceID

Not applicabl
e

An immutable identifier for the DB instance
that is unique to an AWS Region, also used as
the log stream identifier.

numVCPUs Not applicabl
e

The number of virtual CPUs for the DB
instance.

timestamp Not applicabl
e

The time at which the metrics were taken.

uptime Not applicabl
e

The amount of time that the DB instance has
been active.

General

version Not applicabl
e

The version of the OS metrics' stream JSON
format.

OS metrics in Enhanced Monitoring 1502

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

idle CPU Idle The percentage of CPU that is idle.

kern CPU Kernel The percentage of CPU in use by the kernel.

cpuUtiliz
ation

user CPU User The percentage of CPU in use by user
programs.

name Not applicabl
e

The identifier for the disk.

totalKb Total Disk
Space

The total space of the disk, in kilobytes.

usedKb Used Disk
Space

The amount of space used on the disk, in
kilobytes.

usedPc Used Disk
Space %

The percentage of space used on the disk.

availKb Available
Disk Space

The space available on the disk, in kilobytes.

availPc Available
Disk Space
%

The percentage of space available on the disk.

rdCountPS Reads/s The number of read operations per second

rdBytesPS Read Kb/s The number of bytes read per second.

wrCountPS Write IO/s The number of write operations per second.

disks

wrBytesPS Write Kb/s The amount of bytes written per second.

OS metrics in Enhanced Monitoring 1503

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

commitTot
Kb

Commit
Total

The amount of pagefile-backed virtual address
space in use, that is, the current commit
charge. This value is composed of main
memory (RAM) and disk (pagefiles).

commitLim
itKb

Maximum
Commit

The maximum possible value for the
commitTotKb metric. This value is the sum
of the current pagefile size plus the physical
memory available for pageable contents,
excluding RAM that is assigned to nonpageab
le areas.

commitPea
kKb

Commit
Peak

The largest value of the commitTotKb
metric since the operating system was last
started.

kernTotKb Total Kernel
Memory

The sum of the memory in the paged and
nonpaged kernel pools, in kilobytes.

kernPaged
Kb

Paged
Kernel
Memory

The amount of memory in the paged kernel
pool, in kilobytes.

kernNonpa
gedKb

Nonpaged
Kerenel
Memory

The amount of memory in the nonpaged
kernel pool, in kilobytes.

pageSize Page Size The size of a page, in bytes.

physTotKb Total
Memory

The amount of physical memory, in kilobytes.

memory

physAvail
Kb

Available
Memory

The amount of available physical memory, in
kilobytes.

OS metrics in Enhanced Monitoring 1504

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

sqlServer
TotKb

SQL Server
Total
Memory

The amount of memory committed to SQL
Server, in kilobytes.

sysCacheK
b

System
Cache

The amount of system cache memory, in
kilobytes.

interface Not applicabl
e

The identifier for the network interface being
used for the DB instance.

rdBytesPS Network
Read Kb/s

The number of bytes received per second.

network

wrBytesPS Network
Write Kb/s

The number of bytes sent per second.

cpuUsedPc Used % The percentage of CPU used by the process.

memUsedPc MEM% The percentage of total memory used by the
process.

name Not applicabl
e

The name of the process.

pid Not applicabl
e

The identifier of the process. This value is
not present for processes that are owned by
Amazon RDS.

ppid Not applicabl
e

The process identifier for the parent of this
process. This value is only present for child
processes.

processLi
st

tid Not applicabl
e

The thread identifier. This value is only present
for threads. The owning process can be
identified by using the pid value.

OS metrics in Enhanced Monitoring 1505

Amazon Relational Database Service User Guide

Group Metric Console
name

Description

workingSe
tKb

Not applicabl
e

The amount of memory in the private working
set plus the amount of memory that is in use
by the process and can be shared with other
processes, in kilobytes.

workingSe
tPrivKb

Not applicabl
e

The amount of memory that is in use by
a process, but can't be shared with other
processes, in kilobytes.

workingSe
tShareabl
eKb

Not applicabl
e

The amount of memory that is in use by
a process and can be shared with other
processes, in kilobytes.

virtKb Not applicabl
e

The amount of virtual address space the
process is using, in kilobytes. Use of virtual
address space doesn't necessarily imply
corresponding use of either disk or main
memory pages.

handles Handles The number of handles that the system is
using.

processes Processes The number of processes running on the
system.

system

threads Threads The number of threads running on the system.

OS metrics in Enhanced Monitoring 1506

Amazon Relational Database Service User Guide

Monitoring events, logs, and streams in an Amazon RDS
DB instance

When you monitor your Amazon RDS databases and your other AWS solutions, your goal is to
maintain the following:

• Reliability

• Availability

• Performance

• Security

Monitoring metrics in an Amazon RDS instance explains how to monitor your instance using
metrics. A complete solution must also monitor database events, log files, and activity streams.
AWS provides you with the following monitoring tools:

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time
data from your own applications, Software-as-a-Service (SaaS) applications, and AWS services.
EventBridge routes that data to targets such as AWS Lambda. This way, you can monitor events
that happen in services and build event-driven architectures. For more information, see the
Amazon EventBridge User Guide.

• Amazon CloudWatch Logs provides a way to monitor, store, and access your log files from
Amazon RDS instances, AWS CloudTrail, and other sources. Amazon CloudWatch Logs can
monitor information in the log files and notify you when certain thresholds are met. You can
also archive your log data in highly durable storage. For more information, see the Amazon
CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account.
CloudTrail delivers the log files to an Amazon S3 bucket that you specify. You can identify which
users and accounts called AWS, the source IP address from which the calls were made, and when
the calls occurred. For more information, see the AWS CloudTrail User Guide.

• Database Activity Streams is an Amazon RDS feature that provides a near real-time stream of
the activity in your DB instance. Amazon RDS pushes activities to an Amazon Kinesis data stream.
The Kinesis stream is created automatically. From Kinesis, you can configure AWS services such as
Amazon Data Firehose and AWS Lambda to consume the stream and store the data.

1507

https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Relational Database Service User Guide

Topics

• Viewing logs, events, and streams in the Amazon RDS console

• Monitoring Amazon RDS events

• Monitoring Amazon RDS log files

• Monitoring Amazon RDS API calls in AWS CloudTrail

• Monitoring Amazon RDS with Database Activity Streams

• Monitoring threats with Amazon GuardDuty RDS Protection

Viewing logs, events, and streams in the Amazon RDS console

Amazon RDS integrates with AWS services to show information about logs, events, and database
activity streams in the RDS console.

The Logs & events tab for your RDS DB instance shows the following information:

• Amazon CloudWatch alarms – Shows any metric alarms that you have configured for the DB
instance. If you haven't configured alarms, you can create them in the RDS console. For more
information, see Monitoring Amazon RDS metrics with Amazon CloudWatch.

• Recent events – Shows a summary of events (environment changes) for your RDS DB instance .
For more information, see Viewing Amazon RDS events.

• Logs – Shows database log files generated by a DB instance. For more information, see
Monitoring Amazon RDS log files.

The Configuration tab displays information about database activity streams.

To view logs, events, and streams for your DB instance in the RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that you want to monitor.

The database page appears. The following example shows an Oracle database named orclb.

Viewing logs, events, and streams in the Amazon RDS console 1508

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. Choose Logs & events.

The Logs & events section appears.

Viewing logs, events, and streams in the Amazon RDS console 1509

Amazon Relational Database Service User Guide

5. Choose Configuration.

The following example shows the status of the database activity streams for your DB instance.

Viewing logs, events, and streams in the Amazon RDS console 1510

Amazon Relational Database Service User Guide

Monitoring Amazon RDS events

An event indicates a change in an environment. This can be an AWS environment, an SaaS partner
service or application, or a custom application or service. For descriptions of the RDS events, see
Amazon RDS event categories and event messages.

Topics

• Overview of events for Amazon RDS

• Viewing Amazon RDS events

• Working with Amazon RDS event notification

• Creating a rule that triggers on an Amazon RDS event

• Amazon RDS event categories and event messages

Overview of events for Amazon RDS

An RDS event indicates a change in the Amazon RDS environment. For example, Amazon RDS
generates an event when the state of a DB instance changes from pending to running. Amazon
RDS delivers events to EventBridge in near-real time.

Note

Amazon RDS emits events on a best effort basis. We recommend that you avoid writing
programs that depend on the order or existence of notification events, because they might
be out of sequence or missing.

Amazon RDS records events that relate to the following resources:

• DB instances

For a list of DB instance events, see DB instance events.

• DB parameter groups

For a list of DB parameter group events, see DB parameter group events.

• DB security groups

For a list of DB security group events, see DB security group events.

Monitoring RDS events 1511

Amazon Relational Database Service User Guide

• DB snapshots

For a list of DB snapshot events, see DB snapshot events.

• RDS Proxy events

For a list of RDS Proxy events, see RDS Proxy events.

• Blue/green deployment events

For a list of blue/green deployment events, see Blue/green deployment events.

This information includes the following:

• The date and time of the event

• The source name and source type of the event

• A message associated with the event

• Event notifications include tags from when the message was sent and may not reflect tags at the
time when the event occurred

Overview of events for Amazon RDS 1512

Amazon Relational Database Service User Guide

Viewing Amazon RDS events

You can retrieve the following event information for your Amazon RDS resources:

• Resource name

• Resource type

• Time of the event

• Message summary of the event

You can access events in the following parts of the AWS Management Console:

• The Events tab, which shows events from the past 24 hours.

• The Recent events table in the Logs & events section in the Databases tab, which can show
events for up to the past 2 weeks.

You can also retrieve events by using the describe-events AWS CLI command, or the DescribeEvents
RDS API operation. If you use the AWS CLI or the RDS API to view events, you can retrieve events
for up to the past 14 days.

Note

If you need to store events for longer periods of time, you can send Amazon RDS events
to EventBridge. For more information, see Creating a rule that triggers on an Amazon RDS
event

For descriptions of the Amazon RDS events, see Amazon RDS event categories and event messages.

To access detailed information about events using AWS CloudTrail, including request parameters,
see CloudTrail events.

Console

To view all Amazon RDS events for the past 24 hours

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Viewing Amazon RDS events 1513

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Events.

The available events appear in a list.

3. (Optional) Enter a search term to filter your results.

The following example shows a list of events filtered by the characters stopped.

AWS CLI

To view all events generated in the last hour, call describe-events with no parameters.

aws rds describe-events

The following sample output shows that a DB instance has been stopped.

{
 "Events": [
 {
 "EventCategories": [
 "notification"
],
 "SourceType": "db-instance",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:testinst",
 "Date": "2022-04-22T21:31:00.681Z",
 "Message": "DB instance stopped",
 "SourceIdentifier": "testinst"
 }
]
}

Viewing Amazon RDS events 1514

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Relational Database Service User Guide

To view all Amazon RDS events for the past 10080 minutes (7 days), call the describe-events AWS
CLI command and set the --duration parameter to 10080.

aws rds describe-events --duration 10080

The following example shows the events in the specified time range for DB instance test-
instance.

aws rds describe-events \
 --source-identifier test-instance \
 --source-type db-instance \
 --start-time 2022-03-13T22:00Z \
 --end-time 2022-03-13T23:59Z

The following sample output shows the status of a backup.

{
 "Events": [
 {
 "SourceType": "db-instance",
 "SourceIdentifier": "test-instance",
 "EventCategories": [
 "backup"
],
 "Message": "Backing up DB instance",
 "Date": "2022-03-13T23:09:23.983Z",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:test-instance"
 },
 {
 "SourceType": "db-instance",
 "SourceIdentifier": "test-instance",
 "EventCategories": [
 "backup"
],
 "Message": "Finished DB Instance backup",
 "Date": "2022-03-13T23:15:13.049Z",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:test-instance"
 }
]
}

Viewing Amazon RDS events 1515

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Relational Database Service User Guide

API

You can view all Amazon RDS instance events for the past 14 days by calling the DescribeEvents
RDS API operation and setting the Duration parameter to 20160.

Viewing Amazon RDS events 1516

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html

Amazon Relational Database Service User Guide

Working with Amazon RDS event notification

Amazon RDS uses the Amazon Simple Notification Service (Amazon SNS) to provide notification
when an Amazon RDS event occurs. These notifications can be in any notification form supported
by Amazon SNS for an AWS Region, such as an email, a text message, or a call to an HTTP
endpoint.

Topics

• Overview of Amazon RDS event notification

• Granting permissions to publish notifications to an Amazon SNS topic

• Subscribing to Amazon RDS event notification

• Amazon RDS event notification tags and attributes

• Listing Amazon RDS event notification subscriptions

• Modifying an Amazon RDS event notification subscription

• Adding a source identifier to an Amazon RDS event notification subscription

• Removing a source identifier from an Amazon RDS event notification subscription

• Listing the Amazon RDS event notification categories

• Deleting an Amazon RDS event notification subscription

Overview of Amazon RDS event notification

Amazon RDS groups events into categories that you can subscribe to so that you can be notified
when an event in that category occurs.

Topics

• RDS resources eligible for event subscription

• Basic process for subscribing to Amazon RDS event notifications

• Delivery of RDS event notifications

• Billing for Amazon RDS event notifications

• Examples of Amazon RDS events using Amazon EventBridge

RDS resources eligible for event subscription

You can subscribe to an event category for the following resources:

Working with Amazon RDS event notification 1517

Amazon Relational Database Service User Guide

• DB instance

• DB snapshot

• DB parameter group

• DB security group

• RDS Proxy

• Custom engine version

For example, if you subscribe to the backup category for a given DB instance, you're notified
whenever a backup-related event occurs that affects the DB instance. If you subscribe to a
configuration change category for a DB instance, you're notified when the DB instance is changed.
You also receive notification when an event notification subscription changes.

You might want to create several different subscriptions. For example, you might create one
subscription that receives all event notifications for all DB instances and another subscription that
includes only critical events for a subset of the DB instances. For the second subscription, specify
one or more DB instances in the filter.

Basic process for subscribing to Amazon RDS event notifications

The process for subscribing to Amazon RDS event notification is as follows:

1. You create an Amazon RDS event notification subscription by using the Amazon RDS console,
AWS CLI, or API.

Amazon RDS uses the ARN of an Amazon SNS topic to identify each subscription. The Amazon
RDS console creates the ARN for you when you create the subscription. Create the ARN by using
the Amazon SNS console, the AWS CLI, or the Amazon SNS API.

2. Amazon RDS sends an approval email or SMS message to the addresses you submitted with your
subscription.

3. You confirm your subscription by choosing the link in the notification you received.

4. The Amazon RDS console updates the My Event Subscriptions section with the status of your
subscription.

5. Amazon RDS begins sending the notifications to the addresses that you provided when you
created the subscription.

Working with Amazon RDS event notification 1518

Amazon Relational Database Service User Guide

To learn about identity and access management when using Amazon SNS, see Identity and access
management in Amazon SNS in the Amazon Simple Notification Service Developer Guide.

You can use AWS Lambda to process event notifications from a DB instance. For more information,
see Using AWS Lambda with Amazon RDS in the AWS Lambda Developer Guide.

Delivery of RDS event notifications

Amazon RDS sends notifications to the addresses that you provide when you create the
subscription. The notification can include message attributes which provide structured metadata
about the message. For more information about message attributes, see Amazon RDS event
categories and event messages.

Event notifications might take up to five minutes to be delivered.

Important

Amazon RDS doesn't guarantee the order of events sent in an event stream. The event
order is subject to change.

When Amazon SNS sends a notification to a subscribed HTTP or HTTPS endpoint, the POST
message sent to the endpoint has a message body that contains a JSON document. For more
information, see Amazon SNS message and JSON formats in the Amazon Simple Notification
Service Developer Guide.

You can configure SNS to notify you with text messages. For more information, see Mobile text
messaging (SMS) in the Amazon Simple Notification Service Developer Guide.

To turn off notifications without deleting a subscription, choose No for Enabled in the Amazon RDS
console. Or you can set the Enabled parameter to false using the AWS CLI or Amazon RDS API.

Billing for Amazon RDS event notifications

Billing for Amazon RDS event notification is through Amazon SNS. Amazon SNS fees apply when
using event notification. For more information about Amazon SNS billing, see Amazon Simple
Notification Service pricing.

Working with Amazon RDS event notification 1519

https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/services-rds.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-and-json-formats.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
http://aws.amazon.com/sns/#pricing
http://aws.amazon.com/sns/#pricing

Amazon Relational Database Service User Guide

Examples of Amazon RDS events using Amazon EventBridge

The following examples illustrate different types of Amazon RDS events in JSON format. For a
tutorial that shows you how to capture and view events in JSON format, see Tutorial: Log DB
instance state changes using Amazon EventBridge.

Topics

• Example of a DB instance event

• Example of a DB parameter group event

• Example of a DB snapshot event

Example of a DB instance event

The following is an example of a DB instance event in JSON format. The event shows that RDS
performed a multi-AZ failover for the instance named my-db-instance. The event ID is RDS-
EVENT-0049.

{
 "version": "0",
 "id": "68f6e973-1a0c-d37b-f2f2-94a7f62ffd4e",
 "detail-type": "RDS DB Instance Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-09-27T22:36:43Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:db:my-db-instance"
],
 "detail": {
 "EventCategories": [
 "failover"
],
 "SourceType": "DB_INSTANCE",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:my-db-instance",
 "Date": "2018-09-27T22:36:43.292Z",
 "Message": "A Multi-AZ failover has completed.",
 "SourceIdentifier": "my-db-instance",
 "EventID": "RDS-EVENT-0049"
 }
}

Working with Amazon RDS event notification 1520

Amazon Relational Database Service User Guide

Example of a DB parameter group event

The following is an example of a DB parameter group event in JSON format. The event shows that
the parameter time_zone was updated in parameter group my-db-param-group. The event ID is
RDS-EVENT-0037.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Parameter Group Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:pg:my-db-param-group"
],
 "detail": {
 "EventCategories": [
 "configuration change"
],
 "SourceType": "DB_PARAM",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:pg:my-db-param-group",
 "Date": "2018-10-06T12:26:13.882Z",
 "Message": "Updated parameter time_zone to UTC with apply method immediate",
 "SourceIdentifier": "my-db-param-group",
 "EventID": "RDS-EVENT-0037"
 }
}

Example of a DB snapshot event

The following is an example of a DB snapshot event in JSON format. The event shows the deletion
of the snapshot named my-db-snapshot. The event ID is RDS-EVENT-0041.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Snapshot Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",

Working with Amazon RDS event notification 1521

Amazon Relational Database Service User Guide

 "resources": [
 "arn:aws:rds:us-east-1:123456789012:snapshot:rds:my-db-snapshot"
],
 "detail": {
 "EventCategories": [
 "deletion"
],
 "SourceType": "SNAPSHOT",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:snapshot:rds:my-db-snapshot",
 "Date": "2018-10-06T12:26:13.882Z",
 "Message": "Deleted manual snapshot",
 "SourceIdentifier": "my-db-snapshot",
 "EventID": "RDS-EVENT-0041"
 }
}

Working with Amazon RDS event notification 1522

Amazon Relational Database Service User Guide

Granting permissions to publish notifications to an Amazon SNS topic

To grant Amazon RDS permissions to publish notifications to an Amazon Simple Notification
Service (Amazon SNS) topic, attach an AWS Identity and Access Management (IAM) policy to the
destination topic. For more information about permissions, see Example cases for Amazon Simple
Notification Service access control in the Amazon Simple Notification Service Developer Guide.

By default, an Amazon SNS topic has a policy allowing all Amazon RDS resources within the
same account to publish notifications to it. You can attach a custom policy to allow cross-account
notifications, or to restrict access to certain resources.

The following is an example of an IAM policy that you attach to the destination Amazon SNS topic.
It restricts the topic to DB instances with names that match the specified prefix. To use this policy,
specify the following values:

• Resource – The Amazon Resource Name (ARN) for your Amazon SNS topic

• SourceARN – Your RDS resource ARN

• SourceAccount – Your AWS account ID

To see a list of resource types and their ARNs, see Resources Defined by Amazon RDS in the Service
Authorization Reference.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.rds.amazonaws.com"
 },
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:us-east-1:123456789012:topic_name",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:rds:us-east-1:123456789012:db:prefix-*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"

Working with Amazon RDS event notification 1523

https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-resources-for-iam-policies

Amazon Relational Database Service User Guide

 }
 }
 }
]
}

Working with Amazon RDS event notification 1524

Amazon Relational Database Service User Guide

Subscribing to Amazon RDS event notification

The simplest way to create a subscription is with the RDS console. If you choose to create event
notification subscriptions using the CLI or API, you must create an Amazon Simple Notification
Service topic and subscribe to that topic with the Amazon SNS console or Amazon SNS API.
You will also need to retain the Amazon Resource Name (ARN) of the topic because it is used
when submitting CLI commands or API operations. For information on creating an SNS topic and
subscribing to it, see Getting started with Amazon SNS in the Amazon Simple Notification Service
Developer Guide.

You can specify the type of source you want to be notified of and the Amazon RDS source that
triggers the event:

Source type

The type of source. For example, Source type might be Instances. You must choose a source
type.

Resources to include

The Amazon RDS resources that are generating the events. For example, you might choose
Select specific instances and then myDBInstance1.

The following table explains the result when you specify or don't specify Resources to include.

Resources to
include

Description Example

Specified RDS notifies you about all events for the
specified resource only.

If your Source type is Instances
 and your resource is myDBInsta
nce1, RDS notifies you about all
events for myDBInstance1 only.

Not specified RDS notifies you about the events for the
specified source type for all your Amazon
RDS resources.

If your Source type is Instances
, RDS notifies you about all
instance-related events in your
account.

Working with Amazon RDS event notification 1525

https://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html

Amazon Relational Database Service User Guide

An Amazon SNS topic subscriber receives every message published to the topic by default. To
receive only a subset of the messages, the subscriber must assign a filter policy to the topic
subscription. For more information about SNS message filtering, see Amazon SNS message
filtering in the Amazon Simple Notification Service Developer Guide

Console

To subscribe to RDS event notification

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In navigation pane, choose Event subscriptions.

3. In the Event subscriptions pane, choose Create event subscription.

4. Enter your subscription details as follows:

a. For Name, enter a name for the event notification subscription.

b. For Send notifications to, do one of the following:

• Choose New email topic. Enter a name for your email topic and a list of recipients.
We recommend that you configure the events subscriptions to the same email address
as your primary account contact. The recommendations, service events, and personal
health messages are sent using different channels. The subscriptions to the same email
address ensures that all the messages are consolidated in one location.

• Choose Amazon Resource Name (ARN). Then choose existing Amazon SNS ARN for an
Amazon SNS topic.

If you want to use a topic that has been enabled for server-side encryption (SSE),
grant Amazon RDS the necessary permissions to access the AWS KMS key. For more
information, see Enable compatibility between event sources from AWS services and
encrypted topics in the Amazon Simple Notification Service Developer Guide.

c. For Source type, choose a source type. For example, choose Instances or Parameter
groups.

d. Choose the event categories and resources that you want to receive event notifications for.

The following example configures event notifications for the DB instance named
testinst.

Working with Amazon RDS event notification 1526

https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/sns/latest/dg/sns-key-management.html#compatibility-with-aws-services
https://docs.aws.amazon.com/sns/latest/dg/sns-key-management.html#compatibility-with-aws-services

Amazon Relational Database Service User Guide

e. Choose Create.

The Amazon RDS console indicates that the subscription is being created.

AWS CLI

To subscribe to RDS event notification, use the AWS CLI create-event-subscription
command. Include the following required parameters:

• --subscription-name

• --sns-topic-arn

Example

For Linux, macOS, or Unix:

aws rds create-event-subscription \

Working with Amazon RDS event notification 1527

https://docs.aws.amazon.com/cli/latest/reference/rds/create-event-subscription.html

Amazon Relational Database Service User Guide

 --subscription-name myeventsubscription \
 --sns-topic-arn arn:aws:sns:us-east-1:123456789012:myawsuser-RDS \
 --enabled

For Windows:

aws rds create-event-subscription ^
 --subscription-name myeventsubscription ^
 --sns-topic-arn arn:aws:sns:us-east-1:123456789012:myawsuser-RDS ^
 --enabled

API

To subscribe to Amazon RDS event notification, call the Amazon RDS API function
CreateEventSubscription. Include the following required parameters:

• SubscriptionName

• SnsTopicArn

Working with Amazon RDS event notification 1528

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateEventSubscription.html

Amazon Relational Database Service User Guide

Amazon RDS event notification tags and attributes

When Amazon RDS sends an event notification to Amazon Simple Notification Service (SNS) or
Amazon EventBridge, the notification contains message attributes and event tags. RDS sends the
message attributes separately along with the message, while the event tags are in the body of the
message. Use the message attributes and the Amazon RDS tags to add metadata to your resources.
You can modify these tags with your own notations about the DB instances. For more information
about tagging Amazon RDS resources, see Tagging Amazon RDS resources.

By default, the Amazon SNS and Amazon EventBridge receives every message sent to them. SNS
and EventBridge can filter the message and send the notifications to the preferred communication
mode, such as an email, a text message, or a call to an HTTP endpoint.

Note

The notification sent in an email or a text message will not have event tags.

The following table shows the message attributes for RDS events sent to the topic subscriber.

Amazon RDS event attribute Description

EventID Identifier for the RDS event message, for example,
RDS-EVENT-0006.

Resource The ARN identifier for the resource emitting the
event, for example, arn:aws:rds:ap-sou
theast-2:123456789012:db:database-1 .

The RDS tags provide data about the resource that was affected by the service event. RDS adds the
current state of the tags in the message body when the notification is sent to SNS or EventBridge.

For more information about filtering message attributes for SNS, see Amazon SNS message
filtering in the Amazon Simple Notification Service Developer Guide.

For more information about filtering event tags for EventBridge, see Comparison operators for use
in event patterns in Amazon EventBridge in the Amazon EventBridge User Guide.

Working with Amazon RDS event notification 1529

https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns-content-based-filtering.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns-content-based-filtering.html

Amazon Relational Database Service User Guide

For more information about filtering payload-based tags for SNS, see Introducing payload-based
message filtering for Amazon SNS

Working with Amazon RDS event notification 1530

https://aws.amazon.com/blogs/compute/introducing-payload-based-message-filtering-for-amazon-sns/
https://aws.amazon.com/blogs/compute/introducing-payload-based-message-filtering-for-amazon-sns/

Amazon Relational Database Service User Guide

Listing Amazon RDS event notification subscriptions

You can list your current Amazon RDS event notification subscriptions.

Console

To list your current Amazon RDS event notification subscriptions

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Event subscriptions. The Event subscriptions pane shows all
your event notification subscriptions.

AWS CLI

To list your current Amazon RDS event notification subscriptions, use the AWS CLI describe-
event-subscriptions command.

Example

The following example describes all event subscriptions.

aws rds describe-event-subscriptions

The following example describes the myfirsteventsubscription.

Working with Amazon RDS event notification 1531

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html

Amazon Relational Database Service User Guide

aws rds describe-event-subscriptions --subscription-name myfirsteventsubscription

API

To list your current Amazon RDS event notification subscriptions, call the Amazon RDS API
DescribeEventSubscriptions action.

Working with Amazon RDS event notification 1532

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventSubscriptions.html

Amazon Relational Database Service User Guide

Modifying an Amazon RDS event notification subscription

After you have created a subscription, you can change the subscription name, source identifier,
categories, or topic ARN.

Console

To modify an Amazon RDS event notification subscription

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Event subscriptions.

3. In the Event subscriptions pane, choose the subscription that you want to modify and choose
Edit.

4. Make your changes to the subscription in either the Target or Source section.

5. Choose Edit. The Amazon RDS console indicates that the subscription is being modified.

AWS CLI

To modify an Amazon RDS event notification subscription, use the AWS CLI modify-event-
subscription command. Include the following required parameter:

• --subscription-name

Example

The following code enables myeventsubscription.

For Linux, macOS, or Unix:

aws rds modify-event-subscription \

Working with Amazon RDS event notification 1533

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-subscription.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-subscription.html

Amazon Relational Database Service User Guide

 --subscription-name myeventsubscription \
 --enabled

For Windows:

aws rds modify-event-subscription ^
 --subscription-name myeventsubscription ^
 --enabled

API

To modify an Amazon RDS event, call the Amazon RDS API operation
ModifyEventSubscription. Include the following required parameter:

• SubscriptionName

Working with Amazon RDS event notification 1534

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyEventSubscription.html

Amazon Relational Database Service User Guide

Adding a source identifier to an Amazon RDS event notification subscription

You can add a source identifier (the Amazon RDS source generating the event) to an existing
subscription.

Console

You can easily add or remove source identifiers using the Amazon RDS console by selecting or
deselecting them when modifying a subscription. For more information, see Modifying an Amazon
RDS event notification subscription.

AWS CLI

To add a source identifier to an Amazon RDS event notification subscription, use the AWS CLI add-
source-identifier-to-subscription command. Include the following required parameters:

• --subscription-name

• --source-identifier

Example

The following example adds the source identifier mysqldb to the myrdseventsubscription
subscription.

For Linux, macOS, or Unix:

aws rds add-source-identifier-to-subscription \
 --subscription-name myrdseventsubscription \
 --source-identifier mysqldb

For Windows:

aws rds add-source-identifier-to-subscription ^
 --subscription-name myrdseventsubscription ^
 --source-identifier mysqldb

API

To add a source identifier to an Amazon RDS event notification subscription, call the Amazon RDS
API AddSourceIdentifierToSubscription. Include the following required parameters:

Working with Amazon RDS event notification 1535

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddSourceIdentifierToSubscription.html

Amazon Relational Database Service User Guide

• SubscriptionName

• SourceIdentifier

Working with Amazon RDS event notification 1536

Amazon Relational Database Service User Guide

Removing a source identifier from an Amazon RDS event notification subscription

You can remove a source identifier (the Amazon RDS source generating the event) from a
subscription if you no longer want to be notified of events for that source.

Console

You can easily add or remove source identifiers using the Amazon RDS console by selecting or
deselecting them when modifying a subscription. For more information, see Modifying an Amazon
RDS event notification subscription.

AWS CLI

To remove a source identifier from an Amazon RDS event notification subscription, use the AWS CLI
remove-source-identifier-from-subscription command. Include the following required
parameters:

• --subscription-name

• --source-identifier

Example

The following example removes the source identifier mysqldb from the
myrdseventsubscription subscription.

For Linux, macOS, or Unix:

aws rds remove-source-identifier-from-subscription \
 --subscription-name myrdseventsubscription \
 --source-identifier mysqldb

For Windows:

aws rds remove-source-identifier-from-subscription ^
 --subscription-name myrdseventsubscription ^
 --source-identifier mysqldb

Working with Amazon RDS event notification 1537

https://docs.aws.amazon.com/cli/latest/reference/rds/remove-source-identifier-from-subscription.html

Amazon Relational Database Service User Guide

API

To remove a source identifier from an Amazon RDS event notification subscription, use the Amazon
RDS API RemoveSourceIdentifierFromSubscription command. Include the following
required parameters:

• SubscriptionName

• SourceIdentifier

Working with Amazon RDS event notification 1538

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveSourceIdentifierFromSubscription.html

Amazon Relational Database Service User Guide

Listing the Amazon RDS event notification categories

All events for a resource type are grouped into categories. To view the list of categories available,
use the following procedures.

Console

When you create or modify an event notification subscription, the event categories are displayed in
the Amazon RDS console. For more information, see Modifying an Amazon RDS event notification
subscription.

AWS CLI

To list the Amazon RDS event notification categories, use the AWS CLI describe-event-
categories command. This command has no required parameters.

Working with Amazon RDS event notification 1539

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-categories.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-categories.html

Amazon Relational Database Service User Guide

Example

aws rds describe-event-categories

API

To list the Amazon RDS event notification categories, use the Amazon RDS API
DescribeEventCategories command. This command has no required parameters.

Working with Amazon RDS event notification 1540

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventCategories.html

Amazon Relational Database Service User Guide

Deleting an Amazon RDS event notification subscription

You can delete a subscription when you no longer need it. All subscribers to the topic will no longer
receive event notifications specified by the subscription.

Console

To delete an Amazon RDS event notification subscription

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose DB Event Subscriptions.

3. In the My DB Event Subscriptions pane, choose the subscription that you want to delete.

4. Choose Delete.

5. The Amazon RDS console indicates that the subscription is being deleted.

AWS CLI

To delete an Amazon RDS event notification subscription, use the AWS CLI delete-event-
subscription command. Include the following required parameter:

• --subscription-name

Example

The following example deletes the subscription myrdssubscription.

Working with Amazon RDS event notification 1541

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-event-subscription.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-event-subscription.html

Amazon Relational Database Service User Guide

aws rds delete-event-subscription --subscription-name myrdssubscription

API

To delete an Amazon RDS event notification subscription, use the RDS API
DeleteEventSubscription command. Include the following required parameter:

• SubscriptionName

Working with Amazon RDS event notification 1542

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteEventSubscription.html

Amazon Relational Database Service User Guide

Creating a rule that triggers on an Amazon RDS event

Using Amazon EventBridge, you can automate AWS services and respond to system events such as
application availability issues or resource changes.

Topics

• Creating rules to send Amazon RDS events to Amazon EventBridge

• Tutorial: Log DB instance state changes using Amazon EventBridge

Creating rules to send Amazon RDS events to Amazon EventBridge

You can write simple rules to indicate which Amazon RDS events interest you and which automated
actions to take when an event matches a rule. You can set a variety of targets, such as an AWS
Lambda function or an Amazon SNS topic, which receive events in JSON format. For example,
you can configure Amazon RDS to send events to Amazon EventBridge whenever a DB instance is
created or deleted. For more information, see the Amazon CloudWatch Events User Guide and the
Amazon EventBridge User Guide.

To create a rule that triggers on an RDS event:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Under Events in the navigation pane, choose Rules.

3. Choose Create rule.

4. For Event Source, do the following:

a. Choose Event Pattern.

b. For Service Name, choose Relational Database Service (RDS).

c. For Event Type, choose the type of Amazon RDS resource that triggers the event. For
example, if a DB instance triggers the event, choose RDS DB Instance Event.

5. For Targets, choose Add Target and choose the AWS service that is to act when an event of
the selected type is detected.

6. In the other fields in this section, enter information specific to this target type, if any is
needed.

7. For many target types, EventBridge needs permissions to send events to the target. In these
cases, EventBridge can create the IAM role needed for your event to run:

Creating a rule that triggers on an Amazon RDS event 1543

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://console.aws.amazon.com/cloudwatch/

Amazon Relational Database Service User Guide

• To create an IAM role automatically, choose Create a new role for this specific resource.

• To use an IAM role that you created before, choose Use existing role.

8. Optionally, repeat steps 5-7 to add another target for this rule.

9. Choose Configure details. For Rule definition, type a name and description for the rule.

The rule name must be unique within this Region.

10. Choose Create rule.

For more information, see Creating an EventBridge Rule That Triggers on an Event in the Amazon
CloudWatch User Guide.

Tutorial: Log DB instance state changes using Amazon EventBridge

In this tutorial, you create an AWS Lambda function that logs the state changes for an Amazon
RDS instance. You then create a rule that runs the function whenever there is a state change of an
existing RDS DB instance. The tutorial assumes that you have a small running test instance that you
can shut down temporarily.

Important

Don't perform this tutorial on a running production DB instance.

Topics

• Step 1: Create an AWS Lambda function

• Step 2: Create a rule

• Step 3: Test the rule

Step 1: Create an AWS Lambda function

Create a Lambda function to log the state change events. You specify this function when you
create your rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

Creating a rule that triggers on an Amazon RDS event 1544

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://console.aws.amazon.com/lambda/

Amazon Relational Database Service User Guide

2. If you're new to Lambda, you see a welcome page. Choose Get Started Now. Otherwise,
choose Create function.

3. Choose Author from scratch.

4. On the Create function page, do the following:

a. Enter a name and description for the Lambda function. For example, name the function
RDSInstanceStateChange.

b. In Runtime, select Node.js 16x.

c. For Architecture, choose x86_64.

d. For Execution role, do either of the following:

• Choose Create a new role with basic Lambda permissions.

• For Existing role, choose Use an existing role. Choose the role that you want to use.

e. Choose Create function.

5. On the RDSInstanceStateChange page, do the following:

a. In Code source, select index.js.

b. In the index.js pane, delete the existing code.

c. Enter the following code:

console.log('Loading function');

exports.handler = async (event, context) => {
 console.log('Received event:', JSON.stringify(event));
};

d. Choose Deploy.

Step 2: Create a rule

Create a rule to run your Lambda function whenever you launch an Amazon RDS instance.

To create the EventBridge rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

Creating a rule that triggers on an Amazon RDS event 1545

https://console.aws.amazon.com/events/

Amazon Relational Database Service User Guide

4. Enter a name and description for the rule. For example, enter
RDSInstanceStateChangeRule.

5. Choose Rule with an event pattern, and then choose Next.

6. For Event source, choose AWS events or EventBridge partner events.

7. Scroll down to the Event pattern section.

8. For Event source, choose AWS services.

9. For AWS service, choose Relational Database Service (RDS).

10. For Event type, choose RDS DB Instance Event.

11. Leave the default event pattern. Then choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose Lambda function.

14. For Function, choose the Lambda function that you created. Then choose Next.

15. In Configure tags, choose Next.

16. Review the steps in your rule. Then choose Create rule.

Step 3: Test the rule

To test your rule, shut down an RDS DB instance. After waiting a few minutes for the instance to
shut down, verify that your Lambda function was invoked.

To test your rule by stopping a DB instance

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. Stop an RDS DB instance.

3. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

4. In the navigation pane, choose Rules, choose the name of the rule that you created.

5. In Rule details, choose Monitoring.

You are redirected to the Amazon CloudWatch console. If you are not redirected, click View the
metrics in CloudWatch.

6. In All metrics, choose the name of the rule that you created.

The graph should indicate that the rule was invoked.

7. In the navigation pane, choose Log groups.

Creating a rule that triggers on an Amazon RDS event 1546

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/events/

Amazon Relational Database Service User Guide

8. Choose the name of the log group for your Lambda function (/aws/lambda/function-
name).

9. Choose the name of the log stream to view the data provided by the function for the instance
that you launched. You should see a received event similar to the following:

{
 "version": "0",
 "id": "12a345b6-78c9-01d2-34e5-123f4ghi5j6k",
 "detail-type": "RDS DB Instance Event",
 "source": "aws.rds",
 "account": "111111111111",
 "time": "2021-03-19T19:34:09Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:111111111111:db:testdb"
],
 "detail": {
 "EventCategories": [
 "notification"
],
 "SourceType": "DB_INSTANCE",
 "SourceArn": "arn:aws:rds:us-east-1:111111111111:db:testdb",
 "Date": "2021-03-19T19:34:09.293Z",
 "Message": "DB instance stopped",
 "SourceIdentifier": "testdb",
 "EventID": "RDS-EVENT-0087"
 }
}

For more examples of RDS events in JSON format, see Overview of events for Amazon RDS.

10. (Optional) When you're finished, you can open the Amazon RDS console and start the instance
that you stopped.

Creating a rule that triggers on an Amazon RDS event 1547

Amazon Relational Database Service User Guide

Amazon RDS event categories and event messages

Amazon RDS generates a significant number of events in categories that you can subscribe to using
the Amazon RDS Console, AWS CLI, or the API.

Topics

• DB cluster events

• DB cluster snapshot events

• DB instance events

• DB parameter group events

• DB security group events

• DB snapshot events

• RDS Proxy events

• Blue/green deployment events

• Custom engine version events

DB cluster events

The following table shows the event category and a list of events when a DB cluster is the source
type.

For more information about Multi-AZ DB cluster deployments, see Multi-AZ DB cluster
deployments for Amazon RDS.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0016 Reset master credentials. None

creation RDS-EVENT-0170 DB cluster created. None

failover RDS-EVENT-0069 Cluster failover failed,
check the health of your
cluster instances and try
again.

None

Amazon RDS event categories and event messages 1548

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failover RDS-EVENT-0070 Promoting previous
primary again: name.

None

failover RDS-EVENT-0071 Completed failover to DB
instance: name.

None

failover RDS-EVENT-0072 Started same AZ failover
to DB instance: name.

None

failover RDS-EVENT-0073 Started cross AZ failover to
DB instance: name.

None

failure RDS-EVENT-0354 You can't create the
DB cluster because of
incompatible resources.
message.

The message includes
details about the failure.

failure RDS-EVENT-0355 The DB cluster can't
be created because of
insufficient resource limits.
message.

The message includes
details about the failure.

maintenance RDS-EVENT-0156 The DB cluster has a DB
engine minor version
upgrade available.

None

maintenance RDS-EVENT-0173 Database cluster engine
version has been
upgraded.

Patching of the DB cluster
has completed.

maintenance RDS-EVENT-0174 Database cluster is in
a state that cannot be
upgraded.

None

maintenance RDS-EVENT-0176 Database cluster engine
major version has been
upgraded.

None

Amazon RDS event categories and event messages 1549

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

maintenance RDS-EVENT-0177 Database cluster upgrade
is in progress.

None

maintenance RDS-EVENT-0286 Database cluster engine
version_number
version upgrade started.
Cluster remains online.

None

maintenance RDS-EVENT-0287 Operating system upgrade
requirement detected.

None

maintenance RDS-EVENT-0288 Cluster operating system
upgrade starting.

None

maintenance RDS-EVENT-0289 Cluster operating system
upgrade completed.

None

maintenance RDS-EVENT-0290 Database cluster has been
patched: source version
version_number =>
new_version_number .

None

maintenance RDS-EVENT-0410 The pre-check started
for the database cluster
engine version upgrade.

None

maintenance RDS-EVENT-0412 The pre-check for the
database cluster engine
version upgrade failed or
timed out.

None

maintenance RDS-EVENT-0413 The DB cluster pre-upgra
de tasks are in progress.

None

maintenance RDS-EVENT-0414 The DB cluster post-upgr
ade tasks are in progress.

None

Amazon RDS event categories and event messages 1550

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

maintenance RDS-EVENT-0417 Database cluster engine
version upgrade started.

None

notification RDS-EVENT-0172 Renamed cluster from
name to name.

None

read replica RDS-EVENT-0411 The pre-check finished
for the database cluster
engine version upgrade.

None

DB cluster snapshot events

The following table shows the event category and a list of events when a DB cluster snapshot is the
source type.

Category RDS event ID Message Notes

backup RDS-EVENT-0074 Creating manual cluster
snapshot.

None

backup RDS-EVENT-0075 Manual cluster snapshot
created.

None

backup RDS-EVENT-0168 Creating automated
cluster snapshot.

None

backup RDS-EVENT-0169 Automated cluster
snapshot created.

None

DB instance events

The following table shows the event category and a list of events when a DB instance is the source
type.

Amazon RDS event categories and event messages 1551

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

availability RDS-EVENT-0004 DB instance shutdown. None

availability RDS-EVENT-0006 DB instance restarted. None

availability RDS-EVENT-0022 Error restarting mysql:
message.

An error has occurred
while restarting MySQL.

availability RDS-EVENT-0221 DB instance has reached
the storage-full threshold
, and the database has
been shut down. You can
increase the allocated
storage to address this
issue.

None

availability RDS-EVENT-0222 Free storage capacity for
DB instance name is low
at percentage of the
allocated storage [Allocate
d storage: amount, Free
storage: amount]. The
database will be shut
down to prevent corruptio
n if free storage is lower
than amount. You can
increase the allocated
 storage to address this
issue.

Applies only to RDS for
MySQL when a DB instance
consumes more than 90%
of the allocated storage.
Monitor the storage space
for a DB instance using the
Free Storage Space metric.
For more information, see
Amazon RDS DB instance
storage.

availability RDS-EVENT-0330 The free storage capacity
of the dedicated transacti
on log volume is too low
for DB instance name.
The log volume free
storage is percentage
of the allocated storage.

For more information,
see Dedicated log volume
(DLV).

Amazon RDS event categories and event messages 1552

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

[Allocated storage:
amount, Free storage:
amount] The database
will be shut down to
prevent corruption if the
free storage is lower than
amount. You can disable
the dedicated transaction
log volume to resolve this
issue.

availability RDS-EVENT-0331 The free storage capacity
of the dedicated transacti
on log volume is too low
for DB instance name. The
log volume free storage
is percentage of the
provisioned storage.
[Provisioned Storage:
amount, Free Storage:
amount] You can disable
the dedicated transaction
log volume to resolve this
issue.

For more information,
see Dedicated log volume
(DLV).

availability RDS-EVENT-0396 Amazon RDS has
scheduled a reboot for
this read replica in this
instance's next maintenan
ce window after internal
user password rotation.

None

Amazon RDS event categories and event messages 1553

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

availability RDS-EVENT-0419 Amazon RDS has been
unable to access the
KMS encryption key for
database instance name.
This database will be
placed into an inaccessi
ble state. Please refer
to the troubleshooting
section in the Amazon RDS
documentation for further
details.

None

backup RDS-EVENT-0001 Backing up DB instance. None

backup RDS-EVENT-0002 Finished DB instance
backup.

None

backup RDS-EVENT-0086 We are unable to associate
the option group name
with the database instance
name. Confirm that option
group name is supported
on your DB instance class
and configuration. If so,
verify all option group
settings and retry.

For more information
see Working with option
groups.

configuration
change

RDS-EVENT-0011 Updated to use DBParamet
erGroup name.

None

configuration
change

RDS-EVENT-0012 Applying modification to
database instance class.

None

configuration
change

RDS-EVENT-0014 Finished applying
modification to DB
instance class.

None

Amazon RDS event categories and event messages 1554

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0016 Reset master credentials. None

configuration
change

RDS-EVENT-0017 Finished applying
modification to allocated
storage.

None

configuration
change

RDS-EVENT-0018 Applying modification to
allocated storage.

None

configuration
change

RDS-EVENT-0024 Applying modification to
convert to a Multi-AZ DB
instance.

None

configuration
change

RDS-EVENT-0025 Finished applying
modification to convert to
a Multi-AZ DB instance.

None

configuration
change

RDS-EVENT-0028 Disabled automated
backups.

None

configuration
change

RDS-EVENT-0029 Finished applying
modification to convert to
a standard (Single-AZ) DB
instance.

None

configuration
change

RDS-EVENT-0030 Applying modification
to convert to a standard
(Single-AZ) DB instance.

None

configuration
change

RDS-EVENT-0032 Enabled automated
backups.

None

Amazon RDS event categories and event messages 1555

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0033 There are number users
matching the master
username; only resetting
the one not tied to a
specific host.

None

configuration
change

RDS-EVENT-0067 Unable to reset your
password. Error informati
on: message.

None

configuration
change

RDS-EVENT-0078 Monitoring Interval
changed to number.

The Enhanced Monitorin
g configuration has been
changed.

configuration
change

RDS-EVENT-0092 Finished updating DB
parameter group.

None

configuration
change

RDS-EVENT-0217 Applying autoscaling-
initiated modification to
allocated storage.

None

configuration
change

RDS-EVENT-0218 Finished applying autoscali
ng-initiated modification
to allocated storage.

None

configuration
change

RDS-EVENT-0295 Storage configuration
upgrade started.

None

configuration
change

RDS-EVENT-0296 Storage configuration
upgrade completed.

None

configuration
change

RDS-EVENT-0332 The dedicated log volume
is disabled.

For more information,
see Dedicated log volume
(DLV).

Amazon RDS event categories and event messages 1556

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0333 Disabling the dedicated
log volume has started.

For more information,
see Dedicated log volume
(DLV).

configuration
change

RDS-EVENT-0334 Enabling the dedicated log
volume has started.

For more information,
see Dedicated log volume
(DLV).

configuration
change

RDS-EVENT-0335 The dedicated log volume
is enabled.

For more information,
see Dedicated log volume
(DLV).

configuration
change

RDS-EVENT-0383 engine version doesn't
support the memcached
plugin. RDS will continue
upgrading your DB
instance and remove this
plugin.

Starting with MySQL 8.3.0,
the memcached plugin
isn't supported. For more
information, see Changes
in MySQL 8.3.0 (2024-01-
16, Innovation Release).

creation RDS-EVENT-0005 DB instance created. None

deletion RDS-EVENT-0003 DB instance deleted. None

failover RDS-EVENT-0013 Multi-AZ instance failover
started.

A Multi-AZ failover that
resulted in the promotion
of a standby DB instance
has started.

failover RDS-EVENT-0015 Multi-AZ failover to
standby complete - DNS
propagation may take a
few minutes.

A Multi-AZ failover that
resulted in the promotion
of a standby DB instance
is complete. It may take
several minutes for the
DNS to transfer to the new
primary DB instance.

Amazon RDS event categories and event messages 1557

https://dev.mysql.com/doc/relnotes/mysql/8.3/en/news-8-3-0.html
https://dev.mysql.com/doc/relnotes/mysql/8.3/en/news-8-3-0.html
https://dev.mysql.com/doc/relnotes/mysql/8.3/en/news-8-3-0.html

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failover RDS-EVENT-0034 Abandoning user
requested failover since a
failover recently occurred
on the database instance.

Amazon RDS isn't
attempting a requested
failover because a failover
recently occurred on the
DB instance.

failover RDS-EVENT-0049 Multi-AZ instance failover
completed.

None

failover RDS-EVENT-0050 Multi-AZ instance activatio
n started.

A Multi-AZ activation has
started after a successful
DB instance recovery. This
event occurs if Amazon
RDS promotes the primary
DB instance to the same
AZ as the previous primary
DB instance.

failover RDS-EVENT-0051 Multi-AZ instance activatio
n completed.

A Multi-AZ activation is
complete. Your database
should be accessible now.

failover RDS-EVENT-0065 Recovered from partial
failover.

None

failure RDS-EVENT-0031 DB instance put into name
state. RDS recommends
that you initiate a point-in-
time-restore.

The DB instance has failed
due to an incompati
ble configuration or an
underlying storage issue.
Begin a point-in-time-rest
ore for the DB instance.

Amazon RDS event categories and event messages 1558

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0035 Database instance put into
state. message.

The DB instance has
invalid parameters.
For example, if the DB
instance could not start
because a memory-re
lated parameter is set
too high for this instance
class, your action would
be to modify the memory
parameter and reboot the
DB instance.

failure RDS-EVENT-0036 Database instance in
state. message.

The DB instance is in an
incompatible network.
Some of the specified
 subnet IDs are invalid or
do not exist.

failure RDS-EVENT-0058 The Statspack installation
failed. message.

Error while creating Oracle
Statspack user account
PERFSTAT. Drop the
account before you add
the STATSPACK option.

Amazon RDS event categories and event messages 1559

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0079 Amazon RDS has been
unable to create credentia
ls for enhanced monitorin
g and this feature has been
disabled. This is likely due
to the rds-monitoring-rol
e not being present and
configured correctly in
your account. Please refer
to the troubleshooting
section in the Amazon RDS
documentation for further
details.

Enhanced Monitoring can't
be enabled without the
Enhanced Monitoring IAM
role. For information about
creating the IAM role, see
To create an IAM role for
Amazon RDS enhanced
monitoring.

failure RDS-EVENT-0080 Amazon RDS has been
unable to configure
enhanced monitoring
on your instance: name
and this feature has been
disabled. This is likely due
to the rds-monitoring-rol
e not being present and
configured correctly in
your account. Please refer
to the troubleshooting
section in the Amazon RDS
documentation for further
details.

Enhanced Monitoring
was disabled because an
error occurred during the
configuration change. It is
likely that the Enhanced
Monitoring IAM role is
configured incorrectly. For
information about creating
the enhanced monitoring
IAM role, see To create an
IAM role for Amazon RDS
enhanced monitoring.

Amazon RDS event categories and event messages 1560

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0081 Amazon RDS has been
unable to create credentia
ls for name option. This
is due to the name IAM
role not being configure
d correctly in your
account. Please refer
to the troubleshooting
section in the Amazon RDS
documentation for further
details.

The IAM role that you use
to access your Amazon
S3 bucket for SQL Server
native backup and restore
is configured incorrect
ly. For more information,
see Setting up for native
backup and restore.

failure RDS-EVENT-0165 The RDS Custom DB
instance is outside the
support perimeter.

It's your responsibility to
fix configuration issues
that put your RDS Custom
DB instance into the
unsupported-config
uration state. If the
issue is with the AWS
infrastructure, you can use
the console or the AWS
CLI to fix it. If the issue is
with the operating system
or the database configura
tion, you can log in to the
host to fix it.

For more information,
see RDS Custom support
perimeter.

Amazon RDS event categories and event messages 1561

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0188 The DB instance is in
a state that can't be
upgraded. message

Amazon RDS was unable
to upgrade a MySQL
DB instance because of
incompatibilities related to
the data dictionary. The DB
instance was rolled back to
MySQL version 5.7 because
an attempted upgrade to
version 8.0 failed, or rolled
back to MySQL version
8.0 because an attempted
upgrade to version 8.4
failed. For more informati
on, see Rollback after
failure to upgrade.

failure RDS-EVENT-0219 DB instance is in an invalid
state. No actions are
necessary. Autoscaling will
retry later.

None

failure RDS-EVENT-0220 DB instance is in the
cooling-off period for a
previous scale storage
operation. We're optimizin
g your DB instance. This
takes at least 6 hours.
No actions are necessary.
Autoscaling will retry after
the cooling-off period.

None

failure RDS-EVENT-0223 Storage autoscaling is
unable to scale the storage
for the reason: reason.

None

Amazon RDS event categories and event messages 1562

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0224 Storage autoscaling has
triggered a pending scale
storage task that will reach
or exceed the maximum
storage threshold. Increase
the maximum storage
threshold.

None

failure RDS-EVENT-0237 DB instance has a storage
type that's currently
unavailable in the Availabil
ity Zone. Autoscaling will
retry later.

None

failure RDS-EVENT-0254 Underlying storage
quota for this customer
account has exceeded the
limit. Please increase the
allowed storage quota to
let the scaling go through
on the instance.

None

failure RDS-EVENT-0278 The DB instance creation
failed. message

The message includes
details about the failure.

failure RDS-EVENT-0279 The promotion of the RDS
Custom read replica failed.
message

The message includes
details about the failure.

failure RDS-EVENT-0280 RDS Custom couldn't
upgrade the DB instance
because the pre-check
failed. message

The message includes
details about the failure.

Amazon RDS event categories and event messages 1563

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0281 RDS Custom couldn't
modify the DB instance
because the pre-check
failed. message

The message includes
details about the failure.

failure RDS-EVENT-0282 RDS Custom couldn't
modify the DB instance
because the Elastic IP
permissions aren't correct.
Please confirm the Elastic
IP address is tagged with
AWSRDSCustom .

None

failure RDS-EVENT-0283 RDS Custom couldn't
modify the DB instance
because the Elastic IP limit
has been reached in your
account. Release unused
Elastic IPs or request a
quota increase for your
Elastic IP address limit.

None

failure RDS-EVENT-0284 RDS Custom couldn't
convert the instance to
high availability because
the pre-check failed.
message

The message includes
details about the failure.

failure RDS-EVENT-0285 RDS Custom couldn't
create a final snapshot for
the DB instance because
message.

The message includes
details about the failure.

Amazon RDS event categories and event messages 1564

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0421 RDS Custom couldn't
convert the DB instance
to a Multi-AZ deploymen
t: message. The instance
will remain a Single-AZ
deployment. See the RDS
User Guide for information
about Multi-AZ deploymen
ts for RDS Custom for
Oracle.

The message includes
details about the failure.

failure RDS-EVENT-0306 Storage configuration
upgrade failed. Please
retry the upgrade.

None

failure RDS-EVENT-0315 Unable to move incompati
ble-network database,
 name, to the available
status: message

The database networkin
g configuration is invalid.
The database could not be
moved from incompatible-
network to available.

failure RDS-EVENT-0328 Failed to join a host
to a domain. Domain
membership status for
instance instancename
has been set to Failed.

None

Amazon RDS event categories and event messages 1565

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0329 Failed to join a host to
your domain. During
the domain join process,
Microsoft Windows
returned the error code
message. Verify your
network and permission
configurations and issue a
modify-db-instance
request to re-attempt the
domain join.

When using a self-mana
ged Active Directory, see
Troubleshooting self-mana
ged Active Directory.

failure RDS-EVENT-0353 The DB instance can't
be created because of
insufficient resource limits.
message.

The message includes
details about the failure.

failure RDS-EVENT-0356 RDS was unable to
configure the Kerberos
endpoint in your domain.
This might prevent
Kerberos authentication
for your DB instance.
Verify the network
configuration between
your DB instance and
domain controllers.

None

Amazon RDS event categories and event messages 1566

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0418 Amazon RDS is unable to
access the KMS encryption
key for database instance
name. This is likely due
to the key being disabled
or Amazon RDS being
unable to access it. If this
continues the database
will be placed into an
inaccessible state. Please
refer to the troublesh
ooting section in the
Amazon RDS documenta
tion for further details.

None

failure RDS-EVENT-0420 Amazon RDS can now
successfully access the
KMS encryption key for
database instance name.

None

low storage RDS-EVENT-0007 Allocated storage has
been exhausted. Allocate
additional storage to
resolve.

The allocated storage
for the DB instance has
been consumed. To
resolve this issue, allocate
additional storage for the
DB instance. For more
information, see the RDS
FAQ. You can monitor the
storage space for a DB
instance using the Free
Storage Space metric.

Amazon RDS event categories and event messages 1567

https://aws.amazon.com/rds/faqs
https://aws.amazon.com/rds/faqs

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

low storage RDS-EVENT-0089 The free storage capacity
for DB instance: name is
low at percentage of
the provisioned storage
[Provisioned Storage:
size, Free Storage: size].
You may want to increase
the provisioned storage to
address this issue.

The DB instance has
consumed more than 90%
of its allocated storage.
You can monitor the
storage space for a DB
instance using the Free
Storage Space metric.

low storage RDS-EVENT-0227 Your Aurora cluster's
storage is dangerously
low with only amount
terabytes remaining.
Please take measures to
reduce the storage load on
your cluster.

The Aurora storage
subsystem is running low
on space.

maintenance RDS-EVENT-0026 Applying off-line patches
to DB instance.

Offline maintenance of
the DB instance is taking
place. The DB instance is
currently unavailable.

maintenance RDS-EVENT-0027 Finished applying off-line
patches to DB instance.

Offline maintenance of the
DB instance is complete.
The DB instance is now
available.

maintenance RDS-EVENT-0047 Database instance
patched.

None

maintenance RDS-EVENT-0155 The DB instance has a
DB engine minor version
upgrade available.

None

Amazon RDS event categories and event messages 1568

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

maintenance RDS-EVENT-0178 Database instance upgrade
is in progress.

None

maintenance RDS-EVENT-0264 The pre-check started for
the DB engine version
upgrade.

None

maintenance RDS-EVENT-0265 The pre-check finished
for the DB engine version
upgrade.

None

maintenance RDS-EVENT-0266 The downtime started for
the DB instance.

None

maintenance RDS-EVENT-0267 The engine version
upgrade started.

None

maintenance RDS-EVENT-0268 The engine version
upgrade finished.

None

maintenance RDS-EVENT-0269 The post-upgrade tasks are
in progress.

None

maintenance RDS-EVENT-0270 The DB engine version
upgrade failed. The engine
version upgrade rollback
succeeded.

None

maintenance RDS-EVENT-0398 Waiting for the DB engine
version upgrade to
finish on the primary DB
instance.

Emitted on a read replica
during a major engine
version upgrade.

maintenance RDS-EVENT-0399 Waiting for the DB engine
version upgrade to finish
on the read replicas.

Emitted on source DB
engine during a major
engine version upgrade.

Amazon RDS event categories and event messages 1569

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

maintenance RDS-EVENT-0422 RDS will replace the host
of DB instance name due
to a pending maintenance
action.

None

maintenance,
failure

RDS-EVENT-0195 message The update of the Oracle
time zone file failed. For
more information, see
Oracle time zone file
autoupgrade.

maintenance,
notification

RDS-EVENT-0191 A new version of the time
zone file is available for
update.

If you update your RDS for
Oracle DB engine, Amazon
RDS generates this event if
you haven't chosen a time
zone file upgrade and the
database doesn’t use the
latest DST time zone file
available on the instance.
For more information,
see Oracle time zone file
autoupgrade.

maintenance,
notification

RDS-EVENT-0192 The update of your time
zone file has started.

The upgrade of your
Oracle time zone file has
begun. For more informati
on, see Oracle time zone
file autoupgrade.

Amazon RDS event categories and event messages 1570

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

maintenance,
notification

RDS-EVENT-0193 No update is available for
the current time zone file
version.

Your Oracle DB instance
is using latest time zone
file version, and either of
the following statements is
true:

• You recently added
the TIMEZONE_
FILE_AUTOUPGRADE
option.

• Your Oracle DB engine is
being upgraded.

For more information,
see Oracle time zone file
autoupgrade.

maintenance,
notification

RDS-EVENT-0194 The update of your time
zone file has finished.

The update of your
Oracle time zone file has
completed. For more
information, see Oracle
time zone file autoupgra
de.

notification RDS-EVENT-0044 message This is an operator-issued
notification. For more
information, see the event
message.

notification RDS-EVENT-0048 Delaying database engine
upgrade since this instance
has read replicas that need
to be upgraded first.

Patching of the DB
instance has been delayed.

Amazon RDS event categories and event messages 1571

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0054 message The MySQL storage
engine you are using is
not InnoDB, which is the
recommended MySQL
storage engine for Amazon
RDS. For information
about MySQL storage
engines, see Supported
storage engines for RDS
for MySQL.

notification RDS-EVENT-0055 message The number of tables you
have for your DB instance
exceeds the recommended
best practices for Amazon
RDS. Reduce the number
of tables on your DB
instance. For information
about recommended best
practices, see Amazon RDS
basic operational guideline
s.

notification RDS-EVENT-0056 message The number of databases
you have for your DB
instance exceeds the
recommended best
practices for Amazon RDS.
Reduce the number of
databases on your DB
instance. For information
about recommended best
practices, see Amazon RDS
basic operational guideline
s.

Amazon RDS event categories and event messages 1572

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0064 The TDE encryption key
was rotated successfully.

For information about
recommended best
practices, see Amazon RDS
basic operational guideline
s.

notification RDS-EVENT-0084 Unable to convert the
DB instance to Multi-AZ:
 message.

You attempted to convert
a DB instance to Multi-AZ,
but it contains in-memory
file groups that are not
supported for Multi-AZ.
For more information, see
Multi-AZ deployments for
Amazon RDS for Microsoft
SQL Server.

notification RDS-EVENT-0087 DB instance stopped. None

notification RDS-EVENT-0088 DB instance started. None

notification RDS-EVENT-0154 DB instance is being
started due to it exceeding
the maximum allowed
time being stopped.

None

Amazon RDS event categories and event messages 1573

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0157 Unable to modify the DB
instance class. message.

RDS can't modify the DB
instance class because the
target instance class can't
support the number of
databases that exist on
the source DB instance.
The error message appears
as: "The instance has
N databases, but after
conversion it would only
support N". For more
information, see Limitatio
ns for Microsoft SQL
Server DB instances.

notification RDS-EVENT-0158 Database instance is in
a state that cannot be
upgraded: message.

None

notification RDS-EVENT-0167 message The RDS Custom support
perimeter configuration
has changed.

Amazon RDS event categories and event messages 1574

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0189 The gp2 burst balance
credits for the RDS
database instance are
low. To resolve this issue,
reduce IOPS usage or
modify your storage
settings to enable higher
performance.

The gp2 burst balance
credits for the RDS
database instance are
low. To resolve this issue,
reduce IOPS usage or
modify your storage
settings to enable higher
performance. For more
information, see I/
O credits and burst
performance in the
Amazon Elastic Compute
Cloud User Guide.

notification RDS-EVENT-0225 Allocated storage size
amount GB is approachi
ng the maximum storage
threshold amount GB.
Increase the maximum
storage threshold.

This event is invoked
when the allocated
storage reaches 80% of
the maximum storage
threshold. To avoid
the event, increase
the maximum storage
threshold.

Amazon RDS event categories and event messages 1575

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_gp2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_gp2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_gp2

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0231 Your DB instance's storage
modification encounter
ed an internal error. The
modification request is
pending and will be retried
later.

An error has occurred
in the read replicati
on process. For more
information, see the event
message.

In addition, see the
troubleshooting section
for read replicas for your
DB engine.

• Troubleshooting a
MariaDB read replica
problem

• Troubleshooting a SQL
Server read replica
problem

• Troubleshooting a
MySQL read replica
problem

• Troubleshooting RDS for
Oracle replicas

Amazon RDS event categories and event messages 1576

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0253 The database is using
the doublewrite buffer.
message. For more
information see the RDS
Optimized Writes for name
documentation.

RDS Optimized Writes
is incompatible with the
instance storage configura
tion. For more informati
on, see Improving write
performance with RDS
Optimized Writes for
MySQL and Improving
write performance with
Amazon RDS Optimized
Writes for MariaDB.

You can perform storage
configuration upgrade to
enable Optimized Writes
by Creating a blue/green
deployment.

notification RDS-EVENT-0297 The storage configura
tion for DB instance name
supports a maximum size
of 16384 GiB. Perform
a storage configuration
upgrade to support
storage sizes greater than
16384 GiB.

You cannot increase
the allocated storage
size of the DB instance
beyond 16384 GiB. To
overcome this limitatio
n, perform a storage
configuration upgrade.
For more information, see
Upgrading the storage file
system for a DB instance.

Amazon RDS event categories and event messages 1577

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.UpgradeFileSystem
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.UpgradeFileSystem

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0298 The storage configura
tion for DB instance name
supports a maximum table
size of 2048 GiB. Perform
a storage configuration
upgrade to support table
sizes greater than 2048
GiB.

RDS MySQL and MariaDB
instances with this
limitation cannot have
a table size exceeding
2048 GiB. To overcome
this limitation, perform
a storage configura
tion upgrade. For
more information, see
Upgrading the storage file
system for a DB instance.

notification RDS-EVENT-0327 Amazon RDS could not
find the secret SECRET
ARN. message.

None

notification RDS-EVENT-0365 Timezone files were
updated. Restart your RDS
instance for the changes to
take effect.

None

notification RDS-EVENT-0385 Cluster topology is
updated.

There are DNS changes
to the DB cluster for the
DB instance. This includes
when new DB instances
are added or deleted, or
there's a failover.

notification RDS-EVENT-0403 A database workload is
causing the system to run
critically low on memory.
To help mitigate the issue,
RDS automatically set
the value of innodb_bu
ffer_pool_size to amount.

Applies only to RDS
for MySQL and RDS for
MariaDB DB instances.

Amazon RDS event categories and event messages 1578

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.UpgradeFileSystem
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.UpgradeFileSystem

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0404 A database workload is
causing the system to run
critically low on memory.
To help mitigate the issue,
RDS automatically set the
value of shared_buffers to
amount.

Applies only to RDS for
PostgreSQL DB instances.

read replica RDS-EVENT-0045 Replication has stopped. This message appears
when there is an error
during replication. To
determine the type of
error, see Troubleshooting
a MySQL read replica
problem.

read replica RDS-EVENT-0046 Replication for the Read
Replica resumed.

This message appears
when you first create
a read replica, or as a
monitoring message
confirming that replicati
on is functioning properly.
 If this message follows
an RDS-EVENT-0045
notification, then replicati
on has resumed following
an error or after replicati
on was stopped.

read replica RDS-EVENT-0057 Replication streaming has
been terminated.

None

read replica RDS-EVENT-0062 Replication for the Read
Replica has been manually
stopped.

None

Amazon RDS event categories and event messages 1579

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

read replica RDS-EVENT-0063 Replication from Non RDS
instance has been reset.

None

read replica RDS-EVENT-0202 Read replica creation
failed.

None

read replica RDS-EVENT-0357 Replication channel name
started.

For information about
replication channels,
see the section called
“Configuring multi-source
replication”.

read replica RDS-EVENT-0358 Replication channel name
stopped.

For information about
replication channels,
see the section called
“Configuring multi-source
replication”.

read replica RDS-EVENT-0359 Replication channel name
was manually stopped.

For information about
replication channels,
see the section called
“Configuring multi-source
replication”.

read replica RDS-EVENT-0360 Replication channel name
was reset.

For information about
replication channels,
see the section called
“Configuring multi-source
replication”.

read replica RDS-EVENT-0415 The upgrade process
resumed replication on the
read replica.

None

Amazon RDS event categories and event messages 1580

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

read replica RDS-EVENT-0416 The upgrade process
stopped replication on the
read replica.

None

recovery RDS-EVENT-0020 Recovery of the DB
instance has started.
Recovery time will vary
with the amount of data to
be recovered.

None

recovery RDS-EVENT-0021 Recovery of the DB
instance is complete.

None

recovery RDS-EVENT-0023 Emergent Snapshot
Request: message.

A manual backup has been
requested but Amazon
RDS is currently in the
process of creating a
DB snapshot. Submit
the request again
after Amazon RDS
has completed the DB
snapshot.

recovery RDS-EVENT-0052 Multi-AZ instance recovery
started.

Recovery time will vary
with the amount of data to
be recovered.

recovery RDS-EVENT-0053 Multi-AZ instance recovery
completed. Pending
failover or activation.

This message indicates
that Amazon RDS has
prepared your DB instance
to initiate a failover to
the secondary instance if
necessary.

Amazon RDS event categories and event messages 1581

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

recovery RDS-EVENT-0066 Instance will be degraded
while mirroring is reestabli
shed: message.

The SQL Server DB
instance is re-establishing
its mirror. Performance
will be degraded until the
mirror is reestablished. A
database was found with
non-FULL recovery model.
The recovery model was
changed back to FULL
and mirroring recovery
was started. (<dbname>:
<recovery model found>[,.
..])"

recovery RDS-EVENT-0166 message The RDS Custom DB
instance is inside the
support perimeter.

recovery RDS-EVENT-0361 Recovery of standby DB
instance has started.

The standby DB instance
is rebuilt during the
recovery process. Database
performance is impacted
during the recovery
process.

recovery RDS-EVENT-0362 Recovery of standby DB
instance has completed.

The standby DB instance
is rebuilt during the
recovery process. Database
performance is impacted
during the recovery
process.

restoration RDS-EVENT-0019 Restored from DB instance
name to name.

The DB instance has been
restored from a point-in-
time backup.

Amazon RDS event categories and event messages 1582

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

security RDS-EVENT-0068 Decrypting hsm partition
password to update
instance.

RDS is decrypting the
AWS CloudHSM partition
password to make updates
to the DB instance. For
more information see
Oracle Database Transpare
nt Data Encryption (TDE)
with AWS CloudHSM in the
AWS CloudHSM User Guide.

security
patching

RDS-EVENT-0230 A system update is
available for your DB
instance. For information
about applying updates,
see 'Maintaining a DB
instance' in the RDS User
Guide.

A new Operating System
update is available.

A new, minor version,
operating system update
is available for your DB
instance. For information
about applying updates,
see Operating system
updates for RDS DB
instances.

DB parameter group events

The following table shows the event category and a list of events when a DB parameter group is
the source type.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0037 Updated parameter name
to value with apply
method method.

None

Amazon RDS event categories and event messages 1583

https://docs.aws.amazon.com/cloudhsm/latest/userguide/oracle-tde.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/oracle-tde.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/oracle-tde.html

Amazon Relational Database Service User Guide

DB security group events

The following table shows the event category and a list of events when a DB security group is the
source type.

Note

DB security groups are resources for EC2-Classic. EC2-Classic was retired on August 15,
2022. If you haven't migrated from EC2-Classic to a VPC, we recommend that you migrate
as soon as possible. For more information, see Migrate from EC2-Classic to a VPC in the
Amazon EC2 User Guide and the blog EC2-Classic Networking is Retiring – Here’s How to
Prepare.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0038 Applied change to security
group.

None

failure RDS-EVENT-0039 Revoking authorization as
user.

The security group owned
by user doesn't exist.
The authorization for
the security group has
been revoked because it is
invalid.

DB snapshot events

The following table shows the event category and a list of events when a DB snapshot is the source
type.

Category RDS event ID Message Notes

creation RDS-EVENT-0040 Creating manual snapshot. None

creation RDS-EVENT-0042 Manual snapshot created. None

Amazon RDS event categories and event messages 1584

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

creation RDS-EVENT-0090 Creating automated
snapshot.

None

creation RDS-EVENT-0091 Automated snapshot
created.

None

deletion RDS-EVENT-0041 Deleted user snapshot. None

notification RDS-EVENT-0059 Started copy of
snapshotname from region
name.

This is a cross-Region
snapshot copy.

notification RDS-EVENT-0060 Finished copy of snapshot
name from region name in
number minutes.

This is a cross-Region
snapshot copy.

notification RDS-EVENT-0061 Canceled snapshot copy
request of name from
region name.

This is a cross-Region
snapshot copy.

notification RDS-EVENT-0159 The snapshot export task
failed.

None

notification RDS-EVENT-0160 The snapshot export task
was canceled.

None

notification RDS-EVENT-0161 The snapshot export task
completed.

None

notification RDS-EVENT-0196 Started copy of snapshot
name in region name.

This is a local snapshot
copy.

notification RDS-EVENT-0197 Finished copy of snapshot
name in region name.

This is a local snapshot
copy.

Amazon RDS event categories and event messages 1585

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

notification RDS-EVENT-0190 Canceled snapshot copy
request of name in region
name.

This is a local snapshot
copy.

restoration RDS-EVENT-0043 Restored from snapshot
name.

A DB instance is being
restored from a DB
snapshot.

RDS Proxy events

The following table shows the event category and a list of events when an RDS Proxy is the source
type.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0204 RDS modified DB proxy
name.

None

configuration
change

RDS-EVENT-0207 RDS modified the end
point of the DB proxy
name.

None

configuration
change

RDS-EVENT-0213 RDS detected the addition
of the DB instance and
automatically added it to
the target group of the DB
proxy name.

None

configuration
change

RDS-EVENT-0214 RDS detected deletion
of DB instance name and
automatically removed it
from target group name of
DB proxy name.

None

configuration
change

RDS-EVENT-0215 RDS detected deletion
of DB cluster name and

None

Amazon RDS event categories and event messages 1586

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

automatically removed it
from target group name of
DB proxy name.

creation RDS-EVENT-0203 RDS created DB proxy
name.

None

creation RDS-EVENT-0206 RDS created endpoint
name for DB proxy name.

None

deletion RDS-EVENT-0205 RDS deleted DB proxy
name.

None

deletion RDS-EVENT-0208 RDS deleted endpoint
name for DB proxy name.

None

failure RDS-EVENT-0243 RDS failed to provision
capacity for proxy name
because there aren't
enough IP addresses
available in your subnets:
name. To fix the issue,
make sure that your
subnets have the minimum
number of unused IP
addresses as recommend
ed in the RDS Proxy
documentation.

To determine the
recommended number for
your instance class, see
Planning for IP address
capacity.

failure RDS-EVENT-0275 RDS throttled some
connections to DB proxy
name. The number of
simultaneous connection
requests from the client to
the proxy has exceeded the
limit.

None

Amazon RDS event categories and event messages 1587

Amazon Relational Database Service User Guide

Blue/green deployment events

The following table shows the event category and a list of events when a blue/green deployment is
the source type.

For more information about blue/green deployments, see Using Amazon RDS Blue/Green
Deployments for database updates.

Category Amazon RDS event
ID

Message Notes

creation RDS-EVENT-0244 Blue/green deployment
tasks completed. You can
make more modifications
to the green environment
databases or switch over
the deployment.

None

failure RDS-EVENT-0245 Creation of blue/green
deployment failed because
reason.

None

deletion RDS-EVENT-0246 Blue/green deployment
deleted.

None

notification RDS-EVENT-0247 Switchover from blue to
green started.

None

notification RDS-EVENT-0248 Switchover completed on
blue/green deployment.

None

failure RDS-EVENT-0249 Switchover canceled on
blue/green deployment.

None

notification RDS-EVENT-0250 Switchover from primary/r
ead replica blue to green
started.

None

Amazon RDS event categories and event messages 1588

Amazon Relational Database Service User Guide

Category Amazon RDS event
ID

Message Notes

notification RDS-EVENT-0251 Switchover from primary/r
ead replica blue to green
completed. Renamed blue
to blue-old and green to
blue.

None

failure RDS-EVENT-0252 Switchover from primary/
read replica blue to
green was canceled due to
reason.

None

notification RDS-EVENT-0307 Sequence sync for
switchover of blue to
green has initiated.
Switchover when using
sequences may lead to
extended downtime.

None

notification RDS-EVENT-0308 Sequence sync for
switchover of blue to
green has completed.

None

failure RDS-EVENT-0310 Sequence sync for
switchover of blue to
green was cancelled
because sequences failed
to sync.

None

notification RDS-EVENT-0405 Your storage volumes are
being initialized.

None

notification RDS-EVENT-0406 Your storage volumes have
been initialized.

None

notification RDS-EVENT-0409 message None

Amazon RDS event categories and event messages 1589

Amazon Relational Database Service User Guide

Custom engine version events

The following table shows the event category and a list of events when a custom engine version is
the source type.

Category Amazon RDS event
ID

Message Notes

creation RDS-EVENT-0316 Preparing to create custom
engine version name. The
entire creation process
may take up to four hours
to complete.

None

creation RDS-EVENT-0317 Creating custom engine
version name.

None

creation RDS-EVENT-0318 Validating custom engine
version name.

None

creation RDS-EVENT-0319 Custom engine version
name has been created
successfully.

None

creation RDS-EVENT-0320 RDS can't create custom
engine version name
because of an internal
issue. We are addressin
g the problem and will
contact you if necessary
. For further assistance,
contact AWS Premium
Support/.

None

failure RDS-EVENT-0198 Creation failed for custom
engine version name.
message

The message includes
details about the failure,
such as missing files.

Amazon RDS event categories and event messages 1590

https://console.aws.amazon.com/support/
https://console.aws.amazon.com/support/

Amazon Relational Database Service User Guide

Category Amazon RDS event
ID

Message Notes

failure RDS-EVENT-0277 Failure during deletion
of custom engine version
name. message

The message includes
details about the failure.

restoring RDS-EVENT-0352 The maximum database
count supported for
point-in-time restore has
changed.

The message includes
details about the event.

Amazon RDS event categories and event messages 1591

Amazon Relational Database Service User Guide

Monitoring Amazon RDS log files

Every RDS database engine generates logs that you can access for auditing and troubleshooting.
The type of logs depends on your database engine.

You can access database logs for DB instances using the AWS Management Console, the AWS
Command Line Interface (AWS CLI), or the Amazon RDS API. You can't view, watch, or download
transaction logs.

Topics

• Viewing and listing database log files

• Downloading a database log file

• Watching a database log file

• Publishing database logs to Amazon CloudWatch Logs

• Reading log file contents using REST

• Amazon RDS for Db2 database log files

• MariaDB database log files

• Amazon RDS for Microsoft SQL Server database log files

• MySQL database log files

• Amazon RDS for Oracle database log files

• RDS for PostgreSQL database log files

Viewing and listing database log files

You can view database log files for your Amazon RDS DB engine by using the AWS Management
Console. You can list what log files are available for download or monitoring by using the AWS CLI
or Amazon RDS API.

Note

If you can't view the list of log files for an existing RDS for Oracle DB instance, reboot the
instance to view the list.

Monitoring RDS logs 1592

Amazon Relational Database Service User Guide

Console

To view a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

5. Scroll down to the Logs section.

6. (Optional) Enter a search term to filter your results.

7. Choose the log that you want to view, and then choose View.

AWS CLI

To list the available database log files for a DB instance, use the AWS CLI describe-db-log-
files command.

The following example returns a list of log files for a DB instance named my-db-instance.

Example

aws rds describe-db-log-files --db-instance-identifier my-db-instance

RDS API

To list the available database log files for a DB instance, use the Amazon RDS API
DescribeDBLogFiles action.

Downloading a database log file

You can use the AWS Management Console, AWS CLI, or API to download a database log file.

Console

To download a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

Downloading a database log file 1593

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-log-files.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-log-files.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBLogFiles.html
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. Choose the Logs & events tab.

5. Scroll down to the Logs section.

6. In the Logs section, choose the button next to the log that you want to download, and then
choose Download.

7. Open the context (right-click) menu for the link provided, and then choose Save Link As. Enter
the location where you want the log file to be saved, and then choose Save.

AWS CLI

To download a database log file, use the AWS CLI command download-db-log-file-portion.
By default, this command downloads only the latest portion of a log file. However, you can
download an entire file by specifying the parameter --starting-token 0.

The following example shows how to download the entire contents of a log file called log/ERROR.4
and store it in a local file called errorlog.txt.

Example

For Linux, macOS, or Unix:

aws rds download-db-log-file-portion \
 --db-instance-identifier myexampledb \
 --starting-token 0 --output text \
 --log-file-name log/ERROR.4 > errorlog.txt

For Windows:

Downloading a database log file 1594

https://docs.aws.amazon.com/cli/latest/reference/rds/download-db-log-file-portion.html

Amazon Relational Database Service User Guide

aws rds download-db-log-file-portion ^
 --db-instance-identifier myexampledb ^
 --starting-token 0 --output text ^
 --log-file-name log/ERROR.4 > errorlog.txt

RDS API

To download a database log file, use the Amazon RDS API DownloadDBLogFilePortion action.

Watching a database log file

Watching a database log file is equivalent to tailing the file on a UNIX or Linux system. You can
watch a log file by using the AWS Management Console. RDS refreshes the tail of the log every 5
seconds.

To watch a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

5. In the Logs section, choose a log file, and then choose Watch.

Watching a database log file 1595

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DownloadDBLogFilePortion.html
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

RDS shows the tail of the log, as in the following MySQL example.

Publishing database logs to Amazon CloudWatch Logs

In an on-premises database, the database logs reside on the file system. Amazon RDS doesn't
provide host access to the database logs on the file system of your DB instance. For this reason,

Publishing to CloudWatch Logs 1596

Amazon Relational Database Service User Guide

Amazon RDS lets you export database logs to Amazon CloudWatch Logs. With CloudWatch Logs,
you can perform real-time analysis of the log data. You can also store the data in highly durable
storage and manage the data with the CloudWatch Logs Agent.

Topics

• Overview of RDS integration with CloudWatch Logs

• Deciding which logs to publish to CloudWatch Logs

• Specifying the logs to publish to CloudWatch Logs

• Searching and filtering your logs in CloudWatch Logs

Overview of RDS integration with CloudWatch Logs

In CloudWatch Logs, a log stream is a sequence of log events that share the same source. Each
separate source of logs in CloudWatch Logs makes up a separate log stream. A log group is a group
of log streams that share the same retention, monitoring, and access control settings.

Amazon RDS continuously streams your DB instance log records to a log group. For example, you
have a log group /aws/rds/instance/instance_name/log_type for each type of log that
you publish. This log group is in the same AWS Region as the database instance that generates the
log.

AWS retains log data published to CloudWatch Logs for an indefinite time period unless you
specify a retention period. For more information, see Change log data retention in CloudWatch
Logs.

Deciding which logs to publish to CloudWatch Logs

Each RDS database engine supports its own set of logs. To learn about the options for your
database engine, review the following topics:

• the section called “Publishing Db2 logs to Amazon CloudWatch Logs”

• the section called “Publishing MariaDB logs to Amazon CloudWatch Logs”

• the section called “Publishing MySQL logs to Amazon CloudWatch Logs”

• the section called “Publishing Oracle logs to Amazon CloudWatch Logs”

• the section called “Publishing PostgreSQL logs to Amazon CloudWatch Logs”

• the section called “Publishing SQL Server logs to Amazon CloudWatch Logs”

Publishing to CloudWatch Logs 1597

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Relational Database Service User Guide

Specifying the logs to publish to CloudWatch Logs

You specify which logs to publish in the console. Make sure that you have a service-linked role in
AWS Identity and Access Management (IAM). For more information about service-linked roles, see
Using service-linked roles for Amazon RDS.

To specify the logs to publish

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Do either of the following:

• Choose Create database.

• Choose a database from the list, and then choose Modify.

4. In Logs exports, choose which logs to publish.

The following example specifies the audit log, error logs, general log, and slow query log for
an RDS for MySQL DB instance.

Searching and filtering your logs in CloudWatch Logs

You can search for log entries that meet a specified criteria using the CloudWatch Logs console.
You can access the logs either through the RDS console, which leads you to the CloudWatch Logs
console, or from the CloudWatch Logs console directly.

Publishing to CloudWatch Logs 1598

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To search your RDS logs using the RDS console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose a DB instance.

4. Choose Configuration.

5. Under Published logs, choose the database log that you want to view.

To search your RDS logs using the CloudWatch Logs console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. In the filter box, enter /aws/rds.

4. For Log Groups, choose the name of the log group containing the log stream to search.

5. For Log Streams, choose the name of the log stream to search.

6. Under Log events, enter the filter syntax to use.

For more information, see Searching and filtering log data in the Amazon CloudWatch Logs User
Guide. For a blog tutorial explaining how to monitor RDS logs, see Build proactive database
monitoring for Amazon RDS with Amazon CloudWatch Logs, AWS Lambda, and Amazon SNS.

Reading log file contents using REST

Amazon RDS provides a REST endpoint that allows access to DB instance log files. This is useful if
you need to write an application to stream Amazon RDS log file contents.

The syntax is:

GET /v13/downloadCompleteLogFile/DBInstanceIdentifier/LogFileName HTTP/1.1
Content-type: application/json
host: rds.region.amazonaws.com

The following parameters are required:

• DBInstanceIdentifier—the name of the DB instance that contains the log file you want to
download.

Reading log file contents using REST 1599

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://aws.amazon.com/blogs/database/build-proactive-database-monitoring-for-amazon-rds-with-amazon-cloudwatch-logs-aws-lambda-and-amazon-sns/
https://aws.amazon.com/blogs/database/build-proactive-database-monitoring-for-amazon-rds-with-amazon-cloudwatch-logs-aws-lambda-and-amazon-sns/

Amazon Relational Database Service User Guide

• LogFileName—the name of the log file to be downloaded.

The response contains the contents of the requested log file, as a stream.

The following example downloads the log file named log/ERROR.6 for the DB instance named
sample-sql in the us-west-2 region.

GET /v13/downloadCompleteLogFile/sample-sql/log/ERROR.6 HTTP/1.1
host: rds.us-west-2.amazonaws.com
X-Amz-Security-Token: AQoDYXdzEIH//////////
wEa0AIXLhngC5zp9CyB1R6abwKrXHVR5efnAVN3XvR7IwqKYalFSn6UyJuEFTft9nObglx4QJ+GXV9cpACkETq=
X-Amz-Date: 20140903T233749Z
X-Amz-Algorithm: AWS4-HMAC-SHA256
X-Amz-Credential: AKIADQKE4SARGYLE/20140903/us-west-2/rds/aws4_request
X-Amz-SignedHeaders: host
X-Amz-Content-SHA256: e3b0c44298fc1c229afbf4c8996fb92427ae41e4649b934de495991b7852b855
X-Amz-Expires: 86400
X-Amz-Signature: 353a4f14b3f250142d9afc34f9f9948154d46ce7d4ec091d0cdabbcf8b40c558

If you specify a nonexistent DB instance, the response consists of the following error:

• DBInstanceNotFound—DBInstanceIdentifier does not refer to an existing DB instance.
(HTTP status code: 404)

Reading log file contents using REST 1600

Amazon Relational Database Service User Guide

Amazon RDS for Db2 database log files

You can access RDS for Db2 diagnostic logs and notify logs by using the Amazon RDS console,
AWS CLI, or RDS API. For more information about viewing, downloading, and watching file-based
database logs, see Monitoring Amazon RDS log files.

Topics

• Retention schedule

• Publishing Db2 logs to Amazon CloudWatch Logs

Retention schedule

Log files are rotated each day and whenever your DB instance is restarted. The following is the
retention schedule for RDS for Db2 logs on Amazon RDS.

Log type Retention schedule

Diagnostic logs Db2 deletes logs outside of the retention settings in the instance-level
configuration. Amazon RDS sets the diagsize parameter to 1000.

Notify logs Db2 deletes logs outside of the retention settings in the instance-level
configuration. Amazon RDS sets the diagsize parameter to 1000.

Publishing Db2 logs to Amazon CloudWatch Logs

With RDS for Db2, you can publish diagnostic and notify log events directly to Amazon CloudWatch
Logs. Analyze the log data with CloudWatch Logs, then use CloudWatch to create alarms and view
metrics.

With CloudWatch Logs, you can do the following:

• Store logs in highly durable storage space with a retention period that you define.

• Search and filter log data.

• Share log data between accounts.

• Export logs to Amazon S3.

• Stream data to Amazon OpenSearch Service.

Db2 database log files 1601

Amazon Relational Database Service User Guide

• Process log data in real time with Amazon Kinesis Data Streams. For more information, see
Working with Amazon CloudWatch Logs in the Amazon Managed Service for Apache Flink for SQL
Applications Developer Guide.

Amazon RDS publishes each RDS for Db2 database log as a separate database stream in the log
group. For example, if you publish the diagnostic logs and notify logs, diagnostic data is stored in
a diagnostic log stream in the /aws/rds/instance/my_instance/diagnostic log group, and
notify log data is stored in the /aws/rds/instance/my_instance/notify log group.

Note

Publishing RDS for Db2 logs to CloudWatch Logs isn't enabled by default. Publishing self-
tuning memory manager (STMM) and optimizer statistics logs isn't supported. Publishing
RDS for Db2 logs to CloudWatch Logs is supported in all Regions, except for Asia Pacific
(Hong Kong).

Console

To publish RDS for Db2 logs to CloudWatch Logs from the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify.

4. In the Log exports section, choose the logs that you want to start publishing to CloudWatch
Logs.

You can choose diag.log, notify.log, or both.

5. Choose Continue, and then choose Modify DB Instance on the summary page.

AWS CLI

To publish RDS for Db2 logs, you can use the modify-db-instance command with the following
parameters:

• --db-instance-identifier

Db2 database log files 1602

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• --cloudwatch-logs-export-configuration

Note

A change to the --cloudwatch-logs-export-configuration option is always applied
to the DB instance immediately. Therefore, the --apply-immediately and --no-
apply-immediately options have no effect.

You can also publish RDS for Db2 logs using the following commands:

• create-db-instance

• restore-db-instance-from-db-snapshot

• restore-db-instance-to-point-in-time

Example

The following example creates an RDS for Db2 DB instance with CloudWatch Logs publishing
enabled. The --enable-cloudwatch-logs-exports value is a JSON array of strings that can
include diag.log, notify.log, or both.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --enable-cloudwatch-logs-exports '["diag.log","notify.log"]' \
 --db-instance-class db.m4.large \
 --engine db2-se

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --enable-cloudwatch-logs-exports "[\"diag.log\",\"notify.log\"]" ^
 --db-instance-class db.m4.large ^
 --engine db2-se

Db2 database log files 1603

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

Example

The following example modifies an existing RDS for Db2 DB instance to publish log files to
CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON object.
The key for this object is EnableLogTypes, and its value is an array of strings that can include
diag.log, notify.log, or both.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["diag.log","notify.log"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration "{\"EnableLogTypes\":[\"diag.log\",
\"notify.log\"]}"

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

Example

The following example modifies an existing RDS for Db2 DB instance to disable publishing
diagnostic log files to CloudWatch Logs. The --cloudwatch-logs-export-configuration
value is a JSON object. The key for this object is DisableLogTypes, and its value is an array of
strings that can include diag.log, notify.log, or both.

Db2 database log files 1604

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"DisableLogTypes":["diag.log"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration "{\"DisableLogTypes\":[\"diag.log\"]}"

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

Db2 database log files 1605

Amazon Relational Database Service User Guide

MariaDB database log files

You can monitor the MariaDB error log, slow query log, the IAM database authentication error log,
and the general log. The MariaDB error log is generated by default; you can generate the slow
query and general logs by setting parameters in your DB parameter group. Amazon RDS rotates all
of the MariaDB log files; the intervals for each type are given following.

You can monitor the MariaDB logs directly through the Amazon RDS console, Amazon RDS
API, Amazon RDS CLI, or AWS SDKs. You can also access MariaDB logs by directing the logs to a
database table in the main database and querying that table. You can use the mysqlbinlog utility
to download a binary log.

For more information about viewing, downloading, and watching file-based database logs, see
Monitoring Amazon RDS log files.

Topics

• Accessing MariaDB error logs

• Accessing the MariaDB slow query and general logs

• Publishing MariaDB logs to Amazon CloudWatch Logs

• Log rotation and retention for MariaDB

• Managing table-based MariaDB logs

• Configuring MariaDB binary logging

• Accessing MariaDB binary logs

• Enabling MariaDB binary log annotation

Accessing MariaDB error logs

The MariaDB error log is written to the <host-name>.err file. You can view this file by using the
Amazon RDS console, You can also retrieve the log using the Amazon RDS API, Amazon RDS CLI, or
AWS SDKs. The <host-name>.err file is flushed every 5 minutes, and its contents are appended
to mysql-error-running.log. The mysql-error-running.log file is then rotated every
hour and the hourly files generated during the last 24 hours are retained. Each log file has the hour
it was generated (in UTC) appended to its name. The log files also have a timestamp that helps you
determine when the log entries were written.

MariaDB database log files 1606

Amazon Relational Database Service User Guide

MariaDB writes to the error log only on startup, shutdown, and when it encounters errors. A DB
instance can go hours or days without new entries being written to the error log. If you see no
recent entries, it's because the server did not encounter an error that resulted in a log entry.

Accessing the MariaDB slow query and general logs

You can write the MariaDB slow query log and general log to a file or database table by setting
parameters in your DB parameter group. For information about creating and modifying a DB
parameter group, see Parameter groups for Amazon RDS. You must set these parameters before
you can view the slow query log or general log in the Amazon RDS console or by using the Amazon
RDS API, AWS CLI, or AWS SDKs.

You can control MariaDB logging by using the parameters in this list:

• slow_query_log or log_slow_query: To create the slow query log, set to 1. The default is 0.

• general_log: To create the general log, set to 1. The default is 0.

• long_query_time or log_slow_query_time: To prevent fast-running queries from being
logged in the slow query log, specify a value for the shortest query run time to be logged, in
seconds. The default is 10 seconds; the minimum is 0. If log_output = FILE, you can specify
a floating point value that goes to microsecond resolution. If log_output = TABLE, you must
specify an integer value with second resolution. Only queries whose run time exceeds the
long_query_time or log_slow_query_time value are logged. For example, setting
long_query_time or log_slow_query_time to 0.1 prevents any query that runs for less than
100 milliseconds from being logged.

• log_queries_not_using_indexes: To log all queries that do not use an index to the slow
query log, set this parameter to 1. The default is 0. Queries that do not use an index are logged
even if their run time is less than the value of the long_query_time parameter.

• log_output option: You can specify one of the following options for the log_output
parameter:

• TABLE (default)– Write general queries to the mysql.general_log table, and slow queries to
the mysql.slow_log table.

• FILE– Write both general and slow query logs to the file system. Log files are rotated hourly.

• NONE– Disable logging.

MariaDB database log files 1607

Amazon Relational Database Service User Guide

When logging is enabled, Amazon RDS rotates table logs or deletes log files at regular intervals.
This measure is a precaution to reduce the possibility of a large log file either blocking database
use or affecting performance. FILE and TABLE logging approach rotation and deletion as follows:

• When FILE logging is enabled, log files are examined every hour and log files older than 24
hours are deleted. In some cases, the remaining combined log file size after the deletion might
exceed the threshold of 2 percent of a DB instance's allocated space. In these cases, the largest
log files are deleted until the log file size no longer exceeds the threshold.

• When TABLE logging is enabled, in some cases log tables are rotated every 24 hours. This
rotation occurs if the space used by the table logs is more than 20 percent of the allocated
storage space. It also occurs if the size of all logs combined is greater than 10 GB. If the amount
of space used for a DB instance is greater than 90 percent of the DB instance's allocated storage
space, the thresholds for log rotation are reduced. Log tables are then rotated if the space used
by the table logs is more than 10 percent of the allocated storage space. They're also rotated if
the size of all logs combined is greater than 5 GB.

When log tables are rotated, the current log table is copied to a backup log table and the
entries in the current log table are removed. If the backup log table already exists, then it
is deleted before the current log table is copied to the backup. You can query the backup
log table if needed. The backup log table for the mysql.general_log table is named
mysql.general_log_backup. The backup log table for the mysql.slow_log table is named
mysql.slow_log_backup.

You can rotate the mysql.general_log table by calling the
mysql.rds_rotate_general_log procedure. You can rotate the mysql.slow_log table by
calling the mysql.rds_rotate_slow_log procedure.

Table logs are rotated during a database version upgrade.

Amazon RDS records both TABLE and FILE log rotation in an Amazon RDS event and sends you a
notification.

To work with the logs from the Amazon RDS console, Amazon RDS API, Amazon RDS CLI, or AWS
SDKs, set the log_output parameter to FILE. Like the MariaDB error log, these log files are
rotated hourly. The log files that were generated during the previous 24 hours are retained.

For more information about the slow query and general logs, go to the following topics in the
MariaDB documentation:

MariaDB database log files 1608

Amazon Relational Database Service User Guide

• Slow query log

• General query log

Publishing MariaDB logs to Amazon CloudWatch Logs

You can configure your MariaDB DB instance to publish log data to a log group in Amazon
CloudWatch Logs. With CloudWatch Logs, you can perform real-time analysis of the log data, and
use CloudWatch to create alarms and view metrics. You can use CloudWatch Logs to store your log
records in highly durable storage.

Amazon RDS publishes each MariaDB database log as a separate database stream in the log group.
For example, suppose that you configure the export function to include the slow query log. Then
slow query data is stored in a slow query log stream in the /aws/rds/instance/my_instance/
slowquery log group.

The error log is enabled by default. The following table summarizes the requirements for the other
MariaDB logs.

Log Requirement

Audit log The DB instance must use a custom option
group with the MARIADB_AUDIT_PLUGIN
option.

General log The DB instance must use a custom parameter
group with the parameter setting general_l
og = 1 to enable the general log.

Slow query log The DB instance must use a custom parameter
group with the parameter setting slow_quer
y_log = 1 or log_slow_query = 1
to enable the slow query log.

IAM database authentication error log You must enable the log type iam-db-au
th-error for a DB instance by creating or
modifying a DB instance.

MariaDB database log files 1609

http://mariadb.com/kb/en/mariadb/slow-query-log/
http://mariadb.com/kb/en/mariadb/general-query-log/

Amazon Relational Database Service User Guide

Log Requirement

Log output The DB instance must use a custom parameter
group with the parameter setting log_outpu
t = FILE to write logs to the file system
and publish them to CloudWatch Logs.

Console

To publish MariaDB logs to CloudWatch Logs from the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify.

4. In the Log exports section, choose the logs that you want to start publishing to CloudWatch
Logs.

5. Choose Continue, and then choose Modify DB Instance on the summary page.

AWS CLI

You can publish a MariaDB logs with the AWS CLI. You can call the modify-db-instance
command with the following parameters:

• --db-instance-identifier

• --cloudwatch-logs-export-configuration

Note

A change to the --cloudwatch-logs-export-configuration option is always applied
to the DB instance immediately. Therefore, the --apply-immediately and --no-
apply-immediately options have no effect.

You can also publish MariaDB logs by calling the following AWS CLI commands:

MariaDB database log files 1610

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• create-db-instance

• restore-db-instance-from-db-snapshot

• restore-db-instance-from-s3

• restore-db-instance-to-point-in-time

Run one of these AWS CLI commands with the following options:

• --db-instance-identifier

• --enable-cloudwatch-logs-exports

• --db-instance-class

• --engine

Other options might be required depending on the AWS CLI command you run.

Example

The following example modifies an existing MariaDB DB instance to publish log files to CloudWatch
Logs. The --cloudwatch-logs-export-configuration value is a JSON object. The key for
this object is EnableLogTypes, and its value is an array of strings with any combination of audit,
error, general, and slowquery.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["audit","error","general","slowquery"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["audit","error","general","slowquery"]}'

MariaDB database log files 1611

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

Example

The following command creates a MariaDB DB instance and publishes log files to CloudWatch Logs.
The --enable-cloudwatch-logs-exports value is a JSON array of strings. The strings can be
any combination of audit, error, general, and slowquery.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --enable-cloudwatch-logs-exports '["audit","error","general","slowquery"]' \
 --db-instance-class db.m4.large \
 --engine mariadb

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --enable-cloudwatch-logs-exports '["audit","error","general","slowquery"]' ^
 --db-instance-class db.m4.large ^
 --engine mariadb

RDS API

You can publish MariaDB logs with the RDS API. You can call the ModifyDBInstance operation
with the following parameters:

• DBInstanceIdentifier

• CloudwatchLogsExportConfiguration

Note

A change to the CloudwatchLogsExportConfiguration parameter is always applied to
the DB instance immediately. Therefore, the ApplyImmediately parameter has no effect.

You can also publish MariaDB logs by calling the following RDS API operations:

MariaDB database log files 1612

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

• CreateDBInstance

• RestoreDBInstanceFromDBSnapshot

• RestoreDBInstanceFromS3

• RestoreDBInstanceToPointInTime

Run one of these RDS API operations with the following parameters:

• DBInstanceIdentifier

• EnableCloudwatchLogsExports

• Engine

• DBInstanceClass

Other parameters might be required depending on the AWS CLI command you run.

Log rotation and retention for MariaDB

When logging is enabled, Amazon RDS rotates table logs or deletes log files at regular intervals.
This measure is a precaution to reduce the possibility of a large log file either blocking database
use or affecting performance.

The MariaDB slow query log, error log, and the general log file sizes are constrained to no more
than 2 percent of the allocated storage space for a DB instance. To maintain this threshold, logs are
automatically rotated every hour and log files older than 24 hours are removed. If the combined
log file size exceeds the threshold after removing old log files, then the largest log files are deleted
until the log file size no longer exceeds the threshold.

Amazon RDS rotates IAM database authentication error log files larger than 10 MB. Amazon RDS
removes IAM database authentication error log files that are older than five days or larger than 100
MB.

Managing table-based MariaDB logs

You can direct the general and slow query logs to tables on the DB instance. To do so, create a DB
parameter group and set the log_output server parameter to TABLE. General queries are then
logged to the mysql.general_log table, and slow queries are logged to the mysql.slow_log
table. You can query the tables to access the log information. Enabling this logging increases the
amount of data written to the database, which can degrade performance.

MariaDB database log files 1613

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Both the general log and the slow query logs are disabled by default. To enable logging to tables,
you must also set the following server parameters to 1:

• general_log

• slow_query_log or log_slow_query

Log tables keep growing until the respective logging activities are turned off by resetting the
appropriate parameter to 0. A large amount of data often accumulates over time, which can use
up a considerable percentage of your allocated storage space. Amazon RDS doesn't allow you to
truncate the log tables, but you can move their contents. Rotating a table saves its contents to a
backup table and then creates a new empty log table. You can manually rotate the log tables with
the following command line procedures, where the command prompt is indicated by PROMPT>:

PROMPT> CALL mysql.rds_rotate_slow_log;
PROMPT> CALL mysql.rds_rotate_general_log;

To completely remove the old data and reclaim the disk space, call the appropriate procedure twice
in succession.

Configuring MariaDB binary logging

The binary log is a set of log files that contain information about data modifications made to a
MariaDB server instance. The binary log contains information such as the following:

• Events that describe database changes such as table creation or row modifications

• Information about the duration of each statement that updated data

• Events for statements that could have updated data but didn't

The binary log records statements that are sent during replication. It is also required for some
recovery operations. For more information, see Binary Log in the MariaDB documentation.

The automated backups feature determines whether binary logging is turned on or off for
MariaDB. You have the following options:

Turn binary logging on

Set the backup retention period to a positive nonzero value.

MariaDB database log files 1614

https://mariadb.com/kb/en/binary-log/

Amazon Relational Database Service User Guide

Turn binary logging off

Set the backup retention period to zero.

For more information, see Enabling automated backups.

MariaDB on Amazon RDS supports the row-based, statement-based, and mixed binary logging
formats. The default binary logging format is mixed. For details on the different MariaDB binary log
formats, see Binary Log Formats in the MariaDB documentation.

If you plan to use replication, the binary logging format is important. This is because it determines
the record of data changes that is recorded in the source and sent to the replication targets. For
information about the advantages and disadvantages of different binary logging formats for
replication, see Advantages and Disadvantages of Statement-Based and Row-Based Replication in
the MySQL documentation.

Important

Setting the binary logging format to row-based can result in very large binary log files.
Large binary log files reduce the amount of storage available for a DB instance. They also
can increase the amount of time to perform a restore operation of a DB instance.
Statement-based replication can cause inconsistencies between the source DB instance
and a read replica. For more information, see Unsafe Statements for Statement-based
Replication in the MariaDB documentation.
Enabling binary logging increases the number of write disk I/O operations to the DB
instance. You can monitor IOPS usage with the WriteIOPS CloudWatch metric.

To set the MariaDB binary logging format

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose the parameter group that is used by the DB instance that you want to modify.

You can't modify a default parameter group. If the DB instance is using a default parameter
group, create a new parameter group and associate it with the DB instance.

For more information on DB parameter groups, see Parameter groups for Amazon RDS.

MariaDB database log files 1615

http://mariadb.com/kb/en/mariadb/binary-log-formats/
https://dev.mysql.com/doc/refman/5.7/en/replication-sbr-rbr.html
https://mariadb.com/kb/en/library/unsafe-statements-for-statement-based-replication/
https://mariadb.com/kb/en/library/unsafe-statements-for-statement-based-replication/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. For Parameter group actions, choose Edit.

5. Set the binlog_format parameter to the binary logging format of your choice (ROW,
STATEMENT, or MIXED).

You can turn off binary logging by setting the backup retention period of a DB instance to
zero, but this disables daily automated backups. Disabling automated backups turns off or
disables the log_bin session variable. This disables binary logging on the RDS for MariaDB DB
instance, which in turn resets the binlog_format session variable to the default value of ROW
in the database. We recommend that you don't disable backups. For more information about
the Backup retention period setting, see Settings for DB instances.

6. Choose Save changes to save the updates to the DB parameter group.

Because the binlog_format parameter is dynamic in RDS for MariaDB, you don't need to reboot
the DB instance for the changes to apply.

Important

Changing a DB parameter group affects all DB instances that use that parameter group. If
you want to specify different binary logging formats for different MariaDB DB instances
in an AWS Region, the DB instances must use different DB parameter groups. These
parameter groups identify different logging formats. Assign the appropriate DB parameter
group to the each DB instance.

Accessing MariaDB binary logs

You can use the mysqlbinlog utility to download binary logs in text format from MariaDB DB
instances. The binary log is downloaded to your local computer. For more information about using
the mysqlbinlog utility, go to Using mysqlbinlog in the MariaDB documentation.

To run the mysqlbinlog utility against an Amazon RDS instance, use the following options:

• Specify the --read-from-remote-server option.

• --host: Specify the DNS name from the endpoint of the instance.

• --port: Specify the port used by the instance.

• --user: Specify a MariaDB user that has been granted the replication slave permission.

MariaDB database log files 1616

http://mariadb.com/kb/en/mariadb/using-mysqlbinlog/

Amazon Relational Database Service User Guide

• --password: Specify the password for the user, or omit a password value so the utility prompts
you for a password.

• --result-file: Specify the local file that receives the output.

• Specify the names of one or more binary log files. To get a list of the available logs, use the SQL
command SHOW BINARY LOGS.

For more information about mysqlbinlog options, go to mysqlbinlog options in the MariaDB
documentation.

The following is an example:

For Linux, macOS, or Unix:

mysqlbinlog \
 --read-from-remote-server \
 --host=mariadbinstance1.1234abcd.region.rds.amazonaws.com \
 --port=3306 \
 --user ReplUser \
 --password <password> \
 --result-file=/tmp/binlog.txt

For Windows:

mysqlbinlog ^
 --read-from-remote-server ^
 --host=mariadbinstance1.1234abcd.region.rds.amazonaws.com ^
 --port=3306 ^
 --user ReplUser ^
 --password <password> ^
 --result-file=/tmp/binlog.txt

Amazon RDS normally purges a binary log as soon as possible. However, the binary log must still
be available on the instance to be accessed by mysqlbinlog. To specify the number of hours for
RDS to retain binary logs, use the mysql.rds_set_configuration stored procedure. Specify a
period with enough time for you to download the logs. After you set the retention period, monitor
storage usage for the DB instance to ensure that the retained binary logs don't take up too much
storage.

The following example sets the retention period to 1 day.

MariaDB database log files 1617

http://mariadb.com/kb/en/mariadb/mysqlbinlog-options/

Amazon Relational Database Service User Guide

call mysql.rds_set_configuration('binlog retention hours', 24);

To display the current setting, use the mysql.rds_show_configuration stored procedure.

call mysql.rds_show_configuration;

Enabling MariaDB binary log annotation

In a MariaDB DB instance, you can use the Annotate_rows event to annotate a row event with a
copy of the SQL query that caused the row event. This approach provides similar functionality to
enabling the binlog_rows_query_log_events parameter on an RDS for MySQL DB instance.

You can enable binary log annotations globally by creating a custom parameter group and
setting the binlog_annotate_row_events parameter to 1. You can also enable annotations
at the session level, by calling SET SESSION binlog_annotate_row_events = 1. Use the
replicate_annotate_row_events to replicate binary log annotations to the replica instance if
binary logging is enabled on it. No special privileges are required to use these settings.

The following is an example of a row-based transaction in MariaDB. The use of row-based logging
is triggered by setting the transaction isolation level to read-committed.

CREATE DATABASE IF NOT EXISTS test;
USE test;
CREATE TABLE square(x INT PRIMARY KEY, y INT NOT NULL) ENGINE = InnoDB;
SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;
BEGIN
INSERT INTO square(x, y) VALUES(5, 5 * 5);
COMMIT;

Without annotations, the binary log entries for the transaction look like the following:

BEGIN
/*!*/;
at 1163
at 1209
#150922 7:55:57 server id 1855786460 end_log_pos 1209 Table_map:
 `test`.`square` mapped to number 76
#150922 7:55:57 server id 1855786460 end_log_pos 1247 Write_rows: table id 76
 flags: STMT_END_F
INSERT INTO `test`.`square`

MariaDB database log files 1618

Amazon Relational Database Service User Guide

SET
@1=5
@2=25
at 1247
#150922 7:56:01 server id 1855786460 end_log_pos 1274 Xid = 62
COMMIT/*!*/;

The following statement enables session-level annotations for this same transaction, and disables
them after committing the transaction:

CREATE DATABASE IF NOT EXISTS test;
USE test;
CREATE TABLE square(x INT PRIMARY KEY, y INT NOT NULL) ENGINE = InnoDB;
SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET SESSION binlog_annotate_row_events = 1;
BEGIN;
INSERT INTO square(x, y) VALUES(5, 5 * 5);
COMMIT;
SET SESSION binlog_annotate_row_events = 0;

With annotations, the binary log entries for the transaction look like the following:

BEGIN
/*!*/;
at 423
at 483
at 529
#150922 8:04:24 server id 1855786460 end_log_pos 483 Annotate_rows:
#Q> INSERT INTO square(x, y) VALUES(5, 5 * 5)
#150922 8:04:24 server id 1855786460 end_log_pos 529 Table_map: `test`.`square`
 mapped to number 76
#150922 8:04:24 server id 1855786460 end_log_pos 567 Write_rows: table id 76 flags:
 STMT_END_F
INSERT INTO `test`.`square`
SET
@1=5
@2=25
at 567
#150922 8:04:26 server id 1855786460 end_log_pos 594 Xid = 88
COMMIT/*!*/;

MariaDB database log files 1619

Amazon Relational Database Service User Guide

Amazon RDS for Microsoft SQL Server database log files

You can access Microsoft SQL Server error logs, agent logs, trace files, and dump files by using the
Amazon RDS console, AWS CLI, or RDS API. For more information about viewing, downloading, and
watching file-based database logs, see Monitoring Amazon RDS log files.

Retention schedule

Log files are rotated each day and whenever your DB instance is restarted. The following is the
retention schedule for Microsoft SQL Server logs on Amazon RDS.

Log type Retention schedule

Error logs A maximum of 30 error logs are retained. Amazon RDS might delete
error logs older than 7 days.

Agent logs A maximum of 10 agent logs are retained. Amazon RDS might delete
agent logs older than 7 days.

Trace files Trace files are retained according to the trace file retention period of
your DB instance. The default trace file retention period is 7 days. To
modify the trace file retention period for your DB instance, see Setting
the retention period for trace and dump files.

Dump files Dump files are retained according to the dump file retention period of
your DB instance. The default dump file retention period is 7 days. To
modify the dump file retention period for your DB instance, see Setting
the retention period for trace and dump files.

Viewing the SQL Server error log by using the rds_read_error_log procedure

You can use the Amazon RDS stored procedure rds_read_error_log to view error logs and
agent logs. For more information, see Viewing error and agent logs.

Publishing SQL Server logs to Amazon CloudWatch Logs

With Amazon RDS for SQL Server, you can publish error and agent log events directly to Amazon
CloudWatch Logs. Analyze the log data with CloudWatch Logs, then use CloudWatch to create
alarms and view metrics.

Microsoft SQL Server database log files 1620

Amazon Relational Database Service User Guide

With CloudWatch Logs, you can do the following:

• Store logs in highly durable storage space with a retention period that you define.

• Search and filter log data.

• Share log data between accounts.

• Export logs to Amazon S3.

• Stream data to Amazon OpenSearch Service.

• Process log data in real time with Amazon Kinesis Data Streams. For more information, see
Working with Amazon CloudWatch Logs in the Amazon Managed Service for Apache Flink for SQL
Applications Developer Guide.

Amazon RDS publishes each SQL Server database log as a separate database stream in the log
group. For example, if you publish the agent logs and error logs, error data is stored in an error log
stream in the /aws/rds/instance/my_instance.node1/error log group, and agent log data
is stored in the /aws/rds/instance/my_instance.node1/agent log group.

For Multi-AZ DB instances, Amazon RDS publishes the database log as two separate streams
in the log group. For example, if you publish the error logs, the error data is stored in the
error log streams /aws/rds/instance/my_instance.node1/error and /aws/rds/
instance/my_instance.node2/error respectively. The log streams don't change during
a failover and the error log stream of each node can contain error logs from primary or
secondary instance. With Multi-AZ, a log stream is automatically created for /aws/rds/
instance/my_instance/rds-events to store event data such as DB instance failovers.

Note

Publishing SQL Server logs to CloudWatch Logs isn't enabled by default. Publishing
trace and dump files isn't supported. Publishing SQL Server logs to CloudWatch Logs is
supported in all regions, except for Asia Pacific (Hong Kong).

Console

To publish SQL Server DB logs to CloudWatch Logs from the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Microsoft SQL Server database log files 1621

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify.

4. In the Log exports section, choose the logs that you want to start publishing to CloudWatch
Logs.

You can choose Agent log, Error log, or both.

5. Choose Continue, and then choose Modify DB Instance on the summary page.

AWS CLI

To publish SQL Server logs, you can use the modify-db-instance command with the following
parameters:

• --db-instance-identifier

• --cloudwatch-logs-export-configuration

Note

A change to the --cloudwatch-logs-export-configuration option is always applied
to the DB instance immediately. Therefore, the --apply-immediately and --no-
apply-immediately options have no effect.

You can also publish SQL Server logs using the following commands:

• create-db-instance

• restore-db-instance-from-db-snapshot

• restore-db-instance-to-point-in-time

Example

The following example creates an SQL Server DB instance with CloudWatch Logs publishing
enabled. The --enable-cloudwatch-logs-exports value is a JSON array of strings that can
include error, agent, or both.

For Linux, macOS, or Unix:

Microsoft SQL Server database log files 1622

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --enable-cloudwatch-logs-exports '["error","agent"]' \
 --db-instance-class db.m4.large \
 --engine sqlserver-se

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --enable-cloudwatch-logs-exports "[\"error\",\"agent\"]" ^
 --db-instance-class db.m4.large ^
 --engine sqlserver-se

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

Example

The following example modifies an existing SQL Server DB instance to publish log files to
CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON object.
The key for this object is EnableLogTypes, and its value is an array of strings that can include
error, agent, or both.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":["error","agent"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration "{\"EnableLogTypes\":[\"error\",\"agent\"]}"

Microsoft SQL Server database log files 1623

Amazon Relational Database Service User Guide

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

Example

The following example modifies an existing SQL Server DB instance to disable publishing agent log
files to CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON
object. The key for this object is DisableLogTypes, and its value is an array of strings that can
include error, agent, or both.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"DisableLogTypes":["agent"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration "{\"DisableLogTypes\":[\"agent\"]}"

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

Microsoft SQL Server database log files 1624

Amazon Relational Database Service User Guide

MySQL database log files

You can monitor the MySQL logs directly through the Amazon RDS console, Amazon RDS API, AWS
CLI, or AWS SDKs. You can also access MySQL logs by directing the logs to a database table in the
main database and querying that table. You can use the mysqlbinlog utility to download a binary
log.

For more information about viewing, downloading, and watching file-based database logs, see
Monitoring Amazon RDS log files.

Topics

• Overview of RDS for MySQL database logs

• Publishing MySQL logs to Amazon CloudWatch Logs

• Sending MySQL log output to tables

• Configuring RDS for MySQL binary logging

• Configuring MySQL binary logging for Multi-AZ DB clusters

• Accessing MySQL binary logs

Overview of RDS for MySQL database logs

You can monitor the following types of RDS for MySQL log files:

• Error log

• Slow query log

• General log

• Audit log

• Instance log

• IAM database authentication error log

The RDS for MySQL error log is generated by default. You can generate the slow query and general
logs by setting parameters in your DB parameter group.

Topics

• RDS for MySQL error logs

MySQL database log files 1625

Amazon Relational Database Service User Guide

• RDS for MySQL slow query and general logs

• MySQL audit log

• Log rotation and retention for RDS for MySQL

• Size limits on redo logs

RDS for MySQL error logs

RDS for MySQL writes errors in the mysql-error.log file. Each log file has the hour it was
generated (in UTC) appended to its name. The log files also have a timestamp that helps you
determine when the log entries were written.

RDS for MySQL writes to the error log only on startup, shutdown, and when it encounters errors. A
DB instance can go hours or days without new entries being written to the error log. If you see no
recent entries, it's because the server didn't encounter an error that would result in a log entry.

By design, the error logs are filtered so that only unexpected events such as errors are shown.
However, the error logs also contain some additional database information, for example query
progress, which isn't shown. Therefore, even without any actual errors the size of the error logs
might increase because of ongoing database activities. And while you might see a certain size in
bytes or kilobytes for the error logs in the AWS Management Console, they might have 0 bytes
when you download them.

RDS for MySQL writes mysql-error.log to disk every 5 minutes. It appends the contents of the
log to mysql-error-running.log.

RDS for MySQL rotates the mysql-error-running.log file every hour. It retains the logs
generated during the last two weeks.

Note

The log retention period is different between Amazon RDS and Aurora.

RDS for MySQL slow query and general logs

You can write the RDS for MySQL slow query log and the general log to a file or a database
table. To do so, set parameters in your DB parameter group. For information about creating and
modifying a DB parameter group, see Parameter groups for Amazon RDS. You must set these

MySQL database log files 1626

Amazon Relational Database Service User Guide

parameters before you can view the slow query log or general log in the Amazon RDS console or by
using the Amazon RDS API, Amazon RDS CLI, or AWS SDKs.

You can control RDS for MySQL logging by using the parameters in this list:

• slow_query_log: To create the slow query log, set to 1. The default is 0.

• general_log: To create the general log, set to 1. The default is 0.

• long_query_time: To prevent fast-running queries from being logged in the slow query
log, specify a value for the shortest query runtime to be logged, in seconds. The default is 10
seconds; the minimum is 0. If log_output = FILE, you can specify a floating point value that goes
to microsecond resolution. If log_output = TABLE, you must specify an integer value with second
resolution. Only queries whose runtime exceeds the long_query_time value are logged. For
example, setting long_query_time to 0.1 prevents any query that runs for less than 100
milliseconds from being logged.

• log_queries_not_using_indexes: To log all queries that do not use an index to the slow
query log, set to 1. Queries that don't use an index are logged even if their runtime is less than
the value of the long_query_time parameter. The default is 0.

• log_output option: You can specify one of the following options for the log_output
parameter.

• TABLE (default) – Write general queries to the mysql.general_log table, and slow queries
to the mysql.slow_log table.

• FILE – Write both general and slow query logs to the file system.

• NONE – Disable logging.

For slow query data to appear in Amazon CloudWatch Logs, the following conditions must be met:

• CloudWatch Logs must be configured to include slow query logs.

• slow_query_log must be enabled.

• log_output must be set to FILE.

• The query must take longer than the time configured for long_query_time.

For more information about the slow query and general logs, go to the following topics in the
MySQL documentation:

• The slow query log

MySQL database log files 1627

https://dev.mysql.com/doc/refman/8.0/en/slow-query-log.html

Amazon Relational Database Service User Guide

• The general query log

MySQL audit log

To access the audit log, the DB instance must use a custom option group with the
MARIADB_AUDIT_PLUGIN option. For more information, see MariaDB Audit Plugin support for
MySQL.

Log rotation and retention for RDS for MySQL

When logging is enabled, Amazon RDS rotates table logs or deletes log files at regular intervals.
This measure is a precaution to reduce the possibility of a large log file either blocking database
use or affecting performance. RDS for MySQL handles rotation and deletion as follows:

• The MySQL slow query log, error log, and the general log file sizes are constrained to no more
than 2 percent of the allocated storage space for a DB instance. To maintain this threshold, logs
are automatically rotated every hour. MySQL removes log files more than two weeks old. If the
combined log file size exceeds the threshold after removing old log files, then the oldest log files
are deleted until the log file size no longer exceeds the threshold.

• When FILE logging is enabled, log files are examined every hour and log files more than two
weeks old are deleted. In some cases, the remaining combined log file size after the deletion
might exceed the threshold of 2 percent of a DB instance's allocated space. In these cases, the
oldest log files are deleted until the log file size no longer exceeds the threshold.

• When TABLE logging is enabled, in some cases log tables are rotated every 24 hours. This
rotation occurs if the space used by the table logs is more than 20 percent of the allocated
storage space. It also occurs if the size of all logs combined is greater than 10 GB. If the amount
of space used for a DB instance is greater than 90 percent of the DB instance's allocated storage
space, then the thresholds for log rotation are reduced. Log tables are then rotated if the
space used by the table logs is more than 10 percent of the allocated storage space. They're
also rotated if the size of all logs combined is greater than 5 GB. You can subscribe to the low
storage event category to be notified when log tables are rotated to free up space. For more
information, see Working with Amazon RDS event notification.

When log tables are rotated, the current log table is first copied to a backup log table. Then
the entries in the current log table are removed. If the backup log table already exists, then
it is deleted before the current log table is copied to the backup. You can query the backup
log table if needed. The backup log table for the mysql.general_log table is named

MySQL database log files 1628

https://dev.mysql.com/doc/refman/8.0/en/query-log.html

Amazon Relational Database Service User Guide

mysql.general_log_backup. The backup log table for the mysql.slow_log table is named
mysql.slow_log_backup.

You can rotate the mysql.general_log table by calling the
mysql.rds_rotate_general_log procedure. You can rotate the mysql.slow_log table by
calling the mysql.rds_rotate_slow_log procedure.

Table logs are rotated during a database version upgrade.

To work with the logs from the Amazon RDS console, Amazon RDS API, Amazon RDS CLI, or AWS
SDKs, set the log_output parameter to FILE. Like the MySQL error log, these log files are rotated
hourly. The log files that were generated during the previous two weeks are retained. Note that the
retention period is different between Amazon RDS and Aurora.

Size limits on redo logs

For RDS for MySQL version 8.0.32 and lower, the default value of this parameter is 256 MB. This
amount is derived by multiplying the default value of the innodb_log_file_size parameter
(128 MB) by the default value of the innodb_log_files_in_group parameter (2). For more
information, see Best practices for configuring parameters for Amazon RDS for MySQL, part 1:
Parameters related to performance.

For RDS for MySQL version 8.0.33 and higher minor versions, Amazon RDS uses the
innodb_redo_log_capacity parameter instead of the innodb_log_file_size parameter.
The Amazon RDS default value of the innodb_redo_log_capacity parameter is 2 GB. For more
information, see Changes in MySQL 8.0.30 in the MySQL documentation.

Starting with MySQL 8.4, Amazon RDS enables the innodb_dedicated_server parameter
by default. With the innodb_dedicated_server parameter, the database engine calculates
the innodb_buffer_pool_size and innodb_redo_log_capacity parameters. For more
information, see Configuring buffer pool size and redo log capacity in MySQL 8.4.

Publishing MySQL logs to Amazon CloudWatch Logs

You can configure your MySQL DB instance to publish log data to a log group in Amazon
CloudWatch Logs. With CloudWatch Logs, you can perform real-time analysis of the log data, and
use CloudWatch to create alarms and view metrics. You can use CloudWatch Logs to store your log
records in highly durable storage.

MySQL database log files 1629

https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-30.html

Amazon Relational Database Service User Guide

Amazon RDS publishes each MySQL database log as a separate database stream in the log group.
For example, if you configure the export function to include the slow query log, slow query data
is stored in a slow query log stream in the /aws/rds/instance/my_instance/slowquery log
group.

The error log is enabled by default. The following table summarizes the requirements for the other
MySQL logs.

Log Requirement

Audit log The DB instance must use a custom option
group with the MARIADB_AUDIT_PLUGIN o
ption.

General log The DB instance must use a custom parameter
group with the parameter setting general_l
og = 1 to enable the general log.

Slow query log The DB instance must use a custom parameter
group with the parameter setting slow_quer
y_log = 1 to enable the slow query log.

IAM database authentication error log You must enable the log type iam-db-au
th-error for a DB instance by creating or
modifying a DB instance.

Log output The DB instance must use a custom parameter
group with the parameter setting log_outpu
t = FILE to write logs to the file system
and publish them to CloudWatch Logs.

Console

To publish MySQL logs to CloudWatch Logs using the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

MySQL database log files 1630

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. Choose Modify.

4. In the Log exports section, choose the logs that you want to start publishing to CloudWatch
Logs.

5. Choose Continue, and then choose Modify DB Instance on the summary page.

AWS CLI

You can publish MySQL logs with the AWS CLI. You can call the modify-db-instance command
with the following parameters:

• --db-instance-identifier

• --cloudwatch-logs-export-configuration

Note

A change to the --cloudwatch-logs-export-configuration option is always applied
to the DB instance immediately. Therefore, the --apply-immediately and --no-
apply-immediately options have no effect.

You can also publish MySQL logs by calling the following AWS CLI commands:

• create-db-instance

• restore-db-instance-from-db-snapshot

• restore-db-instance-from-s3

• restore-db-instance-to-point-in-time

Run one of these AWS CLI commands with the following options:

• --db-instance-identifier

• --enable-cloudwatch-logs-exports

• --db-instance-class

• --engine

Other options might be required depending on the AWS CLI command you run.

MySQL database log files 1631

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

Example

The following example modifies an existing MySQL DB instance to publish log files to CloudWatch
Logs. The --cloudwatch-logs-export-configuration value is a JSON object. The key for
this object is EnableLogTypes, and its value is an array of strings with any combination of audit,
error, general, and slowquery.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["audit","error","general","slowquery"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["audit","error","general","slowquery"]}'

Example

The following example creates a MySQL DB instance and publishes log files to CloudWatch Logs.
The --enable-cloudwatch-logs-exports value is a JSON array of strings. The strings can be
any combination of audit, error, general, and slowquery.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --enable-cloudwatch-logs-exports '["audit","error","general","slowquery"]' \
 --db-instance-class db.m4.large \
 --engine MySQL

For Windows:

aws rds create-db-instance ^

MySQL database log files 1632

Amazon Relational Database Service User Guide

 --db-instance-identifier mydbinstance ^
 --enable-cloudwatch-logs-exports '["audit","error","general","slowquery"]' ^
 --db-instance-class db.m4.large ^
 --engine MySQL

RDS API

You can publish MySQL logs with the RDS API. You can call the ModifyDBInstance action with
the following parameters:

• DBInstanceIdentifier

• CloudwatchLogsExportConfiguration

Note

A change to the CloudwatchLogsExportConfiguration parameter is always applied to
the DB instance immediately. Therefore, the ApplyImmediately parameter has no effect.

You can also publish MySQL logs by calling the following RDS API operations:

• CreateDBInstance

• RestoreDBInstanceFromDBSnapshot

• RestoreDBInstanceFromS3

• RestoreDBInstanceToPointInTime

Run one of these RDS API operations with the following parameters:

• DBInstanceIdentifier

• EnableCloudwatchLogsExports

• Engine

• DBInstanceClass

Other parameters might be required depending on the AWS CLI command you run.

MySQL database log files 1633

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Sending MySQL log output to tables

You can direct the general and slow query logs to tables on the DB instance by creating a DB
parameter group and setting the log_output server parameter to TABLE. General queries
are then logged to the mysql.general_log table, and slow queries are logged to the
mysql.slow_log table. You can query the tables to access the log information. Enabling this
logging increases the amount of data written to the database, which can degrade performance.

Both the general log and the slow query logs are disabled by default. In order to enable logging to
tables, you must also set the general_log and slow_query_log server parameters to 1.

Log tables keep growing until the respective logging activities are turned off by resetting the
appropriate parameter to 0. A large amount of data often accumulates over time, which can use
up a considerable percentage of your allocated storage space. Amazon RDS doesn't allow you to
truncate the log tables, but you can move their contents. Rotating a table saves its contents to a
backup table and then creates a new empty log table. You can manually rotate the log tables with
the following command line procedures, where the command prompt is indicated by PROMPT>:

PROMPT> CALL mysql.rds_rotate_slow_log;
PROMPT> CALL mysql.rds_rotate_general_log;

To completely remove the old data and reclaim the disk space, call the appropriate procedure twice
in succession.

Configuring RDS for MySQL binary logging

The binary log is a set of log files that contain information about data modifications made to an
MySQL server instance. The binary log contains information such as the following:

• Events that describe database changes such as table creation or row modifications

• Information about the duration of each statement that updated data

• Events for statements that could have updated data but didn't

The binary log records statements that are sent during replication. It is also required for some
recovery operations. For more information, see The Binary Log in the MySQL documentation.

The automated backups feature determines whether binary logging is turned on or off for MySQL.
You have the following options:

MySQL database log files 1634

https://dev.mysql.com/doc/refman/8.0/en/binary-log.html

Amazon Relational Database Service User Guide

Turn binary logging on

Set the backup retention period to a positive nonzero value.

Turn binary logging off

Set the backup retention period to zero.

For more information, see Enabling automated backups.

MySQL on Amazon RDS supports the row-based, statement-based, and mixed binary logging
formats. We recommend mixed unless you need a specific binlog format. For details on the
different MySQL binary log formats, see Binary Logging Formats in the MySQL documentation.

If you plan to use replication, the binary logging format is important because it determines the
record of data changes that is recorded in the source and sent to the replication targets. For
information about the advantages and disadvantages of different binary logging formats for
replication, see Advantages and Disadvantages of Statement-Based and Row-Based Replication in
the MySQL documentation.

Important

With MySQL 8.0.34, MySQL deprecated the binlog_format parameter. In later MySQL
versions, MySQL plans to remove the parameter and only support row-based replication.
As a result, we recommend using row-based logging for new MySQL replication setups. For
more information, see binlog_format in the MySQL documentation.
Statement-based replication can cause inconsistencies between the source DB instance and
a read replica. For more information, see Determination of Safe and Unsafe Statements in
Binary Logging in the MySQL documentation.
Enabling binary logging increases the number of write disk I/O operations to the DB
instance. You can monitor IOPS usage with the WriteIOPS CloudWatch metric.

To set the MySQL binary logging format

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose the DB parameter group, associated with the DB instance, that you want to modify.

MySQL database log files 1635

https://dev.mysql.com/doc/refman/8.0/en/binary-log-formats.html
https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

You can't modify a default parameter group. If the DB instance is using a default parameter
group, create a new parameter group and associate it with the DB instance.

For more information on parameter groups, see Parameter groups for Amazon RDS.

4. From Actions, choose Edit.

5. Set the binlog_format parameter to the binary logging format of your choice (ROW,
STATEMENT, or MIXED).

You can turn off binary logging by setting the backup retention period of a DB instance to
zero, but this disables daily automated backups. Disabling automated backups turns off or
disables the log_bin session variable. This disables binary logging on the RDS for MySQL DB
instance, which in turn resets the binlog_format session variable to the default value of ROW
in the database. We recommend that you don't disable backups. For more information about
the Backup retention period setting, see Settings for DB instances.

6. Choose Save changes to save the updates to the DB parameter group.

Because the binlog_format parameter is dynamic in RDS for MySQL, you don't need to reboot
the DB instance for the changes to apply. (Note that in Aurora MySQL, this parameter is static. For
more information, see Configuring Aurora MySQL binary logging.)

Important

Changing a DB parameter group affects all DB instances that use that parameter group. If
you want to specify different binary logging formats for different MySQL DB instances in an
AWS Region, the DB instances must use different DB parameter groups. These parameter
groups identify different logging formats. Assign the appropriate DB parameter group to
the each DB instance.

Configuring MySQL binary logging for Multi-AZ DB clusters

Binary logging in Amazon RDS for MySQL Multi-AZ DB clusters records all database changes to
support replication, point-in-time recovery, and auditing. In Multi-AZ DB clusters, binary logs
synchronize secondary nodes with the primary node, ensuring data consistency across Availability
Zones and enabling seamless failovers.

MySQL database log files 1636

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_LogAccess.MySQL.BinaryFormat.html

Amazon Relational Database Service User Guide

To optimize binary logging, Amazon RDS supports binary log transaction compression, which
reduces the storage requirements for binary logs and improves replication efficiency.

Topics

• Binary log transaction compression for Multi-AZ DB clusters

• Configuring binary log transaction compression for Multi-AZ DB clusters

Binary log transaction compression for Multi-AZ DB clusters

Binary log transaction compression uses the zstd algorithm to reduce the size of transaction
data stored in binary logs. When enabled, the MySQL database engine compresses transaction
payloads into a single event, minimizing I/O and storage overhead. This feature improves database
performance, reduces binary log size, and optimizes resource use for managing and replicating logs
in Multi-AZ DB clusters.

Amazon RDS provides binary log transaction compression for RDS for MySQL Multi-AZ DB clusters
through the following parameters:

• binlog_transaction_compression – When enabled (1), the database engine compresses
transaction payloads and writes them to the binary log as a single event. This reduces storage
usage and I/O overhead. The parameter is disabled by default.

• binlog_transaction_compression_level_zstd – Configures the zstd compression level
for binary log transactions. Higher values increase the compression ratio, reducing storage
requirements further but increasing CPU and memory usage for compression. The default value
is 3, with a range of 1-22.

These parameters let you fine-tune binary log compression based on workload characteristics and
resource availability. For more information, see Binary Log Transaction Compression in the MySQL
documentation.

Binary log transaction compression has the following main benefits:

• Compression decreases the size of binary logs, particularly for workloads with large transactions
or high write volumes.

• Smaller binary logs reduce network and I/O overhead, enhancing replication performance.

• The binlog_transaction_compression_level_zstd parameter provides control over the
trade-off between compression ratio and resource consumption.

MySQL database log files 1637

https://dev.mysql.com/doc/refman/8.4/en/binary-log-transaction-compression.html

Amazon Relational Database Service User Guide

Configuring binary log transaction compression for Multi-AZ DB clusters

To configure binary log transaction compression for an RDS for MySQL Multi-AZ DB cluster, modify
the relevant cluster parameter settings to match your workload requirements.

Console

To enable binary log transaction compression

1. Modify the DB cluster parameter group to set the binlog_transaction_compression
parameter to 1.

2. (Optional) Adjust the value of the binlog_transaction_compression_level_zstd
parameter based on your workload requirements and resource availability.

For more information, see the section called “Modifying parameters in a DB cluster parameter
group”.

AWS CLI

To configure binary log transaction compression using the AWS CLI, use the modify-db-cluster-
parameter-group command.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name your-cluster-parameter-group \
 --parameters
 "ParameterName=binlog_transaction_compression,ParameterValue=1,ApplyMethod=pending-
reboot"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name your-cluster-parameter-group ^
 --parameters
 "ParameterName=binlog_transaction_compression,ParameterValue=1,ApplyMethod=pending-
reboot"

MySQL database log files 1638

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Relational Database Service User Guide

RDS API

To configure binary log transaction compression using the Amazon RDS API, use the
ModifyDBClusterParameterGroup operation.

Accessing MySQL binary logs

You can use the mysqlbinlog utility to download or stream binary logs from RDS for MySQL DB
instances. The binary log is downloaded to your local computer, where you can perform actions
such as replaying the log using the mysql utility. For more information about using the mysqlbinlog
utility, see Using mysqlbinlog to back up binary log files in the MySQL documentation.

To run the mysqlbinlog utility against an Amazon RDS instance, use the following options:

• --read-from-remote-server – Required.

• --host – The DNS name from the endpoint of the instance.

• --port – The port used by the instance.

• --user – A MySQL user that has been granted the REPLICATION SLAVE permission.

• --password – The password for the MySQL user, or omit a password value so that the utility
prompts you for a password.

• --raw – Download the file in binary format.

• --result-file – The local file to receive the raw output.

• --stop-never – Stream the binary log files.

• --verbose – When you use the ROW binlog format, include this option to see the row events as
pseudo-SQL statements. For more information on the --verbose option, see mysqlbinlog row
event display in the MySQL documentation.

• Specify the names of one or more binary log files. To get a list of the available logs, use the SQL
command SHOW BINARY LOGS.

For more information about mysqlbinlog options, see mysqlbinlog — Utility for processing binary
log files in the MySQL documentation.

The following examples show how to use the mysqlbinlog utility.

For Linux, macOS, or Unix:

mysqlbinlog \

MySQL database log files 1639

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-backup.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-row-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-row-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html

Amazon Relational Database Service User Guide

 --read-from-remote-server \
 --host=MySQLInstance1.cg034hpkmmjt.region.rds.amazonaws.com \
 --port=3306 \
 --user ReplUser \
 --password \
 --raw \
 --verbose \
 --result-file=/tmp/ \
 binlog.00098

For Windows:

mysqlbinlog ^
 --read-from-remote-server ^
 --host=MySQLInstance1.cg034hpkmmjt.region.rds.amazonaws.com ^
 --port=3306 ^
 --user ReplUser ^
 --password ^
 --raw ^
 --verbose ^
 --result-file=/tmp/ ^
 binlog.00098

Binary logs must remain available on the DB instance for the mysqlbinlog utility to access them. To
ensure their availability, use the mysql.rds_set_configuration stored procedure and specify a period
with enough time for you to download the logs. If this configuration isn't set, Amazon RDS purges
the binary logs as soon as possible, leading to gaps in the binary logs that the mysqlbinlog utility
retrieves.

The following example sets the retention period to 1 day.

call mysql.rds_set_configuration('binlog retention hours', 24);

To display the current setting, use the mysql.rds_show_configuration stored procedure.

call mysql.rds_show_configuration;

MySQL database log files 1640

Amazon Relational Database Service User Guide

Amazon RDS for Oracle database log files

You can access Oracle alert logs, audit files, and trace files by using the Amazon RDS console or
API. For more information about viewing, downloading, and watching file-based database logs, see
Monitoring Amazon RDS log files.

The Oracle audit files provided are the standard Oracle auditing files. Amazon RDS supports
the Oracle fine-grained auditing (FGA) feature. However, log access doesn't provide access to
FGA events that are stored in the SYS.FGA_LOG$ table and that are accessible through the
DBA_FGA_AUDIT_TRAIL view.

The DescribeDBLogFiles API operation that lists the Oracle log files that are available for a
DB instance ignores the MaxRecords parameter and returns up to 1,000 records. The call returns
LastWritten as a POSIX date in milliseconds.

Topics

• Retention schedule

• Working with Oracle trace files

• Publishing Oracle logs to Amazon CloudWatch Logs

• Accessing alert logs and listener logs

Retention schedule

The Oracle database engine might rotate log files if they get very large. To retain audit or trace
files, download them. If you store the files locally, you reduce your Amazon RDS storage costs and
make more space available for your data.

The following table shows the retention schedule for Oracle alert logs, audit files, and trace files on
Amazon RDS.

Log type Retention schedule

Alert logs The text alert log is rotated daily with 30-day retention managed by
Amazon RDS. The XML alert log is retained for at least seven days. You
can access this log by using the ALERTLOG view.

Audit files The default retention period for audit files is seven days. Amazon RDS
might delete audit files older than seven days.

Oracle database log files 1641

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBLogFiles.html

Amazon Relational Database Service User Guide

Log type Retention schedule

Trace files The default retention period for trace files is seven days. Amazon RDS
might delete trace files older than seven days.

Listener logs The default retention period for the listener logs is seven days. Amazon
RDS might delete listener logs older than seven days.

Note

Audit files and trace files share the same retention configuration.

Working with Oracle trace files

Following, you can find descriptions of Amazon RDS procedures to create, refresh, access, and
delete trace files.

Topics

• Listing files

• Generating trace files and tracing a session

• Retrieving trace files

• Purging trace files

Listing files

You can use either of two procedures to allow access to any file in the background_dump_dest
path. The first procedure refreshes a view containing a listing of all files currently in
background_dump_dest.

EXEC rdsadmin.manage_tracefiles.refresh_tracefile_listing;

After the view is refreshed, query the following view to access the results.

SELECT * FROM rdsadmin.tracefile_listing;

Oracle database log files 1642

Amazon Relational Database Service User Guide

An alternative to the previous process is to use FROM table to stream nonrelational data in a
table-like format to list database directory contents.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('BDUMP'));

The following query shows the text of a log file.

SELECT text FROM
 TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP','alert_dbname.log.date'));

On a read replica, get the name of the BDUMP directory by querying V
$DATABASE.DB_UNIQUE_NAME. If the unique name is DATABASE_B, then the BDUMP directory is
BDUMP_B. The following example queries the BDUMP name on a replica and then uses this name to
query the contents of alert_DATABASE.log.2020-06-23.

SELECT 'BDUMP' || (SELECT regexp_replace(DB_UNIQUE_NAME,'.*(_[A-Z])', '\1') FROM V
$DATABASE) AS BDUMP_VARIABLE FROM DUAL;

BDUMP_VARIABLE

BDUMP_B

SELECT TEXT FROM
 table(rdsadmin.rds_file_util.read_text_file('BDUMP_B','alert_DATABASE.log.2020-06-23'));

Generating trace files and tracing a session

Because there are no restrictions on ALTER SESSION, many standard methods to generate trace
files in Oracle remain available to an Amazon RDS DB instance. The following procedures are
provided for trace files that require greater access.

Oracle method Amazon RDS method

oradebug hanganalyze 3 EXEC rdsadmin.manage_tracefiles.
hanganalyze;

oradebug dump systemstate
266

EXEC rdsadmin.manage_tracefiles.
dump_systemstate;

Oracle database log files 1643

Amazon Relational Database Service User Guide

You can use many standard methods to trace individual sessions connected to an Oracle DB
instance in Amazon RDS. To enable tracing for a session, you can run subprograms in PL/SQL
packages supplied by Oracle, such as DBMS_SESSION and DBMS_MONITOR. For more information,
see Enabling tracing for a session in the Oracle documentation.

Retrieving trace files

You can retrieve any trace file in background_dump_dest using a standard SQL query on an
Amazon RDS–managed external table. To use this method, you must execute the procedure to set
the location for this table to the specific trace file.

For example, you can use the rdsadmin.tracefile_listing view mentioned preceding to list
all of the trace files on the system. You can then set the tracefile_table view to point to the
intended trace file using the following procedure.

EXEC
 rdsadmin.manage_tracefiles.set_tracefile_table_location('CUST01_ora_3260_SYSTEMSTATE.trc');

The following example creates an external table in the current schema with the location set to the
file provided. You can retrieve the contents into a local file using a SQL query.

SPOOL /tmp/tracefile.txt
SELECT * FROM tracefile_table;
SPOOL OFF;

Purging trace files

Trace files can accumulate and consume disk space. Amazon RDS purges trace files by default and
log files that are older than seven days. You can view and set the trace file retention period using
the show_configuration procedure. You should run the command SET SERVEROUTPUT ON so
that you can view the configuration results.

The following example shows the current trace file retention period, and then sets a new trace file
retention period.

Show the current tracefile retention
SQL> EXEC rdsadmin.rdsadmin_util.show_configuration;
NAME:tracefile retention
VALUE:10080

Oracle database log files 1644

https://docs.oracle.com/database/121/TGSQL/tgsql_trace.htm#GUID-F872D6F9-E015-481F-80F6-8A7036A6AD29

Amazon Relational Database Service User Guide

DESCRIPTION:tracefile expiration specifies the duration in minutes before tracefiles in
 bdump are automatically deleted.

Set the tracefile retention to 24 hours:
SQL> EXEC rdsadmin.rdsadmin_util.set_configuration('tracefile retention',1440);
SQL> commit;

#show the new tracefile retention
SQL> EXEC rdsadmin.rdsadmin_util.show_configuration;
NAME:tracefile retention
VALUE:1440
DESCRIPTION:tracefile expiration specifies the duration in minutes before tracefiles in
 bdump are automatically deleted.

In addition to the periodic purge process, you can manually remove files from the
background_dump_dest. The following example shows how to purge all files older than five
minutes.

EXEC rdsadmin.manage_tracefiles.purge_tracefiles(5);

You can also purge all files that match a specific pattern (if you do, don't include the file
extension, such as .trc). The following example shows how to purge all files that start with
SCHPOC1_ora_5935.

EXEC rdsadmin.manage_tracefiles.purge_tracefiles('SCHPOC1_ora_5935');

Publishing Oracle logs to Amazon CloudWatch Logs

You can configure your RDS for Oracle DB instance to publish log data to a log group in Amazon
CloudWatch Logs. With CloudWatch Logs, you can analyze the log data, and use CloudWatch to
create alarms and view metrics. You can use CloudWatch Logs to store your log records in highly
durable storage.

Amazon RDS publishes each Oracle database log as a separate database stream in the log group.
For example, if you configure the export function to include the audit log, audit data is stored in
an audit log stream in the /aws/rds/instance/my_instance/audit log group. The following
table summarizes the requirements for RDS for Oracle to publish logs to Amazon CloudWatch
Logs.

Oracle database log files 1645

Amazon Relational Database Service User Guide

Log name Requirement Default

Alert log None. You can't disable this log. Enabled

Trace log Set the trace_enabled parameter to
TRUE or leave it set at the default.

TRUE

Audit log Set the audit_trail parameter to any
of the following allowed values:

{ none | os | db [, extended] | xml
 [, extended] }

none

Listener log None. You can't disable this log. Enabled

Oracle Management
Agent log

None. You can't disable this log. Enabled

This Oracle Management Agent log consists of the log groups shown in the following table.

Log name CloudWatch log group

emctl.log oemagent-emctl

emdctlj.log oemagent-emdctlj

gcagent.log oemagent-gcagent

gcagent_errors.log oemagent-gcagent-errors

emagent.nohup oemagent-emagent-nohup

secure.log oemagent-secure

For more information, see Locating Management Agent Log and Trace Files in the Oracle
documentation.

Oracle database log files 1646

https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.4/emadm/locating-management-agent-log-and-trace-files1.html#GUID-9C710D78-6AA4-42E4-83CD-47B5FF4892DF

Amazon Relational Database Service User Guide

Console

To publish Oracle DB logs to CloudWatch Logs from the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify.

4. In the Log exports section, choose the logs that you want to start publishing to CloudWatch
Logs.

5. Choose Continue, and then choose Modify DB Instance on the summary page.

AWS CLI

To publish Oracle logs, you can use the modify-db-instance command with the following
parameters:

• --db-instance-identifier

• --cloudwatch-logs-export-configuration

Note

A change to the --cloudwatch-logs-export-configuration option is always applied
to the DB instance immediately. Therefore, the --apply-immediately and --no-
apply-immediately options have no effect.

You can also publish Oracle logs using the following commands:

• create-db-instance

• restore-db-instance-from-db-snapshot

• restore-db-instance-from-s3

• restore-db-instance-to-point-in-time

Oracle database log files 1647

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

Example

The following example creates an Oracle DB instance with CloudWatch Logs publishing enabled.
The --cloudwatch-logs-export-configuration value is a JSON array of strings. The strings
can be any combination of alert, audit, listener, and trace.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration
 '["trace","audit","alert","listener","oemagent"]' \
 --db-instance-class db.m5.large \
 --allocated-storage 20 \
 --engine oracle-ee \
 --engine-version 19.0.0.0.ru-2024-04.rur-2024-04.r1 \
 --license-model bring-your-own-license \
 --master-username myadmin \
 --manage-master-user-password

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration trace alert audit listener oemagent ^
 --db-instance-class db.m5.large ^
 --allocated-storage 20 ^
 --engine oracle-ee ^
 --engine-version 19.0.0.0.ru-2024-04.rur-2024-04.r1 ^
 --license-model bring-your-own-license ^
 --master-username myadmin ^
 --manage-master-user-password

Example

The following example modifies an existing Oracle DB instance to publish log files to CloudWatch
Logs. The --cloudwatch-logs-export-configuration value is a JSON object. The key for
this object is EnableLogTypes, and its value is an array of strings with any combination of alert,
audit, listener, and trace.

For Linux, macOS, or Unix:

Oracle database log files 1648

Amazon Relational Database Service User Guide

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["trace","alert","audit","listener","oemagent"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration EnableLogTypes=\"trace\",\"alert\",\"audit
\",\"listener\",\"oemagent\"

Example

The following example modifies an existing Oracle DB instance to disable publishing audit and
listener log files to CloudWatch Logs. The --cloudwatch-logs-export-configuration value
is a JSON object. The key for this object is DisableLogTypes, and its value is an array of strings
with any combination of alert, audit, listener, and trace.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"DisableLogTypes":["audit","listener"]}'

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration DisableLogTypes=\"audit\",\"listener\"

RDS API

You can publish Oracle DB logs with the RDS API. You can call the ModifyDBInstance action with
the following parameters:

• DBInstanceIdentifier

• CloudwatchLogsExportConfiguration

Oracle database log files 1649

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Note

A change to the CloudwatchLogsExportConfiguration parameter is always applied to
the DB instance immediately. Therefore, the ApplyImmediately parameter has no effect.

You can also publish Oracle logs by calling the following RDS API operations:

• CreateDBInstance

• RestoreDBInstanceFromDBSnapshot

• RestoreDBInstanceFromS3

• RestoreDBInstanceToPointInTime

Run one of these RDS API operations with the following parameters:

• DBInstanceIdentifier

• EnableCloudwatchLogsExports

• Engine

• DBInstanceClass

Other parameters might be required depending on the RDS operation that you run.

Accessing alert logs and listener logs

You can view the alert log using the Amazon RDS console. You can also use the following SQL
statement.

SELECT message_text FROM alertlog;

Access the listener log using Amazon CloudWatch Logs.

Note

Oracle rotates the alert and listener logs when they exceed 10 MB, at which point they are
unavailable from Amazon RDS views.

Oracle database log files 1650

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Oracle database log files 1651

Amazon Relational Database Service User Guide

RDS for PostgreSQL database log files

You can monitor the following types of log files:

• PostgreSQL log

• Instance log

• IAM database authentication error log

RDS for PostgreSQL logs database activities to the default PostgreSQL log file. For an on-premises
PostgreSQL DB instance, these messages are stored locally in log/postgresql.log. For an RDS
for PostgreSQL DB instance, the log file is available on the Amazon RDS instance. These logs are
also accessible via the AWS Management Console, where you can view or download them. The
default logging level captures login failures, fatal server errors, deadlocks, and query failures.

For more information about how you can view, download, and watch file-based database logs, see
Monitoring Amazon RDS log files. To learn more about PostgreSQL logs, see Working with Amazon
RDS and Aurora PostgreSQL logs: Part 1 and Working with Amazon RDS and Aurora PostgreSQL
logs: Part 2.

In addition to the standard PostgreSQL logs discussed in this topic, RDS for PostgreSQL also
supports the PostgreSQL Audit extension (pgAudit). Most regulated industries and government
agencies need to maintain an audit log or audit trail of changes made to data to comply with
legal requirements. For information about installing and using pgAudit, see Using pgAudit to log
database activity.

Topics

• Parameters for logging in RDS for PostgreSQL

• Turning on query logging for your RDS for PostgreSQL DB instance

• Publishing PostgreSQL logs to Amazon CloudWatch Logs

Parameters for logging in RDS for PostgreSQL

You can customize the logging behavior for your RDS for PostgreSQL DB instance by modifying
various parameters. In the following table you can find the parameters that affect how long the
logs are stored, when to rotate the log, and whether to output the log as a CSV (comma-separated
value) format. You can also find the text output sent to STDERR, among other settings. To change
settings for the parameters that are modifiable, use a custom DB parameter group for your RDS

PostgreSQL database log files 1652

https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/

Amazon Relational Database Service User Guide

for PostgreSQL instance. For more information, see DB parameter groups for Amazon RDS DB
instances.

Parameter Default Description

log_destination stderr Sets the output format for the log. The default
is stderr but you can also specify comma-
separated value (CSV) by adding csvlog to
the setting. For more information, see Setting
the log destination (stderr, csvlog).

log_filename postgresql.log.%Y-
%m-%d-%H

Specifies the pattern for the log file name.
In addition to the default, this parameter
supports postgresql.log.%Y-%m-%d
and postgresql.log.%Y-%m-%d-%H%M
for the filename pattern.

log_line_prefix %t:%r:%u@%d:[%p]: Defines the prefix for each log line that gets
written to stderr, to note the time (%t),
remote host (%r), user (%u), database (%d),
and process ID (%p).

log_rotation_age 60 Minutes after which log file is automatically
rotated. You can change this value within the
range of 1 and 1440 minutes. For more infor
mation, see Setting log file rotation.

log_rotation_size – The size (kB) at which the log is automatic
ally rotated. By default, this parameter isn't
used because logs are rotated based on the
 log_rotation_age parameter. To learn
more, see Setting log file rotation.

rds.log_retention_
period

4320 PostgreSQL logs that are older than the
specified number of minutes are deleted. The
default value of 4320 minutes deletes log
 files after 3 days. For more information, see
Setting the log retention period.

PostgreSQL database log files 1653

Amazon Relational Database Service User Guide

To identify application issues, you can look for query failures, login failures, deadlocks, and fatal
server errors in the log. For example, suppose that you converted a legacy application from Oracle
to Amazon RDS PostgreSQL, but not all queries converted correctly. These incorrectly formatted
queries generate error messages that you can find in the logs to help identify problems. For more
information about logging queries, see Turning on query logging for your RDS for PostgreSQL DB
instance.

In the following topics, you can find information about how to set various parameters that control
the basic details for your PostgreSQL logs.

Topics

• Setting the log retention period

• Setting log file rotation

• Setting the log destination (stderr, csvlog)

• Understanding the log_line_prefix parameter

Setting the log retention period

The rds.log_retention_period parameter specifies how long your RDS for PostgreSQL DB
instance keeps its log files. The default setting is 3 days (4,320 minutes), but you can set this value
to anywhere from 1 day (1,440 minutes) to 7 days (10,080 minutes). Be sure that your RDS for
PostgreSQL DB instance has sufficient storage to hold the log files for the period of time.

We recommend that you have your logs routinely published to Amazon CloudWatch Logs so that
you can view and analyze system data long after the logs have been removed from your RDS
for PostgreSQL DB instance. For more information, see Publishing PostgreSQL logs to Amazon
CloudWatch Logs.

Setting log file rotation

Amazon RDS creates new log files every hour by default. The timing is controlled by the
log_rotation_age parameter. This parameter has a default value of 60 (minutes), but you
can set it to anywhere from 1 minute to 24 hours (1,440 minutes). When it's time for rotation,
a new distinct log file is created. The file is named according to the pattern specified by the
log_filename parameter.

Log files can also be rotated according to their size, as specified in the log_rotation_size
parameter. This parameter specifies that the log should be rotated when it reaches the specified

PostgreSQL database log files 1654

Amazon Relational Database Service User Guide

size (in kilobytes). For an RDS for PostgreSQL DB instance, log_rotation_size is unset, that is,
there is no value specified. However, you can set the parameter from 0-2097151 kB (kilobytes).

The log file names are based on the file name pattern specified in the log_filename parameter.
The available settings for this parameter are as follows:

• postgresql.log.%Y-%m-%d – Default format for the log file name. Includes the year, month,
and date in the name of the log file.

• postgresql.log.%Y-%m-%d-%H – Includes the hour in the log file name format.

For more information, see log_rotation_age and log_rotation_size in the PostgreSQL
documentation.

Setting the log destination (stderr, csvlog)

By default, Amazon RDS PostgreSQL generates logs in standard error (stderr) format. This format
is the default setting for the log_destination parameter. Each message is prefixed using the
pattern specified in the log_line_prefix parameter. For more information, see Understanding
the log_line_prefix parameter.

RDS for PostgreSQL can also generate the logs in csvlog format. The csvlog is useful for
analyzing the log data as comma-separated values (CSV) data. For example, suppose that you
use the log_fdw extension to work with your logs as foreign tables. The foreign table created
on stderr log files contains a single column with log event data. By adding csvlog to the
log_destination parameter, you get the log file in the CSV format with demarcations for the
multiple columns of the foreign table. You can now sort and analyze your logs more easily. To learn
how to use the log_fdw with csvlog, see Using the log_fdw extension to access the DB log using
SQL.

If you specify csvlog for this parameter, be aware that both stderr and csvlog files are
generated. Be sure to monitor the storage consumed by the logs, taking into account the
rds.log_retention_period and other settings that affect log storage and turnover. Using
stderr and csvlog more than doubles the storage consumed by the logs.

If you add csvlog to log_destination and you want to revert to the stderr alone, you
need to reset the parameter. To do so, open the Amazon RDS Console and then open the custom
DB parameter group for your instance. Choose the log_destination parameter, choose Edit
parameter, and then choose Reset.

PostgreSQL database log files 1655

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-ROTATION-AGE
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-ROTATION-SIZE

Amazon Relational Database Service User Guide

For more information about configuring logging, see Working with Amazon RDS and Aurora
PostgreSQL logs: Part 1.

Understanding the log_line_prefix parameter

The stderr log format prefixes each log message with the details specified by the
log_line_prefix parameter, as follows.

%t:%r:%u@%d:[%p]:t

You can't change this setting. Each log entry sent to stderr includes the following information.

• %t – Time of log entry

• %r – Remote host address

• %u@%d – User name @ database name

• [%p] – Process ID if available

• %l – Log line number per session

• %e – SQL error code

• %s – Process start timestamp

• %v – Virtual transaction id

• %x – Transaction ID

• %c – Session ID

• %q – Non-session terminator

• %a – Application name

Turning on query logging for your RDS for PostgreSQL DB instance

You can collect more detailed information about your database activities, including queries, queries
waiting for locks, checkpoints, and many other details by setting some of the parameters listed in
the following table. This topic focuses on logging queries.

Parameter Default Description

log_connections – Logs each successful connection.

log_disconnections – Logs the end of each session and its duration.

PostgreSQL database log files 1656

https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/

Amazon Relational Database Service User Guide

Parameter Default Description

log_checkpoints 1 Logs each checkpoint.

log_lock_waits – Logs long lock waits. By default, this
parameter isn't set.

log_min_duration_s
ample

– (ms) Sets the minimum execution time above
which a sample of statements is logged.
Sample size is set using the log_state
ment_sample_rate parameter.

log_min_duration_s
tatement

– Any SQL statement that runs atleast for the
specified amount of time or longer gets
logged. By default, this parameter isn't set.
Turning on this parameter can help you find
unoptimized queries.

log_statement – Sets the type of statements logged. By
default, this parameter isn't set, but you can
change it to all, ddl, or mod to specify
the types of SQL statements that you want
logged. If you specify anything other than
none for this parameter, you should also take
 additional steps to prevent the exposure of
passwords in the log files. For more informati
on, see Mitigating risk of password exposure
when using query logging.

log_statement_samp
le_rate

– The percentage of statements exceeding the
time specified in log_min_duration_s
ample to be logged, expressed as a floating
point value between 0.0 and 1.0.

log_statement_stats – Writes cumulative performance statistics to
the server log.

PostgreSQL database log files 1657

Amazon Relational Database Service User Guide

Using logging to find slow performing queries

You can log SQL statements and queries to help find slow performing queries. You turn on this
capability by modifying the settings in the log_statement and log_min_duration parameters
as outlined in this section. Before turning on query logging for your RDS for PostgreSQL DB
instance, you should be aware of possible password exposure in the logs and how to mitigate the
risks. For more information, see Mitigating risk of password exposure when using query logging.

Following, you can find reference information about the log_statement and
log_min_duration parameters.

log_statement

This parameter specifies the type of SQL statements that should get sent to the log. The default
value is none. If you change this parameter to all, ddl, or mod, be sure to apply recommended
actions to mitigate the risk of exposing passwords in the logs. For more information, see Mitigating
risk of password exposure when using query logging.

all

Logs all statements. This setting is recommended for debugging purposes.

ddl

Logs all data definition language (DDL) statements, such as CREATE, ALTER, DROP, and so on.

mod

Logs all DDL statements and data manipulation language (DML) statements, such as INSERT,
UPDATE, and DELETE, which modify the data.

none

No SQL statements get logged. We recommend this setting to avoid the risk of exposing
passwords in the logs.

log_min_duration_statement

Any SQL statement that runs atleast for the specified amount of time or longer gets logged. By
default, this parameter isn't set. Turning on this parameter can help you find unoptimized queries.

–1–2147483647

The number of milliseconds (ms) of runtime over which a statement gets logged.

PostgreSQL database log files 1658

Amazon Relational Database Service User Guide

To set up query logging

These steps assume that your RDS for PostgreSQL DB instance uses a custom DB parameter group.

1. Set the log_statement parameter to all. The following example shows the information
that is written to the postgresql.log file with this parameter setting.

2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:LOG: statement:
 SELECT feedback, s.sentiment,s.confidence
FROM support,aws_comprehend.detect_sentiment(feedback, 'en') s
ORDER BY s.confidence DESC;
2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:LOG: QUERY
 STATISTICS
2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:DETAIL: ! system
 usage stats:
! 0.017355 s user, 0.000000 s system, 0.168593 s elapsed
! [0.025146 s user, 0.000000 s system total]
! 36644 kB max resident size
! 0/8 [0/8] filesystem blocks in/out
! 0/733 [0/1364] page faults/reclaims, 0 [0] swaps
! 0 [0] signals rcvd, 0/0 [0/0] messages rcvd/sent
! 19/0 [27/0] voluntary/involuntary context switches
2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:STATEMENT: SELECT
 feedback, s.sentiment,s.confidence
FROM support,aws_comprehend.detect_sentiment(feedback, 'en') s
ORDER BY s.confidence DESC;
2022-10-05 22:05:56 UTC:52.95.4.1(11335):postgres@labdb:[3639]:ERROR: syntax error
 at or near "ORDER" at character 1
2022-10-05 22:05:56 UTC:52.95.4.1(11335):postgres@labdb:[3639]:STATEMENT: ORDER BY
 s.confidence DESC;
----------------------- END OF LOG ----------------------

2. Set the log_min_duration_statement parameter. The following example shows the
information that is written to the postgresql.log file when the parameter is set to 1.

Queries that exceed the duration specified in the log_min_duration_statement parameter
are logged. The following shows an example. You can view the log file for your RDS for
PostgreSQL DB instance in the Amazon RDS Console.

2022-10-05 19:05:19 UTC:52.95.4.1(6461):postgres@labdb:[6144]:LOG: statement: DROP
 table comments;
2022-10-05 19:05:19 UTC:52.95.4.1(6461):postgres@labdb:[6144]:LOG: duration:
 167.754 ms

PostgreSQL database log files 1659

Amazon Relational Database Service User Guide

2022-10-05 19:08:07 UTC::@:[355]:LOG: checkpoint starting: time
2022-10-05 19:08:08 UTC::@:[355]:LOG: checkpoint complete: wrote 11 buffers
 (0.0%); 0 WAL file(s) added, 0 removed, 0 recycled; write=1.013 s, sync=0.006 s,
 total=1.033 s; sync files=8, longest=0.004 s, average=0.001 s; distance=131028 kB,
 estimate=131028 kB
----------------------- END OF LOG ----------------------

Mitigating risk of password exposure when using query logging

We recommend that you keep log_statement set to none to avoid exposing passwords. If
you set log_statement to all, ddl, or mod, we recommend that you take one or more of the
following steps.

• For the client, encrypt sensitive information. For more information, see Encryption Options
in the PostgreSQL documentation. Use the ENCRYPTED (and UNENCRYPTED) options of the
CREATE and ALTER statements. For more information, see CREATE USER in the PostgreSQL
documentation.

• For your RDS for PostgreSQL DB instance, set up and use the PostgreSQL Auditing (pgAudit)
extension. This extension redacts sensitive information in CREATE and ALTER statements sent to
the log. For more information, see Using pgAudit to log database activity.

• Restrict access to the CloudWatch logs.

• Use stronger authentication mechanisms such as IAM.

Publishing PostgreSQL logs to Amazon CloudWatch Logs

To store your PostgreSQL log records in highly durable storage, you can use Amazon CloudWatch
Logs. With CloudWatch Logs, you can also perform real-time analysis of log data and use
CloudWatch to view metrics and create alarms. For example, if you set log_statement to ddl,
you can set up an alarm to alert you whenever a DDL statement is executed. You can choose to
have your PostgreSQL logs uploaded to CloudWatch Logs during the process of creating your RDS
for PostgreSQL DB instance. If you chose not to upload logs at that time, you can later modify
your instance to start uploading logs from that point forward. In other words, existing logs aren't
uploaded. Only new logs are uploaded as they're created on your modified RDS for PostgreSQL DB
instance.

PostgreSQL database log files 1660

https://www.postgresql.org/docs/current/encryption-options.html
https://www.postgresql.org/docs/current/sql-createuser.html

Amazon Relational Database Service User Guide

All currently available RDS for PostgreSQL versions support publishing log files to CloudWatch
Logs. For more information, see Amazon RDS for PostgreSQL updates in the Amazon RDS for
PostgreSQL Release Notes..

To work with CloudWatch Logs, configure your RDS for PostgreSQL DB instance to publish log data
to a log group.

You can publish the following log types to CloudWatch Logs for RDS for PostgreSQL:

• PostgreSQL log

• Upgrade log

• IAM database authentication error log

After you complete the configuration, Amazon RDS publishes the log events to log streams within
a CloudWatch log group. For example, the PostgreSQL log data is stored within the log group
/aws/rds/instance/my_instance/postgresql. To view your logs, open the CloudWatch
console at https://console.aws.amazon.com/cloudwatch/.

Console

To publish PostgreSQL logs to CloudWatch Logs using the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify, and then choose Modify.

4. In the Log exports section, choose the logs that you want to start publishing to CloudWatch
Logs.

The Log exports section is available only for PostgreSQL versions that support publishing to
CloudWatch Logs.

5. Choose Continue, and then choose Modify DB Instance on the summary page.

AWS CLI

You can publish PostgreSQL logs with the AWS CLI. You can call the modify-db-instance
command with the following parameters.

• --db-instance-identifier

PostgreSQL database log files 1661

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• --cloudwatch-logs-export-configuration

Note

A change to the --cloudwatch-logs-export-configuration option is always applied
to the DB instance immediately. Therefore, the --apply-immediately and --no-
apply-immediately options have no effect.

You can also publish PostgreSQL logs by calling the following CLI commands:

• create-db-instance

• restore-db-instance-from-db-snapshot

• restore-db-instance-to-point-in-time

Run one of these CLI commands with the following options:

• --db-instance-identifier

• --enable-cloudwatch-logs-exports

• --db-instance-class

• --engine

Other options might be required depending on the CLI command you run.

Example Modify an instance to publish logs to CloudWatch Logs

The following example modifies an existing PostgreSQL DB instance to publish log files to
CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON
object. The key for this object is EnableLogTypes, and its value is an array of strings with any
combination of postgresql and upgrade.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":["postgresql",
 "upgrade"]}'

PostgreSQL database log files 1662

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["postgresql","upgrade"]}'

Example Create an instance to publish logs to CloudWatch Logs

The following example creates a PostgreSQL DB instance and publishes log files to CloudWatch
Logs. The --enable-cloudwatch-logs-exports value is a JSON array of strings. The strings
can be any combination of postgresql and upgrade.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --enable-cloudwatch-logs-exports '["postgresql","upgrade"]' \
 --db-instance-class db.m4.large \
 --engine postgres

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --enable-cloudwatch-logs-exports '["postgresql","upgrade"]' ^
 --db-instance-class db.m4.large ^
 --engine postgres

RDS API

You can publish PostgreSQL logs with the RDS API. You can call the ModifyDBInstance action
with the following parameters:

• DBInstanceIdentifier

• CloudwatchLogsExportConfiguration

PostgreSQL database log files 1663

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Note

A change to the CloudwatchLogsExportConfiguration parameter is always applied to
the DB instance immediately. Therefore, the ApplyImmediately parameter has no effect.

You can also publish PostgreSQL logs by calling the following RDS API operations:

• CreateDBInstance

• RestoreDBInstanceFromDBSnapshot

• RestoreDBInstanceToPointInTime

Run one of these RDS API operations with the following parameters:

• DBInstanceIdentifier

• EnableCloudwatchLogsExports

• Engine

• DBInstanceClass

Other parameters might be required depending on the operation that you run.

PostgreSQL database log files 1664

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Monitoring Amazon RDS API calls in AWS CloudTrail

AWS CloudTrail is an AWS service that helps you audit your AWS account. AWS CloudTrail is turned
on for your AWS account when you create it. For more information about CloudTrail, see the AWS
CloudTrail User Guide.

Topics

• CloudTrail integration with Amazon RDS

• Amazon RDS log file entries

CloudTrail integration with Amazon RDS

All Amazon RDS actions are logged by CloudTrail. CloudTrail provides a record of actions taken by a
user, role, or an AWS service in Amazon RDS.

CloudTrail events

CloudTrail captures API calls for Amazon RDS as events. An event represents a single request from
any source and includes information about the requested action, the date and time of the action,
request parameters, and so on. Events include calls from the Amazon RDS console and from code
calls to the Amazon RDS API operations.

Amazon RDS activity is recorded in a CloudTrail event in Event history. You can use the CloudTrail
console to view the last 90 days of recorded API activity and events in an AWS Region. For more
information, see Viewing events with CloudTrail event history.

CloudTrail trails

For an ongoing record of events in your AWS account, including events for Amazon RDS, create
a trail. A trail is a configuration that enables delivery of events to a specified Amazon S3 bucket.
CloudTrail typically delivers log files within 15 minutes of account activity.

Note

If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history.

Monitoring RDS API calls in CloudTrail 1665

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Relational Database Service User Guide

You can create two types of trails for an AWS account: a trail that applies to all Regions, or a trail
that applies to one Region. By default, when you create a trail in the console, the trail applies to all
Regions.

Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

Amazon RDS log file entries

CloudTrail log files contain one or more log entries. CloudTrail log files are not an ordered stack
trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateDBInstance
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2018-07-30T22:14:06Z",
 "eventSource": "rds.amazonaws.com",
 "eventName": "CreateDBInstance",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.15.42 Python/3.6.1 Darwin/17.7.0 botocore/1.10.42",
 "requestParameters": {
 "enableCloudwatchLogsExports": [

Amazon RDS log file entries 1666

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Relational Database Service User Guide

 "audit",
 "error",
 "general",
 "slowquery"
],
 "dBInstanceIdentifier": "test-instance",
 "engine": "mysql",
 "masterUsername": "myawsuser",
 "allocatedStorage": 20,
 "dBInstanceClass": "db.m1.small",
 "masterUserPassword": "****"
 },
 "responseElements": {
 "dBInstanceArn": "arn:aws:rds:us-east-1:123456789012:db:test-instance",
 "storageEncrypted": false,
 "preferredBackupWindow": "10:27-10:57",
 "preferredMaintenanceWindow": "sat:05:47-sat:06:17",
 "backupRetentionPeriod": 1,
 "allocatedStorage": 20,
 "storageType": "standard",
 "engineVersion": "8.0.28",
 "dbInstancePort": 0,
 "optionGroupMemberships": [
 {
 "status": "in-sync",
 "optionGroupName": "default:mysql-8-0"
 }
],
 "dBParameterGroups": [
 {
 "dBParameterGroupName": "default.mysql8.0",
 "parameterApplyStatus": "in-sync"
 }
],
 "monitoringInterval": 0,
 "dBInstanceClass": "db.m1.small",
 "readReplicaDBInstanceIdentifiers": [],
 "dBSubnetGroup": {
 "dBSubnetGroupName": "default",
 "dBSubnetGroupDescription": "default",
 "subnets": [
 {
 "subnetAvailabilityZone": {"name": "us-east-1b"},
 "subnetIdentifier": "subnet-cbfff283",

Amazon RDS log file entries 1667

Amazon Relational Database Service User Guide

 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1e"},
 "subnetIdentifier": "subnet-d7c825e8",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1f"},
 "subnetIdentifier": "subnet-6746046b",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1c"},
 "subnetIdentifier": "subnet-bac383e0",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1d"},
 "subnetIdentifier": "subnet-42599426",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1a"},
 "subnetIdentifier": "subnet-da327bf6",
 "subnetStatus": "Active"
 }
],
 "vpcId": "vpc-136a4c6a",
 "subnetGroupStatus": "Complete"
 },
 "masterUsername": "myawsuser",
 "multiAZ": false,
 "autoMinorVersionUpgrade": true,
 "engine": "mysql",
 "cACertificateIdentifier": "rds-ca-2015",
 "dbiResourceId": "db-ETDZIIXHEWY5N7GXVC4SH7H5IA",
 "dBSecurityGroups": [],
 "pendingModifiedValues": {
 "masterUserPassword": "****",
 "pendingCloudwatchLogsExports": {
 "logTypesToEnable": [
 "audit",
 "error",

Amazon RDS log file entries 1668

Amazon Relational Database Service User Guide

 "general",
 "slowquery"
]
 }
 },
 "dBInstanceStatus": "creating",
 "publiclyAccessible": true,
 "domainMemberships": [],
 "copyTagsToSnapshot": false,
 "dBInstanceIdentifier": "test-instance",
 "licenseModel": "general-public-license",
 "iAMDatabaseAuthenticationEnabled": false,
 "performanceInsightsEnabled": false,
 "vpcSecurityGroups": [
 {
 "status": "active",
 "vpcSecurityGroupId": "sg-f839b688"
 }
]
 },
 "requestID": "daf2e3f5-96a3-4df7-a026-863f96db793e",
 "eventID": "797163d3-5726-441d-80a7-6eeb7464acd4",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

As shown in the userIdentity element in the preceding example, every event or log entry
contains information about who generated the request. The identity information helps you
determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information about the userIdentity, see the CloudTrail userIdentity element. For more
information about CreateDBInstance and other Amazon RDS actions, see the Amazon RDS API
Reference.

Amazon RDS log file entries 1669

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/

Amazon Relational Database Service User Guide

Monitoring Amazon RDS with Database Activity Streams

By using Database Activity Streams, you can monitor near real-time streams of database activity.

Topics

• Overview of Database Activity Streams

• Configuring unified auditing for Oracle Database

• Configuring auditing policy for Amazon RDS for Microsoft SQL Server

• Starting a database activity stream

• Modifying a database activity stream for Amazon RDS

• Getting the status of a database activity stream

• Stopping a database activity stream

• Monitoring database activity streams

• IAM policy examples for database activity streams

Overview of Database Activity Streams

As an Amazon RDS database administrator, you need to safeguard your database and meet
compliance and regulatory requirements. One strategy is to integrate database activity streams
with your monitoring tools. In this way, you monitor and set alarms for auditing activity in your
database.

Security threats are both external and internal. To protect against internal threats, you can control
administrator access to data streams by configuring the Database Activity Streams feature. Amazon
RDS DBAs don't have access to the collection, transmission, storage, and processing of the streams.

Contents

• How database activity streams work

• Auditing in Oracle Database and Microsoft SQL Server Database

• Unified auditing in Oracle Database

• Auditing in Microsoft SQL Server

• Non-native audit fields for Oracle Database and SQL Server

• DB parameter group override

• Asynchronous mode for database activity streams

Monitoring RDS with Database Activity Streams 1670

Amazon Relational Database Service User Guide

• Requirements and limitations for database activity streams

• Region and version availability

• Supported DB instance classes for database activity streams

How database activity streams work

Amazon RDS pushes activities to an Amazon Kinesis data stream in near real time. The Kinesis
stream is created automatically. From Kinesis, you can configure AWS services such as Amazon Data
Firehose and AWS Lambda to consume the stream and store the data.

Important

Use of the database activity streams feature in Amazon RDS is free, but Amazon Kinesis
charges for a data stream. For more information, see Amazon Kinesis Data Streams pricing.

You can configure applications for compliance management to consume database activity streams.
These applications can use the stream to generate alerts and audit activity on your database.

Amazon RDS supports database activity streams in Multi-AZ deployments. In this case, database
activity streams audit both the primary and standby instances.

Auditing in Oracle Database and Microsoft SQL Server Database

Auditing is the monitoring and recording of configured database actions. Amazon RDS doesn't
capture database activity by default. You create and manage audit policies in your database
yourself.

Topics

• Unified auditing in Oracle Database

• Auditing in Microsoft SQL Server

• Non-native audit fields for Oracle Database and SQL Server

• DB parameter group override

Overview 1671

https://aws.amazon.com/kinesis/data-streams/pricing/

Amazon Relational Database Service User Guide

Unified auditing in Oracle Database

In an Oracle database, a unified audit policy is a named group of audit settings that you can use to
audit an aspect of user behavior. A policy can be as simple as auditing the activities of a single user.
You can also create complex audit policies that use conditions.

An Oracle database writes audit records, including SYS audit records, to the unified audit trail.
For example, if an error occurs during an INSERT statement, standard auditing indicates the
error number and the SQL that was run. The audit trail resides in a read-only table in the AUDSYS
schema. To access these records, query the UNIFIED_AUDIT_TRAIL data dictionary view.

Typically, you configure database activity streams as follows:

1. Create an Oracle Database audit policy by using the CREATE AUDIT POLICY command.

The Oracle Database generates audit records.

2. Activate the audit policy by using the AUDIT POLICY command.

3. Configure database activity streams.

Only activities that match the Oracle Database audit policies are captured and sent to the
Amazon Kinesis data stream. When database activity streams are enabled, an Oracle database
administrator can't alter the audit policy or remove audit logs.

To learn more about unified audit policies, see About Auditing Activities with Unified Audit Policies
and AUDIT in the Oracle Database Security Guide.

Auditing in Microsoft SQL Server

Database Activity Stream uses SQLAudit feature to audit the SQL Server database.

RDS for SQL Server instance contains the following:

• Server audit – The SQL server audit collects a single instance of server or database-level
actions, and a group of actions to monitor. The server-level audits RDS_DAS_AUDIT and
RDS_DAS_AUDIT_CHANGES are managed by RDS.

• Server audit specification – The server audit specification records the server-level events. You
can modify the RDS_DAS_SERVER_AUDIT_SPEC specification. This specification is linked to the
server audit RDS_DAS_AUDIT. The RDS_DAS_CHANGES_AUDIT_SPEC specification is managed
by RDS.

Overview 1672

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-audit-policies.html#GUID-2435D929-10AD-43C7-8A6C-5133170074D0
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-audit-policies.html#GUID-2435D929-10AD-43C7-8A6C-5133170074D0

Amazon Relational Database Service User Guide

• Database audit specification – The database audit specification records the database-level
events. You can create a database audit specification RDS_DAS_DB_<name> and link it to
RDS_DAS_AUDIT server audit.

You can configure database activity streams by using the console or CLI. Typically, you configure
database activity streams as follows:

1. (Optional) Create a database audit specification with the CREATE DATABASE AUDIT
SPECIFICATION command and link it to RDS_DAS_AUDIT server audit.

2. (Optional) Modify the server audit specification with the ALTER SERVER AUDIT
SPECIFICATION command and define the policies.

3. Activate the database and server audit policies. For example:

ALTER DATABASE AUDIT SPECIFICATION [<Your database specification>] WITH
(STATE=ON)

ALTER SERVER AUDIT SPECIFICATION [RDS_DAS_SERVER_AUDIT_SPEC] WITH
(STATE=ON)

4. Configure database activity streams.

Only activities that match the server and database audit policies are captured and sent to the
Amazon Kinesis data stream. When database activity streams are enabled and the policies are
locked, a database administrator can't alter the audit policy or remove audit logs.

Important

If the database audit specification for a specific database is enabled and the policy is in a
locked state, then the database can't be dropped.

For more information about SQL Server auditing, see SQL Server Audit Components in the
Microsoft SQL Server documentation.

Overview 1673

https://learn.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine?view=sql-server-ver16

Amazon Relational Database Service User Guide

Non-native audit fields for Oracle Database and SQL Server

When you start a database activity stream, every database event generates a corresponding
activity stream event. For example, a database user might run SELECT and INSERT statements.
The database audits these events and sends them to an Amazon Kinesis data stream.

The events are represented in the stream as JSON objects. A JSON object contains a
DatabaseActivityMonitoringRecord, which contains a databaseActivityEventList
array. Predefined fields in the array include class, clientApplication, and command.

By default, an activity stream doesn't include engine-native audit fields. You can configure
Amazon RDS for Oracle and SQL Server so that it includes these extra fields in the
engineNativeAuditFields JSON object.

In Oracle Database, most events in the unified audit trail map to fields in the RDS data activity
stream. For example, the UNIFIED_AUDIT_TRAIL.SQL_TEXT field in unified auditing maps to the
commandText field in a database activity stream. However, Oracle Database audit fields such as
OS_USERNAME don't map to predefined fields in a database activity stream.

In SQL Server, most of the event's fields that are recorded by the SQLAudit map to the fields in
RDS database activity stream. For example, the code field from sys.fn_get_audit_file in the
audit maps to the commandText field in a database activity stream. However, SQL Server database
audit fields, such as permission_bitmask, don’t map to predefined fields in a database activity
stream.

For more information about databaseActivityEventList, see databaseActivityEventList JSON array
for database activity streams.

DB parameter group override

Typically, you turn on unified auditing in RDS for Oracle by attaching a parameter group. However,
Database Activity Streams require additional configuration. To improve your customer experience,
Amazon RDS performs the following:

• If you activate an activity stream, RDS for Oracle ignores the auditing parameters in the
parameter group.

• If you deactivate an activity stream, RDS for Oracle stops ignoring the auditing parameters.

The database activity stream for SQL Server is independent of any parameters you set in the SQL
Audit option.

Overview 1674

Amazon Relational Database Service User Guide

Asynchronous mode for database activity streams

Activity streams in Amazon RDS are always asynchronous. When a database session generates
an activity stream event, the session returns to normal activities immediately. In the background,
Amazon RDS makes the activity stream event into a durable record.

If an error occurs in the background task, Amazon RDS generates an event. This event indicates the
beginning and end of any time windows where activity stream event records might have been lost.
Asynchronous mode favors database performance over the accuracy of the activity stream.

Requirements and limitations for database activity streams

In RDS, database activity streams have the following requirements and limitations:

• Amazon Kinesis is required for database activity streams.

• AWS Key Management Service (AWS KMS) is required for database activity streams because they
are always encrypted.

• Applying additional encryption to your Amazon Kinesis data stream is incompatible with
database activity streams, which are already encrypted with your AWS KMS key.

• You create and manage audit policies yourself. Unlike Amazon Aurora, RDS for Oracle doesn't
capture database activities by default.

• You create and manage audit policies or specifications yourself. Unlike Amazon Aurora, Amazon
RDS doesn't capture database activities by default.

• In a Multi-AZ deployment, start the database activity stream only on the primary DB instance.
The activity stream audits both the primary and standby DB instances automatically. No
additional steps are required during a failover.

• Renaming a DB instance doesn't create a new Kinesis stream.

• CDBs aren't supported for RDS for Oracle.

• Read replicas aren't supported.

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability with database activity
streams, see Supported Regions and DB engines for database activity streams in Amazon RDS.

Overview 1675

Amazon Relational Database Service User Guide

Supported DB instance classes for database activity streams

For RDS for Oracle you can use database activity streams with the following DB instance classes:

• db.m4.*large

• db.m5.*large

• db.m5d.*large

• db.m6i.*large

• db.r4.*large

• db.r5.*large

• db.r5.*large.tpc*.mem*x

• db.r5b.*large

• db.r5b.*large.tpc*.mem*x

• db.r5d.*large

• db.r6i.*large

• db.r6i.*large.tpc*.mem*x

• db.x2idn.*large

• db.x2iedn.*large

• db.x2iezn.*large

• db.z1d.*large

For RDS for SQL Server you can use database activity streams with the following DB instance
classes:

• db.m4.*large

• db.m5.*large

• db.m5d.*large

• db.m6i.*large

• db.r4.*large

• db.r5.*large

• db.r5b.*large

Overview 1676

Amazon Relational Database Service User Guide

• db.r5d.*large

• db.r6i.*large

• db.x1e.*large

• db.z1d.*large

For more information about instance class types, see DB instance classes.

Configuring unified auditing for Oracle Database

When you configure unified auditing for use with database activity streams, the following
situations are possible:

• Unified auditing isn't configured for your Oracle database.

In this case, create new policies with the CREATE AUDIT POLICY command, then activate them
with the AUDIT POLICY command. The following example creates and activates a policy to
monitor users with specific privileges and roles.

CREATE AUDIT POLICY table_pol
PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
ROLES emp_admin, sales_admin;

AUDIT POLICY table_pol;

For complete instructions, see Configuring Audit Policies in the Oracle Database documentation.

• Unified auditing is configured for your Oracle database.

When you activate a database activity stream, RDS for Oracle automatically clears existing audit
data. It also revokes audit trail privileges. RDS for Oracle can no longer do the following:

• Purge unified audit trail records.

• Add, delete, or modify the unified audit policy.

• Update the last archived timestamp.

Important

We strongly recommend that you back up your audit data before activating a database
activity stream.

Configuring Oracle unified auditing 1677

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-audit-policies.html#GUID-22CDB667-5AA2-4051-A262-FBD0236763CB

Amazon Relational Database Service User Guide

For a description of the UNIFIED_AUDIT_TRAIL view, see UNIFIED_AUDIT_TRAIL. If you have an
account with Oracle Support, see How To Purge The UNIFIED AUDIT TRAIL.

Configuring auditing policy for Amazon RDS for Microsoft SQL Server

A SQL Server database instance has the server audit RDS_DAS_AUDIT, which is managed by
Amazon RDS. You can define the policies to record server events in the server audit specification
RDS_DAS_SERVER_AUDIT_SPEC. You can create a database audit specification, such as
RDS_DAS_DB_<name>, and define the policies to record database events. For the list of server
and database level audit action groups, see SQL Server Audit Action Groups and Actions in the
Microsoft SQL Server documentation.

The default server policy monitors only failed logins and changes to any database or server audit
specifications for database activity streams.

Limitations for the audit and audit specifications include the following:

• You can't modify the server or database audit specifications when the database activity stream is
in a locked state.

• You can't modify the server audit RDS_DAS_AUDIT specification.

• You can't modify the SQL Server audit RDS_DAS_CHANGES or its related server audit
specification RDS_DAS_CHANGES_AUDIT_SPEC.

• When creating a database audit specification, you must use the format RDS_DAS_DB_<name> for
example, RDS_DAS_DB_databaseActions.

Important

For smaller instance classes, we recommend that you don't audit all but only the data that
is required. This helps to reduce the performance impact of Database Activity Streams on
these instance classes.

The following sample code modifies the server audit specification RDS_DAS_SERVER_AUDIT_SPEC
and audits any logout and successful login actions:

ALTER SERVER AUDIT SPECIFICATION [RDS_DAS_SERVER_AUDIT_SPEC]

Configuring SQL Server auditing 1678

https://docs.oracle.com/database/121/REFRN/GUID-B7CE1C02-2FD4-47D6-80AA-CF74A60CDD1D.htm#REFRN29162
https://support.oracle.com/knowledge/Oracle%20Database%20Products/1582627_1.html
https://learn.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions

Amazon Relational Database Service User Guide

 WITH (STATE=OFF);
ALTER SERVER AUDIT SPECIFICATION [RDS_DAS_SERVER_AUDIT_SPEC]
 ADD (LOGOUT_GROUP),
 ADD (SUCCESSFUL_LOGIN_GROUP)
 WITH (STATE = ON);

The following sample code creates a database audit specification RDS_DAS_DB_database_spec
and attaches it to the server audit RDS_DAS_AUDIT:

USE testDB;
CREATE DATABASE AUDIT SPECIFICATION [RDS_DAS_DB_database_spec]
 FOR SERVER AUDIT [RDS_DAS_AUDIT]
 ADD (INSERT, UPDATE, DELETE
 ON testTable BY testUser)
 WITH (STATE = ON);

After the audit specifications are configured, make sure that the specifications
RDS_DAS_SERVER_AUDIT_SPEC and RDS_DAS_DB_<name> are set to a state of ON. Now they can
send the audit data to your database activity stream.

Starting a database activity stream

When you start an activity stream for the DB instance, each database activity event that you
configured in the audit policy generates an activity stream event. SQL commands such as CONNECT
and SELECT generate access events. SQL commands such as CREATE and INSERT generate change
events.

Important

Turning on an activity stream for an Oracle DB instance clears existing audit data. It also
revokes audit trail privileges. When the stream is enabled, RDS for Oracle can no longer do
the following:

• Purge unified audit trail records.

• Add, delete, or modify the unified audit policy.

• Update the last archived time stamp.

Starting a database activity stream 1679

Amazon Relational Database Service User Guide

Console

To start a database activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Amazon RDS database instance on which you want to start an activity stream. In a
Multi-AZ deployment, start the stream on only the primary instance. The activity stream audits
both the primary and the standby instances.

4. For Actions, choose Start activity stream.

The Start database activity stream: name window appears, where name is your RDS instance.

5. Enter the following settings:

• For AWS KMS key, choose a key from the list of AWS KMS keys.

Amazon RDS uses the KMS key to encrypt the key that in turn encrypts database activity.
Choose a KMS key other than the default key. For more information about encryption keys
and AWS KMS, see What is AWS Key Management Service? in the AWS Key Management
Service Developer Guide.

• For Database activity events, choose Enable engine-native audit fields to include the
engine specific audit fields.

• Choose Immediately.

When you choose Immediately, the RDS instance restarts right away. If you choose During
the next maintenance window, the RDS instance doesn't restart right away. In this case, the
database activity stream doesn't start until the next maintenance window.

6. Choose Start database activity stream.

The status for the the database shows that the activity stream is starting.

Note

If you get the error You can't start a database activity stream in this
configuration, check Supported DB instance classes for database activity streams to
see whether your RDS instance is using a supported instance class.

Starting a database activity stream 1680

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Relational Database Service User Guide

AWS CLI

To start database activity streams for a DB instance, configure the database using the start-
activity-stream AWS CLI command.

• --resource-arn arn – Specifies the Amazon Resource Name (ARN) of the DB instance.

• --kms-key-id key – Specifies the KMS key identifier for encrypting messages in the database
activity stream. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name for
the AWS KMS key.

• --engine-native-audit-fields-included – Includes engine-specific auditing fields in
the data stream. To exclude these fields, specify --no-engine-native-audit-fields-
included (default).

The following example starts a database activity stream for a DB instance in asynchronous mode.

For Linux, macOS, or Unix:

aws rds start-activity-stream \
 --mode async \
 --kms-key-id my-kms-key-arn \
 --resource-arn my-instance-arn \
 --engine-native-audit-fields-included \
 --apply-immediately

For Windows:

aws rds start-activity-stream ^
 --mode async ^
 --kms-key-id my-kms-key-arn ^
 --resource-arn my-instance-arn ^
 --engine-native-audit-fields-included ^
 --apply-immediately

RDS API

To start database activity streams for a DB instance, configure the instance using the
StartActivityStream operation.

Call the action with the parameters below:

Starting a database activity stream 1681

https://docs.aws.amazon.com/cli/latest/reference/rds/start-activity-stream.html
https://docs.aws.amazon.com/cli/latest/reference/rds/start-activity-stream.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartActivityStream.html

Amazon Relational Database Service User Guide

• Region

• KmsKeyId

• ResourceArn

• Mode

• EngineNativeAuditFieldsIncluded

Modifying a database activity stream for Amazon RDS

You might want to customize your Amazon RDS audit policy when your activity stream is started.
If you don't want to lose time and data by stopping your activity stream, you can change the audit
policy state to either of the following settings:

Locked (default)

The audit policies in your database are read-only.

Unlocked

The audit policies in your database are read/write.

The basic steps are as follows:

1. Modify the audit policy state to unlocked.

2. Customize your audit policy.

3. Modify the audit policy state to locked.

Console

To modify the audit policy state of your activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. For Actions, choose Modify database activity stream.

The Modify database activity stream: name window appears, where name is your RDS
instance.

4. Choose either of the following options:

Modifying a database activity stream 1682

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Locked

When you lock your audit policy, it becomes read-only. You can't edit your audit policy
unless you unlock the policy or stop the activity stream.

Unlocked

When you unlock your audit policy, it becomes read/write. You can edit your audit policy
while the activity stream is started.

5. Choose Modify DB activity stream.

The status for the Amazon RDS database shows Configuring activity stream.

6. (Optional) Choose the DB instance link. Then choose the Configuration tab.

The Audit policy status field shows one of the following values:

• Locked

• Unlocked

• Locking policy

• Unlocking policy

AWS CLI

To modify the activity stream state for the database instance, use the modify-activity-stream AWS
CLI command.

Option Required? Description

--resource-arn my-
instance-ARN

Yes The Amazon Resource Name (ARN) of your RDS
database instance.

--audit-policy-state No The new state of the audit policy for the database
activity stream on your instance: locked or
unlocked.

The following example unlocks the audit policy for the activity stream started on my-instance-
ARN.

Modifying a database activity stream 1683

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-activity-stream.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-activity-stream \
 --resource-arn my-instance-ARN \
 --audit-policy-state unlocked

For Windows:

aws rds modify-activity-stream ^
 --resource-arn my-instance-ARN ^
 --audit-policy-state unlocked

The following example describes the instance my-instance. The partial sample output shows that
the audit policy is unlocked.

aws rds describe-db-instances --db-instance-identifier my-instance

{
 "DBInstances": [
 {
 ...
 "Engine": "oracle-ee",
 ...
 "ActivityStreamStatus": "started",
 "ActivityStreamKmsKeyId": "ab12345e-1111-2bc3-12a3-ab1cd12345e",
 "ActivityStreamKinesisStreamName": "aws-rds-das-db-
AB1CDEFG23GHIJK4LMNOPQRST",
 "ActivityStreamMode": "async",
 "ActivityStreamEngineNativeAuditFieldsIncluded": true,
 "ActivityStreamPolicyStatus": "unlocked",
 ...
 }
]
}

RDS API

To modify the policy state of your database activity stream, use the ModifyActivityStream
operation.

Call the action with the parameters below:

Modifying a database activity stream 1684

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyActivityStream.html

Amazon Relational Database Service User Guide

• AuditPolicyState

• ResourceArn

Getting the status of a database activity stream

You can get the status of an activity stream for your Amazon RDS database instance using the
console or AWS CLI.

Console

To get the status of a database activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance link.

3. Choose the Configuration tab, and check Database activity stream for status.

AWS CLI

You can get the activity stream configuration for a database instance as the response to a describe-
db-instances CLI request.

The following example describes my-instance.

aws rds --region my-region describe-db-instances --db-instance-identifier my-db

The following example shows a JSON response. The following fields are shown:

• ActivityStreamKinesisStreamName

• ActivityStreamKmsKeyId

• ActivityStreamStatus

• ActivityStreamMode

• ActivityStreamPolicyStatus

{
 "DBInstances": [
 {
 ...

Getting the activity stream status 1685

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

 "Engine": "oracle-ee",
 ...
 "ActivityStreamStatus": "starting",
 "ActivityStreamKmsKeyId": "ab12345e-1111-2bc3-12a3-ab1cd12345e",
 "ActivityStreamKinesisStreamName": "aws-rds-das-db-
AB1CDEFG23GHIJK4LMNOPQRST",
 "ActivityStreamMode": "async",
 "ActivityStreamEngineNativeAuditFieldsIncluded": true,
 "ActivityStreamPolicyStatus": locked",
 ...
 }
]
}

RDS API

You can get the activity stream configuration for a database as the response to a
DescribeDBInstances operation.

Stopping a database activity stream

You can stop an activity stream using the console or AWS CLI.

If you delete your Amazon RDS database instance, the activity stream is stopped and the
underlying Amazon Kinesis stream is deleted automatically.

Console

To turn off an activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose a database that you want to stop the database activity stream for.

4. For Actions, choose Stop activity stream. The Database Activity Stream window appears.

a. Choose Immediately.

When you choose Immediately, the RDS instance restarts right away. If you choose During
the next maintenance window, the RDS instance doesn't restart right away. In this case,
the database activity stream doesn't stop until the next maintenance window.

b. Choose Continue.

Stopping a database activity stream 1686

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To stop database activity streams for your database, configure the DB instance using the AWS CLI
command stop-activity-stream. Identify the AWS Region for the DB instance using the --region
parameter. The --apply-immediately parameter is optional.

For Linux, macOS, or Unix:

aws rds --region MY_REGION \
 stop-activity-stream \
 --resource-arn MY_DB_ARN \
 --apply-immediately

For Windows:

aws rds --region MY_REGION ^
 stop-activity-stream ^
 --resource-arn MY_DB_ARN ^
 --apply-immediately

RDS API

To stop database activity streams for your database, configure the DB instance using the
StopActivityStream operation. Identify the AWS Region for the DB instance using the Region
parameter. The ApplyImmediately parameter is optional.

Monitoring database activity streams

Database activity streams monitor and report activities. The stream of activity is collected and
transmitted to Amazon Kinesis. From Kinesis, you can monitor the activity stream, or other services
and applications can consume the activity stream for further analysis. You can find the underlying
Kinesis stream name by using the AWS CLI command describe-db-instances or the RDS API
DescribeDBInstances operation.

Amazon RDS manages the Kinesis stream for you as follows:

• Amazon RDS creates the Kinesis stream automatically with a 24-hour retention period.

• Amazon RDS scales the Kinesis stream if necessary.

• If you stop the database activity stream or delete the DB instance, Amazon RDS deletes the
Kinesis stream.

Monitoring activity streams 1687

https://docs.aws.amazon.com/cli/latest/reference/rds/stop-activity-stream.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StopActivityStream.html

Amazon Relational Database Service User Guide

The following categories of activity are monitored and put in the activity stream audit log:

• SQL commands – All SQL commands are audited, and also prepared statements, built-in
functions, and functions in PL/SQL. Calls to stored procedures are audited. Any SQL statements
issued inside stored procedures or functions are also audited.

• Other database information – Activity monitored includes the full SQL statement, the row
count of affected rows from DML commands, accessed objects, and the unique database name.
Database activity streams also monitor the bind variables and stored procedure parameters.

Important

The full SQL text of each statement is visible in the activity stream audit log, including
any sensitive data. However, database user passwords are redacted if Oracle can
determine them from the context, such as in the following SQL statement.

ALTER ROLE role-name WITH password

• Connection information – Activity monitored includes session and network information, the
server process ID, and exit codes.

If an activity stream has a failure while monitoring your DB instance, you are notified through RDS
events.

In the following sections, you can access, audit, and process database activity streams.

Topics

• Accessing an activity stream from Amazon Kinesis

• Audit log contents and examples for database activity streams

• databaseActivityEventList JSON array for database activity streams

• Processing a database activity stream using the AWS SDK

Accessing an activity stream from Amazon Kinesis

When you enable an activity stream for a database, a Kinesis stream is created for you. From
Kinesis, you can monitor your database activity in real time. To further analyze database activity,
you can connect your Kinesis stream to consumer applications. You can also connect the stream to

Monitoring activity streams 1688

Amazon Relational Database Service User Guide

compliance management applications such as IBM's Security Guardium or Imperva's SecureSphere
Database Audit and Protection.

You can access your Kinesis stream either from the RDS console or the Kinesis console.

To access an activity stream from Kinesis using the RDS console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Amazon RDS database instance on which you started an activity stream.

4. Choose Configuration.

5. Under Database activity stream, choose the link under Kinesis stream.

6. In the Kinesis console, choose Monitoring to begin observing the database activity.

To access an activity stream from Kinesis using the Kinesis console

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Choose your activity stream from the list of Kinesis streams.

An activity stream's name includes the prefix aws-rds-das-db- followed by the resource ID
of the database. The following is an example.

aws-rds-das-db-NHVOV4PCLWHGF52NP

To use the Amazon RDS console to find the resource ID for the database, choose your DB
instance from the list of databases, and then choose the Configuration tab.

To use the AWS CLI to find the full Kinesis stream name for an activity stream, use a describe-
db-instances CLI request and note the value of ActivityStreamKinesisStreamName in the
response.

3. Choose Monitoring to begin observing the database activity.

For more information about using Amazon Kinesis, see What Is Amazon Kinesis Data Streams?.

Monitoring activity streams 1689

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html

Amazon Relational Database Service User Guide

Audit log contents and examples for database activity streams

Monitored events are represented in the database activity stream as JSON strings. The structure
consists of a JSON object containing a DatabaseActivityMonitoringRecord, which in turn
contains a databaseActivityEventList array of activity events.

Topics

• Examples of an audit log for an activity stream

• DatabaseActivityMonitoringRecords JSON object

• databaseActivityEvents JSON Object

Examples of an audit log for an activity stream

Following are sample decrypted JSON audit logs of activity event records.

Example Activity event record of a CONNECT SQL statement

The following activity event record shows a login with the use of a CONNECT SQL statement
(command) by a JDBC Thin Client (clientApplication) for your Oracle DB.

{
 "class": "Standard",
 "clientApplication": "JDBC Thin Client",
 "command": "LOGON",
 "commandText": null,
 "dbid": "0123456789",
 "databaseName": "ORCL",
 "dbProtocol": "oracle",
 "dbUserName": "TEST",
 "endTime": null,
 "errorMessage": null,
 "exitCode": 0,
 "logTime": "2021-01-15 00:15:36.233787",
 "netProtocol": "tcp",
 "objectName": null,
 "objectType": null,
 "paramList": [],
 "pid": 17904,
 "remoteHost": "123.456.789.012",
 "remotePort": "25440",
 "rowCount": null,

Monitoring activity streams 1690

Amazon Relational Database Service User Guide

 "serverHost": "987.654.321.098",
 "serverType": "oracle",
 "serverVersion": "19.0.0.0.ru-2020-01.rur-2020-01.r1.EE.3",
 "serviceName": "oracle-ee",
 "sessionId": 987654321,
 "startTime": null,
 "statementId": 1,
 "substatementId": null,
 "transactionId": "0000000000000000",
 "engineNativeAuditFields": {
 "UNIFIED_AUDIT_POLICIES": "TEST_POL_EVERYTHING",
 "FGA_POLICY_NAME": null,
 "DV_OBJECT_STATUS": null,
 "SYSTEM_PRIVILEGE_USED": "CREATE SESSION",
 "OLS_LABEL_COMPONENT_TYPE": null,
 "XS_SESSIONID": null,
 "ADDITIONAL_INFO": null,
 "INSTANCE_ID": 1,
 "DBID": 123456789
 "DV_COMMENT": null,
 "RMAN_SESSION_STAMP": null,
 "NEW_NAME": null,
 "DV_ACTION_NAME": null,
 "OLS_PROGRAM_UNIT_NAME": null,
 "OLS_STRING_LABEL": null,
 "RMAN_SESSION_RECID": null,
 "OBJECT_PRIVILEGES": null,
 "OLS_OLD_VALUE": null,
 "XS_TARGET_PRINCIPAL_NAME": null,
 "XS_NS_ATTRIBUTE": null,
 "XS_NS_NAME": null,
 "DBLINK_INFO": null,
 "AUTHENTICATION_TYPE": "(TYPE\u003d(DATABASE));(CLIENT ADDRESS\u003d((ADDRESS
\u003d(PROTOCOL\u003dtcp)(HOST\u003d205.251.233.183)(PORT\u003d25440))));",
 "OBJECT_EDITION": null,
 "OLS_PRIVILEGES_GRANTED": null,
 "EXCLUDED_USER": null,
 "DV_ACTION_OBJECT_NAME": null,
 "OLS_LABEL_COMPONENT_NAME": null,
 "EXCLUDED_SCHEMA": null,
 "DP_TEXT_PARAMETERS1": null,
 "XS_USER_NAME": null,
 "XS_ENABLED_ROLE": null,
 "XS_NS_ATTRIBUTE_NEW_VAL": null,

Monitoring activity streams 1691

Amazon Relational Database Service User Guide

 "DIRECT_PATH_NUM_COLUMNS_LOADED": null,
 "AUDIT_OPTION": null,
 "DV_EXTENDED_ACTION_CODE": null,
 "XS_PACKAGE_NAME": null,
 "OLS_NEW_VALUE": null,
 "DV_RETURN_CODE": null,
 "XS_CALLBACK_EVENT_TYPE": null,
 "USERHOST": "a1b2c3d4e5f6.amazon.com",
 "GLOBAL_USERID": null,
 "CLIENT_IDENTIFIER": null,
 "RMAN_OPERATION": null,
 "TERMINAL": "unknown",
 "OS_USERNAME": "sumepate",
 "OLS_MAX_READ_LABEL": null,
 "XS_PROXY_USER_NAME": null,
 "XS_DATASEC_POLICY_NAME": null,
 "DV_FACTOR_CONTEXT": null,
 "OLS_MAX_WRITE_LABEL": null,
 "OLS_PARENT_GROUP_NAME": null,
 "EXCLUDED_OBJECT": null,
 "DV_RULE_SET_NAME": null,
 "EXTERNAL_USERID": null,
 "EXECUTION_ID": null,
 "ROLE": null,
 "PROXY_SESSIONID": 0,
 "DP_BOOLEAN_PARAMETERS1": null,
 "OLS_POLICY_NAME": null,
 "OLS_GRANTEE": null,
 "OLS_MIN_WRITE_LABEL": null,
 "APPLICATION_CONTEXTS": null,
 "XS_SCHEMA_NAME": null,
 "DV_GRANTEE": null,
 "XS_COOKIE": null,
 "DBPROXY_USERNAME": null,
 "DV_ACTION_CODE": null,
 "OLS_PRIVILEGES_USED": null,
 "RMAN_DEVICE_TYPE": null,
 "XS_NS_ATTRIBUTE_OLD_VAL": null,
 "TARGET_USER": null,
 "XS_ENTITY_TYPE": null,
 "ENTRY_ID": 1,
 "XS_PROCEDURE_NAME": null,
 "XS_INACTIVITY_TIMEOUT": null,
 "RMAN_OBJECT_TYPE": null,

Monitoring activity streams 1692

Amazon Relational Database Service User Guide

 "SYSTEM_PRIVILEGE": null,
 "NEW_SCHEMA": null,
 "SCN": 5124715
 }
}

The following activity event record shows a login failure for your SQL Server DB.

{
 "type": "DatabaseActivityMonitoringRecord",
 "clusterId": "",
 "instanceId": "db-4JCWQLUZVFYP7DIWP6JVQ77O3Q",
 "databaseActivityEventList": [
 {
 "class": "LOGIN",
 "clientApplication": "Microsoft SQL Server Management Studio",
 "command": "LOGIN FAILED",
 "commandText": "Login failed for user 'test'. Reason: Password did not
 match that for the login provided. [CLIENT: local-machine]",
 "databaseName": "",
 "dbProtocol": "SQLSERVER",
 "dbUserName": "test",
 "endTime": null,
 "errorMessage": null,
 "exitCode": 0,
 "logTime": "2022-10-06 21:34:42.7113072+00",
 "netProtocol": null,
 "objectName": "",
 "objectType": "LOGIN",
 "paramList": null,
 "pid": null,
 "remoteHost": "local machine",
 "remotePort": null,
 "rowCount": 0,
 "serverHost": "172.31.30.159",
 "serverType": "SQLSERVER",
 "serverVersion": "15.00.4073.23.v1.R1",
 "serviceName": "sqlserver-ee",
 "sessionId": 0,
 "startTime": null,
 "statementId": "0x1eb0d1808d34a94b9d3dcf5432750f02",
 "substatementId": 1,
 "transactionId": "0",

Monitoring activity streams 1693

Amazon Relational Database Service User Guide

 "type": "record",
 "engineNativeAuditFields": {
 "target_database_principal_id": 0,
 "target_server_principal_id": 0,
 "target_database_principal_name": "",
 "server_principal_id": 0,
 "user_defined_information": "",
 "response_rows": 0,
 "database_principal_name": "",
 "target_server_principal_name": "",
 "schema_name": "",
 "is_column_permission": false,
 "object_id": 0,
 "server_instance_name": "EC2AMAZ-NFUJJNO",
 "target_server_principal_sid": null,
 "additional_information": "<action_info "xmlns=\"http://
schemas.microsoft.com/sqlserver/2008/sqlaudit_data\"><pooled_connection>0</
pooled_connection><error>0x00004818</error><state>8</state><address>local machine</
address><PasswordFirstNibbleHash>B</PasswordFirstNibbleHash></action_info>"-->,
 "duration_milliseconds": 0,
 "permission_bitmask": "0x00000000000000000000000000000000",
 "data_sensitivity_information": "",
 "session_server_principal_name": "",
 "connection_id": "98B4F537-0F82-49E3-AB08-B9D33B5893EF",
 "audit_schema_version": 1,
 "database_principal_id": 0,
 "server_principal_sid": null,
 "user_defined_event_id": 0,
 "host_name": "EC2AMAZ-NFUJJNO"
 }
 }
]
}

Note

If a database activity stream isn't enabled, then the last field in the JSON document is
"engineNativeAuditFields": { }.

Example Activity event record of a CREATE TABLE statement

The following example shows a CREATE TABLE event for your Oracle database.

Monitoring activity streams 1694

Amazon Relational Database Service User Guide

{
 "class": "Standard",
 "clientApplication": "sqlplus@ip-12-34-5-678 (TNS V1-V3)",
 "command": "CREATE TABLE",
 "commandText": "CREATE TABLE persons(\n person_id NUMBER GENERATED BY DEFAULT AS
 IDENTITY,\n first_name VARCHAR2(50) NOT NULL,\n last_name VARCHAR2(50) NOT NULL,
\n PRIMARY KEY(person_id)\n)",
 "dbid": "0123456789",
 "databaseName": "ORCL",
 "dbProtocol": "oracle",
 "dbUserName": "TEST",
 "endTime": null,
 "errorMessage": null,
 "exitCode": 0,
 "logTime": "2021-01-15 00:22:49.535239",
 "netProtocol": "beq",
 "objectName": "PERSONS",
 "objectType": "TEST",
 "paramList": [],
 "pid": 17687,
 "remoteHost": "123.456.789.0",
 "remotePort": null,
 "rowCount": null,
 "serverHost": "987.654.321.01",
 "serverType": "oracle",
 "serverVersion": "19.0.0.0.ru-2020-01.rur-2020-01.r1.EE.3",
 "serviceName": "oracle-ee",
 "sessionId": 1234567890,
 "startTime": null,
 "statementId": 43,
 "substatementId": null,
 "transactionId": "090011007F0D0000",
 "engineNativeAuditFields": {
 "UNIFIED_AUDIT_POLICIES": "TEST_POL_EVERYTHING",
 "FGA_POLICY_NAME": null,
 "DV_OBJECT_STATUS": null,
 "SYSTEM_PRIVILEGE_USED": "CREATE SEQUENCE, CREATE TABLE",
 "OLS_LABEL_COMPONENT_TYPE": null,
 "XS_SESSIONID": null,
 "ADDITIONAL_INFO": null,
 "INSTANCE_ID": 1,
 "DV_COMMENT": null,
 "RMAN_SESSION_STAMP": null,

Monitoring activity streams 1695

Amazon Relational Database Service User Guide

 "NEW_NAME": null,
 "DV_ACTION_NAME": null,
 "OLS_PROGRAM_UNIT_NAME": null,
 "OLS_STRING_LABEL": null,
 "RMAN_SESSION_RECID": null,
 "OBJECT_PRIVILEGES": null,
 "OLS_OLD_VALUE": null,
 "XS_TARGET_PRINCIPAL_NAME": null,
 "XS_NS_ATTRIBUTE": null,
 "XS_NS_NAME": null,
 "DBLINK_INFO": null,
 "AUTHENTICATION_TYPE": "(TYPE\u003d(DATABASE));(CLIENT ADDRESS\u003d((PROTOCOL
\u003dbeq)(HOST\u003d123.456.789.0)));",
 "OBJECT_EDITION": null,
 "OLS_PRIVILEGES_GRANTED": null,
 "EXCLUDED_USER": null,
 "DV_ACTION_OBJECT_NAME": null,
 "OLS_LABEL_COMPONENT_NAME": null,
 "EXCLUDED_SCHEMA": null,
 "DP_TEXT_PARAMETERS1": null,
 "XS_USER_NAME": null,
 "XS_ENABLED_ROLE": null,
 "XS_NS_ATTRIBUTE_NEW_VAL": null,
 "DIRECT_PATH_NUM_COLUMNS_LOADED": null,
 "AUDIT_OPTION": null,
 "DV_EXTENDED_ACTION_CODE": null,
 "XS_PACKAGE_NAME": null,
 "OLS_NEW_VALUE": null,
 "DV_RETURN_CODE": null,
 "XS_CALLBACK_EVENT_TYPE": null,
 "USERHOST": "ip-10-13-0-122",
 "GLOBAL_USERID": null,
 "CLIENT_IDENTIFIER": null,
 "RMAN_OPERATION": null,
 "TERMINAL": "pts/1",
 "OS_USERNAME": "rdsdb",
 "OLS_MAX_READ_LABEL": null,
 "XS_PROXY_USER_NAME": null,
 "XS_DATASEC_POLICY_NAME": null,
 "DV_FACTOR_CONTEXT": null,
 "OLS_MAX_WRITE_LABEL": null,
 "OLS_PARENT_GROUP_NAME": null,
 "EXCLUDED_OBJECT": null,
 "DV_RULE_SET_NAME": null,

Monitoring activity streams 1696

Amazon Relational Database Service User Guide

 "EXTERNAL_USERID": null,
 "EXECUTION_ID": null,
 "ROLE": null,
 "PROXY_SESSIONID": 0,
 "DP_BOOLEAN_PARAMETERS1": null,
 "OLS_POLICY_NAME": null,
 "OLS_GRANTEE": null,
 "OLS_MIN_WRITE_LABEL": null,
 "APPLICATION_CONTEXTS": null,
 "XS_SCHEMA_NAME": null,
 "DV_GRANTEE": null,
 "XS_COOKIE": null,
 "DBPROXY_USERNAME": null,
 "DV_ACTION_CODE": null,
 "OLS_PRIVILEGES_USED": null,
 "RMAN_DEVICE_TYPE": null,
 "XS_NS_ATTRIBUTE_OLD_VAL": null,
 "TARGET_USER": null,
 "XS_ENTITY_TYPE": null,
 "ENTRY_ID": 12,
 "XS_PROCEDURE_NAME": null,
 "XS_INACTIVITY_TIMEOUT": null,
 "RMAN_OBJECT_TYPE": null,
 "SYSTEM_PRIVILEGE": null,
 "NEW_SCHEMA": null,
 "SCN": 5133083
 }
}

The following example shows a CREATE TABLE event for your SQL Server database.

{
 "type": "DatabaseActivityMonitoringRecord",
 "clusterId": "",
 "instanceId": "db-4JCWQLUZVFYP7DIWP6JVQ77O3Q",
 "databaseActivityEventList": [
 {
 "class": "SCHEMA",
 "clientApplication": "Microsoft SQL Server Management Studio - Query",
 "command": "ALTER",
 "commandText": "Create table [testDB].[dbo].[TestTable2](\r\ntextA
 varchar(6000),\r\n textB varchar(6000)\r\n)",
 "databaseName": "testDB",

Monitoring activity streams 1697

Amazon Relational Database Service User Guide

 "dbProtocol": "SQLSERVER",
 "dbUserName": "test",
 "endTime": null,
 "errorMessage": null,
 "exitCode": 1,
 "logTime": "2022-10-06 21:44:38.4120677+00",
 "netProtocol": null,
 "objectName": "dbo",
 "objectType": "SCHEMA",
 "paramList": null,
 "pid": null,
 "remoteHost": "local machine",
 "remotePort": null,
 "rowCount": 0,
 "serverHost": "172.31.30.159",
 "serverType": "SQLSERVER",
 "serverVersion": "15.00.4073.23.v1.R1",
 "serviceName": "sqlserver-ee",
 "sessionId": 84,
 "startTime": null,
 "statementId": "0x5178d33d56e95e419558b9607158a5bd",
 "substatementId": 1,
 "transactionId": "4561864",
 "type": "record",
 "engineNativeAuditFields": {
 "target_database_principal_id": 0,
 "target_server_principal_id": 0,
 "target_database_principal_name": "",
 "server_principal_id": 2,
 "user_defined_information": "",
 "response_rows": 0,
 "database_principal_name": "dbo",
 "target_server_principal_name": "",
 "schema_name": "",
 "is_column_permission": false,
 "object_id": 1,
 "server_instance_name": "EC2AMAZ-NFUJJNO",
 "target_server_principal_sid": null,
 "additional_information": "",
 "duration_milliseconds": 0,
 "permission_bitmask": "0x00000000000000000000000000000000",
 "data_sensitivity_information": "",
 "session_server_principal_name": "test",
 "connection_id": "EE1FE3FD-EF2C-41FD-AF45-9051E0CD983A",

Monitoring activity streams 1698

Amazon Relational Database Service User Guide

 "audit_schema_version": 1,
 "database_principal_id": 1,
 "server_principal_sid":
 "0x010500000000000515000000bdc2795e2d0717901ba6998cf4010000",
 "user_defined_event_id": 0,
 "host_name": "EC2AMAZ-NFUJJNO"
 }
 }
]
}

Example Activity event record of a SELECT statement

The following example shows a SELECT event for your Oracle DB.

{
 "class": "Standard",
 "clientApplication": "sqlplus@ip-12-34-5-678 (TNS V1-V3)",
 "command": "SELECT",
 "commandText": "select count(*) from persons",
 "databaseName": "1234567890",
 "dbProtocol": "oracle",
 "dbUserName": "TEST",
 "endTime": null,
 "errorMessage": null,
 "exitCode": 0,
 "logTime": "2021-01-15 00:25:18.850375",
 "netProtocol": "beq",
 "objectName": "PERSONS",
 "objectType": "TEST",
 "paramList": [],
 "pid": 17687,
 "remoteHost": "123.456.789.0",
 "remotePort": null,
 "rowCount": null,
 "serverHost": "987.654.321.09",
 "serverType": "oracle",
 "serverVersion": "19.0.0.0.ru-2020-01.rur-2020-01.r1.EE.3",
 "serviceName": "oracle-ee",
 "sessionId": 1080639707,
 "startTime": null,
 "statementId": 44,
 "substatementId": null,
 "transactionId": null,

Monitoring activity streams 1699

Amazon Relational Database Service User Guide

 "engineNativeAuditFields": {
 "UNIFIED_AUDIT_POLICIES": "TEST_POL_EVERYTHING",
 "FGA_POLICY_NAME": null,
 "DV_OBJECT_STATUS": null,
 "SYSTEM_PRIVILEGE_USED": null,
 "OLS_LABEL_COMPONENT_TYPE": null,
 "XS_SESSIONID": null,
 "ADDITIONAL_INFO": null,
 "INSTANCE_ID": 1,
 "DV_COMMENT": null,
 "RMAN_SESSION_STAMP": null,
 "NEW_NAME": null,
 "DV_ACTION_NAME": null,
 "OLS_PROGRAM_UNIT_NAME": null,
 "OLS_STRING_LABEL": null,
 "RMAN_SESSION_RECID": null,
 "OBJECT_PRIVILEGES": null,
 "OLS_OLD_VALUE": null,
 "XS_TARGET_PRINCIPAL_NAME": null,
 "XS_NS_ATTRIBUTE": null,
 "XS_NS_NAME": null,
 "DBLINK_INFO": null,
 "AUTHENTICATION_TYPE": "(TYPE\u003d(DATABASE));(CLIENT ADDRESS\u003d((PROTOCOL
\u003dbeq)(HOST\u003d123.456.789.0)));",
 "OBJECT_EDITION": null,
 "OLS_PRIVILEGES_GRANTED": null,
 "EXCLUDED_USER": null,
 "DV_ACTION_OBJECT_NAME": null,
 "OLS_LABEL_COMPONENT_NAME": null,
 "EXCLUDED_SCHEMA": null,
 "DP_TEXT_PARAMETERS1": null,
 "XS_USER_NAME": null,
 "XS_ENABLED_ROLE": null,
 "XS_NS_ATTRIBUTE_NEW_VAL": null,
 "DIRECT_PATH_NUM_COLUMNS_LOADED": null,
 "AUDIT_OPTION": null,
 "DV_EXTENDED_ACTION_CODE": null,
 "XS_PACKAGE_NAME": null,
 "OLS_NEW_VALUE": null,
 "DV_RETURN_CODE": null,
 "XS_CALLBACK_EVENT_TYPE": null,
 "USERHOST": "ip-12-34-5-678",
 "GLOBAL_USERID": null,
 "CLIENT_IDENTIFIER": null,

Monitoring activity streams 1700

Amazon Relational Database Service User Guide

 "RMAN_OPERATION": null,
 "TERMINAL": "pts/1",
 "OS_USERNAME": "rdsdb",
 "OLS_MAX_READ_LABEL": null,
 "XS_PROXY_USER_NAME": null,
 "XS_DATASEC_POLICY_NAME": null,
 "DV_FACTOR_CONTEXT": null,
 "OLS_MAX_WRITE_LABEL": null,
 "OLS_PARENT_GROUP_NAME": null,
 "EXCLUDED_OBJECT": null,
 "DV_RULE_SET_NAME": null,
 "EXTERNAL_USERID": null,
 "EXECUTION_ID": null,
 "ROLE": null,
 "PROXY_SESSIONID": 0,
 "DP_BOOLEAN_PARAMETERS1": null,
 "OLS_POLICY_NAME": null,
 "OLS_GRANTEE": null,
 "OLS_MIN_WRITE_LABEL": null,
 "APPLICATION_CONTEXTS": null,
 "XS_SCHEMA_NAME": null,
 "DV_GRANTEE": null,
 "XS_COOKIE": null,
 "DBPROXY_USERNAME": null,
 "DV_ACTION_CODE": null,
 "OLS_PRIVILEGES_USED": null,
 "RMAN_DEVICE_TYPE": null,
 "XS_NS_ATTRIBUTE_OLD_VAL": null,
 "TARGET_USER": null,
 "XS_ENTITY_TYPE": null,
 "ENTRY_ID": 13,
 "XS_PROCEDURE_NAME": null,
 "XS_INACTIVITY_TIMEOUT": null,
 "RMAN_OBJECT_TYPE": null,
 "SYSTEM_PRIVILEGE": null,
 "NEW_SCHEMA": null,
 "SCN": 5136972
 }
}

The following example shows a SELECT event for your SQL Server DB.

{

Monitoring activity streams 1701

Amazon Relational Database Service User Guide

 "type": "DatabaseActivityMonitoringRecord",
 "clusterId": "",
 "instanceId": "db-4JCWQLUZVFYP7DIWP6JVQ77O3Q",
 "databaseActivityEventList": [
 {
 "class": "TABLE",
 "clientApplication": "Microsoft SQL Server Management Studio - Query",
 "command": "SELECT",
 "commandText": "select * from [testDB].[dbo].[TestTable]",
 "databaseName": "testDB",
 "dbProtocol": "SQLSERVER",
 "dbUserName": "test",
 "endTime": null,
 "errorMessage": null,
 "exitCode": 1,
 "logTime": "2022-10-06 21:24:59.9422268+00",
 "netProtocol": null,
 "objectName": "TestTable",
 "objectType": "TABLE",
 "paramList": null,
 "pid": null,
 "remoteHost": "local machine",
 "remotePort": null,
 "rowCount": 0,
 "serverHost": "172.31.30.159",
 "serverType": "SQLSERVER",
 "serverVersion": "15.00.4073.23.v1.R1",
 "serviceName": "sqlserver-ee",
 "sessionId": 62,
 "startTime": null,
 "statementId": "0x03baed90412f564fad640ebe51f89b99",
 "substatementId": 1,
 "transactionId": "4532935",
 "type": "record",
 "engineNativeAuditFields": {
 "target_database_principal_id": 0,
 "target_server_principal_id": 0,
 "target_database_principal_name": "",
 "server_principal_id": 2,
 "user_defined_information": "",
 "response_rows": 0,
 "database_principal_name": "dbo",
 "target_server_principal_name": "",
 "schema_name": "dbo",

Monitoring activity streams 1702

Amazon Relational Database Service User Guide

 "is_column_permission": true,
 "object_id": 581577110,
 "server_instance_name": "EC2AMAZ-NFUJJNO",
 "target_server_principal_sid": null,
 "additional_information": "",
 "duration_milliseconds": 0,
 "permission_bitmask": "0x00000000000000000000000000000001",
 "data_sensitivity_information": "",
 "session_server_principal_name": "test",
 "connection_id": "AD3A5084-FB83-45C1-8334-E923459A8109",
 "audit_schema_version": 1,
 "database_principal_id": 1,
 "server_principal_sid":
 "0x010500000000000515000000bdc2795e2d0717901ba6998cf4010000",
 "user_defined_event_id": 0,
 "host_name": "EC2AMAZ-NFUJJNO"
 }
 }
]
}

DatabaseActivityMonitoringRecords JSON object

The database activity event records are in a JSON object that contains the following information.

JSON Field Data
Type

Description

type string The type of JSON record. The value is
DatabaseActivityMonitoringR
ecords .

version string The version of the database activity
monitoring records. Oracle DB uses version
1.3 and SQL Server uses version 1.4. These
engine versions introduce the engineNat
iveAuditFields JSON object.

databaseActivityEvents string A JSON object that contains the activity
events.

Monitoring activity streams 1703

Amazon Relational Database Service User Guide

JSON Field Data
Type

Description

key string An encryption key that you use to decrypt
the databaseActivityEventList JSON array

databaseActivityEvents JSON Object

The databaseActivityEvents JSON object contains the following information.

Top-level fields in JSON record

Each event in the audit log is wrapped inside a record in JSON format. This record contains the
following fields.

type

This field always has the value DatabaseActivityMonitoringRecords.

version

This field represents the version of the database activity stream data protocol or contract. It
defines which fields are available.

databaseActivityEvents

An encrypted string representing one or more activity events. It's represented as a base64 byte
array. When you decrypt the string, the result is a record in JSON format with fields as shown in
the examples in this section.

key

The encrypted data key used to encrypt the databaseActivityEvents string. This is the
same AWS KMS key that you provided when you started the database activity stream.

The following example shows the format of this record.

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.3",

Monitoring activity streams 1704

Amazon Relational Database Service User Guide

 "databaseActivityEvents":"encrypted audit records",
 "key":"encrypted key"
}

 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.4",
 "databaseActivityEvents":"encrypted audit records",
 "key":"encrypted key"

Take the following steps to decrypt the contents of the databaseActivityEvents field:

1. Decrypt the value in the key JSON field using the KMS key you provided when starting database
activity stream. Doing so returns the data encryption key in clear text.

2. Base64-decode the value in the databaseActivityEvents JSON field to obtain the
ciphertext, in binary format, of the audit payload.

3. Decrypt the binary ciphertext with the data encryption key that you decoded in the first step.

4. Decompress the decrypted payload.

• The encrypted payload is in the databaseActivityEvents field.

• The databaseActivityEventList field contains an array of audit records. The type fields
in the array can be record or heartbeat.

The audit log activity event record is a JSON object that contains the following information.

JSON Field Data
Type

Description

type string The type of JSON record. The value is DatabaseA
ctivityMonitoringRecord .

instanceId string The DB instance resource identifier. It corresponds to the DB
instance attribute DbiResourceId .

databaseActivityEv
entList JSON array

string An array of activity audit records or heartbeat messages.

Monitoring activity streams 1705

Amazon Relational Database Service User Guide

databaseActivityEventList JSON array for database activity streams

The audit log payload is an encrypted databaseActivityEventList JSON array. The
following table lists alphabetically the fields for each activity event in the decrypted
DatabaseActivityEventList array of an audit log.

When unified auditing is enabled in Oracle Database, the audit records are populated in this new
audit trail. The UNIFIED_AUDIT_TRAIL view displays audit records in tabular form by retrieving
the audit records from the audit trail. When you start a database activity stream, a column in
UNIFIED_AUDIT_TRAIL maps to a field in the databaseActivityEventList array.

Important

The event structure is subject to change. Amazon RDS might add new fields to activity
events in the future. In applications that parse the JSON data, make sure that your code can
ignore or take appropriate actions for unknown field names.

databaseActivityEventList fields for Amazon RDS for Oracle

The following are databaseActivityEventList fields for Amazon RDS for Oracle.

Field Data
Type

Source Description

class string AUDIT_TYPE column in
UNIFIED_AUDIT_TRAIL

The class of activity
event. This correspon
ds to the AUDIT_TYP
E column in the
UNIFIED_AUDIT_TRAI
L view. Valid values for
Amazon RDS for Oracle
are the following:

• Standard

• FineGrainedAudit

• XS

• Database Vault

Monitoring activity streams 1706

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

• Label Security

• RMAN_AUDIT

• Datapump

• Direct path API

For more informati
on, see UNIFIED_A
UDIT_TRAIL in the Oracle
documentation.

clientApplication string CLIENT_PROGRAM_NAME
in UNIFIED_AUDIT_TRAI
L

The application the
client used to connect as
reported by the client.
The client doesn't have
to provide this informati
on, so the value can be
null. A sample value is
JDBC Thin Client.

command string ACTION_NAME column in
UNIFIED_AUDIT_TRAIL

Name of the action
executed by the user. To
understand the complete
action, read both the
command name and the
AUDIT_TYPE value. A
sample value is ALTER
DATABASE.

commandText string SQL_TEXT column in
UNIFIED_AUDIT_TRAIL

The SQL statement
associated with the
event. A sample value
is ALTER DATABASE
BEGIN BACKUP.

Monitoring activity streams 1707

https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/UNIFIED_AUDIT_TRAIL.html#GUID-B7CE1C02-2FD4-47D6-80AA-CF74A60CDD1D
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/UNIFIED_AUDIT_TRAIL.html#GUID-B7CE1C02-2FD4-47D6-80AA-CF74A60CDD1D

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

databaseName string NAME column in V$DATABAS
E

The name of the
database.

dbid numberDBID column in UNIFIED_A
UDIT_TRAIL

Numerical identifier for
the database. A sample
value is 1559204751 .

dbProtocol string N/A The database protocol.
In this beta, the value is
oracle.

dbUserName string DBUSERNAME column in
UNIFIED_AUDIT_TRAIL

Name of the database
user whose actions were
audited. A sample value
is RDSADMIN.

endTime string N/A This field isn't used for
RDS for Oracle and is
always null.

Monitoring activity streams 1708

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

engineNativeAuditF
ields

object UNIFIED_AUDIT_TRAIL By default, this object
is empty. When you
start the activity stream
with the --engine-
native-audit-
fields-include
d option, this object
includes the following
columns and their
values:

ADDITIONAL_INFO
APPLICATION
_CONTEXTS
AUDIT_OPTION
AUTHENTICATIO
N_TYPE
CLIENT_IDENTIFIER
CURRENT_USER
DBLINK_INFO
DBPROXY_USERNAME
DIRECT_PATH_NU
M_COLUMNS_LOADED
DP_BOOLEAN
_PARAMETERS1
DP_TEXT_PARAME
TERS1
DV_ACTION_CODE
DV_ACTION_NAME
DV_ACTION_OBJECT_N
AME
DV_COMMENT
DV_EXTENDED_
ACTION_CODE
DV_FACTOR_CONTEXT
DV_GRANTEE
DV_OBJECT_STATUS
DV_RETURN_CODE

Monitoring activity streams 1709

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

DV_RULE_SET_NAME
ENTRY_ID
EXCLUDED_OBJECT
EXCLUDED_SCHEMA
EXCLUDED_USER
EXECUTION_ID
EXTERNAL_USERID
FGA_POLICY_NAME
GLOBAL_USERID
INSTANCE_ID
KSACL_SER
VICE_NAME
KSACL_SOURCE_LOCA
TION
KSACL_USER_NAME
NEW_NAME
NEW_SCHEMA
OBJECT_EDITION
OBJECT_PRIVILEGES
OLS_GRANTEE
OLS_LABEL_COM
PONENT_NAME
OLS_LABEL_COMPO
NENT_TYPE
OLS_MAX_READ_LABEL
OLS_MAX_WRITE_LA
BEL
OLS_MIN_WRITE_
LABEL
OLS_NEW_VALUE
OLS_OLD_VALUE
OLS_PARENT_
GROUP_NAME
OLS_POLICY_NAME
OLS_PRIVILEGES_GRA
NTED
OLS_PRIVILEGE
S_USED
OLS_PROGRAM
_UNIT_NAME
OLS_STRING_LABEL

Monitoring activity streams 1710

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

OS_USERNAME
PROTOCOL_ACTIO
N_NAME
PROTOCOL_MESSAGE
PROTOCOL_RET
URN_CODE
PROTOCOL_SESSION_I
D
PROTOCOL_USERHOST
PROXY_SESSIONID
RLS_INFO
RMAN_DEVICE_TYPE
RMAN_OBJECT_TYPE
RMAN_OPERATION
RMAN_SESSION_RECID
RMAN_SESSION_STAMP
ROLE
SCN
SYSTEM_PRIVILEGE
SYSTEM_PRIVIL
EGE_USED
TARGET_USER
TERMINAL
UNIFIED_AUDIT_P
OLICIES
USERHOST
XS_CALLBAC
K_EVENT_TYPE
XS_COOKIE
XS_DATASEC_PO
LICY_NAME
XS_ENABLED_ROLE
XS_ENTITY_TYPE
XS_INACTIVITY
_TIMEOUT
XS_NS_ATTRIBUTE
XS_NS_ATTRI
BUTE_NEW_VAL
XS_NS_ATTRIBUT
E_OLD_VAL
XS_NS_NAME

Monitoring activity streams 1711

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

XS_PACKAGE_NAME
XS_PROCEDURE_NAME
XS_PROXY_USER_NAME
XS_SCHEMA_NAME
XS_SESSIONID
XS_TARGET_PRINC
IPAL_NAME
XS_USER_NAME

For more informati
on, see UNIFIED_A
UDIT_TRAIL in the Oracle
Database documenta
tion.

errorMessage string N/A This field isn't used for
RDS for Oracle and is
always null.

exitCode numberRETURN_CODE column in
UNIFIED_AUDIT_TRAIL

Oracle Database error
code generated by the
action. If the action
succeeded, the value is 0.

logTime string EVENT_TIMESTAMP_UT
C column in UNIFIED_A
UDIT_TRAIL

Timestamp of the
creation of the audit
trail entry. A sample
value is 2020-11-27
06:56:14.981404 .

netProtocol string AUTHENTICATION_TYP
E column in UNIFIED_A
UDIT_TRAIL

The network communica
tion protocol. A sample
value is TCP.

Monitoring activity streams 1712

https://docs.oracle.com/database/121/REFRN/GUID-B7CE1C02-2FD4-47D6-80AA-CF74A60CDD1D.htm#REFRN29162
https://docs.oracle.com/database/121/REFRN/GUID-B7CE1C02-2FD4-47D6-80AA-CF74A60CDD1D.htm#REFRN29162

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

objectName string OBJECT_NAME column in
UNIFIED_AUDIT_TRAIL

The name of the object
affected by the action.
A sample value is
employees .

objectType string OBJECT_SCHEMA column in
UNIFIED_AUDIT_TRAIL

The schema name of
object affected by the
action. A sample value is
hr.

paramList list SQL_BINDS column in
UNIFIED_AUDIT_TRAIL

The list of bind variables
, if any, associated with
SQL_TEXT. A sample
value is parameter
_1,parameter_2 .

pid numberOS_PROCESS column in
UNIFIED_AUDIT_TRAIL

Operating system
process identifier of the
Oracle database process.
A sample value is 22396.

remoteHost string AUTHENTICATION_TYP
E column in UNIFIED_A
UDIT_TRAIL

Either the client IP
address or name of the
host from which the
session was spawned.
A sample value is
123.456.789.123 .

remotePort string AUTHENTICATION_TYP
E column in UNIFIED_A
UDIT_TRAIL

The client port number.
A typical value in Oracle
Database environments
is 1521.

Monitoring activity streams 1713

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

rowCount numberN/A This field isn't used for
RDS for Oracle and is
always null.

serverHost string Database host The IP address of the
database server host.
A sample value is
123.456.789.123 .

serverType string N/A The database server
type. The value is always
ORACLE.

serverVersion string Database host The Amazon RDS for
Oracle version, Release
Update (RU), and Release
Update Revision (RUR).
A sample value is
19.0.0.0.ru-2020-0
1.rur-202
0-01.r1.EE.3 .

serviceName string Database host The name of the service.
A sample value is
oracle-ee .

sessionId numberSESSIONID column in
UNIFIED_AUDIT_TRAIL

The session identifier of
the audit. An example is
1894327130 .

startTime string N/A This field isn't used for
RDS for Oracle and is
always null.

Monitoring activity streams 1714

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

statementId numberSTATEMENT_ID column in
UNIFIED_AUDIT_TRAIL

Numeric ID for each
statement run. A
statement can cause
many actions. A sample
value is 142197.

substatementId N/
A

N/A This field isn't used for
RDS for Oracle and is
always null.

transactionId string TRANSACTION_ID column
in UNIFIED_AUDIT_TRAI
L

The identifier of the
transaction in which
the object is modified.
A sample value is
02000800D5030000 .

databaseActivityEventList fields for Amazon RDS for SQL Server

The following are databaseActivityEventList fields for Amazon RDS for SQL Server.

Field Data
Type

Source Description

class string sys.fn_get_audit_file.class
_type mapped to sys.dm_au
dit_class_type_map
.class_type_desc

The class of activity event. For
more information, see SQL
Server Audit (Database Engine)
in the Microsoft documentation.

clientApp
lication

string sys.fn_get_audit_file.appli
cation_name

The application that the client
connects as reported by the
client (SQL Server version 14
and higher). This field is null in
SQL Server version 13.

Monitoring activity streams 1715

https://learn.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine?view=sql-server-ver16

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

command string sys.fn_get_audit_file.actio
n_id mapped to sys.dm_au
dit_actions.name

The general category of the SQL
statement. The value for this
field depends on the value of the
class.

commandTe
xt

string sys.fn_get_audit_file.state
ment

This field indicates the SQL
statement.

databaseN
ame

string sys.fn_get_audit_file.datab
ase_name

Name of the database.

dbProtoco
l

string N/A The database protocol. This
value is SQLSERVER .

dbUserNam
e

string sys.fn_get_audit_file.serve
r_principal_name

The database user for the client
authentication.

endTime string N/A This field isn't used by Amazon
RDS for SQL Server and the
value is null.

engineNat
iveAuditF
ields

object Each field in sys.fn_get_audit_f
ile that is not listed in this column.

By default, this object is empty.
When you start the activity
stream with the --engine-
native-audit-field
s-included option, this
object includes other native
engine audit fields, which are
not returned by this JSON map.

errorMess
age

string N/A This field isn't used by Amazon
RDS for SQL Server and the
value is null.

Monitoring activity streams 1716

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

exitCode integer sys.fn_get_audit_file.succe
eded

Indicates whether the action
that started the event succeeded
. This field can't be null. For all
the events except login events,
this field reports whether the
permission check succeeded
or failed, but not whether the
operation succeeded or failed.

Values include:

• 0 – Fail

• 1 – Success

logTime string sys.fn_get_audit_file.event
_time

The event timestamp that is
recorded by the SQL Server.

netProtoc
ol

string N/A This field isn't used by Amazon
RDS for SQL Server and the
value is null.

objectNam
e

string sys.fn_get_audit_file.objec
t_name

The name of the database
object if the SQL statement is
operating on an object.

objectTyp
e

string sys.fn_get_audit_file.class
_type mapped to sys.dm_au
dit_class_type_map
.class_type_desc

The database object type if the
SQL statement is operating on
an object type.

paramList string N/A This field isn't used by Amazon
RDS for SQL Server and the
value is null.

Monitoring activity streams 1717

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

pid integer N/A This field isn't used by Amazon
RDS for SQL Server and the
value is null.

remoteHos
t

string sys.fn_get_audit_file.clien
t_ip

The IP address or hostname of
the client that issued the SQL
statement (SQL Server version
14 and higher). This field is null
in SQL Server version 13.

remotePor
t

integer N/A This field isn't used by Amazon
RDS for SQL Server and the
value is null.

rowCount integer sys.fn_get_audit_file.affec
ted_rows

The number of table rows
affected by the SQL statement
(SQL Server version 14 and
higher). This field is in SQL
Server version 13.

serverHos
t

string Database Host The IP address of the host
database server.

serverTyp
e

string N/A The database server type. The
value is SQLSERVER .

serverVer
sion

string Database Host The database server version, for
example, 15.00.4073.23.v1.R1
for SQL Server 2017.

serviceNa
me

string Database Host The name of the service. An
example value is sqlserver-
ee.

Monitoring activity streams 1718

Amazon Relational Database Service User Guide

Field Data
Type

Source Description

sessionId integer sys.fn_get_audit_file.sessi
on_id

Unique identifier of the session.

startTime string N/A This field isn't used by Amazon
RDS for SQL Server and the
value is null.

statement
Id

string sys.fn_get_audit_file.seque
nce_group_id

A unique identifier for the
client's SQL statement. The
identifier is different for each
event that is generated. A
sample value is 0x38eaf41
56267184094bb82071
aaab644 .

substatem
entId

integer sys.fn_get_audit_file.seque
nce_number

An identifier to determine
the sequence number for a
statement. This identifier helps
when large records are split into
multiple records.

transacti
onId

integer sys.fn_get_audit_file.trans
action_id

An identifier of a transaction. If
there aren't any active transacti
ons, the value is zero.

type string Database activity stream generated The type of event. The values are
record or heartbeat .

Processing a database activity stream using the AWS SDK

You can programmatically process an activity stream by using the AWS SDK. The following are fully
functioning Java and Python examples of using Database Activity Streams records for instance
based enablement.

Monitoring activity streams 1719

Amazon Relational Database Service User Guide

Java

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.net.InetAddress;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.Security;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.zip.GZIPInputStream;

import javax.crypto.Cipher;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;

import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import
 com.amazonaws.services.kinesis.clientlibrary.exceptions.InvalidStateException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ThrottlingException;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessor;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorCheckpointer;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorFactory;
import
 com.amazonaws.services.kinesis.clientlibrary.lib.worker.InitialPositionInStream;
import
 com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLibConfiguration;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownReason;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker.Builder;
import com.amazonaws.services.kinesis.model.Record;
import com.amazonaws.services.kms.AWSKMS;

Monitoring activity streams 1720

Amazon Relational Database Service User Guide

import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.DecryptRequest;
import com.amazonaws.services.kms.model.DecryptResult;
import com.amazonaws.util.Base64;
import com.amazonaws.util.IOUtils;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.annotations.SerializedName;
import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class DemoConsumer {

 private static final String STREAM_NAME = "aws-rds-das-[instance-external-
resource-id]"; // aws-rds-das-db-ABCD123456
 private static final String APPLICATION_NAME = "AnyApplication"; //unique
 application name for dynamo table generation that holds kinesis shard tracking
 private static final String AWS_ACCESS_KEY =
 "[AWS_ACCESS_KEY_TO_ACCESS_KINESIS]";
 private static final String AWS_SECRET_KEY =
 "[AWS_SECRET_KEY_TO_ACCESS_KINESIS]";
 private static final String RESOURCE_ID = "[external-resource-id]"; // db-
ABCD123456
 private static final String REGION_NAME = "[region-name]"; //us-east-1, us-
east-2...
 private static final BasicAWSCredentials CREDENTIALS = new
 BasicAWSCredentials(AWS_ACCESS_KEY, AWS_SECRET_KEY);
 private static final AWSStaticCredentialsProvider CREDENTIALS_PROVIDER = new
 AWSStaticCredentialsProvider(CREDENTIALS);

 private static final AwsCrypto CRYPTO = new AwsCrypto();
 private static final AWSKMS KMS = AWSKMSClientBuilder.standard()
 .withRegion(REGION_NAME)
 .withCredentials(CREDENTIALS_PROVIDER).build();

 class Activity {
 String type;
 String version;
 String databaseActivityEvents;
 String key;
 }

 class ActivityEvent {
 @SerializedName("class") String _class;
 String clientApplication;

Monitoring activity streams 1721

Amazon Relational Database Service User Guide

 String command;
 String commandText;
 String databaseName;
 String dbProtocol;
 String dbUserName;
 String endTime;
 String errorMessage;
 String exitCode;
 String logTime;
 String netProtocol;
 String objectName;
 String objectType;
 List<String> paramList;
 String pid;
 String remoteHost;
 String remotePort;
 String rowCount;
 String serverHost;
 String serverType;
 String serverVersion;
 String serviceName;
 String sessionId;
 String startTime;
 String statementId;
 String substatementId;
 String transactionId;
 String type;
 }

 class ActivityRecords {
 String type;
 String clusterId; // note that clusterId will contain an empty string on RDS
 Oracle and RDS SQL Server
 String instanceId;
 List<ActivityEvent> databaseActivityEventList;
 }

 static class RecordProcessorFactory implements IRecordProcessorFactory {
 @Override
 public IRecordProcessor createProcessor() {
 return new RecordProcessor();
 }
 }

Monitoring activity streams 1722

Amazon Relational Database Service User Guide

 static class RecordProcessor implements IRecordProcessor {

 private static final long BACKOFF_TIME_IN_MILLIS = 3000L;
 private static final int PROCESSING_RETRIES_MAX = 10;
 private static final long CHECKPOINT_INTERVAL_MILLIS = 60000L;
 private static final Gson GSON = new
 GsonBuilder().serializeNulls().create();

 private static final Cipher CIPHER;
 static {
 Security.insertProviderAt(new BouncyCastleProvider(), 1);
 try {
 CIPHER = Cipher.getInstance("AES/GCM/NoPadding", "BC");
 } catch (NoSuchAlgorithmException | NoSuchPaddingException |
 NoSuchProviderException e) {
 throw new ExceptionInInitializerError(e);
 }
 }

 private long nextCheckpointTimeInMillis;

 @Override
 public void initialize(String shardId) {
 }

 @Override
 public void processRecords(final List<Record> records, final
 IRecordProcessorCheckpointer checkpointer) {
 for (final Record record : records) {
 processSingleBlob(record.getData());
 }

 if (System.currentTimeMillis() > nextCheckpointTimeInMillis) {
 checkpoint(checkpointer);
 nextCheckpointTimeInMillis = System.currentTimeMillis() +
 CHECKPOINT_INTERVAL_MILLIS;
 }
 }

 @Override
 public void shutdown(IRecordProcessorCheckpointer checkpointer,
 ShutdownReason reason) {
 if (reason == ShutdownReason.TERMINATE) {
 checkpoint(checkpointer);

Monitoring activity streams 1723

Amazon Relational Database Service User Guide

 }
 }

 private void processSingleBlob(final ByteBuffer bytes) {
 try {
 // JSON $Activity
 final Activity activity = GSON.fromJson(new String(bytes.array(),
 StandardCharsets.UTF_8), Activity.class);

 // Base64.Decode
 final byte[] decoded =
 Base64.decode(activity.databaseActivityEvents);
 final byte[] decodedDataKey = Base64.decode(activity.key);

 Map<String, String> context = new HashMap<>();
 context.put("aws:rds:db-id", RESOURCE_ID);

 // Decrypt
 final DecryptRequest decryptRequest = new DecryptRequest()

 .withCiphertextBlob(ByteBuffer.wrap(decodedDataKey)).withEncryptionContext(context);
 final DecryptResult decryptResult = KMS.decrypt(decryptRequest);
 final byte[] decrypted = decrypt(decoded,
 getByteArray(decryptResult.getPlaintext()));

 // GZip Decompress
 final byte[] decompressed = decompress(decrypted);
 // JSON $ActivityRecords
 final ActivityRecords activityRecords = GSON.fromJson(new
 String(decompressed, StandardCharsets.UTF_8), ActivityRecords.class);

 // Iterate throught $ActivityEvents
 for (final ActivityEvent event :
 activityRecords.databaseActivityEventList) {
 System.out.println(GSON.toJson(event));
 }
 } catch (Exception e) {
 // Handle error.
 e.printStackTrace();
 }
 }

 private static byte[] decompress(final byte[] src) throws IOException {

Monitoring activity streams 1724

Amazon Relational Database Service User Guide

 ByteArrayInputStream byteArrayInputStream = new
 ByteArrayInputStream(src);
 GZIPInputStream gzipInputStream = new
 GZIPInputStream(byteArrayInputStream);
 return IOUtils.toByteArray(gzipInputStream);
 }

 private void checkpoint(IRecordProcessorCheckpointer checkpointer) {
 for (int i = 0; i < PROCESSING_RETRIES_MAX; i++) {
 try {
 checkpointer.checkpoint();
 break;
 } catch (ShutdownException se) {
 // Ignore checkpoint if the processor instance has been shutdown
 (fail over).
 System.out.println("Caught shutdown exception, skipping
 checkpoint." + se);
 break;
 } catch (ThrottlingException e) {
 // Backoff and re-attempt checkpoint upon transient failures
 if (i >= (PROCESSING_RETRIES_MAX - 1)) {
 System.out.println("Checkpoint failed after " + (i + 1) +
 "attempts." + e);
 break;
 } else {
 System.out.println("Transient issue when checkpointing -
 attempt " + (i + 1) + " of " + PROCESSING_RETRIES_MAX + e);
 }
 } catch (InvalidStateException e) {
 // This indicates an issue with the DynamoDB table (check for
 table, provisioned IOPS).
 System.out.println("Cannot save checkpoint to the DynamoDB table
 used by the Amazon Kinesis Client Library." + e);
 break;
 }
 try {
 Thread.sleep(BACKOFF_TIME_IN_MILLIS);
 } catch (InterruptedException e) {
 System.out.println("Interrupted sleep" + e);
 }
 }
 }
 }

Monitoring activity streams 1725

Amazon Relational Database Service User Guide

 private static byte[] decrypt(final byte[] decoded, final byte[] decodedDataKey)
 throws IOException {
 // Create a JCE master key provider using the random key and an AES-GCM
 encryption algorithm
 final JceMasterKey masterKey = JceMasterKey.getInstance(new
 SecretKeySpec(decodedDataKey, "AES"),
 "BC", "DataKey", "AES/GCM/NoPadding");
 try (final CryptoInputStream<JceMasterKey> decryptingStream =
 CRYPTO.createDecryptingStream(masterKey, new ByteArrayInputStream(decoded));
 final ByteArrayOutputStream out = new ByteArrayOutputStream()) {
 IOUtils.copy(decryptingStream, out);
 return out.toByteArray();
 }
 }

 public static void main(String[] args) throws Exception {
 final String workerId = InetAddress.getLocalHost().getCanonicalHostName() +
 ":" + UUID.randomUUID();
 final KinesisClientLibConfiguration kinesisClientLibConfiguration =
 new KinesisClientLibConfiguration(APPLICATION_NAME, STREAM_NAME,
 CREDENTIALS_PROVIDER, workerId);

 kinesisClientLibConfiguration.withInitialPositionInStream(InitialPositionInStream.LATEST);
 kinesisClientLibConfiguration.withRegionName(REGION_NAME);
 final Worker worker = new Builder()
 .recordProcessorFactory(new RecordProcessorFactory())
 .config(kinesisClientLibConfiguration)
 .build();

 System.out.printf("Running %s to process stream %s as worker %s...\n",
 APPLICATION_NAME, STREAM_NAME, workerId);

 try {
 worker.run();
 } catch (Throwable t) {
 System.err.println("Caught throwable while processing data.");
 t.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

 private static byte[] getByteArray(final ByteBuffer b) {
 byte[] byteArray = new byte[b.remaining()];

Monitoring activity streams 1726

Amazon Relational Database Service User Guide

 b.get(byteArray);
 return byteArray;
 }
}

Python

import base64
import json
import zlib
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy
from aws_encryption_sdk.internal.crypto import WrappingKey
from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider
from aws_encryption_sdk.identifiers import WrappingAlgorithm, EncryptionKeyType
import boto3

REGION_NAME = '<region>' # us-east-1
RESOURCE_ID = '<external-resource-id>' # db-ABCD123456
STREAM_NAME = 'aws-rds-das-' + RESOURCE_ID # aws-rds-das-db-ABCD123456

enc_client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

class MyRawMasterKeyProvider(RawMasterKeyProvider):
 provider_id = "BC"

 def __new__(cls, *args, **kwargs):
 obj = super(RawMasterKeyProvider, cls).__new__(cls)
 return obj

 def __init__(self, plain_key):
 RawMasterKeyProvider.__init__(self)
 self.wrapping_key =
 WrappingKey(wrapping_algorithm=WrappingAlgorithm.AES_256_GCM_IV12_TAG16_NO_PADDING,
 wrapping_key=plain_key,
 wrapping_key_type=EncryptionKeyType.SYMMETRIC)

 def _get_raw_key(self, key_id):
 return self.wrapping_key

def decrypt_payload(payload, data_key):

Monitoring activity streams 1727

Amazon Relational Database Service User Guide

 my_key_provider = MyRawMasterKeyProvider(data_key)
 my_key_provider.add_master_key("DataKey")
 decrypted_plaintext, header = enc_client.decrypt(
 source=payload,

 materials_manager=aws_encryption_sdk.materials_managers.default.DefaultCryptoMaterialsManager(master_key_provider=my_key_provider))
 return decrypted_plaintext

def decrypt_decompress(payload, key):
 decrypted = decrypt_payload(payload, key)
 return zlib.decompress(decrypted, zlib.MAX_WBITS + 16)

def main():
 session = boto3.session.Session()
 kms = session.client('kms', region_name=REGION_NAME)
 kinesis = session.client('kinesis', region_name=REGION_NAME)

 response = kinesis.describe_stream(StreamName=STREAM_NAME)
 shard_iters = []
 for shard in response['StreamDescription']['Shards']:
 shard_iter_response = kinesis.get_shard_iterator(StreamName=STREAM_NAME,
 ShardId=shard['ShardId'],

 ShardIteratorType='LATEST')
 shard_iters.append(shard_iter_response['ShardIterator'])

 while len(shard_iters) > 0:
 next_shard_iters = []
 for shard_iter in shard_iters:
 response = kinesis.get_records(ShardIterator=shard_iter, Limit=10000)
 for record in response['Records']:
 record_data = record['Data']
 record_data = json.loads(record_data)
 payload_decoded =
 base64.b64decode(record_data['databaseActivityEvents'])
 data_key_decoded = base64.b64decode(record_data['key'])
 data_key_decrypt_result =
 kms.decrypt(CiphertextBlob=data_key_decoded,

 EncryptionContext={'aws:rds:db-id': RESOURCE_ID})
 print (decrypt_decompress(payload_decoded,
 data_key_decrypt_result['Plaintext']))

Monitoring activity streams 1728

Amazon Relational Database Service User Guide

 if 'NextShardIterator' in response:
 next_shard_iters.append(response['NextShardIterator'])
 shard_iters = next_shard_iters

if __name__ == '__main__':
 main()

IAM policy examples for database activity streams

Any user with appropriate AWS Identity and Access Management (IAM) role privileges for database
activity streams can create, start, stop, and modify the activity stream settings for a DB instance.
These actions are included in the audit log of the stream. For best compliance practices, we
recommend that you don't provide these privileges to DBAs.

You set access to database activity streams using IAM policies. For more information about Amazon
RDS authentication, see Identity and access management for Amazon RDS. For more information
about creating IAM policies, see Creating and using an IAM policy for IAM database access.

Example Policy to allow configuring database activity streams

To give users fine-grained access to modify activity streams, use the service-specific operation
context keys rds:StartActivityStream and rds:StopActivityStream in an IAM policy. The
following IAM policy example allows a user or role to configure activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ConfigureActivityStreams",
 "Effect":"Allow",
 "Action": [
 "rds:StartActivityStream",
 "rds:StopActivityStream"
],
 "Resource":"*",
 }
]
}

IAM policy examples for activity streams 1729

Amazon Relational Database Service User Guide

Example Policy to allow starting database activity streams

The following IAM policy example allows a user or role to start activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowStartActivityStreams",
 "Effect":"Allow",
 "Action":"rds:StartActivityStream",
 "Resource":"*"
 }
]
}

Example Policy to allow stopping database activity streams

The following IAM policy example allows a user or role to stop activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowStopActivityStreams",
 "Effect":"Allow",
 "Action":"rds:StopActivityStream",
 "Resource":"*"
 }
]
}

Example Policy to deny starting database activity streams

The following IAM policy example prevents a user or role from starting activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyStartActivityStreams",
 "Effect":"Deny",

IAM policy examples for activity streams 1730

Amazon Relational Database Service User Guide

 "Action":"rds:StartActivityStream",
 "Resource":"*"
 }
]
}

Example Policy to deny stopping database activity streams

The following IAM policy example prevents a user or role from stopping activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyStopActivityStreams",
 "Effect":"Deny",
 "Action":"rds:StopActivityStream",
 "Resource":"*"
 }
]
}

IAM policy examples for activity streams 1731

Amazon Relational Database Service User Guide

Monitoring threats with Amazon GuardDuty RDS Protection

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources
and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

GuardDuty RDS Protection analyzes and profiles login events for potential access threats to your
Amazon RDS databases. When you turn on RDS Protection, GuardDuty consumes RDS login events
from your RDS databases. RDS Protection monitors these events and profiles them for potential
insider threats or external actors.

For more information about enabling GuardDuty RDS Protection, see GuardDuty RDS Protection in
the Amazon GuardDuty User Guide.

When RDS Protection detects a potential threat, such as an unusual pattern in successful or
failed login attempts, GuardDuty generates a new finding with details about the potentially
compromised database. You can view the finding details in the finding summary section in the
Amazon GuardDuty console. The finding details vary based on the finding type. The primary
details, resource type and resource role, determine the kind of information available for any
finding. For more information about the commonly available details for findings and the finding
types, see Finding details and GuardDuty RDS Protection finding types respectively in the Amazon
GuardDuty User Guide.

You can turn the RDS Protection feature on or off for any AWS account in any AWS Region where
this feature is available. When RDS Protection isn't enabled, GuardDuty doesn't detect potentially
compromised RDS databases or provide details of the compromise.

An existing GuardDuty account can enable RDS Protection with a 30-day trial period. For a new
GuardDuty account, RDS Protection is already enabled and included in the 30-day free trial period.
For more information, see Estimating GuardDuty cost in the Amazon GuardDuty User Guide.

For information about the AWS Regions where GuardDuty doesn't yet support RDS Protection, see
Region-specific feature availability in the Amazon GuardDuty User Guide.

For information about the RDS database versions that GuardDuty RDS Protection supports, see
Supported Amazon Aurora, Amazon RDS, and Aurora Limitless databases in the Amazon GuardDuty
User Guide.

Monitoring threats with GuardDuty RDS Protection 1732

https://docs.aws.amazon.com/guardduty/latest/ug/rds-protection.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_findings-summary.html
https://docs.aws.amazon.com/guardduty/latest/ug/findings-rds-protection.html
https://docs.aws.amazon.com/guardduty/latest/ug/monitoring_costs.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_regions.html#gd-regional-feature-availability
https://docs.aws.amazon.com/guardduty/latest/ug/rds-protection.html#rds-pro-supported-db

Amazon Relational Database Service User Guide

Amazon RDS Custom

Amazon RDS Custom automates database administration tasks and operations. RDS Custom makes
it possible for you as a database administrator to access and customize your database environment
and operating system. With RDS Custom, you can customize to meet the requirements of legacy,
custom, and packaged applications.

For the latest webinars and blogs about RDS Custom, see Amazon RDS Custom resources.

Topics

• Addressing the challenge of database customization

• Management model and benefits for Amazon RDS Custom

• Amazon RDS Custom architecture

• Security in Amazon RDS Custom

• Working with RDS Custom for Oracle

• Working with RDS Custom for SQL Server

Addressing the challenge of database customization

Amazon RDS Custom brings the benefits of Amazon RDS to a market that can't easily move to a
fully managed service because of customizations that are required with third-party applications.
Amazon RDS Custom saves administrative time, is durable, and scales with your business.

If you need the entire database and operating system to be fully managed by AWS, we recommend
Amazon RDS. If you need administrative rights to the database and underlying operating system to
make dependent applications available, Amazon RDS Custom is the better choice. If you want full
management responsibility and simply need a managed compute service, the best option is self-
managing your commercial databases on Amazon EC2.

To deliver a managed service experience, Amazon RDS doesn't let you access the underlying host.
Amazon RDS also restricts access to some procedures and objects that require high-level privileges.
However, for some applications, you might need to perform operations as a privileged operating
system (OS) user.

For example, you might need to do the following:

• Install custom database and OS patches and packages.

Database customization challenge 1733

https://aws.amazon.com/rds/custom/resources/

Amazon Relational Database Service User Guide

• Configure specific database settings.

• Configure file systems to share files directly with their applications.

Previously, if you needed to customize your application, you had to deploy your database on-
premises or on Amazon EC2. In this case, you bear most or all of the responsibility for database
management, as summarized in the following table.

Feature On-premises
responsibility

Amazon EC2
responsibility

Amazon RDS
responsibility

Application optimizat
ion

Customer Customer Customer

Scaling Customer Customer AWS

High availability Customer Customer AWS

Database backups Customer Customer AWS

Database software
patching

Customer Customer AWS

Database software
install

Customer Customer AWS

OS patching Customer Customer AWS

OS installation Customer Customer AWS

Server maintenance Customer AWS AWS

Hardware lifecycle Customer AWS AWS

Power, network, and
cooling

Customer AWS AWS

When you manage database software yourself, you gain more control, but you're also more
prone to user errors. For example, when you make changes manually, you might accidentally

Database customization challenge 1734

Amazon Relational Database Service User Guide

cause application downtime. You might spend hours checking every change to identify and fix an
issue. Ideally, you want a managed database service that automates common DBA tasks, but also
supports privileged access to the database and underlying operating system.

Management model and benefits for Amazon RDS Custom

Amazon RDS Custom is a managed database service for legacy, custom, and packaged applications
that require access to the underlying operating system and database environment. RDS Custom
automates setup, operation, and scaling of databases in the AWS Cloud while granting you access
to the database and underlying operating system. With this access, you can configure settings,
install patches, and enable native features to meet the dependent application's requirements. With
RDS Custom, you can run your database workload using the AWS Management Console or the AWS
CLI.

RDS Custom supports only the Oracle Database and Microsoft SQL Server DB engines.

Topics

• Shared responsibility model in RDS Custom

• Support perimeter and unsupported configurations in RDS Custom

• Key benefits of RDS Custom

Shared responsibility model in RDS Custom

With RDS Custom, you use the managed features of Amazon RDS, but you manage the host
and customize the OS as you do in Amazon EC2. You take on additional database management
responsibilities beyond what you do in Amazon RDS. The result is that you have more control over
database and DB instance management than you do in Amazon RDS, while still benefiting from
RDS automation.

Shared responsibility means the following:

1. You own part of the process when using an RDS Custom feature.

For example, in RDS Custom for Oracle, you control which Oracle database patches to use and
when to apply them to your DB instances.

2. You are responsible for making sure that any customizations to RDS Custom features work
correctly.

RDS Custom management model and benefits 1735

Amazon Relational Database Service User Guide

To help protect against invalid customization, RDS Custom has automation software that runs
outside of your DB instance. If your underlying Amazon EC2 instance becomes impaired, RDS
Custom attempts to resolve these problems automatically by either rebooting or replacing
the EC2 instance. The only user-visible change is a new IP address. For more information, see
Amazon RDS Custom host replacement.

The following table details the shared responsibility model for different features of RDS Custom.

Feature Amazon EC2
responsibility

Amazon RDS
responsibility

RDS Custom for
Oracle responsib
ility

RDS Custom
for SQL Server
responsibility

Application
optimization

Customer Customer Customer Customer

Scaling Customer AWS Shared Shared

High availability Customer AWS Customer AWS

Database
backups

Customer AWS Shared AWS

Database
software
patching

Customer AWS Shared AWS for RPEV,
Customer for
CEV1

Database
software install

Customer AWS Shared AWS for RPEV,
Customer for
CEV1

OS patching Customer AWS Customer AWS for RPEV,
Customer for
CEV1

OS installation Customer AWS Shared AWS

Server
maintenance

AWS AWS AWS AWS

Shared responsibility model in RDS Custom 1736

Amazon Relational Database Service User Guide

Feature Amazon EC2
responsibility

Amazon RDS
responsibility

RDS Custom for
Oracle responsib
ility

RDS Custom
for SQL Server
responsibility

Hardware
lifecycle

AWS AWS AWS AWS

Power, network,
and cooling

AWS AWS AWS AWS

1 A custom engine version (CEV) is a binary volume snapshot of a database version and Amazon
Machine Image (AMI). An RDS provided engine version (RPEV) is the default Amazon Machine
Image (AMI) and Microsoft SQL Server installation.

You can create an RDS Custom DB instance using Microsoft SQL Server. In this case:

• You can choose from two licensing models: License Included (LI) and Bring Your Own Media
(BYOM).

• With LI, you don't need to purchase SQL Server licenses separately. AWS holds the license for the
SQL Server database software.

• With BYOM, you provide and install your own Microsoft SQL Server binaries and licensing.

You can create an RDS Custom DB instance using Oracle Database. In this case, you do the
following:

• Manage your own media.

When using RDS Custom, you upload your own database installation files and patches. You
create a custom engine version (CEV) from these files. Then you can create an RDS Custom DB
instance by using this CEV.

• Manage your own licenses.

You bring your own Oracle Database licenses and manage licenses by yourself.

Shared responsibility model in RDS Custom 1737

Amazon Relational Database Service User Guide

Support perimeter and unsupported configurations in RDS Custom

RDS Custom provides a monitoring capability called the support perimeter. This feature ensures
that your host and database environment are configured correctly. If you make a change that
causes your DB instance to go outside the support perimeter, RDS Custom changes the instance
status to unsupported-configuration until you manually fix the configuration problems. For
more information, see RDS Custom support perimeter.

Key benefits of RDS Custom

With RDS Custom, you can do the following:

• Automate many of the same administrative tasks as Amazon RDS, including the following:

• Lifecycle management of databases

• Automated backups and point-in-time recovery (PITR)

• Monitoring the health of RDS Custom DB instances and observing changes to the
infrastructure, operating system, and database processes.

• Notification or taking action to fix issues depending on disruption to the DB instance

• Install third-party applications.

You can install software to run custom applications and agents. Because you have privileged
access to the host, you can modify file systems to support legacy applications.

• Install custom patches.

You can apply custom database patches or modify OS packages on your RDS Custom DB
instances.

• Stage an on-premises database before moving it to a fully managed service.

If you manage your own on-premises database, you can stage the database to RDS Custom as-
is. After you familiarize yourself with the cloud environment, you can migrate your database to a
fully managed Amazon RDS DB instance.

• Create your own automation.

You can create, schedule, and run custom automation scripts for reporting, management, or
diagnostic tools.

Support perimeter and unsupported configurations in RDS Custom 1738

Amazon Relational Database Service User Guide

Amazon RDS Custom architecture

Amazon RDS Custom architecture is based on Amazon RDS, with important differences. The
following diagram shows the key components of the RDS Custom architecture.

Topics

• VPC

• RDS Custom automation and monitoring

• Amazon S3

• AWS CloudTrail

VPC

As in Amazon RDS, your RDS Custom DB instance resides in a virtual private cloud (VPC).

RDS Custom architecture 1739

Amazon Relational Database Service User Guide

Your RDS Custom DB instance consists of the following main components:

• Amazon EC2 instance

• Instance endpoint

• Operating system installed on the Amazon EC2 instance

• Amazon EBS storage, which contains any additional file systems

RDS Custom automation and monitoring

RDS Custom has automation software that runs outside of the DB instance. This software
communicates with agents on the DB instance and with other components within the overall RDS
Custom environment.

The RDS Custom monitoring and recovery features offer similar functionality to Amazon RDS.
By default, RDS Custom is in full automation mode. The automation software has the following
primary responsibilities:

• Collect metrics and send notifications

• Perform automatic instance recovery

An important responsibility of RDS Custom automation is responding to problems with your
Amazon EC2 instance. For various reasons, the host might become impaired or unreachable. RDS
Custom resolves these problems by either rebooting or replacing the Amazon EC2 instance.

Topics

RDS Custom automation and monitoring 1740

Amazon Relational Database Service User Guide

• Amazon RDS Custom host replacement

• RDS Custom support perimeter

Amazon RDS Custom host replacement

If the Amazon EC2 host becomes impaired, RDS Custom attempts to reboot it. If this effort fails,
RDS Custom uses the same stop and start feature included in Amazon EC2. The only customer-
visible change when a host is replaced is a new public IP address.

Topics

• Stopping and starting the host

• Effects of host replacement

• Best practices for Amazon EC2 hosts

Stopping and starting the host

RDS Custom automatically takes the following steps, with no user intervention required:

1. Stops the Amazon EC2 host.

The EC2 instance performs a normal shutdown and stops running. Any Amazon EBS volumes
remain attached to the instance, and their data persists. Any data stored in the instance store
volumes (not supported on RDS Custom) or RAM of the host computer is gone.

For more information, see Stop and start your instance in the Amazon EC2 User Guide.

2. Starts the Amazon EC2 host.

The EC2 instance migrates to a new underlying host hardware. In some cases, the RDS Custom
DB instance remains on the original host.

Effects of host replacement

In RDS Custom, you have full control over the root device volume and Amazon EBS storage
volumes. The root volume can contain important data and configurations that you don't want to
lose.

RDS Custom automation and monitoring 1741

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html

Amazon Relational Database Service User Guide

RDS Custom for Oracle retains all database and customer data after the operation, including root
volume data. No user intervention is required. On RDS Custom for SQL Server, database data is
retained, but any data on the C: drive, including operating system and customer data, is lost.

After the replacement process, the Amazon EC2 host has a new public IP address. The host retains
the following:

• Instance ID

• Private IP addresses

• Elastic IP addresses

• Instance metadata

• Data storage volume data

• Root volume data (on RDS Custom for Oracle)

Best practices for Amazon EC2 hosts

The Amazon EC2 host replacement feature covers the majority of Amazon EC2 impairment
scenarios. We recommend that you adhere to the following best practices:

• Before you change your configuration or the operating system, back up your data. If the root
volume or operating system becomes corrupt, host replacement can't repair it. Your only options
are restoring from a DB snapshot or point-in-time recovery.

• Don't manually stop or terminate the physical Amazon EC2 host. Both actions result in the
instance being put outside the RDS Custom support perimeter.

• (RDS Custom for SQL Server) If you attach additional volumes to the Amazon EC2 host, configure
them to remount upon restart. If the host is impaired, RDS Custom might stop and start the host
automatically.

RDS Custom support perimeter

RDS Custom provides additional monitoring capability called the support perimeter. This additional
monitoring ensures that your RDS Custom DB instance uses a supported AWS infrastructure,
operating system, and database.

The support perimeter checks that your DB instance conforms to the requirements listed in Fixing
unsupported configurations in RDS Custom for Oracle and Fixing unsupported configurations in

RDS Custom automation and monitoring 1742

Amazon Relational Database Service User Guide

RDS Custom for SQL Server. If any of these requirements aren't met, RDS Custom considers your
DB instance to be outside of the support perimeter.

Topics

• Unsupported configurations in RDS Custom

• Troubleshooting unsupported configurations

Unsupported configurations in RDS Custom

When your DB instance is outside the support perimeter, RDS Custom changes the DB instance
status to unsupported-configuration and sends event notifications. After you fix the
configuration problems, RDS Custom changes the DB instance status back to available.

While your DB instance is in the unsupported-configuration state, the following is true:

• Your database is reachable. An exception is when the DB instance is in the unsupported-
configuration because the database is shutting down unexpectedly.

• You can't modify your DB instance.

• You can't take DB snapshots.

• Automatic backups aren't created.

• For RDS Custom for SQL Server DB instances only, RDS Custom doesn't replace the underlying
Amazon EC2 instance if it becomes impaired. For more information about host replacement, see
Amazon RDS Custom host replacement.

• You can delete your DB instance, but most other RDS Custom API operations aren't available.

• RDS Custom continues to support point-in-time recovery (PITR) by archiving redo log files and
uploading them to Amazon S3. PITR in an unsupported-configuration state differs in the
following ways:

• PITR can take a long time to completely restore to a new RDS Custom DB instance. This
situation occurs because you can't take either automated or manual snapshots while the
instance is in the unsupported-configuration state.

• PITR has to replay more redo logs starting from the most recent snapshot taken before the
instance entered the unsupported-configuration state.

• In some cases, the DB instance is in the unsupported-configuration state because you
made a change that prevented the uploading of archived redo log files. Examples include

RDS Custom automation and monitoring 1743

Amazon Relational Database Service User Guide

stopping the EC2 instance, stopping the RDS Custom agent, and detaching EBS volumes. In
such cases, PITR can't restore the DB instance to the latest restorable time.

Troubleshooting unsupported configurations

RDS Custom provides troubleshooting guidance for the unsupported-configuration state.
Although some guidance applies to both RDS Custom for Oracle and RDS Custom for SQL Server,
other guidance depends on your DB engine. For engine-specific troubleshooting information, see
the following topics:

• Fixing unsupported configurations in RDS Custom for Oracle

• Fixing unsupported configurations in RDS Custom for SQL Server

Amazon S3

If you use RDS Custom for Oracle, you upload installation media to a user-created Amazon S3
bucket. RDS Custom for Oracle uses the media in this bucket to create a custom engine version
(CEV). A CEV is a binary volume snapshot of a database version and Amazon Machine Image (AMI).
From the CEV, you can create an RDS Custom DB instance. For more information, see Working with
custom engine versions for Amazon RDS Custom for Oracle.

For both RDS Custom for Oracle and RDS Custom for SQL Server, RDS Custom automatically
creates an Amazon S3 bucket prefixed with the string do-not-delete-rds-custom-. RDS
Custom uses the do-not-delete-rds-custom- S3 bucket to store the following types of files:

• AWS CloudTrail logs for the trail created by RDS Custom

• Support perimeter artifacts (see RDS Custom support perimeter)

• Database redo log files (RDS Custom for Oracle only)

• Transaction logs (RDS Custom for SQL Server only)

• Custom engine version artifacts (RDS Custom for Oracle only)

RDS Custom creates the do-not-delete-rds-custom- S3 bucket when you create either of the
following resources:

• Your first CEV for RDS Custom for Oracle

• Your first DB instance for RDS Custom for SQL Server

Amazon S3 1744

Amazon Relational Database Service User Guide

RDS Custom creates one bucket for each combination of the following:

• AWS account ID

• Engine type (either RDS Custom for Oracle or RDS Custom for SQL Server)

• AWS Region

For example, if you create RDS Custom for Oracle CEVs in a single AWS Region, one do-not-
delete-rds-custom- bucket exists. If you create multiple RDS Custom for SQL Server instances,
and they reside in different AWS Regions, one do-not-delete-rds-custom- bucket exists in
each AWS Region. If you create one RDS Custom for Oracle instance and two RDS Custom for SQL
Server instances in a single AWS Region, two do-not-delete-rds-custom- buckets exist.

AWS CloudTrail

RDS Custom automatically creates an AWS CloudTrail trail whose name begins with do-not-
delete-rds-custom-. The RDS Custom support perimeter relies on the events from CloudTrail
to determine whether your actions affect RDS Custom automation. For more information, see
Troubleshooting unsupported configurations.

RDS Custom creates the trail when you create your first DB instance. RDS Custom creates one trail
for each combination of the following:

• AWS account ID

• Engine type (either RDS Custom for Oracle or RDS Custom for SQL Server)

• AWS Region

When you delete an RDS Custom DB instance, the CloudTrail for this instance isn't automatically
removed. In this case, your AWS account continues to be billed for the undeleted CloudTrail. RDS
Custom is not responsible for the deletion of this resource. To learn how to remove the CloudTrail
manually, see Deleting a trail in the AWS CloudTrail User Guide.

AWS CloudTrail 1745

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-delete-trails-console.html

Amazon Relational Database Service User Guide

Security in Amazon RDS Custom

Familiarize yourself with the security considerations for RDS Custom.

For more information about security for RDS Custom, see the following topics.

• Securing your Amazon S3 bucket against the confused deputy problem

• Rotating RDS Custom for Oracle credentials for compliance programs

How RDS Custom securely manages tasks on your behalf

RDS Custom uses the following tools and techniques to securely run operations on your behalf:

AWSServiceRoleForRDSCustom service-linked role

A service-linked role is predefined by the service and includes all permissions
that the service needs to call other AWS services on your behalf. For RDS
Custom, AWSServiceRoleForRDSCustom is a service-linked role that is defined
according to the principle of least privilege. RDS Custom uses the permissions in
AmazonRDSCustomServiceRolePolicy, which is the policy attached to this role, to
perform most provisioning and all off-host management tasks. For more information, see
AmazonRDSCustomServiceRolePolicy.

When it performs tasks on the host, RDS Custom automation uses credentials from the service-
linked role to run commands using AWS Systems Manager. You can audit the command history
through the Systems Manager command history and AWS CloudTrail. Systems Manager
connects to your RDS Custom DB instance using your networking setup. For more information,
see Step 4: Configure IAM for RDS Custom for Oracle.

Temporary IAM credentials

When provisioning or deleting resources, RDS Custom sometimes uses temporary credentials
derived from the credentials of the calling IAM principal. These IAM credentials are restricted
by the IAM policies attached to that principal and expire after the operation is completed. To
learn about the permissions required for IAM principals who use RDS Custom, see Step 5: Grant
required permissions to your IAM user or role.

Amazon EC2 instance profile

An EC2 instance profile is a container for an IAM role that you can use to pass role information
to an EC2 instance. An EC2 instance underlies an RDS Custom DB instance. You provide an

RDS Custom security 1746

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSCustomServiceRolePolicy.html

Amazon Relational Database Service User Guide

instance profile when you create an RDS Custom DB instance. RDS Custom uses EC2 instance
profile credentials when it performs host-based management tasks such as backups. For more
information, see Create your IAM role and instance profile manually.

SSH key pair

When RDS Custom creates the EC2 instance that underlies a DB instance, it creates an SSH
key pair on your behalf. The key uses the naming prefix do-not-delete-rds-custom-ssh-
privatekey-db- or rds-custom!oracle-do-not-delete-db_resource_id-uuid-ssh-
privatekey. AWS Secrets Manager stores this SSH private key as a secret in your AWS account.
Amazon RDS doesn't store, access, or use these credentials. For more information, see Amazon
EC2 key pairs and Linux instances.

SSL certificates

RDS Custom DB instances don't support managed SSL certificates. If you want to deploy SSL,
you can self-manage SSL certificates in your own wallet and create an SSL listener to secure the
connections between the client database or for database replication. For more information, see
Configuring Transport Layer Security Authentication in the Oracle Database documentation.

Securing your Amazon S3 bucket against the confused deputy problem

When you create an Amazon RDS Custom for Oracle custom engine version (CEV) or an RDS
Custom for SQL Server DB instance, RDS Custom creates an Amazon S3 bucket. The S3 bucket
stores files such as CEV artifacts, redo (transaction) logs, configuration items for the support
perimeter, and AWS CloudTrail logs.

You can make these S3 buckets more secure by using the global condition context keys to prevent
the confused deputy problem. For more information, see Preventing cross-service confused deputy
problems.

The following RDS Custom for Oracle example shows the use of the aws:SourceArn and
aws:SourceAccount global condition context keys in an S3 bucket policy. For RDS Custom
for Oracle, make sure to include the Amazon Resource Names (ARNs) for the CEVs and the DB
instances. For RDS Custom for SQL Server, make sure to include the ARN for the DB instances.

...
{

SSL certificates 1747

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-secure-sockets-layer-authentication.html#GUID-6AD89576-526F-4D6B-A539-ADF4B840819F

Amazon Relational Database Service User Guide

 "Sid": "AWSRDSCustomForOracleInstancesObjectLevelAccess",
 "Effect": "Allow",
 "Principal": {
 "Service": "custom.rds.amazonaws.com"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion",
 "s3:GetObjectRetention",
 "s3:BypassGovernanceRetention"
],
 "Resource": "arn:aws:s3:::do-not-delete-rds-custom-123456789012-us-east-2-c8a6f7/
RDSCustomForOracle/Instances/*",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:rds:us-east-2:123456789012:db:*",
 "arn:aws:rds:us-east-2:123456789012:cev:*/*"
]
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
},
...

Rotating RDS Custom for Oracle credentials for compliance programs

Some compliance programs require database user credentials to change periodically, for example,
every 90 days. RDS Custom for Oracle automatically rotates credentials for some predefined
database users.

Topics

• Automatic rotation of credentials for predefined users

• Guidelines for rotating user credentials

• Rotating user credentials manually

Rotating credentials for RDS Custom for Oracle 1748

Amazon Relational Database Service User Guide

Automatic rotation of credentials for predefined users

If your RDS Custom for Oracle DB instance is hosted in Amazon RDS, credentials for the following
predefined Oracle users rotate every 30 days automatically. Credentials for the preceding users
reside in AWS Secrets Manager.

Database user Created
by

Supported engine versions Notes

SYS Oracle custom-oracle-ee

custom-oracle-ee-cdb

custom-oracle-se2

custom-oracle-se2-cdb

SYSTEM Oracle custom-oracle-ee

custom-oracle-ee-cdb

custom-oracle-se2

custom-oracle-se2-cdb

RDSADMIN RDS custom-oracle-ee

custom-oracle-se2

C##RDSADM
IN

RDS custom-oracle-ee-cdb

custom-oracle-se2-cdb

User names with a C## prefix
exist only in CDBs. For more
information about CDBs, see
Overview of Amazon RDS
Custom for Oracle architecture.

RDS_DATAG
UARD

RDS custom-oracle-ee This user exists only in read
replicas, source databases for
read replicas, and databases
that you have physically

Rotating credentials for RDS Custom for Oracle 1749

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview

Amazon Relational Database Service User Guide

Database user Created
by

Supported engine versions Notes

migrated into RDS Custom
using Oracle Data Guard.

C##RDS_DA
TAGUARD

RDS custom-oracle-ee-cdb This user exists only in read
replicas, source databases for
read replicas, and databases
 that you have physically
migrated into RDS Custom
using Oracle Data Guard.
User names with a C## prefix
exist only in CDBs. For more
information about CDBs, see
Overview of Amazon RDS
Custom for Oracle architecture.

An exception to the automatic credential rotation is an RDS Custom for Oracle DB instance that
you have manually configured as a standby database. RDS only rotates credentials for read
replicas that you have created using the create-db-instance-read-replica CLI command or
CreateDBInstanceReadReplica API.

Guidelines for rotating user credentials

To make sure that your credentials rotate according to your compliance program, note the
following guidelines:

• If your DB instance rotates credentials automatically, don't manually change or delete a secret,
password file, or password for users listed in Predefined Oracle users. Otherwise, RDS Custom
might place your DB instance outside of the support perimeter, which suspends automatic
rotation.

• The RDS master user is not predefined, so you are responsible for either changing the password
manually or setting up automatic rotation in Secrets Manager. For more information, see Rotate
AWS Secrets Manager secrets.

Rotating credentials for RDS Custom for Oracle 1750

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

Amazon Relational Database Service User Guide

Rotating user credentials manually

For the following categories of databases, RDS doesn't automatically rotate the credentials for the
users listed in Predefined Oracle users:

• A database that you configured manually to function as a standby database.

• An on-premises database.

• A DB instance that is outside of the support perimeter or in a state in which the RDS Custom
automation can't run. In this case, RDS Custom also doesn't rotate keys.

If your database is in any of the preceding categories, you must rotate your user credentials
manually.

To rotate user credentials manually for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In Databases, make sure that RDS isn't currently backing up your DB instance or performing
operations such configuring high availability.

3. In the database details page, choose Configuration and note the Resource ID for the DB
instance. Or you can use the AWS CLI command describe-db-instances.

4. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

5. In the search box, enter the resource ID of your database and search for a secret using either of
the following naming conventions:

do-not-delete-rds-custom-resource_id-uuid
rds-custom!oracle-do-not-delete-resource_id-uuid

This secret stores the password for RDSADMIN, SYS, and SYSTEM. The following sample keys
are for the DB instance with the resource ID db-ABCDEFG12HIJKLNMNOPQRS3TUVWX and
UUID 123456:

do-not-delete-rds-custom-db-ABCDEFG12HIJKLNMNOPQRS3TUVWX-123456
rds-custom!oracle-do-not-delete-db-ABCDEFG12HIJKLNMNOPQRS3TUVWX-123456

Rotating credentials for RDS Custom for Oracle 1751

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/secretsmanager/

Amazon Relational Database Service User Guide

Important

If your DB instance is a read replica and uses the custom-oracle-ee-cdb engine,
two secrets exist with the suffix db-resource_id-uuid, one for the master user and
the other for RDSADMIN, SYS, and SYSTEM. To find the correct secret, run the following
command on the host:

cat /opt/aws/rdscustomagent/config/database_metadata.json | python3 -c
 "import sys,json; print(json.load(sys.stdin)['dbMonitoringUserPassword'])"

The dbMonitoringUserPassword attribute indicates the secret for RDSADMIN, SYS,
and SYSTEM.

6. If your DB instance exists in an Oracle Data Guard configuration, search for a secret using
either of the following naming conventions:

do-not-delete-rds-custom-resource_id-uuid-dg
rds-custom!oracle-do-not-delete-resource_id-uuid-dg

This secret stores the password for RDS_DATAGUARD. The following sample keys are for the DB
instance with the DB resource ID db-ABCDEFG12HIJKLNMNOPQRS3TUVWX and UUID 789012:

do-not-delete-rds-custom-db-ABCDEFG12HIJKLNMNOPQRS3TUVWX-789012-dg
rds-custom!oracle-do-not-delete-db-ABCDEFG12HIJKLNMNOPQRS3TUVWX-789012-dg

7. For all database users listed in Predefined Oracle users, update the passwords by following the
instructions in Modify an AWS Secrets Manager secret.

8. If your database is a standalone database or a source database in an Oracle Data Guard
configuration:

a. Start your Oracle SQL client and log in as SYS.

b. Run a SQL statement in the following form for each database user listed in Predefined
Oracle users:

ALTER USER user-name IDENTIFIED BY pwd-from-secrets-manager ACCOUNT UNLOCK;

Rotating credentials for RDS Custom for Oracle 1752

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_update-secret.html

Amazon Relational Database Service User Guide

For example, if the new password for RDSADMIN stored in Secrets Manager is pwd-123,
run the following statement:

ALTER USER RDSADMIN IDENTIFIED BY pwd-123 ACCOUNT UNLOCK;

9. If your DB instance runs Oracle Database 12c Release 1 (12.1) and is managed by Oracle Data
Guard, manually copy the password file (orapw) from the primary DB instance to each standby
DB instance.

If your DB instance is hosted in Amazon RDS, the password file location is /rdsdbdata/
config/orapw. For databases that aren't hosted in Amazon RDS, the default location
is $ORACLE_HOME/dbs/orapw$ORACLE_SID on Linux and UNIX and %ORACLE_HOME%
\database\PWD%ORACLE_SID%.ora on Windows.

Rotating credentials for RDS Custom for Oracle 1753

Amazon Relational Database Service User Guide

Working with RDS Custom for Oracle

Following, you can find instructions for creating, managing, and maintaining your RDS Custom for
Oracle DB instances.

Topics

• RDS Custom for Oracle workflow

• Database architecture for Amazon RDS Custom for Oracle

• Feature availability and support for RDS Custom for Oracle

• RDS Custom for Oracle requirements and limitations

• Setting up your environment for Amazon RDS Custom for Oracle

• Working with custom engine versions for Amazon RDS Custom for Oracle

• Configuring a DB instance for Amazon RDS Custom for Oracle

• Managing an Amazon RDS Custom for Oracle DB instance

• Working with Oracle replicas for RDS Custom for Oracle

• Backing up and restoring an Amazon RDS Custom for Oracle DB instance

• Working with option groups in RDS Custom for Oracle

• Migrating an on-premises database to RDS Custom for Oracle

• Upgrading a DB instance for Amazon RDS Custom for Oracle

• Troubleshooting DB issues for Amazon RDS Custom for Oracle

• Known issues for Amazon RDS Custom for Oracle

RDS Custom for Oracle workflow

The following diagram shows the typical workflow for RDS Custom for Oracle.

Working with RDS Custom for Oracle 1754

Amazon Relational Database Service User Guide

The steps are as follows:

1. Upload your database software to your Amazon S3 bucket.

For more information, see Step 3: Upload your installation files to Amazon S3.

2. Create an RDS Custom for Oracle custom engine version (CEV) from your media.

Choose either the CDB architecture or the traditional non-CDB architecture. For more
information, see Creating a CEV.

3. Create an RDS Custom for Oracle DB instance from a CEV.

For more information, see Creating an RDS Custom for Oracle DB instance.

4. Connect your application to the DB instance endpoint.

For more information, see Connecting to your RDS Custom DB instance using SSH and
Connecting to your RDS Custom DB instance using Session Manager.

5. (Optional) Access the host to customize your software.

6. Monitor notifications and messages generated by RDS Custom automation.

RDS Custom for Oracle workflow 1755

Amazon Relational Database Service User Guide

Database installation files

Your responsibility for media is a key difference between Amazon RDS and RDS Custom. Amazon
RDS, which is a fully managed service, supplies the Amazon Machine Image (AMI) and database
software. The Amazon RDS database software is preinstalled, so you need only choose a database
engine and version, and create your database.

For RDS Custom, you supply your own media. When you create a custom engine version, RDS
Custom installs the media that you provide. RDS Custom media contains your database installation
files and patches. This service model is called Bring Your Own Media (BYOM).

Custom engine versions for RDS Custom for Oracle

An RDS Custom for Oracle custom engine version (CEV) is a binary volume snapshot of a database
version and AMI. By default, RDS Custom for Oracle uses the most recent AMI that Amazon EC2
makes available. You can also choose to reuse an existing AMI.

CEV manifest

After you download Oracle database installation files from Oracle, you upload them to an Amazon
S3 bucket. When you create your CEV, you specify the file names in a JSON document called a CEV
manifest. RDS Custom for Oracle uses the specified files and the AMI to create your CEV.

RDS Custom for Oracle provides JSON manifest templates with our recommended .zip files for
each supported Oracle Database release. For example, the following template is for the 19.17.0.0.0
RU.

{
 "mediaImportTemplateVersion": "2020-08-14",
 "databaseInstallationFileNames": [
 "V982063-01.zip"
],
 "opatchFileNames": [
 "p6880880_190000_Linux-x86-64.zip"
],
 "psuRuPatchFileNames": [
 "p34419443_190000_Linux-x86-64.zip",
 "p34411846_190000_Linux-x86-64.zip"
],
 "otherPatchFileNames": [
 "p28852325_190000_Linux-x86-64.zip",

RDS Custom for Oracle workflow 1756

Amazon Relational Database Service User Guide

 "p29997937_190000_Linux-x86-64.zip",
 "p31335037_190000_Linux-x86-64.zip",
 "p32327201_190000_Linux-x86-64.zip",
 "p33613829_190000_Linux-x86-64.zip",
 "p34006614_190000_Linux-x86-64.zip",
 "p34533061_190000_Linux-x86-64.zip",
 "p34533150_190000_Generic.zip",
 "p28730253_190000_Linux-x86-64.zip",
 "p29213893_1917000DBRU_Generic.zip",
 "p33125873_1917000DBRU_Linux-x86-64.zip",
 "p34446152_1917000DBRU_Linux-x86-64.zip"
]
}

You can also specify installation parameters in the JSON manifest. For example, you can set
nondefault values for the Oracle base, Oracle home, and the ID and name of the UNIX/Linux user
and group. For more information, see JSON fields in the CEV manifest.

CEV naming format

Name your RDS Custom for Oracle CEV using a customer-specified string. The name format is the
following, depending on your Oracle Database release:

• 19.customized_string

• 18.customized_string

• 12.2.customized_string

• 12.1.customized_string

You can use 1–50 alphanumeric characters, underscores, dashes, and periods. For example, you
might name your CEV 19.my_cev1.

Oracle multitenant architecture in RDS Custom for Oracle

The Oracle multitenant architecture enables an Oracle database to function as a container
database (CDB). A CDB includes zero, one, or many customer-created pluggable databases
(PDBs). A PDB is a portable collection of schemas and objects that appears to an application as a
traditional non-CDB. Starting in Oracle Database 21c, all Oracle databases are CDBs.

When you create an RDS Custom for Oracle CEV, you specify the either the CDB or non-CDB
architecture. You can create an RDS Custom for Oracle CDB only when the CEV that you used to

RDS Custom for Oracle workflow 1757

Amazon Relational Database Service User Guide

create it uses the Oracle multitenant architecture. For more information, see Working with custom
engine versions for Amazon RDS Custom for Oracle.

Creating a DB instance for RDS Custom for Oracle

After you create your CEV, it's available for use. You can create multiple CEVs, and you can create
multiple RDS Custom for Oracle DB instances from any CEV. You can also change the status of a
CEV to make it available or inactive.

You can either create your RDS Custom for Oracle DB instance with the Oracle multitenant
architecture (custom-oracle-ee-cdb or custom-oracle-se2-cdb engine type) or with the
traditional non-CDB architecture (custom-oracle-ee or custom-oracle-se2 engine type).
When you create a container database (CDB), it contains one pluggable database (PDB) and one
PDB seed. You can create additional PDBs manually using Oracle SQL.

To create your RDS Custom for Oracle DB instance, use the create-db-instance command. In
this command, specify which CEV to use. The procedure is similar to creating an Amazon RDS DB
instance. However, some parameters are different. For more information, see Configuring a DB
instance for Amazon RDS Custom for Oracle.

Database connection

Like an Amazon RDS DB instance, an RDS Custom DB instance resides in a virtual private cloud
(VPC). Your application connects to the Oracle database using an Oracle listener.

If your database is a CDB, you can use the listener L_RDSCDB_001 to connect to the CDB root and
to a PDB. If you plug a non-CDB into a CDB, make sure to set USE_SID_AS_SERVICE_LISTENER
= ON so that migrated applications keep the same settings.

When you connect to a non-CDB, the master user is the user for the non-CDB. When you connect to
a CDB, the master user is the user for the PDB. To connect to the CDB root, log in to the host, start
a SQL client, and create an administrative user with SQL commands.

RDS Custom customization

You can access the RDS Custom host to install or customize software. To avoid conflicts between
your changes and the RDS Custom automation, you can pause the automation for a specified
period. During this period, RDS Custom doesn't perform monitoring or instance recovery. At the
end of the period, RDS Custom resumes full automation. For more information, see Pausing and
resuming your RDS Custom DB instance.

RDS Custom for Oracle workflow 1758

Amazon Relational Database Service User Guide

Database architecture for Amazon RDS Custom for Oracle

RDS Custom for Oracle supports both the Oracle multitenant and non-multitenant architecture.

Topics

• Supported Oracle database architectures

• Supported engine types

• Supported features in the Oracle multitenant architecture

Supported Oracle database architectures

The Oracle multitenant architecture, also called the CDB architecture, allows an Oracle database
to function as a container database (CDB). A CDB includes pluggable databases (PDBs). A PDB is a
collection of schemas and objects that appears to an application as a traditional Oracle database.
For more information, see Introduction to the Multitenant Architecture in the Oracle Multitenant
Administrator’s Guide.

The CDB and non-CDB architectures are mutually exclusive. If an Oracle database isn't a CDB, it's a
non-CDB and so can't contain PDBs. In RDS Custom for Oracle, only Oracle Database 19c supports
the CDB architecture. Thus, if you create DB instances using previous Oracle database releases, you
can create only non-CDBs. For more information, see Multitenant architecture considerations.

Supported engine types

When you create an Amazon RDS Custom for Oracle CEV or DB instance, choose either a CDB
engine type or a non-CDB engine type:

• custom-oracle-ee-cdb and custom-oracle-se2-cdb

These engine types specify the Oracle multitenant architecture. This option is available only
for Oracle Database 19c. When you create an RDS for Oracle DB instance using the multitenant
architecture, your CDB includes the following containers:

• CDB root (CDB$ROOT)

• PDB seed (PDB$SEED)

• Initial PDB

You can create more PDBs using the Oracle SQL command CREATE PLUGGABLE DATABASE. You
can't use RDS APIs to create or delete PDBs.

Database architecture for Amazon RDS Custom for Oracle 1759

https://docs.oracle.com/en/database/oracle/oracle-database/19/multi/introduction-to-the-multitenant-architecture.html

Amazon Relational Database Service User Guide

• custom-oracle-ee and custom-oracle-se2

These engine types specify the traditional non-CDB architecture. A non-CDB can't contain
pluggable databases (PDBs).

For more information, see Multitenant architecture considerations.

Supported features in the Oracle multitenant architecture

An RDS Custom for Oracle CDB instance supports the following features:

• Backups

• Restoring and point-time-restore (PITR) from backups

• Read replicas

• Minor version upgrades

Database architecture for Amazon RDS Custom for Oracle 1760

Amazon Relational Database Service User Guide

Feature availability and support for RDS Custom for Oracle

In this topic, you can find a summary of the RDS Custom for Oracle feature availability and support
for quick reference.

Topics

• AWS Region and database version support for RDS Custom for Oracle

• Database version support for RDS Custom for Oracle

• Edition and licensing support for RDS Custom for Oracle

• DB instance class support for RDS Custom for Oracle

• Option group support for RDS Custom for Oracle

AWS Region and database version support for RDS Custom for Oracle

Feature availability and support vary across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability of RDS Custom for Oracle,
see Supported Regions and DB engines for RDS Custom.

Database version support for RDS Custom for Oracle

RDS Custom for Oracle supports the following Oracle database versions:

• Oracle Database 19c

• Oracle Database 18c

• Oracle Database 12c Release 2 (12.2)

• Oracle Database 12c Release 1 (12.1)

Edition and licensing support for RDS Custom for Oracle

RDS Custom for Oracle supports Enterprise Edition (EE) and Standard Edition 2 (SE2) on the BYOL
model.

Note the following limitations for Standard Edition 2:

• Oracle Data Guard isn't supported. Thus, you can't create Oracle read replicas.

Feature availability and support for RDS Custom for Oracle 1761

Amazon Relational Database Service User Guide

• You can only use DB instance classes that have 16 or fewer vCPUs (up to 4xlarge).

• A CDB instance on Standard Edition 2 supports a maximum of 3 tenant databases.

• You can't migrate data between Enterprise Edition and Standard Edition 2.

DB instance class support for RDS Custom for Oracle

RDS Custom for Oracle supports the following DB instance classes. If you create a DB instance on
Standard Edition 2, you can only use instance classes with 16 or fewer vCPUs (up to 4x large).

Type Size

db.r6i db.r6i.large | db.r6i.xlarge | db.r6i.2xlarge | db.r6i.4xlarge
| db.r6i.8xlarge | db.r6i.12xlarge | db.r6i.16xlarge | db.r6i.24
xlarge | db.r6i.32xlarge

db.r5b db.r5b.large | db.r5b.xlarge | db.r5b.2xlarge | db.r5b.4xlarge
| db.r5b.8xlarge | db.r5b.12xlarge | db.r5b.16xlarge | db.r5b.24
xlarge

db.r5 db.r5.large | db.r5.xlarge | db.r5.2xlarge | db.r5.4xlarge |
db.r5.8xlarge | db.r5.12xlarge | db.r5.16xlarge | db.r5.24xlarge

db.x2iedndb.x2iedn.xlarge | db.x2iedn.2xlarge | db.x2iedn.4xlarge |
db.x2iedn.8xlarge | db.x2iedn.16xlarge | db.x2iedn.24xlarge |
db.x2iedn.32xlarge

db.x2iezndb.x2iezn.2xlarge | db.x2iezn.4xlarge | db.x2iezn.6xlarge |
db.x2iezn.8xlarge | db.x2iezn.12xlarge

db.m6i db.m6i.large | db.m6i.xlarge | db.m6i.2xlarge | db.m6i.4xlarge
| db.m6i.8xlarge | db.m6i.12xlarge | db.m6i.16xlarge | db.m6i.24
xlarge | db.m6i.32xlarge

db.m5 db.m5.large | db.m5.xlarge | db.m5.2xlarge | db.m5.4xlarge |
db.m5.8xlarge | db.m5.12xlarge | db.m5.16xlarge | db.m5.24xlarge

db.t3 db.t3.medium | db.t3.large | db.t3.xlarge | db.t3.2xlarge

Feature availability and support for RDS Custom for Oracle 1762

Amazon Relational Database Service User Guide

Option group support for RDS Custom for Oracle

You can specify an option group when you create or modify an RDS Custom for Oracle DB instance.
For more information, see Working with option groups in RDS Custom for Oracle.

Feature availability and support for RDS Custom for Oracle 1763

Amazon Relational Database Service User Guide

RDS Custom for Oracle requirements and limitations

In this topic, you can find a summary of the Amazon RDS Custom for Oracle feature availability and
requirements for quick reference.

Topics

• General requirements for RDS Custom for Oracle

• General limitations for RDS Custom for Oracle

• CEV and AMI limitations for RDS Custom for Oracle

• Unsupported settings for create and modify workflows

• DB instance quotas for your AWS account

General requirements for RDS Custom for Oracle

Make sure to meet the following requirements for Amazon RDS Custom for Oracle:

• You have access to My Oracle Support and Oracle Software Delivery Cloud to download the
supported list of installation files and patches for RDS Custom for Oracle. If you use an unknown
patch, custom engine version (CEV) creation fails. In this case, contact the RDS Custom support
team and ask it to add the missing patch. For more information, see Step 2: Download your
database installation files and patches from Oracle Software Delivery Cloud.

• You have access to Amazon S3. You need this service for the following reasons:

• You upload your Oracle installation files to S3 buckets. You use the uploaded installation files
to create your RDS Custom CEV.

• RDS Custom for Oracle uses scripts downloaded from internally defined S3 buckets to perform
actions on your DB instances. These scripts are necessary for onboarding and RDS Custom
automation.

• RDS Custom for Oracle uploads certain files to S3 buckets located in your customer
account. These buckets use the following naming format: do-not-delete-rds-
custom-account_id-region-uuid. For example, you might have a bucket named do-not-
delete-rds-custom-123456789012-us-east-1-12a3b4.

For more information, see Step 3: Upload your installation files to Amazon S3 and Creating a
CEV.

• You use the DB instance classes listed in DB instance class support for RDS Custom for Oracle to
create your RDS Custom for Oracle DB instances.

RDS Custom for Oracle requirements and limitations 1764

https://support.oracle.com/portal/
https://edelivery.oracle.com/osdc/faces/Home.jspx

Amazon Relational Database Service User Guide

• Your RDS Custom for Oracle DB instances run Oracle Linux 8 (recommended) or Oracle Linux 7.
If you require Oracle Linux 7, contact Support. For more information, see Considerations for RDS
Custom for Oracle database upgrades.

• You specify the gp2, gp3, or io1 solid state drives for Amazon EBS storage. The maximum
storage size is 64 TiB.

• You have an AWS KMS key to create an RDS Custom for Oracle DB instance. For more
information, see Step 1: Create or reuse a symmetric encryption AWS KMS key.

• You have the AWS Identity and Access Management (IAM) role and instance profile required for
creating RDS Custom for Oracle DB instances. For more information, see Step 4: Configure IAM
for RDS Custom for Oracle.

• The AWS Identity and Access Management (IAM) user that creates a CEV or RDS Custom DB
instance has the required permissions for IAM, CloudTrail, and Amazon S3.

For more information, see Step 5: Grant required permissions to your IAM user or role.

• You supply your own virtual private cloud (VPC) and security group configuration. For more
information, see Step 6: Configure your VPC for RDS Custom for Oracle.

• You supply a networking configuration that RDS Custom for Oracle can use to access other AWS
services. For specific requirements, see Step 4: Configure IAM for RDS Custom for Oracle.

General limitations for RDS Custom for Oracle

The following limitations apply to RDS Custom for Oracle:

• You can't modify the DB instance identifier of an existing RDS Custom for Oracle DB instance.

• You can't specify the Oracle multitenant architecture for any release except Oracle Database 19c.

• You can't create multiple Oracle databases on a single RDS Custom for Oracle DB instance.

• You can’t stop your RDS Custom for Oracle DB instance or its underlying Amazon EC2 instance.
Billing for an RDS Custom for Oracle DB instance can't be stopped.

• You can't use automatic shared memory management because RDS Custom for Oracle
supports automatic memory management only. For more information, see Automatic Memory
Management in the Oracle Database Administrator’s Guide.

• Make sure not to change the DB_UNIQUE_NAME for the primary DB instance. Changing the name
causes any restore operation to become stuck.

• You can't make more than 20 snapshot copies at the same time in the same Region.

RDS Custom for Oracle requirements and limitations 1765

https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/managing-memory.html#GUID-04EFED7D-D1F1-43C3-B78F-0FF9AFAC02B0
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/managing-memory.html#GUID-04EFED7D-D1F1-43C3-B78F-0FF9AFAC02B0

Amazon Relational Database Service User Guide

• You can't use the describe-reserved-db-instances API for RDS Custom for Oracle DB
instances.

For limitations specific to modifying an RDS Custom for Oracle DB instance, see Modifying your
RDS Custom for Oracle DB instance. For replication limitations, see General limitations for RDS
Custom for Oracle replication.

CEV and AMI limitations for RDS Custom for Oracle

The following limitations apply to RDS Custom for Oracle CEVs and AMIs:

• You can't provide your own AMI for use in an RDS Custom for Oracle CEV. You can specify either
the default AMI, which uses Oracle Linux 8, or an AMI that has been previously used by an RDS
Custom for Oracle CEV.

Note

RDS Custom for Oracle releases a new default AMI when common vulnerabilities and
exposures are discovered. No fixed schedule is available or guaranteed. RDS Custom for
Oracle tends to publish a new default AMI every 30 days.

• You can't modify a CEV to use a different AMI.

• You can't create a CDB instance from a CEV that uses the custom-oracle-ee or custom-
oracle-se2 engine types. The CEV must use custom-oracle-ee-cdb or custom-oracle-
se2-cdb.

• RDS Custom for Oracle doesn't currently allow you to upgrade the OS of your RDS Custom for
Oracle DB instance with RDS API calls. As a workaround, you can update your OS manually with
the following command: sudo yum update --security.

Unsupported settings for create and modify workflows

When you create or modify an RDS Custom for Oracle DB instance, you can't do the following:

• Change the number of CPU cores and threads per core on the DB instance class.

• Turn on storage autoscaling.

• Create a Multi-AZ deployment.

RDS Custom for Oracle requirements and limitations 1766

Amazon Relational Database Service User Guide

Note

For an alternative HA solution, see the AWS blog article Build high availability for
Amazon RDS Custom for Oracle using read replicas.

• Set backup retention to 0.

• Configure Kerberos authentication.

• Specify your own DB parameter group or option group.

• Turn on Performance Insights.

• Turn on automatic minor version upgrade.

DB instance quotas for your AWS account

Make sure that the combined number of RDS Custom and Amazon RDS DB instances doesn't
exceed your quota limit. For example, if your quota for Amazon RDS is 40 DB instances, you can
have 20 RDS Custom for Oracle DB instances and 20 Amazon RDS DB instances.

RDS Custom for Oracle requirements and limitations 1767

https://aws.amazon.com/blogs/database/build-high-availability-for-amazon-rds-custom-for-oracle-using-read-replicas/
https://aws.amazon.com/blogs/database/build-high-availability-for-amazon-rds-custom-for-oracle-using-read-replicas/

Amazon Relational Database Service User Guide

Setting up your environment for Amazon RDS Custom for Oracle

Before you create an Amazon RDS Custom for Oracle DB instance, perform the following tasks.

Topics

• Step 1: Create or reuse a symmetric encryption AWS KMS key

• Step 2: Download and install the AWS CLI

• Step 3: Extract the CloudFormation templates for RDS Custom for Oracle

• Step 4: Configure IAM for RDS Custom for Oracle

• Step 5: Grant required permissions to your IAM user or role

• Step 6: Configure your VPC for RDS Custom for Oracle

Step 1: Create or reuse a symmetric encryption AWS KMS key

Customer managed keys are AWS KMS keys in your AWS account that you create, own, and manage.
A customer managed symmetric encryption KMS key is required for RDS Custom. When you create
an RDS Custom for Oracle DB instance, you supply the KMS key identifier. For more information,
see Configuring a DB instance for Amazon RDS Custom for Oracle.

You have the following options:

• If you have an existing customer managed KMS key in your AWS account, you can use it with RDS
Custom. No further action is necessary.

• If you already created a customer managed symmetric encryption KMS key for a different RDS
Custom engine, you can reuse the same KMS key. No further action is necessary.

• If you don't have an existing customer managed symmetric encryption KMS key in your account,
create a KMS key by following the instructions in Creating keys in the AWS Key Management
Service Developer Guide.

• If you're creating a CEV or RDS Custom DB instance, and your KMS key is in a different AWS
account, make sure to use the AWS CLI. You can't use the AWS console with cross-account KMS
keys.

Important

RDS Custom doesn't support AWS managed KMS keys.

Setting up your RDS Custom for Oracle environment 1768

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Relational Database Service User Guide

Make sure that your symmetric encryption key grants access to the kms:Decrypt and
kms:GenerateDataKey operations to the AWS Identity and Access Management (IAM) role in
your IAM instance profile. If you have a new symmetric encryption key in your account, no changes
are required. Otherwise, make sure that your symmetric encryption key's policy grants access to
these operations.

For more information, see Step 4: Configure IAM for RDS Custom for Oracle.

For more information about configuring IAM for RDS Custom for Oracle, see Step 4: Configure IAM
for RDS Custom for Oracle.

Step 2: Download and install the AWS CLI

AWS provides you with a command-line interface to use RDS Custom features. You can use either
version 1 or version 2 of the AWS CLI.

For information about downloading and installing the AWS CLI, see Installing or updating the
latest version of the AWS CLI.

Skip this step if either of the following is true:

• You plan to access RDS Custom only from the AWS Management Console.

• You have already downloaded the AWS CLI for Amazon RDS or a different RDS Custom DB
engine.

Step 3: Extract the CloudFormation templates for RDS Custom for Oracle

To simplify setup, we strongly recommend that you use AWS CloudFormation templates to create
CloudFormation stacks. If you plan to configure IAM and your VPC manually, skip this step.

Topics

• Step 3a: Download the CloudFormation template files

• Step 3b: Extract custom-oracle-iam.json

• Step 3c: Extract custom-vpc.json

Step 3a: Download the CloudFormation template files

A CloudFormation template is a declaration of the AWS resources that make up a stack. The
template is stored as a JSON file.

Setting up your RDS Custom for Oracle environment 1769

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Relational Database Service User Guide

To download the CloudFormation template files

1. Open the context (right-click) menu for the link custom-oracle-iam.zip and choose Save Link
As.

2. Save the file to your computer.

3. Repeat the previous steps for the link custom-vpc.zip.

If you already configured your VPC for RDS Custom, skip this step.

Step 3b: Extract custom-oracle-iam.json

Open the custom-oracle-iam.zip file that you downloaded, and then extract the file custom-
oracle-iam.json. The beginning of the file looks like the following.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Parameters": {
 "EncryptionKey": {
 "Type": "String",
 "Default": "*",
 "Description": "KMS Key ARN for encryption of data managed by RDS Custom and by
 DB Instances."
 }
 },
 "Resources": {
 "RDSCustomInstanceServiceRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "RoleName": { "Fn::Sub": "AWSRDSCustomInstanceRole-${AWS::Region}" },
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 },...

Setting up your RDS Custom for Oracle environment 1770

samples/custom-oracle-iam.zip
samples/custom-vpc.zip

Amazon Relational Database Service User Guide

Step 3c: Extract custom-vpc.json

Note

If you already configured an existing VPC for RDS Custom for Oracle, skip this step. For
more information, see Configure your VPC manually for RDS Custom for Oracle.

Open the custom-vpc.zip file that you downloaded, and then extract the file custom-
vpc.json. The beginning of the file looks like the following.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Parameters": {
 "PrivateVpc": {
 "Type": "AWS::EC2::VPC::Id",
 "Description": "Private VPC Id to use for RDS Custom DB Instances"
 },
 "PrivateSubnets": {
 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "Private Subnets to use for RDS Custom DB Instances"
 },
 "RouteTable": {
 "Type": "String",
 "Description": "Route Table that must be associated with the PrivateSubnets and
 used by S3 VPC Endpoint",
 "AllowedPattern": "rtb-[0-9a-z]+"
 }
 },
 "Resources": {
 "DBSubnetGroup": {
 "Type": "AWS::RDS::DBSubnetGroup",
 "Properties": {
 "DBSubnetGroupName": "rds-custom-private",
 "DBSubnetGroupDescription": "RDS Custom Private Network",
 "SubnetIds": {
 "Ref": "PrivateSubnets"
 }
 }
 },...

Setting up your RDS Custom for Oracle environment 1771

Amazon Relational Database Service User Guide

Step 4: Configure IAM for RDS Custom for Oracle

You use an IAM role or IAM user (known as an IAM entity) to create an RDS Custom DB instance
using the console or AWS CLI. This IAM entity must have the necessary permissions for instance
creation.

You can configure IAM using either CloudFormation or manual steps.

Important

We strongly recommend that you configure your RDS Custom for Oracle environment using
AWS CloudFormation. This technique is the easiest and least error-prone.

Topics

• Configure IAM using CloudFormation

• Create your IAM role and instance profile manually

Configure IAM using CloudFormation

When you use the CloudFormation template for IAM, it creates the following required resources:

• An instance profile named AWSRDSCustomInstanceProfile-region

• A service role named AWSRDSCustomInstanceRole-region

• An access policy named AWSRDSCustomIamRolePolicy that is attached to the service role

To configure IAM using CloudFormation

1. Open the CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Start the Create Stack wizard, and choose Create Stack.

3. On the Create stack page, do the following:

a. For Prepare template, choose Template is ready.

b. For Template source, choose Upload a template file.

c. For Choose file, navigate to, then choose custom-oracle-iam.json.

d. Choose Next.

Setting up your RDS Custom for Oracle environment 1772

https://console.aws.amazon.com/cloudformation/

Amazon Relational Database Service User Guide

4. On the Specify stack details page, do the following:

a. For Stack name, enter custom-oracle-iam.

b. Choose Next.

5. On the Configure stack options page, choose Next.

6. On the Review custom-oracle-iam page, do the following:

a. Select the I acknowledge that AWS CloudFormation might create IAM resources with
custom names check box.

b. Choose Submit.

CloudFormation creates the IAM roles that RDS Custom for Oracle requires. In the left panel,
when custom-oracle-iam shows CREATE_COMPLETE, proceed to the next step.

7. In the left panel, choose custom-oracle-iam. In the right panel, do the following:

a. Choose Stack info. Your stack has an ID in the format
arn:aws:cloudformation:region:account-no:stack/custom-oracle-iam/identifier.

b. Choose Resources. You should see the following:

• An instance profile named AWSRDSCustomInstanceProfile-region

• A service role named AWSRDSCustomInstanceRole-region

When you create your RDS Custom DB instance, you need to supply the instance profile ID.

Create your IAM role and instance profile manually

Configuration is easiest when you use CloudFormation. However, you can also configure IAM
manually. For manual setup, do the following:

• Step 1: Create the IAM role AWSRDSCustomInstanceRoleForRdsCustomInstance.

• Step 2: Add an access policy to AWSRDSCustomInstanceRoleForRdsCustomInstance.

• Step 2: Add an access policy to AWSRDSCustomInstanceRoleForRdsCustomInstance.

• Step 4: Add AWSRDSCustomInstanceRoleForRdsCustomInstance to
AWSRDSCustomInstanceProfile.

Setting up your RDS Custom for Oracle environment 1773

Amazon Relational Database Service User Guide

Step 1: Create the IAM role AWSRDSCustomInstanceRoleForRdsCustomInstance

In this step, you create the role using the naming format AWSRDSCustomInstanceRole-region.
Using the trust policy, Amazon EC2 can assume the role. The following example assumes that you
have set the environment variable $REGION to the AWS Region in which you want to create your
DB instance.

aws iam create-role \
 --role-name AWSRDSCustomInstanceRole-$REGION \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 }'

Step 2: Add an access policy to AWSRDSCustomInstanceRoleForRdsCustomInstance

When you embed an inline policy in an IAM role, the inline policy is used as part of the role's access
(permissions) policy. You create the AWSRDSCustomIamRolePolicy policy that permits Amazon
EC2 to send and receive messages and perform various actions.

The following example creates the access policy named AWSRDSCustomIamRolePolicy, and adds
it to the IAM role AWSRDSCustomInstanceRole-region. This example assumes that you have
set the following environment variables:

$REGION

Set this variable to the AWS Region in which you plan to create your DB instance.

$ACCOUNT_ID

Set this variable to your AWS account number.

Setting up your RDS Custom for Oracle environment 1774

Amazon Relational Database Service User Guide

$KMS_KEY

Set this variable to the Amazon Resource Name (ARN) of the AWS KMS key that you want to use
for your RDS Custom DB instances. To specify more than one KMS key, add it to the Resources
section of statement ID (Sid) 11.

aws iam put-role-policy \
 --role-name AWSRDSCustomInstanceRole-$REGION \
 --policy-name AWSRDSCustomIamRolePolicy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",
 "Action": [
 "ssm:DescribeAssociation",
 "ssm:GetDeployablePatchSnapshotForInstance",
 "ssm:GetDocument",
 "ssm:DescribeDocument",
 "ssm:GetManifest",
 "ssm:GetParameter",
 "ssm:GetParameters",
 "ssm:ListAssociations",
 "ssm:ListInstanceAssociations",
 "ssm:PutInventory",
 "ssm:PutComplianceItems",
 "ssm:PutConfigurePackageResult",
 "ssm:UpdateAssociationStatus",
 "ssm:UpdateInstanceAssociationStatus",
 "ssm:UpdateInstanceInformation",
 "ssm:GetConnectionStatus",
 "ssm:DescribeInstanceInformation",
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"
],
 "Resource": [
 "*"
]
 },

Setting up your RDS Custom for Oracle environment 1775

Amazon Relational Database Service User Guide

 {
 "Sid": "2",
 "Effect": "Allow",
 "Action": [
 "ec2messages:AcknowledgeMessage",
 "ec2messages:DeleteMessage",
 "ec2messages:FailMessage",
 "ec2messages:GetEndpoint",
 "ec2messages:GetMessages",
 "ec2messages:SendReply"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "3",
 "Effect": "Allow",
 "Action": [
 "logs:PutRetentionPolicy",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "logs:DescribeLogGroups",
 "logs:CreateLogStream",
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:'$REGION':'$ACCOUNT_ID':log-group:rds-custom-instance*"
]
 },
 {
 "Sid": "4",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::do-not-delete-rds-custom-*/*"
]
 },
 {
 "Sid": "5",

Setting up your RDS Custom for Oracle environment 1776

Amazon Relational Database Service User Guide

 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": [
 "RDSCustomForOracle/Agent"
]
 }
 }
 },
 {
 "Sid": "6",
 "Effect": "Allow",
 "Action": [
 "events:PutEvents"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "7",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Resource": [
 "arn:aws:secretsmanager:'$REGION':'$ACCOUNT_ID':secret:do-not-delete-
rds-custom-*",
 "arn:aws:secretsmanager:'$REGION':'$ACCOUNT_ID':secret:rds-custom!
oracle-do-not-delete-*"
]
 },
 {
 "Sid": "8",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucketVersions"

Setting up your RDS Custom for Oracle environment 1777

Amazon Relational Database Service User Guide

],
 "Resource": [
 "arn:aws:s3:::do-not-delete-rds-custom-*"
]
 },
 {
 "Sid": "9",
 "Effect": "Allow",
 "Action": "ec2:CreateSnapshots",
 "Resource": [
 "arn:aws:ec2:*:*:instance/*",
 "arn:aws:ec2:*:*:volume/*"
],
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/AWSRDSCustom": "custom-oracle"
 }
 }
 },
 {
 "Sid": "10",
 "Effect": "Allow",
 "Action": "ec2:CreateSnapshots",
 "Resource": [
 "arn:aws:ec2:*::snapshot/*"
]
 },
 {
 "Sid": "11",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:'$REGION':'$ACCOUNT_ID':key/'$KMS_KEY'"
]
 },
 {
 "Sid": "12",
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "*",
 "Condition": {

Setting up your RDS Custom for Oracle environment 1778

Amazon Relational Database Service User Guide

 "StringLike": {
 "ec2:CreateAction": [
 "CreateSnapshots"
]
 }
 }
 }
]
}'

Step 3: Create the RDS Custom instance profile AWSRDSCustomInstanceProfile

An instance profile is a container that includes a single IAM role. RDS Custom uses the instance
profile to pass the role to the instance.

If you use the CLI to create a role, you create the role and instance profile as separate actions,
with potentially different names. Create your IAM instance profile as follows, naming it using the
format AWSRDSCustomInstanceProfile-region. The following example assumes that you
have set the environment variable $REGION to the AWS Region in which you want to create your
DB instance.

aws iam create-instance-profile \
 --instance-profile-name AWSRDSCustomInstanceProfile-$REGION

Step 4: Add AWSRDSCustomInstanceRoleForRdsCustomInstance to
AWSRDSCustomInstanceProfile

Add your IAM role to the instance profile that you previously created. The following example
assumes that you have set the environment variable $REGION to the AWS Region in which you
want to create your DB instance.

aws iam add-role-to-instance-profile \
 --instance-profile-name AWSRDSCustomInstanceProfile-$REGION \
 --role-name AWSRDSCustomInstanceRole-$REGION

Step 5: Grant required permissions to your IAM user or role

Make sure that the IAM principal (user or role) that creates the CEV or RDS Custom DB instance has
either of the following policies:

• The AdministratorAccess policy

Setting up your RDS Custom for Oracle environment 1779

Amazon Relational Database Service User Guide

• The AmazonRDSFullAccess policy with required permissions for Amazon S3 and AWS KMS,
CEV creation, and DB instance creation

Topics

• IAM permissions required for Amazon S3 and AWS KMS

• IAM permissions required for creating a CEV

• IAM permissions required for creating a DB instance from a CEV

IAM permissions required for Amazon S3 and AWS KMS

To create CEVs or RDS Custom for Oracle DB instances, your IAM principal needs to access Amazon
S3 and AWS KMS. The following sample JSON policy grants the required permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateS3Bucket",
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutBucketPolicy",
 "s3:PutBucketObjectLockConfiguration",
 "s3:PutBucketVersioning"
],
 "Resource": "arn:aws:s3:::do-not-delete-rds-custom-*"
 },
 {
 "Sid": "CreateKmsGrant",
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*"
 }
]
}

For more information about the kms:CreateGrant permission, see AWS KMS key management.

Setting up your RDS Custom for Oracle environment 1780

Amazon Relational Database Service User Guide

IAM permissions required for creating a CEV

To create a CEV, your IAM principal needs the following additional permissions:

s3:GetObjectAcl
s3:GetObject
s3:GetObjectTagging
s3:ListBucket
mediaimport:CreateDatabaseBinarySnapshot

The following sample JSON policy grants the additional permissions necessary to access bucket
my-custom-installation-files and its contents.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessToS3MediaBucket",
 "Effect": "Allow",
 "Action": [
 "s3:GetObjectAcl",
 "s3:GetObject",
 "s3:GetObjectTagging",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::my-custom-installation-files",
 "arn:aws:s3:::my-custom-installation-files/*"
]
 },
 {
 "Sid": "PermissionForByom",
 "Effect": "Allow",
 "Action": [
 "mediaimport:CreateDatabaseBinarySnapshot"
],
 "Resource": "*"
 }
]
}

You can grant similar permissions for Amazon S3 to caller accounts using an S3 bucket policy.

Setting up your RDS Custom for Oracle environment 1781

Amazon Relational Database Service User Guide

IAM permissions required for creating a DB instance from a CEV

To create an RDS Custom for Oracle DB instance from an existing CEV, the IAM principal needs the
following additional permissions.

iam:SimulatePrincipalPolicy
cloudtrail:CreateTrail
cloudtrail:StartLogging

The following sample JSON policy grants the permissions necessary to validate an IAM role and log
information to an AWS CloudTrail.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ValidateIamRole",
 "Effect": "Allow",
 "Action": "iam:SimulatePrincipalPolicy",
 "Resource": "*"
 },
 {
 "Sid": "CreateCloudTrail",
 "Effect": "Allow",
 "Action": [
 "cloudtrail:CreateTrail",
 "cloudtrail:StartLogging"
],
 "Resource": "arn:aws:cloudtrail:*:*:trail/do-not-delete-rds-custom-*"
 }
]
}

Step 6: Configure your VPC for RDS Custom for Oracle

Your RDS Custom DB instance is in a virtual private cloud (VPC) based on the Amazon VPC service,
just like an Amazon EC2 instance or Amazon RDS instance. You provide and configure your own
VPC. Unlike RDS Custom for SQL Server, RDS Custom for Oracle doesn't create an access control list
or security groups. You must attach you own security group, subnets, and route tables.

You can configure your virtual private cloud (VPC) using either CloudFormation or a manual
process.

Setting up your RDS Custom for Oracle environment 1782

Amazon Relational Database Service User Guide

Important

We strongly recommend that you configure your RDS Custom for Oracle environment using
AWS CloudFormation. This technique is the easiest and least error-prone.

Topics

• Configure your VPC using CloudFormation (recommended)

• Configure your VPC manually for RDS Custom for Oracle

Configure your VPC using CloudFormation (recommended)

If you've already configured your VPC for a different RDS Custom engine, and want to reuse the
existing VPC, skip this step. This section assumes the following:

• You've already used CloudFormation to create your IAM instance profile and role.

• You know your route table ID.

For a DB instance to be private, it must be in a private subnet. For a subnet to be private, it must
not be associated with a route table that has a default internet gateway. For more information,
see Configure route tables in the Amazon VPC User Guide.

When you use the CloudFormation template for your VPC, it creates the following resources:

• A private VPC

• A subnet group named rds-custom-private

• The following VPC endpoints, which your DB instance uses to communicate with dependent AWS
services:

• com.amazonaws.region.ec2messages

• com.amazonaws.region.events

• com.amazonaws.region.logs

• com.amazonaws.region.monitoring

• com.amazonaws.region.s3

• com.amazonaws.region.secretsmanager

• com.amazonaws.region.ssm

Setting up your RDS Custom for Oracle environment 1783

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html

Amazon Relational Database Service User Guide

• com.amazonaws.region.ssmmessages

Note

For a complex networking setup with existing accounts, we recommend that you
configure access to dependent services manually if access doesn't already exist. For more
information, see Make sure your VPC can access dependent AWS services.

To configure your VPC using CloudFormation

1. Open the CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Start the Create Stack wizard, and choose Create Stack and then With new resources
(standard).

3. On the Create stack page, do the following:

a. For Prepare template, choose Template is ready.

b. For Template source, choose Upload a template file.

c. For Choose file, navigate to, then choose custom-vpc.json.

d. Choose Next.

4. On the Specify stack details page, do the following:

a. For Stack name, enter custom-vpc.

b. For Parameters, choose the private subnets to use for RDS Custom DB instances.

c. Choose the private VPC ID to use for RDS Custom DB instances.

d. Enter the route table associated with the private subnets.

e. Choose Next.

5. On the Configure stack options page, choose Next.

6. On the Review custom-vpc page, choose Submit.

CloudFormation configures your private VPC. In the left panel, when custom-vpc shows
CREATE_COMPLETE, proceed to the next step.

7. (Optional) Review the details of your VPC. In the Stacks pane, choose custom-vpc. In the right
pane, do the following:

Setting up your RDS Custom for Oracle environment 1784

https://console.aws.amazon.com/cloudformation/

Amazon Relational Database Service User Guide

a. Choose Stack info. Your stack has an ID in the format
arn:aws:cloudformation:region:account-no:stack/custom-vpc/identifier.

b. Choose Resources. You should see a subnet group named rds-custom-private and several
VPC endpoints that use the naming format vpce-string. Each endpoint corresponds to
an AWS service that RDS Custom needs to communicate with. For more information, see
Make sure your VPC can access dependent AWS services.

c. Choose Parameters. You should see the private subnets, private VPC, and the route table
that you specified when you created the stack. When you create a DB instance, you need
to supply the VPC ID and subnet group.

Configure your VPC manually for RDS Custom for Oracle

As an alternative to automating VPC creation with AWS CloudFormation, you can configure your
VPC manually. This option might be best when you have a complex networking setup that uses
existing resources.

Topics

• Make sure your VPC can access dependent AWS services

• Configure the instance metadata service

Make sure your VPC can access dependent AWS services

RDS Custom sends communication from your DB instance to other AWS services. Make sure
the following services are accessible from the subnet in which you create your RDS Custom DB
instances:

• Amazon CloudWatch (com.amazonaws.region.monitoring)

• Amazon CloudWatch Logs (com.amazonaws.region.logs)

• Amazon CloudWatch Events (com.amazonaws.region.events)

• Amazon EC2 (com.amazonaws.region.ec2 and com.amazonaws.region.ec2messages)

• Amazon EventBridge (com.amazonaws.region.events)

• Amazon S3 (com.amazonaws.region.s3)

• AWS Secrets Manager (com.amazonaws.region.secretsmanager)

Setting up your RDS Custom for Oracle environment 1785

Amazon Relational Database Service User Guide

• AWS Systems Manager (com.amazonaws.region.ssm and
com.amazonaws.region.ssmmessages)

If creating Multi-AZ deployments

• Amazon Simple Queue Service (com.amazonaws.region.sqs)

If RDS Custom can't communicate with the necessary services, it publishes the following events:

Database instance in incompatible-network. SSM Agent connection not available. Amazon
 RDS can't connect to the dependent AWS services.

Database instance in incompatible-network. Amazon RDS can't connect to dependent AWS
 services. Make sure port 443 (HTTPS) allows outbound connections, and try again.
 "Failed to connect to the following services: s3 events"

To avoid incompatible-network errors, make sure that VPC components involved in
communication between your RDS Custom DB instance and AWS services satisfy the following
requirements:

• The DB instance can make outbound connections on port 443 to other AWS services.

• The VPC allows incoming responses to requests originating from your RDS Custom DB instance.

• RDS Custom can correctly resolve the domain names of endpoints for each AWS service.

If you already configured a VPC for a different RDS Custom DB engine, you can reuse that VPC and
skip this process.

Configure the instance metadata service

Make sure that your instance can do the following:

• Access the instance metadata service using Instance Metadata Service Version 2 (IMDSv2).

• Allow outbound communications through port 80 (HTTP) to the IMDS link IP address.

• Request instance metadata from http://169.254.169.254, the IMDSv2 link.

For more information, see Use IMDSv2 in the Amazon EC2 User Guide.

Setting up your RDS Custom for Oracle environment 1786

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

Amazon Relational Database Service User Guide

RDS Custom for Oracle automation uses IMDSv2 by default, by setting HttpTokens=enabled
on the underlying Amazon EC2 instance. However, you can use IMDSv1 if you want. For more
information, see Configure the instance metadata options in the Amazon EC2 User Guide.

Setting up your RDS Custom for Oracle environment 1787

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-options.html

Amazon Relational Database Service User Guide

Working with custom engine versions for Amazon RDS Custom for
Oracle

A custom engine version (CEV) for Amazon RDS Custom for Oracle is a binary volume snapshot of
a database engine and specific Amazon Machine Image (AMI). By default, RDS Custom for Oracle
uses the latest available AMI managed by RDS Custom, but you can specify an AMI that was used
in a previous CEV. You store your database installation files in Amazon S3. RDS Custom uses the
installation files and the AMI to create your CEV for you.

Topics

• Preparing to create a CEV

• Creating a CEV

• Modifying CEV status

• Viewing CEV details for Amazon RDS Custom for Oracle

• Deleting a CEV

Preparing to create a CEV

To create a CEV, access the installation files and patches that are stored in your Amazon S3 bucket
for any of the following releases:

• Oracle Database 19c

• Oracle Database 18c

• Oracle Database 12c Release 2 (12.2)

• Oracle Database 12c Release 1 (12.1)

For example, you can use the April 2021 RU/RUR for Oracle Database 19c, or any valid combination
of installation files and patches. For more information on the versions and Regions supported by
RDS Custom for Oracle, see RDS Custom with RDS for Oracle.

Topics

• Step 1 (Optional): Download the manifest templates

• Step 2: Download your database installation files and patches from Oracle Software Delivery
Cloud

• Step 3: Upload your installation files to Amazon S3

Working with CEVs for RDS Custom for Oracle 1788

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora

Amazon Relational Database Service User Guide

• Step 4 (Optional): Share your installation media in S3 across AWS accounts

• Step 5: Prepare the CEV manifest

• Step 6 (Optional): Validate the CEV manifest

• Step 7: Add necessary IAM permissions

Step 1 (Optional): Download the manifest templates

A CEV manifest is a JSON document that includes the list of database installation .zip files for your
CEV. To create a CEV, do the following:

1. Identify the Oracle database installation files that you want to include in your CEV.

2. Download the installation files.

3. Create a JSON manifest that lists the installation files.

RDS Custom for Oracle provides JSON manifest templates with our recommended .zip files for
each supported Oracle Database release. For example, the following template is for the 19.17.0.0.0
RU.

{
 "mediaImportTemplateVersion": "2020-08-14",
 "databaseInstallationFileNames": [
 "V982063-01.zip"
],
 "opatchFileNames": [
 "p6880880_190000_Linux-x86-64.zip"
],
 "psuRuPatchFileNames": [
 "p34419443_190000_Linux-x86-64.zip",
 "p34411846_190000_Linux-x86-64.zip"
],
 "otherPatchFileNames": [
 "p28852325_190000_Linux-x86-64.zip",
 "p29997937_190000_Linux-x86-64.zip",
 "p31335037_190000_Linux-x86-64.zip",
 "p32327201_190000_Linux-x86-64.zip",
 "p33613829_190000_Linux-x86-64.zip",
 "p34006614_190000_Linux-x86-64.zip",
 "p34533061_190000_Linux-x86-64.zip",
 "p34533150_190000_Generic.zip",

Working with CEVs for RDS Custom for Oracle 1789

Amazon Relational Database Service User Guide

 "p28730253_190000_Linux-x86-64.zip",
 "p29213893_1917000DBRU_Generic.zip",
 "p33125873_1917000DBRU_Linux-x86-64.zip",
 "p34446152_1917000DBRU_Linux-x86-64.zip"
]
}

Each template has an associated readme that includes instructions for downloading the patches,
URLs for the .zip files, and file checksums. You can use these templates as they are or modify them
with your own patches. To review the templates, download custom-oracle-manifest.zip to your
local disk and then open it with a file archiving application. For more information, see Step 5:
Prepare the CEV manifest.

Step 2: Download your database installation files and patches from Oracle Software Delivery
Cloud

When you have identified the installation files that you want for your CEV, download them to your
local system. The Oracle Database installation files and patches are hosted on Oracle Software
Delivery Cloud. Each CEV requires a base release, such as Oracle Database 19c or Oracle Database
12c Release 2 (12.2), and an optional list of patches.

To download the database installation files for Oracle Database

1. Go to https://edelivery.oracle.com/ and sign in.

2. In the search box, enter Oracle Database Enterprise Edition or Oracle Database
Standard Edition 2 and choose Search.

3. Choose one of the following base releases:

Database version Enterprise Edition Standard Edition 2

Oracle Database 19c DLP: Oracle Database 19c
Enterprise Edition 19.3.0.0.0
(Oracle Database Enterprise
Edition)

DLP: Oracle Database 19c
Standard Edition 2 19.3.0.0.
0 (Oracle Database Standard
Edition 2)

Oracle Database 18c DLP: Oracle Database 18c
Enterprise Edition 18.0.0.0.0
(Oracle Database Enterprise
Edition)

DLP: Oracle Database Standard
Edition 2 18.0.0.0.0 (Oracle
Database Standard Edition 2)

Working with CEVs for RDS Custom for Oracle 1790

samples/custom-oracle-manifest.zip
https://edelivery.oracle.com/

Amazon Relational Database Service User Guide

Database version Enterprise Edition Standard Edition 2

Oracle Database 12c
Release 2 (12.2.0.1)

DLP: Oracle Database 12c
Enterprise Edition 12.2.0.1.0
(Oracle Database Enterprise
Edition)

DLP: Oracle Database Standard
Edition 2 12.2.0.1.0 (Oracle
Database Standard Edition 2)

Oracle Database 12c
Release 1 (12.1.0.2)

DLP: Oracle Database 12c
Enterprise Edition 12.1.0.2.0
(Oracle Database Enterprise
Edition)

DLP: Oracle Database Standard
Edition 2 12.1.0.2.0 (Oracle
Database Standard Edition 2)

4. Choose Continue.

5. Clear the Download Queue check box.

6. Choose the option that corresponds to your base release:

• Oracle Database 19.3.0.0.0 - Long Term Release.

• Oracle Database 18.0.0.0.0

• Oracle Database 12.2.0.1.0.

• Oracle Database 12.1.0.2.0.

7. Choose Linux x86-64 in Platform/Languages.

8. Choose Continue, and then sign the Oracle License Agreement.

9. Choose the .zip file that corresponds to your database release:

Database
release
and
edition

Zip files SHA-256 hash

19c EE
and SE2

V982063-0
1.zip

BA8329C757133DA313ED3B6D7F86C5AC42CD
9970A28BF2E6233F3235233AA8D8

18c EE
and SE2

V978967-0
1.zip

C96A4FD768787AF98272008833FE10B17269
1CF84E42816B138C12D4DE63AB96

Working with CEVs for RDS Custom for Oracle 1791

Amazon Relational Database Service User Guide

Database
release
and
edition

Zip files SHA-256 hash

12.2.0.1
EE and
SE2

V839960-0
1.zip

96ED97D21F15C1AC0CCE3749DA6C3DAC7059
BB60672D76B008103FC754D22DDE

12.1.0.2
EE

V46095-01
_1of2.zip
V46095-01
_2of2.zip

31FDC2AF41687B4E547A3A18F796424D8C1A
F36406D2160F65B0AF6A9CD47355 for V46095-01
_1of2.zip

03DA14F5E875304B28F0F3BB02AF0EC33227
885B99C9865DF70749D1E220ACCD for V46095-01
_2of2.zip

12.1.0.2
SE2

V77388-01
_1of2.zip
V77388-01
_2of2.zip

73873369753230F5A0921F95ACEADB591388
CB06ED72A7F3AEA7BCBCEA2403BC for V77388-01
_1of2.zip

2492E1BE1E3E3531DA83D0843C09C08E435A
C8CEFD9A00C0DF56BE4F15CEEBF3 for V77388-01
_2of2.zip

10. Download your desired Oracle patches from updates.oracle.com or
support.oracle.com to your local system. You can find the URLs for the patches in the
following locations:

• The readme files in the .zip file that you downloaded in Step 1 (Optional): Download the
manifest templates

• The patches listed in each Release Update (RU) in Release notes for Amazon Relational
Database Service (Amazon RDS) for Oracle

Step 3: Upload your installation files to Amazon S3

Upload your Oracle installation and patch files to Amazon S3 using the AWS CLI. The S3 bucket
that contains your installation files must be in the same AWS Region as your CEV.

Working with CEVs for RDS Custom for Oracle 1792

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes

Amazon Relational Database Service User Guide

Examples in this section use the following placeholders:

• install-or-patch-file.zip – Oracle installation media file. For example,
p32126828_190000_Linux-x86-64.zip is a patch.

• amzn-s3-demo-destination-bucket – Your Amazon S3 bucket designated for your
uploaded installation files.

• 123456789012/cev1 – An optional prefix in your Amazon S3 bucket.

• amzn-s3-demo-source-bucket – An Amazon S3 bucket where you can optionally stage files.

Topics

• Step 3a: Verify that your S3 bucket is in the correct AWS Region

• Step 3b: Make sure that your S3 bucket policy has the correct permissions

• Step 3c: Upload your files using the cp or sync commands

• Step 3d: List the files in your S3 bucket

Step 3a: Verify that your S3 bucket is in the correct AWS Region

Verify that your S3 bucket is in the AWS Region where you plan to run the create-custom-db-
engine-version command.

aws s3api get-bucket-location --bucket amzn-s3-demo-destination-bucket

Step 3b: Make sure that your S3 bucket policy has the correct permissions

You can create a CEV from scratch or from a source CEV. If you plan to create new CEV from source
CEVs, make sure that your S3 bucket policy has the correct permissions:

1. Identify the S3 bucket reserved by RDS Custom. The bucket name has the format do-not-
delete-rds-custom-account-region-string. For example, the bucket might be named
do-not-delete-rds-custom-123456789012-us-east-1-abc123EXAMPLE.

2. Make sure that the following permission is appended to your S3 bucket policy. Replace do-not-
delete-rds-custom-123456789012-us-east-1-abc123EXAMPLE with the name of your
bucket.

{
 "Sid": "AWSRDSCustomForOracleCustomEngineVersionGetObject",

Working with CEVs for RDS Custom for Oracle 1793

Amazon Relational Database Service User Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "custom.rds.amazonaws.com"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectTagging"
],
 "Resource": "arn:aws:s3:::do-not-delete-rds-custom-123456789012-us-
east-1-abc123EXAMPLE/CustomEngineVersions/*"
}, ...

Step 3c: Upload your files using the cp or sync commands

Choose either of the following options:

• Use aws s3 cp to upload a single .zip file.

Upload each installation .zip file separately. Don't combine the .zip files into a single .zip file.

• Use aws s3 sync to upload a directory.

Example

The following example uploads install-or-patch-file.zip to the 123456789012/cev1
folder in the RDS Custom Amazon S3 bucket. Run a separate aws s3 command for each .zip that
you want to upload.

For Linux, macOS, or Unix:

aws s3 cp install-or-patch-file.zip \
 s3://amzn-s3-demo-destination-bucket/123456789012/cev1/

For Windows:

aws s3 cp install-or-patch-file.zip ^
 s3://amzn-s3-demo-destination-bucket/123456789012/cev1/

Working with CEVs for RDS Custom for Oracle 1794

Amazon Relational Database Service User Guide

Example

The following example uploads the files in your local cev1 folder to the 123456789012/cev1
folder in your Amazon S3 bucket.

For Linux, macOS, or Unix:

aws s3 sync cev1 \
 s3://amzn-s3-demo-destination-bucket/123456789012/cev1/

For Windows:

aws s3 sync cev1 ^
 s3://amzn-s3-demo-destination-bucket/123456789012/cev1/

Example

The following example uploads all files in amzn-s3-demo-source-bucket to the
123456789012/cev1 folder in your Amazon S3 bucket.

For Linux, macOS, or Unix:

aws s3 sync s3://amzn-s3-demo-source-bucket/ \
 s3://amzn-s3-demo-destination-bucket/123456789012/cev1/

For Windows:

aws s3 sync s3://amzn-s3-demo-source-bucket/ ^
 s3://amzn-s3-demo-destination-bucket/123456789012/cev1/

Step 3d: List the files in your S3 bucket

The following example uses the s3 ls command to list the files in your RDS Custom Amazon S3
bucket.

aws s3 ls \
 s3://amzn-s3-demo-destination-bucket/123456789012/cev1/

Working with CEVs for RDS Custom for Oracle 1795

Amazon Relational Database Service User Guide

Step 4 (Optional): Share your installation media in S3 across AWS accounts

For the purposes of this section, the Amazon S3 bucket that contains your uploaded Oracle
installation files is your media bucket. Your organization might use multiple AWS accounts in an
AWS Region. If so, you might want to use one AWS account to populate your media bucket and a
different AWS account to create CEVs. If you don't intend to share your media bucket, skip to the
next section.

This section assumes the following:

• You can access the account that created your media bucket and a different account in which you
intend to create CEVs.

• You intend to create CEVs in only one AWS Region. If you intend to use multiple Regions, create a
media bucket in each Region.

• You're using the CLI. If you're using the Amazon S3 console, adapt the following steps.

To configure your media bucket for sharing across AWS accounts

1. Log in to the AWS account that contains the S3 bucket into which you uploaded your
installation media.

2. Start with either a blank JSON policy template or an existing policy that you can adapt.

The following command retrieves an existing policy and saves it as my-policy.json. In this
example, the S3 bucket containing your installation files is named amzn-s3-demo-bucket.

aws s3api get-bucket-policy \
 --bucket amzn-s3-demo-bucket \
 --query Policy \
 --output text > my-policy.json

3. Edit the media bucket permissions as follows:

• In the Resource element of your template, specify the S3 bucket into which you uploaded
your Oracle Database installation files.

• In the Principal element, specify the ARNs for all AWS accounts that you intend to use
to create CEVs. You can add the root, a user, or a role to the S3 bucket allow list. For more
information, see IAM identifiers in the AWS Identity and Access Management User Guide.

Working with CEVs for RDS Custom for Oracle 1796

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html

Amazon Relational Database Service User Guide

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "GrantAccountsAccess",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::account-1:root",
 "arn:aws:iam::account-2:user/user-name-with-path",
 "arn:aws:iam::account-3:role/role-name-with-path",
 ...
]
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:GetObjectTagging",
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
}

4. Attach the policy to your media bucket.

In the following example, amzn-s3-demo-bucket is the name of the S3 bucket that contains
your installation files, and my-policy.json is the name of your JSON file.

aws s3api put-bucket-policy \
 --bucket amzn-s3-demo-bucket \
 --policy file://my-policy.json

5. Log in to an AWS account in which you intend to create CEVs.

6. Verify that this account can access the media bucket in the AWS account that created it.

Working with CEVs for RDS Custom for Oracle 1797

Amazon Relational Database Service User Guide

aws s3 ls --query "Buckets[].Name"

For more information, see aws s3 ls in the AWS CLI Command Reference.

7. Create a CEV by following the steps in Creating a CEV.

Step 5: Prepare the CEV manifest

A CEV manifest is a JSON document that includes the following:

• (Required) The list of installation .zip files that you uploaded to Amazon S3. RDS Custom applies
the patches in the order in which they're listed in the manifest.

• (Optional) Installation parameters that set nondefault values for the Oracle base, Oracle home,
and the ID and name of the UNIX/Linux user and group. Be aware that you can’t modify the
installation parameters for an existing CEV or an existing DB instance. You also can’t upgrade
from one CEV to another CEV when the installation parameters have different settings.

For sample CEV manifests, see the JSON templates that you downloaded in Step 1 (Optional):
Download the manifest templates. You can also review the samples in CEV manifest examples.

Topics

• JSON fields in the CEV manifest

• Creating the CEV manifest

• CEV manifest examples

JSON fields in the CEV manifest

The following table describes the JSON fields in the manifest.

JSON field Description

MediaImportTemplat
eVersion

Version of the CEV manifest. The date is in the format YYYY-
MM-DD .

databaseInstallati
onFileNames

Ordered list of installation files for the database.

Working with CEVs for RDS Custom for Oracle 1798

https://docs.aws.amazon.com/cli/latest/reference/s3/ls.html

Amazon Relational Database Service User Guide

JSON field Description

opatchFileNames Ordered list of OPatch installers used for the Oracle DB engine.
Only one value is valid. Values for opatchFileNames must
start with p6880880_ .

psuRuPatchFileNames The PSU and RU patches for this database.

Important

If you include psuRuPatchFileNames , opatchFil
eNames is required. Values for opatchFileNames
must start with p6880880_ .

OtherPatchFileNames The patches that aren't in the list of PSU and RU patches. RDS
Custom applies these patches after applying the PSU and RU
patches.

Important

If you include OtherPatchFileNames , opatchFil
eNames is required. Values for opatchFileNames
must start with p6880880_ .

Working with CEVs for RDS Custom for Oracle 1799

Amazon Relational Database Service User Guide

JSON field Description

installationParame
ters

Nondefault settings for the Oracle base, Oracle home, and the
ID and name of the UNIX/Linux user and group. You can set the
following parameters:

oracleBase

The directory under which your Oracle binaries are installed
. It is the mount point of the binary volume that stores
your files. The Oracle base directory can include multiple
Oracle homes. For example, if /home/oracle/oracl
e.19.0.0.0.ru-2020-04.rur-2020-04.r1.EE.1
is one of your Oracle home directories, then /home/ora
cle is the Oracle base directory. A user-specified Oracle
base directory is not a symbolic link.

If you don't specify the Oracle base, the default directory is /
rdsdbbin .

oracleHome

The directory in which your Oracle database binaries are
installed. For example, if you specify /home/oracle/ as
your Oracle base, then you might specify /home/oracle/
oracle.19.0.0.0.ru-2020-04.rur-2020-04.r1
.EE.1/ as your Oracle home. A user-specified Oracle home
directory is not a symbolic link. The Oracle home value is
referenced by the $ORACLE_HOME environment variable.

If you don't specify the Oracle home, the default naming
format is /rdsdbbin/oracle. major-engine-versi
on .custom.r1. engine-edition .1.

unixUname

The name of the UNIX user that owns the Oracle software.
RDS Custom assumes this user when running local database
commands. If you specify both unixUid and unixUname

, RDS Custom creates the user if it doesn't exist, and then

Working with CEVs for RDS Custom for Oracle 1800

Amazon Relational Database Service User Guide

JSON field Description

assigns the UID to the user if it's not the same as the initial
UID.

The default user name is rdsdb.

unixUid

The ID (UID) of the UNIX user that owns the Oracle software.
If you specify both unixUid and unixUname , RDS Custom
creates the user if it doesn't exist, and then assigns the UID
to the user if it's not the same as the initial UID.

The default UID is 61001. This is the UID of the user rdsdb.

unixGroupName

The name of the UNIX group. The UNIX user that owns the
Oracle software belongs to this group.

The default group name is rdsdb.

unixGroupId

The ID of the UNIX group to which the UNIX user belongs.

The default group ID is 1000. This is the ID of the group
rdsdb.

Each Oracle Database release has a different list of supported installation files. When you create
your CEV manifest, make sure to specify only files that are supported by RDS Custom for Oracle.
Otherwise, CEV creation fails with an error. All patches listed in Release notes for Amazon
Relational Database Service (Amazon RDS) for Oracle are supported.

Creating the CEV manifest

To create a CEV manifest

1. List all installation files that you plan to apply, in the order that you want to apply them.

2. Correlate the installation files with the JSON fields described in JSON fields in the CEV
manifest.

Working with CEVs for RDS Custom for Oracle 1801

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes

Amazon Relational Database Service User Guide

3. Do either of the following:

• Create the CEV manifest as a JSON text file.

• Edit the CEV manifest template when you create the CEV in the console. For more
information, see Creating a CEV.

CEV manifest examples

The following examples show CEV manifest files for different Oracle Database releases. If you
include a JSON field in your manifest, make sure that it isn't empty. For example, the following CEV
manifest isn't valid because otherPatchFileNames is empty.

{
 "mediaImportTemplateVersion": "2020-08-14",
 "databaseInstallationFileNames": [
 "V982063-01.zip"
],
 "opatchFileNames": [
 "p6880880_190000_Linux-x86-64.zip"
],
 "psuRuPatchFileNames": [
 "p32126828_190000_Linux-x86-64.zip"
],
 "otherPatchFileNames": [
]
}

Topics

• Sample CEV manifest for Oracle Database 12c Release 1 (12.1)

• Sample CEV manifest for Oracle Database 12c Release 2 (12.2)

• Sample CEV manifest for Oracle Database 18c

• Sample CEV manifest for Oracle Database 19c

Example Sample CEV manifest for Oracle Database 12c Release 1 (12.1)

In the following example for the July 2021 PSU for Oracle Database 12c Release 1 (12.1), RDS
Custom applies the patches in the order specified. Thus, RDS Custom applies p32768233, then

Working with CEVs for RDS Custom for Oracle 1802

Amazon Relational Database Service User Guide

p32876425, then p18759211, and so on. The example sets new values for the UNIX user and
group, and the Oracle home and Oracle base.

{
 "mediaImportTemplateVersion":"2020-08-14",
 "databaseInstallationFileNames":[
 "V46095-01_1of2.zip",
 "V46095-01_2of2.zip"
],
 "opatchFileNames":[
 "p6880880_121010_Linux-x86-64.zip"
],
 "psuRuPatchFileNames":[
 "p32768233_121020_Linux-x86-64.zip"
],
 "otherPatchFileNames":[
 "p32876425_121020_Linux-x86-64.zip",
 "p18759211_121020_Linux-x86-64.zip",
 "p19396455_121020_Linux-x86-64.zip",
 "p20875898_121020_Linux-x86-64.zip",
 "p22037014_121020_Linux-x86-64.zip",
 "p22873635_121020_Linux-x86-64.zip",
 "p23614158_121020_Linux-x86-64.zip",
 "p24701840_121020_Linux-x86-64.zip",
 "p25881255_121020_Linux-x86-64.zip",
 "p27015449_121020_Linux-x86-64.zip",
 "p28125601_121020_Linux-x86-64.zip",
 "p28852325_121020_Linux-x86-64.zip",
 "p29997937_121020_Linux-x86-64.zip",
 "p31335037_121020_Linux-x86-64.zip",
 "p32327201_121020_Linux-x86-64.zip",
 "p32327208_121020_Generic.zip",
 "p17969866_12102210119_Linux-x86-64.zip",
 "p20394750_12102210119_Linux-x86-64.zip",
 "p24835919_121020_Linux-x86-64.zip",
 "p23262847_12102201020_Linux-x86-64.zip",
 "p21171382_12102201020_Generic.zip",
 "p21091901_12102210720_Linux-x86-64.zip",
 "p33013352_12102210720_Linux-x86-64.zip",
 "p25031502_12102210720_Linux-x86-64.zip",
 "p23711335_12102191015_Generic.zip",
 "p19504946_121020_Linux-x86-64.zip"
],

Working with CEVs for RDS Custom for Oracle 1803

Amazon Relational Database Service User Guide

 "installationParameters": {
 "unixGroupName": "dba",
 "unixGroupId": 12345,
 "unixUname": "oracle",
 "unixUid": 12345,
 "oracleHome": "/home/oracle/oracle.12.1.0.2",
 "oracleBase": "/home/oracle"
 }
}

Example Sample CEV manifest for Oracle Database 12c Release 2 (12.2)

In following example for the October 2021 PSU for Oracle Database 12c Release 2 (12.2), RDS
Custom applies p33261817, then p33192662, then p29213893, and so on. The example sets new
values for the UNIX user and group, and the Oracle home and Oracle base.

{
 "mediaImportTemplateVersion":"2020-08-14",
 "databaseInstallationFileNames":[
 "V839960-01.zip"
],
 "opatchFileNames":[
 "p6880880_122010_Linux-x86-64.zip"
],
 "psuRuPatchFileNames":[
 "p33261817_122010_Linux-x86-64.zip"
],
 "otherPatchFileNames":[
 "p33192662_122010_Linux-x86-64.zip",
 "p29213893_122010_Generic.zip",
 "p28730253_122010_Linux-x86-64.zip",
 "p26352615_12201211019DBOCT2021RU_Linux-x86-64.zip",
 "p23614158_122010_Linux-x86-64.zip",
 "p24701840_122010_Linux-x86-64.zip",
 "p25173124_122010_Linux-x86-64.zip",
 "p25881255_122010_Linux-x86-64.zip",
 "p27015449_122010_Linux-x86-64.zip",
 "p28125601_122010_Linux-x86-64.zip",
 "p28852325_122010_Linux-x86-64.zip",
 "p29997937_122010_Linux-x86-64.zip",
 "p31335037_122010_Linux-x86-64.zip",
 "p32327201_122010_Linux-x86-64.zip",
 "p32327208_122010_Generic.zip"

Working with CEVs for RDS Custom for Oracle 1804

Amazon Relational Database Service User Guide

],
 "installationParameters": {
 "unixGroupName": "dba",
 "unixGroupId": 12345,
 "unixUname": "oracle",
 "unixUid": 12345,
 "oracleHome": "/home/oracle/oracle.12.2.0.1",
 "oracleBase": "/home/oracle"
 }
}

Example Sample CEV manifest for Oracle Database 18c

In following example for the October 2021 PSU for Oracle Database 18c, RDS Custom applies
p32126855, then p28730253, then p27539475, and so on. The example sets new values for the
UNIX user and group, and the Oracle home and Oracle base.

{
 "mediaImportTemplateVersion":"2020-08-14",
 "databaseInstallationFileNames":[
 "V978967-01.zip"
],
 "opatchFileNames":[
 "p6880880_180000_Linux-x86-64.zip"
],
 "psuRuPatchFileNames":[
 "p32126855_180000_Linux-x86-64.zip"
],
 "otherPatchFileNames":[
 "p28730253_180000_Linux-x86-64.zip",
 "p27539475_1813000DBRU_Linux-x86-64.zip",
 "p29213893_180000_Generic.zip",
 "p29374604_1813000DBRU_Linux-x86-64.zip",
 "p29782284_180000_Generic.zip",
 "p28125601_180000_Linux-x86-64.zip",
 "p28852325_180000_Linux-x86-64.zip",
 "p29997937_180000_Linux-x86-64.zip",
 "p31335037_180000_Linux-x86-64.zip",
 "p31335142_180000_Generic.zip"
]
 "installationParameters": {
 "unixGroupName": "dba",
 "unixGroupId": 12345,

Working with CEVs for RDS Custom for Oracle 1805

Amazon Relational Database Service User Guide

 "unixUname": "oracle",
 "unixUid": 12345,
 "oracleHome": "/home/oracle/18.0.0.0.ru-2020-10.rur-2020-10.r1",
 "oracleBase": "/home/oracle/"
 }
}

Example Sample CEV manifest for Oracle Database 19c

In the following example for Oracle Database 19c, RDS Custom applies p32126828, then
p29213893, then p29782284, and so on. The example sets new values for the UNIX user and
group, and the Oracle home and Oracle base.

{
 "mediaImportTemplateVersion": "2020-08-14",
 "databaseInstallationFileNames": [
 "V982063-01.zip"
],
 "opatchFileNames": [
 "p6880880_190000_Linux-x86-64.zip"
],
 "psuRuPatchFileNames": [
 "p32126828_190000_Linux-x86-64.zip"
],
 "otherPatchFileNames": [
 "p29213893_1910000DBRU_Generic.zip",
 "p29782284_1910000DBRU_Generic.zip",
 "p28730253_190000_Linux-x86-64.zip",
 "p29374604_1910000DBRU_Linux-x86-64.zip",
 "p28852325_190000_Linux-x86-64.zip",
 "p29997937_190000_Linux-x86-64.zip",
 "p31335037_190000_Linux-x86-64.zip",
 "p31335142_190000_Generic.zip"
],
 "installationParameters": {
 "unixGroupName": "dba",
 "unixGroupId": 12345,
 "unixUname": "oracle",
 "unixUid": 12345,
 "oracleHome": "/home/oracle/oracle.19.0.0.0.ru-2020-04.rur-2020-04.r1.EE.1",
 "oracleBase": "/home/oracle"
 }
}

Working with CEVs for RDS Custom for Oracle 1806

Amazon Relational Database Service User Guide

Step 6 (Optional): Validate the CEV manifest

Optionally, verify that manifest is a valid JSON file by running the json.tool Python script. For
example, if you change into the directory containing a CEV manifest named manifest.json, run
the following command.

python -m json.tool < manifest.json

Step 7: Add necessary IAM permissions

Make sure that the IAM principal that creates the CEV has the necessary policies described in Step
5: Grant required permissions to your IAM user or role.

Creating a CEV

You can create a CEV using the AWS Management Console or the AWS CLI. Specify either the
multitenant or non-multitenant architecture. For more information, see Multitenant architecture
considerations.

Typically, creating a CEV takes about two hours. After you have created the CEV, you can use it to
create or upgrade an RDS Custom DB instance. For more information, see Creating an RDS Custom
for Oracle DB instance and Upgrading an RDS Custom for Oracle DB instance.

Note

If your DB instance currently uses Oracle Linux 7.9, create a new CEV that uses the latest
AMI, which uses Oracle Linux 8. Then modify your instance to use the new CEV.

Note the following requirements and limitations for creating a CEV:

• The Amazon S3 bucket containing your installation files must be in the same AWS Region as your
CEV. Otherwise, the creation process fails.

• The CEV name must be in the format major-engine-version.customized_string, as in
19.cdb_cev1.

• The CEV name must contain 1–50 alphanumeric characters, underscores, dashes, or periods.

• The CEV name can't contain consecutive periods, as in 19..cdb_cev1.

Working with CEVs for RDS Custom for Oracle 1807

Amazon Relational Database Service User Guide

Console

To create a CEV

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Custom engine versions.

The Custom engine versions page shows all CEVs that currently exist. If you haven't created
any CEVs, the page is empty.

3. Choose Create custom engine version.

4. In Engine options, do the following:

a. For Engine type, choose Oracle.

b. For Architecture settings, optionally choose Multitenant architecture to create an
Oracle multitenant CEV, which uses the DB engine custom-oracle-ee-cdb or custom-
oracle-se2-cdb. You can create an RDS Custom for Oracle CDB with a Multitenant
CEV only. If you don't choose this option, your CEV is a non-CDB, which uses the engine
custom-oracle-ee or custom-oracle-se2.

Note

The architecture that you choose is a permanent characteristic of your CEV. You
can't modify your CEV to use a different architecture later.

c. Choose either of the following options:

• Create new CEV – Create a CEV from scratch. In this case, you must specify a JSON
manifest specifying the database binaries.

• Create CEV from source – In Specify the CEV that you want to copy, choose an existing
CEV to use as the source CEV. In this case, you can specify a new Amazon Machine Image
(AMI), but you can't specify different database binaries.

d. For Engine version, choose the major engine version.

5. In Version details, do the following:

a. Enter a valid name in Custom engine version name. For example, you might enter the
name 19.cdb_cev1.

Working with CEVs for RDS Custom for Oracle 1808

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

b. (Optional) Enter a description for your CEV.

6. In Installation media, do the following:

a. (Optional) For AMI ID, either leave the field blank to use the latest service-provided AMI,
or enter an AMI that you previously used to create a CEV. To obtain valid AMI IDs, use
either of the following techniques:

• In the console, choose Custom engine versions in the left navigation pane, and choose
the name of a CEV. The AMI ID used by the CEV appears in the Configuration tab.

• In the AWS CLI, use the describe-db-engine-versions command. Search the
output for ImageID.

b. For S3 location of manifest files, enter the location of the Amazon S3 bucket that you
specified in Step 3: Upload your installation files to Amazon S3. For example, enter s3://
my-custom-installation-files/123456789012/cev1/.

Note

The AWS Region in which you create the CEV must be in the same Region as the
S3 bucket.

c. (Create new CEV only) For CEV manifest, enter the JSON manifest that you created in
Creating the CEV manifest.

7. In the KMS key section, select Enter a key ARN to list the available AWS KMS keys. Then select
your KMS key from the list.

An AWS KMS key is required for RDS Custom. For more information, see Step 1: Create or reuse
a symmetric encryption AWS KMS key.

8. (Optional) Choose Add new tag to create a key-value pair for your CEV.

9. Choose Create custom engine version.

If the JSON manifest is in an invalid format, the console displays Error validating the CEV
manifest. Fix the problems, and try again.

The Custom engine versions page appears. Your CEV is shown with the status Creating. The
process to create a CEV takes approximately two hours.

Working with CEVs for RDS Custom for Oracle 1809

Amazon Relational Database Service User Guide

AWS CLI

To create a CEV by using the AWS CLI, run the create-custom-db-engine-version command.

The following options are required:

• --engine – Specify the engine type. For a CDB, specify either custom-oracle-ee-cdb or
custom-oracle-se2-cdb. For a non-CDB, specify either custom-oracle-ee or custom-
oracle-se2. You can create CDBs only from a CEV created with custom-oracle-ee-cdb or
custom-oracle-se2-cdb. You can create non-CDBs only from a CEV created with custom-
oracle-ee or custom-oracle-se2.

• --engine-version – Specify the engine version. The format is major-engine-
version.customized_string. The CEV name must contain 1–50 alphanumeric characters,
underscores, dashes, or periods. The CEV name can't contain consecutive periods, as in
19..cdb_cev1.

• --kms-key-id – Specify an AWS KMS key.

• --manifest – Specify either manifest_json_string or --manifest file:file_name.
Newline characters aren't permitted in manifest_json_string. Make sure to escape double
quotes (") in the JSON code by prefixing them with a backslash (\).

The following example shows the manifest_json_string for 19c from Step 5: Prepare the
CEV manifest. The example sets new values for the Oracle base, Oracle home, and the ID and
name of the UNIX/Linux user and group. If you copy this string, remove all newline characters
before you paste it into your command.

"{\"mediaImportTemplateVersion\": \"2020-08-14\",
\"databaseInstallationFileNames\": [\"V982063-01.zip\"],
\"opatchFileNames\": [\"p6880880_190000_Linux-x86-64.zip\"],
\"psuRuPatchFileNames\": [\"p32126828_190000_Linux-x86-64.zip\"],
\"otherPatchFileNames\": [\"p29213893_1910000DBRU_Generic.zip\",
\"p29782284_1910000DBRU_Generic.zip\",\"p28730253_190000_Linux-
x86-64.zip\",\"p29374604_1910000DBRU_Linux-x86-64.zip\",
\"p28852325_190000_Linux-x86-64.zip\",\"p29997937_190000_Linux-x86-64.zip
\",\"p31335037_190000_Linux-x86-64.zip\",\"p31335142_190000_Generic.zip
\"]\"installationParameters\":{ \"unixGroupName\":\"dba\",
\ \"unixUname\":\"oracle\", \ \"oracleHome\":\"/home/oracle/
oracle.19.0.0.0.ru-2020-04.rur-2020-04.r1.EE.1\", \ \"oracleBase\":\"/
home/oracle/\"}}"

Working with CEVs for RDS Custom for Oracle 1810

https://docs.aws.amazon.com/cli/latest/reference/rds/create-custom-db-engine-version.html

Amazon Relational Database Service User Guide

• --database-installation-files-s3-bucket-name – Specify the same bucket name that
you specified in Step 3: Upload your installation files to Amazon S3. The AWS Region in which
you run create-custom-db-engine-version must be the same Region as your Amazon S3
bucket.

You can also specify the following options:

• --description – Specify a description of your CEV.

• --database-installation-files-s3-prefix – Specify the folder name that you specified
in Step 3: Upload your installation files to Amazon S3.

• --image-id – Specify an AMI ID that want to reuse. To find valid IDs, run the describe-db-
engine-versions command, and then search the output for ImageID. By default, RDS Custom
for Oracle uses the most recent available AMI.

The following example creates an Oracle multitenant CEV named 19.cdb_cev1. The example
reuses an existing AMI rather than use the latest available AMI. Make sure that the name of your
CEV starts with the major engine version number.

Example

For Linux, macOS, or Unix:

aws rds create-custom-db-engine-version \
 --engine custom-oracle-se2-cdb \
 --engine-version 19.cdb_cev1 \
 --database-installation-files-s3-bucket-name us-east-1-123456789012-custom-
installation-files \
 --database-installation-files-s3-prefix 123456789012/cev1 \
 --kms-key-id my-kms-key \
 --description "test cev" \
 --manifest manifest_string \
 --image-id ami-012a345678901bcde

For Windows:

aws rds create-custom-db-engine-version ^
 --engine custom-oracle-se2-cdb ^
 --engine-version 19.cdb_cev1 ^

Working with CEVs for RDS Custom for Oracle 1811

Amazon Relational Database Service User Guide

 --database-installation-files-s3-bucket-name us-east-1-123456789012-custom-
installation-files ^
 --database-installation-files-s3-prefix 123456789012/cev1 ^
 --kms-key-id my-kms-key ^
 --description "test cev" ^
 --manifest manifest_string ^
 --image-id ami-012a345678901bcde

Example

Get details about your CEV by using the describe-db-engine-versions command.

aws rds describe-db-engine-versions \
 --engine custom-oracle-se2-cdb \
 --include-all

The following partial sample output shows the engine, parameter groups, manifest, and other
information.

{
 "DBEngineVersions": [
 {
 "Engine": "custom-oracle-se2-cdb",
 "EngineVersion": "19.cdb_cev1",
 "DBParameterGroupFamily": "custom-oracle-se2-cdb-19",
 "DBEngineDescription": "Containerized Database for Oracle Custom SE2",
 "DBEngineVersionDescription": "test cev",
 "Image": {
 "ImageId": "ami-012a345678901bcde",
 "Status": "active"
 },
 "ValidUpgradeTarget": [],
 "SupportsLogExportsToCloudwatchLogs": false,
 "SupportsReadReplica": true,
 "SupportedFeatureNames": [],
 "Status": "available",
 "SupportsParallelQuery": false,
 "SupportsGlobalDatabases": false,
 "MajorEngineVersion": "19",
 "DatabaseInstallationFilesS3BucketName": "us-east-1-123456789012-custom-
installation-files",
 "DatabaseInstallationFilesS3Prefix": "123456789012/cev1",

Working with CEVs for RDS Custom for Oracle 1812

Amazon Relational Database Service User Guide

 "DBEngineVersionArn": "arn:aws:rds:us-east-1:123456789012:cev:custom-
oracle-se2-cdb/19.cdb_cev1/abcd12e3-4f5g-67h8-i9j0-k1234l56m789",
 "KMSKeyId": "arn:aws:kms:us-
east-1:732027699161:key/1ab2345c-6d78-9ef0-1gh2-3456i7j89k01",
 "CreateTime": "2023-03-07T19:47:58.131000+00:00",
 "TagList": [],
 "SupportsBabelfish": false,
...

Failure to create a CEV

If the process to create a CEV fails, RDS Custom issues RDS-EVENT-0198 with the message
Creation failed for custom engine version major-engine-version.cev_name, and
includes details about the failure. For example, the event prints missing files.

You can't modify a failed CEV. You can only delete it, then try again to create a CEV after fixing the
causes of the failure. For information about troubleshooting the reasons for CEV creation failure,
see Troubleshooting custom engine version creation for RDS Custom for Oracle.

Modifying CEV status

You can modify a CEV using the AWS Management Console or the AWS CLI. You can modify the
CEV description or its availability status. Your CEV has one of the following status values:

• available – You can use this CEV to create a new RDS Custom DB instance or upgrade a DB
instance. This is the default status for a newly created CEV.

• inactive – You can't create or upgrade an RDS Custom instance with this CEV. You can't restore
a DB snapshot to create a new RDS Custom DB instance with this CEV.

You can change the CEV from any supported status to any other supported status. You might
change status to prevent the accidental use of a CEV or make a discontinued CEV eligible for use
again. For example, you might change the status of your CEV from available to inactive, and
from inactive back to available.

Console

To modify a CEV

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Working with CEVs for RDS Custom for Oracle 1813

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Custom engine versions.

3. Choose a CEV whose description or status you want to modify.

4. For Actions, choose Modify.

5. Make any of the following changes:

• For CEV status settings, choose a new availability status.

• For Version description, enter a new description.

6. Choose Modify CEV.

If the CEV is in use, the console displays You can't modify the CEV status. Fix the problems,
and try again.

The Custom engine versions page appears.

AWS CLI

To modify a CEV by using the AWS CLI, run the modify-custom-db-engine-version command. You
can find CEVs to modify by running the describe-db-engine-versions command.

The following options are required:

• --engine engine-type, where engine-type is custom-oracle-ee, custom-oracle-se2,
custom-oracle-ee-cdb, or custom-oracle-se2-cdb

• --engine-version cev, where cev is the name of the custom engine version that you want
to modify

• --status status, where status is the availability status that you want to assign to the CEV

The following example changes a CEV named 19.my_cev1 from its current status to inactive.

Example

For Linux, macOS, or Unix:

aws rds modify-custom-db-engine-version \
 --engine custom-oracle-se2 \
 --engine-version 19.my_cev1 \
 --status inactive

Working with CEVs for RDS Custom for Oracle 1814

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-custom-db-engine-version.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

For Windows:

aws rds modify-custom-db-engine-version ^
 --engine custom-oracle-se2 ^
 --engine-version 19.my_cev1 ^
 --status inactive

Viewing CEV details for Amazon RDS Custom for Oracle

You can view details about your CEV manifest and the command used to create your CEV by using
the AWS Management Console or the AWS CLI.

Console

To view CEV details

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Custom engine versions.

The Custom engine versions page shows all CEVs that currently exist. If you haven't created
any CEVs, the page is empty.

3. Choose the name of the CEV that you want to view.

4. Choose Configuration to view the installation parameters specified in your manifest.

Working with CEVs for RDS Custom for Oracle 1815

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Choose Manifest to view the installation parameters specified in the --manifest option of
the create-custom-db-engine-version command. You can copy this text, replace values
as needed, and use them in a new command.

AWS CLI

To view details about a CEV by using the AWS CLI, run the describe-db-engine-versions command.

The following options are required:

Working with CEVs for RDS Custom for Oracle 1816

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

• --engine engine-type, where engine-type is custom-oracle-ee, custom-oracle-se2,
custom-oracle-ee-cdb, or custom-oracle-se2-cdb

• --engine-version major-engine-version.customized_string

The following example creates a non-CDB CEV that uses Enterprise Edition. The CEV name
19.my_cev1 starts with the major engine version number, which is required.

Example

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine custom-oracle-ee \
 --engine-version 19.my_cev1

For Windows:

aws rds describe-db-engine-versions ^
 --engine custom-oracle-ee ^
 --engine-version 19.my_cev1

The following partial sample output shows the engine, parameter groups, manifest, and other
information.

"DBEngineVersions": [
 {
 "Engine": "custom-oracle-ee",
 "MajorEngineVersion": "19",
 "EngineVersion": "19.my_cev1",
 "DatabaseInstallationFilesS3BucketName": "us-east-1-123456789012-cev-customer-
installation-files",
 "DatabaseInstallationFilesS3Prefix": "123456789012/cev1",
 "CustomDBEngineVersionManifest": "{\n\"mediaImportTemplateVersion\":
 \"2020-08-14\",\n\"databaseInstallationFileNames\": [\n\"V982063-01.zip\"\n],
\n\"installationParameters\": {\n\"oracleBase\":\"/tmp\",\n\"oracleHome\":\"/
tmp/Oracle\"\n},\n\"opatchFileNames\": [\n\"p6880880_190000_Linux-x86-64.zip
\"\n],\n\"psuRuPatchFileNames\": [\n\"p32126828_190000_Linux-x86-64.zip
\"\n],\n\"otherPatchFileNames\": [\n\"p29213893_1910000DBRU_Generic.zip\",\n
\"p29782284_1910000DBRU_Generic.zip\",\n\"p28730253_190000_Linux-x86-64.zip\",\n
\"p29374604_1910000DBRU_Linux-x86-64.zip\",\n\"p28852325_190000_Linux-x86-64.zip\",

Working with CEVs for RDS Custom for Oracle 1817

Amazon Relational Database Service User Guide

\n\"p29997937_190000_Linux-x86-64.zip\",\n\"p31335037_190000_Linux-x86-64.zip\",\n
\"p31335142_190000_Generic.zip\"\n]\n}\n",
 "DBParameterGroupFamily": "custom-oracle-ee-19",
 "DBEngineDescription": "Oracle Database server EE for RDS Custom",
 "DBEngineVersionArn": "arn:aws:rds:us-west-2:123456789012:cev:custom-oracle-
ee/19.my_cev1/0a123b45-6c78-901d-23e4-5678f901fg23",
 "DBEngineVersionDescription": "test",
 "KMSKeyId": "arn:aws:kms:us-east-1:123456789012:key/ab1c2de3-f4g5-6789-h012-
h3ijk4567l89",
 "CreateTime": "2022-11-18T09:17:07.693000+00:00",
 "ValidUpgradeTarget": [
 {
 "Engine": "custom-oracle-ee",
 "EngineVersion": "19.cev.2021-01.09",
 "Description": "test",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": false
 }
]

Deleting a CEV

You can delete a CEV using the AWS Management Console or the AWS CLI. Typically, deletion takes
a few minutes.

To delete a CEV, it can't be in use by any of the following:

• An RDS Custom DB instance

• A snapshot of an RDS Custom DB instance

• An automated backup of your RDS Custom DB instance

Console

To delete a CEV

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Custom engine versions.

3. Choose a CEV whose description or status you want to delete.

4. For Actions, choose Delete.

Working with CEVs for RDS Custom for Oracle 1818

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The Delete cev_name? dialog box appears.

5. Enter delete me, and then choose Delete.

In the Custom engine versions page, the banner shows that your CEV is being deleted.

AWS CLI

To delete a CEV by using the AWS CLI, run the delete-custom-db-engine-version command.

The following options are required:

• --engine engine-type, where engine-type is custom-oracle-ee, custom-oracle-se2,
custom-oracle-ee-cdb, or custom-oracle-se2-cdb

• --engine-version cev, where cev is the name of the custom engine version to be deleted

The following example deletes a CEV named 19.my_cev1.

Example

For Linux, macOS, or Unix:

aws rds delete-custom-db-engine-version \
 --engine custom-oracle-ee \
 --engine-version 19.my_cev1

For Windows:

aws rds delete-custom-db-engine-version ^
 --engine custom-oracle-ee ^
 --engine-version 19.my_cev1

Working with CEVs for RDS Custom for Oracle 1819

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-custom-db-engine-version.html

Amazon Relational Database Service User Guide

Configuring a DB instance for Amazon RDS Custom for Oracle

You can create an RDS Custom DB instance, and then connect to it using Secure Shell (SSH) or AWS
Systems Manager.

For more information about connecting and logging in to a RDS Custom for Oracle DB instance, see
the following topics.

• Connecting to your RDS Custom DB instance using Session Manager

• Connecting to your RDS Custom DB instance using SSH

• Logging in to your RDS Custom for Oracle database as SYS

Creating an RDS Custom for Oracle DB instance

Create an Amazon RDS Custom for Oracle DB instance using either the AWS Management Console
or the AWS CLI. The procedure is similar to the procedure for creating an Amazon RDS DB instance.
For more information, see Creating an Amazon RDS DB instance.

If you included installation parameters in your CEV manifest, then your DB instance uses the Oracle
base, Oracle home, and the ID and name of the UNIX/Linux user and group that you specified. The
oratab file, which is created by Oracle Database during installation, points to the real installation
location rather than to a symbolic link. When RDS Custom for Oracle runs commands, it runs as the
configured OS user rather than the default user rdsdb. For more information, see Step 5: Prepare
the CEV manifest.

Before you attempt to create or connect to an RDS Custom DB instance, complete the tasks in
Setting up your environment for Amazon RDS Custom for Oracle.

Console

To create an RDS Custom for Oracle DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. In Choose a database creation method, select Standard create.

Configuring an RDS Custom for Oracle DB instance 1820

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. In the Engine options section, do the following:

a. For Engine type, choose Oracle.

b. For Database management type, choose Amazon RDS Custom.

c. For Architecture settings, do one of the following:

• Select Multitenant architecture to create a container database (CDB). At creation, your
CDB contains one PDB seed and one initial PDB.

Note

The Multitenant architecture setting is supported only for Oracle Database 19c.

• Clear Multitenant architecture to create a non-CDB. A non-CDB can't contain PDBs.

d. For Edition, choose Oracle Enterprise Edition or Oracle Standard Edition 2.

e. For Custom engine version, choose an existing RDS Custom custom engine version (CEV).
A CEV has the following format: major-engine-version.customized_string. An
example identifier is 19.cdb_cev1.

If you chose Multitenant architecture in the previous step, you can only specify a CEV
that uses the custom-oracle-ee-cdb or custom-oracle-se2-cdb engine type. The
console filters out CEVs that were created with different engine types.

6. In Templates, choose Production.

7. In the Settings section, do the following:

a. For DB instance identifier, enter a unique name for your DB instance.

b. For Master username, enter a username. You can retrieve this value from the console
later.

When you connect to a non-CDB, the master user is the user for the non-CDB. When you
connect to a CDB, the master user is the user for the PDB. To connect to the CDB root, log
in to the host, start a SQL client, and create an administrative user with SQL commands.

c. Clear Auto generate a password.

8. Choose a DB instance class.

For supported classes, see DB instance class support for RDS Custom for Oracle.

9. In the Storage section, do the following:
Configuring an RDS Custom for Oracle DB instance 1821

Amazon Relational Database Service User Guide

a. For Storage type, choose an SSD type: io1, gp2, or gp3. You have the following additional
options:

• For io1 or gp3, choose a rate for Provisioned IOPS. The default is 1000 for io1 and
12000 for gp3.

• For gp3, choose a rate for Storage throughput. The default is 500 MiBps.

b. For Allocated storage, choose a storage size. The default is 40 GiB.

10. For Connectivity, specify your Virtual private cloud (VPC), DB subnet group, and VPC
security group (firewall).

11. For RDS Custom security, do the following:

a. For IAM instance profile, choose the instance profile for your RDS Custom for Oracle DB
instance.

The IAM instance profile must begin with AWSRDSCustom, for example
AWSRDSCustomInstanceProfileForRdsCustomInstance.

b. For Encryption, choose Enter a key ARN to list the available AWS KMS keys. Then choose
your key from the list.

An AWS KMS key is required for RDS Custom. For more information, see Step 1: Create or
reuse a symmetric encryption AWS KMS key.

12. For Database options, do the following:

a. (Optional) For System ID (SID), enter a value for the Oracle SID, which is also the name
of your CDB. The SID is the name of the Oracle database instance that manages your
database files. In this context, the term "Oracle database instance" refers exclusively to the
system global area (SGA) and Oracle background processes. If you don't specify a SID, the
value defaults to RDSCDB.

b. (Optional) For Initial database name, enter a name. The default value is ORCL. In the
multitenant architecture, the initial database name is the PDB name.

Note

The SID and PDB name must be different.

c. For Option group, choose an option group or accept the default.

Configuring an RDS Custom for Oracle DB instance 1822

Amazon Relational Database Service User Guide

Note

The only supported option for RDS Custom for Oracle is Timezone. For more
information, see Oracle time zone.

d. For Backup retention period choose a value. You can't choose 0 days.

e. For the remaining sections, specify your preferred RDS Custom DB instance settings. For
information about each setting, see Settings for DB instances. The following settings don't
appear in the console and aren't supported:

• Processor features

• Storage autoscaling

• Password and Kerberos authentication option in Database authentication (only
Password authentication is supported)

• Performance Insights

• Log exports

• Enable auto minor version upgrade

• Deletion protection

13. Choose Create database.

Important

When you create an RDS Custom for Oracle DB instance, you might receive the
following error: The service-linked role is in the process of being created. Try again
later. If you do, wait a few minutes and then try again to create the DB instance.

The View credential details button appears on the Databases page.

To view the master user name and password for the RDS Custom DB instance, choose View
credential details.

To connect to the DB instance as the master user, use the user name and password that
appear.

Configuring an RDS Custom for Oracle DB instance 1823

Amazon Relational Database Service User Guide

Important

You can't view the master user password again in the console. If you don't record
it, you might have to change it. To change the master user password after the RDS
Custom DB instance is available, log in to the database and run an ALTER USER
command. You can't reset the password using the Modify option in the console.

14. Choose Databases to view the list of RDS Custom DB instances.

15. Choose the RDS Custom DB instance that you just created.

On the RDS console, the details for the new RDS Custom DB instance appear:

• The DB instance has a status of creating until the RDS Custom DB instance is created and
ready for use. When the state changes to available, you can connect to the DB instance.
Depending on the instance class and storage allocated, it can take several minutes for the
new DB instance to be available.

• Role has the value Instance (RDS Custom).

• RDS Custom automation mode has the value Full automation. This setting means that the
DB instance provides automatic monitoring and instance recovery.

AWS CLI

You create an RDS Custom DB instance by using the create-db-instance AWS CLI command.

The following options are required:

• --db-instance-identifier

• --db-instance-class (for a list of supported instance classes, see DB instance class support
for RDS Custom for Oracle)

• --engine engine-type, where engine-type is custom-oracle-ee, custom-oracle-se2,
custom-oracle-ee-cdb, or custom-oracle-se2-cdb

• --engine-version cev (where cev is the name of the custom engine version that you
specified in Creating a CEV)

• --kms-key-id my-kms-key

• --backup-retention-period days (where days is a value greater than 0)

Configuring an RDS Custom for Oracle DB instance 1824

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

• --no-auto-minor-version-upgrade

• --custom-iam-instance-profile AWSRDSCustomInstanceProfile-us-east-1 (where
region is the AWS Region where you are creating your DB instance)

The following example creates an RDS Custom DB instance named my-cfo-cdb-instance. The
database is a CDB with the nondefault name MYCDB. The nondefault PDB name is MYPDB. The
backup retention period is three days.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --engine custom-oracle-ee-cdb \
 --db-instance-identifier my-cfo-cdb-instance \
 --engine-version 19.cdb_cev1 \
 --db-name MYPDB \
 --db-system-id MYCDB \
 --allocated-storage 250 \
 --db-instance-class db.m5.xlarge \
 --db-subnet-group mydbsubnetgroup \
 --master-username myuser \
 --master-user-password mypassword \
 --backup-retention-period 3 \
 --port 8200 \
 --kms-key-id my-kms-key \
 --no-auto-minor-version-upgrade \
 --custom-iam-instance-profile AWSRDSCustomInstanceProfile-us-east-1

For Windows:

aws rds create-db-instance ^
 --engine custom-oracle-ee-cdb ^
 --db-instance-identifier my-cfo-cdb-instance ^
 --engine-version 19.cdb_cev1 ^
 --db-name MYPDB ^
 --db-system-id MYCDB ^
 --allocated-storage 250 ^
 --db-instance-class db.m5.xlarge ^
 --db-subnet-group mydbsubnetgroup ^
 --master-username myuser ^

Configuring an RDS Custom for Oracle DB instance 1825

Amazon Relational Database Service User Guide

 --master-user-password mypassword ^
 --backup-retention-period 3 ^
 --port 8200 ^
 --kms-key-id my-kms-key ^
 --no-auto-minor-version-upgrade ^
 --custom-iam-instance-profile AWSRDSCustomInstanceProfile-us-east-1

Note

Specify a password other than the prompt shown here as a security best practice.

Get details about your instance by using the describe-db-instances command.

Example

aws rds describe-db-instances --db-instance-identifier my-cfo-cdb-instance

The following partial output shows the engine, parameter groups, and other information.

 {
 "DBInstanceIdentifier": "my-cfo-cdb-instance",
 "DBInstanceClass": "db.m5.xlarge",
 "Engine": "custom-oracle-ee-cdb",
 "DBInstanceStatus": "available",
 "MasterUsername": "admin",
 "DBName": "MYPDB",
 "DBSystemID": "MYCDB",
 "Endpoint": {
 "Address": "my-cfo-cdb-instance.abcdefghijkl.us-
east-1.rds.amazonaws.com",
 "Port": 1521,
 "HostedZoneId": "A1B2CDEFGH34IJ"
 },
 "AllocatedStorage": 100,
 "InstanceCreateTime": "2023-04-12T18:52:16.353000+00:00",
 "PreferredBackupWindow": "08:46-09:16",
 "BackupRetentionPeriod": 7,
 "DBSecurityGroups": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-0a1bcd2e",

Configuring an RDS Custom for Oracle DB instance 1826

Amazon Relational Database Service User Guide

 "Status": "active"
 }
],
 "DBParameterGroups": [
 {
 "DBParameterGroupName": "default.custom-oracle-ee-cdb-19",
 "ParameterApplyStatus": "in-sync"
 }
],
...

Multitenant architecture considerations

If you create an Amazon RDS Custom for Oracle DB instance with the Oracle multitenant
architecture (custom-oracle-ee-cdb or custom-oracle-se2-cdb engine type), your database
is a container database (CDB). If you don't specify the Oracle multitenant architecture, your
database is a traditional non-CDB that uses the custom-oracle-ee or custom-oracle-se2
engine type. A non-CDB can't contain pluggable databases (PDBs). For more information, see
Database architecture for Amazon RDS Custom for Oracle.

When you create an RDS Custom for Oracle CDB instance, consider the following:

• You can create a multitenant database only from an Oracle Database 19c CEV.

• You can create a CDB instance only if the CEV uses the custom-oracle-ee-cdb or custom-
oracle-se2-cdb engine type.

• If you create a CDB instance using Standard Edition 2, the CDB can contain a maximum of 3
PDBs.

• By default, your CDB is named RDSCDB, which is also the name of the Oracle System ID (Oracle
SID). You can choose a different name.

• You CDB contains only one initial PDB. The PDB name defaults to ORCL. You can choose a
different name for your initial PDB, but the Oracle SID and the PDB name can’t be the same.

• RDS Custom for Oracle doesn't supply APIs for PDBs. To create additional PDBs, use the Oracle
SQL command CREATE PLUGGABLE DATABASE. RDS Custom for Oracle doesn't restrict the
number of PDBs that you can create. In general, you are responsible for creating and managing
PDBs, as in an on-premises deployment.

• You can't use RDS APIs to create, modify, and delete PDBs: you must use Oracle SQL statements.
When you create a PDB using Oracle SQL, we recommend that you take a manual snapshot
afterward in case you need to perform point-in-time recovery (PITR).

Configuring an RDS Custom for Oracle DB instance 1827

Amazon Relational Database Service User Guide

• You can't rename existing PDBs using Amazon RDS APIs. You also can't rename the CDB using the
modify-db-instance command.

• The open mode for the CDB root is READ WRITE on the primary and MOUNTED on a mounted
standby database. RDS Custom for Oracle attempts to open all PDBs when opening the CDB. If
RDS Custom for Oracle can’t open all PDBs, it issues the event tenant database shutdown.

RDS Custom service-linked role

A service-linked role gives Amazon RDS Custom access to resources in your AWS account. It makes
using RDS Custom easier because you don't have to manually add the necessary permissions. RDS
Custom defines the permissions of its service-linked roles, and unless defined otherwise, only RDS
Custom can assume its roles. The defined permissions include the trust policy and the permissions
policy, and that permissions policy can't be attached to any other IAM entity.

When you create an RDS Custom DB instance, both the Amazon RDS and RDS Custom service-
linked roles are created (if they don't already exist) and used. For more information, see Using
service-linked roles for Amazon RDS.

The first time that you create an RDS Custom for Oracle DB instance, you might receive the
following error: The service-linked role is in the process of being created. Try again later. If you do,
wait a few minutes and then try again to create the DB instance.

Installing additional software components on your RDS Custom for Oracle DB
instance

In a newly created DB instance, your database environment includes Oracle binaries, a database,
and a database listener. You might want to install additional software on the host operating
system of the DB instance. For example, you might want to install Oracle Application Express
(APEX), the Oracle Enterprise Manager (OEM) agent, or the Guardium S-TAP agent. For guidelines
and high-level instructions, see the detailed AWS blog post Install additional software components
on Amazon RDS Custom for Oracle.

Connecting to your RDS Custom DB instance using Session Manager

After you create your RDS Custom DB instance, you can connect to it using AWS Systems Manager
Session Manager. This is the preferred technique when your DB instance isn't publicly accessible.

Session Manager allows you to access Amazon EC2 instances through a browser-based shell or
through the AWS CLI. For more information, see AWS Systems Manager Session Manager.

Configuring an RDS Custom for Oracle DB instance 1828

https://aws.amazon.com/blogs/database/install-additional-software-components-on-amazon-rds-custom-for-oracle/
https://aws.amazon.com/blogs/database/install-additional-software-components-on-amazon-rds-custom-for-oracle/
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html

Amazon Relational Database Service User Guide

Console

To connect to your DB instance using Session Manager

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom DB instance to
which you want to connect.

3. Choose Configuration.

4. Note the Resource ID for your DB instance. For example, the resource ID might be db-
ABCDEFGHIJKLMNOPQRS0123456.

5. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

6. In the navigation pane, choose Instances.

7. Look for the name of your EC2 instance, and then click the instance ID associated with it. For
example, the instance ID might be i-abcdefghijklm01234.

8. Choose Connect.

9. Choose Session Manager.

10. Choose Connect.

A window opens for your session.

AWS CLI

You can connect to your RDS Custom DB instance using the AWS CLI. This technique requires the
Session Manager plugin for the AWS CLI. To learn how to install the plugin, see Install the Session
Manager plugin for the AWS CLI.

To find the DB resource ID of your RDS Custom DB instance, use aws rds describe-db-
instances.

aws rds describe-db-instances \
 --query 'DBInstances[*].[DBInstanceIdentifier,DbiResourceId]' \
 --output text

The following sample output shows the resource ID for your RDS Custom instance. The prefix is
db-.

Configuring an RDS Custom for Oracle DB instance 1829

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

db-ABCDEFGHIJKLMNOPQRS0123456

To find the EC2 instance ID of your DB instance, use aws ec2 describe-instances. The
following example uses db-ABCDEFGHIJKLMNOPQRS0123456 for the resource ID.

aws ec2 describe-instances \
 --filters "Name=tag:Name,Values=db-ABCDEFGHIJKLMNOPQRS0123456" \
 --output text \
 --query 'Reservations[*].Instances[*].InstanceId'

The following sample output shows the EC2 instance ID.

i-abcdefghijklm01234

Use the aws ssm start-session command, supplying the EC2 instance ID in the --target
parameter.

aws ssm start-session --target "i-abcdefghijklm01234"

A successful connection looks like the following.

Starting session with SessionId: yourid-abcdefghijklm1234
[ssm-user@ip-123-45-67-89 bin]$

Connecting to your RDS Custom DB instance using SSH

The Secure Shell Protocol (SSH) is a network protocol that supports encrypted communication over
an unsecured network. After you create your RDS Custom DB instance, you can connect to it using
an ssh client. For more information, see Connecting to your Linux instance using SSH.

Your SSH connection technique depends on whether your DB instance is private, meaning that
it doesn't accept connections from the public internet. In this case, you must use SSH tunneling
to connect the ssh utility to your instance. This technique transports data with a dedicated data
stream (tunnel) inside an existing SSH session. You can configure SSH tunneling using AWS
Systems Manager.

Configuring an RDS Custom for Oracle DB instance 1830

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html

Amazon Relational Database Service User Guide

Note

Various strategies are supported for accessing private instances. To learn how to connect
an ssh client to private instances using bastion hosts, see Linux Bastion Hosts on AWS. To
learn how to configure port forwarding, see Port Forwarding Using AWS Systems Manager
Session Manager.

If your DB instance is in a public subnet and has the publicly available setting, then no SSH
tunneling is required. You can connect with SSH just as would to a public Amazon EC2 instance.

To connect an ssh client to your DB instance, complete the following steps:

1. Step 1: Configure your DB instance to allow SSH connections

2. Step 2: Retrieve your SSH secret key and EC2 instance ID

3. Step 3: Connect to your EC2 instance using the ssh utility

Step 1: Configure your DB instance to allow SSH connections

To make sure that your DB instance can accept SSH connections, do the following:

• Make sure that your DB instance security group permits inbound connections on port 22 for TCP.

To learn how to configure the security group for your DB instance, see Controlling access with
security groups.

• If you don't plan to use SSH tunneling, make sure your DB instance resides in a public subnet and
is publicly accessible.

In the console, the relevant field is Publicly accessible on the Connectivity & security tab of the
database details page. To check your settings in the CLI, run the following command:

aws rds describe-db-instances \
--query 'DBInstances[*].
{DBInstanceIdentifier:DBInstanceIdentifier,PubliclyAccessible:PubliclyAccessible}' \
--output table

To change the accessibility settings for your DB instance, see Modifying an Amazon RDS DB
instance.

Configuring an RDS Custom for Oracle DB instance 1831

https://aws.amazon.com/solutions/implementations/linux-bastion/
https://aws.amazon.com/blogs/aws/new-port-forwarding-using-aws-system-manager-sessions-manager/
https://aws.amazon.com/blogs/aws/new-port-forwarding-using-aws-system-manager-sessions-manager/

Amazon Relational Database Service User Guide

Step 2: Retrieve your SSH secret key and EC2 instance ID

To connect to the DB instance using SSH, you need the SSH key pair associated with the instance.
RDS Custom creates the SSH key pair on your behalf, using the naming convention do-not-
delete-rds-custom-ssh-privatekey-resource_id-uuid or rds-custom!oracle-do-
not-delete-resource_id-uuid-ssh-privatekey. AWS Secrets Manager stores your SSH
private key as a secret.

Retrieve your SSH secret key using either AWS Management Console or the AWS CLI. If your
instance has a public DNS, and you don't intend to use SSH tunneling, then also retrieve the DNS
name. You specify the DNS name for public connections.

Console

To retrieve the secret SSH key

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom DB instance to
which you want to connect.

3. Choose Configuration.

4. Note the Resource ID value. For example, the DB instance resource ID might be db-
ABCDEFGHIJKLMNOPQRS0123456.

5. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

6. In the navigation pane, choose Instances.

7. Find the name of your EC2 instance, and choose the instance ID associated with it. For
example, the EC2 instance ID might be i-abcdefghijklm01234.

8. In Details, find Key pair name. The pair name includes the DB instance resource ID. For
example, the pair name might be do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c or rds-custom!oracle-do-not-delete-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-privatekey.

9. If your EC2 instance is public, note the Public IPv4 DNS. For the example, the
public Domain Name System (DNS) address might be ec2-12-345-678-901.us-
east-2.compute.amazonaws.com.

10. Open the AWS Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

11. Choose the secret that has the same name as your key pair.

Configuring an RDS Custom for Oracle DB instance 1832

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/secretsmanager/

Amazon Relational Database Service User Guide

12. Choose Retrieve secret value.

13. Copy the SSH private key into a text file, and then save the file with the .pem extension. For
example, save the file as /tmp/do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c.pem or /tmp/rds-custom!oracle-do-not-
delete-db-ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-privatekey.pem.

AWS CLI

To retrieve the SSH private key and save it in a .pem file, you can use the AWS CLI.

1. Find the DB resource ID of your RDS Custom DB instance using aws rds describe-db-
instances.

aws rds describe-db-instances \
 --query 'DBInstances[*].[DBInstanceIdentifier,DbiResourceId]' \
 --output text

The following sample output shows the resource ID for your RDS Custom instance. The prefix is
db-.

db-ABCDEFGHIJKLMNOPQRS0123456

2. Find the EC2 instance ID of your DB instance using aws ec2 describe-instances. The
following example uses db-ABCDEFGHIJKLMNOPQRS0123456 for the resource ID.

aws ec2 describe-instances \
 --filters "Name=tag:Name,Values=db-ABCDEFGHIJKLMNOPQRS0123456" \
 --output text \
 --query 'Reservations[*].Instances[*].InstanceId'

The following sample output shows the EC2 instance ID.

i-abcdefghijklm01234

3. To find the key name, specify the EC2 instance ID. The following example describes EC2
instance i-0bdc4219e66944afa.

aws ec2 describe-instances \
 --instance-ids i-0bdc4219e66944afa \

Configuring an RDS Custom for Oracle DB instance 1833

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

 --output text \
 --query 'Reservations[*].Instances[*].KeyName'

The following sample output shows the key name, which uses the naming format do-not-
delete-rds-custom-ssh-privatekey-resource_id-uuid or rds-custom!oracle-
do-not-delete-resource_id-uuid-ssh-privatekey.

do-not-delete-rds-custom-ssh-privatekey-db-ABCDEFGHIJKLMNOPQRS0123456-0d726c
rds-custom!oracle-do-not-delete-db-ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-privatekey

4. Save the private key in a .pem file named after the key using aws secretsmanager.

The following example saves the key do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c to a file in your /tmp directory.

aws secretsmanager get-secret-value \
 --secret-id do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c \
 --query SecretString \
 --output text >/tmp/do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c.pem

The following example saves the key rds-custom!oracle-do-not-delete-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-privatekey to a file in your /tmp
directory.

aws secretsmanager get-secret-value \
 --secret-id rds-custom!oracle-do-not-delete-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-privatekey \
 --query SecretString \
 --output text >/tmp/rds-custom!oracle-do-not-delete-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-privatekey.pem

Step 3: Connect to your EC2 instance using the ssh utility

Your connection technique depends on whether you are connecting to a private DB instance or
connecting to a public instance. A private connection requires you to configure SSH tunneling
through AWS Systems Manager.

Configuring an RDS Custom for Oracle DB instance 1834

Amazon Relational Database Service User Guide

To connect to an EC2 instance using the ssh utility

1. For private connections, modify your SSH configuration file to proxy commands to AWS
Systems Manager Session Manager. For public connections, skip to Step 2.

Add the following lines to ~/.ssh/config. These lines proxy SSH commands for hosts whose
names begin with i- or mi-.

Host i-* mi-*
 ProxyCommand sh -c "aws ssm start-session --target %h --document-name AWS-
StartSSHSession --parameters 'portNumber=%p'"

2. Change to the directory that contains your .pem file. Using chmod, set the permissions to 400.

The following example changes to the /tmp directory and sets permissions
for .pem file do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c.pem.

cd /tmp
chmod 400 do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c.pem

The following example changes to the /tmp directory and sets permissions for .pem file rds-
custom!oracle-do-not-delete-db-ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-
privatekey.pem.

cd /tmp
chmod 400 rds-custom!oracle-do-not-delete-db-ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-
privatekey.pem

3. Run the ssh utility, specifying the .pem file and either the public DNS name (for public
connections) or the EC2 instance ID (for private connections). Log in as user ec2-user.

The following example connects to a public instance using the DNS name
ec2-12-345-678-901.us-east-2.compute.amazonaws.com.

.pem file using naming prefix do-not-delete
ssh -i \
 "do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c.pem" \
 ec2-user@ec2-12-345-678-901.us-east-2.compute.amazonaws.com

Configuring an RDS Custom for Oracle DB instance 1835

Amazon Relational Database Service User Guide

.pem file using naming prefix rds-custom!oracle-do-not-delete
ssh -i \
 "rds-custom!oracle-do-not-delete-db-ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-
privatekey.pem" \
 ec2-user@ec2-12-345-678-901.us-east-2.compute.amazonaws.com

The following example connects to a private instance using the EC2 instance ID
i-0bdc4219e66944afa.

.pem file using naming prefix do-not-delete
ssh -i \
 "do-not-delete-rds-custom-ssh-privatekey-db-
ABCDEFGHIJKLMNOPQRS0123456-0d726c.pem" \
 ec2-user@i-0bdc4219e66944afa

.pem file using naming prefix rds-custom!oracle-do-not-delete
ssh -i \
 "rds-custom!oracle-do-not-delete-db-ABCDEFGHIJKLMNOPQRS0123456-0d726c-ssh-
privatekey.pem" \
 ec2-user@i-0bdc4219e66944afa

Logging in to your RDS Custom for Oracle database as SYS

After you create your RDS Custom DB instance, you can log in to your Oracle database as user SYS,
which gives you SYSDBA privileges. You have the following login options:

• Get the SYS password from Secrets Manager, and specify this password in your SQL client.

• Use OS authentication to log in to your database. In this case, you don't need a password.

Finding the SYS password for your RDS Custom for Oracle database

Your can log in to your Oracle database as SYS or SYSTEM or by specifying the master user name in
an API call. The password for SYS and SYSTEM is stored in Secrets Manager.

The secret uses the naming format do-not-delete-rds-custom-resource_id-uuid or rds-
custom!oracle-do-not-delete-resource_id-uuid. You can find the password using the
AWS Management Console.

Configuring an RDS Custom for Oracle DB instance 1836

Amazon Relational Database Service User Guide

Console

To find the SYS password for your database in Secrets Manager

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the RDS console, complete the following steps:

a. In the navigation pane, choose Databases.

b. Choose the name of your RDS Custom for Oracle DB instance.

c. Choose Configuration.

d. Copy the value underneath Resource ID. For example, you resource ID might be db-
ABC12CDE3FGH4I5JKLMNO6PQR7.

3. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

4. In the Secrets Manager console, complete the following steps:

a. In the left navigation pane, choose Secrets.

b. Filter the secrets by the resource ID that you copied in step 2.d.

c. Choose the secret that uses the naming format do-not-delete-rds-
custom-resource_id-uuid or rds-custom!oracle-do-not-delete-resource_id-uuid.
The resource_id is the resource ID that you copied in step 2.d.

For example, if your resource ID is db-ABC12CDE3FGH4I5JKLMNO6PQR7 and
your UUID is 1234ab, your secret is named do-not-delete-rds-custom-db-
ABC12CDE3FGH4I5JKLMNO6PQR7-1234ab or rds-custom!oracle-do-not-delete-db-
ABC12CDE3FGH4I5JKLMNO6PQR7-1234ab.

d. In Secret value, choose Retrieve secret value.

e. In Key/value, copy the value for password.

5. Install SQL*Plus on your DB instance and log in to your database as SYS. For more information,
see Step 3: Connect your SQL client to an Oracle DB instance.

Logging in to your RDS Custom for Oracle database using OS authentication

The OS user rdsdb owns the Oracle database binaries. You can switch to the rdsdb user and log in
to your RDS Custom for Oracle database without a password.

Configuring an RDS Custom for Oracle DB instance 1837

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/secretsmanager/

Amazon Relational Database Service User Guide

1. Connect to your DB instance with AWS Systems Manager. For more information, see
Connecting to your RDS Custom DB instance using Session Manager.

2. In a web browser, go to https://www.oracle.com/database/technologies/instant-client/linux-
x86-64-downloads.html.

3. For the latest database version that appears on the web page, copy the .rpm links (not the .zip
links) for the Instant Client Basic Package and SQL*Plus Package. For example, the following
links are for Oracle Database version 21.9:

• https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-basic-21.9.0.0.0-1.el8.x86_64.rpm

• https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-sqlplus-21.9.0.0.0-1.el8.x86_64.rpm

4. In your SSH session, run the wget command to the download the .rpm files from the links that
you obtained in the previous step. The following example downloads the .rpm files for Oracle
Database version 21.9:

wget https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-basic-21.9.0.0.0-1.el8.x86_64.rpm
wget https://download.oracle.com/otn_software/linux/instantclient/219000/oracle-
instantclient-sqlplus-21.9.0.0.0-1.el8.x86_64.rpm

5. Install the packages by running the yum command as follows:

sudo yum install oracle-instantclient-*.rpm

6. Switch to the rdsdb user.

sudo su - rdsdb

7. Log in to your database using OS authentication.

$ sqlplus / as sysdba

SQL*Plus: Release 21.0.0.0.0 - Production on Wed Apr 12 20:11:08 2023
Version 21.9.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Configuring an RDS Custom for Oracle DB instance 1838

https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html

Amazon Relational Database Service User Guide

Connected to:
Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.10.0.0.0

Configuring an RDS Custom for Oracle DB instance 1839

Amazon Relational Database Service User Guide

Managing an Amazon RDS Custom for Oracle DB instance

Amazon RDS Custom supports a subset of the usual management tasks for Amazon RDS
DB instances. Following, you can find instructions for the supported RDS Custom for Oracle
management tasks using the AWS Management Console and the AWS CLI.

Topics

• Working with container databases (CDBs) in RDS Custom for Oracle

• Working with high availability features for RDS Custom for Oracle

• Customizing your RDS Custom environment

• Modifying your RDS Custom for Oracle DB instance

• Changing the character set of an RDS Custom for Oracle DB instance

• Setting the NLS_LANG value in RDS Custom for Oracle

• Support for Transparent Data Encryption

• Tagging RDS Custom for Oracle resources

• Deleting an RDS Custom for Oracle DB instance

Working with container databases (CDBs) in RDS Custom for Oracle

You can either create your RDS Custom for Oracle DB instance with the Oracle multitenant
architecture (custom-oracle-ee-cdb or custom-oracle-se2-cdb engine type) or with the
traditional non-CDB architecture (custom-oracle-ee or custom-oracle-se2 engine type).
When you create a container database (CDB), it contains one pluggable database (PDB) and one
PDB seed. You can create additional PDBs manually using Oracle SQL.

PDB and CDB names

When you create an RDS Custom for Oracle CDB instance, you specify a name for the initial PDB. By
default, your initial PDB is named ORCL. You can choose a different name.

By default, your CDB is named RDSCDB. You can choose a different name. The CDB name is also the
name of your Oracle system identifier (SID), which uniquely identifies the memory and processes
that manage your CDB. For more information about the Oracle SID, see Oracle System Identifier
(SID) in Oracle Database Concepts.

You can't rename existing PDBs using Amazon RDS APIs. You also can't rename the CDB using the
modify-db-instance command.

Managing an RDS Custom for Oracle DB instance 1840

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/oracle-database-instance.html#GUID-8BB8140D-63ED-454E-AAC3-1964F80D102D
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/oracle-database-instance.html#GUID-8BB8140D-63ED-454E-AAC3-1964F80D102D

Amazon Relational Database Service User Guide

PDB management

In the RDS Custom for Oracle shared responsibility model, you are responsible for managing
PDBs and creating any additional PDBs. RDS Custom doesn't restrict the number of PDBs. You
can manually create, modify, and delete PDBs by connecting to the CDB root and running a SQL
statement. Create PDBs on an Amazon EBS data volume to prevent the DB instance from going
outside the support perimeter.

To modify your CDBs or PDBs, complete the following steps:

1. Pause automation to prevent interference with RDS Custom actions.

2. Modify your CDB or PDBs.

3. Back up any modified PDBs.

4. Resume RDS Custom automation.

Automatic recovery of the CDB root

RDS Custom keeps the CDB root open in the same way as it keeps a non-CDB open. If the state of
the CDB root changes, the monitoring and recovery automation attempts to recover the CDB root
to the desired state. You receive RDS event notifications when the root CDB is shut down (RDS-
EVENT-0004) or restarted (RDS-EVENT-0006), similar to the non-CDB architecture. RDS Custom
attempts to open all PDBs in READ WRITE mode at DB instance startup. If some PDBs can't be
opened, RDS Custom publishes the following event: tenant database shutdown.

Working with high availability features for RDS Custom for Oracle

To support replication between RDS Custom for Oracle DB instances, you can configure high
availability (HA) with Oracle Data Guard. The primary DB instance automatically synchronizes data
to the standby instances. This feature is supported only in Enterprise Edition.

You can configure your high availability environment in the following ways:

• Configure standby instances in different Availability Zones (AZs) to be resilient to AZ failures.

• Place your standby databases in mounted or read-only mode.

• Fail over or switch over from the primary database to a standby database with no data loss.

• Migrate data by configuring high availability for your on-premises instance, and then failing over
or switching over to the RDS Custom standby database.

Managing an RDS Custom for Oracle DB instance 1841

Amazon Relational Database Service User Guide

To learn how to configure high availability, see the whitepaper Build high availability for Amazon
RDS Custom for Oracle using read replicas. You can perform the following tasks:

• Use a virtual private network (VPN) tunnel to encrypt data in transit for your high availability
instances. Encryption in transit isn't configured automatically by RDS Custom.

• Configure Oracle Fast-Failover Observer (FSFO) to monitor your high availability instances.

• Allow the observer to perform automatic failover when necessary conditions are met.

Customizing your RDS Custom environment

RDS Custom for Oracle includes built-in features that allow you to customize your DB instance
environment without pausing automation. For example, you can use RDS APIs to customize your
environment as follows:

• Create and restore DB snapshots to create a clone environment.

• Create read replicas.

• Modify storage settings.

• Change the CEV to apply release updates

For some customizations, such as changing the character set, you can't use the RDS APIs. In these
cases, you need to change the environment manually by accessing your Amazon EC2 instance as
the root user or logging in to your Oracle database as SYSDBA.

To customize your instance manually, you must pause and resume RDS Custom automation. This
pause ensures that your customizations don't interfere with RDS Custom automation. In this
way, you avoid breaking the support perimeter, which places the instance in the unsupported-
configuration state until you fix the underlying issues. Pausing and resuming are the only
supported automation tasks when you modify an RDS Custom for Oracle DB instance.

General steps for customizing your RDS Custom environment

To customize your RDS Custom DB instance, complete the following steps:

1. Pause RDS Custom automation for a specified period using the console or CLI.

2. Identify your underlying Amazon EC2 instance.

3. Connect to your underlying Amazon EC2 instance using SSH keys or AWS Systems Manager.

Managing an RDS Custom for Oracle DB instance 1842

https://aws.amazon.com/blogs/database/build-high-availability-for-amazon-rds-custom-for-oracle-using-read-replicas/
https://aws.amazon.com/blogs/database/build-high-availability-for-amazon-rds-custom-for-oracle-using-read-replicas/

Amazon Relational Database Service User Guide

4. Verify your current configuration settings at the database or operating system layer.

You can validate your changes by comparing the initial configuration to the changed
configuration. Depending on the type of customization, use OS tools or database queries.

5. Customize your RDS Custom for Oracle DB instance as needed.

6. Reboot your instance or database, if required.

Note

In an on-premises Oracle CDB, you can preserve a specified open mode for PDBs using a
built-in command or after a startup trigger. This mechanism brings PDBs to a specified
state when the CDB restarts. When opening your CDB, RDS Custom automation discards
any user-specified preserved states and attempts to open all PDBs. If RDS Custom
can't open all PDBs, the following event is issued: The following PDBs failed to
open: list-of-PDBs.

7. Verify your new configuration settings by comparing them with the previous settings.

8. Resume RDS Custom automation in either of the following ways:

• Resume automation manually.

• Wait for the pause period to end. In this case, RDS Custom resumes monitoring and instance
recovery automatically.

9. Verify the RDS Custom automation framework

If you followed the preceding steps correctly, RDS Custom starts an automated backup. The
status of the instance in the console shows Available.

For best practices and step-by-step instructions, see the AWS blog posts Make configuration
changes to an Amazon RDS Custom for Oracle instance: Part 1 and Recreate an Amazon RDS
Custom for Oracle database: Part 2.

Pausing and resuming your RDS Custom DB instance

You can pause and resume automation for your DB instance using the console or CLI.

Managing an RDS Custom for Oracle DB instance 1843

https://aws.amazon.com/blogs/database/part-1-make-configuration-changes-to-an-amazon-rds-custom-for-oracle-instance/
https://aws.amazon.com/blogs/database/part-1-make-configuration-changes-to-an-amazon-rds-custom-for-oracle-instance/
https://aws.amazon.com/blogs/database/part-2-recreate-an-amazon-rds-custom-for-oracle-database/
https://aws.amazon.com/blogs/database/part-2-recreate-an-amazon-rds-custom-for-oracle-database/

Amazon Relational Database Service User Guide

Console

To pause or resume RDS Custom automation

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom DB instance that
you want to modify.

3. Choose Modify. The Modify DB instance page appears.

4. For RDS Custom automation mode, choose one of the following options:

• Paused pauses the monitoring and instance recovery for the RDS Custom DB instance.
Enter the pause duration that you want (in minutes) for Automation mode duration. The
minimum value is 60 minutes (default). The maximum value is 1,440 minutes.

• Full automation resumes automation.

5. Choose Continue to check the summary of modifications.

A message indicates that RDS Custom will apply the changes immediately.

6. If your changes are correct, choose Modify DB instance. Or choose Back to edit your changes
or Cancel to cancel your changes.

On the RDS console, the details for the modification appear. If you paused automation, the
Status of your RDS Custom DB instance indicates Automation paused.

7. (Optional) In the navigation pane, choose Databases, and then your RDS Custom DB instance.

In the Summary pane, RDS Custom automation mode indicates the automation status. If
automation is paused, the value is Paused. Automation resumes in num minutes.

AWS CLI

To pause or resume RDS Custom automation, use the modify-db-instance AWS CLI command.
Identify the DB instance using the required parameter --db-instance-identifier. Control the
automation mode with the following parameters:

• --automation-mode specifies the pause state of the DB instance. Valid values are all-
paused, which pauses automation, and full, which resumes it.

Managing an RDS Custom for Oracle DB instance 1844

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• --resume-full-automation-mode-minutes specifies the duration of the pause. The default
value is 60 minutes.

Note

Regardless of whether you specify --no-apply-immediately or --apply-
immediately, RDS Custom applies modifications asynchronously as soon as possible.

In the command response, ResumeFullAutomationModeTime indicates the resume time as a
UTC timestamp. When the automation mode is all-paused, you can use modify-db-instance
to resume automation mode or extend the pause period. No other modify-db-instance options
are supported.

The following example pauses automation for my-custom-instance for 90 minutes.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --automation-mode all-paused \
 --resume-full-automation-mode-minutes 90

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --automation-mode all-paused ^
 --resume-full-automation-mode-minutes 90

The following example extends the pause duration for an extra 30 minutes. The 30 minutes is
added to the original time shown in ResumeFullAutomationModeTime.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \

Managing an RDS Custom for Oracle DB instance 1845

Amazon Relational Database Service User Guide

 --db-instance-identifier my-custom-instance \
 --automation-mode all-paused \
 --resume-full-automation-mode-minutes 30

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --automation-mode all-paused ^
 --resume-full-automation-mode-minutes 30

The following example resumes full automation for my-custom-instance.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --automation-mode full \

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --automation-mode full

In the following partial sample output, the pending AutomationMode value is full.

{
 "DBInstance": {
 "PubliclyAccessible": true,
 "MasterUsername": "admin",
 "MonitoringInterval": 0,
 "LicenseModel": "bring-your-own-license",
 "VpcSecurityGroups": [
 {
 "Status": "active",
 "VpcSecurityGroupId": "0123456789abcdefg"
 }
],
 "InstanceCreateTime": "2020-11-07T19:50:06.193Z",

Managing an RDS Custom for Oracle DB instance 1846

Amazon Relational Database Service User Guide

 "CopyTagsToSnapshot": false,
 "OptionGroupMemberships": [
 {
 "Status": "in-sync",
 "OptionGroupName": "default:custom-oracle-ee-19"
 }
],
 "PendingModifiedValues": {
 "AutomationMode": "full"
 },
 "Engine": "custom-oracle-ee",
 "MultiAZ": false,
 "DBSecurityGroups": [],
 "DBParameterGroups": [
 {
 "DBParameterGroupName": "default.custom-oracle-ee-19",
 "ParameterApplyStatus": "in-sync"
 }
],
 ...
 "ReadReplicaDBInstanceIdentifiers": [],
 "AllocatedStorage": 250,
 "DBInstanceArn": "arn:aws:rds:us-west-2:012345678912:db:my-custom-instance",
 "BackupRetentionPeriod": 3,
 "DBName": "ORCL",
 "PreferredMaintenanceWindow": "fri:10:56-fri:11:26",
 "Endpoint": {
 "HostedZoneId": "ABCDEFGHIJKLMNO",
 "Port": 8200,
 "Address": "my-custom-instance.abcdefghijk.us-west-2.rds.amazonaws.com"
 },
 "DBInstanceStatus": "automation-paused",
 "IAMDatabaseAuthenticationEnabled": false,
 "AutomationMode": "all-paused",
 "EngineVersion": "19.my_cev1",
 "DeletionProtection": false,
 "AvailabilityZone": "us-west-2a",
 "DomainMemberships": [],
 "StorageType": "gp2",
 "DbiResourceId": "db-ABCDEFGHIJKLMNOPQRSTUVW",
 "ResumeFullAutomationModeTime": "2020-11-07T20:56:50.565Z",
 "KmsKeyId": "arn:aws:kms:us-west-2:012345678912:key/
aa111a11-111a-11a1-1a11-1111a11a1a1a",
 "StorageEncrypted": false,

Managing an RDS Custom for Oracle DB instance 1847

Amazon Relational Database Service User Guide

 "AssociatedRoles": [],
 "DBInstanceClass": "db.m5.xlarge",
 "DbInstancePort": 0,
 "DBInstanceIdentifier": "my-custom-instance",
 "TagList": []
 }

Modifying your RDS Custom for Oracle DB instance

Modifying an RDS Custom for Oracle DB instance is similar to modifying an Amazon RDS DB
instance. You can change settings such as the following:

• DB instance class

• Storage allocation and type

• Backup retention period

• Deletion protection

• Option group

• CEV (see Upgrading an RDS Custom for Oracle DB instance)

• Port

Topics

• Requirements and limitations when modifying your DB instance storage

• Requirements and limitations when modifying your DB instance class

• How RDS Custom creates your DB instance when you modify the instance class

• Modifying your RDS Custom for Oracle DB instance

Requirements and limitations when modifying your DB instance storage

Consider the following requirements and limitations when you modify the storage for an RDS
Custom for Oracle DB instance:

• The minimum allocated storage for RDS Custom for Oracle is 40 GiB, and the maximum is 64 TiB.

• As with Amazon RDS, you can't decrease the allocated storage. This is a limitation of Amazon
EBS volumes.

• Storage autoscaling isn't supported for RDS Custom DB instances.

Managing an RDS Custom for Oracle DB instance 1848

Amazon Relational Database Service User Guide

• Any storage volumes that you attach manually to your RDS Custom DB instance are outside the
support perimeter.

For more information, see RDS Custom support perimeter.

• Magnetic (standard) Amazon EBS storage isn't supported for RDS Custom. You can choose only
the io1, gp2, or gp3 SSD storage types.

For more information about Amazon EBS storage, see Amazon RDS DB instance storage. For
general information about storage modification, see Working with storage for Amazon RDS DB
instances.

Requirements and limitations when modifying your DB instance class

Consider the following requirements and limitations when you modify the instance class for an
RDS Custom for Oracle DB instance:

• Your DB instance must be in the available state.

• Your DB instance must have a minimum of 100 MiB of free space on the root volume, data
volume, and binary volume.

• You can assign only a single elastic IP (EIP) to your RDS Custom for Oracle DB instance when
using the default elastic network interface (ENI). If you attach multiple ENIs to your DB instance,
the modify operation fails.

• All RDS Custom for Oracle tags must be present.

• If you use RDS Custom for Oracle replication, note the following requirements and limitations:

• For primary DB instances and read replicas, you can change the instance class for only one DB
instance at a time.

• If your RDS Custom for Oracle DB instance has an on-premises primary or replica database,
make sure to manually update private IP addresses on the on-premises DB instance after the
modification completes. This action is necessary to preserve Oracle DataGuard functionality.
RDS Custom for Oracle publishes an event when the modification succeeds.

• You can't modify your RDS Custom for Oracle DB instance class when the primary or read
replica DB instances have FSFO (Fast-Start Failover) configured.

How RDS Custom creates your DB instance when you modify the instance class

When you modify your instance class, RDS Custom creates your DB instance as follows:

Managing an RDS Custom for Oracle DB instance 1849

Amazon Relational Database Service User Guide

• Creates the Amazon EC2 instance.

• Creates the root volume from the latest DB snapshot. RDS Custom for Oracle doesn't retain
information added to the root volume after the latest DB snapshot.

• Creates Amazon CloudWatch alarms.

• Creates an Amazon EC2 SSH key pair if you have deleted the original key pair. Otherwise, RDS
Custom for Oracle retains the original key pair.

• Creates new resources using the tags that are attached to your DB instance when you initiate the
modification. RDS Custom doesn't transfer tags to the new resources when they are attached
directly to underlying resources.

• Transfers the binary and data volumes with the most recent modifications to the new DB
instance.

• Transfers the elastic IP address (EIP). If the DB instance is publicly accessible, then RDS Custom
temporarily attaches a public IP address to the new DB instance before transferring the EIP. If the
DB instance isn't publicly accessible, RDS Custom doesn't create public IP addresses.

Modifying your RDS Custom for Oracle DB instance

You can modify the DB instance class or storage using the console, AWS CLI, or RDS API.

Console

To modify an RDS Custom for Oracle DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify.

4. Choose Modify.

5. (Optional) In Instance configuration, choose a value for DB instance class. For supported
classes, see DB instance class support for RDS Custom for Oracle.

6. (Optional) In Storage, make the following changes as needed:

a. Enter a new value for Allocated storage. It must be greater than the current value, and
from 40 GiB–64 TiB.

b. Change the value for Storage type to General Purpose SSD (gp2), General Purpose SSD
(gp3), or Provisioned IOPS (io1).

Managing an RDS Custom for Oracle DB instance 1850

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

c. If you use Provisioned IOPS (io1) or General Purpose SSD (gp3), you can change the
Provisioned IOPS value.

7. (Optional) In Additional configuration, make the following changes as needed:

• For Option group, choose a new option group. For more information, see Working with
option groups in RDS Custom for Oracle.

8. Choose Continue.

9. Choose Apply immediately or Apply during the next scheduled maintenance window.

10. Choose Modify DB instance.

AWS CLI

To modify the storage for an RDS Custom for Oracle DB instance, use the modify-db-instance AWS
CLI command. Set the following parameters as needed:

• --db-instance-class – A new instance class. For supported classes, see DB instance class
support for RDS Custom for Oracle.

• --allocated-storage – Amount of storage to be allocated for the DB instance, in gibibytes. It
must be greater than the current value, and from 40–65,536 GiB.

• --storage-type – The storage type: gp2, gp3, or io1.

• --iops – Provisioned IOPS for the DB instance, if using the io1 or gp3 storage types.

• --apply-immediately – Use --apply-immediately to apply the storage changes
immediately.

Or use --no-apply-immediately (the default) to apply the changes during the next
maintenance window.

The following example changes the DB instance class of my-cfo-instance to db.m5.16xlarge. The
command also changes the storage size to 1 TiB, storage type to io1, Provisioned IOPS to 3000,
and option group to cfo-ee-19-mt.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-cfo-instance \

Managing an RDS Custom for Oracle DB instance 1851

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

 --db-instance-class db.m5.16xlarge \
 --storage-type io1 \
 --iops 3000 \
 --allocated-storage 1024 \
 --option-group cfo-ee-19-mt \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-cfo-instance ^
 --db-instance-class db.m5.16xlarge ^
 --storage-type io1 ^
 --iops 3000 ^
 --allocated-storage 1024 ^
 --option-group cfo-ee-19-mt ^
 --apply-immediately

Changing the character set of an RDS Custom for Oracle DB instance

RDS Custom for Oracle defaults to the character set US7ASCII. You might want to specify different
character sets to meet language or multibyte character requirements. When you use RDS Custom
for Oracle, you can pause automation and then change the character set of your database
manually.

Changing the character set of an RDS Custom for Oracle DB instance has the following
requirements:

• You can only change the character on a newly provisioned RDS Custom instance that has an
empty or starter database with no application data. For all other scenarios, change the character
set using DMU (Database Migration Assistant for Unicode).

• You can only change to a character set supported by RDS for Oracle. For more information, see
Supported DB character sets.

To change the character set of an RDS Custom for Oracle DB instance

1. Pause RDS Custom automation. For more information, see Pausing and resuming your RDS
Custom DB instance.

2. Log in to your database as a user with SYSDBA privileges.

Managing an RDS Custom for Oracle DB instance 1852

Amazon Relational Database Service User Guide

3. Restart the database in restricted mode, change the character set, and then restart the
database in normal mode.

Run the following script in your SQL client:

SHUTDOWN IMMEDIATE;
STARTUP RESTRICT;
ALTER DATABASE CHARACTER SET INTERNAL_CONVERT AL32UTF8;
SHUTDOWN IMMEDIATE;
STARTUP;
SELECT VALUE FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER = 'NLS_CHARACTERSET';

Verify that the output shows the correct character set:

VALUE

AL32UTF8

4. Resume RDS Custom automation. For more information, see Pausing and resuming your RDS
Custom DB instance.

Setting the NLS_LANG value in RDS Custom for Oracle

A locale is a set of information addressing linguistic and cultural requirements that corresponds to
a given language and country. To specify locale behavior for Oracle software, set the NLS_LANG
environment variable on your client host. This variable sets the language, territory, and character
set used by the client application in a database session.

For RDS Custom for Oracle, you can set only the language in the NLS_LANG variable: the territory
and character use defaults. The language is used for Oracle database messages, collation, day
names, and month names. Each supported language has a unique name, for example, American,
French, or German. If language is not specified, the value defaults to American.

After you create your RDS Custom for Oracle database, you can set NLS_LANG on your client host
to a language other than English. To see a list of languages supported by Oracle Database, log in to
your RDS Custom for Oracle database and run the following query:

SELECT VALUE FROM V$NLS_VALID_VALUES WHERE PARAMETER='LANGUAGE' ORDER BY VALUE;

Managing an RDS Custom for Oracle DB instance 1853

Amazon Relational Database Service User Guide

You can set NLS_LANG on the host command line. The following example sets the language to
German for your client application using the Z shell on Linux.

export NLS_LANG=German

Your application reads the NLS_LANG value when it starts and then communicates it to the
database when it connects.

For more information, see Choosing a Locale with the NLS_LANG Environment Variable in the
Oracle Database Globalization Support Guide.

Support for Transparent Data Encryption

RDS Custom supports Transparent Data Encryption (TDE) for RDS Custom for Oracle DB instances.

However, you can't enable TDE using an option in a custom option group as you can in RDS
for Oracle. You turn on TDE manually. For information about using Oracle Transparent
Data Encryption, see Securing stored data using Transparent Data Encryption in the Oracle
documentation.

Tagging RDS Custom for Oracle resources

You can tag RDS Custom resources as with Amazon RDS resources, but with some important
differences:

• Don't create or modify the AWSRDSCustom tag that's required for RDS Custom automation. If
you do, you might break the automation.

• The Name tag is added to RDS Custom resources with prefix value of do-not-delete-rds-
custom or rds-custom!oracle-do-not-delete. Any customer-passed value for the key is
overwritten.

• Tags added to RDS Custom DB instances during creation are propagated to all other related RDS
Custom resources.

• Tags aren't propagated when you add them to RDS Custom resources after DB instance creation.

For general information about resource tagging, see Tagging Amazon RDS resources.

Deleting an RDS Custom for Oracle DB instance

To delete an RDS Custom DB instance, do the following:

Managing an RDS Custom for Oracle DB instance 1854

https://docs.oracle.com/en/database/oracle/oracle-database/21/nlspg/setting-up-globalization-support-environment.html#GUID-86A29834-AE29-4BA5-8A78-E19C168B690A
http://docs.oracle.com/cd/E11882_01/network.112/e40393/asotrans.htm#BABFGJAG

Amazon Relational Database Service User Guide

• Provide the name of the DB instance.

• Clear the option to take a final DB snapshot of the DB instance.

• Choose or clear the option to retain automated backups.

You can delete an RDS Custom DB instance using the console or the CLI. The time required to
delete the DB instance can vary depending on the backup retention period (that is, how many
backups to delete) and how much data is deleted.

Console

To delete an RDS Custom DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom DB instance that
you want to delete. RDS Custom DB instances show the role Instance (RDS Custom).

3. For Actions, choose Delete.

4. To retain automated backups, choose Retain automated backups.

5. Enter delete me in the box.

6. Choose Delete.

AWS CLI

You delete an RDS Custom DB instance by using the delete-db-instance AWS CLI command.
Identify the DB instance using the required parameter --db-instance-identifier. The
remaining parameters are the same as for an Amazon RDS DB instance, with the following
exceptions:

• --skip-final-snapshot is required.

• --no-skip-final-snapshot isn't supported.

• --final-db-snapshot-identifier isn't supported.

The following example deletes the RDS Custom DB instance named my-custom-instance, and
retains automated backups.

Managing an RDS Custom for Oracle DB instance 1855

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier my-custom-instance \
 --skip-final-snapshot \
 --no-delete-automated-backups

For Windows:

aws rds delete-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --skip-final-snapshot ^
 --no-delete-automated-backups

Managing an RDS Custom for Oracle DB instance 1856

Amazon Relational Database Service User Guide

Working with Oracle replicas for RDS Custom for Oracle

You can create Oracle replicas for RDS Custom for Oracle DB instances that run Oracle Enterprise
Edition. Both container databases (CDBs) and non-CDBs are supported. Standard Edition 2 doesn't
support Oracle Data Guard.

Creating an RDS Custom for Oracle replica is similar to creating an RDS for Oracle replica, but with
important differences. For general information about creating and managing Oracle replicas, see
Working with DB instance read replicas and Working with read replicas for Amazon RDS for Oracle.

Topics

• Overview of RDS Custom for Oracle replication

• Guidelines and limitations for RDS Custom for Oracle replication

• Promoting an RDS Custom for Oracle replica to a standalone DB instance

• Configuring a VPN tunnel between RDS Custom for Oracle primary and replica instances

Overview of RDS Custom for Oracle replication

The architecture of RDS Custom for Oracle replication is analogous to RDS for Oracle replication. A
primary DB instance replicates asynchronously to one or more Oracle replicas.

Working with RDS Custom for Oracle replicas 1857

Amazon Relational Database Service User Guide

Maximum number of replicas

As with RDS for Oracle, you can create up to five managed Oracle replicas of your RDS Custom for
Oracle primary DB instance. You can also create your own manually configured (external) Oracle
replicas. External replicas don't count toward your DB instance limit. They also lie outside the RDS
Custom support perimeter. For more information about the support perimeter, see RDS Custom
support perimeter.

Replica naming convention

Oracle replica names are based on the database unique name. The format is DB_UNIQUE_NAME_X,
with letters appended sequentially. For example, if your database unique name is ORCL, the first
two replicas are named ORCL_A and ORCL_B. The first six letters, A–F, are reserved for RDS Custom.
RDS Custom copies database parameters from your primary DB instance to the replicas. For more
information, see DB_UNIQUE_NAME in the Oracle documentation.

Replica backup retention

By default, RDS Custom Oracle replicas use the same backup retention period as your primary
DB instance. You can modify the backup retention period to 1–35 days. RDS Custom supports
backing up, restoring, and point-in-time recovery (PITR). For more information about backing up
and restoring RDS Custom DB instances, see Backing up and restoring an Amazon RDS Custom for
Oracle DB instance.

Note

While creating a Oracle replica, RDS Custom temporarily pauses the cleanup of redo log
files. In this way, RDS Custom ensures that it can apply these logs to the new Oracle replica
after it becomes available.

Replica promotion

You can promote managed Oracle replicas in RDS Custom for Oracle using the console, promote-
read-replica AWS CLI command, or PromoteReadReplica API. If you delete your primary DB
instance, and all replicas are healthy, RDS Custom for Oracle promotes your managed replicas to
standalone instances automatically. If a replica has paused automation or is outside the support
perimeter, you must fix the replica before RDS Custom can promote it automatically. You can only
promote external Oracle replicas manually.

Working with RDS Custom for Oracle replicas 1858

https://docs.oracle.com/database/121/REFRN/GUID-3547C937-5DDA-49FF-A9F9-14FF306545D8.htm#REFRN10242

Amazon Relational Database Service User Guide

Guidelines and limitations for RDS Custom for Oracle replication

When you create RDS Custom for Oracle replicas, not all RDS Oracle replica options are supported.

Topics

• General guidelines for RDS Custom for Oracle replication

• General limitations for RDS Custom for Oracle replication

• Networking requirements and limitations for RDS Custom for Oracle replication

• External replica limitations for RDS Custom for Oracle

General guidelines for RDS Custom for Oracle replication

When working with RDS Custom for Oracle, follow these guidelines:

• You can use RDS Custom for Oracle replication only in Oracle Enterprise Edition. Standard
Edition 2 isn't supported.

• We strongly recommend that you implement a VPN tunnel to encrypt communication between
your primary and standby instances. For more information, see Configuring a VPN tunnel
between RDS Custom for Oracle primary and replica instances.

• Don't modify the RDS_DATAGUARD user. This user is reserved for RDS Custom for Oracle
automation. Modifying this user can result in undesired outcomes, such as an inability to create
Oracle replicas for your RDS Custom for Oracle DB instance.

• Don't change the replication user password. It is required to administer the Oracle Data Guard
configuration on the RDS Custom host. If you change the password, RDS Custom for Oracle
might put your Oracle replica outside the support perimeter. For more information, see RDS
Custom support perimeter.

The password is stored in AWS Secrets Manager, tagged with the DB resource ID. Each Oracle
replica has its own secret in Secrets Manager. The secret uses either of the following naming
formats.

do-not-delete-rds-custom-db-DB_resource_id-uuid-dg
rds-custom!oracle-do-not-delete-DB_resource_id-uuid-dg

• Don't change the DB_UNIQUE_NAME for the primary DB instance. Changing the name causes any
restore operation to become stuck.

Working with RDS Custom for Oracle replicas 1859

Amazon Relational Database Service User Guide

• Don't specify the clause STANDBYS=NONE in a CREATE PLUGGABLE DATABASE command in an
RDS Custom CDB. This way, if a failover occurs, your standby CDB contains all PDBs.

General limitations for RDS Custom for Oracle replication

RDS Custom for Oracle replicas have the following limitations:

• You can't create RDS Custom for Oracle replicas in read-only mode. However, you can manually
change the mode of mounted replicas to read-only, and from read-only to mounted. For more
information, see the documentation for the create-db-instance-read-replica AWS CLI command.

• You can't create cross-Region RDS Custom for Oracle replicas.

• You can't change the value of the Oracle Data Guard CommunicationTimeout parameter. This
parameter is set to 15 seconds for RDS Custom for Oracle DB instances.

Networking requirements and limitations for RDS Custom for Oracle replication

Make sure that your network configuration supports RDS Custom for Oracle replicas. Consider the
following:

• Make sure to enable port 1140 for both inbound and outbound communication within your
virtual private cloud (VPC) for the primary DB instance and all of its replicas. This is required for
Oracle Data Guard communication between read replicas.

• RDS Custom for Oracle validates the network while creating a Oracle replica. If the primary DB
instance and the new replica can't connect over the network, RDS Custom for Oracle doesn't
create the replica and places it in the INCOMPATIBLE_NETWORK state.

• For external Oracle replicas, such as those you create on Amazon EC2 or on-premises, use
another port and listener for Oracle Data Guard replication. Trying to use port 1140 could cause
conflicts with RDS Custom automation.

• The /rdsdbdata/config/tnsnames.ora file contains network service names mapped to
listener protocol addresses. Note the following requirements and recommendations:

• Entries in tnsnames.ora prefixed with rds_custom_ are reserved for RDS Custom when
handling Oracle replica operations.

When creating manual entries in tnsnames.ora, don't use this prefix.

• In some cases, you might want to switch over or fail over manually, or use failover
technologies such as Fast-Start Failover (FSFO). If so, make sure to manually synchronize

Working with RDS Custom for Oracle replicas 1860

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html

Amazon Relational Database Service User Guide

tnsnames.ora entries from the primary DB instance to all of the standby instances. This
recommendation applies to both Oracle replicas managed by RDS Custom and to external
Oracle replicas.

RDS Custom automation updates tnsnames.ora entries on only the primary DB instance.
Make sure also to synchronize when you add or remove a Oracle replica.

If you don't synchronize the tnsnames.ora files and switch over or fail over manually, Oracle
Data Guard on the primary DB instance might not be able to communicate with the Oracle
replicas.

External replica limitations for RDS Custom for Oracle

RDS Custom for Oracle external replicas, which include on-premises replicas, have the following
limitations:

• RDS Custom for Oracle doesn't detect instance role changes upon manual failover, such as FSFO,
for external Oracle replicas.

RDS Custom for Oracle does detect changes for managed replicas. The role change is noted
in the event log. You can also see the new state by using the describe-db-instances AWS CLI
command.

• RDS Custom for Oracle doesn't detect high replication lag for external Oracle replicas.

RDS Custom for Oracle does detect lag for managed replicas. High replication lag produces
the Replication has stopped event. You can also see the replication status by using the
describe-db-instances AWS CLI command, but there might be a delay for it to be updated.

• RDS Custom for Oracle doesn't promote external Oracle replicas automatically if you delete your
primary DB instance.

The automatic promotion feature is available only for managed Oracle replicas. For information
about promoting Oracle replicas manually, see the white paper Enabling high availability with
Data Guard on Amazon RDS Custom for Oracle.

Promoting an RDS Custom for Oracle replica to a standalone DB instance

Just as with RDS for Oracle, you can promote an RDS Custom for Oracle replica to a standalone
DB instance. When you promote a Oracle replica, RDS Custom for Oracle reboots the DB instance

Working with RDS Custom for Oracle replicas 1861

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://d1.awsstatic.com/whitepapers/enabling-high-availability-with-data-guard-on-amazon-rds-custom-for-oracle.pdf
https://d1.awsstatic.com/whitepapers/enabling-high-availability-with-data-guard-on-amazon-rds-custom-for-oracle.pdf

Amazon Relational Database Service User Guide

before it becomes available. For more information about promoting Oracle replicas, see Promoting
a read replica to be a standalone DB instance.

When promoting a replica, note the following guidelines:

• Don't initiate a failover while RDS Custom for Oracle is promoting your replica. Otherwise, the
promotion workflow could become stuck.

• Don't switch over your primary DB instance while RDS Custom for Oracle is promoting your
Oracle replica. Otherwise, the promotion workflow could become stuck.

• Don't shut down your primary DB instance while RDS Custom for Oracle is promoting your
Oracle replica. Otherwise, the promotion workflow could become stuck.

• Don't try to restart replication with your newly promoted DB instance as a target. After RDS
Custom for Oracle promotes your Oracle replica, it becomes a standalone DB instance and no
longer has the replica role.

Note the following limitations for RDS Custom for Oracle replica promotion:

• You can't promote a replica while RDS Custom for Oracle is backing it up.

• You can't change the backup retention period to 0 when you promote your Oracle replica.

• You can't promote your replica when it isn't in a healthy state.

If you issue delete-db-instance on the primary DB instance, RDS Custom for Oracle validates
that each managed Oracle replica is healthy and available for promotion. A replica might be
ineligible for promotion because automation is paused or it is outside the support perimeter. In
such cases, RDS Custom for Oracle publishes an event explaining the issue so that you can repair
your Oracle replica manually.

The following steps show the general process for promoting a Oracle replica to a DB instance:

1. Stop any transactions from being written to the primary DB instance.

2. Wait for RDS Custom for Oracle to apply all updates to your Oracle replica.

3. Promote your Oracle replica by choosing the Promote option on the Amazon RDS console, the
AWS CLI command promote-read-replica, or the PromoteReadReplica Amazon RDS API
operation.

Working with RDS Custom for Oracle replicas 1862

https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplica.html

Amazon Relational Database Service User Guide

Promoting a Oracle replica takes a few minutes to complete. During the process, RDS Custom for
Oracle stops replication and reboots your replica. When the reboot completes, the Oracle replica is
available as a standalone DB instance. For information about troubleshooting replica promotion,
see Troubleshooting replica promotion for RDS Custom for Oracle.

Console

To promote an RDS Custom for Oracle replica to a standalone DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Amazon RDS console, choose Databases.

The Databases pane appears. Each Oracle replica shows Replica in the Role column.

3. Choose the RDS Custom for Oracle replica that you want to promote.

4. For Actions, choose Promote.

5. On the Promote Oracle replica page, enter the backup retention period and the backup
window for the newly promoted DB instance. You can't set this value to 0.

6. When the settings are as you want them, choose Promote Oracle replica.

AWS CLI

To promote your RDS Custom for Oracle replica to a standalone DB instance, use the AWS CLI
promote-read-replica command.

Example

For Linux, macOS, or Unix:

aws rds promote-read-replica \
--db-instance-identifier my-custom-read-replica \
--backup-retention-period 2 \
--preferred-backup-window 23:00-24:00

For Windows:

aws rds promote-read-replica ^
--db-instance-identifier my-custom-read-replica ^

Working with RDS Custom for Oracle replicas 1863

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica.html

Amazon Relational Database Service User Guide

--backup-retention-period 2 ^
--preferred-backup-window 23:00-24:00

RDS API

To promote your RDS Custom for Oracle replica to be a standalone DB instance, call the Amazon
RDS API PromoteReadReplica operation with the required parameter DBInstanceIdentifier.

Configuring a VPN tunnel between RDS Custom for Oracle primary and replica
instances

A VPN tunnel is an encrypted connection between two or more devices over a network. To ensure
the highest level of security for your Oracle Data Guard instances in RDS Custom for Oracle, we
strongly recommend that you implement a VPN tunnel to encrypt communication between your
primary and standby instances. The tunnel serves as a safeguard for sensitive data as it travels
the network between instances. While this configuration is optional, we recommend it as a best
practice to achieve data security and regulatory compliance.

Make sure you meet the following prerequisites:

• You have root access to the primary and standby hosts.

• You have the technical expertise to run the ipsec command.

To configure a VPN tunnel between a primary and replica in RDS Custom for Oracle

1. Add the security groups for both the primary instance and standby instance to the allow list
using the following rules:

ACTION FLOW SOURCE PROTO PORT

ALLOW ingress this-SG 50 (ESP) all (N/A)
ALLOW egress this-SG 50 (ESP) all (N/A)

ALLOW ingress this-SG 17 (UDP) 500 (IKE)
ALLOW egress this-SG 17 (UDP) 500 (IKE)

2. Switch to the root user.

$ sudo su – root

Working with RDS Custom for Oracle replicas 1864

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplica.html

Amazon Relational Database Service User Guide

3. Run the following commands on both the primary instance and the standby instance to
initialize the Network Security Services (NSS) database under the user root.

ipsec initnss --nssdir /etc/ipsec.d

4. Generate RSA keys as follows:

a. On the primary instance, generate the keys using either of the following ipsec
commands, depending on your OS version.

ipsec newhostkey --nssdir /etc/ipsec.d ## for Oracle Linux Version 8
ipsec newhostkey --output /etc/ipsec.secrets ## for Oracle Linux version 7.9

b. Obtain the public key, which you need to create the configuration. In the following
example, the primary instance is left because in ipsec parlance, left refers to the
device you are currently configuring, and right refers to the device at the other end of
the tunnel.

ipsec showhostkey --left --ckaid ckaid-returned-in-last-statement

c. On the standby instance, generate keys for the standby instance.

ipsec newhostkey --nssdir /etc/ipsec.d ## for Oracle Linux Version 8
ipsec newhostkey --output /etc/ipsec.secrets ## for Oracle Linux version 7.9

d. Obtain the public key for the standby instance, which you need to create the
configuration. In the following example, the standby instance is right because it refers to
the device at the other end of the tunnel.

ipsec showhostkey --right --ckaid ckaid-returned-in-last-statement

5. Based on the RSA keys that you obtained, generate the configuration. The configuration is
identical for both the primary instance and the standby instance. You can find the primary
instance IPv4 address and standby instance IPv4 address in the AWS console.

On both the primary instance and the standby instance, save the following configuration to
the file /etc/ipsec.d/custom-fb-tunnel.conf.

conn custom-db-tunnel
 type=transport

Working with RDS Custom for Oracle replicas 1865

Amazon Relational Database Service User Guide

 auto=add
 authby=rsasig
 left=IPV4-for-primary
 leftrsasigkey=RSA-key-generated-on-primary
 right=IPV4-for-standby
 rightrsasigkey=RSA-key-generated-on-standby

6. On both the primary instance and the standby instance, start the ipsec daemon on both
hosts.

ipsec setup start

7. Start the tunnel on either the primary instance or the standby instance. The output should
look similar to the following.

[root@ip-172-31-6-81 ~]# ipsec auto --up custom-db-tunnel
181 "custom-db-tunnel" #1: initiating IKEv2 connection
181 "custom-db-tunnel" #1: sent IKE_SA_INIT request to 172.31.32.196:500
182 "custom-db-tunnel" #1: sent IKE_AUTH request {cipher=AES_GCM_16_256 integ=n/a
 prf=HMAC_SHA2_512 group=DH19}
003 "custom-db-tunnel" #1: initiator established IKE SA; authenticated peer '3584-
bit PKCS#1 1.5 RSA with SHA1' signature using preloaded certificate '172.31.32.196'
004 "custom-db-tunnel" #2: initiator established Child SA using #1; IPsec transport
 [172.31.6.81-172.31.6.81:0-65535 0] -> [172.31.32.196-172.31.32.196:0-65535 0]
 {ESP/ESN=>0xda9c4815 <0xb742ca42 xfrm=AES_GCM_16_256-NONE DPD=passive}
[root@ip-172-31-6-81 ~]#

Working with RDS Custom for Oracle replicas 1866

Amazon Relational Database Service User Guide

Backing up and restoring an Amazon RDS Custom for Oracle DB
instance

Like Amazon RDS, RDS Custom creates and saves automated backups of your RDS Custom for
Oracle DB instance during the backup window of your DB instance. You can also back up your DB
instance manually.

The procedure is identical to taking a snapshot of an Amazon RDS DB instance. The first snapshot
of an RDS Custom DB instance contains the data for the full DB instance. Subsequent snapshots are
incremental.

Restore DB snapshots using either the AWS Management Console or the AWS CLI.

Topics

• Creating an RDS Custom for Oracle snapshot

• Restoring from an RDS Custom for Oracle DB snapshot

• Restoring an RDS Custom for Oracle instance to a point in time

• Deleting an RDS Custom for Oracle snapshot

• Deleting RDS Custom for Oracle automated backups

Creating an RDS Custom for Oracle snapshot

RDS Custom for Oracle creates a storage volume snapshot of your DB instance, backing up the
entire DB instance and not just individual databases. When your DB instance contains a container
database (CDB), the snapshot of the instance includes the root CDB and all PDBs.

When you create an RDS Custom for Oracle snapshot, specify which RDS Custom DB instance to
back up. Give your snapshot a name so you can restore from it later.

When you create a snapshot, RDS Custom for Oracle creates an Amazon EBS snapshot for every
volume attached to the DB instance. RDS Custom for Oracle uses the EBS snapshot of the root
volume to register a new Amazon Machine Image (AMI). To make snapshots easy to associate
with a specific DB instance, they're tagged with DBSnapshotIdentifier, DbiResourceId, and
VolumeType.

Creating a DB snapshot results in a brief I/O suspension. This suspension can last from a few
seconds to a few minutes, depending on the size and class of your DB instance. The snapshot
creation time varies with the size of your database. Because the snapshot includes the entire

Backing up and restoring an RDS Custom for Oracle DB instance 1867

Amazon Relational Database Service User Guide

storage volume, the size of files, such as temporary files, also affects snapshot creation time. To
learn more about creating snapshots, see Creating a DB snapshot for a Single-AZ DB instance for
Amazon RDS.

Create an RDS Custom for Oracle snapshot using the console or the AWS CLI.

Console

To create an RDS Custom snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. In the list of RDS Custom DB instances, choose the instance for which you want to take a
snapshot.

4. For Actions, choose Take snapshot.

The Take DB snapshot window appears.

5. For Snapshot name, enter the name of the snapshot.

6. Choose Take snapshot.

AWS CLI

You create a snapshot of an RDS Custom DB instance by using the create-db-snapshot AWS CLI
command.

Specify the following options:

• --db-instance-identifier – Identifies which RDS Custom DB instance you are going to
back up

• --db-snapshot-identifier – Names your RDS Custom snapshot so you can restore from it
later

In this example, you create a DB snapshot called my-custom-snapshot for an RDS Custom DB
instance called my-custom-instance.

Example

For Linux, macOS, or Unix:

Backing up and restoring an RDS Custom for Oracle DB instance 1868

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html

Amazon Relational Database Service User Guide

aws rds create-db-snapshot \
 --db-instance-identifier my-custom-instance \
 --db-snapshot-identifier my-custom-snapshot

For Windows:

aws rds create-db-snapshot ^
 --db-instance-identifier my-custom-instance ^
 --db-snapshot-identifier my-custom-snapshot

Restoring from an RDS Custom for Oracle DB snapshot

When you restore an RDS Custom for Oracle DB instance, you provide the name of the DB snapshot
and a name for the new instance. You can't restore from a snapshot to an existing RDS Custom DB
instance. A new RDS Custom for Oracle DB instance is created when you restore.

The restore process differs in the following ways from restore in Amazon RDS:

• Before restoring a snapshot, RDS Custom for Oracle backs up existing configuration files. These
files are available on the restored instance in the directory /rdsdbdata/config/backup. RDS
Custom for Oracle restores the DB snapshot with default parameters and overwrites the previous
database configuration files with existing ones. Thus, the restored instance doesn't preserve
custom parameters and changes to database configuration files.

• The restored database has the same name as in the snapshot. You can't specify a different name.
(For RDS Custom for Oracle, the default is ORCL.)

Console

To restore an RDS Custom DB instance from a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

5. On the Restore DB instance page, for DB instance identifier, enter the name for your restored
RDS Custom DB instance.

Backing up and restoring an RDS Custom for Oracle DB instance 1869

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. Choose Restore DB instance.

AWS CLI

You restore an RDS Custom DB snapshot by using the restore-db-instance-from-db-snapshot AWS
CLI command.

If the snapshot you are restoring from is for a private DB instance, make sure to specify both the
correct db-subnet-group-name and no-publicly-accessible. Otherwise, the DB instance
defaults to publicly accessible. The following options are required:

• db-snapshot-identifier – Identifies the snapshot from which to restore

• db-instance-identifier – Specifies the name of the RDS Custom DB instance to create from
the DB snapshot

• custom-iam-instance-profile – Specifies the instance profile associated with the
underlying Amazon EC2 instance of an RDS Custom DB instance.

The following code restores the snapshot named my-custom-snapshot for my-custom-
instance.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-db-snapshot \
 --db-snapshot-identifier my-custom-snapshot \
 --db-instance-identifier my-custom-instance \
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance \
 --no-publicly-accessible

For Windows:

aws rds restore-db-instance-from-db-snapshot ^
 --db-snapshot-identifier my-custom-snapshot ^
 --db-instance-identifier my-custom-instance ^
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance ^
 --no-publicly-accessible

Backing up and restoring an RDS Custom for Oracle DB instance 1870

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html

Amazon Relational Database Service User Guide

Restoring an RDS Custom for Oracle instance to a point in time

You can restore a DB instance to a specific point in time (PITR), creating a new DB instance. To
support PITR, your DB instances must have backup retention set to a nonzero value.

The latest restorable time for an RDS Custom for Oracle DB instance depends on several factors,
but is typically within 5 minutes of the current time. To see the latest restorable time for a DB
instance, use the AWS CLI describe-db-instances command and look at the value returned in the
LatestRestorableTime field for the DB instance. To see the latest restorable time for each DB
instance in the Amazon RDS console, choose Automated backups.

You can restore to any point in time within your backup retention period. To see the earliest
restorable time for each DB instance, choose Automated backups in the Amazon RDS console.

For general information about PITR, see Restoring a DB instance to a specified time for Amazon
RDS.

Topics

• PITR considerations for RDS Custom for Oracle

PITR considerations for RDS Custom for Oracle

In RDS Custom for Oracle, PITR differs in the following important ways from PITR in Amazon RDS:

• The restored database has the same name as in the source DB instance. You can't specify a
different name. The default is ORCL.

• AWSRDSCustomIamRolePolicy requires new permissions. For more information, see Step 2:
Add an access policy to AWSRDSCustomInstanceRoleForRdsCustomInstance.

• All RDS Custom for Oracle DB instances must have backup retention set to a nonzero value.

• If you change the operating system or DB instance time zone, PITR might not work. For
information about changing time zones, see Oracle time zone.

• If you set automation to ALL_PAUSED, RDS Custom pauses the upload of archived redo log files,
including logs created before the latest restorable time (LRT). We recommend that you pause
automation for a brief period.

To illustrate, assume that your LRT is 10 minutes ago. You pause automation. During the pause,
RDS Custom doesn't upload archived redo logs. If your DB instance crashes, you can only recover

Backing up and restoring an RDS Custom for Oracle DB instance 1871

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

to a time before the LRT that existed when you paused. When you resume automation, RDS
Custom resumes uploading logs. The LRT advances. Normal PITR rules apply.

• In RDS Custom, you can manually specify an arbitrary number of hours to retain archived redo
logs before RDS Custom deletes them after upload. Specify the number of hours as follows:

1. Create a text file named /opt/aws/rdscustomagent/config/
redo_logs_custom_configuration.json.

2. Add a JSON object in the following format: {"archivedLogRetentionHours" :
"num_of_hours"}. The number must be an integer in the range 1–840.

• Assume that you plug a non-CDB into a container database (CDB) as a PDB and then attempt
PITR. The operation succeeds only if you previously backed up the PDB. After you create or
modify a PDB, we recommend that you always back it up.

• We recommend that you don't customize database initialization parameters. For example,
modifying the following parameters affects PITR:

• CONTROL_FILE_RECORD_KEEP_TIME affects the rules for uploading and deleting logs.

• LOG_ARCHIVE_DEST_n doesn't support multiple destinations.

• ARCHIVE_LAG_TARGET affects the latest restorable time. ARCHIVE_LAG_TARGET is set to
300 because the recovery point objective (RPO) is 5 minutes. To honor this objective, RDS
switches the online redo log every 5 minutes and stores it in an Amazon S3 bucket. If the
frequency of the log switch causes a performance issue for your RDS Custom for Oracle
database, you can scale your DB instance and storage to one with higher IOPS and throughput.
If necessary for your recovery plan, you can adjust the setting of the ARCHIVE_LAG_TARGET
initialization parameter to a value from 60–7200.

• If you customize database initialization parameters, we strongly recommend that you customize
only the following:

• COMPATIBLE

• MAX_STRING_SIZE

• DB_FILES

• UNDO_TABLESPACE

• ENABLE_PLUGGABLE_DATABASE

• CONTROL_FILES

• AUDIT_TRAIL

• AUDIT_TRAIL_DEST
Backing up and restoring an RDS Custom for Oracle DB instance 1872

Amazon Relational Database Service User Guide

For all other initialization parameters, RDS Custom restores the default values. If you modify a
parameter that isn't in the preceding list, it might have an adverse effect on PITR and lead to
unpredictable results. For example, CONTROL_FILE_RECORD_KEEP_TIME affects the rules for
uploading and deleting logs.

You can restore an RDS Custom DB instance to a point in time using the AWS Management
Console, the AWS CLI, or the RDS API.

Console

To restore an RDS Custom DB instance to a specified time

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. Choose the RDS Custom DB instance that you want to restore.

4. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

5. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

If you chose Custom, enter the date and time to which you want to restore the instance.

Times are shown in your local time zone, which is indicated by an offset from Coordinated
Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/Central Daylight Time.

6. For DB instance identifier, enter the name of the target restored RDS Custom DB instance. The
name must be unique.

7. Choose other options as needed, such as DB instance class.

8. Choose Restore to point in time.

AWS CLI

You restore a DB instance to a specified time by using the restore-db-instance-to-point-in-time
AWS CLI command to create a new RDS Custom DB instance.

Use one of the following options to specify the backup to restore from:

Backing up and restoring an RDS Custom for Oracle DB instance 1873

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

• --source-db-instance-identifier mysourcedbinstance

• --source-dbi-resource-id dbinstanceresourceID

• --source-db-instance-automated-backups-arn backupARN

The custom-iam-instance-profile option is required.

The following example restores my-custom-db-instance to a new DB instance named my-
restored-custom-db-instance, as of the specified time.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-to-point-in-time \
 --source-db-instance-identifier my-custom-db-instance\
 --target-db-instance-identifier my-restored-custom-db-instance \
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance \
 --restore-time 2022-10-14T23:45:00.000Z

For Windows:

aws rds restore-db-instance-to-point-in-time ^
 --source-db-instance-identifier my-custom-db-instance ^
 --target-db-instance-identifier my-restored-custom-db-instance ^
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance ^
 --restore-time 2022-10-14T23:45:00.000Z

Deleting an RDS Custom for Oracle snapshot

You can delete DB snapshots managed by RDS Custom for Oracle when you no longer need them.
The deletion procedure is the same for both Amazon RDS and RDS Custom DB instances.

The Amazon EBS snapshots for the binary and root volumes remain in your account for a longer
time because they might be linked to some instances running in your account or to other RDS
Custom for Oracle snapshots. These EBS snapshots are automatically deleted after they're no
longer related to any existing RDS Custom for Oracle resources (DB instances or backups).

Backing up and restoring an RDS Custom for Oracle DB instance 1874

Amazon Relational Database Service User Guide

Console

To delete a snapshot of an RDS Custom DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB snapshot that you want to delete.

4. For Actions, choose Delete snapshot.

5. Choose Delete on the confirmation page.

AWS CLI

To delete an RDS Custom snapshot, use the AWS CLI command delete-db-snapshot.

The following option is required:

• --db-snapshot-identifier – The snapshot to be deleted

The following example deletes the my-custom-snapshot DB snapshot.

Example

For Linux, macOS, or Unix:

aws rds delete-db-snapshot \
 --db-snapshot-identifier my-custom-snapshot

For Windows:

aws rds delete-db-snapshot ^
 --db-snapshot-identifier my-custom-snapshot

Deleting RDS Custom for Oracle automated backups

You can delete retained automated backups for RDS Custom for Oracle when they are no longer
needed. The procedure is the same as the procedure for deleting Amazon RDS backups.

Backing up and restoring an RDS Custom for Oracle DB instance 1875

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-snapshot.html

Amazon Relational Database Service User Guide

Console

To delete a retained automated backup

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. Choose Retained.

4. Choose the retained automated backup that you want to delete.

5. For Actions, choose Delete.

6. On the confirmation page, enter delete me and choose Delete.

AWS CLI

You can delete a retained automated backup by using the AWS CLI command delete-db-instance-
automated-backup.

The following option is used to delete a retained automated backup:

• --dbi-resource-id – The resource identifier for the source RDS Custom DB instance.

You can find the resource identifier for the source DB instance of a retained automated backup
by using the AWS CLI command describe-db-instance-automated-backups.

The following example deletes the retained automated backup with source DB instance resource
identifier custom-db-123ABCEXAMPLE.

Example

For Linux, macOS, or Unix:

aws rds delete-db-instance-automated-backup \
 --dbi-resource-id custom-db-123ABCEXAMPLE

For Windows:

aws rds delete-db-instance-automated-backup ^
 --dbi-resource-id custom-db-123ABCEXAMPLE

Backing up and restoring an RDS Custom for Oracle DB instance 1876

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instance-automated-backups.html

Amazon Relational Database Service User Guide

Backing up and restoring an RDS Custom for Oracle DB instance 1877

Amazon Relational Database Service User Guide

Working with option groups in RDS Custom for Oracle

RDS Custom uses option groups to enable and configure additional features. An option group
specifies features, called options, that are available for an RDS Custom for Oracle DB instance.
Options can have settings that specify how the option works. When you associate an RDS Custom
for Oracle DB instance with an option group, the specified options and option settings are enabled
for this instance. For general information about option groups in Amazon RDS, see Working with
option groups.

Topics

• Overview of option groups in RDS Custom for Oracle

• Oracle time zone

Overview of option groups in RDS Custom for Oracle

To enable options for your Oracle database, add them to an option group, and then associate the
option group with your DB instance. For more information, see Working with option groups.

Topics

• Summary of RDS Custom for Oracle options

• Basic steps for adding an option to an RDS Custom for Oracle DB instance

• Creating an option group for in RDS Custom for Oracle

• Associating an option group with an RDS Custom for Oracle DB instance

Summary of RDS Custom for Oracle options

RDS Custom for Oracle supports the following options for a DB instance.

Option Option ID Description

Oracle time zone Timezone The time zone used by your
RDS Custom for Oracle DB
instance.

Working with option groups in RDS Custom for Oracle 1878

Amazon Relational Database Service User Guide

Basic steps for adding an option to an RDS Custom for Oracle DB instance

The general procedure for adding an option to your RDS Custom for Oracle DB instance is the
following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with your DB instance when you create or modify it.

Creating an option group for in RDS Custom for Oracle

You can create a new option group that derives its settings from the default option group. You
then add one or more options to the new option group. Or, if you already have an existing option
group, you can copy that option group with all of its options to a new option group. To learn how
to copy an option group, see Copying an option group.

The default option groups for RDS Custom for Oracle are the following:

• default:custom-oracle-ee

• default:custom-oracle-se2

• default:custom-oracle-ee-cdb

• default:custom-oracle-se2-cdb

When you create an option group, the settings are derived from the default option group. After
you have added the TIME_ZONE option, you can then associate the option group with your DB
instance.

Console

One way of creating an option group is by using the AWS Management Console.

To create a new option group by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group window, do the following:

Working with option groups in RDS Custom for Oracle 1879

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

a. For Name, type a name for the option group that is unique within your AWS account. The
name can contain only letters, digits, and hyphens.

b. For Description, type a brief description of the option group. The description is used for
display purposes.

c. For Engine, choose any of the following RDS Custom for Oracle DB engines:

• custom-oracle-ee

• custom-oracle-se2

• custom-oracle-ee-cdb

• custom-oracle-se2-cdb

d. For Major engine version, choose a major engine version supported by RDS Custom for
Oracle. For more information, see Supported Regions and DB engines for RDS Custom for
Oracle.

5. To continue, choose Create. To cancel the operation instead, choose Cancel.

AWS CLI

To create an option group, use the AWS CLI create-option-group command with the following
required parameters.

• --option-group-name

• --engine-name

• --major-engine-version

• --option-group-description

Example

The following example creates an option group named testoptiongroup, which is associated
with the Oracle Enterprise Edition DB engine. The description is enclosed in quotation marks.

For Linux, macOS, or Unix:

aws rds create-option-group \
 --option-group-name testoptiongroup \
 --engine-name custom-oracle-ee-cdb \
 --major-engine-version 19 \

Working with option groups in RDS Custom for Oracle 1880

https://docs.aws.amazon.com/cli/latest/reference/rds/create-option-group.html

Amazon Relational Database Service User Guide

 --option-group-description "Test option group for a Custom Oracle CDB"

For Windows:

aws rds create-option-group ^
 --option-group-name testoptiongroup ^
 --engine-name custom-oracle-ee-cdb ^
 --major-engine-version 19 ^
 --option-group-description "Test option group for a Custom Oracle CDB"

RDS API

To create an option group, call the Amazon RDS API CreateOptionGroup operation.

Associating an option group with an RDS Custom for Oracle DB instance

You can associate your option group with a new or existing DB instance:

• For a new DB instance, apply the option group when you create the instance. For more
information, see Creating an RDS Custom for Oracle DB instance.

• For an existing DB instance, apply the option group by modifying the instance and attaching the
new option group. For more information, see Modifying your RDS Custom for Oracle DB instance.

Oracle time zone

To change the system time zone used by your RDS Custom for Oracle DB instance, use the time
zone option. For example, you might change the time zone of a DB instance to be compatible with
an on-premises environment, or a legacy application. The time zone option changes the time zone
at the host level. Changing the time zone impacts all date columns and values, including SYSDATE
and SYSTIMESTAMP.

Topics

• Time zone option settings in RDS Custom for Oracle

• Available time zones in RDS Custom for Oracle

• Considerations for setting the time zone in RDS Custom for Oracle

• Limitations for the time zone setting in RDS Custom for Oracle

• Adding the time zone option to an option group

• Removing the time zone option

Working with option groups in RDS Custom for Oracle 1881

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateOptionGroup.html

Amazon Relational Database Service User Guide

Time zone option settings in RDS Custom for Oracle

Amazon RDS supports the following settings for the time zone option.

Option setting Valid values Description

TIME_ZONE One of the available time
zones. For the full list, see
Available time zones in RDS
Custom for Oracle.

The new time zone for your
DB instance.

Available time zones in RDS Custom for Oracle

You can use the following values for the time zone option.

Zone Time zone

Africa Africa/Cairo, Africa/Casablanca, Africa/Harare, Africa/Lagos, Africa/Luanda,
Africa/Monrovia, Africa/Nairobi, Africa/Tripoli, Africa/Windhoek

America America/Araguaina, America/Argentina/Buenos_Aires, America/Asuncion,
America/Bogota, America/Caracas, America/Chicago, America/Chihuahua,
America/Cuiaba, America/Denver, America/Detroit, America/Fortaleza,
 America/Godthab, America/Guatemala, America/Halifax, America/Lima,
America/Los_Angeles, America/Manaus, America/Matamoros, America/M
exico_City, America/Monterrey, America/Montevideo, America/New_York,
America/Phoenix, America/Santiago, America/Sao_Paulo, America/Tijuana,
America/Toronto

Asia Asia/Amman, Asia/Ashgabat, Asia/Baghdad, Asia/Baku, Asia/Bangkok, Asia/
Beirut, Asia/Calcutta, Asia/Damascus, Asia/Dhaka, Asia/Hong_Kong, Asia/
Irkutsk, Asia/Jakarta, Asia/Jerusalem, Asia/Kabul, Asia/Karachi, Asia/Kath
mandu, Asia/Kolkata, Asia/Krasnoyarsk, Asia/Magadan, Asia/Manila, Asia/
Muscat, Asia/Novosibirsk, Asia/Rangoon, Asia/Riyadh, Asia/Seoul, Asia/
Shanghai, Asia/Singapore, Asia/Taipei, Asia/Tehran, Asia/Tokyo, Asia/Ulaa
nbaatar, Asia/Vladivostok, Asia/Yakutsk, Asia/Yerevan

Atlantic Atlantic/Azores, Atlantic/Cape_Verde

Working with option groups in RDS Custom for Oracle 1882

Amazon Relational Database Service User Guide

Zone Time zone

Australia Australia/Adelaide, Australia/Brisbane, Australia/Darwin, Australia/Eucla,
Australia/Hobart, Australia/Lord_Howe, Australia/Perth, Australia/Sydney

Brazil Brazil/DeNoronha, Brazil/East

Canada Canada/Newfoundland, Canada/Saskatchewan

Etc Etc/GMT-3

Europe Europe/Amsterdam, Europe/Athens, Europe/Berlin, Europe/Dublin, Europe/
Helsinki, Europe/Kaliningrad, Europe/London, Europe/Madrid, Europe/Mo
scow, Europe/Paris, Europe/Prague, Europe/Rome, Europe/Sarajevo

Pacific Pacific/Apia, Pacific/Auckland, Pacific/Chatham, Pacific/Fiji, Pacific/Guam,
Pacific/Honolulu, Pacific/Kiritimati, Pacific/Marquesas, Pacific/Samoa,
Pacific/Tongatapu, Pacific/Wake

US US/Alaska, US/Central, US/East-Indiana, US/Eastern, US/Pacific

UTC UTC

Considerations for setting the time zone in RDS Custom for Oracle

If you choose to set the time zone for your DB instance, consider the following:

• When you add the time zone option, a brief outage occurs while your DB instance is
automatically restarted.

• If you accidentally set the time zone incorrectly, you must recover your DB instance to its
previous time zone setting. For this reason, we strongly suggest that you to use one of the
following strategies before you add the time zone option to your instance:

• If your RDS Custom for Oracle DB instance uses the default option group, take a snapshot of
your DB instance. For more information, see Creating an RDS Custom for Oracle snapshot.

• If your DB instance currently uses a nondefault option group, take a snapshot of your DB
instance, and then create a new option group with the time zone option.

• We strongly recommend that you back up your DB instance manually after applying the
Timezone option.

Working with option groups in RDS Custom for Oracle 1883

Amazon Relational Database Service User Guide

• We strongly recommend that you to test the time zone option on a test DB instance before you
add it to a production DB instance. Adding the time zone option can cause problems with tables
that use system date to add dates or times. We recommend that you analyze your data and
applications to assess the impact of changing the time zone.

Limitations for the time zone setting in RDS Custom for Oracle

Note the following limitations:

• You can't change your timezone directly on your host without moving it outside the support
perimeter. To change your database timezone, you must create an option group.

• Because the time zone option is a persistent option (but not a permanent option), you can't do
the following:

• Remove the option from an option group after you add the option.

• Modify the time zone setting of the option to a different time zone.

• You can't associate multiple option groups with your RDS Custom for Oracle DB instance.

• You can't set the time zone for individual PDBs within a CDB.

Adding the time zone option to an option group

The default option groups for RDS Custom for Oracle are the following:

• default:custom-oracle-ee

• default:custom-oracle-se2

• default:custom-oracle-ee-cdb

• default:custom-oracle-se2-cdb

When you create an option group, the settings are derived from the default option group. For
general information about option groups in Amazon RDS, see Working with option groups.

Console

To add the time zone option to an option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Working with option groups in RDS Custom for Oracle 1884

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Option groups.

3. Choose the option group that you want to modify, and then choose Add option.

4. In the Add option window, do the following:

a. Choose Timezone.

b. In Option settings, choose a time zone.

c. To enable the option on all associated RDS Custom for Oracle DB instances as soon as you
add it, for Apply Immediately, choose Yes. If you choose No (the default), the option is
enabled for each associated DB instances during its next maintenance window.

d.
Important

If you add the time zone option to an existing option group that is already
attached to one or more DB instances, a brief outage occurs while all the DB
instances are automatically restarted.

5. When the settings are as you want them, choose Add option.

6. Back up the RDS Custom for Oracle DB instances whose time zones were updated. For more
information, see Creating an RDS Custom for Oracle snapshot.

AWS CLI

The following example uses the AWS CLI add-option-to-option-group command to add
the Timezone option and the TIME_ZONE option setting to an option group called
testoptiongroup. The time zone is set to America/Los_Angeles.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name "testoptiongroup" \
 --options "OptionName=Timezone,OptionSettings=[{Name=TIME_ZONE,Value=America/
Los_Angeles}]" \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name "testoptiongroup" ^

Working with option groups in RDS Custom for Oracle 1885

https://docs.aws.amazon.com/cli/latest/reference/rds/add-option-to-option-group.html

Amazon Relational Database Service User Guide

 --options "OptionName=Timezone,OptionSettings=[{Name=TIME_ZONE,Value=America/
Los_Angeles}]" ^
 --apply-immediately

Removing the time zone option

The time zone option is a persistent option, but not a permanent option. You can't remove the
option from an option group after you add it. To disassociate the old option group from your DB
instance:

1. Create a new option group with an updated Timezone option.

2. Associate the new option group with your DB instance when you modify the instance.

Working with option groups in RDS Custom for Oracle 1886

Amazon Relational Database Service User Guide

Migrating an on-premises database to RDS Custom for Oracle

Before you migrate an on-premises Oracle database to RDS Custom for Oracle, consider the
following factors:

• The amount of downtime the application can afford

• The size of the source database

• Network connectivity

• A requirement for a fallback plan

• The source and target Oracle database version and DB instance OS types

• Available replication tools, such as AWS Database Migration Service, Oracle GoldenGate, or third-
party replication tools

Based on these factors, you can choose physical migration, logical migration, or a combination. If
you choose physical migration, you can use the following techniques:

RMAN duplication

Active database duplication doesn’t require a backup of your source database. It duplicates the
live source database to the destination host by copying database files over the network to the
auxiliary instance. The RMAN DUPLICATE command copies the required files as image copies
or backup sets. To learn this technique, see the AWS blog post Physical migration of Oracle
databases to Amazon RDS Custom using RMAN duplication.

Oracle Data Guard

In this technique, you back up a primary on-premises database and copy the backups to an
Amazon S3 bucket. You then copy the backups to your RDS Custom for Oracle standby DB
instance. After performing the necessary configuration, you manually switch over your primary
database to your RDS Custom for Oracle standby database. To learn this technique, see the AWS
blog post Physical migration of Oracle databases to Amazon RDS Custom using Data Guard.

For general information about logically importing data into RDS for Oracle, see Importing data into
Oracle on Amazon RDS.

Migrating to RDS Custom for Oracle 1887

https://aws.amazon.com/blogs/database/physical-migration-of-oracle-databases-to-amazon-rds-custom-using-rman-duplication/
https://aws.amazon.com/blogs/database/physical-migration-of-oracle-databases-to-amazon-rds-custom-using-rman-duplication/
https://aws.amazon.com/blogs/database/physical-migration-of-oracle-databases-to-amazon-rds-custom-using-data-guard/

Amazon Relational Database Service User Guide

Upgrading a DB instance for Amazon RDS Custom for Oracle

You can upgrade an Amazon RDS Custom DB instance by modifying it to use a new custom engine
version (CEV). For general information about upgrades, see Upgrading a DB instance engine
version.

Topics

• Overview of upgrades in RDS Custom for Oracle

• Requirements for RDS Custom for Oracle upgrades

• Considerations for RDS Custom for Oracle database upgrades

• Considerations for RDS Custom for Oracle OS upgrades

• Viewing valid CEV upgrade targets for RDS Custom for Oracle DB instances

• Upgrading an RDS Custom for Oracle DB instance

• Viewing pending database upgrades for RDS Custom DB instances

• Troubleshooting an upgrade failure for an RDS Custom for Oracle DB instance

Overview of upgrades in RDS Custom for Oracle

With RDS Custom for Oracle, you can patch either your Oracle database or your DB instance
operating system (OS) by creating new CEVs and then modifying your instance to use the new CEV.

Topics

• CEV upgrade options

• Patching without CEVs

• General steps for patching your DB instance with a CEV

CEV upgrade options

When you create a CEV for an upgrade, you have the following mutually exclusive options:

Database only

Reuse the Amazon Machine Image (AMI) currently in use by your DB instance, but specify
different database binaries. RDS Custom allocates a new binary volume and then attaches it to

Upgrading an RDS Custom for Oracle DB instance 1888

Amazon Relational Database Service User Guide

the existing Amazon EC2 instance. RDS Custom replaces the entire database volume with a new
volume that uses your target database version.

OS only

Reuse the database binaries currently in use by your DB instance, but specify a different AMI.
RDS Custom allocates a new Amazon EC2 instance, and then attaches the existing binary
volume to the new instance. The existing database volume is retained.

If you want to upgrade both the OS and database, you must upgrade the CEV twice. You can either
upgrade the OS and then the database or upgrade the database and then the OS.

Warning

When you patch your OS, you lose your root volume data and any existing OS
customization. Thus, we strongly recommend that you don't use the root volume for
installations or for storing permanent data or files. We also recommend that you back up
your data before the upgrade.

Patching without CEVs

We strongly recommend that you upgrade your RDS Custom for Oracle DB instance using CEVs.
RDS Custom for Oracle automation synchronizes the patch metadata with the database binary on
your DB instance.

In special circumstances, RDS Custom supports applying a "one-off" database patch directly to
the underlying Amazon EC2 instance directly using the OPatch utility. A valid use case might be a
database patch that you want to apply immediately, but the RDS Custom team is upgrading the
CEV feature, causing a delay. To apply a database patch manually, perform the following steps:

1. Pause RDS Custom automation.

2. Apply your patch to the database binaries on the Amazon EC2 instance.

3. Resume RDS Custom automation.

A disadvantage of the preceding technique is that you must apply the database patch manually to
every instance that you want to upgrade. In contrast, when you create a new CEV, you can create or
upgrade multiple DB instances using the same CEV.

Upgrading an RDS Custom for Oracle DB instance 1889

Amazon Relational Database Service User Guide

General steps for patching your DB instance with a CEV

Whether you patch the OS or your database, perform the following basic steps:

1. Create a CEV that contains either of the following, depending on whether you're patching the
database or OS:

• The Oracle Database RU that you want to apply to your DB instance

• A different AMI–either the latest available or one that you specify–and an existing CEV to use
as a source

Follow the steps in Creating a CEV.

2. (Optional for database patching) Check available engine version upgrades by running
describe-db-engine-versions.

3. Start the patching process by running modify-db-instance.

The status of the instance being patched differs as follows:

• While RDS is patching the database, the status of the DB instance changes to Upgrading.

• While RDS is patching the OS, the status of the DB instance changes to Modifying.

When the DB instance has the status Available, patching is complete.

4. Confirm that your DB instance uses the new CEV by running describe-db-instances.

Requirements for RDS Custom for Oracle upgrades

When upgrading your RDS Custom for Oracle DB instance to a target CEV, make sure you meet the
following requirements:

• The target CEV to which you are upgrading must exist.

• You must upgrade either the OS or the database in a single operation. Upgrading both the OS
and the database in a single API call isn't supported.

• The target CEV must use the installation parameter settings that are in the manifest of the
current CEV. For example, you can't upgrade a database that uses the default Oracle home to a
CEV that uses a nondefault Oracle home.

• For database upgrades, the target CEV must use a new minor database version, not a new major
version. For example, you can't upgrade from an Oracle Database 12c CEV to an Oracle Database
19c CEV. But you can upgrade from version 21.0.0.0.ru-2023-04.rur-2023-04.r1 to version
21.0.0.0.ru-2023-07.rur-2023-07.r1.

Upgrading an RDS Custom for Oracle DB instance 1890

Amazon Relational Database Service User Guide

• For OS upgrades, the target CEV must use a different AMI but have the same major version.

Considerations for RDS Custom for Oracle database upgrades

If you plan to upgrade your database, consider the following:

• The currently supported operating system (OS) version is Oracle Linux 8. To continue receiving
the latest security updates and patches from RDS Custom for Oracle, upgrade your DB instances
to Oracle Linux 8 by specifying a CEV based on this OS. Oracle Database 12c Release 1 (12.1),
Oracle Database Release 2 (12.2), and Oracle Database 19c are the only releases that support
Oracle Linux 8. To migrate to the latest Oracle Linux 8 AMI, upgrade your OS to the latest AMI.
For more information, see Upgrading an RDS Custom for Oracle DB instance.

Oracle Linux 7.9 ended support on Dec 31, 2024. To continue running Oracle Linux 7 after the
end of support, purchase an Oracle Extended Support license. You're responsible for security
updates and must patch your RDS Custom for Oracle instances manually. For more information,
see Lifetime Support Policy: Coverage for Oracle Open Source Service Offerings.

• When you upgrade the database binaries in your primary DB instance, RDS Custom for Oracle
upgrades your read replicas automatically. When you upgrade the OS, however, you must
upgrade the read replicas manually.

• When you upgrade a container database (CDB) to a new database version, RDS Custom for
Oracle checks that all PDBs are open or could be opened. If these conditions aren't met, RDS
Custom stops the check and returns the database to its original state without attempting the
upgrade. If the conditions are met, RDS Custom patches the CDB root first, and then patches all
other PDBs (including PDB$SEED) in parallel.

After patching completes, RDS Custom attempts to open all PDBs. If any PDBs fail to open,
you receive the following event: The following PDBs failed to open: list-of-
PDBs. If RDS Custom fails to patch the CDB root or any PDBs, the instance is put into the
PATCH_DB_FAILED state.

• You might want to perform a major database version upgrade and a conversion of non-CDB to
CDB at the same time. In this case, we recommend that you proceed as follows:

1. Create a new RDS Custom for Oracle DB instance that uses the Oracle multitenant
architecture.

2. Plug in a non-CDB into your CDB root, creating it as a PDB. Make sure that the non-CDB is the
same major version as your CDB.

Upgrading an RDS Custom for Oracle DB instance 1891

https://www.oracle.com/a/ocom/docs/elsp-lifetime-069338.pdf

Amazon Relational Database Service User Guide

3. Convert your PDB by running the noncdb_to_pdb.sql Oracle SQL script.

4. Validate your CDB instance.

5. Upgrade your CDB instance.

Considerations for RDS Custom for Oracle OS upgrades

When you plan an OS upgrade, consider the following:

• You can't provide your own AMI for use in an RDS Custom for Oracle CEV. You can specify either
the default AMI, which uses Oracle Linux 8, or an AMI that has been previously used by an RDS
Custom for Oracle CEV.

Note

RDS Custom for Oracle releases a new default AMI when common vulnerabilities and
exposures are discovered. No fixed schedule is available or guaranteed. RDS Custom for
Oracle tends to publish a new default AMI every 30 days.

• When you upgrade the OS in your primary DB instance, you must upgrade its associated read
replicas manually.

• Reserve sufficient Amazon EC2 compute capacity for your instance type in your AZ before you
begin patching the OS.

When you create a Capacity Reservation, you specify the AZ, number of instances, and instance
attributes (including instance type). For example, if your DB instance uses the underlying EC2
instance type r5.large, we recommend that you reserve EC2 capacity for r5.large in your AZ.
During OS patching, RDS Custom creates one new host of type db.r5.large, which can become
stuck if the AZ lacks EC2 capacity for this instance type. If you reserve EC2 capacity, you lower
the risk of blocked patching caused by capacity constraints. For more information, see On-
Demand Capacity Reservations in the Amazon EC2 User Guide.

• Back up your DB instance before you upgrade its OS. The upgrade removes your root volume
data and any existing OS customizations.

• In the shared responsibility model, you're responsible for keeping your OS up to date. RDS
Custom for Oracle doesn't mandate which patches you apply to your OS. If your RDS Custom for
Oracle is functional, you can use the AMI associated with this CEV indefinitely.

Upgrading an RDS Custom for Oracle DB instance 1892

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-capacity-reservations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-capacity-reservations.html

Amazon Relational Database Service User Guide

Viewing valid CEV upgrade targets for RDS Custom for Oracle DB instances

You can see existing CEVs on the Custom engine versions page in the AWS Management Console.

You can also use the describe-db-engine-versions AWS CLI command to find valid CEVs to use
when you upgrade your DB instances, as shown in the following example. This example assumes
that you created a DB instance using the engine version 19.my_cev1, and that the upgrade
versions 19.my_cev2 and 19.my_cev exist.

aws rds describe-db-engine-versions --engine custom-oracle-ee --engine-version
 19.my_cev1

The output resembles the following. The ImageId field shows the AMI ID.

{
 "DBEngineVersions": [
 {
 "Engine": "custom-oracle-ee",
 "EngineVersion": "19.my_cev1",
 ...
 "Image": {
 "ImageId": "ami-2345",
 "Status": "active"
 },
 "DBEngineVersionArn": "arn:aws:rds:us-west-2:123456789012:cev:custom-
oracle-ee/19.my_cev1/12a34b5c-67d8-90e1-2f34-gh56ijk78lm9"
 "ValidUpgradeTarget": [
 {
 "Engine": "custom-oracle-ee",
 "EngineVersion": "19.my_cev2",
 "Description": "19.my_cev2 description",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": false
 },
 {
 "Engine": "custom-oracle-ee",
 "EngineVersion": "19.my_cev3",
 "Description": "19.my_cev3 description",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": false
 }
]

Upgrading an RDS Custom for Oracle DB instance 1893

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

 ...

Upgrading an RDS Custom for Oracle DB instance

To upgrade your RDS Custom for Oracle DB instance, modify it to use a new CEV. This CEV can
contain either new database binaries or a new AMI. For example, to upgrade your Oracle Linux 7.9
DB instance to Oracle Linux 8, specify the latest AMI, which uses Oracle Linux 8. To upgrade the
database and OS, you must perform two separate upgrades.

Note

If you upgrade the database, RDS Custom automatically upgrades read replicas after it
upgrades the primary DB instance. If you upgrade the OS, you must upgrade the replicas
manually.

Before you begin, review Requirements for RDS Custom for Oracle upgrades and Considerations for
RDS Custom for Oracle database upgrades.

Console

To upgrade an RDS Custom for Oracle DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom for Oracle DB
instance that you want to upgrade.

3. Choose Modify. The Modify DB instance page appears.

4. For DB engine version, choose a new CEV. Do the following:

• If you are patching the database, make sure that the CEV specifies database binaries that are
different from those used by your DB instance, and doesn't specify an AMI that is different
from the AMI currently used by your DB instance.

• If you are patching the OS, make sure that the CEV specifies an AMI that is different from the
AMI currently used by your DB instance, and doesn't specify different database binaries.

Upgrading an RDS Custom for Oracle DB instance 1894

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Warning

When you patch your OS, you lose your root volume data and any existing OS
customization.

5. Choose Continue to check the summary of modifications.

Choose Apply immediately to apply the changes immediately.

6. If your changes are correct, choose Modify DB instance. Or choose Back to edit your changes
or Cancel to cancel your changes.

AWS CLI

The following examples show possible upgrade scenarios. The examples assume that you created
an RDS Custom for Oracle DB instance with the following characteristics:

• DB instance named my-custom-instance

• CEV named 19.my_cev1

• Oracle Database 19c using the non-CDB architecture

• Oracle Linux 8 using AMI ami-1234

The latest service-provided AMI is ami-2345. You can find AMIs by running the CLI command
describe-db-engine-versions.

Topics

• Upgrading the OS

• Upgrading the database

Upgrading the OS

In this example, you want to upgrade ami-1234 to ami-2345, which is the latest service-provided
AMI. Because you are upgrading the OS, the database binaries for ami-1234 and ami-2345 must
be the same. You create a new CEV named 19.my_cev2 based on 19.my_cev1.

Example

For Linux, macOS, or Unix:

Upgrading an RDS Custom for Oracle DB instance 1895

Amazon Relational Database Service User Guide

aws rds create-custom-db-engine-version \
 --engine custom-oracle-ee \
 --engine-version 19.my_cev2 \
 --description "Non-CDB CEV based on ami-2345" \
 --kms-key-id key-name \
 --source-custom-db-engine-version-identifer arn:aws:rds:us-
west-2:123456789012:cev:custom-oracle-ee/19.my_cev1/12345678-ab12-1234-cde1-
abcde123456789 \
 --image-id ami-2345

For Windows:

aws rds create-custom-db-engine-version ^
 --engine custom-oracle-ee ^
 --engine-version 19.my_cev2 ^
 --description "Non-CDB CEV based on ami-2345" ^
 --kms-key-id key-name ^
 --source-custom-db-engine-version-identifer arn:aws:rds:us-
west-2:123456789012:cev:custom-oracle-ee/19.my_cev1/12345678-ab12-1234-cde1-
abcde123456789 ^
 --image-id ami-2345

To upgrade an RDS Custom DB instance, use the modify-db-instance AWS CLI command with the
following parameters:

• --db-instance-identifier – Specify the RDS Custom for Oracle DB instance to be
upgraded.

• --engine-version – Specify the CEV that has the new AMI.

• --no-apply-immediately | --apply-immediately – Specify whether to perform the
upgrade immediately or wait until the scheduled maintenance window.

The following example upgrades my-custom-instance to version 19.my_cev2. Only the OS is
upgraded.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \

Upgrading an RDS Custom for Oracle DB instance 1896

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

 --engine-version 19.my_cev2 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --engine-version 19.my_cev2 ^
 --apply-immediately

Upgrading the database

In this example, you want to apply Oracle patch p35042068 to your RDS for Oracle DB instance.
Because you upgraded your OS in Upgrading the OS, your DB instance is currently using
19.my_cev2, which is based on ami-2345. You create a new CEV named 19.my_cev3 that also
uses ami-2345, but you specify a new JSON manifest in the $MANIFEST environment variable.
Thus, only the database binaries different in your new CEV and the CEV that your instance is
currently using.

Example

For Linux, macOS, or Unix:

aws rds create-custom-db-engine-version \
 --engine custom-oracle-ee \
 --engine-version 19.my_cev3 \
 --description "Non-CDB CEV with p35042068 based on ami-2345" \
 --kms-key-id key-name \
 --image-id ami-2345 \
 --manifest $MANIFEST

For Windows:

aws rds create-custom-db-engine-version ^
 --engine custom-oracle-ee ^
 --engine-version 19.my_cev3 ^
 --description "Non-CDB CEV with p35042068 based on ami-2345" ^
 --kms-key-id key-name ^
 --image-id ami-2345 ^
 --manifest $MANIFEST

Upgrading an RDS Custom for Oracle DB instance 1897

Amazon Relational Database Service User Guide

The following example upgrades my-custom-instance to engine version 19.my_cev3. Only the
database is upgraded.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --engine-version 19.my_cev3 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --engine-version 19.my_cev3 ^
 --apply-immediately

Viewing pending database upgrades for RDS Custom DB instances

You can see pending database upgrades for your Amazon RDS Custom DB instances by using the
describe-db-instances or describe-pending-maintenance-actions AWS CLI command.

However, this approach doesn't work if you used the --apply-immediately option or if the
upgrade is in progress.

The following describe-db-instances command shows pending database upgrades for my-
custom-instance.

aws rds describe-db-instances --db-instance-identifier my-custom-instance

The output resembles the following.

{
 "DBInstances": [
 {
 "DBInstanceIdentifier": "my-custom-instance",
 "EngineVersion": "19.my_cev1",
 ...

Upgrading an RDS Custom for Oracle DB instance 1898

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Relational Database Service User Guide

 "PendingModifiedValues": {
 "EngineVersion": "19.my_cev3"
 ...
 }
 }
]
}

Troubleshooting an upgrade failure for an RDS Custom for Oracle DB instance

If an RDS Custom DB instance upgrade fails, an RDS event is generated and the DB instance status
becomes upgrade-failed.

You can see this status by using the describe-db-instances AWS CLI command, as shown in the
following example.

aws rds describe-db-instances --db-instance-identifier my-custom-instance

The output resembles the following.

{
 "DBInstances": [
 {
 "DBInstanceIdentifier": "my-custom-instance",
 "EngineVersion": "19.my_cev1",
 ...
 "PendingModifiedValues": {
 "EngineVersion": "19.my_cev3"
 ...
 }
 "DBInstanceStatus": "upgrade-failed"
 }
]
}

After an upgrade failure, all database actions are blocked except for modifying the DB instance to
perform the following tasks:

• Retrying the same upgrade

• Pausing and resuming RDS Custom automation

• Point-in-time recovery (PITR)

Upgrading an RDS Custom for Oracle DB instance 1899

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• Deleting the DB instance

Note

If automation has been paused for the RDS Custom DB instance, you can't retry the
upgrade until you resume automation.
The same actions apply to an upgrade failure for an RDS-managed read replica as for the
primary.

For more information, see Troubleshooting upgrades for RDS Custom for Oracle.

Upgrading an RDS Custom for Oracle DB instance 1900

Amazon Relational Database Service User Guide

Troubleshooting DB issues for Amazon RDS Custom for Oracle

The shared responsibility model of RDS Custom provides OS shell–level access and database
administrator access. RDS Custom runs resources in your account, unlike Amazon RDS, which runs
resources in a system account. With greater access comes greater responsibility. In the following
sections, you can learn how to troubleshoot issues with Amazon RDS Custom DB instances.

Note

This section explains how to troubleshoot RDS Custom for Oracle. For troubleshooting RDS
Custom for SQL Server, see Troubleshooting DB issues for Amazon RDS Custom for SQL
Server.

Topics

• Viewing RDS Custom events

• Subscribing to RDS Custom events

• Troubleshooting custom engine version creation for RDS Custom for Oracle

• Fixing unsupported configurations in RDS Custom for Oracle

• Troubleshooting upgrades for RDS Custom for Oracle

• Troubleshooting replica promotion for RDS Custom for Oracle

Viewing RDS Custom events

The procedure for viewing events is the same for RDS Custom and Amazon RDS DB instances. For
more information, see Viewing Amazon RDS events.

To view RDS Custom event notification using the AWS CLI, use the describe-events command.
RDS Custom introduces several new events. The event categories are the same as for Amazon RDS.
For the list of events, see Amazon RDS event categories and event messages.

The following example retrieves details for the events that have occurred for the specified RDS
Custom DB instance.

aws rds describe-events \
 --source-identifier my-custom-instance \
 --source-type db-instance

Troubleshooting RDS Custom for Oracle 1901

Amazon Relational Database Service User Guide

Subscribing to RDS Custom events

The procedure for subscribing to events is the same for RDS Custom and Amazon RDS DB
instances. For more information, see Subscribing to Amazon RDS event notification.

To subscribe to RDS Custom event notification using the CLI, use the create-event-
subscription command. Include the following required parameters:

• --subscription-name

• --sns-topic-arn

The following example creates a subscription for backup and recovery events for an RDS Custom
DB instance in the current AWS account. Notifications are sent to an Amazon Simple Notification
Service (Amazon SNS) topic, specified by --sns-topic-arn.

aws rds create-event-subscription \
 --subscription-name my-instance-events \
 --source-type db-instance \
 --event-categories '["backup","recovery"]' \
 --sns-topic-arn arn:aws:sns:us-east-1:123456789012:interesting-events

Troubleshooting custom engine version creation for RDS Custom for Oracle

When CEV creation fails, RDS Custom issues RDS-EVENT-0198 with the message Creation
failed for custom engine version major-engine-version.cev_name, and includes
details about the failure. For example, the event prints missing files.

CEV creation might fail because of the following issues:

• The Amazon S3 bucket containing your installation files isn't in the same AWS Region as your
CEV.

• When you request CEV creation in an AWS Region for the first time, RDS Custom creates an
S3 bucket for storing RDS Custom resources (such as CEV artifacts, AWS CloudTrail logs, and
transaction logs).

CEV creation fails if RDS Custom can't create the S3 bucket. Either the caller doesn't have S3
permissions as described in Step 5: Grant required permissions to your IAM user or role, or the
number of S3 buckets has reached the limit.

Troubleshooting RDS Custom for Oracle 1902

Amazon Relational Database Service User Guide

• The caller doesn't have permissions to get files from your S3 bucket that contains the installation
media files. These permissions are described in Step 7: Add necessary IAM permissions.

• Your IAM policy has an aws:SourceIp condition. Make sure to follow the recommendations in
AWS Denies access to AWS based on the source IP in the AWS Identity and Access Management
User Guide. Also make sure that the caller has the S3 permissions described in Step 5: Grant
required permissions to your IAM user or role.

• Installation media files listed in the CEV manifest aren't in your S3 bucket.

• The SHA-256 checksums of the installation files are unknown to RDS Custom.

Confirm that the SHA-256 checksums of the provided files match the SHA-256 checksum on the
Oracle website. If the checksums match, contact AWS Support and provide the failed CEV name,
file name, and checksum.

• The OPatch version is incompatible with your patch files. You might get the following message:
OPatch is lower than minimum required version. Check that the version
meets the requirements for all patches, and try again. To apply an Oracle patch,
you must use a compatible version of the OPatch utility. You can find the required version of the
Opatch utility in the readme file for the patch. Download the most recent OPatch utility from My
Oracle Support, and try creating your CEV again.

• The patches specified in the CEV manifest are in the wrong order.

You can view RDS events either on the RDS console (in the navigation pane, choose Events) or by
using the describe-events AWS CLI command. The default duration is 60 minutes. If no events
are returned, specify a longer duration, as shown in the following example.

aws rds describe-events --duration 360

Currently, the MediaImport service that imports files from Amazon S3 to create CEVs isn't
integrated with AWS CloudTrail. Therefore, if you turn on data logging for Amazon RDS in
CloudTrail, calls to the MediaImport service such as the CreateCustomDbEngineVersion event
aren't logged.

However, you might see calls from the API gateway that accesses your Amazon S3 bucket. These
calls come from the MediaImport service for the CreateCustomDbEngineVersion event.

Troubleshooting RDS Custom for Oracle 1903

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html
https://aws.amazon.com/premiumsupport

Amazon Relational Database Service User Guide

Fixing unsupported configurations in RDS Custom for Oracle

In the shared responsibility model, it's your responsibility to fix configuration issues that put your
RDS Custom for Oracle DB instance into the unsupported-configuration state. If the issue
is with the AWS infrastructure, use the console or the AWS CLI to fix it. If the issue is with the
operating system or the database configuration, log in to the host to fix it.

Note

This section explains how to fix unsupported configurations in RDS Custom for Oracle. For
information about RDS Custom for SQL Server, see Fixing unsupported configurations in
RDS Custom for SQL Server.

The following table includes descriptions of the notifications and events that the support
perimeter sends and how to fix them. These notifications and the support perimeter are subject to
change. For background on the support perimeter, see RDS Custom support perimeter. For event
descriptions, see Amazon RDS event categories and event messages.

Event
ID

Configura
tion

RDS event
message

Action

SP-
O0000

Manual
unsupport
ed
configura
tion

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
reason.

To resolve this issue, create an Support case.

AWS resources (infrastructure)

SP-
O1001

Amazon
Elastic
Block
Store
(Amazon
EBS)
volumes

The following
EBS volumes were
added to EC2
instance ec2_id:
volume_id .
To resolve the
issue, detach the

RDS Custom creates two types of EBS volume,
besides the root volume created from the Amazon
Machine Image (AMI), and associates them with the
EC2 instance:

• The binary volume where the database software
binaries are located

Troubleshooting RDS Custom for Oracle 1904

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

specified volumes
from the instance.

• The data volumes where database files are located

When you create your DB instance, the storage
configurations that you specify configure the data
volumes.

The support perimeter monitors the following:

• The initial EBS volumes created with the DB
instance are still associated with the instance.

• The initial EBS volumes still have the same
configurations as initially set: storage type, size,
Provisioned IOPS, and storage throughput.

• No additional EBS volumes are attached to the DB
instance.

Use the following CLI command to compare the
volume type of the EBS volume details and the RDS
Custom for Oracle DB instance details:

aws rds describe-db-instances \
 --db-instance-identifier db-instance-
name | grep StorageType

Troubleshooting RDS Custom for Oracle 1905

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O1002

Amazon
Elastic
Block
Store
(Amazon
EBS)
volumes

EBS volume
volume_id has
been detached
from EC2 instance
[ec2_id]. You
can't detach the
original volume
from this instance.
To resolve the
issue, re-attach
volume_id to
ec2_id.

RDS Custom creates two types of EBS volume,
besides the root volume created from the Amazon
Machine Image (AMI), and associates them with the
EC2 instance:

• The binary volume where the database software
binaries are located

• The data volumes where database files are located

When you create your DB instance, the storage
configurations that you specify configure the data
volumes.

The support perimeter monitors the following:

• The initial EBS volumes created with the DB
instance are still associated with the instance.

• The initial EBS volumes still have the same
configurations as initially set: storage type, size,
Provisioned IOPS, and storage throughput.

• No additional EBS volumes are attached to the DB
instance.

Use the following CLI command to compare the
volume type of the EBS volume details and the RDS
Custom for Oracle DB instance details:

aws rds describe-db-instances \
 --db-instance-identifier db-instance-
name | grep StorageType

Troubleshooting RDS Custom for Oracle 1906

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O1003

Amazon
Elastic
Block
Store
(Amazon
EBS)
volumes

The original
EBS volume
volume_id
attached to EC2
instance ec2_id
has been modified
as follows: size [X]
to [Y], type [N] to
[M], or IOPS [J] to
[K]. To resolve the
issue, revert the
modification.

RDS Custom creates two types of EBS volume,
besides the root volume created from the Amazon
Machine Image (AMI), and associates them with the
EC2 instance:

• The binary volume where the database software
binaries are located

• The data volumes where database files are located

When you create your DB instance, the storage
configurations that you specify configure the data
volumes.

The support perimeter monitors the following:

• The initial EBS volumes created with the DB
instance are still associated with the instance.

• The initial EBS volumes still have the same
configurations as initially set: storage type, size,
Provisioned IOPS, and storage throughput.

• No additional EBS volumes are attached to the DB
instance.

Use the following CLI command to compare the
volume type of the EBS volume details and the RDS
Custom for Oracle DB instance details:

aws rds describe-db-instances \
 --db-instance-identifier db-instance-
name | grep StorageType

Troubleshooting RDS Custom for Oracle 1907

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O1004

Amazon
EC2
instance
state

Automated
recovery left EC2
instance [ec2_id]
in an impaired
state. To resolve
the issue, see
Troubleshooting
instance recovery
failures.

To check the status of a DB instance, use the console
or run the following AWS CLI command:

aws rds describe-db-instances \
 --db-instance-identifier db-instance-
name |grep DBInstanceStatus

SP-
O1005

Amazon
EC2
instance
attributes

EC2 instance
[ec2_id] was
modified as
follows: attribute
[att1] changed
from [val-old]
to [val-new],
attribute [att2]
changed from
[val-old] to
[val-new]. To
resolve the issue,
revert to the
original value.

Troubleshooting RDS Custom for Oracle 1908

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-recover.html#TroubleshootingInstanceRecovery
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-recover.html#TroubleshootingInstanceRecovery
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-recover.html#TroubleshootingInstanceRecovery

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O1006

Amazon
EC2
instance
state

EC2 instance
[ec2_id] was
terminated or
can't be found.
To resolve the
issue, delete the
RDS Custom DB
instance.

The support perimeter monitors EC2 instance state-
change notifications. The EC2 instance must always
be running.

To delete your DB instance

1. To check the status of a DB instance, use the
console or run the following AWS CLI command:

aws rds describe-db-instances \
 --db-instance-identifier db-instan
ce-name |grep DBInstanceStatus

2. Delete your RDS Custom for Oracle DB instance.

SP-
O1007

Amazon
EC2
instance
state

EC2 instance
[ec2_id] was
stopped. To resolve
the issue, start the
instance.

The support perimeter monitors EC2 instance state-
change notifications. The EC2 instance must always
be running.

To restart your DB instance

1. To check the status of a DB instance, use the
console or run the following AWS CLI command:

aws rds describe-db-instances \
 --db-instance-identifier db-instan
ce-name |grep DBInstanceStatus

2. Start your DB instance.

3. Remount the binary and data volumes.

Operating system

Troubleshooting RDS Custom for Oracle 1909

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O2001

RDS
Custom
agent
status

The RDS Custom
agent isn't running
on EC2 instance
[ec2_id]. Make
sure the agent
is running on
[ec2_id].

On RDS Custom for Oracle, the DB instance goes
outside the support perimeter if the RDS Custom
agent stops. The agent publishes the IamAlive
metric to Amazon CloudWatch every 30 seconds. An
alarm is triggered if the metric hasn't been published
for 30 seconds. The support perimeter also monitors
the RDS Custom agent process state on the host
every 30 minutes.

To restart the RDS Custom agent

1. Log in to your host and make sure that the RDS
Custom agent is running.

2. Run the following command to find the status of
the agent.

service rdscustomagent status

3. Use the following command to start the agent.

service rdscustomagent start

When the RDS Custom agent is running again, the
IamAlive metric is published to Amazon CloudWatc
h, and the alarm switches to the OK state. This switch
notifies the support perimeter that the agent is
running.

Troubleshooting RDS Custom for Oracle 1910

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O2002

AWS
Systems
Manager
agent
(SSM
agent)
status

The Systems
Manager agent
on EC2 instance
[ec2_id] is
unreachable. Make
sure that you that
have correctly
configured the
network, agent,
and IAM permissio
ns.

SSM Agent must always be running. The RDS
Custom agent is responsible for making sure that
the Systems Manager agent is running. If SSM Agent
was terminated and then restarted, the RDS Custom
agent publishes a metric to CloudWatch. The RDS
Custom agent has an alarm on the metric set to
trigger when there has been a restart in each of the
previous three minutes. The support perimeter also
monitors the process state of SSM Agent on the host
every 30 minutes.

For more information, see Troubleshooting SSM
Agent.

SP-
O2003

AWS
Systems
Manager
agent
(SSM
agent)
status

The Systems
Manager agent
on EC2 instance
[ec2_id] crashed
multiple times. For
more information,
see the SSM Agent
troubleshooting
documentation.

For more information, see Troubleshooting SSM
Agent.

Troubleshooting RDS Custom for Oracle 1911

https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O2004

OS time
zone

The time zone
on EC2 instance
[ec2_id] was
changed. To
resolve this
issue, revert the
timezone to the
previous setting
of [previous-
time-zone].
Then use an RDS
options group to
change the time
zone.

RDS automation detected that the time zone
on the host was changed without the use of an
option group. This host-level change can cause RDS
automation failures, so the EC2 instance is placed in
the unsupported-configuration state.

To fix the time zone setting

1. Log in to your EC2 host and check the OS time
zone as follows:

timedatectl

2. Pause RDS Custom automation. For more
information, see Pausing and resuming your RDS
Custom DB instance.

3. Stop the DB instance.

4. Revert the time zone change on the operating
system.

5. Start the DB instance.

6. Resume RDS Custom automation.

Your DB instance becomes available within 30
minutes. To prevent moving out of perimeter in the
future, modify your timezone through an options
group. For more information, see Oracle time zone.

Troubleshooting RDS Custom for Oracle 1912

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O2005

sudo
configura
tions

The sudo configura
tions on EC2
instance [ec2_id]
lack necessary
permissions. To
resolve this issue,
revert the recent
changes to the
sudo configura
tions.

The support perimeter verifies that certain OS users
are allowed to run certain commands on the host. It
monitors sudo configurations and compares them to
the supported state.

If the sudo configurations aren't supported, RDS
Custom tries to overwrite them and return to the
previous supported state. If the attempt is successful,
RDS Custom sends the following notification:

RDS Custom successfully overwrote your configura
tion.

If the overwrite isn't successful, your DB instance
remains in the unsupported configuration state.
To resolve this problem, either revert the changes
within the sudoers.d/ file or fix the permissions.

To investigate changes to the sudo configurations

1. Log in to your host.

2. Run the following command.

visudo -c -f /etc/sudoers.d/ individua
l_sudo_files

3. Modify the sudo configurations as necessary.

After the support perimeter determines that the
sudo configurations are supported, your RDS
Custom for Oracle DB instance becomes available
 within 30 minutes.

Troubleshooting RDS Custom for Oracle 1913

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O2006

S3 bucket
accessibi
lity

RDS Custom
automation can't
download files
from the S3 bucket
on EC2 instance
[ec2_id]. Check
your networkin
g configuration
and make sure the
instance allows
connections to and
from S3.

Database

Troubleshooting RDS Custom for Oracle 1914

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O3001

Database
archive
lag target

The ARCHIVE_L
AG_TARGET
parameter on
EC2 instance
[ec2_id] is out of
the recommended
range value_ran
ge . To resolve
the issue, set the
parameter to
a value within
value_range.

The support perimeter monitors the ARCHIVE_L
AG_TARGET database parameter to verify that the
latest restorable time of the DB instance is within
reasonable bounds.

To change the lag target for archived redo logs

1. Log in to your EC2 host

2. Connect to your RDS Custom for Oracle DB
instance

3. Change the ARCHIVE_LAG_TARGET parameter
to a value from 60–7200. For example, use the
following SQL statement.

ALTER SYSTEM SET ARCHIVE_LAG_TARGET=300
 SCOPE=BOTH;

Your DB instance becomes available within 30
minutes.

Troubleshooting RDS Custom for Oracle 1915

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O3002

Oracle
Data
Guard
role

The database role
[role_name]
isn't supported for
Oracle Data Guard
on EC2 instance
[ec2_id]. To
resolve the issue,
set the DATABASE_
ROLE parameter
to either PRIMARY
or PHYSICAL
STANDBY.

The support perimeter monitors the current
database role every 15 seconds and sends a
CloudWatch notification if the database role has
changed. The Oracle Data Guard DATABASE_ROLE
parameter must be either PRIMARY or PHYSICAL
STANDBY.

To restore your Oracle Data Guard database role to
a supported value

1. Check the Oracle Data Guard role by running the
following statement:

SELECT DATABASE_ROLE FROM V$DATABASE;

2. If your DB instance is standalone, use either of
the following statements to change it back to the
PRIMARY role:

ALTER DATABASE COMMIT TO SWITCHOVER
 PRIMARY;
ALTER DATABASE ACTIVATE STANDBY DATABASE;

If your DB instance is a replica, use the following
statement to change it back to the PHYSICAL
STANDBY role:

ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

After the support perimeter determines that the
database role is supported, your RDS Custom for
Oracle DB instance becomes available within 15
seconds.

Troubleshooting RDS Custom for Oracle 1916

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O3003

Database
health

The SMON process
of the Oracle
database is in a
zombie state. To
resolve the issue,
manually recover
the database
on EC2 instance
[ec2_id], open
the database, and
then immediate
ly back it up. For
more help, contact
Support.

The support perimeter monitors the DB instance
state. It also monitors how many restarts occurred
during the previous hour and day. You're notified
when the instance is in a state where it still exists,
but you can't interact with it.

To make the support perimeter evaluate your
instance state

1. Log in to your host and determine the database
state.

ps -eo pid,state,command | grep smon

2. If necessary, restart your DB instance. If the restart
fails, proceed to the next step.

3. If necessary, restart your EC2 host.

After your DB instance restarts, the RDS Custom
agent detects that your DB instance is no longer in
an unresponsive state. It then notifies the support
perimeter to reevaluate your DB instance state.

Troubleshooting RDS Custom for Oracle 1917

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O3004

Database
log mode

The database
log mode on EC2
instance [ec2_id]
was changed to
[value_b]. To
resolve the issue,
set the log mode
to [value_a].

To change your DB instance log mode to
ARCHIVELOG

1. Log in to your EC2 host.

2. Connect to your database and run the following
 statement:

SELECT LOG_MODE FROM V$DATABASE;

Or you can run the follow command in SQL*Plus:

ARCHIVE LOG LIST

3. Run the following SQL*Plus command to initiate a
consistent shutdown.

SHUTDOWN IMMEDIATE

The RDS Custom agent automatically restarts your
DB instance and sets the log mode to ARCHIVELO
G . Your DB instance becomes available within 30
minutes.

SP-
O3005

Oracle
home
path

The Oracle home
on EC2 instance
[ec2_id] was
changed to
new_path. To
resolve the issue,
revert the setting
to old_path.

Troubleshooting RDS Custom for Oracle 1918

Amazon Relational Database Service User Guide

Event
ID

Configura
tion

RDS event
message

Action

SP-
O3006

Database
unique
name

The database
unique name
on EC2 instance
[ec2_id] was
changed to
new_value . To
resolve the issue,
revert the name to
old_value .

To change the database unique name for your DB
instance

1. Log in to your EC2 host.

2. Connect to the database and run the following
 statement:

SELECT DB_UNIQUE_NAME FROM V$DATABASE;

3. Specify the original database unique name using
the command ALTER SYSTEM SET DB_UNIQUE
_NAME .

4. Run the following SQL statement to initiate a
consistent shutdown.

SHUTDOWN IMMEDIATE;

The RDS Custom agent automatically restarts your
DB instance and sets the log mode to ARCHIVELO
G . Your DB instance becomes available within 30
minutes.

Troubleshooting upgrades for RDS Custom for Oracle

Your upgrade of an RDS Custom for Oracle instance might fail. Following, you can find techniques
that you can use during upgrades of RDS Custom DB for Oracle DB instances:

• Examine the upgrade output log files in the /tmp directory on your DB instance. The names of
the logs depend on your DB engine version. For example, you might see logs that contain the
strings catupgrd or catup.

• Examine the alert.log file located in the /rdsdbdata/log/trace directory.

Troubleshooting RDS Custom for Oracle 1919

Amazon Relational Database Service User Guide

• Run the following grep command in the root directory to track the upgrade OS process. This
command shows where the log files are being written and determine the state of the upgrade
process.

ps -aux | grep upg

The following shows sample output.

root 18884 0.0 0.0 235428 8172 ? S< 17:03 0:00 /usr/bin/
sudo -u rdsdb /rdsdbbin/scripts/oracle-control ORCL op_apply_upgrade_sh RDS-
UPGRADE/2.upgrade.sh
rdsdb 18886 0.0 0.0 153968 12164 ? S< 17:03 0:00 /usr/bin/perl -T -
w /rdsdbbin/scripts/oracle-control ORCL op_apply_upgrade_sh RDS-UPGRADE/2.upgrade.sh
rdsdb 18887 0.0 0.0 113196 3032 ? S< 17:03 0:00 /bin/sh /rdsdbbin/
oracle/rdbms/admin/RDS-UPGRADE/2.upgrade.sh
rdsdb 18900 0.0 0.0 113196 1812 ? S< 17:03 0:00 /bin/sh /rdsdbbin/
oracle/rdbms/admin/RDS-UPGRADE/2.upgrade.sh
rdsdb 18901 0.1 0.0 167652 20620 ? S< 17:03 0:07 /rdsdbbin/oracle/
perl/bin/perl catctl.pl -n 4 -d /rdsdbbin/oracle/rdbms/admin -l /tmp catupgrd.sql
root 29944 0.0 0.0 112724 2316 pts/0 S+ 18:43 0:00 grep --color=auto
 upg

• Run the following SQL query to verify the current state of the components to find the database
version and the options installed on the DB instance.

SET LINESIZE 180
COLUMN COMP_ID FORMAT A15
COLUMN COMP_NAME FORMAT A40 TRUNC
COLUMN STATUS FORMAT A15 TRUNC
SELECT COMP_ID, COMP_NAME, VERSION, STATUS FROM DBA_REGISTRY ORDER BY 1;

The output resembles the following.

COMP_NAME STATUS PROCEDURE
-- --------------------
 --
Oracle Database Catalog Views VALID
 DBMS_REGISTRY_SYS.VALIDATE_CATALOG
Oracle Database Packages and Types VALID
 DBMS_REGISTRY_SYS.VALIDATE_CATPROC
Oracle Text VALID VALIDATE_CONTEXT

Troubleshooting RDS Custom for Oracle 1920

Amazon Relational Database Service User Guide

Oracle XML Database VALID DBMS_REGXDB.VALIDATEXDB

4 rows selected.

• Run the following SQL query to check for invalid objects that might interfere with the upgrade
process.

SET PAGES 1000 LINES 2000
COL OBJECT FOR A40
SELECT SUBSTR(OWNER,1,12) OWNER,
 SUBSTR(OBJECT_NAME,1,30) OBJECT,
 SUBSTR(OBJECT_TYPE,1,30) TYPE, STATUS,
 CREATED
FROM DBA_OBJECTS
WHERE STATUS <>'VALID'
AND OWNER IN ('SYS','SYSTEM','RDSADMIN','XDB');

Troubleshooting replica promotion for RDS Custom for Oracle

You can promote managed Oracle replicas in RDS Custom for Oracle using the console, promote-
read-replica AWS CLI command, or PromoteReadReplica API. If you delete your primary DB
instance, and all replicas are healthy, RDS Custom for Oracle promotes your managed replicas to
standalone instances automatically. If a replica has paused automation or is outside the support
perimeter, you must fix the replica before RDS Custom can promote it automatically. For more
information, see Promoting an RDS Custom for Oracle replica to a standalone DB instance.

The replica promotion workflow might become stuck in the following situation:

• The primary DB instance is in the state STORAGE_FULL.

• The primary database can't archive all of its online redo logs.

• A gap exists between the archived redo log files on your Oracle replica and the primary database.

To respond to the stuck workflow

1. Synchronize the redo log gap on your Oracle replica DB instance.

2. Force the promotion of your read replica to the latest applied redo log. Run the following
commands in SQL*Plus:

ALTER DATABASE ACTIVATE STANDBY DATABASE;

Troubleshooting RDS Custom for Oracle 1921

Amazon Relational Database Service User Guide

SHUTDOWN IMMEDIATE
STARTUP

3. Contact Support and ask them to move your DB instance to available status.

Troubleshooting RDS Custom for Oracle 1922

Amazon Relational Database Service User Guide

Known issues for Amazon RDS Custom for Oracle

When working with RDS Custom for Oracle, note the following issues for DB instances:

• Resizing the root or dbbin volumes isn't supported.

Warning

We strongly recommend that you don't resize the root or dbbin volumes manually. We
recommend that you store all configurations in the data volume, which persists after
patching, and that you resize the volume using only the RDS scale storage API.

• Some RDS APIs can be blocked when a database instance is on an older AMI, for example, an AMI
that uses Oracle Linux 7. To resolve this issue, patch your DB instance to the latest AMI using OS
patching. For more information, see CEV upgrade options.

• Before you perform RDS operations, make sure that your AWS account has enough quota for
compute and storage.

• If the database is in the creation state, and you actively log in to the database or Amazon EC2
host and run commands, database creation might not complete.

• Control file multiplexing isn't currently supported because of a read replica issue. Before
you create a read replica, make sure to specify only one file name in the CONTROL_FILES
initialization parameter on the source database.

• You can't change the database mode from PHYSICAL STANDBY (mounted or read-only) to
SNAPSHOT STANDBY (converting to read/write).

• If an AWS account is part of an AWS Organization with a service control policy (SCP), and the
SCP contains a condition key, an RDS Custom for Oracle DB instance might fail to create with the
following error:

You can't create the DB instance because of incompatible resources.
The IAM instance profile role [AWSRDSCustomInstanceRole1-us-east-1] is missing the
 following permissions:
EFFECT [Allow] on ACTION(S) [ssm:DescribeAssociation, ssm:DescribeDocument,
 ssm:GetConnectionStatus,
 ssm:GetDeployablePatchSnapshotForInstance, ssmmessages:OpenControlChannel,
 ssm:GetParameters,
 ssm:ListInstanceAssociations, ssm:PutConfigurePackageResult,
 ssmmessages:CreateControlChannel,

Known issues for RDS Custom for Oracle 1923

Amazon Relational Database Service User Guide

 ssm:GetParameter, ssm:UpdateAssociationStatus, ssm:GetManifest,
 ssmmessages:CreateDataChannel,
 ssm:PutInventory, ssm:UpdateInstanceInformation, ssm:DescribeInstanceInformation,
 ssmmessages:OpenDataChannel, ssm:GetDocument, ssm:ListAssociations,
 ssm:PutComplianceItems,
 ssm:UpdateInstanceAssociationStatus] for RESOURCE(S) [], EFFECT [Allow] on
 ACTION(S) [ec2messages:DeleteMessage,
 ec2messages:FailMessage, ec2messages:GetEndpoint, ec2messages:AcknowledgeMessage,
 ec2messages:GetMessages,
 ec2messages:SendReply] for RESOURCE(S) [], EFFECT [Allow] on ACTION(S)
 [logs:CreateLogStream,
 logs:DescribeLogStreams, logs:PutRetentionPolicy, logs:PutLogEvents]

To resolve this issue, create a ticket with Support.

Known issues with database user accounts

Note the following issues:

• Don't remove database user accounts that begin with the string RDS, such as RDSADMIN and
RDS_DATAGUARD. RDS Custom for Oracle uses the RDS account for automation. If you remove
this user account, RDS Custom moves the instance to the unsupported configuration state.

• You can't change the master username for your RDS Custom for Oracle DB instance using the
ModifyDBInstance API.

• RDS Custom for Oracle rotates user account credentials on all DB instances. For more
information, see Rotating RDS Custom for Oracle credentials for compliance programs. If you use
an on-premises primary/standby configuration, credential rotation might affect the following
resources:

• Manually created standby RDS Custom for Oracle instances

To resolve this issue, drop the manual standby databases, and then create an Oracle read
replica using an API call. Manage the secrets manually for the manual standby databases so
that they match the source DB instance.

• Manually created cross-Region read replicas

To resolve this issue, manually keep the secrets so that they match the primary DB instance.

Known issues for RDS Custom for Oracle 1924

Amazon Relational Database Service User Guide

Known issues with parameter and configuration files

• You must configure the crontab file after scale compute, OS upgrades, and other operations
where RDS Custom replaces the root volume. We highly recommend that you keep a backup of
crontab.

• Note the following guidelines when you configure the listener.ora file:

• Make sure that every entry in the file is on a single line. This approach avoids issues with
indentation during instance creation.

• Make sure that GLOBAL_DBNAME is equal to the value of SID_NAME.

• Make sure the value for LISTENER follows the naming convention L_dbname_001.

• Make sure the listener.ora file maintains a connection to the database name. RDS Custom
uses this connection to verify database startup. If you modify this file incorrectly, operations
such as scale compute or patching might fail.

The following example shows a listener.ora that is configured correctly:

ADR_BASE_L_ORCL_001=/rdsdbdata/log/
USE_SID_AS_SERVICE_L_ORCL_001=ON
SID_LIST_L_ORCL_001=(SID_LIST = (SID_DESC = (SID_NAME = ORCL)(GLOBAL_DBNAME = ORCL)
 (ORACLE_HOME = /rdsdbbin/oracle.19.custom.r1.EE.1)))
SUBSCRIBE_FOR_NODE_DOWN_EVENT_L_ORCL_001=OFF
L_ORCL_001=(DESCRIPTION_LIST = (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(PORT =
 XXXX)(HOST = x.x.x.x))) (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(PORT = XXXX)
(HOST = 127.0.0.1))))

• Comments aren't supported in a server parameter file or initialization parameter file.

• You must declare the following initialization parameters in the server parameter file (/
rdsdbdata/config/oracle_pfile):

• MEMORY_MAX_TARGET

• MEMORY_TARGET

• PGA_AGGREGATE_TARGET

• PROCESSES

• SGA_TARGET

• USE_LARGE_PAGES

Known issues for RDS Custom for Oracle 1925

Amazon Relational Database Service User Guide

If the preceding parameters aren't declared in /rdsdbdata/config/oracle_pfile, read
replica creation and scale compute might fail.

• You can't delete the symbolic links for configuration files such as the server parameter file, audit
files, listener.ora, tnsnames.ora, or sqlnet.ora. You also can't modify the directory
structure for these files. RDS Custom automation expects these files to exist in a specific
directory structure.

To create a server parameter file from an initialization parameter file, use the following syntax.

CREATE SPFILE='/rdsdbdata/admin/$ORACLE_SID/pfile/spfile$ORACLE_SID.ora'
 FROM PFILE='/rdsdbdata/config/oracle_pfile';

Known issues for RDS Custom for Oracle 1926

Amazon Relational Database Service User Guide

Working with RDS Custom for SQL Server

Following, you can find instructions for creating, managing, and maintaining your RDS Custom for
SQL Server DB instances.

Topics

• RDS Custom for SQL Server workflow

• Requirements and limitations for Amazon RDS Custom for SQL Server

• Setting up your environment for Amazon RDS Custom for SQL Server

• Bring Your Own Media with RDS Custom for SQL Server

• Working with custom engine versions for RDS Custom for SQL Server

• Creating and connecting to a DB instance for Amazon RDS Custom for SQL Server

• Managing an Amazon RDS Custom for SQL Server DB instance

• Working with Microsoft Active Directory with RDS Custom for SQL Server

• Managing a Multi-AZ deployment for RDS Custom for SQL Server

• Backing up and restoring an Amazon RDS Custom for SQL Server DB instance

• Copying an Amazon RDS Custom for SQL Server DB snapshot

• Migrating an on-premises database to Amazon RDS Custom for SQL Server

• Upgrading a DB instance for Amazon RDS Custom for SQL Server

• Troubleshooting DB issues for Amazon RDS Custom for SQL Server

RDS Custom for SQL Server workflow

The following diagram shows the typical workflow for RDS Custom for SQL Server.

Working with RDS Custom for SQL Server 1927

Amazon Relational Database Service User Guide

The steps are as follows:

1. Create an RDS Custom for SQL Server DB instance from an engine version offered by RDS
Custom.

For more information, see Creating an RDS Custom for SQL Server DB instance.

2. Connect your application to the RDS Custom DB instance endpoint.

For more information, see Connecting to your RDS Custom DB instance using AWS Systems
Manager and Connecting to your RDS Custom DB instance using RDP.

3. (Optional) Access the host to customize your software.

4. Monitor notifications and messages generated by RDS Custom automation.

Creating a DB instance for RDS Custom

You create your RDS Custom DB instance using the create-db-instance command. The
procedure is similar to creating an Amazon RDS instance. However, some of the parameters are
different. For more information, see Creating and connecting to a DB instance for Amazon RDS
Custom for SQL Server.

RDS Custom for SQL Server workflow 1928

Amazon Relational Database Service User Guide

Database connection

Like an Amazon RDS DB instance, your RDS Custom for SQL Server DB instance resides in a
VPC. Your application connects to the RDS Custom instance using a client such as SQL Server
Management Suite (SSMS), just as in RDS for SQL Server.

RDS Custom customization

You can access the RDS Custom host to install or customize software. To avoid conflicts between
your changes and the RDS Custom automation, you can pause the automation for a specified
period. During this period, RDS Custom doesn't perform monitoring or instance recovery. At the
end of the period, RDS Custom resumes full automation. For more information, see Pausing and
resuming RDS Custom automation.

RDS Custom for SQL Server workflow 1929

Amazon Relational Database Service User Guide

Requirements and limitations for Amazon RDS Custom for SQL Server

Following, you can find a summary of the Amazon RDS Custom for SQL Server requirements and
limitations for quick reference. Requirements and limitations also appear in the relevant sections.

Topics

• Region and version availability

• General requirements for RDS Custom for SQL Server

• DB instance class support for RDS Custom for SQL Server

• Limitations for RDS Custom for SQL Server

• Setting character sets and collations for RDS Custom for SQL Server DB instances

• Local time zone for RDS Custom for SQL Server DB instances

• Using a Service Master Key with RDS Custom for SQL Server

Region and version availability

Feature availability and support varies across specific versions of each database engine, and
across AWS Regions. For more information on version and Region availability of Amazon RDS with
Amazon RDS Custom for SQL Server, see Supported Regions and DB engines for RDS Custom for
SQL Server.

General requirements for RDS Custom for SQL Server

Make sure to follow these requirements for Amazon RDS Custom for SQL Server:

• Use the instance classes shown in DB instance class support for RDS Custom for SQL Server. The
only storage types supported are solid state drives (SSD) of types gp2, gp3, io1, and io2 Block
Express. The maximum storage limit for io1, gp2, and gp3 is 16 TiB while io2 supports 64 TiB.

• Make sure that you have a symmetric encryption AWS KMS key to create an RDS Custom DB
instance. For more information, see Make sure that you have a symmetric encryption AWS KMS
key.

• Make sure that you create an AWS Identity and Access Management (IAM) role and instance
profile. For more information, see Creating your IAM role and instance profile manually and
Automated instance profile creation using the AWS Management Console.

RDS Custom for SQL Server requirements and limitations 1930

Amazon Relational Database Service User Guide

• Make sure to supply a networking configuration that RDS Custom can use to access other AWS
services. For specific requirements, see Step 2: Configure networking, instance profile, and
encryption.

• The combined number of RDS Custom and Amazon RDS DB instances can't exceed your quota
limit. For example, if your quota is 40 DB instances, you can have 20 RDS Custom for SQL Server
DB instances and 20 Amazon RDS DB instances.

• RDS Custom automatically creates an AWS CloudTrail trail whose name begins with do-not-
delete-rds-custom-. The RDS Custom support perimeter relies on the events from CloudTrail
to determine whether your actions affect RDS Custom automation. RDS Custom creates the
trail when you create your first DB instance. To use an already existing CloudTrail, contact AWS
Support. For more information, see AWS CloudTrail.

DB instance class support for RDS Custom for SQL Server

Check if the DB instance class is supported in your Region by using the describe-orderable-db-
instance-options command.

RDS Custom for SQL Server supports the DB instance classes shown in the following table:

SQL Server
edition

RDS Custom support

Enterprise
Edition db.r5.xlarge–db.r5.24xlarge

db.r5b.xlarge–db.r5b.24xlarge

db.m5.xlarge–db.m5.24xlarge

db.r6i.xlarge–db.r6i.32xlarge

db.m6i.xlarge–db.m6i.32xlarge

db.x2iedn.xlarge–db.x2iedn.32xlarge

Standard
Edition db.r5.large–db.r5.24xlarge

db.r5b.large–db.r5b.8xlarge

RDS Custom for SQL Server requirements and limitations 1931

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-orderable-db-instance-options.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-orderable-db-instance-options.html

Amazon Relational Database Service User Guide

SQL Server
edition

RDS Custom support

db.m5.large–db.m5.24xlarge

db.r6i.large–db.r6i.8xlarge

db.m6i.large–db.m6i.8xlarge

db.x2iedn.xlarge–db.x2iedn.8xlarge

Developer
Edition db.r5.xlarge–db.r5.24xlarge

db.r5b.xlarge–db.r5b.24xlarge

db.m5.xlarge–db.m5.24xlarge

db.r6i.xlarge–db.r6i.32xlarge

db.m6i.xlarge–db.m6i.32xlarge

db.x2iedn.xlarge–db.x2iedn.32xlarge

Web Edition
db.r5.large–db.r5.4xlarge

db.m5.large–db.m5.4xlarge

db.r6i.large–db.r6i.4xlarge

db.m6i.large–db.m6i.4xlarge

db.r5b.large–db.r5b.4xlarge

The following recommendations apply to db.x2iedn class types:

• At creation, local storage is a raw and unallocated device. Before using a DB instance with this
instance class, you must mount and format the local storage. Afterward, configure tempdb on
it to ensure optimal performance. For more information, see Optimize tempdb performance in
Amazon RDS Custom for SQL Server using local instance storage.

RDS Custom for SQL Server requirements and limitations 1932

https://aws.amazon.com/blogs/database/optimize-tempdb-performance-in-amazon-rds-custom-for-sql-server-using-local-instance-storage/
https://aws.amazon.com/blogs/database/optimize-tempdb-performance-in-amazon-rds-custom-for-sql-server-using-local-instance-storage/

Amazon Relational Database Service User Guide

• Local storage reverts to its raw and unallocated state when you run DB instance operations such
as scale compute, instance replacement, snapshot restore, or point-in-time recovery (PITR). In
these situations, you must remount, reformat, and reconfigure the drive and tempdb to restore
functionality.

• For Multi-AZ instances, we recommend that you perform the configuration on a standby DB
instance. This way, if a failover occurs, the system continues to operate without issues because
the configuration is already in place on the standby instance.

Limitations for RDS Custom for SQL Server

The following limitations apply to RDS Custom for SQL Server:

• You can't create read replicas in Amazon RDS for RDS Custom for SQL Server DB instances.
However, you can configure high availability automatically with a Multi-AZ deployment. For more
information, see Managing a Multi-AZ deployment for RDS Custom for SQL Server.

• You can't modify the DB instance identifier of an existing RDS Custom for SQL Server DB
instance.

• For an RDS Custom for SQL Server DB instance that wasn't created with a custom engine version
(CEV), changes to the Microsoft Windows operating system aren't guaranteed to persist. For
example, you lose these changes when you initiate a snapshot or point-in-time restore operation.
If the RDS Custom for SQL Server DB instance was created with a CEV, then those changes are
persisted.

• Not all options are supported. For example, when you create an RDS Custom for SQL Server DB
instance, you can't do the following:

• Change the number of CPU cores and threads per core on the DB instance class.

• Turn on storage autoscaling.

• Specify your own DB parameter group, option group, or character set.

• Turn on Performance Insights.

• Turn on automatic minor version upgrade.

• The maximum DB instance storage is 64 TiB.

• You can't use RDS Proxy with RDS Custom for SQL Server.

• You can't use the describe-reserved-db-instances API for RDS Custom for SQL Server DB
instances.

RDS Custom for SQL Server requirements and limitations 1933

Amazon Relational Database Service User Guide

Setting character sets and collations for RDS Custom for SQL Server DB instances

Overview

With RDS Custom for SQL Server DB instances, you can configure the character set and collation
settings that determine how data is stored and sorted. Character sets define which characters are
allowed, while collations specify the rules for sorting and comparing data. It't important to set
the appropriate character sets and collations for applications that work with multilingual data or
have specific sorting requirements. For example, you might need to handle accented characters
and define language-specific sorting rules, or maintain data integrity across different locales. The
following sections provide information on character set and collation support for your RDS Custom
for SQL Server DB instances.

RDS Custom for SQL Server supports a wide range of server collations, both in traditional and
UTF-8 encoding, for the SQL_Latin, Japanese, German, and Arabic locales. The default server
collation is SQL_Latin1_General_CP1_CI_AS, however, you can select another supported
collation to use. You can select a collation using the same procedure that RDS for SQL Server uses.
For more information, see Managing collations and character sets for Amazon RDS for Microsoft
SQL Server.

Considerations

The following requirements and limitations apply when working with server collations on RDS
Custom for SQL Server:

• You can set the server collation when you create an RDS Custom for SQL Server DB instance. You
can't modify the server-level collation after the DB instance is created.

• You can't modify the server level collation when restoring from a DB snapshot or during a point
in time recovery (PITR).

• When you create a DB instance from an RDS Custom for SQL Server CEV, the DB instance
doesn't inherit the server collation from the CEV. Instead, the default server collation of
SQL_Latin1_General_CP1_CI_AS is used. If you've configured a non-default server collation
on a RDS Custom for SQL Server CEV and want to use that same server collation on a new DB
instance, be sure to select that same collation when you create the DB instance from the CEV.

Note

If the collation you select while creating the DB instance is different from the collation
of the CEV, the Microsoft SQL Server system databases on the new RDS Custom for SQL

RDS Custom for SQL Server requirements and limitations 1934

Amazon Relational Database Service User Guide

Server DB instance will be rebuilt to use the updated collation. The rebuild process is
only performed on the new RDS Custom for SQL Server DB instance and has no impact
on the CEV itself. Any previous modifications that you made to the system databases on
the CEV will not be retained on the new RDS Custom for SQL Server DB instance once
the system databases are rebuilt. Examples of some modifications include user-defined
objects in the master database, scheduled jobs in the msdb database, or changes to
default database settings in the model database on your CEV. You can manually recreate
your modifications once the new RDS Custom for SQL Server DB instance is created.

• When you create a DB instance from an RDS Custom for SQL Server custom engine version
(CEV) and select a different collation from that of the CEV, ensure that your golden image (AMI)
used for CEV creation meets the following requirements so the Microsoft SQL Server system
databases on the new DB instance can be rebuilt:

• For SQL Server 2022, ensure the setup.exe file is located in the following path: C:\Program
Files\Microsoft SQL Server\160\Setup Bootstrap\SQL2022\setup.exe

• For SQL Server 2019, ensure the setup.exe file is located in the following path: C:\Program
Files\Microsoft SQL Server\150\Setup Bootstrap\SQL2019\setup.exe

• Copies of the data and log templates for the master, model, and msdb databases must exist
in their default locations. For more information, see Rebuild system databases in the Microsoft
public documentation.

• Ensure your SQL Server Database Engine uses NT Service\MSSQLSERVER or NT
AUTHORITY\NETWORK SERVICE as the service account. Any other account will not have the
required permissions on the C:\ drive when configuring a non-default server collation for the
DB instance.

• If the server collation selected for a new DB instance is the same as that configured on your
CEV, the Microsoft SQL Server system databases on the new RDS Custom for SQL Server DB
instance do not undergo the rebuild process. Any previous modifications that you made to the
system databases on the CEV will automatically persist to the new RDS Custom for SQL Server
DB instance.

Supported collations

You can set your collation to one of the values listed in the following table.

RDS Custom for SQL Server requirements and limitations 1935

https://learn.microsoft.com/en-us/sql/relational-databases/databases/rebuild-system-databases?view=sql-server-ver16#Restrictions

Amazon Relational Database Service User Guide

Collation Description

Arabic_100_BIN Arabic-100, binary sort

Arabic_100_BIN2 Arabic-100, binary code point comparison sort

Arabic_100_CI_AI Arabic-100, case-insensitive, accent-insensitive
, kanatype-insensitive, width-insensitive

Arabic_100_CI_AI_KS Arabic-100, case-insensitive, accent-insensitive
, kanatype-sensitive, width-insensitive

Arabic_100_CI_AI_KS_SC Arabic-100, case-insensitive, accent-insensitive
, kanatype-sensitive, width-insensitive,
supplementary characters

Arabic_100_CI_AI_KS_SC_UTF8 Arabic-100, case-insensitive, accent-insensitive
, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Arabic_100_CI_AI_KS_WS Arabic-100, case-insensitive, accent-insensitive
, kanatype-sensitive, width-sensitive

Arabic_100_CI_AI_KS_WS_SC Arabic-100, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters

Arabic_100_CI_AI_KS_WS_SC_UTF8 Arabic-100, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Arabic_100_CI_AI_SC Arabic-100, case-insensitive, accent-insensitive
, kanatype-insensitive, width-insensitive,
supplementary characters

Arabic_100_CI_AI_SC_UTF8 Arabic-100, case-insensitive, accent-insensitive
, kanatype-insensitive, width-insensitive,
supplementary characters, UTF8

RDS Custom for SQL Server requirements and limitations 1936

Amazon Relational Database Service User Guide

Collation Description

Arabic_100_CI_AI_WS Arabic-100, case-insensitive, accent-insensitive
, kanatype-insensitive, width-sensitive

Arabic_100_CI_AI_WS_SC Arabic-100, case-insensitive, accent-insensitive
, kanatype-insensitive, width-sensitive,
supplementary characters

Arabic_100_CI_AI_WS_SC_UTF8 Arabic-100, case-insensitive, accent-insensitive
, kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

Arabic_100_CI_AS Arabic-100, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Arabic_100_CI_AS_KS Arabic-100, case-insensitive, accent-sensitive,
kanatype-sensitive, width-insensitive

Arabic_100_CI_AS_KS_SC Arabic-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters

Arabic_100_CI_AS_KS_SC_UTF8 Arabic-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Arabic_100_CI_AS_KS_WS Arabic-100, case-insensitive, accent-sensitive,
kanatype-sensitive, width-sensitive

Arabic_100_CI_AS_KS_WS_SC Arabic-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters

Arabic_100_CI_AS_KS_WS_SC_UTF8 Arabic-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

RDS Custom for SQL Server requirements and limitations 1937

Amazon Relational Database Service User Guide

Collation Description

Arabic_100_CI_AS_SC Arabic-100, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters

Arabic_100_CI_AS_SC_UTF8 Arabic-100, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters, UTF8

Arabic_100_CI_AS_WS Arabic-100, case-insensitive, accent-sensitive,
kanatype-insensitive, width-sensitive

Arabic_100_CI_AS_WS_SC Arabic-100, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters

Arabic_100_CI_AS_WS_SC_UTF8 Arabic-100, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

Arabic_100_CS_AI Arabic-100, case-sensitive, accent-insensitive,
kanatype-insensitive, width-insensitive

Arabic_100_CS_AI_KS Arabic-100, case-sensitive, accent-insensitive,
kanatype-sensitive, width-insensitive

Arabic_100_CS_AI_KS_SC Arabic-100, case-sensitive, accent-insensitive
, kanatype-sensitive, width-insensitive,
supplementary characters

Arabic_100_CS_AI_KS_SC_UTF8 Arabic-100, case-sensitive, accent-insensitive
, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Arabic_100_CS_AI_KS_WS Arabic-100, case-sensitive, accent-insensitive,
kanatype-sensitive, width-sensitive

RDS Custom for SQL Server requirements and limitations 1938

Amazon Relational Database Service User Guide

Collation Description

Arabic_100_CS_AI_KS_WS_SC Arabic-100, case-sensitive, accent-insensitive
, kanatype-sensitive, width-sensitive,
supplementary characters

Arabic_100_CS_AI_KS_WS_SC_UTF8 Arabic-100, case-sensitive, accent-insensitive
, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Arabic_100_CS_AI_SC Arabic-100, case-sensitive, accent-insensitive
, kanatype-insensitive, width-insensitive,
supplementary characters

Arabic_100_CS_AI_SC_UTF8 Arabic-100, case-sensitive, accent-insensitive
, kanatype-insensitive, width-insensitive,
supplementary characters, UTF8

Arabic_100_CS_AI_WS Arabic-100, case-sensitive, accent-insensitive,
kanatype-insensitive, width-sensitive

Arabic_100_CS_AI_WS_SC Arabic-100, case-sensitive, accent-insensitive
, kanatype-insensitive, width-sensitive,
supplementary characters

Arabic_100_CS_AI_WS_SC_UTF8 Arabic-100, case-sensitive, accent-insensitive
, kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

Arabic_100_CS_AS Arabic-100, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Arabic_100_CS_AS_KS Arabic-100, case-sensitive, accent-sensitive,
kanatype-sensitive, width-insensitive

Arabic_100_CS_AS_KS_SC Arabic-100, case-sensitive, accent-sensitive,
kanatype-sensitive, width-insensitive,
supplementary characters

RDS Custom for SQL Server requirements and limitations 1939

Amazon Relational Database Service User Guide

Collation Description

Arabic_100_CS_AS_KS_SC_UTF8 Arabic-100, case-sensitive, accent-sensitive,
kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Arabic_100_CS_AS_KS_WS Arabic-100, case-sensitive, accent-sensitive,
kanatype-sensitive, width-sensitive

Arabic_100_CS_AS_KS_WS_SC Arabic-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters

Arabic_100_CS_AS_KS_WS_SC_UTF8 Arabic-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Arabic_100_CS_AS_SC Arabic-100, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters

Arabic_100_CS_AS_SC_UTF8 Arabic-100, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters, UTF8

Arabic_100_CS_AS_WS Arabic-100, case-sensitive, accent-sensitive,
kanatype-insensitive, width-sensitive

Arabic_100_CS_AS_WS_SC Arabic-100, case-sensitive, accent-sensitive,
kanatype-insensitive, width-sensitive,
supplementary characters

Arabic_100_CS_AS_WS_SC_UTF8 Arabic-100, case-sensitive, accent-sensitive,
kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

Arabic_BIN Arabic, binary sort

Arabic_BIN2 Arabic, binary code point comparison sort

RDS Custom for SQL Server requirements and limitations 1940

Amazon Relational Database Service User Guide

Collation Description

Arabic_CI_AI Arabic, case-insensitive, accent-insensitive,
kanatype-insensitive, width-insensitive

Arabic_CI_AI_KS Arabic, case-insensitive, accent-insensitive,
kanatype-sensitive, width-insensitive

Arabic_CI_AI_KS_WS Arabic, case-insensitive, accent-insensitive,
kanatype-sensitive, width-sensitive

Arabic_CI_AI_WS Arabic, case-insensitive, accent-insensitive,
kanatype-insensitive, width-sensitive

Arabic_CI_AS Arabic, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Arabic_CI_AS_KS Arabic, case-insensitive, accent-sensitive,
kanatype-sensitive, width-insensitive

Arabic_CI_AS_KS_WS Arabic, case-insensitive, accent-sensitive,
kanatype-sensitive, width-sensitive

Arabic_CI_AS_WS Arabic, case-insensitive, accent-sensitive,
kanatype-insensitive, width-sensitive

Arabic_CS_AI Arabic, case-sensitive, accent-insensitive,
kanatype-insensitive, width-insensitive

Arabic_CS_AI_KS Arabic, case-sensitive, accent-insensitive,
kanatype-sensitive, width-insensitive

Arabic_CS_AI_KS_WS Arabic, case-sensitive, accent-insensitive,
kanatype-sensitive, width-sensitive

Arabic_CS_AI_WS Arabic, case-sensitive, accent-insensitive,
kanatype-insensitive, width-sensitive

Arabic_CS_AS Arabic, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

RDS Custom for SQL Server requirements and limitations 1941

Amazon Relational Database Service User Guide

Collation Description

Arabic_CS_AS_KS Arabic, case-sensitive, accent-sensitive,
kanatype-sensitive, width-insensitive

Arabic_CS_AS_KS_WS Arabic, case-sensitive, accent-sensitive,
kanatype-sensitive, width-sensitive

Arabic_CS_AS_WS Arabic, case-sensitive, accent-sensitive,
kanatype-insensitive, width-sensitive

Chinese_PRC_BIN2 Chinese-PRC, binary code point comparison
sort

Chinese_PRC_CI_AS Chinese-PRC, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Chinese_Taiwan_Stroke_CI_AS Chinese-Taiwan-Stroke, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive

Danish_Norwegian_CI_AS Danish-Norwegian, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Finnish_Swedish_CI_AS Finnish-Swedish, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

French_CI_AS French, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

German_PhoneBook_100_BIN German-PhoneBook-100, binary sort

German_PhoneBook_100_BIN2 German-PhoneBook-100, binary code point
comparison sort

German_PhoneBook_100_CI_AI German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive

RDS Custom for SQL Server requirements and limitations 1942

Amazon Relational Database Service User Guide

Collation Description

German_PhoneBook_100_CI_AI_KS German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive

German_PhoneBook_100_CI_AI_KS_SC German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters

German_PhoneBook_100_CI_AI_KS_SC_UTF8 German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters, UTF8

German_PhoneBook_100_CI_AI_KS_WS German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive

German_PhoneBook_100_CI_AI_KS_WS_SC German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters

German_PhoneBook_100_CI_AI_KS_WS_SC_
UTF8

German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

German_PhoneBook_100_CI_AI_SC German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters

German_PhoneBook_100_CI_AI_SC_UTF8 German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
UTF8

German_PhoneBook_100_CI_AI_WS German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive

RDS Custom for SQL Server requirements and limitations 1943

Amazon Relational Database Service User Guide

Collation Description

German_PhoneBook_100_CI_AI_WS_SC German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters

German_PhoneBook_100_CI_AI_WS_SC_UTF8 German-PhoneBook-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
UTF8

German_PhoneBook_100_CI_AS German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive

German_PhoneBook_100_CI_AS_KS German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive

German_PhoneBook_100_CI_AS_KS_SC German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters

German_PhoneBook_100_CI_AS_KS_SC_UTF8 German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, UTF8

German_PhoneBook_100_CI_AS_KS_WS German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive

German_PhoneBook_100_CI_AS_KS_WS_SC German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters

German_PhoneBook_100_CI_AS_KS_WS_SC_
UTF8

German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

RDS Custom for SQL Server requirements and limitations 1944

Amazon Relational Database Service User Guide

Collation Description

German_PhoneBook_100_CI_AS_SC German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive, supplementary characters

German_PhoneBook_100_CI_AS_SC_UTF8 German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive, supplementary characters, UTF8

German_PhoneBook_100_CI_AS_WS German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive

German_PhoneBook_100_CI_AS_WS_SC German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters

German_PhoneBook_100_CI_AS_WS_SC_UTF8 German-PhoneBook-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, UTF8

German_PhoneBook_100_CS_AI German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive

German_PhoneBook_100_CS_AI_KS German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive

German_PhoneBook_100_CS_AI_KS_SC German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters

German_PhoneBook_100_CS_AI_KS_SC_UTF8 German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters, UTF8

RDS Custom for SQL Server requirements and limitations 1945

Amazon Relational Database Service User Guide

Collation Description

German_PhoneBook_100_CS_AI_KS_WS German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive

German_PhoneBook_100_CS_AI_KS_WS_SC German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters

German_PhoneBook_100_CS_AI_KS_WS_SC_
UTF8

German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

German_PhoneBook_100_CS_AI_SC German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters

German_PhoneBook_100_CS_AI_SC_UTF8 German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
UTF8

German_PhoneBook_100_CS_AI_WS German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive

German_PhoneBook_100_CS_AI_WS_SC German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters

German_PhoneBook_100_CS_AI_WS_SC_UTF8 German-PhoneBook-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
UTF8

German_PhoneBook_100_CS_AS German-PhoneBook-100, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive

RDS Custom for SQL Server requirements and limitations 1946

Amazon Relational Database Service User Guide

Collation Description

German_PhoneBook_100_CS_AS_KS German-PhoneBook-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive

German_PhoneBook_100_CS_AS_KS_SC German-PhoneBook-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters

German_PhoneBook_100_CS_AS_KS_SC_UTF8 German-PhoneBook-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, UTF8

German_PhoneBook_100_CS_AS_KS_WS German-PhoneBook-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive

German_PhoneBook_100_CS_AS_KS_WS_SC German-PhoneBook-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters

German_PhoneBook_100_CS_AS_KS_WS_SC_
UTF8

German-PhoneBook-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

German_PhoneBook_BIN German-PhoneBook, binary sort

German_PhoneBook_BIN2 German-PhoneBook, binary code point
comparison sort

German_PhoneBook_CI_AI German-PhoneBook, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive

German_PhoneBook_CI_AI_KS German-PhoneBook, case-insensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive

RDS Custom for SQL Server requirements and limitations 1947

Amazon Relational Database Service User Guide

Collation Description

German_PhoneBook_CI_AI_KS_WS German-PhoneBook, case-insensitive, accent-
insensitive, kanatype-sensitive, width-sensitive

German_PhoneBook_CI_AI_WS German-PhoneBook, case-insensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive

German_PhoneBook_CI_AS German-PhoneBook, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive

German_PhoneBook_CI_AS_KS German-PhoneBook, case-insensitive, accent-
sensitive, kanatype-sensitive, width-insensitive

German_PhoneBook_CI_AS_KS_WS German-PhoneBook, case-insensitive, accent-
sensitive, kanatype-sensitive, width-sensitive

German_PhoneBook_CI_AS_WS German-PhoneBook, case-insensitive, accent-
sensitive, kanatype-insensitive, width-sensitive

German_PhoneBook_CS_AI German-PhoneBook, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive

German_PhoneBook_CS_AI_KS German-PhoneBook, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-insensitive

German_PhoneBook_CS_AI_KS_WS German-PhoneBook, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive

German_PhoneBook_CS_AI_WS German-PhoneBook, case-sensitive, accent-in
sensitive, kanatype-insensitive, width-sensitive

German_PhoneBook_CS_AS German-PhoneBook, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

German_PhoneBook_CS_AS_KS German-PhoneBook, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

RDS Custom for SQL Server requirements and limitations 1948

Amazon Relational Database Service User Guide

Collation Description

German_PhoneBook_CS_AS_KS_WS German-PhoneBook, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive

German_PhoneBook_CS_AS_WS German-PhoneBook, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive

Hebrew_BIN Hebrew, binary sort

Hebrew_CI_AS Hebrew, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Japanese_90_BIN Japanese-90, binary sort

Japanese_90_BIN2 Japanese-90, binary code point comparison
sort

Japanese_90_CI_AI Japanese-90, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive

Japanese_90_CI_AI_KS Japanese-90, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-insensitive

Japanese_90_CI_AI_KS_SC Japanese-90, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters

Japanese_90_CI_AI_KS_SC_UTF8 Japanese-90, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_90_CI_AI_KS_WS Japanese-90, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive

Japanese_90_CI_AI_KS_WS_SC Japanese-90, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters

RDS Custom for SQL Server requirements and limitations 1949

Amazon Relational Database Service User Guide

Collation Description

Japanese_90_CI_AI_KS_WS_SC_UTF8 Japanese-90, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_90_CI_AI_SC Japanese-90, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters

Japanese_90_CI_AI_SC_UTF8 Japanese-90, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_90_CI_AI_WS Japanese-90, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-sensitive

Japanese_90_CI_AI_WS_SC Japanese-90, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-sen
sitive, supplementary characters

Japanese_90_CI_AI_WS_SC_UTF8 Japanese-90, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, UTF8

Japanese_90_CI_AS Japanese-90, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Japanese_90_CI_AS_KS Japanese-90, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

Japanese_90_CI_AS_KS_SC Japanese-90, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters

Japanese_90_CI_AS_KS_SC_UTF8 Japanese-90, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

RDS Custom for SQL Server requirements and limitations 1950

Amazon Relational Database Service User Guide

Collation Description

Japanese_90_CI_AS_KS_WS Japanese-90, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive

Japanese_90_CI_AS_KS_WS_SC Japanese-90, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters

Japanese_90_CI_AS_KS_WS_SC_UTF8 Japanese-90, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_90_CI_AS_SC Japanese-90, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-ins
ensitive, supplementary characters

Japanese_90_CI_AS_SC_UTF8 Japanese-90, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_90_CI_AS_WS Japanese-90, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive

Japanese_90_CI_AS_WS_SC Japanese-90, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters

Japanese_90_CI_AS_WS_SC_UTF8 Japanese-90, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

Japanese_90_CS_AI Japanese-90, case-sensitive, accent-insensitive
, kanatype-insensitive, width-insensitive

Japanese_90_CS_AI_KS Japanese-90, case-sensitive, accent-insensitive
, kanatype-sensitive, width-insensitive

RDS Custom for SQL Server requirements and limitations 1951

Amazon Relational Database Service User Guide

Collation Description

Japanese_90_CS_AI_KS_SC Japanese-90, case-sensitive, accent-insensitive
, kanatype-sensitive, width-insensitive,
supplementary characters

Japanese_90_CS_AI_KS_SC_UTF8 Japanese-90, case-sensitive, accent-insensitive
, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Japanese_90_CS_AI_KS_WS Japanese-90, case-sensitive, accent-insensitive
, kanatype-sensitive, width-sensitive

Japanese_90_CS_AI_KS_WS_SC Japanese-90, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters

Japanese_90_CS_AI_KS_WS_SC_UTF8 Japanese-90, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_90_CS_AI_SC Japanese-90, case-sensitive, accent-insensitive
, kanatype-insensitive, width-insensitive,
supplementary characters

Japanese_90_CS_AI_SC_UTF8 Japanese-90, case-sensitive, accent-insensitive
, kanatype-insensitive, width-insensitive,
supplementary characters, UTF8

Japanese_90_CS_AI_WS Japanese-90, case-sensitive, accent-insensitive
, kanatype-insensitive, width-sensitive

Japanese_90_CS_AI_WS_SC Japanese-90, case-sensitive, accent-insensitive
, kanatype-insensitive, width-sensitive,
supplementary characters

Japanese_90_CS_AI_WS_SC_UTF8 Japanese-90, case-sensitive, accent-insensitive
, kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

RDS Custom for SQL Server requirements and limitations 1952

Amazon Relational Database Service User Guide

Collation Description

Japanese_90_CS_AS Japanese-90, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Japanese_90_CS_AS_KS Japanese-90, case-sensitive, accent-sensitive,
kanatype-sensitive, width-insensitive

Japanese_90_CS_AS_KS_SC Japanese-90, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters

Japanese_90_CS_AS_KS_SC_UTF8 Japanese-90, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Japanese_90_CS_AS_KS_WS Japanese-90, case-sensitive, accent-sensitive,
kanatype-sensitive, width-sensitive

Japanese_90_CS_AS_KS_WS_SC Japanese-90, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters

Japanese_90_CS_AS_KS_WS_SC_UTF8 Japanese-90, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_90_CS_AS_SC Japanese-90, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters

Japanese_90_CS_AS_SC_UTF8 Japanese-90, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters, UTF8

Japanese_90_CS_AS_WS Japanese-90, case-sensitive, accent-sensitive,
kanatype-insensitive, width-sensitive

RDS Custom for SQL Server requirements and limitations 1953

Amazon Relational Database Service User Guide

Collation Description

Japanese_90_CS_AS_WS_SC Japanese-90, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters

Japanese_90_CS_AS_WS_SC_UTF8 Japanese-90, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

Japanese_BIN Japanese, binary sort

Japanese_BIN2 Japanese, binary code point comparison sort

Japanese_Bushu_Kakusu_100_BIN Japanese-Bushu-Kakusu-100, binary sort

Japanese_Bushu_Kakusu_100_BIN2 Japanese-Bushu-Kakusu-100, binary code
point comparison sort

Japanese_Bushu_Kakusu_100_CI_AI Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive

Japanese_Bushu_Kakusu_100_CI_AI_KS Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive

Japanese_Bushu_Kakusu_100_CI_AI_KS_SC Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CI_AI_KS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CI_AI_KS_WS Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive

RDS Custom for SQL Server requirements and limitations 1954

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_100_CI_AI_KS_W
S_SC

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CI_AI_KS_W
S_SC_UTF8

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CI_AI_SC Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CI_AI_SC_UTF8 Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
UTF8

Japanese_Bushu_Kakusu_100_CI_AI_WS Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive

Japanese_Bushu_Kakusu_100_CI_AI_WS_SC Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CI_AI_WS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
UTF8

Japanese_Bushu_Kakusu_100_CI_AS Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive

Japanese_Bushu_Kakusu_100_CI_AS_KS Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive

RDS Custom for SQL Server requirements and limitations 1955

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_100_CI_AS_KS_SC Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CI_AS_KS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CI_AS_KS_WS Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive

Japanese_Bushu_Kakusu_100_CI_AS_KS_W
S_SC

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CI_AS_KS_W
S_SC_UTF8

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CI_AS_SC Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CI_AS_SC_UTF8 Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CI_AS_WS Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive

Japanese_Bushu_Kakusu_100_CI_AS_WS_SC Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters

RDS Custom for SQL Server requirements and limitations 1956

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_100_CI_AS_WS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CS_AI Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive

Japanese_Bushu_Kakusu_100_CS_AI_KS Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive

Japanese_Bushu_Kakusu_100_CS_AI_KS_SC Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CS_AI_KS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
insensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CS_AI_KS_WS Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive

Japanese_Bushu_Kakusu_100_CS_AI_KS_W
S_SC

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CS_AI_KS_W
S_SC_UTF8

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CS_AI_SC Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters

RDS Custom for SQL Server requirements and limitations 1957

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_100_CS_AI_SC_UTF8 Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
UTF8

Japanese_Bushu_Kakusu_100_CS_AI_WS Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive

Japanese_Bushu_Kakusu_100_CS_AI_WS_SC Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CS_AI_WS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
UTF8

Japanese_Bushu_Kakusu_100_CS_AS Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive

Japanese_Bushu_Kakusu_100_CS_AS_KS Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive

Japanese_Bushu_Kakusu_100_CS_AS_KS_SC Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CS_AS_KS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CS_AS_KS_WS Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive

RDS Custom for SQL Server requirements and limitations 1958

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_100_CS_AS_KS_W
S_SC

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CS_AS_KS_W
S_SC_UTF8

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CS_AS_SC Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CS_AS_SC_U
TF8

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_100_CS_AS_WS Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive

Japanese_Bushu_Kakusu_100_CS_AS_WS_SC Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters

Japanese_Bushu_Kakusu_100_CS_AS_WS_S
C_UTF8

Japanese-Bushu-Kakusu-100, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, UTF8

Japanese_Bushu_Kakusu_140_BIN Japanese-Bushu-Kakusu-140, binary sort

Japanese_Bushu_Kakusu_140_BIN2 Japanese-Bushu-Kakusu-140, binary code
point comparison sort

Japanese_Bushu_Kakusu_140_CI_AI Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive

RDS Custom for SQL Server requirements and limitations 1959

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CI_AI_KS Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-insensitive, kanatype-sensitive
, width-insensitive, supplementary characters,
variation selector insensitive

Japanese_Bushu_Kakusu_140_CI_AI_KS_UTF8 Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-insensitive, kanatype-sensitive
, width-insensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AI_KS_VSS Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-insensitive, kanatype-sensitive
, width-insensitive, supplementary characters,
variation selector sensitive

Japanese_Bushu_Kakusu_140_CI_AI_KS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-insensitive, kanatype-sensitive
, width-insensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AI_KS_WS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector insensitive

Japanese_Bushu_Kakusu_140_CI_AI_KS_W
S_UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplement ary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AI_KS_W
S_VSS

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive

RDS Custom for SQL Server requirements and limitations 1960

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CI_AI_KS_W
S_VSS_UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AI_UTF8 Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AI_VSS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive

Japanese_Bushu_Kakusu_140_CI_AI_VSS_
UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AI_WS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector insensitive

Japanese_Bushu_Kakusu_140_CI_AI_WS_UTF8 Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AI_WS_VSS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector sensitive

RDS Custom for SQL Server requirements and limitations 1961

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CI_AI_WS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive

Japanese_Bushu_Kakusu_140_CI_AS_KS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

Japanese_Bushu_Kakusu_140_CI_AS_KS_UTF8 Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS_KS_VSS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

Japanese_Bushu_Kakusu_140_CI_AS_KS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS_KS_WS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector insensitive

RDS Custom for SQL Server requirements and limitations 1962

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CI_AS_KS_W
S_UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS_KS_W
S_VSS

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive

Japanese_Bushu_Kakusu_140_CI_AS_KS_W
S_VSS_UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS_UTF8 Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS_VSS Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive

Japanese_Bushu_Kakusu_140_CI_AS_VSS_
UTF8

Japanese-Bushu-Kakusu-140, case-inse
nsitive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS_WS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector insensitive

RDS Custom for SQL Server requirements and limitations 1963

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CI_AS_WS_U
TF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CI_AS_WS_VSS Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector sensitive

Japanese_Bushu_Kakusu_140_CI_AS_WS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive

Japanese_Bushu_Kakusu_140_CS_AI_KS Japanese-Bushu-Kakusu-140, case-sens
itive, accent-insensitive, kanatype-sensitive,
width-insensitive, supplementary characters,
variation selector insensitive

Japanese_Bushu_Kakusu_140_CS_AI_KS_UTF8 Japanese-Bushu-Kakusu-140, case-sens
itive, accent-insensitive, kanatype-sensitive,
width-insensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI_KS_VSS Japanese-Bushu-Kakusu-140, case-sens
itive, accent-insensitive, kanatype-sensitive,
width-insensitive, supplementary characters,
variation selector sensitive

RDS Custom for SQL Server requirements and limitations 1964

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CS_AI_KS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-sens
itive, accent-insensitive, kanatype-sensitive,
width-insensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI_KS_WS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector insensitive

Japanese_Bushu_Kakusu_140_CS_AI_KS_W
S_UTF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI_KS_W
S_VSS

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive

Japanese_Bushu_Kakusu_140_CS_AI_KS_W
S_VSS_UTF8

Japanese-Bushu-Kaku su-140, case-sensitive,
accent-insensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI_UTF8 Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI_VSS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive

RDS Custom for SQL Server requirements and limitations 1965

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CS_AI_VSS_
UTF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI_WS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector insensitive

Japanese_Bushu_Kakusu_140_CS_AI_WS_U
TF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AI_WS_VSS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector sensitive

Japanese_Bushu_Kakusu_140_CS_AI_WS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-insensitive, kanatype-insensitive,
width-sensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AS Japanese-Bushu-Kakusu-140, case-sens
itive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive

Japanese_Bushu_Kakusu_140_CS_AS_KS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

RDS Custom for SQL Server requirements and limitations 1966

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CS_AS_KS_U
TF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AS_KS_VSS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

Japanese_Bushu_Kakusu_140_CS_AS_KS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AS_KS_WS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector insensitive

Japanese_Bushu_Kakusu_140_CS_AS_KS_W
S_UTF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AS_KS_W
S_VSS

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive

Japanese_Bushu_Kakusu_140_CS_AS_KS_W
S_VSS_UTF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-sensitive, width-
sensitive, supplementary characters, variation
selector sensitive, UTF8

RDS Custom for SQL Server requirements and limitations 1967

Amazon Relational Database Service User Guide

Collation Description

Japanese_Bushu_Kakusu_140_CS_AS_UTF8 Japanese-Bushu-Kakusu-140, case-sens
itive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AS_VSS Japanese-Bushu-Kakusu-140, case-sens
itive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive

Japanese_Bushu_Kakusu_140_CS_AS_VSS_
UTF8

Japanese-Bushu-Kakusu-140, case-sens
itive, accent-sensitive, kanatype-insensitive,
width-insensitive, supplementary characters,
variation selector sensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AS_WS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector insensitive

Japanese_Bushu_Kakusu_140_CS_AS_WS_U
TF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_Bushu_Kakusu_140_CS_AS_WS_VSS Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector sensitive

Japanese_Bushu_Kakusu_140_CS_AS_WS_V
SS_UTF8

Japanese-Bushu-Kakusu-140, case-sensitive,
accent-sensitive, kanatype-insensitive, width-
sensitive, supplementary characters, variation
selector sensitive, UTF8

RDS Custom for SQL Server requirements and limitations 1968

Amazon Relational Database Service User Guide

Collation Description

Japanese_CI_AI Japanese, case-insensitive, accent-insensitive,
kanatype-insensitive, width-insensitive

Japanese_CI_AI_KS Japanese, case-insensitive, accent-insensitive,
kanatype-sensitive, width-insensitive

Japanese_CI_AI_KS_WS Japanese, case-insensitive, accent-insensitive,
kanatype-sensitive, width-sensitive

Japanese_CI_AI_WS Japanese, case-insensitive, accent-insensitive,
kanatype-insensitive, width-sensitive

Japanese_CI_AS Japanese, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Japanese_CI_AS_KS Japanese, case-insensitive, accent-sensitive,
kanatype-sensitive, width-insensitive

Japanese_CI_AS_KS_WS Japanese, case-insensitive, accent-sensitive,
kanatype-sensitive, width-sensitive

Japanese_CI_AS_WS Japanese, case-insensitive, accent-sensitive,
kanatype-insensitive, width-sensitive

Japanese_CS_AI Japanese, case-sensitive, accent-insensitive,
kanatype-insensitive, width-insensitive

Japanese_CS_AI_KS Japanese, case-sensitive, accent-insensitive,
kanatype-sensitive, width-insensitive

Japanese_CS_AI_KS_WS Japanese, case-sensitive, accent-insensitive,
kanatype-sensitive, width-sensitive

Japanese_CS_AI_WS Japanese, case-sensitive, accent-insensitive,
kanatype-insensitive, width-sensitive

Japanese_CS_AS Japanese, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

RDS Custom for SQL Server requirements and limitations 1969

Amazon Relational Database Service User Guide

Collation Description

Japanese_CS_AS_KS Japanese, case-sensitive, accent-sensitive,
kanatype-sensitive, width-insensitive

Japanese_CS_AS_KS_WS Japanese, case-sensitive, accent-sensitive,
kanatype-sensitive, width-sensitive

Japanese_CS_AS_WS Japanese, case-sensitive, accent-sensitive,
kanatype-insensitive, width-sensitive

Japanese_Unicode_BIN Japanese-Unicode, binary sort

Japanese_Unicode_BIN2 Japanese-Unicode, binary code point
comparison sort

Japanese_Unicode_CI_AI Japanese-Unicode, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive

Japanese_Unicode_CI_AI_KS Japanese-Unicode, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-insensitive

Japanese_Unicode_CI_AI_KS_WS Japanese-Unicode, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive

Japanese_Unicode_CI_AI_WS Japanese-Unicode, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-sensitive

Japanese_Unicode_CI_AS Japanese-Unicode, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Japanese_Unicode_CI_AS_KS Japanese-Unicode, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

Japanese_Unicode_CI_AS_KS_WS Japanese-Unicode, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive

Japanese_Unicode_CI_AS_WS Japanese-Unicode, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive

RDS Custom for SQL Server requirements and limitations 1970

Amazon Relational Database Service User Guide

Collation Description

Japanese_Unicode_CS_AI Japanese-Unicode, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive

Japanese_Unicode_CS_AI_KS Japanese-Unicode, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-insensitive

Japanese_Unicode_CS_AI_KS_WS Japanese-Unicode, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive

Japanese_Unicode_CS_AI_WS Japanese-Unicode, case-sensitive, accent-in
sensitive, kanatype-insensitive, width-sensitive

Japanese_Unicode_CS_AS Japanese-Unicode, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Japanese_Unicode_CS_AS_KS Japanese-Unicode, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

Japanese_Unicode_CS_AS_KS_WS Japanese-Unicode, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive

Japanese_Unicode_CS_AS_WS Japanese-Unicode, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive

Japanese_XJIS_100_BIN Japanese-XJIS-100, binary sort

Japanese_XJIS_100_BIN2 Japanese-XJIS-100, binary code point
comparison sort

Japanese_XJIS_100_CI_AI Japanese-XJIS-100, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive

Japanese_XJIS_100_CI_AI_KS Japanese-XJIS-100, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-insensitive

RDS Custom for SQL Server requirements and limitations 1971

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_100_CI_AI_KS_SC Japanese-XJIS-100, case-insensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters

Japanese_XJIS_100_CI_AI_KS_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_XJIS_100_CI_AI_KS_WS Japanese-XJIS-100, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive

Japanese_XJIS_100_CI_AI_KS_WS_SC Japanese-XJIS-100, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters

Japanese_XJIS_100_CI_AI_KS_WS_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_XJIS_100_CI_AI_SC Japanese-XJIS-100, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters

Japanese_XJIS_100_CI_AI_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_XJIS_100_CI_AI_WS Japanese-XJIS-100, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-sensitive

Japanese_XJIS_100_CI_AI_WS_SC Japanese-XJIS-100, case-insensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters

Japanese_XJIS_100_CI_AI_WS_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, UTF8

RDS Custom for SQL Server requirements and limitations 1972

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_100_CI_AS Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Japanese_XJIS_100_CI_AS_KS Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

Japanese_XJIS_100_CI_AS_KS_SC Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters

Japanese_XJIS_100_CI_AS_KS_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Japanese_XJIS_100_CI_AS_KS_WS Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive

Japanese_XJIS_100_CI_AS_KS_WS_SC Japanese-XJIS-100, case-insensitive, accent-
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters

Japanese_XJIS_100_CI_AS_KS_WS_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_XJIS_100_CI_AS_SC Japanese-XJIS-100, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters

Japanese_XJIS_100_CI_AS_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_XJIS_100_CI_AS_WS Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive

RDS Custom for SQL Server requirements and limitations 1973

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_100_CI_AS_WS_SC Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters

Japanese_XJIS_100_CI_AS_WS_SC_UTF8 Japanese-XJIS-100, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, UTF8

Japanese_XJIS_100_CS_AI Japanese-XJIS-100, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive

Japanese_XJIS_100_CS_AI_KS Japanese-XJIS-100, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-insensitive

Japanese_XJIS_100_CS_AI_KS_SC Japanese-XJIS-100, case-sensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters

Japanese_XJIS_100_CS_AI_KS_SC_UTF8 Japanese-XJIS-100, case-sensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_XJIS_100_CS_AI_KS_WS Japanese-XJIS-100, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive

Japanese_XJIS_100_CS_AI_KS_WS_SC Japanese-XJIS-100, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters

Japanese_XJIS_100_CS_AI_KS_WS_SC_UTF8 Japanese-XJIS-100, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_XJIS_100_CS_AI_SC Japanese-XJIS-100, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters

RDS Custom for SQL Server requirements and limitations 1974

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_100_CS_AI_SC_UTF8 Japanese-XJIS-100, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_XJIS_100_CS_AI_WS Japanese-XJIS-100, case-sensitive, accent-in
sensitive, kanatype-insensitive, width-sensitive

Japanese_XJIS_100_CS_AI_WS_SC Japanese-XJIS-100, case-sensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters

Japanese_XJIS_100_CS_AI_WS_SC_UTF8 Japanese-XJIS-100, case-sensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, UTF8

Japanese_XJIS_100_CS_AS Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Japanese_XJIS_100_CS_AS_KS Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

Japanese_XJIS_100_CS_AS_KS_SC Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters

Japanese_XJIS_100_CS_AS_KS_SC_UTF8 Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, UTF8

Japanese_XJIS_100_CS_AS_KS_WS Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive

Japanese_XJIS_100_CS_AS_KS_WS_SC Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters

RDS Custom for SQL Server requirements and limitations 1975

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_100_CS_AS_KS_WS_SC_UTF8 Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, UTF8

Japanese_XJIS_100_CS_AS_SC Japanese-XJIS-100, case-sensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters

Japanese_XJIS_100_CS_AS_SC_UTF8 Japanese-XJIS-100, case-sensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, UTF8

Japanese_XJIS_100_CS_AS_WS Japanese-XJIS-100, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive

Japanese_XJIS_140_BIN Japanese-XJIS-140, binary sort

Japanese_XJIS_140_BIN2 Japanese-XJIS-140, binary code point
comparison sort

Japanese_XJIS_140_CI_AI Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

Japanese_XJIS_140_CI_AI_KS Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

Japanese_XJIS_140_CI_AI_KS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

RDS Custom for SQL Server requirements and limitations 1976

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CI_AI_KS_VSS Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

Japanese_XJIS_140_CI_AI_KS_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CI_AI_KS_WS Japanese-XJIS-140, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CI_AI_KS_WS_UTF8 Japanese-XJIS-140, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CI_AI_KS_WS_VSS Japanese-XJIS-140, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive

Japanese_XJIS_140_CI_AI_KS_WS_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive, UTF8

Japanese_XJIS_140_CI_AI_UTF8 Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

RDS Custom for SQL Server requirements and limitations 1977

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CI_AI_VSS Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

Japanese_XJIS_140_CI_AI_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CI_AI_WS Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector insensitive

Japanese_XJIS_140_CI_AI_WS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_XJIS_140_CI_AI_WS_VSS Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector sensitive

Japanese_XJIS_140_CI_AI_WS_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CI_AS Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

RDS Custom for SQL Server requirements and limitations 1978

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CI_AS_KS Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CI_AS_KS_UTF8 Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CI_AS_KS_VSS Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
sensitive

Japanese_XJIS_140_CI_AS_KS_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
sensitive, UTF8

Japanese_XJIS_140_CI_AS_KS_WS Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CI_AS_KS_WS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CI_AS_KS_WS_VSS Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive

RDS Custom for SQL Server requirements and limitations 1979

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CI_AS_KS_WS_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive, UTF8

Japanese_XJIS_140_CI_AS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_XJIS_140_CI_AS_VSS Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

Japanese_XJIS_140_CI_AS_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CI_AS_WS Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CI_AS_WS_UTF8 Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CI_AS_WS_VSS Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
sensitive

RDS Custom for SQL Server requirements and limitations 1980

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CI_AS_WS_VSS_UTF8 Japanese-XJIS-140, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
sensitive, UTF8

Japanese_XJIS_140_CS_AI Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

Japanese_XJIS_140_CS_AI_KS Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

Japanese_XJIS_140_CS_AI_KS_UTF8 Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_XJIS_140_CS_AI_KS_VSS Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

Japanese_XJIS_140_CS_AI_KS_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-sensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CS_AI_KS_WS Japanese-XJIS-140, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive

RDS Custom for SQL Server requirements and limitations 1981

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CS_AI_KS_WS_UTF8 Japanese-XJIS-140, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CS_AI_KS_WS_VSS Japanese-XJIS-140, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive

Japanese_XJIS_140_CS_AI_KS_WS_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-in
sensitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive, UTF8

Japanese_XJIS_140_CS_AI_UTF8 Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_XJIS_140_CS_AI_VSS Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

Japanese_XJIS_140_CS_AI_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CS_AI_WS Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector insensitive

RDS Custom for SQL Server requirements and limitations 1982

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CS_AI_WS_UTF8 Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_XJIS_140_CS_AI_WS_VSS Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector sensitive

Japanese_XJIS_140_CS_AI_WS_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-
insensitive, kanatype-insensitive, width-sen
sitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CS_AS Japanese-XJIS-140, case-sensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive

Japanese_XJIS_140_CS_AS_KS Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CS_AS_KS_UTF8 Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CS_AS_KS_VSS Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
sensitive

RDS Custom for SQL Server requirements and limitations 1983

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CS_AS_KS_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
sensitive, UTF8

Japanese_XJIS_140_CS_AS_KS_WS Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CS_AS_KS_WS_UTF8 Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CS_AS_KS_WS_VSS Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive

Japanese_XJIS_140_CS_AS_KS_WS_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
sensitive, UTF8

Japanese_XJIS_140_CS_AS_UTF8 Japanese-XJIS-140, case-sensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector insensitive, UTF8

Japanese_XJIS_140_CS_AS_VSS Japanese-XJIS-140, case-sensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive

RDS Custom for SQL Server requirements and limitations 1984

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CS_AS_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, variation
selector sensitive, UTF8

Japanese_XJIS_140_CS_AS_WS Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CS_AS_WS_UTF8 Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
insensitive, UTF8

Japanese_XJIS_140_CS_AS_WS_VSS Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
sensitive

Japanese_XJIS_140_CS_AS_WS_VSS_UTF8 Japanese-XJIS-140, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-sensitive,
supplementary characters, variation selector
sensitive, UTF8

Korean_Wansung_CI_AS Korean-Wansung, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Latin1_General_100_BIN Latin1-General-100, binary sort

Latin1_General_100_BIN2 Latin1-General-100, binary code point
comparison sort

Latin1_General_100_BIN2_UTF8 Latin1-General-100, binary code point
comparison sort, UTF8

RDS Custom for SQL Server requirements and limitations 1985

Amazon Relational Database Service User Guide

Collation Description

Latin1_General_100_CI_AS Latin1-General-100, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive

Latin1_General_100_CI_AS_SC_UTF8 Latin1-General-100, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive, supplementary characters, UTF8

Latin1_General_BIN Latin1-General, binary sort

Latin1_General_BIN2 Latin1-General, binary code point comparison
sort

Latin1_General_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive

Latin1_General_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Latin1_General_CI_AS_KS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

Latin1_General_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Modern_Spanish_CI_AS Modern-Spanish, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

SQL_1xCompat_CP850_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 49 on
Code Page 850 for non-Unicode Data

RDS Custom for SQL Server requirements and limitations 1986

Amazon Relational Database Service User Guide

Collation Description

SQL_Latin1_General_CP1_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive for Unicode Data, SQL Server Sort
Order 54 on Code Page 1252 for non-Unicode
Data

SQL_Latin1_General_CP1_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 52 on
Code Page 1252 for non-Unicode Data

SQL_Latin1_General_CP1_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 51 on
Code Page 1252 for non-Unicode Data

SQL_Latin1_General_CP1250_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 82 on
Code Page 1250 for non-Unicode Data

SQL_Latin1_General_CP1250_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 81 on
Code Page 1250 for non-Unicode Data

SQL_Latin1_General_CP1251_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 106
on Code Page 1251 for non-Unicode Data

SQL_Latin1_General_CP1251_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 105
on Code Page 1251 for non-Unicode Data

RDS Custom for SQL Server requirements and limitations 1987

Amazon Relational Database Service User Guide

Collation Description

SQL_Latin1_General_CP1253_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive for Unicode Data, SQL Server Sort
Order 124 on Code Page 1253 for non-Unico
de Data

SQL_Latin1_General_CP1253_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 114
on Code Page 1253 for non-Unicode Data

SQL_Latin1_General_CP1253_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 113
on Code Page 1253 for non-Unicode Data

SQL_Latin1_General_CP1254_CI_AS Turkish, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive for
Unicode Data, SQL Server Sort Order 130 on
Code Page 1254 for non-Unicode Data

SQL_Latin1_General_CP1254_CS_AS Turkish, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive for
Unicode Data, SQL Server Sort Order 129 on
Code Page 1254 for non-Unicode Data

SQL_Latin1_General_CP1255_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 138
on Code Page 1255 for non-Unicode Data

SQL_Latin1_General_CP1255_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 137
on Code Page 1255 for non-Unicode Data

RDS Custom for SQL Server requirements and limitations 1988

Amazon Relational Database Service User Guide

Collation Description

SQL_Latin1_General_CP1256_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 146
on Code Page 1256 for non-Unicode Data

SQL_Latin1_General_CP1256_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 145
on Code Page 1256 for non-Unicode Data

SQL_Latin1_General_CP1257_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 154
on Code Page 1257 for non-Unicode Data

SQL_Latin1_General_CP1257_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 153
on Code Page 1257 for non-Unicode Data

SQL_Latin1_General_CP437_BIN Latin1-General, binary sort for Unicode Data,
SQL Server Sort Order 30 on Code Page 437
for non-Unicode Data

SQL_Latin1_General_CP437_BIN2 Latin1-General, binary code point comparison
sort for Unicode Data, SQL Server Sort Order
30 on Code Page 437 for non-Unicode Data

SQL_Latin1_General_CP437_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive for Unicode Data, SQL Server Sort
Order 34 on Code Page 437 for non-Unicode
Data

RDS Custom for SQL Server requirements and limitations 1989

Amazon Relational Database Service User Guide

Collation Description

SQL_Latin1_General_CP437_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 32 on
Code Page 437 for non-Unicode Data

SQL_Latin1_General_CP437_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 31 on
Code Page 437 for non-Unicode Data

SQL_Latin1_General_CP850_BIN Latin1-General, binary sort for Unicode Data,
SQL Server Sort Order 40 on Code Page 850
for non-Unicode Data

SQL_Latin1_General_CP850_BIN2 Latin1-General, binary code point comparison
sort for Unicode Data, SQL Server Sort Order
40 on Code Page 850 for non-Unicode Data

SQL_Latin1_General_CP850_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive for Unicode Data, SQL Server Sort
Order 44 on Code Page 850 for non-Unicode
Data

SQL_Latin1_General_CP850_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 42 on
Code Page 850 for non-Unicode Data

SQL_Latin1_General_CP850_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 41 on
Code Page 850 for non-Unicode Data

RDS Custom for SQL Server requirements and limitations 1990

Amazon Relational Database Service User Guide

Collation Description

SQL_Latin1_General_Pref_CP1_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 53 on
Code Page 1252 for non-Unicode Data

SQL_Latin1_General_Pref_CP437_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 33 on
Code Page 437 for non-Unicode Data

SQL_Latin1_General_Pref_CP850_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 43 on
Code Page 850 for non-Unicode Data

Thai_CI_AS Thai, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Local time zone for RDS Custom for SQL Server DB instances

The time zone of an RDS Custom for SQL Server DB instance is set by default. The current default
is Coordinated Universal Time (UTC). You can set the time zone of your DB instance to a local time
zone instead, to match the time zone of your applications.

You set the time zone when you first create your DB instance. You can create your DB instance by
using the AWS Management Console, the Amazon RDS API CreateDBInstance action, or the AWS
CLI create-db-instance command.

If your DB instance is part of a Multi-AZ deployment, then when you fail over, your time zone
remains the local time zone that you set.

When you request a point-in-time restore, you specify the time to restore to. The time is shown
in your local time zone. For more information, see Restoring a DB instance to a specified time for
Amazon RDS.

The following are limitations to setting the local time zone on your DB instance:

RDS Custom for SQL Server requirements and limitations 1991

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

• You can configure the time zone for a DB instance during instance creation, but you can't modify
the time zone of an existing RDS Custom for SQL Server DB instance.

• If the time zone is modified for an existing RDS Custom for SQL Server DB instance, RDS
Custom changes the DB instance status to unsupported-configuration, and sends event
notifications.

• You can't restore a snapshot from a DB instance in one time zone to a DB instance in a different
time zone.

• We strongly recommend that you don't restore a backup file from one time zone to a different
time zone. If you restore a backup file from one time zone to a different time zone, you
must audit your queries and applications for the effects of the time zone change. For more
information, see Importing and exporting SQL Server databases using native backup and restore.

Supported time zones

You can set your local time zone to one of the values listed in the following table.

Time zone Standard time
offset

Description Notes

Afghanistan Standard Time (UTC+04:30) Kabul This time zone
doesn't observe
daylight saving
time.

Alaskan Standard Time (UTC–09:00) Alaska

Aleutian Standard Time (UTC–10:00) Aleutian Islands

Altai Standard Time (UTC+07:00) Barnaul, Gorno-Alt
aysk

Arab Standard Time (UTC+03:00) Kuwait, Riyadh This time zone
doesn't observe
daylight saving
time.

Arabian Standard Time (UTC+04:00) Abu Dhabi, Muscat

RDS Custom for SQL Server requirements and limitations 1992

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Arabic Standard Time (UTC+03:00) Baghdad This time zone
doesn't observe
daylight saving
time.

Argentina Standard Time (UTC–03:00) City of Buenos Aires This time zone
doesn't observe
daylight saving
time.

Astrakhan Standard Time (UTC+04:00) Astrakhan,
Ulyanovsk

Atlantic Standard Time (UTC–04:00) Atlantic Time
(Canada)

AUS Central Standard Time (UTC+09:30) Darwin This time zone
doesn't observe
daylight saving
time.

Aus Central W. Standard Time (UTC+08:45) Eucla

AUS Eastern Standard Time (UTC+10:00) Canberra,
Melbourne, Sydney

Azerbaijan Standard Time (UTC+04:00) Baku

Azores Standard Time (UTC–01:00) Azores

Bahia Standard Time (UTC–03:00) Salvador

Bangladesh Standard Time (UTC+06:00) Dhaka This time zone
doesn't observe
daylight saving
time.

RDS Custom for SQL Server requirements and limitations 1993

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Belarus Standard Time (UTC+03:00) Minsk This time zone
doesn't observe
daylight saving
time.

Bougainville Standard Time (UTC+11:00) Bougainville Island

Canada Central Standard
Time

(UTC–06:00) Saskatchewan This time zone
doesn't observe
daylight saving
time.

Cape Verde Standard Time (UTC–01:00) Cabo Verde Is. This time zone
doesn't observe
daylight saving
time.

Caucasus Standard Time (UTC+04:00) Yerevan

Cen. Australia Standard Time (UTC+09:30) Adelaide

Central America Standard
Time

(UTC–06:00) Central America This time zone
doesn't observe
daylight saving
time.

Central Asia Standard Time (UTC+06:00) Astana This time zone
doesn't observe
daylight saving
time.

Central Brazilian Standard
Time

(UTC–04:00) Cuiaba

RDS Custom for SQL Server requirements and limitations 1994

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Central Europe Standard
Time

(UTC+01:00) Belgrade, Bratislav
a, Budapest,
Ljubljana, Prague

Central European Standard
Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb

Central Pacific Standard Time (UTC+11:00) Solomon Islands,
New Caledonia

This time zone
doesn't observe
daylight saving
time.

Central Standard Time (UTC–06:00) Central Time (US
and Canada)

Central Standard Time
(Mexico)

(UTC–06:00) Guadalajara, Mexico
City, Monterrey

Chatham Islands Standard
Time

(UTC+12:45) Chatham Islands

China Standard Time (UTC+08:00) Beijing, Chongqing,
Hong Kong, Urumqi

This time zone
doesn't observe
daylight saving
time.

Cuba Standard Time (UTC–05:00) Havana

Dateline Standard Time (UTC–12:00) International Date
Line West

This time zone
doesn't observe
daylight saving
time.

RDS Custom for SQL Server requirements and limitations 1995

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

E. Africa Standard Time (UTC+03:00) Nairobi This time zone
doesn't observe
daylight saving
time.

E. Australia Standard Time (UTC+10:00) Brisbane This time zone
doesn't observe
daylight saving
time.

E. Europe Standard Time (UTC+02:00) Chisinau

E. South America Standard
Time

(UTC–03:00) Brasilia

Easter Island Standard Time (UTC–06:00) Easter Island

Eastern Standard Time (UTC–05:00) Eastern Time (US
and Canada)

Eastern Standard Time
(Mexico)

(UTC–05:00) Chetumal

Egypt Standard Time (UTC+02:00) Cairo

Ekaterinburg Standard Time (UTC+05:00) Ekaterinburg

Fiji Standard Time (UTC+12:00) Fiji

FLE Standard Time (UTC+02:00) Helsinki, Kyiv,
Riga, Sofia, Tallinn,
Vilnius

RDS Custom for SQL Server requirements and limitations 1996

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Georgian Standard Time (UTC+04:00) Tbilisi This time zone
doesn't observe
daylight saving
time.

GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

This time zone
isn't the same as
Greenwich Mean
Time. This time
zone does observe
daylight saving
time.

Greenland Standard Time (UTC–03:00) Greenland

Greenwich Standard Time (UTC) Monrovia, Reykjavik This time zone
doesn't observe
daylight saving
time.

GTB Standard Time (UTC+02:00) Athens, Bucharest

Haiti Standard Time (UTC–05:00) Haiti

Hawaiian Standard Time (UTC–10:00) Hawaii

India Standard Time (UTC+05:30) Chennai, Kolkata,
Mumbai, New Delhi

This time zone
doesn't observe
daylight saving
time.

Iran Standard Time (UTC+03:30) Tehran

Israel Standard Time (UTC+02:00) Jerusalem

Jordan Standard Time (UTC+02:00) Amman

RDS Custom for SQL Server requirements and limitations 1997

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Kaliningrad Standard Time (UTC+02:00) Kaliningrad

Kamchatka Standard Time (UTC+12:00) Petropavlovsk-
Kamchatsky – Old

Korea Standard Time (UTC+09:00) Seoul This time zone
doesn't observe
daylight saving
time.

Libya Standard Time (UTC+02:00) Tripoli

Line Islands Standard Time (UTC+14:00) Kiritimati Island

Lord Howe Standard Time (UTC+10:30) Lord Howe Island

Magadan Standard Time (UTC+11:00) Magadan This time zone
doesn't observe
daylight saving
time.

Magallanes Standard Time (UTC–03:00) Punta Arenas

Marquesas Standard Time (UTC–09:30) Marquesas Islands

Mauritius Standard Time (UTC+04:00) Port Louis This time zone
doesn't observe
daylight saving
time.

Middle East Standard Time (UTC+02:00) Beirut

Montevideo Standard Time (UTC–03:00) Montevideo

Morocco Standard Time (UTC+01:00) Casablanca

RDS Custom for SQL Server requirements and limitations 1998

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Mountain Standard Time (UTC–07:00) Mountain Time (US
and Canada)

Mountain Standard Time
(Mexico)

(UTC–07:00) Chihuahua, La Paz,
Mazatlan

Myanmar Standard Time (UTC+06:30) Yangon (Rangoon) This time zone
doesn't observe
daylight saving
time.

N. Central Asia Standard
Time

(UTC+07:00) Novosibirsk

Namibia Standard Time (UTC+02:00) Windhoek

Nepal Standard Time (UTC+05:45) Kathmandu This time zone
doesn't observe
daylight saving
time.

New Zealand Standard Time (UTC+12:00) Auckland, Wellingto
n

Newfoundland Standard
Time

(UTC–03:30) Newfoundland

Norfolk Standard Time (UTC+11:00) Norfolk Island

North Asia East Standard
Time

(UTC+08:00) Irkutsk

North Asia Standard Time (UTC+07:00) Krasnoyarsk

North Korea Standard Time (UTC+09:00) Pyongyang

Omsk Standard Time (UTC+06:00) Omsk

RDS Custom for SQL Server requirements and limitations 1999

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Pacific SA Standard Time (UTC–03:00) Santiago

Pacific Standard Time (UTC–08:00) Pacific Time (US
and Canada)

Pacific Standard Time
(Mexico)

(UTC–08:00) Baja California

Pakistan Standard Time (UTC+05:00) Islamabad, Karachi This time zone
doesn't observe
daylight saving
time.

Paraguay Standard Time (UTC–04:00) Asuncion

Romance Standard Time (UTC+01:00) Brussels,
Copenhagen,
Madrid, Paris

Russia Time Zone 10 (UTC+11:00) Chokurdakh

Russia Time Zone 11 (UTC+12:00) Anadyr, Petropavl
ovsk-Kamchatsky

Russia Time Zone 3 (UTC+04:00) Izhevsk, Samara

Russian Standard Time (UTC+03:00) Moscow, St.
Petersburg,
Volgograd

This time zone
doesn't observe
daylight saving
time.

SA Eastern Standard Time (UTC–03:00) Cayenne, Fortaleza This time zone
doesn't observe
daylight saving
time.

RDS Custom for SQL Server requirements and limitations 2000

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

SA Pacific Standard Time (UTC–05:00) Bogota, Lima,
Quito, Rio Branco

This time zone
doesn't observe
daylight saving
time.

SA Western Standard Time (UTC–04:00) Georgetown, La
Paz, Manaus, San
Juan

This time zone
doesn't observe
daylight saving
time.

Saint Pierre Standard Time (UTC–03:00) Saint Pierre and
Miquelon

Sakhalin Standard Time (UTC+11:00) Sakhalin

Samoa Standard Time (UTC+13:00) Samoa

Sao Tome Standard Time (UTC+01:00) Sao Tome

Saratov Standard Time (UTC+04:00) Saratov

SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta

This time zone
doesn't observe
daylight saving
time.

Singapore Standard Time (UTC+08:00) Kuala Lumpur,
Singapore

This time zone
doesn't observe
daylight saving
time.

South Africa Standard Time (UTC+02:00) Harare, Pretoria This time zone
doesn't observe
daylight saving
time.

RDS Custom for SQL Server requirements and limitations 2001

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Sri Lanka Standard Time (UTC+05:30) Sri Jayawarde
nepura

This time zone
doesn't observe
daylight saving
time.

Sudan Standard Time (UTC+02:00) Khartoum

Syria Standard Time (UTC+02:00) Damascus

Taipei Standard Time (UTC+08:00) Taipei This time zone
doesn't observe
daylight saving
time.

Tasmania Standard Time (UTC+10:00) Hobart

Tocantins Standard Time (UTC–03:00) Araguaina

Tokyo Standard Time (UTC+09:00) Osaka, Sapporo,
Tokyo

This time zone
doesn't observe
daylight saving
time.

Tomsk Standard Time (UTC+07:00) Tomsk

Tonga Standard Time (UTC+13:00) Nuku'alofa This time zone
doesn't observe
daylight saving
time.

Transbaikal Standard Time (UTC+09:00) Chita

Turkey Standard Time (UTC+03:00) Istanbul

Turks And Caicos Standard
Time

(UTC–05:00) Turks and Caicos

RDS Custom for SQL Server requirements and limitations 2002

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Ulaanbaatar Standard Time (UTC+08:00) Ulaanbaatar This time zone
doesn't observe
daylight saving
time.

US Eastern Standard Time (UTC–05:00) Indiana (East)

US Mountain Standard Time (UTC–07:00) Arizona This time zone
doesn't observe
daylight saving
time.

UTC UTC Coordinated
Universal Time

This time zone
doesn't observe
daylight saving
time.

UTC–02 (UTC–02:00) Coordinated
Universal Time–02

This time zone
doesn't observe
daylight saving
time.

UTC–08 (UTC–08:00) Coordinated
Universal Time–08

UTC–09 (UTC–09:00) Coordinated
Universal Time–09

UTC–11 (UTC–11:00) Coordinated
Universal Time–11

This time zone
doesn't observe
daylight saving
time.

RDS Custom for SQL Server requirements and limitations 2003

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

UTC+12 (UTC+12:00) Coordinated
Universal Time+12

This time zone
doesn't observe
daylight saving
time.

UTC+13 (UTC+13:00) Coordinated
Universal Time+13

Venezuela Standard Time (UTC–04:00) Caracas This time zone
doesn't observe
daylight saving
time.

Vladivostok Standard Time (UTC+10:00) Vladivostok

Volgograd Standard Time (UTC+04:00) Volgograd

W. Australia Standard Time (UTC+08:00) Perth This time zone
doesn't observe
daylight saving
time.

W. Central Africa Standard
Time

(UTC+01:00) West Central Africa This time zone
doesn't observe
daylight saving
time.

W. Europe Standard Time (UTC+01:00) Amsterdam,
Berlin, Bern, Rome,
Stockholm, Vienna

W. Mongolia Standard Time (UTC+07:00) Hovd

RDS Custom for SQL Server requirements and limitations 2004

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

West Asia Standard Time (UTC+05:00) Ashgabat, Tashkent This time zone
doesn't observe
daylight saving
time.

West Bank Standard Time (UTC+02:00) Gaza, Hebron

West Pacific Standard Time (UTC+10:00) Guam, Port
Moresby

This time zone
doesn't observe
daylight saving
time.

Yakutsk Standard Time (UTC+09:00) Yakutsk

Using a Service Master Key with RDS Custom for SQL Server

RDS Custom for SQL Server supports using a Service Master Key (SMK). RDS Custom retains the
same SMK throughout the lifespan of your RDS Custom for SQL Server DB instance. By retaining
the same SMK, your DB instance can use objects that are encrypted with the SMK, such as linked
server passwords and credentials. If you use a Multi-AZ deployment, RDS Custom also synchronizes
and maintains the SMK between primary and secondary DB instances.

Topics

• Region and version availability

• Supported features

• Using TDE

• Configuring features

• Requirements and limitations

Region and version availability

Using an SMK is supported in all Regions where RDS Custom for SQL Server is available, for all SQL
Server versions available on RDS Custom. For more information on version and Region availability

RDS Custom for SQL Server requirements and limitations 2005

Amazon Relational Database Service User Guide

of Amazon RDS with RDS Custom for SQL Server, see Supported Regions and DB engines for RDS
Custom for SQL Server.

Supported features

When using a SMK with RDS Custom for SQL Server, the following features are supported:

• Transparent Data Encryption (TDE)

• Column-level encryption

• Database Mail

• Linked Servers

• SQL Server Integration Services (SSIS)

Using TDE

An SMK enables the ability to configure Transparent Data Encryption (TDE), which encrypts data
before it is written to storage, and automatically decrypts data when the data is read from storage.
Unlike RDS for SQL Server, configuring TDE on an RDS Custom for SQL Server DB instance doesn't
require using option groups. Instead, once you've created a certificate and database encryption key,
you can run the following command to turn on TDE at the database level:

ALTER DATABASE [myDatabase] SET ENCRYPTION ON;

For more information on using TDE with RDS for SQL Server, see Support for Transparent Data
Encryption in SQL Server.

For detailed information on TDE in Microsoft SQL Server, see Transparent data encryption in the
Microsoft documentation.

Configuring features

For detailed steps on configuring features that use a SMK with RDS Custom for SQL Server, you can
use the following posts in the Amazon RDS database blog:

• Linked servers: Configuring linked servers on RDS Custom for SQL Server.

• SSIS: Migrate SSIS packages to RDS Custom for SQL Server.

• TDE: Secure your data using TDE on RDS Custom for SQL Server.

RDS Custom for SQL Server requirements and limitations 2006

https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-server-ver15
https://aws.amazon.com/blogs/database/configure-linked-servers-on-amazon-rds-custom-for-sql-server/
https://aws.amazon.com/blogs/database/migrate-microsoft-sql-server-ssis-packages-to-amazon-rds-custom-for-sql-server/
https://aws.amazon.com/blogs/database/secure-your-data-at-rest-on-amazon-rds-custom-for-sql-server-using-transparent-data-encryption-tde-or-column-level-encryption-cle/

Amazon Relational Database Service User Guide

Requirements and limitations

When using an SMK with an RDS Custom for SQL Server DB instance, keep in mind the following
requirements and limitations:

• If you re-generate the SMK on your DB instance, you should immediately perform a manual DB
snapshot. We recommend avoiding re-generating the SMK if possible.

• You must maintain backups of the server certificates and database master key passwords. If you
don't maintain backups of these, it may result in data loss.

• If you configure SSIS, you should use an SSM document to join the RDS Custom for SQL Server
DB instance to the domain in case of a scale compute or host replacement.

• When TDE or column-encryption is enabled, database backups are automatically encrypted.
When you perform a snapshot restore or point in time recovery, the SMK from the source DB
instance will be restored to decrypt data for the restore, and a new SMK will be generated to re-
encrypt data on the restored instance.

For more information on Service Master Keys in Microsoft SQL Server, see SQL Server and Database
Encryption Keys in the Microsoft documentation.

RDS Custom for SQL Server requirements and limitations 2007

https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/sql-server-and-database-encryption-keys-database-engine?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/sql-server-and-database-encryption-keys-database-engine?view=sql-server-ver15

Amazon Relational Database Service User Guide

Setting up your environment for Amazon RDS Custom for SQL Server

Before you create and manage a DB instance for Amazon RDS Custom for SQL Server DB instance,
make sure to perform the following tasks.

Contents

• Prerequisites for setting up RDS Custom for SQL Server

• Automated instance profile creation using the AWS Management Console

• Step 1: Grant required permissions to your IAM principal

• Step 2: Configure networking, instance profile, and encryption

• Configuring with AWS CloudFormation

• Parameters required by CloudFormation

• Download AWS CloudFormation template file

• Configuring resources using CloudFormation

• Configuring manually

• Make sure that you have a symmetric encryption AWS KMS key

• Creating your IAM role and instance profile manually

• Create the AWSRDSCustomSQLServerInstanceRole IAM role

• Add an access policy to AWSRDSCustomSQLServerInstanceRole

• Create your RDS Custom for SQL Server instance profile

• Add AWSRDSCustomSQLServerInstanceRole to your RDS Custom for SQL Server
instance profile

• Configuring your VPC manually

• Configure your VPC security group

• Configure endpoints for dependent AWS services

• Configure the instance metadata service

• Cross-instance restriction

Note

For a step-by-step tutorial on how to set up prerequisites and launch Amazon RDS
Custom for SQL Server, see Get started with Amazon RDS Custom for SQL Server using an Setting up your RDS Custom for SQL Server environment 2008

https://aws.amazon.com/blogs/database/get-started-with-amazon-rds-custom-for-sql-server-using-an-aws-cloudformation-template-network-setup/

Amazon Relational Database Service User Guide

CloudFormation template (Network setup) and Explore the prerequisites required to create
an Amazon RDS Custom for SQL Server instance.

Prerequisites for setting up RDS Custom for SQL Server

Before creating an RDS Custom for SQL Server DB instance, make sure that your environment
meets the requirements described in this topic. You can also use the CloudFormation template to
set up the prerequisites within your AWS account. For more information, see Configuring with AWS
CloudFormation

RDS Custom for SQL Server requires that you configure the following prerequisites:

• Configure the AWS Identity and Access Management (IAM) permissions required for instance
creation. This is the AWS Identity and Access Management (IAM) user or role needed to make a
create-db-instance request to RDS.

• Configure prerequisite resources required by RDS Custom for SQL Server DB instance:

• Configure the AWS KMS key required for encryption of RDS Custom instance. RDS Custom
requires a customer managed key at the time of instance creation for encryption. The KMS key
ARN, ID, alias ARN, or alias name is passed as kms-key-id parameter in the request to create
the RDS Custom DB instance.

• Configure the permissions required inside RDS Custom for SQL Server DB instance. RDS
Custom attaches an instance profile to DB instance at creation and uses it for automation
within the DB instance. The instance profile name is set to custom-iam-instance-
profile in the RDS Custom create request. You can create an instance profile from the AWS
Management Console or manually create your instance profile. For more information, see
Automated instance profile creation using the AWS Management Console and Creating your
IAM role and instance profile manually.

• Configure the networking setup as per the requirements of RDS Custom for SQL Server. RDS
Custom instances reside in the subnets (configured with DB subnet group) that you provide
at instance creation. These subnets must allow RDS Custom instances to communicate with
services required for RDS automation.

Note

For the requirements mentioned above, make sure there aren't any service control policies
(SCPs) restricting account level permissions.

Setting up your RDS Custom for SQL Server environment 2009

https://aws.amazon.com/blogs/database/get-started-with-amazon-rds-custom-for-sql-server-using-an-aws-cloudformation-template-network-setup/
https://aws.amazon.com/blogs/database/explore-the-prerequisites-required-to-create-an-amazon-rds-custom-for-sql-server-instance/
https://aws.amazon.com/blogs/database/explore-the-prerequisites-required-to-create-an-amazon-rds-custom-for-sql-server-instance/

Amazon Relational Database Service User Guide

If the account that you're using is part of an AWS Organization, it might have service
control policies (SCPs) restricting account level permissions. Make sure that the SCPs don't
restrict the permissions on users and roles that you create using the following procedures.
For more information about SCPs, see Service control policies (SCPs) in the AWS
Organizations User Guide. Use the describe-organization AWS CLI command to check
whether your account is part of an AWS Organization.
For more information about AWS Organizations, see What is AWS Organizations in the AWS
Organizations User Guide.

For general requirements that apply to RDS Custom for SQL Server, see General requirements for
RDS Custom for SQL Server.

Automated instance profile creation using the AWS Management Console

RDS Custom requires you to create and configure an instance profile to launch any RDS Custom for
SQL Server DB instance. Use the AWS Management Console to create and attach a new instance
profile in a single step. This option is available under RDS Custom security section in the Create
database, Restore snapshot, and Restore to point in time console pages. Choose Create a new
instance profile to provide an instance profile name suffix. The AWS Management Console creates
a new instance profile that has the permissions required for RDS Custom automation tasks. To
automatically create new instance profiles, your logged-in AWS Management Console user must
have iam:CreateInstanceProfile, iam:AddRoleToInstanceProfile, iam:CreateRole,
and iam:AttachRolePolicy permissions.

Note

This option is only available in the AWS Management Console. If you are using the CLI
or SDK, use the RDS Custom provided CloudFormation template or manually create an
instance profile. For more information, see Creating your IAM role and instance profile
manually.

Step 1: Grant required permissions to your IAM principal

Make sure that you have sufficient access to create an RDS Custom instance. The IAM role or IAM
user (referred to as the IAM principal) for creating an RDS Custom for SQL Server DB instance using
the console or CLI must have either of the following policies for successful DB instance creation:

Setting up your RDS Custom for SQL Server environment 2010

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/cli/latest/reference/organizations/describe-organization.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

Amazon Relational Database Service User Guide

• The AdministratorAccess policy

• The AmazonRDSFullAccess policy with the following additional permissions:

iam:SimulatePrincipalPolicy
cloudtrail:CreateTrail
cloudtrail:StartLogging
s3:CreateBucket
s3:PutBucketPolicy
s3:PutBucketObjectLockConfiguration
s3:PutBucketVersioning
kms:CreateGrant
kms:DescribeKey
kms:Decrypt
kms:ReEncryptFrom
kms:ReEncryptTo
kms:GenerateDataKeyWithoutPlaintext
kms:GenerateDataKey
ec2:DescribeImages
ec2:RunInstances
ec2:CreateTags

RDS Custom uses these permissions during instance creation. These permissions configure
resources in your account that are required for RDS Custom operations.

For more information about the kms:CreateGrant permission, see AWS KMS key management.

The following sample JSON policy grants the required permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ValidateIamRole",
 "Effect": "Allow",
 "Action": "iam:SimulatePrincipalPolicy",
 "Resource": "*"
 },
 {
 "Sid": "CreateCloudTrail",
 "Effect": "Allow",
 "Action": [

Setting up your RDS Custom for SQL Server environment 2011

Amazon Relational Database Service User Guide

 "cloudtrail:CreateTrail",
 "cloudtrail:StartLogging"
],
 "Resource": "arn:aws:cloudtrail:*:*:trail/do-not-delete-rds-custom-*"
 },
 {
 "Sid": "CreateS3Bucket",
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutBucketPolicy",
 "s3:PutBucketObjectLockConfiguration",
 "s3:PutBucketVersioning"
],
 "Resource": "arn:aws:s3:::do-not-delete-rds-custom-*"
 },
 {
 "Sid": "CreateKmsGrant",
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*"
 }
]
}

The IAM principal requires the following additional permissions to work with custom engine
versions (CEVs):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ConfigureKmsKeyEncryptionPermission",
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:Decrypt",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo",

Setting up your RDS Custom for SQL Server environment 2012

Amazon Relational Database Service User Guide

 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:region:account_id:key/key_id"
 },
 {
 "Sid": "CreateEc2Instance",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeImages",
 "ec2:RunInstances",
 "ec2:CreateTags"
],
 "Resource": "*"
 }
]
}

Replace account_id with the ID of the account that you are using to create your instance. Replace
region with the AWS Region you are using to create your instance. Replace key_id with your
customer managed key ID. You can add multiple keys as required.

For more information about the resource-level permissions that are required to launch an EC2
instance, see Launch instances (RunInstances).

Also, the IAM principal requires the iam:PassRole permission on the IAM role. That must be
attached to the instance profile passed in the custom-iam-instance-profile parameter in
the request to create the RDS Custom DB instance. The instance profile and its attached role are
created later in Step 2: Configure networking, instance profile, and encryption.

Note

Make sure that the previously listed permissions aren't restricted by service control policies
(SCPs), permission boundaries, or session policies associated with the IAM principal.

Step 2: Configure networking, instance profile, and encryption

You can configure your IAM instance profile role, virtual private cloud (VPC), and AWS KMS
symmetric encryption key by using either of the following processes:

Setting up your RDS Custom for SQL Server environment 2013

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-runinstances

Amazon Relational Database Service User Guide

• Configuring with AWS CloudFormation (recommended)

• Configuring manually

Note

If your account is part of any AWS Organizations, make sure that the permissions required
by the instance profile role aren't restricted by service control policies (SCPs).
The networking configurations in this topic work best with DB instances that aren't publicly
accessible. You can't connect directly to such DB instances from outside the VPC.

Configuring with AWS CloudFormation

To simplify setup, you can use an AWS CloudFormation template file to create a CloudFormation
stack. A CloudFormation template creates all the networking, instance profiles, and encryption
resources according the requirements of RDS Custom.

To learn how to create stacks, see Creating a stack on the AWS CloudFormation console in the AWS
CloudFormation User Guide.

For a tutorial on how to launch Amazon RDS Custom for SQL Server using an AWS CloudFormation
template, see Get started with Amazon RDS Custom for SQL Server using an AWS CloudFormation
template in the AWS Database Blog .

Topics

• Parameters required by CloudFormation

• Download AWS CloudFormation template file

• Configuring resources using CloudFormation

Parameters required by CloudFormation

The following parameters are required to configure RDS Custom prerequisite resources with
CloudFormation:

Setting up your RDS Custom for SQL Server environment 2014

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://aws.amazon.com/blogs/database/get-started-with-amazon-rds-custom-for-sql-server-using-an-aws-cloudformation-template-network-setup/
https://aws.amazon.com/blogs/database/get-started-with-amazon-rds-custom-for-sql-server-using-an-aws-cloudformation-template-network-setup/

Amazon Relational Database Service User Guide

Parameter group Parameter name Default Value Description

Availability Configura
tion

Select an availabil
ity configuration for
prerequisites setup

Multi-AZ Specify whether to
setup prerequisites in
Single-AZ or Multi-AZ
configuration for RDS
Custom instances
. You should use
Multi-AZ configura
tion if you require at
least one Multi-AZ
DB instance in this
configuration

IPv4 CIDR block for
VPC

10.0.0.0/16 Specify an IPv4 CIDR
block (or IP address
range) for your VPC.
This VPC is configure
d to create and work
with RDS Custom DB
instance.

IPv4 CIDR block for 1
of 2 private subnets

10.0.128.0/20 Specify an IPv4 CIDR
block (or IP address
range) for your first
private subnet. This
is one of the two
subnets in which
the RDS Custom
DB instance can be
created. This is a
private subnet with
no access to internet.

Network Configura
tion

IPv4 CIDR block for 2
of 2 private subnets

10.0.144.0/20 Specify an IPv4
CIDR block (or IP
address range) for

Setting up your RDS Custom for SQL Server environment 2015

Amazon Relational Database Service User Guide

Parameter group Parameter name Default Value Description

your second private
subnet. This is one
of the two subnets
in which the RDS
Custom DB instance
can be created. This is
a private subnet with
no access to internet.

IPv4 CIDR block for
public subnet

10.0.0.0/20 Specify an IPv4 CIDR
block (or IP address
range) for your public
subnet. This is one of
the subnet in which
the EC2 instance can
connect with RDS
Custom DB instance
can be created. This is
a public subnet with
access to internet.

RDP Access Configura
tion

IPv4 CIDR block of
your source

‐ Specify an IPv4 CIDR
block (or IP address
range) of your source.
This is the IP range
from where you make
RDP connection to
EC2 instance in the
public subnet. If not
set, RDP connection
to EC2 instance is not
configured.

Setting up your RDS Custom for SQL Server environment 2016

Amazon Relational Database Service User Guide

Parameter group Parameter name Default Value Description

Setup RDP access to
RDS Custom for SQL
Server instance

No Specify whether
to enable the RDP
connection from
the EC2 instance to
the RDS Custom for
SQL Server instance.
By default, RDP
connection from the
EC2 instance to the
DB instance is not
configured.

Resources created by CloudFormation

Successfully creating the CloudFormation stack using default settings creates the following
resources in your AWS account:

• Symmetric encryption KMS key for encryption of data managed by RDS Custom.

• The instance profile is is associated to an IAM role with
AmazonRDSCustomInstanceProfileRolePolicy to provide permissions required by RDS
Custom. For more information, see AmazonRDSCustomServiceRolePolicy in the AWS Managed
Policy Reference Guide.

• VPC with the CIDR range specified as the CloudFormation parameter. The default value is
10.0.0.0/16.

• Two private subnets with the CIDR range specified in the parameters, and two different
Availability Zones in the AWS Region. The default values for the subnet CIDRs are
10.0.128.0/20 and 10.0.144.0/20.

• One public subnet with the CIDR range specified in the parameters. The default value for the
subnet CIDR is 10.0.0.0/20. The EC2 instance resides in this subnet and can be used to connect to
the RDS Custom instance.

• DHCP option set for the VPC with domain name resolution to an Amazon Domain Name System
(DNS) server.

• Route table to associate with two private subnets and no access to the internet.

Setting up your RDS Custom for SQL Server environment 2017

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSCustomServiceRolePolicy.html

Amazon Relational Database Service User Guide

• Route table to associate with public subnet and has access to the internet.

• Internet gateway associated with the VPC to allow internet access to public subnet.

• Network access control list (ACL) to associate with two private subnets and access restricted to
HTTPS and DB port within VPC.

• VPC security group to be associated with the RDS Custom instance. Access is restricted for
outbound HTTPS to AWS service endpoints that are required by RDS Custom and inbound DB
port from EC2 instance security group.

• VPC security group to be associated with the EC2 instance in public subnet. Access is restricted
for outbound DB port to RDS Custom instance security group.

• VPC security group to be associated with VPC endpoints that are created for AWS service
endpoints that are required by RDS Custom.

• DB subnet group in which RDS Custom instances are created. Two private subnets created by this
template are added to the DB subnet group.

• VPC endpoints for each of the AWS service endpoints that are required by RDS Custom.

Setting availability configuration to multi-az will create following resources in addition to above
list:

• Network ACL rules allowing communication between private subnets.

• Inbound and outbound access to Multi-AZ port within VPC security group associated with the
RDS Custom instance.

• VPC endpoints to AWS service endpoint(s) that are required for Multi-AZ communication.

In addition, setting RDP access configuration creates the following resources:

• Configuring RDP access to public subnet from your source IP address:

• Network ACL rules that allow RDP connection from your source IP to public subnet.

• Ingress access to RDP port from your source IP to VPC security group associated with the EC2
instance.

• Configuring RDP access from EC2 instance in public subnet to RDS Custom Instance in private
subnets:

• Network ACL rules allowing RDP connection from public subnet to private subnets.

• Inbound access to RDP port from VPC security group associated with the EC2 instance to VPC
security group associated with the RDS Custom Instance.

Setting up your RDS Custom for SQL Server environment 2018

Amazon Relational Database Service User Guide

Use the following procedures to create the CloudFormation stack for RDS Custom for SQL Server.

Download AWS CloudFormation template file

To download the template file

1. Open the context (right-click) menu for the link custom-sqlserver-onboard.zip and choose
Save Link As.

2. Save and extract the file to your computer.

Configuring resources using CloudFormation

To configure resources using CloudFormation

1. Open the CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. To start the Create Stack wizard, choose Create Stack.

The Create stack page appears.

3. For Prerequisite - Prepare template, choose Template is ready.

4. For Specify template, do the following:

a. For Template source, choose Upload a template file.

b. For Choose file, navigate to and then choose the correct file.

5. Choose Next.

The Specify stack details page appears.

6. For Stack name, enter rds-custom-sqlserver.

7. For Parameters, do the following:

a. To keep the default options, choose Next.

b. To change options, choose the appropriate availability configuration, networking
configuration, and RDP access configuration, and then choose Next.

Read the description of each parameter carefully before changing parameters.

Setting up your RDS Custom for SQL Server environment 2019

samples/custom-sqlserver-onboard.zip
https://console.aws.amazon.com/cloudformation/

Amazon Relational Database Service User Guide

Note

If you choose to create at least one Multi-AZ instance in this CloudFormation
stack, make sure that the CloudFormation stack parameter Select an availability
configuration for prerequisites setup is set to Multi-AZ. If you create the
CloudFormation stack as Single-AZ, update the CloudFormation stack to Multi-AZ
configuration before creating the first Multi-AZ instance.

8. On the Configure stack options page, choose Next.

9. On the Review rds-custom-sqlserver page, do the following:

a. For Capabilities, select the I acknowledge that AWS CloudFormation might create IAM
resources with custom names check box.

b. Choose Create stack.

Note

Do not update the resources created from this AWS CloudFormation stack directly from the
resource pages. This prevents you from applying future updates to these resources by using
a AWS CloudFormation template.

CloudFormation creates the resources that RDS Custom for SQL Server requires. If the stack
creation fails, read through the Events tab to see which resource creation failed and its status
reason.

The Outputs tab for this CloudFormation stack in the console should have information about all
resources to be passed as parameters for creating an RDS Custom for SQL Server DB instance.
Make sure to use the VPC security group and DB subnet group created by CloudFormation for RDS
Custom DB instances. By default, RDS tries to attach the default VPC security group, which might
not have the access that you need.

If you used CloudFormation to create resources, you can skip Configuring manually.

Setting up your RDS Custom for SQL Server environment 2020

Amazon Relational Database Service User Guide

Updating the CloudFormation stack

You can also update some of the configuration on the CloudFormation stack after creation. The
configurations that can be updated are:

• Availability Configuration for RDS Custom for SQL Server

• Select an availability configuration for prerequisites setup: Update this parameter to switch
between Single-AZ and Multi-AZ configuration. If you are using this CloudFormation stack for
at least one Multi-AZ instance, you must update the stack to choose Multi-AZ configuration.

• RDP Access Configuration for RDS Custom for SQL Server

• IPv4 CIDR block of your source: You can update the IPv4 CIDR block (or IP address range) of
your source by updating this parameter. Setting this parameter to blank removes RDP access
configuration from your source CIDR block to public subnet.

• Setup RDP access to RDS Custom for SQL Server: Enable or disable the RDP connection from
the EC2 instance to the RDS Custom for SQL Server instance.

Deleting the CloudFormation stack

You can delete the CloudFormation stack after deleting all the RDS Custom instances that uses
resources from the stack. RDS Custom doesn’t keep track of the CloudFormation stack, hence it
doesn't block deletion of the stack when there are DB instances that uses stack resources. Make
sure that there are no RDS Custom DB instances that uses the stack resources when deleting the
stack.

Note

When you delete a CloudFormation stack, all of the resources created by the stack are
deleted except the KMS key. The KMS key goes into a pending-deletion state and is deleted
after 30 days. To keep the KMS key, perform a CancelKeyDeletion operation during the 30-
day grace period.

Configuring manually

If you choose to configure resources manually, perform the following tasks.

Setting up your RDS Custom for SQL Server environment 2021

https://docs.aws.amazon.com/kms/latest/APIReference/API_CancelKeyDeletion.html

Amazon Relational Database Service User Guide

Note

To simplify setup, you can use the AWS CloudFormation template file to create a
CloudFormation stack rather than a manual configuration. For more information, see
Configuring with AWS CloudFormation.
You can also use the AWS CLI to complete this section. If so, download and install the latest
CLI.

Topics

• Make sure that you have a symmetric encryption AWS KMS key

• Creating your IAM role and instance profile manually

• Configuring your VPC manually

Make sure that you have a symmetric encryption AWS KMS key

A symmetric encryption AWS KMS key is required for RDS Custom. When you create an RDS
Custom for SQL Server DB instance, make sure to supply the KMS key identifier as parameter kms-
key-id. For more information, see Creating and connecting to a DB instance for Amazon RDS
Custom for SQL Server.

You have the following options:

• If you have an existing customer managed KMS key in your AWS account, you can use it with RDS
Custom. No further action is necessary.

• If you already created a customer managed symmetric encryption KMS key for a different RDS
Custom engine, you can reuse the same KMS key. No further action is necessary.

• If you don't have an existing customer managed symmetric encryption KMS key in your account,
create a KMS key by following the instructions in Creating keys in the AWS Key Management
Service Developer Guide.

• If you're creating a CEV or RDS Custom DB instance, and your KMS key is in a different AWS
account, make sure to use the AWS CLI. You can't use the AWS console with cross-account KMS
keys.

Setting up your RDS Custom for SQL Server environment 2022

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Relational Database Service User Guide

Important

RDS Custom doesn't support AWS managed KMS keys.

Make sure that your symmetric encryption key grants access to the kms:Decrypt and
kms:GenerateDataKey operations to the AWS Identity and Access Management (IAM) role in
your IAM instance profile. If you have a new symmetric encryption key in your account, no changes
are required. Otherwise, make sure that your symmetric encryption key's policy grants access to
these operations.

For more information, see Step 4: Configure IAM for RDS Custom for Oracle.

Creating your IAM role and instance profile manually

You can manually create an instance profile and use it to launch RDS Custom instances. If you plan
to create the instance in the AWS Management Console, skip this section. The AWS Management
Console allows you to create and attach an instance profile to your RDS Custom DB instances. For
more information, see Automated instance profile creation using the AWS Management Console.

When you manually create an instance profile, pass the instance profile name as the custom-iam-
instance-profile parameter to your create-db-instance CLI command. RDS Custom uses
the role associated with this instance profile to run automation to manage the instance.

To create the IAM instance profile and IAM roles for RDS Custom for SQL Server

1. Create the IAM role named AWSRDSCustomSQLServerInstanceRole with a trust policy that
lets Amazon EC2 assume this role.

2. Add the AWS Managed Policy AmazonRDSCustomInstanceProfileRolePolicy to
AWSRDSCustomSQLServerInstanceRole.

3. Create an IAM instance profile for RDS Custom for SQL Server that is named
AWSRDSCustomSQLServerInstanceProfile.

4. Add AWSRDSCustomSQLServerInstanceRole to the instance profile.

Create the AWSRDSCustomSQLServerInstanceRole IAM role

The following example creates the AWSRDSCustomSQLServerInstanceRole role. The trust
policy lets Amazon EC2 assume the role.

Setting up your RDS Custom for SQL Server environment 2023

Amazon Relational Database Service User Guide

aws iam create-role \
 --role-name AWSRDSCustomSQLServerInstanceRole \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 }'

Add an access policy to AWSRDSCustomSQLServerInstanceRole

To provide the required permissions, attach the AWS managed policy
AmazonRDSCustomInstanceProfileRolePolicy to
AWSRDSCustomSQLServerInstanceRole. AmazonRDSCustomInstanceProfileRolePolicy
allows RDS Custom instances to send and receive messages, and perform various automation
actions.

Note

Make sure that the permissions in the access policy aren't restricted by SCPs or permission
boundaries associated with the instance profile role.

The following example attaches AWS managed policy AWSRDSCustomSQLServerIamRolePolicy
to the AWSRDSCustomSQLServerInstanceRole role.

aws iam attach-role-policy \
 --role-name AWSRDSCustomSQLServerInstanceRole \
 --policy-arn arn:aws:iam::aws:policy/AmazonRDSCustomInstanceProfileRolePolicy

Create your RDS Custom for SQL Server instance profile

An instance profile is a container that includes a single IAM role. RDS Custom uses the instance
profile to pass the role to the instance.

Setting up your RDS Custom for SQL Server environment 2024

Amazon Relational Database Service User Guide

If you use the AWS Management Console to create a role for Amazon EC2, the
console automatically creates an instance profile and gives it the same name as
the role when the role is created. Create your instance profile as follows, naming it
AWSRDSCustomSQLServerInstanceProfile.

aws iam create-instance-profile \
 --instance-profile-name AWSRDSCustomSQLServerInstanceProfile

Add AWSRDSCustomSQLServerInstanceRole to your RDS Custom for SQL Server instance
profile

Add the AWSRDSCustomInstanceRoleForRdsCustomInstance role to the previously created
AWSRDSCustomSQLServerInstanceProfile profile.

aws iam add-role-to-instance-profile \
 --instance-profile-name AWSRDSCustomSQLServerInstanceProfile \
 --role-name AWSRDSCustomSQLServerInstanceRole

Configuring your VPC manually

Your RDS Custom DB instance is in a virtual private cloud (VPC) based on the Amazon VPC service,
just like an Amazon EC2 instance or Amazon RDS instance. You provide and configure your own
VPC. Thus, you have full control over your instance networking setup.

RDS Custom sends communication from your DB instance to other AWS services. Make sure
the following services are accessible from the subnet in which you create your RDS Custom DB
instances:

• Amazon CloudWatch (com.amazonaws.region.monitoring)

• Amazon CloudWatch Logs (com.amazonaws.region.logs)

• Amazon CloudWatch Events (com.amazonaws.region.events)

• Amazon EC2 (com.amazonaws.region.ec2 and com.amazonaws.region.ec2messages)

• Amazon EventBridge (com.amazonaws.region.events)

• Amazon S3 (com.amazonaws.region.s3)

• AWS Secrets Manager (com.amazonaws.region.secretsmanager)

• AWS Systems Manager (com.amazonaws.region.ssm and
com.amazonaws.region.ssmmessages)

Setting up your RDS Custom for SQL Server environment 2025

Amazon Relational Database Service User Guide

If creating Multi-AZ deployments

• Amazon Simple Queue Service (com.amazonaws.region.sqs)

If RDS Custom can't communicate with the necessary services, it publishes the following events:

Database instance in incompatible-network. SSM Agent connection not available. Amazon
 RDS can't connect to the dependent AWS services.

Database instance in incompatible-network. Amazon RDS can't connect to dependent AWS
 services. Make sure port 443 (HTTPS) allows outbound connections, and try again.
 "Failed to connect to the following services: s3 events"

To avoid incompatible-network errors, make sure that VPC components involved in
communication between your RDS Custom DB instance and AWS services satisfy the following
requirements:

• The DB instance can make outbound connections on port 443 to other AWS services.

• The VPC allows incoming responses to requests originating from your RDS Custom DB instance.

• RDS Custom can correctly resolve the domain names of endpoints for each AWS service.

If you already configured a VPC for a different RDS Custom DB engine, you can reuse that VPC and
skip this process.

Topics

• Configure your VPC security group

• Configure endpoints for dependent AWS services

• Configure the instance metadata service

Configure your VPC security group

A security group acts as a virtual firewall for a VPC instance, controlling both inbound and
outbound traffic. An RDS Custom DB instance has a security group attached to its network
interface that protects the instance. Make sure that your security group permits traffic between
RDS Custom and other AWS services through HTTPS. You pass this security group as the vpc-
security-group-ids parameter in the instance creation request.

Setting up your RDS Custom for SQL Server environment 2026

Amazon Relational Database Service User Guide

To configure your security group for RDS Custom

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. Allow RDS Custom to use the default security group, or create your own security group.

For detailed instructions, see Provide access to your DB instance in your VPC by creating a
security group.

3. Make sure that your security group permits outbound connections on port 443. RDS Custom
needs this port to communicate with dependent AWS services.

4. If you have a private VPC and use VPC endpoints, make sure that the security group associated
with the DB instance allows outbound connections on port 443 to VPC endpoints. Also make
sure that the security group associated with the VPC endpoint allows inbound connections on
port 443 from the DB instance.

If incoming connections aren't allowed, the RDS Custom instance can't connect to the AWS
Systems Manager and Amazon EC2 endpoints. For more information, see Create a Virtual
Private Cloud endpoint in the AWS Systems Manager User Guide.

5. For RDS Custom for SQL Server Multi-AZ instances, make sure that the security group
associated with the DB instance allows inbound and outbound connections on port 1120 to
this security group itself. This is required for peer host connection on a Multi-AZ RDS Custom
for SQL Server DB instance.

For more information about security groups, see Security groups for your VPC in the Amazon VPC
Developer Guide.

Configure endpoints for dependent AWS services

We recommend that you add endpoints for every service to your VPC using the following
instructions. However, you can use any solution that lets your VPC communicate with AWS service
endpoints. For example, you can use Network Address Translation (NAT) or AWS Direct Connect.

To configure endpoints for AWS services with which RDS Custom works

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. On the navigation bar, use the Region selector to choose the AWS Region.

3. In the navigation pane, choose Endpoints. In the main pane, choose Create Endpoint.

Setting up your RDS Custom for SQL Server environment 2027

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

4. For Service category, choose AWS services.

5. For Service Name, choose the endpoint shown in the table.

6. For VPC, choose your VPC.

7. For Subnets, choose a subnet from each Availability Zone to include.

The VPC endpoint can span multiple Availability Zones. AWS creates an elastic network
interface for the VPC endpoint in each subnet that you choose. Each network interface has a
Domain Name System (DNS) host name and a private IP address.

8. For Security group, choose or create a security group.

You can use security groups to control access to your endpoint, much as you use a firewall.
Make sure that the security group allows inbound connections on port 443 from the DB
instances. For more information about security groups, see Security groups for your VPC in the
Amazon VPC User Guide.

9. Optionally, you can attach a policy to the VPC endpoint. Endpoint policies can control access
to the AWS service to which you are connecting. The default policy allows all requests to pass
through the endpoint. If you're using a custom policy, make sure that requests from the DB
instance are allowed in the policy.

10. Choose Create endpoint.

The following table explains how to find the list of endpoints that your VPC needs for outbound
communications.

Service Endpoint format Notes and links

AWS Systems
Manager

Use the following endpoint formats:

• ssm.region.amazonaws.com

• ssmmessag
es. region.amazonaws.com

For the list of endpoints in
each Region, see AWS Systems
Manager endpoints and quotas in
the Amazon Web Services General
Reference.

AWS Secrets
Manager

Use the endpoint format secretsma
nager. region.amazonaws.com .

For the list of endpoints in each
Region, see AWS Secrets Manager
endpoints and quotas in the
Amazon Web Services General
Reference.

Setting up your RDS Custom for SQL Server environment 2028

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/general/latest/gr/ssm.html
https://docs.aws.amazon.com/general/latest/gr/ssm.html
https://docs.aws.amazon.com/general/latest/gr/asm.html
https://docs.aws.amazon.com/general/latest/gr/asm.html

Amazon Relational Database Service User Guide

Service Endpoint format Notes and links

Amazon
CloudWatch

Use the following endpoint formats:

• For CloudWatch metrics, use
monitoring. region.amazonaw
s.com

• For CloudWatch Events, use
events.region.amazonaw
s.com

• For CloudWatch Logs, use
logs.region.amazonaws.com

For the list of endpoints in every
Region, see:

• Amazon CloudWatch endpoints
and quotas in the Amazon Web
Services General Reference

• Amazon CloudWatch Logs
endpoints and quotas in the
Amazon Web Services General
Reference

• Amazon CloudWatch Events
endpoints and quotas in the
Amazon Web Services General
Reference

Amazon EC2 Use the following endpoint formats:

• ec2.region.amazonaws.com

• ec2messag
es. region.amazonaws.com

For the list of endpoints in each
Region, see Amazon Elastic
Compute Cloud endpoints and
quotas in the Amazon Web
Services General Reference.

Setting up your RDS Custom for SQL Server environment 2029

https://docs.aws.amazon.com/general/latest/gr/cw_region.html
https://docs.aws.amazon.com/general/latest/gr/cw_region.html
https://docs.aws.amazon.com/general/latest/gr/cwl_region.html
https://docs.aws.amazon.com/general/latest/gr/cwl_region.html
https://docs.aws.amazon.com/general/latest/gr/cwe_region.html
https://docs.aws.amazon.com/general/latest/gr/cwe_region.html
https://docs.aws.amazon.com/general/latest/gr/ec2-service.html
https://docs.aws.amazon.com/general/latest/gr/ec2-service.html
https://docs.aws.amazon.com/general/latest/gr/ec2-service.html

Amazon Relational Database Service User Guide

Service Endpoint format Notes and links

Amazon S3 Use the endpoint format
s3.region.amazonaws.com .

For the list of endpoints in each
Region, see Amazon Simple
Storage Service endpoints and
quotas in the Amazon Web
Services General Reference.

To learn more about gateway
endpoints for Amazon S3, see
Endpoints for Amazon S3 in the
Amazon VPC Developer Guide.

To learn how to create an access
point, see Creating access points
in the Amazon VPC Developer
Guide.

To learn how to create a gateway
endpoints for Amazon S3, see
Gateway VPC endpoints.

Amazon Simple
Queue Service

Use the endpoint format
sqs.region.amazonaws.com

For the list of endpoints in each
Region, see Amazon Simple
Queue Service endpoints and
quotas.

Configure the instance metadata service

Make sure that your instance can do the following:

• Access the instance metadata service using Instance Metadata Service Version 2 (IMDSv2).

• Allow outbound communications through port 80 (HTTP) to the IMDS link IP address.

• Request instance metadata from http://169.254.169.254, the IMDSv2 link.

For more information, see Use IMDSv2 in the Amazon EC2 User Guide.

Setting up your RDS Custom for SQL Server environment 2030

https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/access-points-create-ap.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-gateway.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

Amazon Relational Database Service User Guide

Cross-instance restriction

When you create an instance profile by following the steps above, it uses the AWS managed
policy AmazonRDSCustomInstanceProfileRolePolicy to provide the required permissions
to RDS Custom which allows instance management and monitoring automation. The managed
policy ensures that the permissions allow access to only those resources which RDS Custom
requires to run automation. We recommend using the managed policy to support new features
and address security requirements which are automatically applied to existing instance
profiles without manual intervention. For more information, see AWS managed policy:
AmazonRDSCustomInstanceProfileRolePolicy.

The AmazonRDSCustomInstanceProfileRolePolicy managed policy restricts the instance
profile to have cross-account access but it might allow access to some RDS Custom managed
resources across RDS Custom instances within the same account. Based on your requirement, you
can use permission boundaries to further restrict cross-instance access. Permission boundaries
define the maximum permissions that the identity-based policies can grant to an entity, but
doesn't grant permissions by themselves. For more information, see Evaluating effective
permissions with boundaries.

For example, the following boundary policy restricts instance profile role to access a specific AWS
KMS key and limits access to RDS Custom managed resources across instances which are using
different AWS KMS keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyOtherKmsKeyAccess",
 "Effect": "Deny",
 "Action": "kms:*",
 "NotResource": "arn:aws:kms:region:acct_id:key/KMS_key_ID"
 },
 {
 "Sid": "NoBoundarySetByDefault",
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
}

Setting up your RDS Custom for SQL Server environment 2031

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSCustomInstanceProfileRolePolicy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSCustomInstanceProfileRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html#access_policies_boundaries-eval-logic
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html#access_policies_boundaries-eval-logic

Amazon Relational Database Service User Guide

Note

Make sure the permissions boundary does not block any permissions that
AmazonRDSCustomInstanceProfileRolePolicy grants to RDS Custom.

Setting up your RDS Custom for SQL Server environment 2032

Amazon Relational Database Service User Guide

Bring Your Own Media with RDS Custom for SQL Server

RDS Custom for SQL Server supports two licensing models: License Included (LI) and Bring Your
Own Media (BYOM).

With BYOM, you can do the following:

1. Provide and install your own Microsoft SQL Server binaries with supported cumulative updates
(CU) on an AWS EC2 Windows AMI.

2. Save the AMI as a golden image, which is a template that you can use to create a custom
engine version (CEV).

3. Create a CEV from your golden image.

4. Create new RDS Custom for SQL Server DB instances by using your CEV.

Amazon RDS then manages your DB instances for you.

Note

If you also have a License Included (LI) RDS Custom for SQL Server DB instance, you can't
use the SQL Server software from this DB instance with BYOM. You must bring your own
SQL Server binaries to BYOM.

Requirements for BYOM for RDS Custom for SQL Server

The same general requirements for custom engine versions with RDS Custom for SQL Server also
apply to BYOM. For more information, see Requirements for RDS Custom for SQL Server CEVs.

When using BYOM, make you sure that you meet the following additional requirements:

• Use one of the following supported editions: SQL Server 2022 or 2019 Enterprise, Standard, or
Developer edition.

• Grant the SQL Server sysadmin (SA) server role privilege to NT AUTHORITY\SYSTEM.

• Keep the EC2 Windows Server OS configured with UTC time.

The underlying Amazon EC2 Windows instances are set to the UTC time zone by default. For
more information about viewing and changing the time for a Windows instance, see Set the time
for a Windows instance in the Amazon EC2 User Guide.

Bring Your Own Media with RDS Custom for SQL Server 2033

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Relational Database Service User Guide

• Open TCP port 1433 and UDP port 1434 to allow SSM connections.

Limitations of BYOM for RDS Custom for SQL Server

The same general limitations for RDS Custom for SQL Server also apply to BYOM. For more
information, see Requirements and limitations for Amazon RDS Custom for SQL Server.

With BYOM, the following additional limitations apply:

• Only the default SQL Server instance (MSSQLSERVER) is supported. Named SQL Server instances
aren't supported. RDS Custom for SQL Server detects and monitors only the default SQL Server
instance.

• Only a single installation of SQL Server is supported on each AMI. Multiple installations of
different SQL Server versions aren't supported.

• SQL Server Web edition isn't supported with BYOM.

• Evaluation versions of SQL Server editions aren't supported with BYOM. When you install SQL
Server, don't select the checkbox for using an evaluation version.

• Feature availability and support varies across specific versions of each database engine, and
across AWS Regions. For more information, see Region availability for RDS Custom for SQL
Server CEVs and Version support for RDS Custom for SQL Server CEVs.

Creating an RDS Custom for SQL Server DB instance with BYOM

To prepare and create an RDS Custom for SQL Server DB instance with BYOM, see Preparing a CEV
using Bring Your Own Media (BYOM).

Bring Your Own Media with RDS Custom for SQL Server 2034

Amazon Relational Database Service User Guide

Working with custom engine versions for RDS Custom for SQL Server

A custom engine version (CEV) for RDS Custom for SQL Server is an Amazon Machine Image (AMI)
that includes Microsoft SQL Server.

The basic steps of the CEV workflow are as follows:

1. Choose an AWS EC2 Windows AMI to use as a base image for a CEV. You have the option to use
pre-installed Microsoft SQL Server, or bring your own media to install SQL Server yourself.

2. Install other software on the operating system (OS) and customize the configuration of the OS
and SQL Server to meet your enterprise needs.

3. Save the AMI as a golden image

4. Create a custom engine version (CEV) from your golden image.

5. Create new RDS Custom for SQL Server DB instances by using your CEV.

Amazon RDS then manages these DB instances for you.

A CEV allows you to maintain your preferred baseline configuration of the OS and database. Using
a CEV ensures that the host configuration, such as any third-party agent installation or other OS
customizations, are persisted on RDS Custom for SQL Server DB instances. With a CEV, you can
quickly deploy fleets of RDS Custom for SQL Server DB instances with the same configuration.

Topics

• Preparing to create a CEV for RDS Custom for SQL Server

• Creating a CEV for RDS Custom for SQL Server

• Modifying a CEV for RDS Custom for SQL Server

• Viewing CEV details for Amazon RDS Custom for SQL Server

• Deleting a CEV for RDS Custom for SQL Server

Preparing to create a CEV for RDS Custom for SQL Server

You can create a CEV using an Amazon Machine Image (AMI) that contains pre-installed, License
Included (LI) Microsoft SQL Server, or with an AMI on which you install your own SQL Server
installation media (BYOM).

Working with CEVs for RDS Custom for SQL Server 2035

Amazon Relational Database Service User Guide

Preparing a CEV

Use the following procedures to create a CEV using Bring Your Own Media (BYOM) or pre-installed
Microsoft SQL Server (LI).

Preparing a CEV using Bring Your Own Media (BYOM)

The following steps use an AMI with Windows Server 2019 Base as an example.

To create a CEV using BYOM

1. On the Amazon EC2 console, choose Launch Instance.

2. For Name, enter the name of the instance.

3. Under Quick Start, choose Windows.

4. Choose Microsoft Windows Server 2019 Base.

5. Choose an appropriate instance type, key pair, network and storage settings, and launch the
instance.

6. After launching or creating the EC2 instance, ensure the correct Windows AMI was selected
from Step 4:

a. Select the EC2 instance in the Amazon EC2 console.

b. In the Details section, check the Usage operation and ensure that it is set to
RunInstances:0002.

7. Log in to the EC2 instance and copy your SQL Server installation media to it.

Working with CEVs for RDS Custom for SQL Server 2036

Amazon Relational Database Service User Guide

Note

If you're building a CEV using SQL Server Developer edition, you may need to obtain
the installation media using your Microsoft Visual Studio subscription.

8. Install SQL Server. Make sure that you do the following:

a. Review Requirements for BYOM for RDS Custom for SQL Server and Version support for
RDS Custom for SQL Server CEVs.

b. Set the instance root directory to the default C:\Program Files\Microsoft SQL
Server\. Don't change this directory.

c. Set the SQL Server Database Engine Account Name to either NT Service\MSSQLSERVER
or NT AUTHORITY\NETWORK SERVICE.

d. Set the SQL Server Startup mode to Manual.

e. Choose SQL Server Authentication mode as Mixed.

f. Leave the current settings for the default Data directories and TempDB locations.

9. Grant the SQL Server sysadmin (SA) server role privilege to NT AUTHORITY\SYSTEM:

USE [master]
GO
EXEC master..sp_addsrvrolemember @loginame = N'NT AUTHORITY\SYSTEM' , @rolename =
 N'sysadmin'
GO

10. Install additional software or customize the OS and database configuration to meet your
requirements.

11. Run Sysprep on the EC2 instance. For more information, see Create an Amazon EC2 AMI using
Windows Sysprep.

12. Save the AMI that contains your installed SQL Server version, other software, and
customizations. This will be your golden image.

13. Create a new CEV by providing the AMI ID of the image that you created. For detailed steps,
see Creating a CEV for RDS Custom for SQL Server.

14. Create a new RDS Custom for SQL Server DB instance using the CEV. For detailed steps, see
Create an RDS Custom for SQL Server DB instance from a CEV.

Working with CEVs for RDS Custom for SQL Server 2037

https://my.visualstudio.com/Downloads?q=sqlserver%20developer
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-create-win-sysprep.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-create-win-sysprep.html

Amazon Relational Database Service User Guide

Preparing a CEV using pre-installed SQL Server (LI)

The following steps to create a CEV using pre-installed Microsoft SQL Server (LI) use an AMI with
SQL Server CU20 Release number 2023.05.10 as an example. When you create a CEV, choose an
AMI with the most recent release number. This ensures that you are using a supported version of
Windows Server and SQL Server with the latest Cumulative Update (CU).

To create a CEV using pre-installed Microsoft SQL Server (LI)

1. Choose the latest available AWS EC2 Windows Amazon Machine Image (AMI) with License
Included (LI) Microsoft Windows Server and SQL Server.

a. Search for CU20 within the Windows AMI version history.

b. Note the Release number. For SQL Server 2019 CU20, the release number is 2023.05.10.

c. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

d. In the left navigation panel of the Amazon EC2 console choose Images, then AMIs.

e. Choose Public images.

f. Enter 2023.05.10 into the search box. A list of AMIs appears.

g. Enter Windows_Server-2019-English-Full-SQL_2019 into the search box to filter
the results. The following results should appear.

Working with CEVs for RDS Custom for SQL Server 2038

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-windows-ami-version-history.html
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

h. Choose the AMI with the SQL Server edition that you want to use.

2. Create or launch an EC2 instance from your chosen AMI.

3. Log in to the EC2 instance and install additional software or customize the OS and database
configuration to meet your requirements.

4. Run Sysprep on the EC2 instance. For more information prepping an AMI using Sysprep, see
Create a standardized Amazon Machine Image (AMI) using Sysprep.

5. Save the AMI that contains your installed SQL Server version, other software, and
customizations. This will be your golden image.

6. Create a new CEV by providing the AMI ID of the image that you created. For detailed steps on
creating a CEV, see Creating a CEV for RDS Custom for SQL Server.

7. Create a new RDS Custom for SQL Server DB instance using the CEV. For detailed steps, see
Create an RDS Custom for SQL Server DB instance from a CEV.

Region availability for RDS Custom for SQL Server CEVs

Custom engine version (CEV) support for RDS Custom for SQL Server is available in the following
AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (Oregon)

• US West (N. California)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

Working with CEVs for RDS Custom for SQL Server 2039

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html#sysprep-using-ec2launchv2

Amazon Relational Database Service User Guide

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• South America (São Paulo)

Version support for RDS Custom for SQL Server CEVs

CEV creation for RDS Custom for SQL Server is supported for the following AWS EC2 Windows
AMIs:

• For CEVs using pre-installed media, AWS EC2 Windows AMIs with License Included (LI) Microsoft
Windows Server 2019 (OS) and SQL Server 2022 or 2019

• For CEVs using bring your own media (BYOM), AWS EC2 Windows AMIs with Microsoft Windows
Server 2019 (OS)

CEV creation for RDS Custom for SQL Server is supported for the following operating system (OS)
and database editions:

• For CEVs using pre-installed media:

• SQL Server 2022 Enterprise, Standard, or Web, with CU9, CU13, CU14-GDR, CU15-GDR, CU16,
and CU17.

• SQL Server 2019 Enterprise, Standard, or Web, with CU8, CU17, CU18, CU20, CU24, CU26,
CU28-GDR, CU29-GDR, CU30, and CU32.

• For CEVs using bring your own media (BYOM):

• SQL Server 2022 Enterprise, Standard, or Developer, with CU9, CU13, CU14-GDR, CU15-GDR,
CU16, and CU17.

• SQL Server 2019 Enterprise, Standard, or Developer, with CU8, CU17, CU18, CU20, CU24,
CU26, CU28-GDR, CU29-GDR, CU30, and CU32.

Working with CEVs for RDS Custom for SQL Server 2040

Amazon Relational Database Service User Guide

• For CEVs using pre-installed media or bring your own media (BYOM), Windows Server 2019 is the
only supported OS.

For more information, see AWS Windows AMI version history.

Requirements for RDS Custom for SQL Server CEVs

The following requirements apply to creating a CEV for RDS Custom for SQL Server:

• The AMI used to create a CEV must be based on an OS and database configuration supported
by RDS Custom for SQL Server. For more information on supported configurations, see
Requirements and limitations for Amazon RDS Custom for SQL Server.

• The CEV must have a unique name. You can't create a CEV with the same name as an existing
CEV.

• You must name the CEV using a naming pattern of SQL Server major version + minor version
+ customized string. The major version + minor version must match the SQL Server version
provided with the AMI. For example, you can name an AMI with SQL Server 2019 CU17 as
15.00.4249.2.my_cevtest.

• You must prepare an AMI using Sysprep. For more information about prepping an AMI using
Sysprep, see Create a standardized Amazon Machine Image (AMI) using Sysprep.

• You are responsible for maintaining the life cycle of the AMI. An RDS Custom for SQL Server
DB instance created from a CEV doesn't store a copy of the AMI. It maintains a pointer to the
AMI that you used to create the CEV. The AMI must exist for an RDS Custom for SQL Server DB
instance to remain operable.

Limitations for RDS Custom for SQL Server CEVs

The following limitations apply to custom engine versions with RDS Custom for SQL Server:

• You can't delete a CEV if there are resources, such as DB instances or DB snapshots, associated
with it.

• To create an RDS Custom for SQL Server DB instance, a CEV must have a status of pending-
validation, available, failed, or validating. You can't create an RDS Custom for SQL
Server DB instance using a CEV if the CEV status is incompatible-image-configuration.

• To modify a RDS Custom for SQL Server DB instance to use a new CEV, the CEV must have a
status of available.

Working with CEVs for RDS Custom for SQL Server 2041

https://docs.aws.amazon.com/ec2/latest/windows-ami-reference/ec2-windows-ami-version-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-create-win-sysprep.html

Amazon Relational Database Service User Guide

• You can't create an AMI or CEV from an existing RDS Custom for SQL Server DB instance.

• You can't modify an existing CEV to use a different AMI. However, you can modify an RDS
Custom for SQL Server DB instance to use a different CEV. For more information, see Modifying
an RDS Custom for SQL Server DB instance.

• Encrypting an AMI or CEV with a customer-managed KMS key different than the KMS key
provided during DB instance creation is not supported.

• Cross-Region copy of CEVs isn't supported.

• Cross-account copy of CEVs isn't supported.

• You can't restore or recover a CEV after you delete it. However, you can create a new CEV from
the same AMI.

• A RDS Custom for SQL Server DB instance stores your SQL Server database files in the D:\drive.
The AMI associated with a CEV should store the Microsoft SQL Server system database files in
the C:\ drive.

• An RDS Custom for SQL Server DB instance retains your configuration changes made to SQL
Server. Any configuration changes to the OS on a running RDS Custom for SQL Server DB
instance created from a CEV aren't retained. If you need to make a permanent configuration
change to the OS and have it retained as your new baseline configuration, create a new CEV and
modify the DB instance to use the new CEV.

Important

Modifying an RDS Custom for SQL Server DB instance to use a new CEV is an offline
operation. You can perform the modification immediately or schedule it to occur during a
weekly maintenance window.

• When you modify a CEV, Amazon RDS doesn't push those modifications to any associated RDS
Custom for SQL Server DB instances. You must modify each RDS Custom for SQL Server DB
instance to use the new or updated CEV. For more information, see Modifying an RDS Custom for
SQL Server DB instance.

•
Important

If an AMI used by a CEV is deleted, any modifications that may require host replacement,
for example, scale compute, will fail. The RDS Custom for SQL Server DB instance will
then be placed outside of the RDS support perimeter. We recommend that you avoid
deleting any AMI that's associated to a CEV.

Working with CEVs for RDS Custom for SQL Server 2042

Amazon Relational Database Service User Guide

Creating a CEV for RDS Custom for SQL Server

You can create a custom engine version (CEV) using the AWS Management Console or the AWS CLI.
You can then use the CEV to create an RDS Custom for SQL Server DB instance.

Make sure that the Amazon Machine Image (AMI) is in the same AWS account and Region as your
CEV. Otherwise, the process to create a CEV fails.

For more information, see Creating and connecting to a DB instance for Amazon RDS Custom for
SQL Server.

Important

The steps to create a CEV are the same for AMIs created with pre-installed SQL Server and
those created using bring your own media (BYOM).

Console

To create a CEV

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Custom engine versions.

The Custom engine versions page shows all CEVs that currently exist. If you haven't created
any CEVs, the table is empty.

3. Choose Create custom engine version.

4. For Engine type, choose Microsoft SQL Server.

5. For Edition, choose the DB engine edition that you want to use.

6. For Major version, choose the major engine version that's installed on your AMI.

7. In Version details, enter a valid name in Custom engine version name.

The name format is major-engine-version.minor-engine-
version.customized_string. You can use 1–50 alphanumeric characters, underscores,
dashes, and periods. For example, you might enter the name 15.00.4249.2.my_cevtest.

Optionally, enter a description for your CEV.

Working with CEVs for RDS Custom for SQL Server 2043

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

8. For Installation Media, browse to or enter the AMI ID that you'd like to create the CEV from.

9. In the Tags section, add any tags to identify the CEV.

10. Choose Create custom engine version.

The Custom engine versions page appears. Your CEV is shown with the status pending-validation

AWS CLI

To create a CEV by using the AWS CLI, run the create-custom-db-engine-version command.

The following options are required:

• --engine

• --engine-version

• --image-id

You can also specify the following options:

• --description

• --region

• --tags

The following example creates a CEV named 15.00.4249.2.my_cevtest. Make sure that the
name of your CEV begins with the major engine version number.

Example

For Linux, macOS, or Unix:

aws rds create-custom-db-engine-version \
 --engine custom-sqlserver-ee \
 --engine-version 15.00.4249.2.my_cevtest \
 --image-id ami-0r93cx31t5r596482 \
 --description "Custom SQL Server EE 15.00.4249.2 cev test"

The following partial output shows the engine, parameter groups, and other information.

Working with CEVs for RDS Custom for SQL Server 2044

https://docs.aws.amazon.com/cli/latest/reference/rds/create-custom-db-engine-version.html

Amazon Relational Database Service User Guide

"DBEngineVersions": [
 {
 "Engine": "custom-sqlserver-ee",
 "MajorEngineVersion": "15.00",
 "EngineVersion": "15.00.4249.2.my_cevtest",
 "DBEngineDescription": "Microsoft SQL Server Enterprise Edition for RDS Custom for
 SQL Server",
 "DBEngineVersionArn": "arn:aws:rds:us-east-1:<my-account-id>:cev:custom-sqlserver-
ee/15.00.4249.2.my_cevtest/a1234a1-123c-12rd-bre1-1234567890",
 "DBEngineVersionDescription": "Custom SQL Server EE 15.00.4249.2 cev test",

 "Image": [
 "ImageId": "ami-0r93cx31t5r596482",
 "Status": "pending-validation"
],
 "CreateTime": "2022-11-20T19:30:01.831000+00:00",
 "SupportsLogExportsToCloudwatchLogs": false,
 "SupportsReadReplica": false,
 "Status": "pending-validation",
 "SupportsParallelQuery": false,
 "SupportsGlobalDatabases": false,
 "TagList": []
 }
]

If the process to create a CEV fails, RDS Custom for SQL Server issues RDS-EVENT-0198
with the message Creation failed for custom engine version major-engine-
version.cev_name. The message includes details about the failure, for example, the event prints
missing files. To find troubleshooting ideas for CEV creation issues, see Troubleshooting CEV errors
for RDS Custom for SQL Server.

Create an RDS Custom for SQL Server DB instance from a CEV

After you successfully create a CEV, the CEV status shows pending-validation. You can now
create a new RDS Custom for SQL Server DB instance using the CEV. To create a new RDS Custom
for SQL Server DB instance from a CEV, see Creating an RDS Custom for SQL Server DB instance.

Lifecycle of a CEV

The CEV lifecycle includes the following statuses.

Working with CEVs for RDS Custom for SQL Server 2045

Amazon Relational Database Service User Guide

CEV status Description Troubleshooting suggestions

pending-v
alidation

A CEV was
created and is
pending the
validation of
the associate
d AMI. A CEV
will remain in
pending-v
alidation

 until an RDS
Custom for
SQL Server
DB instance is
created from it.

If there are no existing tasks, create a new
RDS Custom for SQL Server DB instance
from the CEV. When creating the RDS
Custom for SQL Server DB instance, the
system attempts to validate the associated
AMI for a CEV.

validating A creation task
for the RDS
Custom for
SQL Server DB
instance based
on a new CEV
is in progress.
When creating
the RDS Custom
for SQL Server
DB instance, the
system attempts
to validate the
associated AMI
of a CEV.

Wait for the creation task of the existing
RDS Custom for SQL Server DB instance
to complete. You can use the RDS EVENTS
console to review detailed event messages
for troubleshooting.

available The CEV was
successfully
validated. A CEV
will enter the

The CEV doesn't require any additiona
l validation. It can be used to create
additional RDS Custom for SQL Server DB
instances or modify existing ones.

Working with CEVs for RDS Custom for SQL Server 2046

Amazon Relational Database Service User Guide

CEV status Description Troubleshooting suggestions

available
status once an
RDS Custom
for SQL Server
DB instance has
been successfu
lly created from
it.

inactive The CEV has
been modified
to an inactive
state.

You can't create or upgrade an RDS Custom
DB instance with this CEV. Also, you can't
restore a DB snapshot to create a new RDS
Custom DB instance with this CEV. For
information about how to change the state
to ACTIVE, see Modifying a CEV for RDS
Custom for SQL Server.

failed The create
DB instance
step failed
for this CEV
before it could
validate the AMI.
Alternatively,
the underlying
AMI used by the
CEV isn't in an
available state.

Troubleshoot the root cause for why the
system couldn't create the DB instance.
View the detailed error message and try
to create a new DB instance again. Ensure
that the underlying AMI used by the CEV is
in an available state.

Working with CEVs for RDS Custom for SQL Server 2047

Amazon Relational Database Service User Guide

CEV status Description Troubleshooting suggestions

incompati
ble-image
-configur
ation

There was an
error validating
the AMI.

View the technical details of the error.
You can't attempt to validate the AMI
with this CEV again. Review the following:
recommendations:

• Ensure your CEV is named using the
required naming pattern of SQL Server
major version + minor version + customize
d string.

• Ensure the SQL Server version in the CEV
name matches the version provided with
the AMI.

• Ensure the OS build version meets the
minimum required build version.

• Ensure the OS major version meets the
minimum required major version.

Create a new CEV using the correct
information.

If needed, create a new EC2 instance using
a supported AMI and run the Sysprep
process on it.

Modifying a CEV for RDS Custom for SQL Server

You can modify a CEV using the AWS Management Console or the AWS CLI. You can modify the
CEV description or its availability status. Your CEV has one of the following status values:

• available – You can use this CEV to create a new RDS Custom DB instance or upgrade a DB
instance. This is the default status for a newly created CEV.

• inactive – You can't create or upgrade an RDS Custom DB instance with this CEV. You can't
restore a DB snapshot to create a new RDS Custom DB instance with this CEV.

Working with CEVs for RDS Custom for SQL Server 2048

Amazon Relational Database Service User Guide

You can change the CEV status from available to inactive or from inactive to available.
You might change the status to INACTIVE to prevent the accidental use of a CEV or to make a
discontinued CEV eligible for use again.

Console

To modify a CEV

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Custom engine versions.

3. Choose a CEV whose description or status you want to modify.

4. For Actions, choose Modify.

5. Make any of the following changes:

• For CEV status settings, choose a new availability status.

• For Version description, enter a new description.

6. Choose Modify CEV.

If the CEV is in use, the console displays You can't modify the CEV status. Fix the problems,
then try again.

The Custom engine versions page appears.

AWS CLI

To modify a CEV by using the AWS CLI, run the modify-custom-db-engine-version command. You
can find CEVs to modify by running the describe-db-engine-versions command.

The following options are required:

• --engine

• --engine-version cev, where cev is the name of the custom engine version that you want
to modify

• --status status, where status is the availability status that you want to assign to the CEV

The following example changes a CEV named 15.00.4249.2.my_cevtest from its current status
to inactive.

Working with CEVs for RDS Custom for SQL Server 2049

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-custom-db-engine-version.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds modify-custom-db-engine-version \
 --engine custom-sqlserver-ee \
 --engine-version 15.00.4249.2.my_cevtest \
 --status inactive

For Windows:

aws rds modify-custom-db-engine-version ^
 --engine custom-sqlserver-ee ^
 --engine-version 15.00.4249.2.my_cevtest ^
 --status inactive

To modify an RDS Custom for SQL Server DB instance to use a new CEV, see Modifying an RDS
Custom for SQL Server DB instance to use a new CEV.

Modifying an RDS Custom for SQL Server DB instance to use a new CEV

You can modify an existing RDS Custom for SQL Server DB instance to use a different CEV. The
changes that you can make include:

• Changing the CEV

• Changing the DB instance class

• Changing the backup retention period and backup window

• Changing the maintenance window

Console

To modify an RDS Custom for SQL Server DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify.

4. Choose Modify.

Working with CEVs for RDS Custom for SQL Server 2050

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Make the following changes as needed:

a. For DB engine version, choose a different CEV.

b. Change the value for DB instance class. For supported classes, see DB instance class
support for RDS Custom for SQL Server.

c. Change the value for Backup retention period.

d. For Backup window, set values for the Start time and Duration.

e. For DB instance maintenance window, set values for the Start day, Start time, and
Duration.

6. Choose Continue.

7. Choose Apply immediately or Apply during the next scheduled maintenance window.

8. Choose Modify DB instance.

Note

When modifying a DB instance from one CEV to an another CEV, for example, when
upgrading a minor version, the SQL Server system databases, including their data and
configurations, are persisted from the current RDS Custom for SQL Server DB instance.

AWS CLI

To modify a DB instance to use a different CEV by using the AWS CLI, run the modify-db-instance
command.

The following options are required:

• --db-instance-identifier

• --engine-version cev, where cev is the name of the custom engine version that you want
the DB instance to change to.

The following example modifies a DB instance named my-cev-db-instance to use a CEV named
15.00.4249.2.my_cevtest_new and applies the change immediately.

Example

For Linux, macOS, or Unix:

Working with CEVs for RDS Custom for SQL Server 2051

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-custom-db-engine-version.html

Amazon Relational Database Service User Guide

aws rds modify-db-instance \
 --db-instance-identifier my-cev-db-instance \
 --engine-version 15.00.4249.2.my_cevtest_new \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-cev-db-instance ^
 --engine-version 15.00.4249.2.my_cevtest_new ^
 --apply-immediately

Viewing CEV details for Amazon RDS Custom for SQL Server

You can view details about your CEV by using the AWS Management Console or the AWS CLI.

Console

To view CEV details

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Custom engine versions.

The Custom engine versions page shows all CEVs that currently exist. If you haven't created
any CEVs, the page is empty.

3. Choose the name of the CEV that you want to view.

4. Choose Configuration to view the details.

Working with CEVs for RDS Custom for SQL Server 2052

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To view details about a CEV by using the AWS CLI, run the describe-db-engine-versions command.

You can also specify the following options:

• --include-all, to view all CEVs with any lifecycle state. Without the --include-all option,
only the CEVs in an available lifecycle state will be returned.

aws rds describe-db-engine-versions --engine custom-sqlserver-ee --engine-version
 15.00.4249.2.my_cevtest --include-all
{
 "DBEngineVersions": [
 {
 "Engine": "custom-sqlserver-ee",
 "MajorEngineVersion": "15.00",
 "EngineVersion": "15.00.4249.2.my_cevtest",
 "DBParameterGroupFamily": "custom-sqlserver-ee-15.0",
 "DBEngineDescription": "Microsoft SQL Server Enterprise Edition for custom
 RDS",

Working with CEVs for RDS Custom for SQL Server 2053

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

 "DBEngineVersionArn": "arn:aws:rds:us-east-1:{my-account-id}:cev:custom-
sqlserver-ee/15.00.4249.2.my_cevtest/a1234a1-123c-12rd-bre1-1234567890",
 "DBEngineVersionDescription": "Custom SQL Server EE 15.00.4249.2 cev test",
 "Image": {
 "ImageId": "ami-0r93cx31t5r596482",
 "Status": "pending-validation"
 },
 "DBEngineMediaType": "AWS Provided",
 "CreateTime": "2022-11-20T19:30:01.831000+00:00",
 "ValidUpgradeTarget": [],
 "SupportsLogExportsToCloudwatchLogs": false,
 "SupportsReadReplica": false,
 "SupportedFeatureNames": [],
 "Status": "pending-validation",
 "SupportsParallelQuery": false,
 "SupportsGlobalDatabases": false,
 "TagList": [],
 "SupportsBabelfish": false
 }
]
}

You can use filters to view CEVs with a certain lifecycle status. For example, to view CEVs that have
a lifecycle status of either pending-validation, available, or failed:

aws rds describe-db-engine-versions engine custom-sqlserver-ee
 region us-west-2 include-all query 'DBEngineVersions[?Status ==
 pending-validation ||
 Status == available || Status == failed]'

Deleting a CEV for RDS Custom for SQL Server

You can delete a CEV using the AWS Management Console or the AWS CLI. Typically, this task takes
a few minutes.

Before deleting a CEV, make sure it isn't being used by any of the following:

• An RDS Custom DB instance

• A snapshot of an RDS Custom DB instance

• An automated backup of your RDS Custom DB instance

Working with CEVs for RDS Custom for SQL Server 2054

Amazon Relational Database Service User Guide

Console

To delete a CEV

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Custom engine versions.

3. Choose a CEV whose description or status you want to delete.

4. For Actions, choose Delete.

The Delete cev_name? dialog box appears.

5. Enter delete me, and then choose Delete.

In the Custom engine versions page, the banner shows that your CEV is being deleted.

AWS CLI

To delete a CEV by using the AWS CLI, run the delete-custom-db-engine-version command.

The following options are required:

• --engine custom-sqlserver-ee

• --engine-version cev, where cev is the name of the custom engine version to be deleted

The following example deletes a CEV named 15.00.4249.2.my_cevtest.

Example

For Linux, macOS, or Unix:

aws rds delete-custom-db-engine-version \
 --engine custom-sqlserver-ee \
 --engine-version 15.00.4249.2.my_cevtest

For Windows:

aws rds delete-custom-db-engine-version ^
 --engine custom-sqlserver-ee ^
 --engine-version 15.00.4249.2.my_cevtest

Working with CEVs for RDS Custom for SQL Server 2055

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-custom-db-engine-version.html

Amazon Relational Database Service User Guide

Working with CEVs for RDS Custom for SQL Server 2056

Amazon Relational Database Service User Guide

Creating and connecting to a DB instance for Amazon RDS Custom for
SQL Server

You can create an RDS Custom DB instance, and then connect to it using AWS Systems Manager or
Remote Desktop Protocol (RDP).

Important

Before you can create or connect to an RDS Custom for SQL Server DB instance, make sure
to complete the tasks in Setting up your environment for Amazon RDS Custom for SQL
Server.
You can tag RDS Custom DB instances when you create them, but don't create or modify
the AWSRDSCustom tag that's required for RDS Custom automation. For more information,
see Tagging RDS Custom for SQL Server resources.
The first time that you create an RDS Custom for SQL Server DB instance, you might receive
the following error: The service-linked role is in the process of being created. Try again
later. If you do, wait a few minutes and then try again to create the DB instance.

Topics

• Creating an RDS Custom for SQL Server DB instance

• RDS Custom service-linked role

• Connecting to your RDS Custom DB instance using AWS Systems Manager

• Connecting to your RDS Custom DB instance using RDP

Creating an RDS Custom for SQL Server DB instance

Create an Amazon RDS Custom for SQL Server DB instance using either the AWS Management
Console or the AWS CLI. The procedure is similar to the procedure for creating an Amazon RDS DB
instance.

For more information, see Creating an Amazon RDS DB instance.

Creating and connecting to an RDS Custom for SQL Server DB instance 2057

Amazon Relational Database Service User Guide

Console

To create an RDS Custom for SQL Server DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard create for the database creation method.

5. For Engine options, choose Microsoft SQL Server for the engine type.

6. For Database management type, choose Amazon RDS Custom.

7. In the Edition section, choose the DB engine edition that you want to use.

8. (Optional) If you intend to create the DB instance from a CEV, check the Use custom engine
version (CEV) check box. Select your CEV in the drop-down list.

9. For Database version, keep the default value version.

10. For Templates, choose Production.

11. In the Settings section, enter a unique name for the DB instance identifier.

12. To enter your master password, do the following:

a. In the Settings section, open Credential Settings.

b. Clear the Auto generate a password check box.

c. Change the Master username value and enter the same password in Master password
and Confirm password.

By default, the new RDS Custom DB instance uses an automatically generated password for
the master user.

13. In the DB instance size section, choose a value for DB instance class.

For supported classes, see DB instance class support for RDS Custom for SQL Server.

14. Choose Storage settings.

15. For RDS Custom security, do the following:

a. For IAM instance profile, you have two options to choose the instance profile for your
RDS Custom for SQL Server DB instance.

Creating and connecting to an RDS Custom for SQL Server DB instance 2058

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

1. Choose Create a new instance profile and provide an instance profile name suffix. For
more information, see Automated instance profile creation using the AWS Management
Console.

2. Choose an existing instance profile. From the ddropdown list, choose instance profile
that begins with AWSRDSCustom.

b. For Encryption, choose Enter a key ARN to list the available AWS KMS keys. Then choose
your key from the list.

An AWS KMS key is required for RDS Custom. For more information, see Make sure that
you have a symmetric encryption AWS KMS key.

16. For the remaining sections, specify your preferred RDS Custom DB instance settings. For
information about each setting, see Settings for DB instances. The following settings don't
appear in the console and aren't supported:

• Processor features

• Storage autoscaling

• Availability & durability

• Password and Kerberos authentication option in Database authentication (only Password
authentication is supported)

• Database options group in Additional configuration

• Performance Insights

• Log exports

• Enable auto minor version upgrade

• Deletion protection

Backup retention period is supported, but you can't choose 0 days.

17. Choose Create database.

The View credential details button appears on the Databases page.

To view the master user name and password for the RDS Custom DB instance, choose View
credential details.

To connect to the DB instance as the master user, use the user name and password that
appear.

Creating and connecting to an RDS Custom for SQL Server DB instance 2059

Amazon Relational Database Service User Guide

Important

You can't view the master user password again. If you don't record it, you might have
to change it. To change the master user password after the RDS Custom DB instance
is available, modify the DB instance. For more information about modifying a DB
instance, see Managing an Amazon RDS Custom for SQL Server DB instance.

18. Choose Databases to view the list of RDS Custom DB instances.

19. Choose the RDS Custom DB instance that you just created.

On the RDS console, the details for the new RDS Custom DB instance appear:

• The DB instance has a status of creating until the RDS Custom DB instance is created and
ready for use. When the state changes to available, you can connect to the DB instance.
Depending on the instance class and storage allocated, it can take several minutes for the
new DB instance to be available.

• Role has the value Instance (RDS Custom).

• RDS Custom automation mode has the value Full automation. This setting means that the
DB instance provides automatic monitoring and instance recovery.

AWS CLI

You create an RDS Custom DB instance by using the create-db-instance AWS CLI command.

The following options are required:

• --db-instance-identifier

• --db-instance-class (for a list of supported instance classes, see DB instance class support
for RDS Custom for SQL Server)

• --engine (custom-sqlserver-ee, custom-sqlserver-se, or custom-sqlserver-web)

• --kms-key-id

• --custom-iam-instance-profile

The following example creates an RDS Custom for SQL Server DB instance named my-custom-
instance. The backup retention period is 3 days.

Creating and connecting to an RDS Custom for SQL Server DB instance 2060

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

Note

To create a DB instance from a custom engine version (CEV), supply an existing CEV
name to the --engine-version parameter. For example, --engine-version
15.00.4249.2.my_cevtest

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --engine custom-sqlserver-ee \
 --engine-version 15.00.4073.23.v1 \
 --db-instance-identifier my-custom-instance \
 --db-instance-class db.m5.xlarge \
 --allocated-storage 20 \
 --db-subnet-group mydbsubnetgroup \
 --master-username myuser \
 --master-user-password mypassword \
 --backup-retention-period 3 \
 --no-multi-az \
 --port 8200 \
 --kms-key-id mykmskey \
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance

For Windows:

aws rds create-db-instance ^
 --engine custom-sqlserver-ee ^
 --engine-version 15.00.4073.23.v1 ^
 --db-instance-identifier my-custom-instance ^
 --db-instance-class db.m5.xlarge ^
 --allocated-storage 20 ^
 --db-subnet-group mydbsubnetgroup ^
 --master-username myuser ^
 --master-user-password mypassword ^
 --backup-retention-period 3 ^
 --no-multi-az ^
 --port 8200 ^
 --kms-key-id mykmskey ^

Creating and connecting to an RDS Custom for SQL Server DB instance 2061

Amazon Relational Database Service User Guide

 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance

Note

Specify a password other than the prompt shown here as a security best practice.

Get details about your instance by using the describe-db-instances command.

aws rds describe-db-instances --db-instance-identifier my-custom-instance

The following partial output shows the engine, parameter groups, and other information.

{
 "DBInstances": [
 {
 "PendingModifiedValues": {},
 "Engine": "custom-sqlserver-ee",
 "MultiAZ": false,
 "DBSecurityGroups": [],
 "DBParameterGroups": [
 {
 "DBParameterGroupName": "default.custom-sqlserver-ee-15",
 "ParameterApplyStatus": "in-sync"
 }
],
 "AutomationMode": "full",
 "DBInstanceIdentifier": "my-custom-instance",
 "TagList": []
 }
]
}

RDS Custom service-linked role

A service-linked role gives Amazon RDS Custom access to resources in your AWS account. It makes
using RDS Custom easier because you don't have to manually add the necessary permissions. RDS
Custom defines the permissions of its service-linked roles, and unless defined otherwise, only RDS
Custom can assume its roles. The defined permissions include the trust policy and the permissions
policy, and that permissions policy can't be attached to any other IAM entity.

Creating and connecting to an RDS Custom for SQL Server DB instance 2062

Amazon Relational Database Service User Guide

When you create an RDS Custom DB instance, both the Amazon RDS and RDS Custom service-
linked roles are created (if they don't already exist) and used. For more information, see Using
service-linked roles for Amazon RDS.

The first time that you create an RDS Custom for SQL Server DB instance, you might receive the
following error: The service-linked role is in the process of being created. Try again later. If you do,
wait a few minutes and then try again to create the DB instance.

Connecting to your RDS Custom DB instance using AWS Systems Manager

After you create your RDS Custom DB instance, you can connect to it using AWS Systems
Manager Session Manager. Session Manager is a Systems Manager capability that you can use to
manage Amazon EC2 instances through a browser-based shell or through the AWS CLI. For more
information, see AWS Systems Manager Session Manager.

Console

To connect to your DB instance using Session Manager

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom DB instance to
which you want to connect.

3. Choose Configuration.

4. Note the Resource ID value for your DB instance. For example, the resource ID might be db-
ABCDEFGHIJKLMNOPQRS0123456.

5. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

6. In the navigation pane, choose Instances.

7. Look for the name of your EC2 instance, and then choose the instance ID associated with it. For
example, the instance ID might be i-abcdefghijklm01234.

8. Choose Connect.

9. Choose Session Manager.

10. Choose Connect.

A window opens for your session.

Creating and connecting to an RDS Custom for SQL Server DB instance 2063

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

AWS CLI

You can connect to your RDS Custom DB instance using the AWS CLI. This technique requires the
Session Manager plugin for the AWS CLI. To learn how to install the plugin, see Install the Session
Manager plugin for the AWS CLI.

To find the DB resource ID of your RDS Custom DB instance, use describe-db-instances.

aws rds describe-db-instances \
 --query 'DBInstances[*].[DBInstanceIdentifier,DbiResourceId]' \
 --output text

The following sample output shows the resource ID for your RDS Custom instance. The prefix is
db-.

db-ABCDEFGHIJKLMNOPQRS0123456

To find the EC2 instance ID of your DB instance, use aws ec2 describe-instances. The
following example uses db-ABCDEFGHIJKLMNOPQRS0123456 for the resource ID.

aws ec2 describe-instances \
 --filters "Name=tag:Name,Values=db-ABCDEFGHIJKLMNOPQRS0123456" \
 --output text \
 --query 'Reservations[*].Instances[*].InstanceId'

The following sample output shows the EC2 instance ID.

i-abcdefghijklm01234

Use the aws ssm start-session command, supplying the EC2 instance ID in the --target
parameter.

aws ssm start-session --target "i-abcdefghijklm01234"

A successful connection looks like the following.

Starting session with SessionId: yourid-abcdefghijklm1234
[ssm-user@ip-123-45-67-89 bin]$

Creating and connecting to an RDS Custom for SQL Server DB instance 2064

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

Connecting to your RDS Custom DB instance using RDP

After you create your RDS Custom DB instance, you can connect to this instance using an RDP
client. The procedure is the same as for connecting to an Amazon EC2 instance. For more
information, see Connect to your Windows instance.

To connect to the DB instance, you need the key pair associated with the instance. RDS
Custom creates the key pair for you. The pair name uses the prefix do-not-delete-rds-
custom-DBInstanceIdentifier. AWS Secrets Manager stores your private key as a secret.

Complete the task in the following steps:

1. Configure your DB instance to allow RDP connections.

2. Retrieve your secret key.

3. Connect to your EC2 instance using the RDP utility.

Configure your DB instance to allow RDP connections

To allow RDP connections, configure your VPC security group and set a firewall rule on the host.

Configure your VPC security group

Make sure that the VPC security group associated with your DB instance permits inbound
connections on port 3389 for Transmission Control Protocol (TCP). To learn how to configure your
VPC security group, see Configure your VPC security group.

Set the firewall rule on the host

To permit inbound connections on port 3389 for TCP, set a firewall rule on the host. The following
examples show how to do this.

We recommend that you use the specific -Profile value: Public, Private, or Domain. Using
Any refers to all three values. You can also specify a combination of values separated by a comma.
For more information about setting firewall rules, see Set-NetFirewallRule in the Microsoft
documentation.

To use Systems Manager Session Manager to set a firewall rule

1. Connect to Session Manager as shown in Connecting to your RDS Custom DB instance using
AWS Systems Manager.

2. Run the following command.

Creating and connecting to an RDS Custom for SQL Server DB instance 2065

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.microsoft.com/en-us/powershell/module/netsecurity/set-netfirewallrule?view=windowsserver2019-ps

Amazon Relational Database Service User Guide

Set-NetFirewallRule -DisplayName "Remote Desktop - User Mode (TCP-In)" -Direction
 Inbound -LocalAddress Any -Profile Any

To use Systems Manager CLI commands to set a firewall rule

1. Use the following command to open RDP on the host.

OPEN_RDP_COMMAND_ID=$(aws ssm send-command --region $AWS_REGION \
 --instance-ids $RDS_CUSTOM_INSTANCE_EC2_ID \
 --document-name "AWS-RunPowerShellScript" \
 --parameters '{"commands":["Set-NetFirewallRule -DisplayName \"Remote Desktop -
 User Mode (TCP-In)\" -Direction Inbound -LocalAddress Any -Profile Any"]}' \
 --comment "Open RDP port" | jq -r ".Command.CommandId")

2. Use the command ID returned in the output to get the status of the previous command. To
use the following query to return the command ID, make sure that you have the jq plug-in
installed.

aws ssm list-commands \
 --region $AWS_REGION \
 --command-id $OPEN_RDP_COMMAND_ID

Retrieve your secret key

Retrieve your secret key using either AWS Management Console or the AWS CLI.

Console

To retrieve the secret key

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom DB instance to
which you want to connect.

3. Choose the Configuration tab.

4. Note the DB instance ID for your DB instance, for example, my-custom-instance.

5. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Creating and connecting to an RDS Custom for SQL Server DB instance 2066

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

6. In the navigation pane, choose Instances.

7. Look for the name of your EC2 instance, and then choose the instance ID associated with it.

In this example, the instance ID is i-abcdefghijklm01234.

8. In Details, find Key pair name. The pair name includes the DB identifier. In this example, the
pair name is do-not-delete-rds-custom-my-custom-instance-0d726c.

9. In the instance summary, find Public IPv4 DNS. For the example, the public DNS might be
ec2-12-345-678-901.us-east-2.compute.amazonaws.com.

10. Open the AWS Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

11. Choose the secret that has the same name as your key pair.

12. Choose Retrieve secret value.

AWS CLI

To retrieve the private key

1. Get the list of your RDS Custom DB instances by calling the aws rds describe-db-
instances command.

aws rds describe-db-instances \
 --query 'DBInstances[*].[DBInstanceIdentifier,DbiResourceId]' \
 --output text

2. Choose the DB instance identifier from the sample output, for example do-not-delete-
rds-custom-my-custom-instance.

3. Find the EC2 instance ID of your DB instance by calling the aws ec2 describe-instances
command. The following example uses the EC2 instance name to describe the DB instance.

aws ec2 describe-instances \
 --filters "Name=tag:Name,Values=do-not-delete-rds-custom-my-custom-instance" \
 --output text \
 --query 'Reservations[*].Instances[*].InstanceId'

The following sample output shows the EC2 instance ID.

i-abcdefghijklm01234

Creating and connecting to an RDS Custom for SQL Server DB instance 2067

https://console.aws.amazon.com/secretsmanager/

Amazon Relational Database Service User Guide

4. Find the key name by specifying the EC2 instance ID, as shown in the following example.

aws ec2 describe-instances \
 --instance-ids i-abcdefghijklm01234 \
 --output text \
 --query 'Reservations[*].Instances[*].KeyName'

The following sample output shows the key name, which uses the prefix do-not-delete-
rds-custom-DBInstanceIdentifier.

do-not-delete-rds-custom-my-custom-instance-0d726c

Connect to your EC2 instance using the RDP utility

Follow the procedure in Connect to your Windows instance using RDP in the Amazon EC2 User
Guide. This procedure assumes that you created a .pem file that contains your private key.

Creating and connecting to an RDS Custom for SQL Server DB instance 2068

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html#connect-rdp

Amazon Relational Database Service User Guide

Managing an Amazon RDS Custom for SQL Server DB instance

Amazon RDS Custom for SQL Server supports a subset of the usual management tasks for Amazon
RDS DB instances. Following, you can find instructions for the supported RDS Custom for SQL
Server management tasks using the AWS Management Console and the AWS CLI.

Topics

• Pausing and resuming RDS Custom automation

• Modifying an RDS Custom for SQL Server DB instance

• Modifying the storage for an RDS Custom for SQL Server DB instance

• Tagging RDS Custom for SQL Server resources

• Deleting an RDS Custom for SQL Server DB instance

• Starting and stopping an RDS Custom for SQL Server DB instance

Pausing and resuming RDS Custom automation

RDS Custom automatically provides monitoring and instance recovery for an RDS Custom for SQL
Server DB instance. If you need to customize the instance, do the following:

1. Pause RDS Custom automation for a specified period. The pause ensures that your
customizations don't interfere with RDS Custom automation.

2. Customize the RDS Custom for SQL Server DB instance as needed.

3. Do either of the following:

• Resume automation manually.

• Wait for the pause period to end. In this case, RDS Custom resumes monitoring and instance
recovery automatically.

Important

Pausing and resuming automation are the only supported automation tasks when
modifying an RDS Custom for SQL Server DB instance.

Managing an RDS Custom for SQL Server DB instance 2069

Amazon Relational Database Service User Guide

Console

To pause or resume RDS Custom automation

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom DB instance that
you want to modify.

3. Choose Modify. The Modify DB instance page appears.

4. For RDS Custom automation mode, choose one of the following options:

• Paused pauses the monitoring and instance recovery for the RDS Custom DB instance.
Enter the pause duration that you want (in minutes) for Automation mode duration. The
minimum value is 60 minutes (default). The maximum value is 1,440 minutes.

• Full automation resumes automation.

5. Choose Continue to check the summary of modifications.

A message indicates that RDS Custom will apply the changes immediately.

6. If your changes are correct, choose Modify DB instance. Or choose Back to edit your changes
or Cancel to cancel your changes.

On the RDS console, the details for the modification appear. If you paused automation, the
Status of your RDS Custom DB instance indicates Automation paused.

7. (Optional) In the navigation pane, choose Databases, and then your RDS Custom DB instance.

In the Summary pane, RDS Custom automation mode indicates the automation status. If
automation is paused, the value is Paused. Automation resumes in num minutes.

AWS CLI

To pause or resume RDS Custom automation, use the modify-db-instance AWS CLI command.
Identify the DB instance using the required parameter --db-instance-identifier. Control the
automation mode with the following parameters:

• --automation-mode specifies the pause state of the DB instance. Valid values are all-
paused, which pauses automation, and full, which resumes it.

Managing an RDS Custom for SQL Server DB instance 2070

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• --resume-full-automation-mode-minutes specifies the duration of the pause. The default
value is 60 minutes.

Note

Regardless of whether you specify --no-apply-immediately or --apply-
immediately, RDS Custom applies modifications asynchronously as soon as possible.

In the command response, ResumeFullAutomationModeTime indicates the resume time as a
UTC timestamp. When the automation mode is all-paused, you can use modify-db-instance
to resume automation mode or extend the pause period. No other modify-db-instance options
are supported.

The following example pauses automation for my-custom-instance for 90 minutes.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --automation-mode all-paused \
 --resume-full-automation-mode-minutes 90

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --automation-mode all-paused ^
 --resume-full-automation-mode-minutes 90

The following example extends the pause duration for an extra 30 minutes. The 30 minutes is
added to the original time shown in ResumeFullAutomationModeTime.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \

Managing an RDS Custom for SQL Server DB instance 2071

Amazon Relational Database Service User Guide

 --db-instance-identifier my-custom-instance \
 --automation-mode all-paused \
 --resume-full-automation-mode-minutes 30

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --automation-mode all-paused ^
 --resume-full-automation-mode-minutes 30

The following example resumes full automation for my-custom-instance.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --automation-mode full \

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --automation-mode full

In the following partial sample output, the pending AutomationMode value is full.

{
 "DBInstance": {
 "PubliclyAccessible": true,
 "MasterUsername": "admin",
 "MonitoringInterval": 0,
 "LicenseModel": "bring-your-own-license",
 "VpcSecurityGroups": [
 {
 "Status": "active",
 "VpcSecurityGroupId": "0123456789abcdefg"
 }
],
 "InstanceCreateTime": "2020-11-07T19:50:06.193Z",

Managing an RDS Custom for SQL Server DB instance 2072

Amazon Relational Database Service User Guide

 "CopyTagsToSnapshot": false,
 "OptionGroupMemberships": [
 {
 "Status": "in-sync",
 "OptionGroupName": "default:custom-oracle-ee-19"
 }
],
 "PendingModifiedValues": {
 "AutomationMode": "full"
 },
 "Engine": "custom-oracle-ee",
 "MultiAZ": false,
 "DBSecurityGroups": [],
 "DBParameterGroups": [
 {
 "DBParameterGroupName": "default.custom-oracle-ee-19",
 "ParameterApplyStatus": "in-sync"
 }
],
 ...
 "ReadReplicaDBInstanceIdentifiers": [],
 "AllocatedStorage": 250,
 "DBInstanceArn": "arn:aws:rds:us-west-2:012345678912:db:my-custom-instance",
 "BackupRetentionPeriod": 3,
 "DBName": "ORCL",
 "PreferredMaintenanceWindow": "fri:10:56-fri:11:26",
 "Endpoint": {
 "HostedZoneId": "ABCDEFGHIJKLMNO",
 "Port": 8200,
 "Address": "my-custom-instance.abcdefghijk.us-west-2.rds.amazonaws.com"
 },
 "DBInstanceStatus": "automation-paused",
 "IAMDatabaseAuthenticationEnabled": false,
 "AutomationMode": "all-paused",
 "EngineVersion": "19.my_cev1",
 "DeletionProtection": false,
 "AvailabilityZone": "us-west-2a",
 "DomainMemberships": [],
 "StorageType": "gp2",
 "DbiResourceId": "db-ABCDEFGHIJKLMNOPQRSTUVW",
 "ResumeFullAutomationModeTime": "2020-11-07T20:56:50.565Z",
 "KmsKeyId": "arn:aws:kms:us-west-2:012345678912:key/
aa111a11-111a-11a1-1a11-1111a11a1a1a",
 "StorageEncrypted": false,

Managing an RDS Custom for SQL Server DB instance 2073

Amazon Relational Database Service User Guide

 "AssociatedRoles": [],
 "DBInstanceClass": "db.m5.xlarge",
 "DbInstancePort": 0,
 "DBInstanceIdentifier": "my-custom-instance",
 "TagList": []
 }

Modifying an RDS Custom for SQL Server DB instance

Modifying an RDS Custom for SQL Server DB instance is similar to doing this for Amazon RDS, but
the changes that you can make are limited to the following:

• Changing the DB instance class

• Changing the backup retention period and backup window

• Changing the maintenance window

• Upgrading the DB engine version when a new version becomes available

• Changing the allocated storage, provisioned IOPS, and storage type

• Allowing and removing Multi-AZ deployments

The following limitations apply to modifying an RDS Custom for SQL Server DB instance:

• Custom DB option and parameter groups aren't supported.

• Any storage volumes that you attach manually to your RDS Custom DB instance are outside the
support perimeter.

For more information, see RDS Custom support perimeter.

Console

To modify an RDS Custom for SQL Server DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify.

4. Choose Modify.

5. Make the following changes as needed:

Managing an RDS Custom for SQL Server DB instance 2074

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

a. For DB engine version, choose the new version.

b. Change the value for DB instance class. For supported classes, see DB instance class
support for RDS Custom for SQL Server

c. Change the value for Backup retention period.

d. For Backup window, set values for the Start time and Duration.

e. For DB instance maintenance window, set values for the Start day, Start time, and
Duration.

6. Choose Continue.

7. Choose Apply immediately or Apply during the next scheduled maintenance window.

8. Choose Modify DB instance.

AWS CLI

To modify an RDS Custom for SQL Server DB instance, use the modify-db-instance AWS CLI
command. Set the following parameters as needed:

• --db-instance-class – For supported classes, see DB instance class support for RDS Custom
for SQL Server

• --engine-version – The version number of the database engine to which you're upgrading.

• --backup-retention-period – How long to retain automated backups, from 0–35 days.

• --preferred-backup-window – The daily time range during which automated backups are
created.

• --preferred-maintenance-window – The weekly time range (in UTC) during which system
maintenance can occur.

• --apply-immediately – Use --apply-immediately to apply the storage changes
immediately.

Or use --no-apply-immediately (the default) to apply the changes during the next
maintenance window.

Modifying the storage for an RDS Custom for SQL Server DB instance

Modifying storage for an RDS Custom for SQL Server DB instance is similar to modifying storage
for an Amazon RDS DB instance, but you can only do the following:

Managing an RDS Custom for SQL Server DB instance 2075

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

• Increase the allocated storage size.

• Change the storage type. You can use available storage types such as General Purpose or
Provisioned IOPS. Provisioned IOPS is supported for the gp3, io1, and io2 Block Express storage
types.

• Change the provisioned IOPS, if you're using the volume types that support Provisioned IOPS.

The following limitations apply to modifying the storage for an RDS Custom for SQL Server DB
instance:

• The minimum allocated storage size for RDS Custom for SQL Server is 20 GiB. The maximum
storage limit for io1, gp2, and gp3 is 16 TiB while io2 supports 64 TiB.

• As with Amazon RDS, you can't decrease the allocated storage. This is a limitation of Amazon
Elastic Block Store (Amazon EBS) volumes. For more information, see Working with storage for
Amazon RDS DB instances

• Storage autoscaling isn't supported for RDS Custom for SQL Server DB instances.

• Any storage volumes that you manually attach to your RDS Custom DB instance are not
considered for storage scaling. Only the RDS-provided default data volumes, i.e., the D drive, are
considered for storage scaling.

For more information, see RDS Custom support perimeter.

• Scaling storage usually doesn't cause any outage or performance degradation of the DB instance.
After you modify the storage size for a DB instance, the status of the DB instance is storage-
optimization.

• Storage optimization can take several hours. You can't make further storage modifications for
either six (6) hours or until storage optimization has completed on the instance, whichever is
longer. For more information, see Working with storage for Amazon RDS DB instances

For more information about storage, see Amazon RDS DB instance storage.

For general information about storage modification, see Working with storage for Amazon RDS DB
instances.

Managing an RDS Custom for SQL Server DB instance 2076

Amazon Relational Database Service User Guide

Console

To modify the storage for an RDS Custom for SQL Server DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify.

4. Choose Modify.

5. Make the following changes as needed:

a. Enter a new value for Allocated storage. It must be greater than the current value, and
from 20 GiB–16 TiB.

b. Change the value for Storage type. You can choose from the available General Purpose or
Provisioned IOPS storage types. Provisioned IOPS is supported for the gp3, io1, and io2
Block Express storage types.

c. If you're specifying a storage type that supports Provisioned IOPS, you can define the
Provisioned IOPS value.

6. Choose Continue.

7. Choose Apply immediately or Apply during the next scheduled maintenance window.

8. Choose Modify DB instance.

AWS CLI

To modify the storage for an RDS Custom for SQL Server DB instance, use the modify-db-instance
AWS CLI command. Set the following parameters as needed:

• --allocated-storage – Amount of storage to be allocated for the DB instance, in gibibytes. It
must be greater than the current value, and from 20–16,384 GiB.

• --storage-type – The storage type, for example, gp2, gp3, io1, or io2.

• --iops – Provisioned IOPS for the DB instance. You can specify this only for storage types that
support Provisioned IOPS (gp3, io1, and io2).

• --apply-immediately – Use --apply-immediately to apply the storage changes
immediately.

Managing an RDS Custom for SQL Server DB instance 2077

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

Or use --no-apply-immediately (the default) to apply the changes during the next
maintenance window.

The following example changes the storage size of my-custom-instance to 200 GiB, storage type to
io1, and Provisioned IOPS to 3000.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --storage-type io1 \
 --iops 3000 \
 --allocated-storage 200 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --storage-type io1 ^
 --iops 3000 ^
 --allocated-storage 200 ^
 --apply-immediately

Tagging RDS Custom for SQL Server resources

You can tag RDS Custom resources as with Amazon RDS resources, but with some important
differences:

• Don't create or modify the AWSRDSCustom tag that's required for RDS Custom automation. If
you do, you might break the automation.

• The Name tag is added to RDS Custom resources with the prefix do-not-delete-rds-custom.
Any customer-passed value for the key is overwritten.

• Tags added to RDS Custom DB instances during creation are propagated to all other related RDS
Custom resources.

• Tags aren't propagated when you add them to RDS Custom resources after DB instance creation.

Managing an RDS Custom for SQL Server DB instance 2078

Amazon Relational Database Service User Guide

For general information about resource tagging, see Tagging Amazon RDS resources.

Deleting an RDS Custom for SQL Server DB instance

To delete an RDS Custom for SQL Server DB instance, do the following:

• Provide the name of the DB instance.

• Choose or clear the option to take a final DB snapshot of the DB instance.

• Choose or clear the option to retain automated backups.

You can delete an RDS Custom for SQL Server DB instance using the console or the CLI. The time
required to delete the DB instance can vary depending on the backup retention period (that is, how
many backups to delete), how much data is deleted, and whether a final snapshot is taken.

Warning

Deleting a RDS Custom for SQL Server DB instance will permanently delete the EC2
instance and the associated Amazon EBS volumes. You shouldn’t terminate or delete these
resources at any time, otherwise, the deletion and the final snapshot creation may fail.

Note

You can't create a final DB snapshot of your DB instance if it has a status of creating,
failed, incompatible-create, incompatible-restore, or incompatible-
network. For more information, see Viewing Amazon RDS DB instance status.

Important

When you choose to take a final snapshot, we recommend that you avoid writing data
to your DB instance while the DB instance deletion is in progress. Once the DB instance
deletion is initiated, data changes are not guaranteed to be captured by the final snapshot.

Managing an RDS Custom for SQL Server DB instance 2079

Amazon Relational Database Service User Guide

Console

To delete an RDS Custom DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the RDS Custom for SQL Server
DB instance that you want to delete. RDS Custom for SQL Server DB instances show the role
Instance (RDS Custom for SQL Server).

3. For Actions, choose Delete.

4. To take a final snapshot, choose Create final snapshot, and provide a name for the Final
snapshot name.

5. To retain automated backups, choose Retain automated backups.

6. Enter delete me in the box.

7. Choose Delete.

AWS CLI

You delete an RDS Custom for SQL Server DB instance by using the delete-db-instance AWS CLI
command. Identify the DB instance using the required parameter --db-instance-identifier.
The remaining parameters are the same as for an Amazon RDS DB instance.

The following example deletes the RDS Custom for SQL Server DB instance named my-custom-
instance, takes a final snapshot, and retains automated backups.

Example

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier my-custom-instance \
 --no-skip-final-snapshot \
 --final-db-snapshot-identifier my-custom-instance-final-snapshot \
 --no-delete-automated-backups

For Windows:

aws rds delete-db-instance ^

Managing an RDS Custom for SQL Server DB instance 2080

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html

Amazon Relational Database Service User Guide

 --db-instance-identifier my-custom-instance ^
 --no-skip-final-snapshot ^
 --final-db-snapshot-identifier my-custom-instance-final-snapshot ^
 --no-delete-automated-backups

To take a final snapshot, the --final-db-snapshot-identifier option is required and must
be specified.

To skip the final snapshot, specify the --skip-final-snapshot option instead of the --no-
skip-final-snapshot and --final-db-snapshot-identifier options in the command.

To delete automated backups, specify the --delete-automated-backups option instead of the
--no-delete-automated-backups option in the command.

Starting and stopping an RDS Custom for SQL Server DB instance

You can start and stop your RDS Custom for SQL Server DB instance. The same general
requirements and limitations for RDS for SQL Server DB instances apply to stopping and starting
your RDS Custom for SQL Server DB instances. For more information, see Stopping an Amazon RDS
DB instance temporarily.

The following considerations also apply to starting and stopping your RDS Custom for SQL Server
DB instance:

• Modifying an EC2 instance attribute of an RDS Custom for SQL Server DB instance while the DB
instance is STOPPED isn't supported.

• You can stop and start an RDS Custom for SQL Server DB instance only if it's configured for a
single Availability Zone. You can't stop an RDS Custom for SQL Server DB instance in a Multi-AZ
configuration.

• A SYSTEM snapshot will be created when you stop an RDS Custom for SQL Server DB instance.
The snapshot will be automatically deleted when you start the RDS Custom for SQL Server DB
instance again.

• If you delete your EC2 instance while your RDS Custom for SQL Server DB instance is stopped,
the C: drive will be replaced when you start the RDS Custom for SQL Server DB instance again.

• The C:\ drive, hostname, and your custom configurations are persisted when you stop an RDS
Custom for SQL Server DB instance, as long as you don't modify the instance type.

• The following actions will result in RDS Custom placing the DB instance outside the support
perimeter, and you're still charged for DB instance hours:

Managing an RDS Custom for SQL Server DB instance 2081

Amazon Relational Database Service User Guide

• Starting the underlying EC2 instance while Amazon RDS is stopped. To resolve, you can call the
start-db-instance Amazon RDS API, or stop the EC2 so the RDS Custom instance returns
to STOPPED.

• Stopping underlying EC2 instance when the RDS Custom for SQL Server DB instance is
ACTIVE.

For more details about stopping and starting DB instances, see Stopping an Amazon RDS DB
instance temporarily, and Starting an Amazon RDS DB instance that was previously stopped.

Managing an RDS Custom for SQL Server DB instance 2082

Amazon Relational Database Service User Guide

Working with Microsoft Active Directory with RDS Custom for SQL
Server

RDS Custom for SQL Server allows to join your instances to a Self-Managed Active Directory (AD)
or AWS Managed Microsoft AD. This is regardless of where your AD is hosted, like an On-premises
data center, Amazon EC2 or with any other cloud service providers.

For authentication of users and services, you can use NTLM or Kerberos authentication on your RDS
Custom for SQL Server DB instance without using intermediary domains and forest trusts. When
a user tries to authenticate on your RDS Custom for SQL Server DB instance with a self joined
Active Directory, requests for authentication are forwarded to a self-managed AD or AWS Managed
Microsoft AD that you specify.

In the following sections, you can find information about working with Self Managed Active
Directory and AWS Managed Active Directory for RDS Custom for SQL Server.

Topics

• Region and version availability

• Configure Self-Managed or On-premise AD

• Configure Microsoft Active Directory using AWS Directory Service

• Network configuration port rules

• Network Validation

• Setting up Windows Authentication for RDS Custom for SQL Server instances

• Managing a DB instance in a Domain

• Understanding Domain membership

• Troubleshooting Active Directory

Region and version availability

RDS Custom for SQL Server supports both Self Managed AD and AWS Managed Microsoft AD
using NTLM or Kerberos in all Regions where RDS Custom for SQL Server is supported. For more
information, see Supported Regions and DB engines for RDS Custom.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2083

Amazon Relational Database Service User Guide

Configure Self-Managed or On-premise AD

To join your on-premise or self-managed Microsoft AD to your RDS Custom for SQL Server DB
instance, your Active Domain must be configured as follows:

• Define the subnets in the VPC associated with your RDS Custom for SQL Server DB instance in
your self-managed or on-premises AD. Confirm there are no conflicts between the subnets in
your VPC and the subnets in your AD sites.

• Your AD domain controller has a domain functional level of Windows Server 2008 R2 or higher.

• Your AD domain name can't be in Single Lable Domain (SLD) format. RDS Custom for SQL Server
does not support SLD domains.

• The fully qualified domain name (FQDN) for your AD can't exceed 47 characters.

Configure your network connectivity

Configure your self-managed or on-premise AD network connectivity in the following manner:

• Set up connectivity between Amazon VPC where your RDS Custom for SQL Server instance
is running, and your AD. Use AWS Direct Connect, AWS VPN, AWS Transit Gateway, and VPC
Peering.

• Allow traffic on the ports your RDS Custom for SQL Server security groups and network ACLs
to your self-managed or on-premise AD. For more information, see Network configuration port
rules.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2084

Amazon Relational Database Service User Guide

Configure DNS resolution

Set up the following requirements to configure DNS resolution with self-managed or on-premises
AD's:

• Configure DNS resolution within your VPC to resolve your self-hosted Active Directory's fully
qualified domain name (FQDN). An example of an FQDN is corp.example.local. To configure
DNS resolution, configure the VPC DNS resolver to forward queries for certain domains with an
Amazon Route 53 outbound endpoint and resolver rule. For more information, see Configure a
Route 53 Resolver outbound endpoint to resolve DNS records.

• For workloads that leverage both VPCs and on-premises resources, you must resolve DNS records
hosted on-premises. On-premise resources might need to resolve names hosted on AWS.

To create a hybrid cloud setup, use resolver endpoints and conditional forwarding riles to resolve
DNS queries between your on-premise resources and custom VPC. For more information, see
Resolving DNS queries between VPCs and your network in the Amazon Route 53 Developer Guide.

Important

Modifying the DNS resolver settings of the network interface on the RDS Custom for SQL
Server causes DNS-enabled VPC endpoints to no longer work correctly. DNS-enabled VPC
endpoints are required for instances within private subnets without internet access.

Configure Microsoft Active Directory using AWS Directory Service

AWS Managed Microsoft AD creates a fully managed Microsoft Active Directory in AWS that is
powered by Windows Server 2019 and operates at the 2012 R2 Forest and Domain functional
levels. AWS Directory Service creates the domain controllers in different subnets in an Amazon
VPC, making your directory highly available even in the event of failure.

To create a directory with AWS Managed Microsoft AD, see Getting started with AWS Managed
Microsoft AD in the AWS Directory Service Administration Guide.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2085

https://repost.aws/knowledge-center/route53-resolve-with-outbound-endpoint
https://repost.aws/knowledge-center/route53-resolve-with-outbound-endpoint
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver-overview-DSN-queries-to-vpc.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver-overview-DSN-queries-to-vpc.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html

Amazon Relational Database Service User Guide

Configure your network connectivity

Enable cross-VPC traffic between the directory and the DB instance

To locate the directory and the DB instance in the same VPC, skip this step and move on to next
step in Network configuration port rules.

To locate the directory and the DB instance in different VPCs, configure cross-VPC traffic using VPC
peering or AWS Transit Gateway. For more information about using VPC peering, see What is VPC
peering? in the Amazon VPC Peering Guide and What is AWS Transit Gateway? in the Amazon VPC
Transit Gateways.

Enable cross-VPC traffic using VPC peering

1. Set up appropriate VPC routing rules to ensure that network traffic can flow both ways.

2. Allow the DB instance's security group to recieve inbound traffic from the directory's security
group. For more information, see Network configuration port rules.

3. Network access control list (ACL) must not block traffic.

If a different AWS account owns the directory, you must share the directory. To share the directory
with AWS account within which the RDS Custom for SQL Server instance is by following the
Tutorial: Sharing your AWS Managed Microsoft AD for seamless EC2 domain-join in the AWS
Directory Service Administration Guide.

Sharing a directory betweens AWS accounts

1. Sign in to the AWS Directory Service console using the account for the DB instance and check if
the domain has the SHARED status before proceeding.

2. After signing in to the AWS Directory Service console using the account for the DB instance,
note the Directory ID value. You use this ID to join the DB instance to the domain.

Configure DNS resolution

When you create a directory with AWS Managed Microsoft AD, AWS Directory Service creates two
domain controllers and adds the DNS service on your behalf.

If you have an existing AWS Managed Microsoft AD or plan on launching one in a VPC other
than your RDS Custom for SQL Server DB instance, configure the VPC DNS resolver to forward

Working with Microsoft Active Directory with RDS Custom for SQL Server 2086

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html

Amazon Relational Database Service User Guide

queries for certain domains with a Route 53 outbound and resolver rule, see Configure a Route 53
Resolver outbound endpoint to resolve DNS records.

Network configuration port rules

Make sure that you have met the following network configurations:

• Connectivity configured between the Amazon VPC where you want to create the RDS Custom for
SQL Server DB instance to either your self-managed Active Directory or AWS Managed Microsoft
AD. For self-managed Active Directory, set up connectivity using AWS Direct Connect, AWS VPN,
VPC peering, or AWS Transit Gateway. For AWS Managed Microsoft AD, set up connectivity using
VPC peering.

• Make sure that the security group and the VPC network ACLs for the subnet(s) where you're
creating your RDS Custom for SQL Server DB instance allow traffic on the ports and in the
directions shown in the following diagram.

The following table identifies the role of each port.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2087

https://repost.aws/knowledge-center/route53-resolve-with-outbound-endpoint
https://repost.aws/knowledge-center/route53-resolve-with-outbound-endpoint

Amazon Relational Database Service User Guide

Protocol Ports Role

TCP/UDP 53 Domain Name System (DNS)

TCP/UDP 88 Kerberos authentication

TCP/UDP 464 Change/Set password

TCP/UDP 389 Lightweight Directory Access
Protocol (LDAP)

TCP 135 Distributed Computing
Environment / End Point
Mapper (DCE / EPMAP)

TCP 445 Directory Services SMB file
sharing

TCP 636 Lightweight Directory Access
Protocol over TLS/SSL
(LDAPS)

TCP 49152 - 65535 Ephemeral ports for RPC

• Generally, the domain DNS servers are located in the AD domain controllers. You do not need to
configure the VPC DHCP option set to use this feature. For more information, see DHCP option
sets in the Amazon VPC User Guide.

Important

If you're using VPC network ACLs, you must also allow outbound traffic on dynamic ports
(49152-65535) from your RDS Custom for SQL Server DB instance. Ensure that these traffic
rules are also mirrored on the firewalls that apply to each of the AD domain controllers,
DNS servers, and RDS Custom for SQL Server DB instances.
While VPC security groups require ports to be opened only in the direction that network
traffic is initiated, most Windows firewalls and VPC network ACLs require ports to be open
in both directions.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2088

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html

Amazon Relational Database Service User Guide

Network Validation

Before joining your RDS Custom instance to either self-managed or AWS Managed Microsoft AD,
check the following from a EC2 instance in the same VPC as where you plan to launch the RDS
Custom for SQL Server instance.

• Check if you are able to resolve the fully qualified domain name (FQDN) to domain controller IPs.

nslookup corp.example.com

The command must return a similar output:

Server: ip-10-0-0-2.us-west-2.compute.internal
Address: 25.0.0.2

Non-authoritative answer:
Name: corp.example.com
Addresses: 40.0.9.25 (DC1 IP)
 40.0.50.123 (DC2 IP)

• Resolve AWS services from an EC2 instance in the VPC where you are launching your RDS Custom
instance:

$region='input-your-aws-region'
$domainFQDN='input-your-domainFQDN'

function Test-DomainPorts {
 param (
 [string]$Domain,
 [array]$Ports
)

 foreach ($portInfo in $Ports) {
 try {
 $conn = New-Object System.Net.Sockets.TcpClient
 $connectionResult = $conn.BeginConnect($Domain, $portInfo.Port, $null,
 $null)
 $success = $connectionResult.AsyncWaitHandle.WaitOne(1000) # 1 second
 timeout
 if ($success) {
 $conn.EndConnect($connectionResult)
 $result = $true

Working with Microsoft Active Directory with RDS Custom for SQL Server 2089

Amazon Relational Database Service User Guide

 } else {
 $result = $false
 }
 }
 catch {
 $result = $false
 }
 finally {
 if ($null -ne $conn) {
 $conn.Close()
 }
 }
 Write-Host "$($portInfo.Description) port open: $result"
 }
}

Check if ports can be reached
$ports = @(
 @{Port = 53; Description = "DNS"},
 @{Port = 88; Description = "Kerberos"},
 @{Port = 389; Description = "LDAP"},
 @{Port = 445; Description = "SMB"},
 @{Port = 5985; Description = "WinRM"},
 @{Port = 636; Description = "LDAPS"},
 @{Port = 3268; Description = "Global Catalog"},
 @{Port = 3269; Description = "Global Catalog over SSL"},
 @{Port = 9389; Description = "AD DS"}
)

function Test-DomainReachability {
 param (
 [string]$DomainName
)

 try {
 $dnsResults = Resolve-DnsName -Name $DomainName -ErrorAction Stop
 Write-Host "Domain $DomainName is successfully resolving to following IP
 addresses: $($dnsResults.IpAddress)"
 Write-Host ""
 return $true
 }
 catch {
 Write-Host ""
 Write-Host "Error Message: $($_.Exception.Message)"

Working with Microsoft Active Directory with RDS Custom for SQL Server 2090

Amazon Relational Database Service User Guide

 Write-Host "Domain $DomainName reachability check failed, please Configure
 DNS resolution"
 return $false
 }
}

$domain = (Get-WmiObject Win32_ComputerSystem).Domain
if ($domain -eq 'WORKGROUP') {
 Write-Host ""
 Write-Host "Host $env:computername is still part of WORKGROUP and not part of any
 domain"
 }
else {
 Write-Host ""
 Write-Host "Host $env:computername is joined to $domain domain"
 Write-Host ""
 }

$isReachable = Test-DomainReachability -DomainName $domainFQDN
if ($isReachable) {
 write-Host "Checking if domain $domainFQDN is reachable on required ports "
 Test-DomainPorts -Domain $domainFQDN -Ports $ports
}
else {
 Write-Host "Port check skipped. Domain not reachable"
}

Get network adapter configuration
$networkConfig = Get-WmiObject Win32_NetworkAdapterConfiguration |
 Where-Object { $_.IPEnabled -eq $true } |
 Select-Object -First 1

Check DNS server settings
$dnsServers = $networkConfig.DNSServerSearchOrder

if ($dnsServers) {
 Write-Host "`nDNS Server settings:"
 foreach ($server in $dnsServers) {
 Write-Host " - $server"
 }
} else {

Working with Microsoft Active Directory with RDS Custom for SQL Server 2091

Amazon Relational Database Service User Guide

 Write-Host "`nNo DNS servers configured or unable to retrieve DNS server
 information."
}

write-host ""

Checks reachability to dependent services
$services = "s3", "ec2", "secretsmanager", "logs", "events", "monitoring", "ssm",
 "ec2messages", "ssmmessages"

function Get-TcpConnectionAsync {
 param (
 $ServicePrefix,
 $region
)
 $endpoint = "${ServicePrefix}.${region}.amazonaws.com"
 $tcp = New-Object Net.Sockets.TcpClient
 $result = $false

 try {
 $connectTask = $tcp.ConnectAsync($endpoint, 443)
 $timedOut = $connectTask.Wait(3000)
 $result = $tcp.Connected
 }
 catch {
 $result = $false
 }
 return $result
}

foreach ($service in $services) {
 $validationResult = Get-TcpConnectionAsync -ServicePrefix $service -Region
 $region
 Write-Host "Reachability to $service is $validationResult"
}

The TcpTestSucceeded value must return True for s3, ec2, secretsmanager, logs,
events, monitoring, ssm, ec2messages, and ssmmessages.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2092

Amazon Relational Database Service User Guide

Setting up Windows Authentication for RDS Custom for SQL Server instances

We recommend creating a dedicated OU and service credentials scoped to that OU for any
AWS account that owns an RDS Custom for SQL Server DB instance joined to your AD domain.
By dedicating an OU and service credentials, you avoid conflicting permissions and follow the
principle of least privilege.

Active directory level group policies might conflict with AWS automations and permissions. We
recommend selecting GPO's that apply only to the OU that you create for RDS Custom for SQL
Server.

• To create OU and AD domain user in your self-managed or on-premise AD, you can connect the
domain controller as a domain administrator.

• To create users and groups in an AWS Directory Service directory, you must be connected to a
management instance and you must also be logged in as a user with privileges to create users
and groups. For more information, see User and group management in AWS Managed Microsoft
AD in the AWS Directory Service Administration Guide.

• To manage your Active Directory from Amazon EC2 Windows Server instance, you need to install
the Active Directory domain services and Active Directory Lightweight Directory services tools on
the EC2 instance. For more information, see Installing Active Directory Administration Tools for
AWS Managed Microsoft AD in the AWS Directory Service Administration Guide.

• We recommend that you install these tools on a separate EC2 instance for administration, and
not on your RDS Custom for SQL Server DB instance for ease of administration.

The following are the requirements for an AD domain service account:

• You must have a service account in your AD domain with delegated permissions to join
computers to the domain. A domain service account is a user account in your AD that has
delegated permission to perform certain tasks.

• Delegate the following permissions to your domain service account in the Organizational Unit
that you're joining your RDS Custom for SQL Server instance to:

• Validated ability to write to the DNS host name

• Validated ability to write to the service principal name

• Create and delete computer objects

• For self-managed and on-premises AD, the domain service account must be a member of the
"AWS Delegated Domain Name System Administrators" group.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2093

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html

Amazon Relational Database Service User Guide

• For AWS Managed Microsoft AD, the domain service account should be member of "DnsAdmins"
group.

These are the minimum set of permissions required to join computer objects to your self-managed
AD and AWS Managed Microsoft AD. For more information, see Error: Access is denied when non-
administrator users who have been delegated control try to join computers to a domain controller
in the Microsoft Windows Server documentation.

Important

Do not move computer objects that RDS Custom for SQL Server creates in the
Organizational Unit (OU) after your DB instance is created. Moving associated objects might
cause your RDS Custom for SQL Server DB instance to become misconfigured. If you need
to move the computer objects created by Amazon RDS, use the ModifyDBInstance action
to modify the domain parameters with the desired location of the computer objects.

Topics

• Step 1: Create an organizational unit (OU) in your AD

• Step 2: Create an AD domain user

• Step 3: Delegate control to the AD user in self-managed or AWS Managed Microsoft AD

• Step 4: Create a secret

• Step 5: Create or modify a RDS Custom for SQL Server DB instance

• Step 6: Create Windows Authentication SQL Server Login

• Step 7: Using Kerberos or NTLM Authentication

Step 1: Create an organizational unit (OU) in your AD

Use the following steps to create an organization unit in your AD:

Create an OU in your AD

1. Connect to your domain AD as a domain administrator.

2. Open Active Directory Users and Computers and select the domain where you want to create
your OU.

3. Right-click the domain and choose New, then Organization Unit.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2094

https://learn.microsoft.com/en-us/troubleshoot/windows-server/active-directory/access-denied-when-joining-computers
https://learn.microsoft.com/en-us/troubleshoot/windows-server/active-directory/access-denied-when-joining-computers
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

4. Enter a name for the OU.

Enable Protect container from accidental deletion.

5. Choose OK. Your new OU appears under your domain.

For AWS Managed Microsoft AD, the name of this OU is based off the NetBIOS name you typed
when you created your directory. This OU is owned by AWS and contains all of your AWS-related
directory objects, which you are granted full control over. By default, two child OUs exist under this
OU, namely Computers and Users. New OUs that RDS Custom creates are a child of the OU that is
based off of the NetBIOS.

Step 2: Create an AD domain user

The domain user credentials are used for the secret in Secrets Manager.

Create an AD domain user in your AD

1. Open Active Directory Users and Computers and select the domain and OU where you want
to create the user.

2. Right-click the Users object and choose New, then User.

3. Enter a first name, last name, and login name for the user. Click Next.

4. Enter a password for the user. Don't select User must change password at next login or
Account is disabled.. Click Next.

5. Click OK. You new user appears under your domain.

Step 3: Delegate control to the AD user in self-managed or AWS Managed Microsoft AD

To delegate control to the AD domain user in your domain

1. Open Active Directory Users and Computers MMC snap-in and select your domain.

2. Right-click on the OU you created earlier and choose Delegate Control.

3. In the Delegation Control Wizard, click Next.

4. In Users or Groups section, click Add.

5. In Select Users, Computers, or Groups, enter the AD user you created and click Check Names.
If your AD user check is successful, click OK.

6. In the Users or Groups section, confirm your AD user was added and click Next.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2095

Amazon Relational Database Service User Guide

7. In the Tasks to Delegate section, choose Create a custom task to delegate and click Next.

8. In the Active Directory Object Type section:

Choose ONly the following objects in the folder.

Select Computer Objects

Select Create selected objects in this folder

Select Delete selected objects in this folder and click Next.

9. In the Permissions section:

Keep General selected.

Select Validated write to DNS host name.

Select Validated write to service principal name and click Next.

10. In Completing the Delegation of Control Wizard, confirm your settings and click Finish.

Step 4: Create a secret

Create the secret in the same AWS account and Region that contains the RDS Custom for SQL
Server DB instance that you want to include in your active directory. Store credentials of the AD
domain user created in Step 2: Create an AD domain user.

Console

• In AWS Secrets Manager, choose Store a new secret.

• For Secret type, choose Other type of secret.

• For Key/value pairs, add two keys:

• The first key, SELF_MANAGED_ACTIVE_DIRECTORY_USERNAME and enter the name of
your AD user for the value.

• For the second key, enter SELF_MANAGED_ACTIVE_DIRECTORY_PASSWORD and enter the
password for your AD user on your domain.

• For Encryption key, enter the same AWS KMS key you used to create RDS Custom for SQL
Server instance.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2096

Amazon Relational Database Service User Guide

• For Secret name, choose the secret name starting with do-not-delete-rds-custom- to
allow your instance profile to access this secret. IF you want to choose a different name for
the secret, update RDSCustomInstanceProfile to access Secret name.

• (Optional) For Description, enter a description for the secret name.

• Add the tags Key="AWSRDSCustom",Value="custom-sqlserver"

• Click Save, then Next.

• For Configure rotation settings, keep the default values and choose Next.

• Review the settings for the secret and click Store.

• Choose the new secret and copy the value for Secret ARN. We use this in the next step to set
up you Active Directory.

CLI

Run the following command in your CLI to create a secret:

Linux based
aws secretsmanager create-secret \
--name do-not-delete-rds-custom-DomainUserCredentails \
--description "Active directory user credentials for managing RDS Custom" \
--secret-string "{\"SELF_MANAGED_ACTIVE_DIRECTORY_USERNAME\":\"tester\",
\"SELF_MANAGED_ACTIVE_DIRECTORY_PASSWORD\":\"xxxxxxxx\"}" \
--kms-key-id <RDSCustomKMSKey> \
--tags Key="AWSRDSCustom",Value="custom-sqlserver"

Windows based
aws secretsmanager create-secret ^
--name do-not-delete-rds-custom-DomainUserCredentails ^
--description "Active directory user credentials for managing RDS Custom" ^
--secret-string "{\"SELF_MANAGED_ACTIVE_DIRECTORY_USERNAME\":\"tester\",
\"SELF_MANAGED_ACTIVE_DIRECTORY_PASSWORD\":\"xxxxxxxx\"}" ^
--kms-key-id <RDSCustomKMSKey> ^
--tags Key="AWSRDSCustom",Value="custom-sqlserver"

Step 5: Create or modify a RDS Custom for SQL Server DB instance

Create or modify a RDS Custom for SQL Server DB instance for use with your directory. You can use
the console, CLI, or RDS API to associate a DB instance with a directory. You can do this in one of
the following ways:

Working with Microsoft Active Directory with RDS Custom for SQL Server 2097

Amazon Relational Database Service User Guide

• Create a new SQL Server DB instance using the console, the create-db-instance CLI command, or
the CreateDBInstance RDS API operation.

For instructions, see Creating an Amazon RDS DB instance.

• Modify an existing SQL Server DB instance using the console, the modify-db-instance CLI
command, or the ModifyDBInstance RDS API operation.

For instructions, see Modifying an Amazon RDS DB instance.

• Restore a SQL Server DB instance from a DB snapshot using the console, the restore-db-instance-
from-db-snapshot CLI command, or the RestoreDBInstanceFromDBSnapshot RDS API operation.

For instructions, see Restoring to a DB instance.

• Restore a SQL Server DB instance to a point-in-time using the console, the restore-db-instance-
to-point-in-time CLI command, or the RestoreDBInstanceToPointInTime RDS API operation.

For instructions, see Restoring a DB instance to a specified time for Amazon RDS.

Note

If your RDS Custom for SQL Server instance is already joined to an AD manually, check
the settings for Network configuration port rules, Network Validation, and complete steps
1 though Step 4. Update the --domain-fqdn, --domain-ou, and --domain-auth-
secret-arn to your AD, so that domain join credentials and configurations are registered
with RDS Custom to monitor, register CNAME, and take recovery actions.

When you use the AWS CLI, the following parameters are required for the DB instance to be able to
use the directory that you created:

• For the --domain-fqdn parameter, use the fully qualified domain name of your self-managed
AD.

• For the --domain-ou parameter, use the OU that you created in your self-managed AD.

• For the --domain-auth-secret-arn parameter, use the value of the Secret ARN that you
created.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2098

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Important

If you modify a DB instance to join or remove from a self-managed AD domain or AWS
Managed Microsoft AD, a reboot of the DB instance is required for the modification to
take effect. You can choose to apply the changes immediately or wait until the next
maintenance window. Choosing the Apply Immediately option causes downtime for a
single-AZ DB instance. A Multi-AZ DB cluster performs a failover before completing a
reboot. For more information, see Modifying an Amazon RDS DB instance.

The following CLI command creates a new RDS Custom for SQL Server DB instance and joins it to
self-managed or AWS Managed Microsoft AD domain.

For Linux, macOS, or Unix:

aws rds create-db-instance \
--engine custom-sqlserver-se \
--engine-version 15.00.4312.2.v1 \
--db-instance-identifier my-custom-instance \
--db-instance-class db.m5.large \
--allocated-storage 100 --storage-type io1 --iops 1000 \
--master-username my-master-username \
--master-user-password my-master-password \
--kms-key-id my-RDSCustom-key-id \
--custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance \
--domain-fqdn "corp.example.com" \
--domain-ou "OU=RDSCustomOU,DC=corp,DC=example,DC=com" \
--domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:do-not-
delete-rds-custom-my-AD-test-secret-123456" \
--db-subnet-group-name my-DB-subnet-grp \
--vpc-security-group-ids my-securitygroup-id \
--no-publicly-accessible \
--backup-retention-period 3 \
--port 8200 \
--region us-west-2 \
--no-multi-az

For Windows:

aws rds create-db-instance ^

Working with Microsoft Active Directory with RDS Custom for SQL Server 2099

Amazon Relational Database Service User Guide

--engine custom-sqlserver-se ^
--engine-version 15.00.4312.2.v1 ^
--db-instance-identifier my-custom-instance ^
--db-instance-class db.m5.large ^
--allocated-storage 100 --storage-type io1 --iops 1000 ^
--master-usernamemy-master-username ^
--master-user-password my-master-password ^
--kms-key-id my-RDSCustom-key-id ^
--custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance ^
--domain-fqdn "corp.example.com" ^
--domain-ou "OU=RDSCustomOU,DC=corp,DC=example,DC=com" ^
--domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:do-not-
delete-rds-custom-my-AD-test-secret-123456" ^
--db-subnet-group-name my-DB-subnet-grp ^
--vpc-security-group-ids my-securitygroup-id ^
--no-publicly-accessible ^
--backup-retention-period 3 ^
--port 8200 ^
--region us-west-2 ^
--no-multi-az

Important

If your NetBIOS for AWS Managed Microsoft AD is corpexample, then
it appears as an OU itself. Any new OU created earlier will appear as
a nested OU. For AWS Managed Microsoft AD, set --domain-ou to
"OU=RDSCustomOU,OU=corpexample,DC=corp,DC=example,DC=com".

The following command modifies an existing RDS Custom for SQL Server DB instance to use an
Active Directory domain.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --domain-fqdn "corp.example.com" \
 --domain-ou "OU=RDSCustomOU,DC=corp,DC=example,DC=com" \
 --domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:do-
not-delete-rds-custom-my-AD-test-secret-123456" \

Working with Microsoft Active Directory with RDS Custom for SQL Server 2100

Amazon Relational Database Service User Guide

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --domain-fqdn "corp.example.com" ^
 --domain-ou "OU=RDSCustomOU,DC=corp,DC=example,DC=com" ^
 --domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:do-
not-delete-rds-custom-my-AD-test-secret-123456" ^

The following CLI command removes and RDS Custom for SQL Server DB instance from a Active
Directory domain.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-custom-instance \
 --disable-domain

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-custom-instance ^
 --disable-domain

When using the console to create or modify your instance, click on Enable Microsoft SQL Server
Windows Authentication to see the following options.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2101

Amazon Relational Database Service User Guide

You are responsible to make sure your domain FQDN is resolving to the domain controller IP
addresses. If domain controller IPs are not resolving, domain join operations fail but RDS Custom
for SQL Server instance creation succeeds. For troubleshooting information, see Troubleshooting
Active Directory.

Step 6: Create Windows Authentication SQL Server Login

Use the Amazon RDS master user credentials to connect to the SQL Server DB instance as you do
for any other DB instance. Because the DB instance is joined to the AD domain, you can provision
SQL Server logins and users. You do this from the AD users and groups utility in your AD domain.
Database permissions are managed through standard SQL Server permissions granted and revoked
to these Windows logins.

For an AD user to authenticate with SQL Server, a SQL Server Windows login must exist for the
AD user or an Active Directory group that the user is a member of. Fine-grained access control is
handled through granting and revoking permissions on these SQL Server logins. An AD user that
doesn't have a SQL Server login or belong to an AD group with such a login can't access the SQL
Server DB instance.

The ALTER ANY LOGIN permission is required to create an AD SQL Server login. If you haven't
created any logins with this permission, connect as the DB instance's master user using SQL Server
Authentication and create your AD SQL Server logins under the context of the master user.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2102

Amazon Relational Database Service User Guide

You can run a data definition language (DDL) command such as the following to create a SQL
Server login for an AD user or group.

USE [master]
GO
CREATE LOGIN [mydomain\myuser] FROM WINDOWS WITH DEFAULT_DATABASE = [master],
 DEFAULT_LANGUAGE = [us_english];
GO

Users (both humans and applications) from your domain can now connect to the RDS Custom for
SQL Server instance from a domain-joined client machine using Windows authentication.

Step 7: Using Kerberos or NTLM Authentication

NTLM authentication using RDS endpoint

Each Amazon RDS DB instance has an endpoint and each endpoint has a DNS name and port
number for the DB instance. To connect to your DB instance using a SQL client application,
you need the DNS name and port number for your DB instance. To authenticate using NTLM
authentication, you must connect to the RDS endpoint.

During planned database maintenance or unplanned service disruption, Amazon RDS automatically
fails over to the up-to-date secondary database so operations can resume quickly without manual
intervention. The primary and secondary instances use the same endpoint, whose physical network
address transitions to the secondary as part of the failover process. You don't have to reconfigure
your application when a failover occurs.

Kerberos authentication

Kerberos-based authentication for RDS Custom for SQL Server requires connections be made to
a specific Service Principal Name (SPN). However, after a failover event, the application might not
be aware of the new SPN. To address this, RDS Custom for SQL Server offers a Kerberos-based
endpoint.

The Kerberos-based endpoint follows a specific format. If your RDS endpoint is rds-instance-
name.account-region-hash.aws-region.rds.amazonaws.com, the corresponding
Kerberos-based endpoint would be rds-instance-name.account-region-hash.aws-
region.awsrds.fully qualified domain name (FQDN).

Working with Microsoft Active Directory with RDS Custom for SQL Server 2103

Amazon Relational Database Service User Guide

For example, if the RDS endpoint is ad-test.cocv6zwtircu.us-east-1.rds.amazonaws.com
and the domain name is corp-ad.company.com, the Kerberos-based endpoint would be ad-
test.cocv6zwtircu.us-east-1.awsrds.corp-ad.company.com.

This Kerberos-based endpoint can be used to authenticate with the SQL Server instance using
Kerberos, even after a failover event, as the endpoint is automatically updated to point to the new
SPN of the primary SQL Server instance.

Finding your CNAME

To find your CNAME, connect to your domain controller and open DNS Manager. Navigate to
Forward Lookup Zones and your FQDN.

Navigate through awsrds, aws-region, and account and region specific hash.

If you are connecting the RDS Custom EC2 instance and trying to connect to the database locally
using CNAME, your connection will use NTLM authentication instead of Kerberos.

If after connecting CNAME from remote client, an NTLM connection is returned, check if required
ports are allowlisted.

To check if your connection is using Kerberos, run the following query:

SELECT net_transport, auth_scheme
 FROM sys.dm_exec_connections
 WHERE session_id = @@SSPID;

Managing a DB instance in a Domain

You can use the console, AWS CLI, or the Amazon RDS API to manage your DB instance and its
relationship with your domain. For example, you can move the DB instance into, out of, or between
domains.

For example, using the Amazon RDS API, you can do the following:

• To reattempt a domain join for a failed membership, use the ModifyDBInstance API operation
and specify the current membership's directory ID.

• To update the IAM role name for membership, use the ModifyDBInstance API operation and
specify the current membership's directory ID and the new IAM role.

• To remove a DB instance from a domain, use the ModifyDBInstance API operation and specify
none as the domain parameter.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2104

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

• To move a DB instance from one domain to another, use the ModifyDBInstance API operation
and specify the domain identifier of the new domain as the domain parameter.

• To list membership for each DB instance, use the DescribeDBInstances API operation.

Restoring a RDS Custom for SQL Server DB instance and adding it to an Active Directory
domain

You can restore a DB snapshot or do point-in-time recovery (PITR) for a SQL Server DB instance and
then add it to an Active Directory domain. Once the DB instance is restored, modify the instance
using the process explained in Step 5: Create or modify a RDS Custom for SQL Server DB instance
to add the DB instance to an AD domain.

Understanding Domain membership

After you create or modify your DB instance, the instance becomes a member of the domain. The
AWS console indicates the status of the domain membership for the DB instance. The status of the
DB instance can be one of the following:

• joined – The instance is a member of the domain.

• joining – The instance is in the process of becoming a member of the domain.

• pending-join – The instance membership is pending.

• pending-maintenance-join – AWS will attempt to make the instance a member of the domain
during the next scheduled maintenance window.

• pending-removal – The removal of the instance from the domain is pending.

• pending-maintenance-removal – AWS will attempt to remove the instance from the domain
during the next scheduled maintenance window.

• failed – A configuration problem has prevented the instance from joining the domain. Check and
fix your configuration before reissuing the instance modify command.

• removing – The instance is being removed from the domain.

A request to become a member of a domain can fail because of a network connectivity issue or
an incorrect IAM role. For example, you might create a DB instance or modify an existing instance
and have the attempt fail for the DB instance to become a member of a domain. In this case, either
reissue the command to create or modify the DB instance or modify the newly created instance to
join the domain.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2105

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/DescribeDBInstances.html

Amazon Relational Database Service User Guide

Troubleshooting Active Directory

The following are issues you might encounter when you set up or modify an AD.

Error Code Descripti
on

Common causes Troubleshooting
suggestions

Error 2 / 0x2 The
system
cannot
find
the file
specified.

The format or location for
the Organizational Unit
(OU) specified with the —
domain-ou parameter
is invalid. The domain
service account specified
via AWS Secrets Manager
lack the permissions
required to join the OU.

Review the —domain-o
u parameter. Ensure the
domain service account
has the correct permissio
ns to the OU.

Error 5 / 0x5 Access is
denied.

Misconfigured permissio
ns for the domain service
account, or the computer
account already exists in
the domain.

Review the domain
service account permissio
ns in the domain, and
verify that the RDS
computer account is
not duplicated in the
domain. You can verify
the name of the RDS
computer account
by running SELECT
@@SERVERNAME on your
RDS Custom for SQL
Server DB instance. If you
are using Multi-AZ, try
rebooting with failover
and then verify that the
RDS computer account
again. For more informati
on, see Rebooting a DB
instance.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2106

Amazon Relational Database Service User Guide

Error Code Descripti
on

Common causes Troubleshooting
suggestions

Error 87 / 0x57 The
parameter
is
incorrect.

The domain service
account specified via
AWS Secrets Manager
doesn't have the correct
permissions. The user
profile may also be
corrupted.

Review the requirements
for the domain service
account.

Error 234 / 0xEA Specified
Organizat
ional
Unit (OU)
does not
exist.

The OU specified with the
—domain-ou parameter
doesn't exist in your AD.

Review the —domain-o
u parameter and ensure
the specified OU exists in
your AD.

Error 1326 / 0x52E The user
name or
password
is
incorrect.

The domain service
account credentials
provided in AWS Secrets
Manager contains an
unknown username
or bad password. The
domain account may also
be disabled in your AD.

Ensure the credentials
provided in AWS Secrets
Manager are correct and
the domain account is
enabled in your Active
Directory.

Error 1355 / 0x54B The
specified
domain
either
does not
exist or
could
not be
contacted
.

The domain is down,
the specified set of DNS
IPs are unreachable, or
the specified FQDN is
unreachable.

Review the —domain-d
ns-ips and —domain-
fqdn parameters to
ensure they're correct.
Review the networking
configuration of your RDS
Custom for SQL Server
DB instance and ensure
your AD is reachable.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2107

Amazon Relational Database Service User Guide

Error Code Descripti
on

Common causes Troubleshooting
suggestions

Error 1722 / 0x6BA The RPC
server is
unavailab
le.

There was an issue
reaching the RPC service
of your AD domain. This
might be a service or
network issue.

Validate that the RPC
service is running on
your domain controllers
and that the TCP ports
135 and 49152-65535
are reachable on your
domain from your RDS
Custom for SQL Server
DB instance.

Error 2224 / 0x8B0 The user
account
already
exists.

The computer account
that's attempting to be
added to your AD already
exists.

Identify the computer
account by running
SELECT @@SERVERN
AME on your RDS
Custom for SQL Server
DB instance and then
carefully remove it from
your AD.

Error 2242 / 0x8c2 The
password
of this
user has
expired.

The password for the
domain service account
specified via AWS Secrets
Manager has expired.

Update the password
for the domain service
account used to join your
RDS Custom for SQL
Server DB instance to
your AD.

Working with Microsoft Active Directory with RDS Custom for SQL Server 2108

Amazon Relational Database Service User Guide

Managing a Multi-AZ deployment for RDS Custom for SQL Server

In a Multi-AZ DB instance deployment for RDS Custom for SQL Server, Amazon RDS automatically
provisions and maintains a synchronous standby replica in a different Availability Zone (AZ). The
primary DB instance is synchronously replicated across Availability Zones to a standby replica to
provide data redundancy.

Important

A Multi-AZ deployment for RDS Custom for SQL Server is different than Multi-AZ for RDS
for SQL Server. Unlike Multi-AZ for RDS for SQL Server, you must set up prerequisites for
RDS Custom for SQL Server before creating your Multi-AZ DB instance because RDS Custom
runs inside your own account, which requires permissions.
If you don't complete the prerequisites, your Multi-AZ DB instance might fail to run, or
automatically revert to a Single-AZ DB instance. For more information about prerequisites,
see Prerequisites for a Multi-AZ deployment with RDS Custom for SQL Server.

Running a DB instance with high availability can enhance availability during planned system
maintenance. In the event of planned database maintenance or unplanned service disruption,
Amazon RDS automatically fails over to the up-to-date secondary DB instance. This functionality
lets database operations resume quickly without manual intervention. The primary and standby
instances use the same endpoint, whose physical network address transitions to the secondary
replica as part of the failover process. You don't have to reconfigure your application when a
failover occurs.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2109

Amazon Relational Database Service User Guide

You can create an RDS Custom for SQL Server Multi-AZ deployment by specifying Multi-AZ when
creating an RDS Custom DB instance. You can use the console to convert existing RDS Custom for
SQL Server DB instances to Multi-AZ deployments by modifying the DB instance and specifying
the Multi-AZ option. You can also specify a Multi-AZ DB instance deployment with the AWS CLI or
Amazon RDS API.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2110

Amazon Relational Database Service User Guide

The RDS console shows the Availability Zone of the standby replica (the secondary AZ). You
can also use the describe-db-instances CLI command or the DescribeDBInstances API
operation to find the secondary AZ.

RDS Custom for SQL Server DB instances with Multi-AZ deployment can have increased write
and commit latency compared to a Single-AZ deployment. This increase can happen because of
the synchronous data replication between DB instances. You might have a change in latency if
your deployment fails over to the standby replica, although AWS is engineered with low-latency
network connectivity between Availability Zones.

Note

For production workloads, we recommend that you use a DB instance class with Provisioned
IOPS (input/output operations per second) for fast, consistent performance. For more
information about DB instance classes, see Requirements and limitations for Amazon RDS
Custom for SQL Server.

Topics

• Region and version availability

• Limitations for a Multi-AZ deployment with RDS Custom for SQL Server

• Prerequisites for a Multi-AZ deployment with RDS Custom for SQL Server

• Creating an RDS Custom for SQL Server Multi-AZ deployment

• Modifying an RDS Custom for SQL Server Single-AZ deployment to a Multi-AZ deployment

• Modifying an RDS Custom for SQL Server Multi-AZ deployment to a Single-AZ deployment

• Failover process for an RDS Custom for SQL Server Multi-AZ deployment

Region and version availability

Multi-AZ deployments for RDS Custom for SQL Server are supported for the following SQL Server
editions:

• SQL Server 2022 and 2019: Enterprise, Standard, Web, and Developer Edition

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2111

Amazon Relational Database Service User Guide

Note

Multi-AZ deployments for RDS Custom for SQL Server aren't supported on SQL Server
2019 CU8 (15.00.4073.23) or lower versions.

Multi-AZ deployments for RDS Custom for SQL Server are available in all Regions where RDS
Custom for SQL Server is available. For more information on Region availability of Multi-AZ
deployments for RDS Custom for SQL Server, see Supported Regions and DB engines for RDS
Custom for SQL Server.

Limitations for a Multi-AZ deployment with RDS Custom for SQL Server

Multi-AZ deployments with RDS Custom for SQL Server have the following limitations:

• Cross-Region Multi-AZ deployments aren't supported.

• You can’t configure the secondary DB instance to accept database read activity.

• When you use a Custom Engine Version (CEV) with a Multi-AZ deployment, your secondary DB
instance will also use the same CEV. The secondary DB instance can't use a different CEV.

Prerequisites for a Multi-AZ deployment with RDS Custom for SQL Server

If you have an existing RDS Custom for SQL Server Single-AZ deployment, the following additional
prerequisites are required before modifying it to a Multi-AZ deployment. You can choose to
complete the prerequisites manually or with the provided CloudFormation template. The latest
CloudFormation template contains the prerequisites for both Single-AZ and Multi-AZ deployments.

Important

To simplify setup, we recommend that you use the latest AWS CloudFormation template
file provided in the network setup instructions to create the prerequisites. For more
information, see Configuring with AWS CloudFormation.

Note

When you modify an existing RDS Custom for SQL Server Single-AZ deployment to a
Multi-AZ deployment, you must complete these prerequisites. If you don't complete the

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2112

Amazon Relational Database Service User Guide

prerequisites, the Multi-AZ setup will fail. To complete the prerequisites, follow the steps in
Modifying an RDS Custom for SQL Server Single-AZ deployment to a Multi-AZ deployment.

• Update the RDS security group inbound and outbound rules to allow port 1120.

• Add a rule in your private network Access Control List (ACL) that allows TCP ports 0-65535 for
the DB instance VPC.

• Create new Amazon SQS VPC endpoints that allow the RDS Custom for SQL Server DB instance
to communicate with SQS.

• Update the SQS permissions in the instance profile role.

Creating an RDS Custom for SQL Server Multi-AZ deployment

To create an RDS Custom for SQL Server Multi-AZ deployment, follow the steps in Creating and
connecting to a DB instance for Amazon RDS Custom for SQL Server.

Important

To simplify setup, we recommend that you use the latest AWS CloudFormation template
file provided in the network setup instructions. For more information, see Configuring with
AWS CloudFormation.

Creating a Multi-AZ deployment takes a few minutes to complete.

Modifying an RDS Custom for SQL Server Single-AZ deployment to a Multi-AZ
deployment

You can modify an existing RDS Custom for SQL Server DB instance from a Single-AZ deployment
to a Multi-AZ deployment. When you modify the DB instance,Amazon RDS performs several
actions:

• Takes a snapshot of the primary DB instance.

• Creates new volumes for the standby replica from the snapshot. These volumes initialize in the
background, and maximum volume performance is achieved after the data is fully initialized.

• Turns on synchronous block-level replication between the primary and secondary DB instances.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2113

Amazon Relational Database Service User Guide

Important

We recommend that you avoid modifying your RDS Custom for SQL Server DB instance
from a Single-AZ to a Multi-AZ deployment on a production DB instance during periods of
peak activity.

AWS uses a snapshot to create the standby instance to avoid downtime when you convert from
Single-AZ to Multi-AZ, but performance might be impacted during and after converting to Multi-
AZ. This impact can be significant for workloads that are sensitive to write latency. While this
capability allows large volumes to quickly be restored from snapshots, it can cause increase in the
latency of I/O operations because of the synchronous replication. This latency can impact your
database performance.

Note

If you created your RDS Custom for SQL Server DB instance before 29 August, 2024, patch
to the latest minor version before modifying.

• For SQL Server 2019 instances, upgrade the DB engine version to 15.00.4410.1.v1 or
higher.

• For SQL Server 2022 instances, upgrade the DB engine version to 16.00.4150.1.v1 or
higher.

Topics

• Configuring prerequisites to modify a Single-AZ to a Multi-AZ deployment using CloudFormation

• Configuring prerequisites to modify a Single-AZ to a Multi-AZ deployment manually

• Modify using the RDS console, AWS CLI, or RDS API.

Configuring prerequisites to modify a Single-AZ to a Multi-AZ deployment using
CloudFormation

To use a Multi-AZ deployment, you must ensure you've applied the latest CloudFormation template
with prerequisites, or manually configure the latest prerequisites. If you've already applied the
latest CloudFormation prerequisite template, you can skip these steps.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2114

Amazon Relational Database Service User Guide

To configure the RDS Custom for SQL Server Multi-AZ deployment prerequisites using
CloudFormation

1. Open the CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. To start the Create Stack wizard, select the existing stack you used to create a Single-AZ
deployment and choose Update.

The Update stack page appears.

3. For Prerequisite - Prepare template, choose Replace current template.

4. For Specify template, do the following:

a. Download the latest AWS CloudFormation template file. Open the context (right-click)
menu for the link custom-sqlserver-onboard.zip and choose Save Link As.

b. Save and extract the custom-sqlserver-onboard.json file to your computer.

c. For Template source, choose Upload a template file.

d. For Choose file, navigate to and then choose custom-sqlserver-onboard.json.

5. Choose Next.

The Specify stack details page appears.

6. To keep the default options, choose Next.

The Advanced Options page appears.

7. To keep the default options, choose Next.

8. To keep the default options, choose Next.

9. On the Review Changes page, do the following:

a. For Capabilities, select the I acknowledge that AWS CloudFormation might create IAM
resources with custom names check box.

b. Choose Submit.

10. Verify the update is successful. The status of a successful operation shows UPDATE_COMPLETE.

If the update fails, any new configuration specified in the update process will be rolled back. The
existing resource will still be usable. For example, if you add network ACL rules numbered 18 and
19, but there were existing rules with same numbers, the update would return the following error:
Resource handler returned message: "The network acl entry identified by 18
Managing a Multi-AZ deployment for RDS Custom for SQL Server 2115

https://console.aws.amazon.com/cloudformation/
samples/custom-sqlserver-onboard.zip

Amazon Relational Database Service User Guide

already exists. In this scenario you can modify the existing ACL rules to use a number lower
than 18, then retry the update.

Configuring prerequisites to modify a Single-AZ to a Multi-AZ deployment manually

Important

To simplify setup, we recommend that you use the latest AWS CloudFormation template
file provided in the network setup instructions. For more information, see Configuring
prerequisites to modify a Single-AZ to a Multi-AZ deployment using CloudFormation.

If you choose to configure the prerequisites manually, perform the following tasks.

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose Endpoint. The Create Endpoint page appears.

3. For Service Category, choose AWS services.

4. In Services, search for SQS

5. In VPC, choose the VPC where your RDS Custom for SQL Server DB instance is deployed.

6. In Subnets, choose the subnets where your RDS Custom for SQL Server DB instance is
deployed.

7. In Security Groups, choose the -vpc-endpoint-sg group.

8. For Policy, choose Custom

9. In your custom policy, replace the AWS partition, Region, accountId,and IAM-
Instance-role with your own values.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/AWSRDSCustom": "custom-sqlserver"
 }
 },
 "Action": [
 "SQS:SendMessage",

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2116

https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

 "SQS:ReceiveMessage",
 "SQS:DeleteMessage",
 "SQS:GetQueueUrl"
],
 "Resource": "arn:${AWS::Partition}:sqs:${AWS::Region}:
${AWS::AccountId}:do-not-delete-rds-custom-*",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:${AWS::Partition}:iam::${AWS::AccountId}:role/{IAM-
Instance-role}"
 }
 }
]
 }

10. Update the Instance profile with permission to access Amazon SQS. Replace the AWS
partition, Region, and accountId with your own values.

 {
 "Sid": "SendMessageToSQSQueue",
 "Effect": "Allow",
 "Action": [
 "SQS:SendMessage",
 "SQS:ReceiveMessage",
 "SQS:DeleteMessage",
 "SQS:GetQueueUrl"

],
 "Resource": [
 {
 "Fn::Sub": "arn:${AWS::Partition}:sqs:${AWS::Region}:${AWS::AccountId}:do-
not-delete-rds-custom-*"
 }
],
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/AWSRDSCustom": "custom-sqlserver"
 }
 }
 }
 >

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2117

Amazon Relational Database Service User Guide

11. Update the Amazon RDS security group inbound and outbound rules to allow port 1120.

a. In Security Groups, choose the -rds-custom-instance-sg group.

b. For Inbound Rules, create a Custom TCP rule to allow port 1120 from the source -rds-
custom-instance-sg group.

c. For Outbound Rules, create a Custom TCP rule to allow port 1120 to the destination -
rds-custom-instance-sg group.

12. Add a rule in your private network Access Control List (ACL) that allows TCP ports 0-65535 for
the source subnet of the DB instance.

Note

When creating an Inbound Rule and Outbound Rule, take note of the highest existing
Rule number. The new rules you create must have a Rule number lower than 100 and
not match any existing Rule number.

a. In Network ACLs, choose the -private-network-acl group.

b. For Inbound Rules, create an All TCP rule to allow TCP ports 0-65535 with a source from
privatesubnet1 and privatesubnet2.

c. For Outbound Rules, create an All TCP rule to allow TCP ports 0-65535 to destination
privatesubnet1 and privatesubnet2.

Modify using the RDS console, AWS CLI, or RDS API.

After you've completed the prerequisites, you can modify an RDS Custom for SQL Server DB
instance from a Single-AZ to Multi-AZ deployment using the RDS console, AWS CLI, or RDS API.

Console

To modify an existing RDS Custom for SQL Server Single-AZ to Multi-AZ deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Amazon RDS console, choose Databases.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2118

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The Databases pane appears.

3. Choose the RDS Custom for SQL Server DB instance that you want to modify.

4. For Actions, choose Convert to Multi-AZ deployment.

5. On the Confirmation page, choose Apply immediately to apply the changes immediately.
Choosing this option doesn't cause downtime, but there is a possible performance impact.
Alternatively, you can choose to apply the update during the next maintenance window. For
more information, see Using the schedule modifications setting.

6. On the Confirmation page, choose Convert to Multi-AZ.

AWS CLI

To convert to a Multi-AZ DB instance deployment by using the AWS CLI, call the modify-db-
instance command and set the --multi-az option. Specify the DB instance identifier and the
values for other options that you want to modify. For information about each option, see Settings
for DB instances.

Example

The following code modifies mycustomdbinstance by including the --multi-az option. The
changes are applied during the next maintenance window by using --no-apply-immediately.
Use --apply-immediately to apply the changes immediately. For more information, see Using
the schedule modifications setting.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mycustomdbinstance \
 --multi-az \
 --no-apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mycustomdbinstance ^
 --multi-az \ ^
 --no-apply-immediately

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2119

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

RDS API

To convert to a Multi-AZ DB instance deployment with the RDS API, call the ModifyDBInstance
operation and set the MultiAZ parameter to true.

Modifying an RDS Custom for SQL Server Multi-AZ deployment to a Single-AZ
deployment

You can modify an existing RDS Custom for SQL Server DB instance from a Multi-AZ to a Single-AZ
deployment.

Console

To modify an RDS Custom for SQL Server DB instance from a Multi-AZ to Single-AZ
deployment.

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Amazon RDS console, choose Databases.

The Databases pane appears.

3. Choose the RDS Custom for SQL Server DB instance that you want to modify.

4. For Multi-AZ deployment, choose No.

5. On the Confirmation page, choose Apply immediately to apply the changes immediately.
Choosing this option doesn't cause downtime, but there is a possible performance impact.
Alternatively, you can choose to apply the update during the next maintenance window. For
more information, see Using the schedule modifications setting.

6. On the Confirmation page, choose Modify DB Instance.

AWS CLI

To modify a Multi-AZ deployment to a Single-AZ deployment by using the AWS CLI, call the
modify-db-instance command and include the --no-multi-az option. Specify the DB instance
identifier and the values for other options that you want to modify. For information about each
option, see Settings for DB instances.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2120

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

Example

The following code modifies mycustomdbinstance by including the --no-multi-az option. The
changes are applied during the next maintenance window by using --no-apply-immediately.
Use --apply-immediately to apply the changes immediately. For more information, see Using
the schedule modifications setting.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mycustomdbinstance \
 --no-multi-az \
 --no-apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mycustomdbinstance ^
 --no-multi-az \ ^
 --no-apply-immediately

RDS API

To modify a Multi-AZ deployment to a Single-AZ deployment by using the RDS API, call the
ModifyDBInstance operation and set the MultiAZ parameter to false.

Failover process for an RDS Custom for SQL Server Multi-AZ deployment

If a planned or unplanned outage of your DB instance results from an infrastructure defect,
Amazon RDS automatically switches to a standby replica in another Availability Zone if you have
turned on Multi-AZ. The time that it takes for the failover to complete depends on the database
activity and other conditions at the time that the primary DB instance became unavailable. Failover
times are typically 60 – 120 seconds. However, large transactions or a lengthy recovery process
can increase failover time. When the failover is complete, it can take additional time for the RDS
console to show the new Availability Zone.

Note

You can force a failover manually when you reboot a DB instance with failover. For more
information on rebooting a DB instance, see Rebooting a DB instance

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2121

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Amazon RDS handles failovers automatically so you can resume database operations as quickly as
possible without administrative intervention. The primary DB instance switches over automatically
to the standby replica if any of the conditions described in the following table occurs. You can view
these failover reasons in the RDS event log.

Failover reason Description

The operating system
for the RDS Custom
for SQL Server
Multi-AZ DB instance
is being patched in
an offline operation

A failover was triggered during the maintenance window for an
OS patch or a security update. For more information, see Maintaini
ng a DB instance.

The primary host of
the RDS Custom for
SQL Server Multi-
AZ DB instance is
unhealthy.

The Multi-AZ DB instance deployment detected an impaired
primary DB instance and failed over.

The primary host of
the RDS Custom for
SQL Server Multi-
AZ DB instance is
unreachable due
to loss of network
connectivity.

RDS monitoring detected a network reachability failure to the
primary DB instance and triggered a failover.

The RDS Custom for
SQL Server Multi-
AZ DB instance was
modified by the
customer.

A DB instance modification triggered a failover. For more informati
on, see Modifying an RDS Custom for SQL Server DB instance.

The storage volume
of the primary host
of the RDS Custom

The Multi-AZ DB instance deployment detected a storage issue on
the primary DB instance and failed over.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2122

Amazon Relational Database Service User Guide

Failover reason Description

for SQL Server
Multi-AZ DB instance
experienced a
failure.

The user requested
a failover of the
RDS Custom for SQL
Server Multi-AZ DB
instance.

The RDS Custom for SQL Server Multi-AZ DB instance was
rebooted with failover. For more information, see Rebooting a DB
instance.

The RDS Custom for
SQL Server Multi-AZ
primary DB instance
is busy or unrespons
ive.

The primary DB instance is unresponsive. We recommend that you
try the following steps:

• Examine the event logs and CloudWatch logs for excessive
CPU, memory, or swap space usage. For more information, see
Working with Amazon RDS event notification.

• Create a rule that triggers on an Amazon RDS event. For more
information, see Creating a rule that triggers on an Amazon RDS
event.

• Evaluate your workload to determine whether you're using the
appropriate DB instance class. For more information, see DB
instance classes.

To determine if your Multi-AZ DB instance has failed over, you can do the following:

• Set up DB event subscriptions to notify you by email or SMS that a failover has been initiated.
For more information about events, see Working with Amazon RDS event notification.

• View your DB events by using the RDS console or API operations.

• View the current state of your RDS Custom for SQL Server Multi-AZ DB instance deployment by
using the RDS console, CLI, or API operations.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2123

Amazon Relational Database Service User Guide

Time to live (TTL) settings with applications using an RDS Custom for SQL Server Multi-AZ
deployment

The failover mechanism automatically changes the Domain Name System (DNS) record of the DB
instance to point to the standby DB instance. As a result, you need to re-establish any existing
connections to your DB instance. Ensure that any DNS cache time-to-live (TTL) configuration value
is low, and validate that your application will not cache DNS for an extended time. A high TTL value
might prevent your application from quickly reconnecting to the DB instance after failover.

Managing a Multi-AZ deployment for RDS Custom for SQL Server 2124

Amazon Relational Database Service User Guide

Backing up and restoring an Amazon RDS Custom for SQL Server DB
instance

Like Amazon RDS, RDS Custom creates and saves automated backups of your RDS Custom for
SQL Server DB instance when backup retention is enabled. You can also back up your DB instance
manually. The automated backups are comprised of snapshot backups and transaction log
backups. Snapshot backups are taken for the entire storage volume of DB instance during your
specified backup window. Transaction log backups are taken for the PITR-eligible databases on a
regular interval period. RDS Custom saves the automated backups of your DB instance according
to your specified backup retention period. You can use automated backups to recover your DB
instance to a point in time within the backup retention period.

You can also take snapshot backups manually. You can create a new DB instance from these
snapshot backups at any time. For more information about manually creating a DB snapshot, see
Creating an RDS Custom for SQL Server snapshot.

Although snapshot backups serve operationally as full backups, you are billed only for incremental
storage use. The first snapshot of an RDS Custom DB instance contains the data for the full DB
instance. Subsequent snapshots of the same database are incremental, which means that only the
data that has changed after your most recent snapshot is saved.

Topics

• Creating an RDS Custom for SQL Server snapshot

• Restoring from an RDS Custom for SQL Server DB snapshot

• Restoring an RDS Custom for SQL Server instance to a point in time

• Deleting an RDS Custom for SQL Server snapshot

• Deleting RDS Custom for SQL Server automated backups

Creating an RDS Custom for SQL Server snapshot

RDS Custom for SQL Server creates a storage volume snapshot of your DB instance, backing up the
entire DB instance and not just individual databases. When you create a snapshot, specify which
RDS Custom for SQL Server DB instance to back up. Give your snapshot a name so you can restore
from it later.

When you create a snapshot, RDS Custom for SQL Server creates an Amazon EBS snapshot for
volume (D:), which is the database volume attached to the DB instance. To make snapshots

Backing up and restoring an RDS Custom for SQL Server DB instance 2125

Amazon Relational Database Service User Guide

easy to associate with a specific DB instance, they're tagged with DBSnapshotIdentifier,
DbiResourceId, and VolumeType.

Creating a DB snapshot results in a brief I/O suspension. This suspension can last from a few
seconds to a few minutes, depending on the size and class of your DB instance. The snapshot
creation time varies with the total count and size of your databases. To learn more about the
number of databases eligible for a point in time restore (PITR) operation, see Number of databases
eligible for PITR per instance class type.

Because the snapshot includes the entire storage volume, the size of files, such as temporary files,
also affects snapshot creation time. To learn more about creating snapshots, see Creating a DB
snapshot for a Single-AZ DB instance for Amazon RDS.

Create an RDS Custom for SQL Server snapshot using the console or the AWS CLI.

Console

To create an RDS Custom snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. In the list of RDS Custom DB instances, choose the instance for which you want to take a
snapshot.

4. For Actions, choose Take snapshot.

The Take DB snapshot window appears.

5. For Snapshot name, enter the name of the snapshot.

6. Choose Take snapshot.

AWS CLI

You create a snapshot of an RDS Custom DB instance by using the create-db-snapshot AWS CLI
command.

Specify the following options:

• --db-instance-identifier – Identifies which RDS Custom DB instance you are going to
back up

Backing up and restoring an RDS Custom for SQL Server DB instance 2126

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html

Amazon Relational Database Service User Guide

• --db-snapshot-identifier – Names your RDS Custom snapshot so you can restore from it
later

In this example, you create a DB snapshot called my-custom-snapshot for an RDS Custom DB
instance called my-custom-instance.

Example

For Linux, macOS, or Unix:

aws rds create-db-snapshot \
 --db-instance-identifier my-custom-instance \
 --db-snapshot-identifier my-custom-snapshot

For Windows:

aws rds create-db-snapshot ^
 --db-instance-identifier my-custom-instance ^
 --db-snapshot-identifier my-custom-snapshot

Restoring from an RDS Custom for SQL Server DB snapshot

When you restore an RDS Custom for SQL Server DB instance, you provide the name of the DB
snapshot and a name for the new instance. You can't restore from a snapshot to an existing RDS
Custom DB instance. A new RDS Custom for SQL Server DB instance is created when you restore.

Restoring from a snapshot will restore the storage volume to the point in time at which the
snapshot was taken. This will include all the databases and any other files that were present on the
(D:) volume.

Console

To restore an RDS Custom DB instance from a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

Backing up and restoring an RDS Custom for SQL Server DB instance 2127

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. On the Restore DB instance page, for DB instance identifier, enter the name for your restored
RDS Custom DB instance.

6. Choose Restore DB instance.

AWS CLI

You restore an RDS Custom DB snapshot by using the restore-db-instance-from-db-snapshot AWS
CLI command.

If the snapshot you are restoring from is for a private DB instance, make sure to specify both the
correct db-subnet-group-name and no-publicly-accessible. Otherwise, the DB instance
defaults to publicly accessible. The following options are required:

• db-snapshot-identifier – Identifies the snapshot from which to restore

• db-instance-identifier – Specifies the name of the RDS Custom DB instance to create from
the DB snapshot

• custom-iam-instance-profile – Specifies the instance profile associated with the
underlying Amazon EC2 instance of an RDS Custom DB instance.

The following code restores the snapshot named my-custom-snapshot for my-custom-
instance.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-db-snapshot \
 --db-snapshot-identifier my-custom-snapshot \
 --db-instance-identifier my-custom-instance \
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance \
 --no-publicly-accessible

For Windows:

aws rds restore-db-instance-from-db-snapshot ^
 --db-snapshot-identifier my-custom-snapshot ^
 --db-instance-identifier my-custom-instance ^
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance ^
 --no-publicly-accessible

Backing up and restoring an RDS Custom for SQL Server DB instance 2128

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html

Amazon Relational Database Service User Guide

Restoring an RDS Custom for SQL Server instance to a point in time

You can restore a DB instance to a specific point in time (PITR), creating a new DB instance. To
support PITR, your DB instances must have backup retention enabled.

The latest restorable time for an RDS Custom for SQL Server DB instance depends on several
factors, but is typically within 5 minutes of the current time. To see the latest restorable time for a
DB instance, use the AWS CLI describe-db-instances command and look at the value returned in the
LatestRestorableTime field for the DB instance. To see the latest restorable time for each DB
instance in the Amazon RDS console, choose Automated backups.

You can restore to any point in time within your backup retention period. To see the earliest
restorable time for each DB instance, choose Automated backups in the Amazon RDS console.

For general information about PITR, see Restoring a DB instance to a specified time for Amazon
RDS.

Topics

• PITR considerations for RDS Custom for SQL Server

• Number of databases eligible for PITR per instance class type

• Making databases ineligible for PITR

• Transaction logs in Amazon S3

• PITR Restore using the AWS Management Console, the AWS CLI, or the RDS API.

PITR considerations for RDS Custom for SQL Server

In RDS Custom for SQL Server, PITR differs in the following important ways from PITR in Amazon
RDS:

• PITR only restores the databases in the DB instance. It doesn't restore the operating system or
files on the C: drive.

• For an RDS Custom for SQL Server DB instance, a database is backed up automatically and is
eligible for PITR only under the following conditions:

• The database is online.

• Its recovery model is set to FULL.

• It's writable.

Backing up and restoring an RDS Custom for SQL Server DB instance 2129

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• It has its physical files on the D: drive.

• It's not listed in the rds_pitr_blocked_databases table. For more information, see Making
databases ineligible for PITR.

• The databases eligible for PITR are determined by the order of their database ID. RDS Custom
for SQL Server allows up to 5,000 databases per DB instance. However, the maximum number
of databases restored by a PITR operation for an RDS Custom for SQL Server DB instance is
dependent on the instance class type. For more information, see Number of databases eligible
for PITR per instance class type.

Other databases that aren't part of PITR can be restored from DB snapshots, including the
automated snapshot backups used for PITR.

• Adding a new database, renaming a database, or restoring a database that is eligible for PITR
initiates a snapshot of the DB instance.

• The maximum number of databases eligible for PITR changes when the database instance goes
through a scale compute operation, depending on the target instance class type. If the instance
is scaled up, allowing more databases on the instance to be eligible for PITR, a new snapshot is
taken.

• Restored databases have the same name as in the source DB instance. You can't specify a
different name.

• AWSRDSCustomSQLServerIamRolePolicy requires access to other AWS services. For more
information, see Add an access policy to AWSRDSCustomSQLServerInstanceRole.

• Time zone changes aren't supported for RDS Custom for SQL Server. If you change the operating
system or DB instance time zone, PITR (and other automation) doesn't work.

Number of databases eligible for PITR per instance class type

The following table shows the maximum number of databases eligible for PITR based on instance
class type.

Instance
class type

Maximum
number of
PITR eligible
databases

db.*.large 100

Backing up and restoring an RDS Custom for SQL Server DB instance 2130

Amazon Relational Database Service User Guide

Instance
class type

Maximum
number of
PITR eligible
databases

db.*.xlarge to
db.*.2xlarge

150

db.*.4xlarge
to db.*.8xla
rge

300

db.*.12xlarge
to db.*.16xl
arge

600

db.*.24xl
arge,
db.*32xlarge

1000

* Represents different instance class types.

The maximum number of databases eligible for PITR on a DB instance depends on the instance
class type. The number ranges from 100 on the smallest to 1000 on the largest instance class
types supported by RDS Custom for SQL Server. SQL server system databases (master, model,
msdb, tempdb), aren't included in this limit. When a DB instance is scaled up or down, depending
on the target instance class type, RDS Custom will automatically update the number of database
eligible for PITR. RDS Custom for SQL Server will send RDS-EVENT-0352 when the maximum
number of databases eligible for PITR changes on a DB instance. For more information, see Custom
engine version events.

Note

PITR support for greater than 100 databases is only available on DB instances created after
August 26, 2023. For instances created before August 26, 2023, the maximum number of
databases eligible for PITR is 100, regardless of the instance class. To enable PITR support
for more than 100 databases on DB instances created before August 26, 2023, you can
perform the following action:

Backing up and restoring an RDS Custom for SQL Server DB instance 2131

Amazon Relational Database Service User Guide

• Upgrade the DB engine version to 15.00.4322.2.v1 or higher

During a PITR operation, RDS Custom will restore all of the databases that were part of PITR on
source DB instance at restore time. Once the target DB instance has completed restore operations,
if backup retention is enabled, the DB instance will start backing up based on the maximum
number of databases eligible for PITR on target DB instance.

For example, if your DB instance runs on a db.*.xlarge that has 200 databases:

1. RDS Custom for SQL Server will choose the first 150 databases, ordered by their database ID, for
PITR backup.

2. You modify the instance to scale up to db.*.4xlarge.

3. Once the scale compute operation is completed, RDS Custom for SQL Server will choose the first
300 databases, ordered by their database ID, for PITR backup. Each one of the 200 databases
that satisfy the PITR requirement conditions will now be eligible for PITR.

4. You now modify the instance to scale down back to db.*.xlarge.

5. Once the scale compute operation is completed, RDS Custom for SQL Server will again select the
first 150 databases, ordered by their database ID, for PITR backup.

Making databases ineligible for PITR

You can choose to exclude individual databases from PITR. To do this, put their database_id
values into a rds_pitr_blocked_databases table. Use the following SQL script to create the
table.

To create the rds_pitr_blocked_databases table

• Run the following SQL script.

create table msdb..rds_pitr_blocked_databases
(
database_id INT NOT NULL,
database_name SYSNAME NOT NULL,
db_entry_updated_date datetime NOT NULL DEFAULT GETDATE(),
db_entry_updated_by SYSNAME NOT NULL DEFAULT CURRENT_USER,
PRIMARY KEY (database_id)

Backing up and restoring an RDS Custom for SQL Server DB instance 2132

Amazon Relational Database Service User Guide

);

For the list of eligible and ineligible databases, see the RI.End file in the
RDSCustomForSQLServer/Instances/DB_instance_resource_ID/
TransactionLogMetadata directory in the Amazon S3 bucket do-not-delete-rds-
custom-$ACCOUNT_ID-$REGION-unique_identifier. For more information about the
RI.End file, see Transaction logs in Amazon S3.

You can also determine the list of eligible databases for PITR using the following SQL script. Set
the @limit variable to the maximum number of databases on eligible for PITR for the instance
class. For more information, see Number of databases eligible for PITR per instance class type.

To determine the list of eligible databases for PITR on a DB instance class

• Run the following SQL script.

DECLARE @Limit INT;
SET @Limit = (insert-database-instance-limit-here);

USE msdb;
IF (EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = 'dbo' AND
 TABLE_NAME = 'rds_pitr_blocked_databases'))
 WITH TABLE0 AS (
 SELECT hdrs.database_id as DatabaseId, sdb.name as DatabaseName,
 'ALWAYS_ON_NOT_WRITABLE_REPLICA' as Reason, NULL as DatabaseNameOnPitrTable
 FROM sys.dm_hadr_database_replica_states hdrs
 INNER JOIN sys.databases sdb ON sdb.database_id = hdrs.database_id
 WHERE (hdrs.is_local = 1 AND hdrs.is_primary_replica = 0)
 OR (sys.fn_hadr_is_primary_replica (sdb.name) = 1 AND DATABASEPROPERTYEX
 (sdb.name, 'Updateability') = 'READ_ONLY')
),
 TABLE1 as (
 SELECT dbs.database_id as DatabaseId, sysdbs.name as DatabaseName,
 'OPTOUT' as Reason,
 CASE WHEN dbs.database_name = sysdbs.name THEN NULL ELSE
 dbs.database_name END AS DatabaseNameOnPitrTable
 FROM msdb.dbo.rds_pitr_blocked_databases dbs
 INNER JOIN sys.databases sysdbs ON dbs.database_id = sysdbs.database_id
 WHERE sysdbs.database_id > 4
),
 TABLE2 as (

Backing up and restoring an RDS Custom for SQL Server DB instance 2133

Amazon Relational Database Service User Guide

 SELECT
 db.name AS DatabaseName,
 db.create_date AS CreateDate,
 db.state_desc AS DatabaseState,
 db.database_id AS DatabaseId,
 rs.database_guid AS DatabaseGuid,
 rs.last_log_backup_lsn AS LastLogBackupLSN,
 rs.recovery_fork_guid RecoveryForkGuid,
 rs.first_recovery_fork_guid AS FirstRecoveryForkGuid,
 db.recovery_model_desc AS RecoveryModel,
 db.is_auto_close_on AS IsAutoClose,
 db.is_read_only as IsReadOnly,
 NEWID() as FileName,
 CASE WHEN(db.state_desc = 'ONLINE'
 AND db.recovery_model_desc != 'SIMPLE'
 AND((db.is_auto_close_on = 0 and db.collation_name IS NOT NULL)
 OR db.is_auto_close_on = 1))
 AND db.is_read_only != 1
 AND db.user_access = 0
 AND db.source_database_id IS NULL
 AND db.is_in_standby != 1
 THEN 1 ELSE 0 END AS IsPartOfSnapshot,
 CASE WHEN db.source_database_id IS NULL THEN 0 ELSE 1 END AS
 IsDatabaseSnapshot
 FROM sys.databases db
 INNER JOIN sys.database_recovery_status rs
 ON db.database_id = rs.database_id
 WHERE DB_NAME(db.database_id) NOT IN('tempdb') AND
 db.database_id NOT IN (SELECT DISTINCT DatabaseId FROM TABLE1) AND
 db.database_id NOT IN (SELECT DISTINCT DatabaseId FROM TABLE0)
),
 TABLE3 as(
 Select @Limit+count(DatabaseName) as TotalNumberOfDatabases from TABLE2
 where TABLE2.IsPartOfSnapshot=1 and DatabaseName in ('master','model','msdb')
)
 SELECT TOP(SELECT TotalNumberOfDatabases from TABLE3)
 DatabaseName,CreateDate,DatabaseState,DatabaseId from TABLE2 where
 TABLE2.IsPartOfSnapshot=1
 ORDER BY TABLE2.DatabaseID ASC
ELSE
 WITH TABLE0 AS (
 SELECT hdrs.database_id as DatabaseId, sdb.name as DatabaseName,
 'ALWAYS_ON_NOT_WRITABLE_REPLICA' as Reason, NULL as DatabaseNameOnPitrTable
 FROM sys.dm_hadr_database_replica_states hdrs

Backing up and restoring an RDS Custom for SQL Server DB instance 2134

Amazon Relational Database Service User Guide

 INNER JOIN sys.databases sdb ON sdb.database_id = hdrs.database_id
 WHERE (hdrs.is_local = 1 AND hdrs.is_primary_replica = 0)
 OR (sys.fn_hadr_is_primary_replica (sdb.name) = 1 AND DATABASEPROPERTYEX
 (sdb.name, 'Updateability') = 'READ_ONLY')
),
 TABLE1 as (
 SELECT
 db.name AS DatabaseName,
 db.create_date AS CreateDate,
 db.state_desc AS DatabaseState,
 db.database_id AS DatabaseId,
 rs.database_guid AS DatabaseGuid,
 rs.last_log_backup_lsn AS LastLogBackupLSN,
 rs.recovery_fork_guid RecoveryForkGuid,
 rs.first_recovery_fork_guid AS FirstRecoveryForkGuid,
 db.recovery_model_desc AS RecoveryModel,
 db.is_auto_close_on AS IsAutoClose,
 db.is_read_only as IsReadOnly,
 NEWID() as FileName,
 CASE WHEN(db.state_desc = 'ONLINE'
 AND db.recovery_model_desc != 'SIMPLE'
 AND((db.is_auto_close_on = 0 and db.collation_name IS NOT NULL)
 OR db.is_auto_close_on = 1))
 AND db.is_read_only != 1
 AND db.user_access = 0
 AND db.source_database_id IS NULL
 AND db.is_in_standby != 1
 THEN 1 ELSE 0 END AS IsPartOfSnapshot,
 CASE WHEN db.source_database_id IS NULL THEN 0 ELSE 1 END AS
 IsDatabaseSnapshot
 FROM sys.databases db
 INNER JOIN sys.database_recovery_status rs
 ON db.database_id = rs.database_id
 WHERE DB_NAME(db.database_id) NOT IN('tempdb') AND
 db.database_id NOT IN (SELECT DISTINCT DatabaseId FROM TABLE0)
),
 TABLE2 as(
 SELECT @Limit+count(DatabaseName) as TotalNumberOfDatabases from TABLE1
 where TABLE1.IsPartOfSnapshot=1 and DatabaseName in ('master','model','msdb')
)
 select top(select TotalNumberOfDatabases from TABLE2)
 DatabaseName,CreateDate,DatabaseState,DatabaseId from TABLE1 where
 TABLE1.IsPartOfSnapshot=1

Backing up and restoring an RDS Custom for SQL Server DB instance 2135

Amazon Relational Database Service User Guide

 ORDER BY TABLE1.DatabaseID ASC

Note

The databases that are only symbolic links are also excluded from databases eligible for
PITR operations. The above query doesn’t filter based on this criteria.

Transaction logs in Amazon S3

The backup retention period determines whether transaction logs for RDS Custom for SQL Server
DB instances are automatically extracted and uploaded to Amazon S3. A nonzero value means that
automatic backups are created, and that the RDS Custom agent uploads the transaction logs to S3
every 5 minutes.

Transaction log files on S3 are encrypted at rest using the AWS KMS key that you provided
when you created your DB instance. For more information, see Protecting data using server-side
encryption in the Amazon Simple Storage Service User Guide.

The transaction logs for each database are uploaded to an S3 bucket named do-not-delete-
rds-custom-$ACCOUNT_ID-$REGION-unique_identifier. The RDSCustomForSQLServer/
Instances/DB_instance_resource_ID directory in the S3 bucket contains two subdirectories:

• TransactionLogs – Contains the transaction logs for each database and their respective
metadata.

The transaction log file name follows the pattern yyyyMMddHHmm.database_id.timestamp,
for example:

202110202230.11.1634769287

The same file name with the suffix _metadata contains information about the transaction
log such as log sequence numbers, database name, and RdsChunkCount. RdsChunkCount
determines how many physical files represent a single transaction log file. You might see files
with suffixes _0001, _0002, and so on, which mean the physical chunks of a transaction log
file. If you want to use a chunked transaction log file, make sure to merge the chunks after
downloading them.

Backing up and restoring an RDS Custom for SQL Server DB instance 2136

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html

Amazon Relational Database Service User Guide

Consider a scenario where you have the following files:

• 202110202230.11.1634769287

• 202110202230.11.1634769287_0001

• 202110202230.11.1634769287_0002

• 202110202230.11.1634769287_metadata

The RdsChunkCount is 3. The order for merging the files is the following:
202110202230.11.1634769287, 202110202230.11.1634769287_0001,
202110202230.11.1634769287_0002.

• TransactionLogMetadata – Contains metadata information about each iteration of
transaction log extraction.

The RI.End file contains information for all databases that had their transaction logs extracted,
and all databases that exist but didn't have their transaction logs extracted. The RI.End file
name follows the pattern yyyyMMddHHmm.RI.End.timestamp, for example:

202110202230.RI.End.1634769281

PITR Restore using the AWS Management Console, the AWS CLI, or the RDS API.

You can restore an RDS Custom for SQL Server DB instance to a point in time using the AWS
Management Console, the AWS CLI, or the RDS API.

Console

To restore an RDS Custom DB instance to a specified time

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. Choose the RDS Custom DB instance that you want to restore.

4. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

5. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

Backing up and restoring an RDS Custom for SQL Server DB instance 2137

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

If you chose Custom, enter the date and time to which you want to restore the instance.

Times are shown in your local time zone, which is indicated by an offset from Coordinated
Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/Central Daylight Time.

6. For DB instance identifier, enter the name of the target restored RDS Custom DB instance. The
name must be unique.

7. Choose other options as needed, such as DB instance class.

8. Choose Restore to point in time.

AWS CLI

You restore a DB instance to a specified time by using the restore-db-instance-to-point-in-time
AWS CLI command to create a new RDS Custom DB instance.

Use one of the following options to specify the backup to restore from:

• --source-db-instance-identifier mysourcedbinstance

• --source-dbi-resource-id dbinstanceresourceID

• --source-db-instance-automated-backups-arn backupARN

The custom-iam-instance-profile option is required.

The following example restores my-custom-db-instance to a new DB instance named my-
restored-custom-db-instance, as of the specified time.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-to-point-in-time \
 --source-db-instance-identifier my-custom-db-instance\
 --target-db-instance-identifier my-restored-custom-db-instance \
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance \
 --restore-time 2022-10-14T23:45:00.000Z

For Windows:

aws rds restore-db-instance-to-point-in-time ^

Backing up and restoring an RDS Custom for SQL Server DB instance 2138

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

 --source-db-instance-identifier my-custom-db-instance ^
 --target-db-instance-identifier my-restored-custom-db-instance ^
 --custom-iam-instance-profile AWSRDSCustomInstanceProfileForRdsCustomInstance ^
 --restore-time 2022-10-14T23:45:00.000Z

Deleting an RDS Custom for SQL Server snapshot

You can delete DB snapshots managed by RDS Custom for SQL Server when you no longer need
them. The deletion procedure is the same for both Amazon RDS and RDS Custom DB instances.

The Amazon EBS snapshots for the binary and root volumes remain in your account for a longer
time because they might be linked to some instances running in your account or to other RDS
Custom for SQL Server snapshots. These EBS snapshots are automatically deleted after they're no
longer related to any existing RDS Custom for SQL Server resources (DB instances or backups).

Console

To delete a snapshot of an RDS Custom DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB snapshot that you want to delete.

4. For Actions, choose Delete snapshot.

5. Choose Delete on the confirmation page.

AWS CLI

To delete an RDS Custom snapshot, use the AWS CLI command delete-db-snapshot.

The following option is required:

• --db-snapshot-identifier – The snapshot to be deleted

The following example deletes the my-custom-snapshot DB snapshot.

Example

For Linux, macOS, or Unix:

Backing up and restoring an RDS Custom for SQL Server DB instance 2139

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-snapshot.html

Amazon Relational Database Service User Guide

aws rds delete-db-snapshot \
 --db-snapshot-identifier my-custom-snapshot

For Windows:

aws rds delete-db-snapshot ^
 --db-snapshot-identifier my-custom-snapshot

Deleting RDS Custom for SQL Server automated backups

You can delete retained automated backups for RDS Custom for SQL Server when they are no
longer needed. The procedure is the same as the procedure for deleting Amazon RDS backups.

Console

To delete a retained automated backup

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. Choose Retained.

4. Choose the retained automated backup that you want to delete.

5. For Actions, choose Delete.

6. On the confirmation page, enter delete me and choose Delete.

AWS CLI

You can delete a retained automated backup by using the AWS CLI command delete-db-instance-
automated-backup.

The following option is used to delete a retained automated backup:

• --dbi-resource-id – The resource identifier for the source RDS Custom DB instance.

You can find the resource identifier for the source DB instance of a retained automated backup
by using the AWS CLI command describe-db-instance-automated-backups.

Backing up and restoring an RDS Custom for SQL Server DB instance 2140

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instance-automated-backups.html

Amazon Relational Database Service User Guide

The following example deletes the retained automated backup with source DB instance resource
identifier custom-db-123ABCEXAMPLE.

Example

For Linux, macOS, or Unix:

aws rds delete-db-instance-automated-backup \
 --dbi-resource-id custom-db-123ABCEXAMPLE

For Windows:

aws rds delete-db-instance-automated-backup ^
 --dbi-resource-id custom-db-123ABCEXAMPLE

Backing up and restoring an RDS Custom for SQL Server DB instance 2141

Amazon Relational Database Service User Guide

Copying an Amazon RDS Custom for SQL Server DB snapshot

With RDS Custom for SQL Server, you can copy automated backups and manual DB snapshots.
After copying a snapshot, the copy you create is a manual snapshot. You can make multiple copies
of an automated backup or manual snapshot but each copy must have a unique identifier.

You can only copy a snapshot within the same AWS account across different AWS Regions where
RDS Custom for SQL Server is available. The following operations are currently not supported:

• Copying DB snapshots within the same AWS Region.

• Copying DB snapshots across AWS accounts.

RDS Custom for SQL Server supports incremental snapshot copying. For more information, see
Considerations for incremental snapshot copying.

Topics

• Limitations

• Handling encryption

• Cross-Region copying

• Snapshots of DB instances created with Custom Engine Versions (CEV)

• Grant required permissions to your IAM principal

• Copying a DB snapshot

Limitations

The following limitations apply to copying a DB snapshot for RDS Custom for SQL Server:

• If you delete a source snapshot before the target snapshot becomes available, the snapshot copy
might fail. Verify that the target snapshot has a status of AVAILABLE before you delete the
source snapshot.

• You cannot specify an option group name or copy an options group in your DB snapshot copy
request.

• If you delete any dependent AWS resources of the source DB snapshot before or during the copy
process, your copy snapshot request could fail asynchronously.

• If you delete the Service Master Key (SMK) backup file for your source DB instance stored
in the RDS Custom managed S3 bucket in your account, the DB snapshot copy succeeds

Copying an RDS Custom for SQL Server DB snapshot 2142

Amazon Relational Database Service User Guide

asynchronously. However, SQL Server features dependent on SMK such as TDE enabled
databases run into issues. For more information, see Troubleshooting PENDING_RECOVERY
state for TDE enabled databases in RDS Custom for SQL Server.

• Copying DB snapshots within the same AWS Region is currently not supported.

• Copying DB snapshots across AWS accounts is currently not supported.

The limitations of copying a DB snapshot for Amazon RDS also apply to RDS Custom for SQL
Server. For more information, see Limitations.

Handling encryption

All RDS Custom for SQL Server DB instances and DB snapshots are encrypted with KMS keys. You
can only copy an encrypted snapshot to an encrypted snapshot, therefore you must specify a KMS
key valid in the destination AWS Region for your DB snapshot copy request.

The source snapshot remains encrypted throughout the copy process. Amazon RDS uses envelope
encryption to protect data during the copy operation with the specified destination AWS Region
KMS key. For more information, see Envelope encryption in the AWS Key Management Service
Developer Guide.

Cross-Region copying

You can copy DB snapshots across AWS Regions. However, there are certain constraints and
considerations for cross-Region snapshot copying.

Authorizing RDS to communicate across AWS Regions for snapshot copying

After a cross-Region DB snapshot copy request is processed successfully, RDS starts the copy.
An authorization request for RDS to access the source snapshot is created. This authorization
request links the source DB snapshot to the target DB snapshot. This allows RDS to copy only to
the specified target snapshot.

RDS verifies the authorization by using the rds:CrossRegionCommunication permission in the
service-linked IAM role. If the copy is authorized, RDS can communicate with the source Region and
complete the copy operation.

RDS doesn’t have access to DB snapshots that weren't authorized previously by a CopyDBSnapshot
request. The authorization is revoked after the copy completes.

Copying an RDS Custom for SQL Server DB snapshot 2143

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

Amazon Relational Database Service User Guide

RDS uses the service-linked role to verify the authorization in the source Region. The copy fails if
you delete the service-linked role during the copy process.

For more information, see Using service-linked roles in the AWS Identity and Access Management
User Guide.

Using AWS Security Token Service credentials

Session tokens from the global AWS Security Token Service (AWS STS) endpoint are valid only in
AWS Regions that are enabled by default (commercial Regions). If you use credentials from the
assumeRole API operation in AWS STS, use the regional endpoint if the source Region is an opt-in
Region. Otherwise, the request fails. Your credentials must be valid in both Regions, which is true
for opt-in Regions only when you use the regional AWS STS endpoint.

To use the global endpoint, make sure that it's enabled for both Regions in the operations. Set the
global endpoint to Valid in all AWS Regions in the AWS STS account settings.

For more information, see Managing AWS STS in an AWS Region in the AWS Identity and Access
Management User Guide.

Snapshots of DB instances created with Custom Engine Versions (CEV)

For a DB snapshot of a DB instance using a Custom Engine Version (CEV), RDS associates the CEV
with the DB snapshot. To copy a source DB snapshot associated with a CEV across AWS Regions,
RDS copies the CEV along with the source DB snapshot to the destination region.

If you are copying multiple DB snapshots associated with the same CEV to the same destination
region, the first copy request copies the associated CEV. The copy process of the following requests
finds the initially copied CEV and associates it with the following DB snapshot copies. The existing
CEV copy must be in AVAILABLE state to be associated with the DB snapshot copies.

To copy a DB snapshot associated with a CEV, the requester's IAM policy must have the permissions
to authorize both the DB snapshot copying and the associated CEV copying. The following
permissions are needed in your requester's IAM policy to allow the associated CEV copying:

• rds:CopyCustomDBEngineVersion ‐ Your requester IAM principal needs to have the
permission to copy the source CEV to the target region along with the source DB snapshot. The
snapshot copy request fails due to authorization errors if your requester IAM principal is not
authorized to copy the source CEV.

• ec2:CreateTags ‐ The underlying EC2 AMI of the source CEV is copied to the target region as a
part of the CEV copy. RDS Custom attempts to tag the AMI with the AWSRDSCustom tag before

Copying an RDS Custom for SQL Server DB snapshot 2144

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev-sqlserver.html

Amazon Relational Database Service User Guide

copying the AMI. Make sure your requester IAM principal has the permission to create the tag
against the AMI underlying the source CEV in the source region.

For more information about CEV copying permissions, see Grant required permissions to your IAM
principal.

Grant required permissions to your IAM principal

Make sure that you have sufficient access to copy a RDS Custom for SQL Server DB snapshot. The
IAM role or user (referred to as the IAM principal) for copying a DB snapshot using the console or
CLI must have either of the following policies for successful DB instance creation:

• The AdministratorAccess policy or,

• The AmazonRDSFullAccess policy with the following additional permissions:

s3:CreateBucket
s3:GetBucketPolicy
s3:PutBucketPolicy
kms:CreateGrant
kms:DescribeKey
ec2:CreateTags

RDS Custom uses these permissions during snapshot copying across AWS Regions. These
permissions configure resources in your account that are required for RDS Custom operations. For
more information about the kms:CreateGrant permission, see AWS KMS key management.

The following sample JSON policy grants the required permissions in addition to
AmazonRDSFullAccess policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateS3BucketAndReadWriteBucketPolicy",
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutBucketPolicy",
 "s3:GetBucketPolicy"

Copying an RDS Custom for SQL Server DB snapshot 2145

Amazon Relational Database Service User Guide

],
 "Resource": "arn:aws:s3:::do-not-delete-rds-custom-*"
 },
 {
 "Sid": "CreateKmsGrant",
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "CreateEc2Tags",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "*"
 }
]
}

Note

Make sure that the listed permissions aren't restricted by service control policies (SCPs),
permission boundaries, or session policies associated with the IAM principal.

If you use conditions with context keys in the requester's IAM policy, certain conditions can cause
the request to fail. For more information about common pitfalls due to IAM policy conditions, see
Requesting a cross-Region DB snapshot copy.

Copying a DB snapshot

Use the following procedures to copy a DB snapshot. For each AWS account, you can copy up to
20 DB snapshots at a time from one AWS Region to another. If you copy a DB snapshot to another
AWS Region, you create a manual DB snapshot that is retained in that AWS Region. Copying a
DB snapshot out of the source AWS Region incurs Amazon RDS data transfer charges. For more
information about data transfer pricing, see Amazon RDS pricing.

Copying an RDS Custom for SQL Server DB snapshot 2146

https://aws.amazon.com/rds/pricing/

Amazon Relational Database Service User Guide

After the DB snapshot copy has been created in the new AWS Region, the DB snapshot copy
behaves the same as all other DB snapshots in that AWS Region.

You can copy a DB snapshot using the AWS Management Console, AWS CLI, or the Amazon RDS
API.

Console

The following procedure copies a RDS Custom for SQL Server DB snapshot by using the AWS
Management Console.

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the RDS Custom for SQL Server DB snapshot that you want to copy.

4. In the Actions dropwdown , choose Copy snapshot.

Copying an RDS Custom for SQL Server DB snapshot 2147

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Copying an RDS Custom for SQL Server DB snapshot 2148

Amazon Relational Database Service User Guide

5. To copy the DB snapshot to a different AWS Region, set Destination Region to the required
value.

Note

The destination AWS Region must have the same database engine version available
as the source AWS Region.

6. For New DB snapshot identifier, enter a unique name for the DB snapshot. You can make
multiple copies of an automated backup or manual snapshot but each copy must have a
unique identifier.

7. (Optional) Select Copy Tags to copy tags and values from the snapshot to the copy of the
snapshot.

8. For Encryption, specify the KMS key identifier to use to encrypt the DB snapshot copy.

Note

RDS Custom for SQL Server encrypts all DB snapshots. You can't create an
unencrypted DB snapshot.

9. Choose Copy snapshot.

RDS Custom for SQL Server creates a DB snapshot copy of your DB instance in the AWS Region
of your selection.

AWS CLI

You can copy a RDS Custom for SQL Server DB snapshot by using the AWS CLI command copy-
db-snapshot. If you are copying the snapshot to a new AWS Region, run the command in the
new AWS Region. The following options are used to copy a DB snapshot. Not all options are
required for all scenarios.

• --source-db-snapshot-identifier ‐ The identifier for the source DB snapshot.

• If the source snapshot is in a different AWS Region than the copy,
specify a valid DB snapshot ARN. For example, arn:aws:rds:us-
west-2:123456789012:snapshot:instance1-snapshot-12345678.

• --target-db-snapshot-identifier ‐ The identifier for the new copy of the DB
snapshot.

Copying an RDS Custom for SQL Server DB snapshot 2149

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-snapshot.html

Amazon Relational Database Service User Guide

• --kms-key-id ‐The KMS key identifier for an encrypted DB snapshot. The KMS key identifier
is the Amazon Resource Name (ARN), key identifier, or key alias for the KMS key.

• If you copy an encrypted snapshot to a different AWS Region, then you must specify a KMS
key for the destination AWS Region. KMS keys are specific to the AWS Region that they
are created in and you cannot use encryption keys from one AWS Region in another AWS
Region unless a multi-Region key is used. For more information on multi-Region KMS keys,
see Using multi-Region keys in AWS KMS.

• --copy-tags ‐ Include the tags and values from the source snapshot to the copy of the
snapshot.

The following options are not supported for copying an RDS Custom for SQL Server DB
snapshot:

• --copy-option-group

• --option-group-name

• --pre-signed-url

• --target-custom-availability-zone

The following code example copies an encrypted DB snapshot from the US West (Oregon)
Region to the US East (N. Virginia) Region. Run the command in the destination (us-east-1)
Region.

For Linux, macOS, or Unix:

aws rds copy-db-snapshot \
 --region us-east-1 \
 --source-db-snapshot-identifier arn:aws:rds:us-
west-2:123456789012:snapshot:instance1-snapshot-12345678 \
 --target-db-snapshot-identifier mydbsnapshotcopy \
 --kms-key-id a1b2c3d4-1234-5678-wxyz-a1b2c3d4d5e6

For Windows:

aws rds copy-db-snapshot ^
 --region us-east-1 ^
 --source-db-snapshot-identifier arn:aws:rds:us-
west-2:123456789012:snapshot:instance1-snapshot-12345678 ^

Copying an RDS Custom for SQL Server DB snapshot 2150

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

Amazon Relational Database Service User Guide

 --target-db-snapshot-identifier mydbsnapshotcopy ^
 --kms-key-id a1b2c3d4-1234-5678-wxyz-a1b2c3d4d5e6

RDS API

You can copy a RDS Custom for SQL Server DB snapshot by using the Amazon RDS API
operation CopyDBSnapshot. If you are copying the snapshot to a new AWS Region, perform the
action in the new AWS Region. The following parameters are used to copy a DB snapshot. Not
all parameters are required:

• SourceDBSnapshotIdentifier ‐ The identifier for the source DB snapshot.

• If the source snapshot is in a different AWS Region than the copy,
specify a valid DB snapshot ARN. For example, arn:aws:rds:us-
west-2:123456789012:snapshot:instance1-snapshot-12345678.

• TargetDBSnapshotIdentifier ‐ The identifier for the new copy of the DB snapshot.

• KmsKeyId ‐ The KMS key identifier for an encrypted DB snapshot. The KMS key identifier is
the Amazon Resource Name (ARN), key identifier, or key alias for the KMS key.

• If you copy an encrypted snapshot to a different AWS Region, then you must specify a KMS
key for the destination AWS Region. KMS keys are specific to the AWS Region that they
are created in and you cannot use encryption keys from one AWS Region in another AWS
Region unless a multi-Region key is used. For more information on multi-Region KMS keys,
see Using multi-Region keys in AWS KMS.

• CopyTags ‐ Set this parameter to true to copy tags and values from the source snapshot to
the copy of the snapshot. The default is false.

The following options are not supported copying a RDS Custom for SQL Server DB snapshot:

• CopyOptionGroup

• OptionGroupName

• PreSignedUrl

• TargetCustomAvailabilityZone

The following code creates a copy of a snapshot, with the new name mydbsnapshotcopy, in
the US East (N. Virginia) Region.

https://rds.us-east-1.amazonaws.com/

Copying an RDS Custom for SQL Server DB snapshot 2151

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBSnapshot.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

Amazon Relational Database Service User Guide

 ?Action=CopyDBSnapshot
 &KmsKeyId=a1b2c3d4-1234-5678-wxyz-a1b2c3d4d5e6
 &SourceDBSnapshotIdentifier=arn%3Aaws%3Ards%3Aus-
west-2%3A123456789012%3Asnapshot%3Ainstance1-snapshot-12345678
 &TargetDBSnapshotIdentifier=mydbsnapshotcopy
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20161117T221704Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-
date
 &X-Amz-
Signature=da4f2da66739d2e722c85fcfd225dc27bba7e2b8dbea8d8612434378e52adccf

Copying an RDS Custom for SQL Server DB snapshot 2152

Amazon Relational Database Service User Guide

Migrating an on-premises database to Amazon RDS Custom for SQL
Server

You can use the following process to migrate an on-premises Microsoft SQL Server database to
Amazon RDS Custom for SQL Server using native backup and restore:

1. Take a full backup of the database on the on-premises DB instance.

2. Upload the backup file to Amazon S3.

3. Download the backup file from S3 to your RDS Custom for SQL Server DB instance.

4. Restore a database using the downloaded backup file on the RDS Custom for SQL Server DB
instance.

This process explains the migration of a database from on-premises to RDS Custom for SQL Server,
using native full backup and restore. To reduce the cutover time during the migration process, you
might also consider using differential or log backups.

For general information about native backup and restore for RDS for SQL Server, see Importing
and exporting SQL Server databases using native backup and restore.

Topics

• Prerequisites

• Backing up the on-premises database

• Uploading the backup file to Amazon S3

• Downloading the backup file from Amazon S3

• Restoring the backup file to the RDS Custom for SQL Server DB instance

Prerequisites

Perform the following tasks before migrating the database:

1. Configure Remote Desktop Connection (RDP) for your RDS Custom for SQL Server DB instance.
For more information, see Connecting to your RDS Custom DB instance using RDP.

2. Configure access to Amazon S3 so you can upload and download the database backup file.

Migrating an on-premises database to RDS Custom for SQL Server 2153

Amazon Relational Database Service User Guide

Backing up the on-premises database

You use SQL Server native backup to take a full backup of the database on the on-premises DB
instance.

The following example shows a backup of a database called mydatabase, with the COMPRESSION
option specified to reduce the backup file size.

To back up the on-premises database

1. Using SQL Server Management Studio (SSMS), connect to the on-premises SQL Server
instance.

2. Run the following T-SQL command.

backup database mydatabase to
disk ='C:\Program Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\MSSQL\Backup\mydb-
full-compressed.bak'
with compression;

Uploading the backup file to Amazon S3

You use the AWS Management Console to upload the backup file mydb-full-compressed.bak
to Amazon S3.

To upload the backup file to S3

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. For Buckets, choose the name of the bucket to which you want to upload your backup file.

3. Choose Upload.

4. In the Upload window, do one of the following:

• Drag and drop mydb-full-compressed.bak to the Upload window.

• Choose Add file, choose mydb-full-compressed.bak, and then choose Open.

Amazon S3 uploads your backup file as an S3 object. When the upload completes, you can see
a success message on the Upload: status page.

Migrating an on-premises database to RDS Custom for SQL Server 2154

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Relational Database Service User Guide

Downloading the backup file from Amazon S3

You use the console to download the backup file from S3 to the RDS Custom for SQL Server DB
instance.

To download the backup file from S3

1. Using RDP, connect to your RDS Custom for SQL Server DB instance.

2. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

3. In the Buckets list, choose the name of the bucket that contains your backup file.

4. Choose the backup file mydb-full-compressed.bak.

5. For Actions, choose Download as.

6. Open the context (right-click) menu for the link provided, then choose Save As.

7. Save mydb-full-compressed.bak to the D:\rdsdbdata\BACKUP directory.

Restoring the backup file to the RDS Custom for SQL Server DB instance

You use SQL Server native restore to restore the backup file to your RDS Custom for SQL Server DB
instance.

In this example, the MOVE option is specified because the data and log file directories are different
from the on-premises DB instance.

To restore the backup file

1. Using SSMS, connect to your RDS Custom for SQL Server DB instance.

2. Run the following T-SQL command.

restore database mydatabase from disk='D:\rdsdbdata\BACKUP\mydb-full-
compressed.bak'
with move 'mydatabase' to 'D:\rdsdbdata\DATA\mydatabase.mdf',
move 'mydatabase_log' to 'D:\rdsdbdata\DATA\mydatabase_log.ldf';

Migrating an on-premises database to RDS Custom for SQL Server 2155

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Relational Database Service User Guide

Upgrading a DB instance for Amazon RDS Custom for SQL Server

You can upgrade an Amazon RDS Custom for SQL Server DB instance by modifying it to use a new
DB engine version, the same as you do for Amazon RDS.

The same limitations for upgrading an RDS Custom for SQL Server DB instance apply as for
modifying an RDS Custom for SQL Server DB instance in general. For more information, see
Modifying an RDS Custom for SQL Server DB instance.

For general information about upgrading DB instances, see Upgrading a DB instance engine
version.

If you upgrade an RDS Custom for SQL Server DB instance in a Multi-AZ deployment, then Amazon
RDS performs rolling upgrades, so you have an outage only for the duration of a failover. For more
information, see Multi-AZ and in-memory optimization considerations.

Major version upgrades

Amazon RDS Custom for SQL Server currently supports the following major version upgrades.

Current version Supported upgrade versions

SQL Server 2019 SQL Server 2022

You can use an AWS CLI query, such as the following example, to find the available upgrades for a
particular database engine version.

Example

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine custom-sqlserver-se \
 --engine-version 15.00.4322.2.v1 \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" \
 --output table

For Windows:

aws rds describe-db-engine-versions ^

Upgrading a DB instance for RDS Custom for SQL Server 2156

Amazon Relational Database Service User Guide

 --engine custom-sqlserver-se ^
 --engine-version 15.00.4322.2.v1 ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" ^
 --output table

Database compatibility level

You can use Microsoft SQL Server database compatibility levels to adjust some database behaviors
to mimic previous versions of SQL Server. For more information, see Compatibility level in the
Microsoft documentation.

When you upgrade your DB instance, all existing databases remain at their original compatibility
level. For example, if you upgrade from SQL Server 2019 to SQL Server 2022, all existing databases
have a compatibility level of 150. Any new database created after the upgrade have compatibility
level 160.

You can change the compatibility level of a database by using the ALTER DATABASE command. For
example, to change a database named customeracct to be compatible with SQL Server 2022,
issue the following command:

ALTER DATABASE customeracct SET COMPATIBILITY_LEVEL = 160

Upgrading a DB instance for RDS Custom for SQL Server 2157

https://msdn.microsoft.com/en-us/library/bb510680.aspx

Amazon Relational Database Service User Guide

Troubleshooting DB issues for Amazon RDS Custom for SQL Server

The shared responsibility model of RDS Custom provides OS shell–level access and database
administrator access. RDS Custom runs resources in your account, unlike Amazon RDS, which runs
resources in a system account. With greater access comes greater responsibility. In the following
sections, you can learn how to troubleshoot issues with Amazon RDS Custom for SQL Server DB
instances.

Note

This section explains how to troubleshoot RDS Custom for SQL Server. For troubleshooting
RDS Custom for Oracle, see Troubleshooting DB issues for Amazon RDS Custom for Oracle.

Topics

• Viewing RDS Custom events

• Subscribing to RDS Custom events

• Troubleshooting CEV errors for RDS Custom for SQL Server

• Fixing unsupported configurations in RDS Custom for SQL Server

• Troubleshooting Storage-Full in RDS Custom for SQL Server

• Troubleshooting PENDING_RECOVERY state for TDE enabled databases in RDS Custom for SQL
Server

Viewing RDS Custom events

The procedure for viewing events is the same for RDS Custom and Amazon RDS DB instances. For
more information, see Viewing Amazon RDS events.

To view RDS Custom event notification using the AWS CLI, use the describe-events command.
RDS Custom introduces several new events. The event categories are the same as for Amazon RDS.
For the list of events, see Amazon RDS event categories and event messages.

The following example retrieves details for the events that have occurred for the specified RDS
Custom DB instance.

aws rds describe-events \
 --source-identifier my-custom-instance \

Troubleshooting Amazon RDS Custom for SQL Server 2158

Amazon Relational Database Service User Guide

 --source-type db-instance

Subscribing to RDS Custom events

The procedure for subscribing to events is the same for RDS Custom and Amazon RDS DB
instances. For more information, see Subscribing to Amazon RDS event notification.

To subscribe to RDS Custom event notification using the CLI, use the create-event-
subscription command. Include the following required parameters:

• --subscription-name

• --sns-topic-arn

The following example creates a subscription for backup and recovery events for an RDS Custom
DB instance in the current AWS account. Notifications are sent to an Amazon Simple Notification
Service (Amazon SNS) topic, specified by --sns-topic-arn.

aws rds create-event-subscription \
 --subscription-name my-instance-events \
 --source-type db-instance \
 --event-categories '["backup","recovery"]' \
 --sns-topic-arn arn:aws:sns:us-east-1:123456789012:interesting-events

Troubleshooting CEV errors for RDS Custom for SQL Server

When you try to create a CEV, it might fail. In this case, RDS Custom issues the RDS-EVENT-0198
event message. For more information on viewing RDS events, see Amazon RDS event categories
and event messages.

Use the following information to help you address possible causes.

Message Troubleshooting suggestions

Custom Engine Version
creation expected a
Sysprep’d AMI. Retry
creation using a Sysprep’d
AMI.

Run Sysprep on the EC2 instance
that you created from the AMI. For
more information about prepping
an AMI using Sysprep, see Create
a standardized Amazon Machine
Image (AMI) using Sysprep.

Troubleshooting Amazon RDS Custom for SQL Server 2159

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html#sysprep-using-ec2launchv2
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html#sysprep-using-ec2launchv2
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html#sysprep-using-ec2launchv2

Amazon Relational Database Service User Guide

Message Troubleshooting suggestions

EC2 Image permissio
ns for image (AMI_ID)
weren't found for customer
(Customer_ID). Verify
customer (Customer_ID) has
valid permissions on the
EC2 Image.

Verify that your account and profile
used for creation has the required
permissions on create EC2
Instance and Describe Images
for the selected AMI.

Failed to rebuild databases
with server collation
(collation name) due to
missing setup.exe file for
SQL Server.

Verify that the setup file is
available at C:\Program Files
\Microsoft SQL Server\nnn
\Setup Bootstrap\SQLnnnn\
setup.exe .

Image (AMI_ID) doesn't
exist in your account
(ACCOUNT_ID). Verify
(ACCOUNT_ID) is the owner
of the EC2 image.

Ensure the AMI exists in the same
customer account.

Image id (AMI_ID) isn't
valid. Specify a valid
image id, and try again.

The name of the AMI is incorrect
. Ensure the correct AMI ID is
provided.

Troubleshooting Amazon RDS Custom for SQL Server 2160

Amazon Relational Database Service User Guide

Message Troubleshooting suggestions

Image (AMI_ID) operating
system platform isn't
supported. Specify a valid
image, and try again.

Choose a supported AMI that has
Windows Server with SQL Server
Enterprise, Standard, or Web
edition. Choose an AMI with one
of the following usage operation
codes from the EC2 Marketplace:

• RunInstances:0102 - Windows
with SQL Server Enterprise

• RunInstances:0006 - Windows
with SQL Server Standard

• RunInstances:0202 - Windows
with SQL Server Web

SQL Server Web Edition
isn't supported for
creating a Custom Engine
Version using Bring Your
Own Media. Specify a valid
image, and try again.

Use an AMI that contains a
supported edition of SQL Server.
For more information, see Version
support for RDS Custom for SQL
Server CEVs.

The custom engine version
can't be the same as the
OEV engine version. Specify
a valid CEV, and try again.

Classic RDS Custom for SQL Server
engine versions aren't supported
. For example, version 15.00.407
3.23.v1. Use a supported version
number.

The custom engine version
isn't in an active state.
Specify a valid CEV, and
try again.

The CEV must be in an AVAILABLE
 state to complete the operation.

Modify the CEV from INACTIVE to
AVAILABLE .

Troubleshooting Amazon RDS Custom for SQL Server 2161

Amazon Relational Database Service User Guide

Message Troubleshooting suggestions

The custom engine version
isn't valid for an upgrade.
Specify a valid CEV with
an engine version greater
or equal to (X), and try
again.

The target CEV is not valid. Check
the requirements for a valid
upgrade path.

The custom engine version
isn't valid. Names can
include only lowercase
letters (a-z), dashes
(-), underscores (_),
and periods (.). Specify a
valid CEV, and try again.

Follow the required CEV naming
convention. For more information,
see Requirements for RDS Custom
for SQL Server CEVs.

The custom engine version
isn't valid. Specify valid
database engine version,
and try again. Example:
15.00.4073.23-cev123.

An unsupported DB engine version
was provided. Use a supported DB
engine version.

The expected architecture
is (X) for image (AMI_ID),
but architecture (Y) was
found.

Use an AMI built on the x86_64
architecture.

The expected owner of
image (AMI_ID) is customer
account ID (ACCOUNT_ID),
but owner (ACCOUNT_ID) was
found.

Create the EC2 instance from the
AMI that you have permission for.
Run Sysprep on the EC2 instance to
create and save a base image.

The expected platform is
(X) for image (AMI_ID), but
platform (Y) was found.

Use an AMI built with the Windows
platform.

Troubleshooting Amazon RDS Custom for SQL Server 2162

Amazon Relational Database Service User Guide

Message Troubleshooting suggestions

The expected root device
type is (X) for image %s,
but root device type (Y)
was found.

Create the AMI with the EBS device
type.

The expected SQL Server
edition is (X), but (Y) was
found.

Choose a supported AMI that has
Windows Server with SQL Server
Enterprise, Standard, or Web
edition. Choose an AMI with one
of the following usage operation
codes from the EC2 Marketplace:

• RunInstances:0102 - Windows
with SQL Server Enterprise

• RunInstances:0006 - Windows
with SQL Server Standard

• RunInstances:0202 - Windows
with SQL Server Web

The expected state is (X)
for image (AMI_ID), but the
following state was found:
(Y).

Ensure the AMI is in a state of
AVAILABLE .

The provided Windows OS
name (X) isn’t valid. Make
sure the OS is one of the
following: (Y).

Use a supported Windows OS.

Unable to find bootstrap
log file in path.

Verify that the log file is available
at C:\Program Files\Mic
rosoft SQL Server\nnn
\Setup Bootstrap\Log\Summ
ary.txt .

Troubleshooting Amazon RDS Custom for SQL Server 2163

Amazon Relational Database Service User Guide

Message Troubleshooting suggestions

RDS expected a Windows
build version greater than
or equal to (X), but found
version (Y)..

Use an AMI with a minimum OS
build version of 14393.

RDS expected a Windows
major version greater than
or equal to (X), but found
version (Y)..

Use an AMI with a minimum OS
major version of 10.0 or higher.

Fixing unsupported configurations in RDS Custom for SQL Server

Because of the shared responsibility model, it's your responsibility to fix configuration issues that
put your RDS Custom for SQL Server DB instance into the unsupported-configuration state. If
the issue is with the AWS infrastructure, you can use the console or the AWS CLI to fix it. If the issue
is with the operating system or the database configuration, you can log in to the host to fix it.

Note

This section explains how to fix unsupported configurations in RDS Custom for SQL Server.
For information about RDS Custom for Oracle, see Fixing unsupported configurations in
RDS Custom for Oracle.

In the following tables, you can find descriptions of the notifications and events that the support
perimeter sends and how to fix them. These notifications and the support perimeter are subject to
change. For background on the support perimeter, see RDS Custom support perimeter. For event
descriptions, see Amazon RDS event categories and event messages.

Event Code Configuration
area

RDS event message Validation process

SP-S0000 Manual
Unsupported
Configuration

The RDS Custom
DB instance status
is set to [Unsuppor

To resolve this issue, create a
support case.

Troubleshooting Amazon RDS Custom for SQL Server 2164

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

ted configuration]
because of: X.

AWS resource (infrastructure)

Event Code Configuration
area

RDS event message Validation process

SP-S1001 EC2 Instance
State

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
underlying EC2
instance %s has
been stopped
without stopping
the RDS instance.
You can resolve
this by starting
the underlying
EC2 instance and
ensuring that
the binary and
data volumes are
attached. If your
intention is to stop
the RDS instance,
make sure that
underlying EC2
instance is in the
AVAILABLE state
first and then use

To check the status of a DB
instance, use the console or run the
following AWS CLI command:

aws rds describe-db-instan
ces \
 --db-instance-identifier
 db-instance-name |grep
 DBInstanceStatus

Troubleshooting Amazon RDS Custom for SQL Server 2165

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

the RDS console or
CLI to stop the RDS
instance.

SP-S1002 EC2 Instance
State

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The RDS
DB instance status
is set to STOPPED
but the underlyin
g EC2 instance %s
has been started.
You can resolve
this by stopping
the underlying EC2
instance. If your
intention is to start
the RDS instance,
use the console or
CLI.

Use the following AWS CLI
command to check the status of a
DB instance:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep DBInstanceStatus

You can also check the status of the
EC2 instance using the EC2 console.

To start a DB instance, use the
console or run the following AWS
CLI command:

aws rds start-db-instance \
 --db-instance-iden
tifier db-instance-name

Troubleshooting Amazon RDS Custom for SQL Server 2166

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

SP-S1003 EC2 Instance
Class

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because
of: There is a
mismatch between
the expected and
configured DB
instance class of
the EC2 host. You
can resolve this by
modifying the DB
instance class to its
original class type.

Use the following CLI command
to check the expected DB instance
class:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep DBInstanceClass

SP-S1004 EBS Storage
Volume Not
Accessible

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
original EBS storage
volume %s that
was associated with
the EC2 instance
is currently not
accessible.

Troubleshooting Amazon RDS Custom for SQL Server 2167

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

SP-S1005 EBS Storage
Volume Detached

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
original EBS storage
volume "volume-id"
isn’t attached. You
can resolve this by
attaching the EBS
volume associated
to the EC2 instance.

After re-attaching the EBS volume,
use the following CLI commands to
check if the EBS volume 'volume-i
d' is properly attached to the RDS
instance:

aws ec2 describe-volumes \
 --volume-ids volume-id |
grep InstanceId

SP-S1006 EBS Storage
Volume Size

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because
of: There is a
mismatch between
the expected and
configured settings
of EBS storage
volume "volume-
id". The volume
size has been
changed manually
at EC2 level from
its original value(s)
of [%s]. To resolve
this issue, create a
support case.

Use the following CLI command to
compare the volume size of the EBS
volume 'volume-id' details and the
RDS instance details:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep AllocatedStorage

Use the following CLI command to
view the actual allocated volume
size:

aws ec2 describe-volumes \
 --volume-ids |grep Size

Troubleshooting Amazon RDS Custom for SQL Server 2168

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

SP-S1007 EBS Storage
Volume Configura
tion

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because
of: There is a
mismatch between
the expected and
configured settings
of EBS storage
volume "volume-id".
You can resolve this
by modifying the
EBS storage volume
configuration
[IOPS, Throughpu
t, Volume type]
to its original
value(s) of [IOPS:
%s, Throughput:
%s, Volume type:
%s] at the EC2 level.
For future storage
modifications, use
the RDS console
or CLI. The volume
size has also been
changed manually
at EC2 level from
its original value(s)
of [%s]. To resolve
this issue, create a
support case.

Use the following CLI command
to compare the volume type of
the EBS volume 'volume-id' details
and the RDS instance details. Make
sure that the values at the EBS
level matches the values at the RDS
level:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep StorageType

To get the expected value for
Storage Throughput at the RDS
level:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep StorageThroughput

To get the expected value for
Volume IOPS at the RDS level:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep Iops

To get the current Storage Type at
the EC2 Level:

Troubleshooting Amazon RDS Custom for SQL Server 2169

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

aws ec2 describe-volumes \
 --volume-ids |grep
 VolumeType

To get the current value for Storage
Throughput at the EC2 Level:

aws ec2 describe-volumes \
 --volume-ids |grep
 Throughput

To get the current value for Volume
IOPS at the EC2 Level:

aws ec2 describe-volumes \
 --volume-ids |grep Iops

Troubleshooting Amazon RDS Custom for SQL Server 2170

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

SP-S1008 EBS Storage
Volume Size and
Configuration

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because
of: There is a
mismatch between
the expected and
configured settings
of EBS storage
volume "volume-id".
You can resolve this
by modifying the
EBS storage volume
configuration
[IOPS, Throughpu
t, Volume type]
to its original
value(s) of [IOPS:
%s, Throughput:
%s, Volume type:
%s] at the EC2 level.
For future storage
modifications, use
the RDS console
or CLI. The volume
size has also been
changed manually
at EC2 level from
its original value(s)
of [%s]. To resolve
this issue, create a
support case.

Use the following CLI command
to compare the volume type of
the EBS volume 'volume-id' details
and the RDS instance details. Make
sure that the values at the EBS
level matches the values at the RDS
level:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep StorageType

To get the expected value for
Storage Throughput at the RDS
level:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep StorageThroughput

To get the expected value for
Volume IOPS at the RDS level:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep Iops

To get the current Storage Type at
the EC2 Level:

Troubleshooting Amazon RDS Custom for SQL Server 2171

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

aws ec2 describe-volumes \
 --volume-ids |grep
 VolumeType

To get the current value for Storage
Throughput at the EC2 Level:

aws ec2 describe-volumes \
 --volume-ids |grep
 Throughput

To get the current value for Volume
IOPS at the EC2 Level:

aws ec2 describe-volumes \
 --volume-ids |grep Iops

To get the expected Allocated
Volume Size:

aws rds describe-db-instan
ces \
 --db-instance-iden
tifier db-instance-name |
grep AllocatedStorage

To get the actual Allocated Volume
Size:

aws ec2 describe-volumes \
 --volume-ids |grep Size

Troubleshooting Amazon RDS Custom for SQL Server 2172

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

SP-S1009 SQS Permissions The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
Amazon Simple
Queue Service (SQS)
permissions are
missing for the IAM
instance profile.
You can resolve
this by making sure
the IAM profile
associated with
the host has the
following permissio
ns: ["SQS:Sen
dMessage","SQS:Rec
eiveMessage","SQS:
DeleteMessage","SQ
S:GetQueueUrl"].

Troubleshooting Amazon RDS Custom for SQL Server 2173

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation process

SP-S1010 SQS VPC
Endpoint

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: A VPC
endpoint policy
is blocking the
Amazon Simple
Queue Service (SQS)
operations. You
can resolve this by
modifying your VPC
endpoint policy to
allow the required
SQS actions.

Operating system

Event Code Configuration
area

RDS event message Validation proces

SP-S2001 SQL Service
Status

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
SQL Server service
isn’t started. You
can resolve this by
restarting the SQL
Server service on
the host. If this DB
instance is a Multi-

Troubleshooting Amazon RDS Custom for SQL Server 2174

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

AZ DB instance and
restart fails, then
stop and start the
host to initiate a
failover.

SP-S2002 RDS Custom
Agent Status

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
The RDS Custom
Agent service isn’t
installed or couldn’t
be started. You
can resolve this
by reviewing the
Windows Event Log
to determine why
the service won’t
start, and take
appropriate steps
to fix the issue. For
additional assistanc
e, create a support
case.

Log in to the host and make sure
that the RDS Custom agent is
running.

You can use the following
commands to view the agent
status.

$name = "RDSCustomAgent"
$service = Get-Service $name
Write-Host $service.Status

If the status isn't Running, you can
start the service with the following
command:

Start-Service $name

If the agent can't start, check the
Windows Events to see why it can't
start. The agent requires a Windows
user to start the service. Ensure
a Windows user exists and has
privileges to run the service.

Troubleshooting Amazon RDS Custom for SQL Server 2175

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S2003 SSM Agent Status The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
The Amazon SSM
Agent service is
unreachable. You
can troubleshoot
this by checking the
service status with
the Get-Servi
ce AmazonSSM
Agent PowerShel
l command, or
starting the service
with Start-Ser
vice AmazonSSM
Agent . Ensure
that HTTPS (port
443) outbound
traffic to the ssm,
ssmmessages,
and ec2messages
regional endpoints
is allowed.

For more information, see
Troubleshooting SSM Agent.

To troubleshoot SSM endpoints
, see Unable to connect to SSM
endpoints and Use ssm-cli to
troubleshoot managed node
availability.

Troubleshooting Amazon RDS Custom for SQL Server 2176

https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html#systems-manager-ssm-agent-troubleshooting-endpoint-access
https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html#systems-manager-ssm-agent-troubleshooting-endpoint-access
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-cli.html#agent-ts-ssm-cli
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-cli.html#agent-ts-ssm-cli
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-cli.html#agent-ts-ssm-cli

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S2004 RDS Custom
Agent Login

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
An unexpected
issue occurred
with the SQL login
"$HOSTNAME/
RDSAgent” . To
resolve this issue,
create a support
case.

Troubleshooting Amazon RDS Custom for SQL Server 2177

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S2005 Timezone The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
The timezone on
the Amazon EC2
Instance [%s] was
changed. You can
resolve this by
modifying the time
zone back to the
setting specified
during instance
creation. If you
would like to create
an instance with a
specific timezone,
see the RDS Custom
documentation.

Run the Get-Timezone
PowerShell command to confirm
the timezone.

For more information, see Local
time zone for RDS Custom for SQL
Server DB instances.

Troubleshooting Amazon RDS Custom for SQL Server 2178

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S2006 High Availability
Software Solution
Version

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
high availability
software solution of
the current instance
is different from the
expected version. To
resolve this issue,
create a support
case.

Troubleshooting Amazon RDS Custom for SQL Server 2179

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S2007 High Availability
Software Solution
Configuration

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
The configuration
settings of the
high availability
software solution
have been modified
to unexpected
values on the
instance %s. To fix
this issue, reboot
the EC2 instance.
When you reboot
the EC2 instance,
it automatically
updates the settings
to the required
configuration for
the high availability
software solution.

Troubleshooting Amazon RDS Custom for SQL Server 2180

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S2008 SQL Server
Service

The RDS Custom
DB instance is
set to [Unsuppor
ted configura
tion]: SQLServer
(MSSQLServer)
service doesn't exist
on the host. To
resolve this, create a
support case.

You can use the following
commands to view the agent
status.

$name = "MSSQLServer"
$service = Get-Service $name
Write-Host $service.Status

SP-2009 SSL Certificate The RDS Custom
DB instance is set
to [Unsupported
configuration]
because of: Non
self-signed SSL
certificate(s) causing
disruption in RDS.
To resolve this
issue, remove the
non self-signed
certificate(s) from
the trusted root
certificate store.

Run the following PowerShell
command to review non self-signed
certificate(s).

Get-ChildItem cert:\Loc
alMachine\root -Recurse |
 Where-Object {$_.Issuer -
ne $_.Subject -and $_.Issuer
 -notlike "*RDSCustomAgentCA
*"}

For more information, see HTTP
Error 403.16 when you try to access
a website that's hosted on IIS.

Database

Troubleshooting Amazon RDS Custom for SQL Server 2181

https://learn.microsoft.com/en-us/troubleshoot/developer/webapps/iis/site-behavior-performance/http-403-forbidden-access-website
https://learn.microsoft.com/en-us/troubleshoot/developer/webapps/iis/site-behavior-performance/http-403-forbidden-access-website
https://learn.microsoft.com/en-us/troubleshoot/developer/webapps/iis/site-behavior-performance/http-403-forbidden-access-website

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S3001 SQL Server
Shared Memory
Protocol

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
SQL Server shared
memory protocol
is disabled. You
can resolve this
by enabling the
shared memory
protocol in SQL
Server Configura
tion Manager.

You can validate this by checking:
SQL Server Configuration
Manager > SQL Server Network
Configuration > Protocols for
MSSQLSERVER> Shared Memory
as Enabled. After you enable the
protocol, restart the SQL Server
process.

SP-S3002 Service Master
Key

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: RDS
Automation is
unable to take the
backup of Service
Master Key (SMK)
as part of the new
SMK generation. To
resolve this issue,
create a support
case.

SP-S3003 Service Master
Key

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]

Troubleshooting Amazon RDS Custom for SQL Server 2182

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

because of: The
metadata related to
the Service Master
Key (SMK) is missing
or incomplete. To
resolve this issue,
create a support
case.

SP-S3004 DB Engine
Version and
Edition

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because
of: There is a
mismatch between
the expected and
installed SQL Server
version and edition:
Modifying the SQL
Server edition is
not supported
on RDS Custom
for SQL Server.
Also, manually
changing the SQL
Server version on
the RDS Custom
EC2 instance is
not supported. To
resolve this issue,
create a support
case.

Run the following query to get the
SQL version:

select @@version

Run the following AWS CLI
command to get the RDS SQL
engine version and edition:

aws rds describe-db-instan
ces \
--db-instance-identifier db-
instance-name |grep EngineVer
sion
aws rds describe-db-instan
ces \
--db-instance-identifier db-
instance-name |grep Engine

For more information, see
Modifying an RDS Custom for SQL
Server DB instance and Upgrading a
DB instance engine version.

Troubleshooting Amazon RDS Custom for SQL Server 2183

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S3005 DB Engine Edition The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
current SQL Server
edition doesn't
match the expected
SQL Server edition
[%s]: Modifying the
SQL Server edition
is not supported on
RDS Custom for SQL
Server. To resolve
this issue, create a
support case.

Run the following query to get the
SQL edition:

Example

select @@version

Run the following AWS CLI
command to get the RDS SQL
engine edition:

aws rds describe-db-instan
ces \
--db-instance-identifier db-
instance-name |grep Engine

Troubleshooting Amazon RDS Custom for SQL Server 2184

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S3006 DB Engine
Version

The RDS Custom
DB instance status
is set to [Unsuppor
ted configuration]
because of: The
current SQL Server
version doesn't
match the expected
SQL Server version
[%s]: You can't
manually change
the SQL Server
version on the
RDS Custom EC2
instance. To resolve
this issue, create
a support case.
For any future
modifications to
SQL Server version,
you can modify the
instance from the
AWS RDS console or
through the modify-
db-instance CLI
command.

Run the following query to get the
SQL version:

Example

select @@version

Run the following AWS CLI
command to get the RDS SQL
engine version:

aws rds describe-db-instan
ces \
--db-instance-identifier db-
instance-name |grep EngineVer
sion

For more information, see
Modifying an RDS Custom for SQL
Server DB instance and Upgrading a
DB instance engine version.

Troubleshooting Amazon RDS Custom for SQL Server 2185

Amazon Relational Database Service User Guide

Event Code Configuration
area

RDS event message Validation proces

SP-S3007 Database file
location

The RDS Custom
DB instance status
is set to [Unsuppor
ted configura
tion] because of:
Database files are
configured outside
of the D:\ drive. You
can resolve this by
making sure that
all database files,
including ROW,
LOG, FILESTREAM,
etc... are stored on
the D:\ drive.

Run the following query to list
the location of database files that
aren't in the default path:

USE master;
SELECT physical_name as
 files_not_in_default_path
FROM sys.master_files
WHERE SUBSTRING(physical
_name,1,3)!='D:\';

Troubleshooting Storage-Full in RDS Custom for SQL Server

RDS Custom monitors the available space on both the root (C:) and data (D:) volumes of an RDS
Custom for SQL Server DB instance. RDS Custom moves the instance state to the Storage-
Full status when either volume has less than 500 MiB disk space available. To scale the instance
storage, see Modifying the storage for an RDS Custom for SQL Server DB instance.

Note

Instances in Storage-Full can take up to 30 minutes to resolve after scaling storage.

Troubleshooting PENDING_RECOVERY state for TDE enabled databases in RDS
Custom for SQL Server

SQL Server databases with transparent data encryption (TDE) enabled might remain in
PENDING_RECOVERY state if the automatic decryption runs into issues. This typically occurs after

Troubleshooting Amazon RDS Custom for SQL Server 2186

Amazon Relational Database Service User Guide

a DB instance restore if the source DB instance Service Master Key (SMK) backup file stored in the
RDS Custom managed S3 bucket in your account has been deleted prior to the restore completion.

To enable the automatic decryption and bring the TDE enabled databases online, you need to open
the Database Master Key (DMK) with its password and ecrypt the DMK using the SMK.

Use the following SQL Server commands for reference:

-- Identify PENDING_RECOVERY TDE databases
USE MASTER;
GO
SELECT name, is_encrypted, state_desc FROM sys.databases;
GO

-- Open DMK using password
OPEN MASTER KEY DECRYPTION BY PASSWORD = '<password>';
GO

-- Encrypt DMK using SMK
ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY;
GO

-- Close SMK
CLOSE MASTER KEY;
GO

-- Bring the TDE databases online
ALTER DATABASE <database_name> SET ONLINE;
GO

-- Verify TDE databases are now in ONLINE state
SELECT name, is_encrypted, state_desc FROM sys.databases;
GO

Troubleshooting Amazon RDS Custom for SQL Server 2187

Amazon Relational Database Service User Guide

Amazon RDS on AWS Outposts

Amazon RDS on AWS Outposts extends RDS for SQL Server, RDS for MySQL, and RDS for
PostgreSQL databases to AWS Outposts environments. AWS Outposts uses the same hardware as
in public AWS Regions to bring AWS services, infrastructure, and operation models on-premises.
With RDS on Outposts, you can provision managed DB instances close to the business applications
that must run on-premises. For more information about AWS Outposts, see the AWS Outposts
documentation and the AWS Outposts product page.

You use the same AWS Management Console, AWS CLI, and RDS API to provision and manage on-
premises RDS on Outposts DB instances as you do for RDS DB instances running in the AWS Cloud.
RDS on Outposts automates tasks, such as database provisioning, operating system and database
patching, backup, and long-term archival in Amazon S3.

RDS on Outposts supports automated backups of DB instances. Network connectivity between
your Outpost and your AWS Region is required to back up and restore DB instances. All DB
snapshots and transaction logs from an Outpost are stored in your AWS Region. From your
AWS Region, you can restore a DB instance from a DB snapshot to a different Outpost. For more
information, see Introduction to backups.

RDS on Outposts supports automated maintenance and upgrades of DB instances. For more
information, see Maintaining a DB instance.

RDS on Outposts uses encryption at rest for DB instances and DB snapshots using your AWS KMS
key. For more information about encryption at rest, see Encrypting Amazon RDS resources.

By default, EC2 instances in Outposts subnets can use the Amazon Route 53 DNS Service to resolve
domain names to IP addresses. You might encounter longer DNS resolution times with Route 53,
depending on the path latency between your Outpost and the AWS Region. In such cases, you can
use the DNS servers installed locally in your on-premises environment. For more information, see
DNS in the AWS Outposts User Guide.

When network connectivity to the AWS Region isn't available, your DB instance continues to run
locally. You can continue to access DB instances using DNS name resolution by configuring a local
DNS server as a secondary server. However, you can't create new DB instances or modify existing
DB instances. Automatic backups don't occur when there is no connectivity. If there is a DB instance
failure, the DB instance isn't automatically replaced until connectivity is restored. We recommend
restoring network connectivity as soon as possible.

2188

https://docs.aws.amazon.com/outposts/
https://docs.aws.amazon.com/outposts/
https://aws.amazon.com/outposts/
https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#dns

Amazon Relational Database Service User Guide

Topics

• Prerequisites for Amazon RDS on AWS Outposts

• Amazon RDS on AWS Outposts support for Amazon RDS features

• Supported DB instance classes for Amazon RDS on AWS Outposts

• Customer-owned IP addresses for Amazon RDS on AWS Outposts

• Working with Multi-AZ deployments for Amazon RDS on AWS Outposts

• Creating DB instances for Amazon RDS on AWS Outposts

• Creating read replicas for Amazon RDS on AWS Outposts

• Considerations for restoring DB instances on Amazon RDS on AWS Outposts

Prerequisites for Amazon RDS on AWS Outposts

The following are prerequisites for using Amazon RDS on AWS Outposts:

• Install AWS Outposts in your on-premises data center. For more information, see Installing an
AWS Outposts server in the AWS Outposts Server installation guide.

• Make sure that you have at least one subnet available for RDS on Outposts. You can use the
same subnet for other workloads.

• Make sure that you have a reliable network connection between your Outpost and an AWS
Region.

Prerequisites 2189

https://docs.aws.amazon.com/outposts/latest/install-server/install-server.html
https://docs.aws.amazon.com/outposts/latest/install-server/install-server.html

Amazon Relational Database Service User Guide

Amazon RDS on AWS Outposts support for Amazon RDS
features

The following table describes the Amazon RDS features supported by Amazon RDS on AWS
Outposts.

Feature Supported Notes More information

DB instance
provisioning

Yes You can only create DB
instances for RDS for SQL
Server, RDS for MySQL,
and RDS for PostgreSQL
DB engines. The following
versions are supported:

• Microsoft SQL Server:

• 15.00.4043.16.v1 and
higher 2019 versions

• 14.00.3294.2.v1 and
higher 2017 versions

• 13.00.5820.21.v1 and
higher 2016 versions

• MySQL 8.0 and 8.4
versions

• All PostgreSQL 16 & 15
& 14 & 13 versions, and
PostgreSQL version 12.5
and higher PostgreSQL
12 versions

Creating DB instances
for Amazon RDS on AWS
Outposts

Connect to
a Microsoft
SQL Server
DB instance
with Microsoft
SQL Server

Yes Some TLS versions and
encryption ciphers might
not be secure. To turn
them off, follow the
instructions in Configuri

Connecting to your
Microsoft SQL Server DB
instance

Support for Amazon RDS features 2190

Amazon Relational Database Service User Guide

Feature Supported Notes More information

Management
Studio

ng SQL Server security
protocols and ciphers.

Modifying the
master user
password

Yes None Modifying an Amazon RDS
DB instance

Renaming a DB
instance

Yes None Modifying an Amazon RDS
DB instance

Rebooting a DB
instance

Yes None Rebooting a DB instance

Stopping a DB
instance

Yes None Stopping an Amazon RDS
DB instance temporarily

Starting a DB
instance

Yes None Starting an Amazon RDS
DB instance that was
previously stopped

Multi-AZ
deployments

Yes Multi-AZ deployments are
supported on MySQL and
PostgreSQL DB instances.

Multi-AZ deployments do
not support Direct VPC
Routing (DVR).

Creating DB instances
for Amazon RDS on AWS
Outposts

Configuring and managing
a Multi-AZ deployment for
Amazon RDS

DB parameter
groups

Yes None Parameter groups for
Amazon RDS

Read replicas Yes Read replicas are
supported for MySQL and
PostgreSQL DB instances.

Read replicas do not
support Direct VPC
Routing (DVR).

Creating read replicas
for Amazon RDS on AWS
Outposts

Support for Amazon RDS features 2191

Amazon Relational Database Service User Guide

Feature Supported Notes More information

Encryption at
rest

Yes RDS on Outposts doesn't
support unencrypted DB
instances.

Encrypting Amazon RDS
resources

AWS Identity
and Access
Management
(IAM) database
authentication

No None IAM database authentic
ation for MariaDB, MySQL,
and PostgreSQL

Associating an
IAM role with a
DB instance

No None add-role-to-db-instance
AWS CLI command

AddRoleToDBInstance RDS
API operation

Kerberos
authentication

No None Kerberos authentication

Tagging Amazon
RDS resources

Yes None Tagging Amazon RDS
resources

Option groups Yes None Working with option
groups

Modifying the
maintenance
window

Yes None Maintaining a DB instance

Automatic minor
version upgrade

Yes None Automatically upgrading
the minor engine version

Modifying the
backup window

Yes None Introduction to backups

Modifying an Amazon RDS
DB instance

Support for Amazon RDS features 2192

https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBInstance.html

Amazon Relational Database Service User Guide

Feature Supported Notes More information

Changing the DB
instance class

Yes None Modifying an Amazon RDS
DB instance

Changing
the allocated
storage

Yes None Modifying an Amazon RDS
DB instance

Storage
autoscaling

Yes None Managing capacity
automatically with
Amazon RDS storage
autoscaling

Manual and
automatic
DB instance
snapshots

Yes You can store automated
backups and manual
snapshots in your AWS
Region. Or you can store
them locally on your
Outpost.

Local backups are
supported on MySQL and
PostgreSQL DB instances.

To store backups on your
Outpost, make sure that
you have Amazon S3 on
Outposts configured.

Local backups are not
supported for Multi-AZ
instance deployments.

Creating DB instances
for Amazon RDS on AWS
Outposts

Amazon S3 on Outposts

Creating a DB snapshot for
a Single-AZ DB instance
for Amazon RDS

Support for Amazon RDS features 2193

https://aws.amazon.com/s3/outposts/

Amazon Relational Database Service User Guide

Feature Supported Notes More information

Restoring from a
DB snapshot

Yes You can store automated
backups and manual
snapshots for the restored
DB instance in the parent
AWS Region or locally on
your Outpost.

Considerations for
restoring DB instances
on Amazon RDS on AWS
Outposts

Restoring to a DB instance

Restoring a DB
instance from
Amazon S3

No None Restoring a backup into an
Amazon RDS for MySQL
DB instance

Exporting
snapshot data to
Amazon S3

No None Exporting DB snapshot
data to Amazon S3 for
Amazon RDS

Point-in-time
recovery

Yes You can store automated
backups and manual
snapshots for the restored
DB instance in the parent
AWS Region or locally on
your Outpost, with one
exception.

Considerations for
restoring DB instances
on Amazon RDS on AWS
Outposts

Restoring a DB instance
to a specified time for
Amazon RDS

Enhanced
monitoring

No None Monitoring OS metrics
with Enhanced Monitoring

Amazon
CloudWatch
monitoring

Yes You can view the same
set of metrics that
are available for your
databases in the AWS
Region.

Monitoring Amazon RDS
metrics with Amazon
CloudWatch

Support for Amazon RDS features 2194

Amazon Relational Database Service User Guide

Feature Supported Notes More information

Publishin
g database
engine logs to
CloudWatch
Logs

Yes None Publishing database logs
to Amazon CloudWatch
Logs

Event notificat
ion

Yes None Working with Amazon RDS
event notification

Amazon RDS
Performance
Insights

No None Monitoring DB load with
Performance Insights on
Amazon RDS

Viewing or
downloading
database logs

No RDS on Outposts doesn't
support viewing database
logs using the console or
describing database logs
using the AWS CLI or RDS
API.

RDS on Outposts doesn't
support downloading
database logs using the
console or downloading
database logs using the
AWS CLI or RDS API.

Monitoring Amazon RDS
log files

Amazon RDS
Proxy

No None Amazon RDS Proxy

Stored
procedures for
Amazon RDS for
MySQL

Yes None RDS for MySQL stored
procedure reference

Support for Amazon RDS features 2195

Amazon Relational Database Service User Guide

Feature Supported Notes More information

Replication
with external
databases for
RDS for MySQL

No None Configuring binary log
file position replication
with an external source
instance

Native backup
and restore for
Amazon RDS for
Microsoft SQL
Server

Yes None Importing and exporting
SQL Server databases
using native backup and
restore

Supported DB instance classes for Amazon RDS on AWS
Outposts

Amazon RDS on AWS Outposts supports the following DB instance classes:

• General purpose DB instance classes

• db.m5.24xlarge

• db.m5.16xlarge

• db.m5.12xlarge

• db.m5.8xlarge

• db.m5.4xlarge

• db.m5.2xlarge

• db.m5.xlarge

• db.m5.large

• Memory optimized DB instance classes

• db.r5.24xlarge

• db.r5.16xlarge

• db.r5.12xlarge

• db.r5.8xlarge

• db.r5.4xlargeSupported DB instance classes 2196

Amazon Relational Database Service User Guide

• db.r5.2xlarge

• db.r5.xlarge

• db.r5.large

Depending on how you've configured your Outpost, you might not have all of these classes
available. For example, if you haven't purchased the db.r5 classes for your Outpost, you can't use
them with RDS on Outposts.

Only general purpose SSD storage is supported for RDS on Outposts DB instances. For more
information about DB instance classes, see DB instance classes.

Amazon RDS manages maintenance and recovery for your DB instances and requires active
capacity on the Outpost to do so. We recommend that you configure N+1 EC2 instances for each
DB instance class in your production environments. RDS on Outposts can use the extra capacity
of these EC2 instances for maintenance and repair operations. For example, if your production
environments have 3 db.m5.large and 5 db.r5.xlarge DB instance classes, then we recommend that
they have at least 4 m5.large EC2 instances and 6 r5.xlarge EC2 instances. For more information,
see Resilience in AWS Outposts in the AWS Outposts User Guide.

Supported DB instance classes 2197

https://docs.aws.amazon.com/outposts/latest/userguide/disaster-recovery-resiliency.html

Amazon Relational Database Service User Guide

Customer-owned IP addresses for Amazon RDS on AWS
Outposts

Amazon RDS on AWS Outposts uses information that you provide about your on-premises network
to create an address pool. This pool is known as a customer-owned IP address pool (CoIP pool).
Customer-owned IP addresses (CoIPs) provide local or external connectivity to resources in your
Outpost subnets through your on-premises network. For more information about CoIPs, see
Customer-owned IP addresses in the AWS Outposts User Guide.

Each RDS on Outposts DB instance has a private IP address for traffic inside its virtual private cloud
(VPC). This private IP address isn't publicly accessible. You can use the Public option to set whether
the DB instance also has a public IP address in addition to the private IP address. Using the public
IP address for connections routes them through the internet and can result in high latencies in
some cases.

Instead of using these private and public IP addresses, RDS on Outposts supports using CoIPs for
DB instances through their subnets. When you use a CoIP for an RDS on Outposts DB instance, you
connect to the DB instance with the DB instance endpoint. RDS on Outposts then automatically
uses the CoIP for all connections from both inside and outside of the VPC.

CoIPs can provide the following benefits for RDS on Outposts DB instances:

• Lower connection latency

• Enhanced security

Using CoIPs

You can turn CoIPs on or off for an RDS on Outposts DB instance using the AWS Management
Console, the AWS CLI, or the RDS API:

• With the AWS Management Console, choose the Customer-owned IP address (CoIP) setting in
Access type to use CoIPs. Choose one of the other settings to turn them off.

Customer-owned IP addresses 2198

https://docs.aws.amazon.com/outposts/latest/userguide/routing.html#ip-addressing

Amazon Relational Database Service User Guide

• With the AWS CLI, use the --enable-customer-owned-ip | --no-enable-customer-
owned-ip option.

• With the RDS API, use the EnableCustomerOwnedIp parameter.

You can turn CoIPs on or off when you perform any of the following actions:

• Create a DB instance

For more information, see Creating DB instances for Amazon RDS on AWS Outposts.

• Modify a DB instance

For more information, see Modifying an Amazon RDS DB instance.

• Create a read replica

For more information, see Creating read replicas for Amazon RDS on AWS Outposts.

• Restore a DB instance from a snapshot

For more information, see Restoring to a DB instance.

• Restore a DB instance to a specified time

Using CoIPs 2199

Amazon Relational Database Service User Guide

For more information, see Restoring a DB instance to a specified time for Amazon RDS.

Note

In some cases, you might turn on CoIPs for a DB instance but Amazon RDS isn't able to
allocate a CoIP for the DB instance. In such cases, the DB instance status is changed to
incompatible-network. For more information about the DB instance status, see Viewing
Amazon RDS DB instance status.

Limitations

The following limitations apply to CoIP support for RDS on Outposts DB instances:

• When using a CoIP for a DB instance, make sure that public accessibility is turned off for that DB
instance.

• Make sure that the inbound rules for your VPC security groups include the CoIP address range
(CIDR block). For more information about setting up security groups, see Provide access to your
DB instance in your VPC by creating a security group.

• You can't assign a CoIP from a CoIP pool to a DB instance. When you use a CoIP for a DB instance,
Amazon RDS automatically assigns a CoIP from a CoIP pool to the DB instance.

• You must use the AWS account that owns the Outpost resources (owner) or share the following
resources with other AWS accounts (consumers) in the same organization:

• The Outpost

• The local gateway (LGW) route table for the DB instance's VPC

• The CoIP pool or pools for the LGW route table

For more information, see Working with shared AWS Outposts resources in the AWS Outposts
User Guide.

Limitations 2200

https://docs.aws.amazon.com/outposts/latest/userguide/sharing-outposts.html

Amazon Relational Database Service User Guide

Working with Multi-AZ deployments for Amazon RDS on AWS
Outposts

For Multi-AZ deployments, Amazon RDS creates a primary DB instance on one AWS Outpost. RDS
synchronously replicates the data to a standby DB instance on a different Outpost.

Multi-AZ deployments on AWS Outposts operate like Multi-AZ deployments in AWS Regions, but
with the following differences:

• They require a local connection between two or more Outposts.

• They require customer-owned IP (CoIP) pools. For more information, see Customer-owned IP
addresses for Amazon RDS on AWS Outposts.

• Replication runs on your local network.

Multi-AZ on AWS Outposts is available for all supported versions of MySQL and PostgreSQL on
RDS on Outposts. Local backups aren't supported for Multi-AZ deployments. For more information,
see Creating DB instances for Amazon RDS on AWS Outposts.

Working with the shared responsibility model

Although AWS uses commercially reasonable efforts to provide DB instances configured for high
availability, the availability uses a shared responsibility model. The ability of RDS on Outposts to
fail over and repair DB instances requires each of your Outposts to be connected to its AWS Region.

RDS on Outposts also requires connectivity between the Outpost that is hosting the primary DB
instance and the Outpost that is hosting the standby DB instance for synchronous replication. Any
impact to this connection can prevent RDS on Outposts from performing a failover.

You might see elevated latencies for a standard DB instance deployment as a result of the
synchronous data replication. The bandwidth and latency of the connection between the Outpost
hosting the primary DB instance and the Outpost hosting the standby DB instance directly affect
latencies. For more information, see Prerequisites.

Improving availability

We recommend the following actions to improve availability:

Multi-AZ deployments 2201

Amazon Relational Database Service User Guide

• Allocate enough additional capacity for your mission-critical applications to allow recovery and
failover if there is an underlying host issue. This applies to all Outposts that contain subnets in
your DB subnet group. For more information, see Resilience in AWS Outposts.

• Provide redundant network connectivity for your Outposts.

• Use more than two Outposts. Having more than two Outposts allows Amazon RDS to recover a
DB instance. RDS does this recovery by moving the DB instance to another Outpost if the current
Outpost experiences a failure.

• Provide dual power sources and redundant network connectivity for your Outpost.

We recommend the following for your local networks:

• The round trip time (RTT) latency between the Outpost hosting your primary DB instance and
the Outpost hosting your standby DB instance directly affects write latency. Keep the RTT
latency between the AWS Outposts in the low single-digit milliseconds. We recommend not
more than 5 milliseconds, but your requirements might vary.

You can find the net impact to network latency in the Amazon CloudWatch metrics for
WriteLatency. For more information, see Amazon CloudWatch metrics for Amazon RDS.

• The availability of the connection between the Outposts affects the overall availability of your
DB instances. Have redundant network connectivity between the Outposts.

Prerequisites

Multi-AZ deployments on RDS on Outposts have the following prerequisites:

• Have at least two Outposts, connected over local connections and attached to different
Availability Zones in an AWS Region.

• Make sure that your DB subnet groups contain the following:

• At least two subnets in at least two Availability Zones in a given AWS Region.

• Subnets only in Outposts.

• At least two subnets in at least two Outposts within the same virtual private cloud (VPC).

• Associate your DB instance's VPC with all of your local gateway route tables. This association is
necessary because replication runs over your local network using your Outposts' local gateways.

Prerequisites 2202

https://docs.aws.amazon.com/outposts/latest/userguide/disaster-recovery-resiliency.html

Amazon Relational Database Service User Guide

For example, suppose that your VPC contains subnet-A in Outpost-A and subnet-B in Outpost-
B. Outpost-A uses LocalGateway-A (LGW-A), and Outpost-B uses LocalGateway-B (LGW-B). LGW-
A has RouteTable-A, and LGW-B has RouteTable-B. You want to use both RouteTable-A and
RouteTable-B for replication traffic. To do this, associate your VPC with both RouteTable-A and
RouteTable-B.

For more information about how to create an association, see the Amazon EC2 create-local-
gateway-route-table-vpc-association AWS CLI command.

• Make sure that your Outposts use customer-owned IP (CoIP) routing. Each route table must also
each have at least one address pool. Amazon RDS allocates an additional IP address each for the
primary and standby DB instances for data synchronization.

• Make sure that the AWS account that owns the RDS DB instances owns the local gateway route
tables and CoIP pools. Or make sure it's part of a Resource Access Manager share with access to
the local gateway route tables and CoIP pools.

• Make sure that the IP addresses in your CoIP pools can be routed from one Outpost local
gateway to the others.

• Make sure that the VPC's CIDR blocks (for example, 10.0.0.0/4) and your CoIP pool CIDR blocks
don't contain IP addresses from Class E (240.0.0.0/4). RDS uses these IP addresses internally.

• Make sure that you correctly set up outbound and related inbound traffic.

RDS on Outposts establishes a virtual private network (VPN) connection between the primary
and standby DB instances. For this to work correctly, your local network must allow outbound
and related inbound traffic for Internet Security Association and Key Management Protocol
(ISAKMP). It does so using User Datagram Protocol (UDP) port 500 and IP Security (IPsec)
Network Address Translation Traversal (NAT-T) using UDP port 4500.

For more information on CoIPs, see Customer-owned IP addresses for Amazon RDS on AWS
Outposts in this guide, and Customer-owned IP addresses in the AWS Outposts User Guide.

Working with API operations for Amazon EC2 permissions

Regardless of whether you use CoIPs for your DB instance on AWS Outposts, RDS requires access to
your CoIP pool resources. RDS can call the following EC2 permissions API operations for CoIPs on
your behalf for Multi-AZ deployments:

• CreateCoipPoolPermission – When you create a Multi-AZ DB instance on RDS on Outposts

Working with API operations for Amazon EC2 permissions 2203

https://docs.aws.amazon.com/cli/latest/reference/ec2/create-local-gateway-route-table-vpc-association.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-local-gateway-route-table-vpc-association.html
https://docs.aws.amazon.com/outposts/latest/userguide/how-racks-work.html#ip-addressing

Amazon Relational Database Service User Guide

• DeleteCoipPoolPermission – When you delete a Multi-AZ DB instance on RDS on Outposts

These API operations grant to, or remove from, internal RDS accounts the permission to allocate
elastic IP addresses from the CoIP pool specified by the permission. You can view these IP
addresses using the DescribeCoipPoolUsage API operation. For more information on CoIPs,
see Customer-owned IP addresses for Amazon RDS on AWS Outposts and Customer-owned IP
addresses in the AWS Outposts User Guide.

RDS can also call the following EC2 permission API operations for local gateway route tables on
your behalf for Multi-AZ deployments:

• CreateLocalGatewayRouteTablePermission – When you create a Multi-AZ DB instance on
RDS on Outposts

• DeleteLocalGatewayRouteTablePermission – When you delete a Multi-AZ DB instance on
RDS on Outposts

These API operations grant to, or remove from, internal RDS accounts the permission to associate
internal RDS VPCs with your local gateway route tables. You can view these route table–VPC
associations using the DescribeLocalGatewayRouteTableVpcAssociations API operations.

Working with API operations for Amazon EC2 permissions 2204

https://docs.aws.amazon.com/outposts/latest/userguide/how-racks-work.html#ip-addressing
https://docs.aws.amazon.com/outposts/latest/userguide/how-racks-work.html#ip-addressing

Amazon Relational Database Service User Guide

Creating DB instances for Amazon RDS on AWS Outposts

Creating an Amazon RDS on AWS Outposts DB instance is similar to creating an Amazon RDS
DB instance in the AWS Cloud. However, make sure that you specify a DB subnet group that is
associated with your Outpost.

A virtual private cloud (VPC) based on the Amazon VPC service can span all of the Availability
Zones in an AWS Region. You can extend any VPC in the AWS Region to your Outpost by adding an
Outpost subnet. To add an Outpost subnet to a VPC, specify the Amazon Resource Name (ARN) of
the Outpost when you create the subnet.

Before you create an RDS on Outposts DB instance, you can create a DB subnet group that includes
one subnet that is associated with your Outpost. When you create an RDS on Outposts DB instance,
specify this DB subnet group. You can also choose to create a new DB subnet group when you
create your DB instance.

For information about configuring AWS Outposts, see the AWS Outposts User Guide.

Console

Creating a DB subnet group

Create a DB subnet group with one subnet that is associated with your Outpost.

You can also create a new DB subnet group for the Outpost when you create your DB instance. If
you want to do so, then skip this procedure.

Note

To create a DB subnet group for the AWS Cloud, specify at least two subnets.

To create a DB subnet group for your Outpost

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region where you want
to create the DB subnet group.

3. Choose Subnet groups, and then choose Create DB Subnet Group.

Creating DB instances for RDS on Outposts 2205

https://docs.aws.amazon.com/outposts/latest/userguide/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The Create DB subnet group page appears.

4. For Name, choose the name of the DB subnet group.

5. For Description, choose a description for the DB subnet group.

6. For VPC, choose the VPC that you're creating the DB subnet group for.

Creating DB instances for RDS on Outposts 2206

Amazon Relational Database Service User Guide

7. For Availability Zones, choose the Availability Zone for your Outpost.

8. For Subnets, choose the subnet for use by RDS on Outposts.

9. Choose Create to create the DB subnet group.

Creating the RDS on Outposts DB instance

Create the DB instance, and choose the Outpost for your DB instance.

To create an RDS on Outposts DB instance using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region where the
Outpost on which you want to create the DB instance is attached.

3. In the navigation pane, choose Databases.

4. Choose Create database.

The AWS Management Console detects available Outposts that you have configured and
presents the On-premises option in the Database location section.

Note

If you haven't configured any Outposts, either the Database location section doesn't
appear or the RDS on Outposts option isn't available in the Choose an on-premises
creation method section.

5. For Database location, choose On-premises.

6. For On-premises creation method, choose RDS on Outposts.

7. Specify your settings for Outposts Connectivity. These settings are for the Outpost that uses
the VPC that has the DB subnet group for your DB instance. Your VPC must be based on the
Amazon VPC service.

a. For Virtual Private Cloud (VPC), choose the VPC that contains the DB subnet group for
your DB instance.

b. For VPC security group, choose the Amazon VPC security group for your DB instance.

c. For DB subnet group, choose the DB subnet group for your DB instance.

Creating DB instances for RDS on Outposts 2207

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

You can choose an existing DB subnet group that's associated with the Outpost—for
example, if you performed the procedure in Creating a DB subnet group.

You can also create a new DB subnet group for the Outpost.

8. For Multi-AZ deployment, choose Create a standby instance (recommended for production
usage) to create a standby DB instance in another Outpost.

Note

This option isn't available for Microsoft SQL Server.
If you choose to create a Multi-AZ deployment, you can't store backups on your
Outpost.

9. Under Backup, do the following:

a. For Backup target, choose one of the following:

• AWS Cloud to store automated backups and manual snapshots in the parent AWS
Region.

• Outposts (on-premises) to create local backups.

Note

To store backups on your Outpost, your Outpost must have Amazon S3
capability. For more information, see Amazon S3 on Outposts.
Local backups aren't supported for Multi-AZ deployments or read replicas.

b. Choose Enable automated backups to create point-in-time snapshots of your DB
instance.

If you turn on automated backups, then you can choose values for Backup retention
period and Backup window, or leave the default values.

10. Specify other DB instance settings as needed.

For information about each setting when creating a DB instance, see Settings for DB instances.

11. Choose Create database.

Creating DB instances for RDS on Outposts 2208

https://aws.amazon.com/s3/outposts/

Amazon Relational Database Service User Guide

The Databases page appears. A banner tells you that your DB instance is being created, and
displays the View credential details button.

Viewing DB instance details

After you create your DB instance, you can view credentials and other details for it.

To view DB instance details

1. To view the master user name and password for the DB instance, choose View credential
details on the Databases page.

You can connect to the DB instance as the master user by using these credentials.

Important

You can't view the master user password again. If you don't record it, you might have
to change it. To change the master user password after the DB instance is available,
modify the DB instance. For more information about modifying a DB instance, see
Modifying an Amazon RDS DB instance.

2. Choose the name of the new DB instance on the Databases page.

On the RDS console, the details for the new DB instance appear. The DB instance has a status
of Creating until the DB instance is created and ready for use. When the state changes to
Available, you can connect to the DB instance. Depending on the DB instance class and
storage allocated, it can take several minutes for the new DB instance to be available.

Creating DB instances for RDS on Outposts 2209

Amazon Relational Database Service User Guide

After the DB instance is available, you can manage it the same way that you manage RDS DB
instances in the AWS Cloud.

AWS CLI

Before you create a new DB instance in an Outpost with the AWS CLI, first create a DB subnet
group for use by RDS on Outposts.

To create a DB subnet group for your Outpost

• Use the create-db-subnet-group command. For --subnet-ids, specify the subnet group in
the Outpost for use by RDS on Outposts.

For Linux, macOS, or Unix:

aws rds create-db-subnet-group \
 --db-subnet-group-name myoutpostdbsubnetgr \
 --db-subnet-group-description "DB subnet group for RDS on Outposts" \
 --subnet-ids subnet-abc123

For Windows:

aws rds create-db-subnet-group ^
 --db-subnet-group-name myoutpostdbsubnetgr ^

Creating DB instances for RDS on Outposts 2210

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-subnet-group.html

Amazon Relational Database Service User Guide

 --db-subnet-group-description "DB subnet group for RDS on Outposts" ^
 --subnet-ids subnet-abc123

To create an RDS on Outposts DB instance using the AWS CLI

• Use the create-db-instance command. Specify an Availability Zone for the Outpost, an Amazon
VPC security group associated with the Outpost, and the DB subnet group you created for the
Outpost. You can include the following options:

• --db-instance-identifier

• --db-instance-class

• --engine – The database engine. Use one of the following values:

• MySQL – Specify mysql.

• PostgreSQL – Specify postgres.

• Microsoft SQL Server – Specify sqlserver-ee, sqlserver-se, or sqlserver-web.

• --availability-zone

• --vpc-security-group-ids

• --db-subnet-group-name

• --allocated-storage

• --max-allocated-storage

• --master-username

• --master-user-password

• --multi-az | --no-multi-az – (Optional) Whether to create a standby DB instance in a
different Availability Zone. The default is --no-multi-az.

The --multi-az option isn't available for SQL Server.

• --backup-retention-period

• --backup-target – (Optional) Where to store automated backups and manual snapshots.
Use one of the following values:

• outposts – Store them locally on your Outpost.

• region – Store them in the parent AWS Region. This is the default value.

Creating DB instances for RDS on Outposts 2211

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

If you use the --multi-az option, you can't use outposts for --backup-target. In
addition, the DB instance can't have read replicas if you use outposts for --backup-
target.

• --storage-encrypted

• --kms-key-id

Example

The following example creates a MySQL DB instance named myoutpostdbinstance with backups
stored on your Outpost.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier myoutpostdbinstance \
 --engine-version 8.0.17 \
 --db-instance-class db.m5.large \
 --engine mysql \
 --availability-zone us-east-1d \
 --vpc-security-group-ids outpost-sg \
 --db-subnet-group-name myoutpostdbsubnetgr \
 --allocated-storage 100 \
 --max-allocated-storage 1000 \
 --master-username masterawsuser \
 --manage-master-user-password \
 --backup-retention-period 3 \
 --backup-target outposts \
 --storage-encrypted \
 --kms-key-id mykey

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier myoutpostdbinstance ^
 --engine-version 8.0.17 ^
 --db-instance-class db.m5.large ^
 --engine mysql ^
 --availability-zone us-east-1d ^
 --vpc-security-group-ids outpost-sg ^
 --db-subnet-group-name myoutpostdbsubnetgr ^

Creating DB instances for RDS on Outposts 2212

Amazon Relational Database Service User Guide

 --allocated-storage 100 ^
 --max-allocated-storage 1000 ^
 --master-username masterawsuser ^
 --manage-master-user-password ^
 --backup-retention-period 3 ^
 --backup-target outposts ^
 --storage-encrypted ^
 --kms-key-id mykey

For information about each setting when creating a DB instance, see Settings for DB instances.

RDS API

To create a new DB instance in an Outpost with the RDS API, first create a DB subnet group for use
by RDS on Outposts by calling the CreateDBSubnetGroup operation. For SubnetIds, specify the
subnet group in the Outpost for use by RDS on Outposts.

Next, call the CreateDBInstance operation with the following parameters. Specify an Availability
Zone for the Outpost, an Amazon VPC security group associated with the Outpost, and the DB
subnet group you created for the Outpost.

• AllocatedStorage

• AvailabilityZone

• BackupRetentionPeriod

• BackupTarget

If you are creating a Multi-AZ DB instance deployment, you can't use outposts for
BackupTarget. In addition, the DB instance can't have read replicas if you use outposts for
BackupTarget.

• DBInstanceClass

• DBInstanceIdentifier

• VpcSecurityGroupIds

• DBSubnetGroupName

• Engine

• EngineVersion

• MasterUsername

• MasterUserPassword

Creating DB instances for RDS on Outposts 2213

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBSubnetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

• MaxAllocatedStorage (optional)

• MultiAZ (optional)

• StorageEncrypted

• KmsKeyID

For information about each setting when creating a DB instance, see Settings for DB instances.

Creating DB instances for RDS on Outposts 2214

Amazon Relational Database Service User Guide

Creating read replicas for Amazon RDS on AWS Outposts

Amazon RDS on AWS Outposts uses the MySQL and PostgreSQL DB engines' built-in replication
functionality to create a read replica from a source DB instance. The source DB instance becomes
the primary DB instance. Updates made to the primary DB instance are asynchronously copied to
the read replica. You can reduce the load on your primary DB instance by routing read queries from
your applications to the read replica. Using read replicas, you can elastically scale out beyond the
capacity constraints of a single DB instance for read-heavy database workloads.

When you create a read replica from an RDS on Outposts DB instance, the read replica uses a
customer-owned IP address (CoIP). For more information, see Customer-owned IP addresses for
Amazon RDS on AWS Outposts.

Read replicas on RDS on Outposts have the following limitations:

• You can't create read replicas for RDS for SQL Server on RDS on Outposts DB instances.

• Cross-Region read replicas aren't supported on RDS on Outposts.

• Cascading read replicas aren't supported on RDS on Outposts.

• The source RDS on Outposts DB instance can't have local backups. The backup target for the
source DB instance must be your AWS Region.

• Read replicas require customer-owned IP (CoIP) pools. For more information, see Customer-
owned IP addresses for Amazon RDS on AWS Outposts.

• Read replicas on RDS on Outposts can only be created in the same virtual private cloud (VPC) as
the source DB instance.

• Read replicas on RDS on Outposts can be located on the same Outpost or another Outpost in the
same VPC as the source DB instance.

• You can't create read replicas for DB instances encrypted with AWS KMS External Key Store
(XKS).

You can create a read replica from an RDS on Outposts DB instance using the AWS Management
Console, AWS CLI, or RDS API. For more information on read replicas, see Working with DB instance
read replicas.

Creating read replicas for RDS on Outposts 2215

Amazon Relational Database Service User Guide

Console

To create a read replica from a source DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to use as the source for a read replica.

4. For Actions, choose Create read replica.

5. For DB instance identifier, enter a name for the read replica.

6. Specify your settings for Outposts Connectivity. These settings are for the Outpost that uses
the virtual private cloud (VPC) that has the DB subnet group for your DB instance. Your VPC
must be based on the Amazon VPC service.

7. Choose your DB instance class. We recommend that you use the same or larger DB instance
class and storage type as the source DB instance for the read replica.

8. For Multi-AZ deployment, choose Create a standby instance (recommended for production
usage) to create a standby DB instance in a different Availability Zone.

Creating your read replica as a Multi-AZ DB instance is independent of whether the source
database is a Multi-AZ DB instance.

9. (Optional) Under Connectivity, set values for Subnet Group and Availability Zone.

If you specify values for both Subnet Group and Availability Zone, the read replica is created
on an Outpost that is associated with the Availability Zone in the DB subnet group.

If you specify a value for Subnet Group and No preference for Availability Zone, the read
replica is created on a random Outpost in the DB subnet group.

10. For AWS KMS key, choose the AWS KMS key identifier of the KMS key.

The read replica must be encrypted.

11. Choose other options as needed.

12. Choose Create read replica.

After the read replica is created, you can see it on the Databases page in the RDS console. It shows
Replica in the Role column.

Creating read replicas for RDS on Outposts 2216

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To create a read replica from a source MySQL or PostgreSQL DB instance, use the AWS CLI
command create-db-instance-read-replica.

You can control where the read replica is created by specifying the --db-subnet-group-name
and --availability-zone options:

• If you specify both the --db-subnet-group-name and --availability-zone options,
the read replica is created on an Outpost that is associated with the Availability Zone in the DB
subnet group.

• If you specify the --db-subnet-group-name option and don't specify the --availability-
zone option, the read replica is created on a random Outpost in the DB subnet group.

• If you don't specify either option, the read replica is created on the same Outpost as the source
RDS on Outposts DB instance.

The following example creates a replica and specifies the location of the read replica by including
--db-subnet-group-name and --availability-zone options.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance-read-replica \
 --db-instance-identifier myreadreplica \
 --source-db-instance-identifier mydbinstance \
 --availability-zone us-west-2a

For Windows:

aws rds create-db-instance-read-replica ^
 --db-instance-identifier myreadreplica ^
 --source-db-instance-identifier mydbinstance ^
 --availability-zone us-west-2a

RDS API

To create a read replica from a source MySQL or PostgreSQL DB instance, call the Amazon RDS API
CreateDBInstanceReadReplica operation with the following required parameters:

Creating read replicas for RDS on Outposts 2217

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html

Amazon Relational Database Service User Guide

• DBInstanceIdentifier

• SourceDBInstanceIdentifier

You can control where the read replica is created by specifying the DBSubnetGroupName and
AvailabilityZone parameters:

• If you specify both the DBSubnetGroupName and AvailabilityZone parameters, the read
replica is created on an Outpost that is associated with the Availability Zone in the DB subnet
group.

• If you specify the DBSubnetGroupName parameter and don't specify the AvailabilityZone
parameter, the read replica is created on a random Outpost in the DB subnet group.

• If you don't specify either parameter, the read replica is created on the same Outpost as the
source RDS on Outposts DB instance.

Considerations for restoring DB instances on Amazon RDS on
AWS Outposts

When you restore a DB instance in Amazon RDS on AWS Outposts, you can generally choose the
storage location for automated backups and manual snapshots of the restored DB instance.

• When restoring from a manual DB snapshot, you can store backups either in the parent AWS
Region or locally on your Outpost.

• When restoring from an automated backup (point-in-time recovery), you have fewer choices:

• If restoring from the parent AWS Region, you can store backups either in the AWS Region or on
your Outpost.

• If restoring from your Outpost, you can store backups only on your Outpost.

Considerations for restoring DB instances 2218

Amazon Relational Database Service User Guide

Amazon RDS Proxy

By using Amazon RDS Proxy, you can allow your applications to pool and share database
connections to improve their ability to scale. RDS Proxy makes applications more resilient
to database failures by automatically connecting to a standby DB instance while preserving
application connections. By using RDS Proxy, you can also enforce AWS Identity and Access
Management (IAM) authentication for databases, and securely store credentials in AWS Secrets
Manager.

Using RDS Proxy, you can handle unpredictable surges in database traffic. Otherwise, these surges
might cause issues due to oversubscribing connections or new connections being created at a
fast rate. RDS Proxy establishes a database connection pool and reuses connections in this pool.
This approach avoids the memory and CPU overhead of opening a new database connection each
time. To protect a database against oversubscription, you can control the number of database
connections that are created.

RDS Proxy queues or throttles application connections that can't be served immediately from
the connection pool. Although latencies might increase, your application can continue to scale
without abruptly failing or overwhelming the database. If connection requests exceed the limits
you specify, RDS Proxy rejects application connections (that is, it sheds load). At the same time, it
maintains predictable performance for the load that RDS can serve with the available capacity.

You can reduce the overhead to process credentials and establish a secure connection for each new
connection. RDS Proxy can handle some of that work on behalf of the database.

RDS Proxy is fully compatible with the engine versions that it supports. You can enable RDS Proxy
for most applications with no code changes.

Topics

• Region and version availability

• Quotas and limitations for RDS Proxy

• Planning where to use RDS Proxy

• RDS Proxy concepts and terminology

• Getting started with RDS Proxy

• Managing an RDS Proxy

• Working with Amazon RDS Proxy endpoints

2219

Amazon Relational Database Service User Guide

• Monitoring RDS Proxy metrics with Amazon CloudWatch

• Working with RDS Proxy events

• Troubleshooting for RDS Proxy

• Using RDS Proxy with AWS CloudFormation

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability of Amazon RDS with RDS
Proxy, see Supported Regions and DB engines for Amazon RDS Proxy.

Quotas and limitations for RDS Proxy

The following quotas and limitations apply to RDS Proxy:

• Each AWS account ID is limited to 20 proxies. If your application requires more proxies, request
an increase via the Service Quotas page within the AWS Management Console. In the Service
Quotas page, select Amazon Relational Database Service (Amazon RDS) and locate Proxies to
request a quota increase. AWS can automatically increase your quota or pending review of your
request by Support.

• Each proxy can have up to 200 associated Secrets Manager secrets. Thus, each proxy can connect
to with up to 200 different user accounts at any given time.

• Each proxy has a default endpoint. You can also add up to 20 proxy endpoints for each proxy.
You can create, view, modify, and delete these endpoints.

• For RDS DB instances in replication configurations, you can associate a proxy only with the writer
DB instance, not a read replica.

• Your RDS Proxy must be in the same virtual private cloud (VPC) as the database. The proxy
can't be publicly accessible, although the database can be. For example, if you're prototyping
your database on a local host, you can't connect to your proxy unless you set up the necessary
network requirements to allow connection to the proxy. This is because your local host is outside
of the proxy’s VPC.

• You can't use RDS Proxy with a VPC that has its tenancy set to dedicated.

• If you use RDS Proxy with an RDS DB instance that has IAM authentication enabled, check
user authentication. Users who connect through a proxy must authenticate through sign-in
credentials. For details about Secrets Manager and IAM support in RDS Proxy, see Setting up

Region and version availability 2220

Amazon Relational Database Service User Guide

database credentials in AWS Secrets Manager for RDS Proxy and Configuring IAM authentication
for RDS Proxy.

• You can't use RDS Proxy with custom DNS when using SSL hostname validation.

• Each proxy can be associated with a single target DB instance . However, you can associate
multiple proxies with the same DB instance .

• Any statement with a text size greater than 16 KB causes the proxy to pin the session to the
current connection.

• Certain Regions have Availability-Zone (AZ) restrictions to consider while creating your proxy.
US East (N. Virginia) Region does not support RDS Proxy in the use1-az3 Availability Zone.
US West (N. California) Region does not support RDS Proxy in the usw1-az2 Availability Zone.
When selecting subnets while creating your proxy, make sure that you don't select subnets in the
Availability Zones mentioned above.

• Currently, RDS Proxy doesn't support any global condition context keys.

For more information about global condition context keys, see AWS global condition context
keys in the IAM User Guide.

• You can't use RDS Proxy with RDS Custom for SQL Server.

• To reflect any database parameter group modification to your proxy, an instance reboot is
required even if your chose to apply your changes immediately. For cluster-level parameters, a
cluster-wide reboot is required.

• Your proxy automatically creates the rdsproxyadmin DB user when you register a proxy target.
Deleting or modifying the rdsproxyadmin user or its permissions might impact the availability
of the proxy to your application.

For additional limitations for each DB engine, see the following sections:

• Additional limitations for RDS for MariaDB

• Additional limitations for RDS for Microsoft SQL Server

• Additional limitations for RDS for MySQL

• Additional limitations for RDS for PostgreSQL

Additional limitations for RDS for MariaDB

The following additional limitations apply to RDS Proxy with RDS for MariaDB databases:

RDS for MariaDB limitations 2221

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Relational Database Service User Guide

• Currently, all proxies listen on port 3306 for MariaDB. The proxies still connect to your database
using the port that you specified in the database settings.

• You can't use RDS Proxy with self-managed MariaDB databases in Amazon EC2 instances.

• You can't use RDS Proxy with an RDS for MariaDB DB instance that has the read_only
parameter in its DB parameter group set to 1.

• RDS Proxy doesn't support MariaDB compressed mode. For example, it doesn't support the
compression used by the --compress or -C options of the mysql command.

• Some SQL statements and functions can change the connection state without causing pinning.
For the most current pinning behavior, see Avoiding pinning an RDS Proxy.

• RDS Proxy doesn't support the MariaDB auth_ed25519 plugin.

• RDS Proxy doesn't support Transport Layer Security (TLS) version 1.3 for MariaDB databases.

• Database connections processing a GET DIAGNOSTIC command might return inaccurate
information when RDS Proxy reuses the same database connection to run another query. This
can happen when RDS Proxy multiplexes database connections. For more information, see
Overview of RDS Proxy concepts.

• RDS Proxy currently doesn't support the caching_sha2_password option for
ClientPasswordAuthType for MariaDB.

Important

For proxies associated with MariaDB databases, don't set the configuration parameter
sql_auto_is_null to true or a nonzero value in the initialization query. Doing so might
cause incorrect application behavior.

Additional limitations for RDS for Microsoft SQL Server

The following additional limitations apply to RDS Proxy with RDS for Microsoft SQL Server
databases:

• The number of Secrets Manager secrets that you need to create for a proxy depends on the
collation that your DB instance uses. For example, suppose that your DB instance uses case-
sensitive collation. If your application accepts both "Admin" and "admin," then your proxy needs
two separate secrets. For more information about collation in SQL Server, see the Microsoft SQL
Server documentation.

RDS for SQL Server limitations 2222

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver16

Amazon Relational Database Service User Guide

• RDS Proxy doesn't support connections that use Active Directory.

• You can't use IAM authentication with clients that don't support token properties. For more
information, see Considerations for connecting to a proxy with Microsoft SQL Server.

• The results of @@IDENTITY, @@ROWCOUNT, and SCOPE_IDENTITY aren't always accurate. As a
work-around, retrieve their values in the same session statement to ensure that they return the
correct information.

• If the connection uses multiple active result sets (MARS), RDS Proxy doesn't run the initialization
queries. For information about MARS, see the Microsoft SQL Server documentation.

• Currently, RDS Proxy does not support RDS for SQL Server DB instances that run on major
version SQL Server 2022.

• RDS Proxy does not support RDS for SQL Server DB instances that run on major version SQL
Server 2014.

• RDS Proxy does not support client applications that can't handle multiple response messages in
one TLS record.

Additional limitations for RDS for MySQL

The following additional limitations apply to RDS Proxy with RDS for MySQL databases:

• RDS Proxy support for caching_sha2_password authentication requires a secure (TLS)
connection.

• RDS Proxy support for caching_sha2_password is known to have compatibility issues with
certain go-sql driver versions.

• When using the MySQL 8.4 C driver, the mysql_stmt_bind_named_param API might form
malformed packets if parameter count exceeds placeholder count in a prepared statements. This
results in incorrect responses. For more information, see MySQL bug report.

• Currently, all proxies listen on port 3306 for MySQL. The proxies still connect to your database
using the port that you specified in the database settings.

• You can't use RDS Proxy with self-managed MySQL databases in EC2 instances.

• You can't use RDS Proxy with an RDS for MySQL DB instance that has the read_only parameter
in its DB parameter group set to 1.

• RDS Proxy doesn't support MySQL compressed mode. For example, it doesn't support the
compression used by the --compress or -C options of the mysql command.

MySQL limitations 2223

https://docs.microsoft.com/en-us/sql/relational-databases/native-client/features/using-multiple-active-result-sets-mars?view=sql-server-ver16
https://bugs.mysql.com/bug.php?id=116860&thanks=4

Amazon Relational Database Service User Guide

• Database connections processing a GET DIAGNOSTIC command might return inaccurate
information when RDS Proxy reuses the same database connection to run another query. This
can happen when RDS Proxy multiplexes database connections.

• Some SQL statements and functions such as SET LOCAL can change the connection state
without causing pinning. For the most current pinning behavior, see Avoiding pinning an RDS
Proxy.

• Using the ROW_COUNT() function in a multi-statement query is not supported.

• RDS Proxy does not support client applications that can't handle multiple response messages in
one TLS record.

Important

For proxies associated with MySQL databases, don't set the configuration parameter
sql_auto_is_null to true or a nonzero value in the initialization query. Doing so might
cause incorrect application behavior.

Additional limitations for RDS for PostgreSQL

The following additional limitations apply to RDS Proxy with RDS for PostgreSQL databases:

• RDS Proxy doesn't support session pinning filters for PostgreSQL.

• Currently, all proxies listen on port 5432 for PostgreSQL.

• For PostgreSQL, RDS Proxy doesn't currently support canceling a query from a client by issuing
a CancelRequest. This is the case, for example, when you cancel a long-running query in an
interactive psql session by using Ctrl+C.

• The results of the PostgreSQL function lastval aren't always accurate. As a work-around, use the
INSERT statement with the RETURNING clause.

• RDS Proxy currently doesn't support streaming replication mode.

• With RDS for PostgreSQL 16, modifications to the scram_iterations value exclusively
impact the authentication process between the proxy and the database. Specifically, if you
configure ClientPasswordAuthType to scram-sha-256, any customizations made to the
scram_iterations value doesn't influence client-to-proxy password authentication. Instead,
the iteration value for client-to-proxy password authentication is fixed at 4096.

• The default database must exist.

PostgreSQL limitations 2224

https://www.postgresql.org/docs/current/functions-sequence.html
https://www.postgresql.org/docs/current/sql-insert.html

Amazon Relational Database Service User Guide

• If you use ALTER ROLE to change the user role with SET ROLE, subsequent connections as that
user to the proxy might not use this role setting, if those connections encounter pinning. To
prevent this, when using proxy, use SET ROLE in the initialization query of the proxy. For more
information, see Initialization query in Creating a proxy for Amazon RDS.

Important

For existing proxies with PostgreSQL databases, if you modify the database authentication
to use SCRAM only, the proxy becomes unavailable for up to 60 seconds. To avoid the issue,
do one of the following:

• Ensure that the database allows both SCRAM and MD5 authentication.

• To use only SCRAM authentication, create a new proxy, migrate your application traffic to
the new proxy, then delete the proxy previously associated with the database.

Planning where to use RDS Proxy

You can determine which of your DB instances, clusters, and applications might benefit the most
from using RDS Proxy. To do so, consider these factors:

• Any DB instance that encounters "too many connections" errors is a good candidate
for associating with a proxy. This is often characterized by a high value of the
ConnectionAttempts CloudWatch metric. The proxy enables applications to open many client
connections, while the proxy manages a smaller number of long-lived connections to the DB
instance .

• For DB instances that use smaller AWS instance classes, such as T2 or T3, using a proxy can help
avoid out-of-memory conditions. It can also help reduce the CPU overhead for establishing
connections. These conditions can occur when dealing with large numbers of connections.

• You can monitor certain Amazon CloudWatch metrics to determine whether a DB instance is
approaching certain types of limit. These limits are for the number of connections and the
memory associated with connection management. You can also monitor certain CloudWatch
metrics to determine whether a DB instance is handling many short-lived connections. Opening
and closing such connections can impose performance overhead on your database. For
information about the metrics to monitor, see Monitoring RDS Proxy metrics with Amazon
CloudWatch.

Planning where to use RDS Proxy 2225

Amazon Relational Database Service User Guide

• AWS Lambda functions can also be good candidates for using a proxy. These functions make
frequent short database connections that benefit from connection pooling offered by RDS Proxy.
You can take advantage of any IAM authentication you already have for Lambda functions,
instead of managing database credentials in your Lambda application code.

• Applications that typically open and close large numbers of database connections and don't have
built-in connection pooling mechanisms are good candidates for using a proxy.

• Applications that keep a large number of connections open for long periods are typically good
candidates for using a proxy. Applications in industries such as software as a service (SaaS) or
ecommerce often minimize the latency for database requests by leaving connections open. With
RDS Proxy, an application can keep more connections open than it can when connecting directly
to the DB instance.

• You might not have adopted IAM authentication and Secrets Manager due to the complexity
of setting up such authentication for all DB instances. If so, you can leave the existing
authentication methods in place and delegate the authentication to a proxy. The proxy can
enforce the authentication policies for client connections for particular applications. You can
take advantage of any IAM authentication you already have for Lambda functions, instead of
managing database credentials in your Lambda application code.

• RDS Proxy can help make applications more resilient and transparent to database failures.
RDS Proxy bypasses Domain Name System (DNS) caches to reduce failover times by up to
66% for Amazon RDS Multi-AZ DB instances. RDS Proxy also automatically routes traffic to a
new database instance while preserving application connections. This makes failovers more
transparent for applications.

RDS Proxy concepts and terminology

You can simplify connection management for your Amazon RDS DB instances by using RDS Proxy.

RDS Proxy handles the network traffic between the client application and the database. It does so
in an active way first by understanding the database protocol. It then adjusts its behavior based on
the SQL operations from your application and the result sets from the database.

RDS Proxy reduces the memory and CPU overhead for connection management on your database.
The database needs less memory and CPU resources when applications open many simultaneous
connections. It also doesn't require logic in your applications to close and reopen connections that
stay idle for a long time. Similarly, it requires less application logic to reestablish connections in
case of a database problem.

RDS Proxy concepts and terminology 2226

Amazon Relational Database Service User Guide

The infrastructure for RDS Proxy is highly available and deployed over multiple Availability Zones
(AZs). The computation, memory, and storage for RDS Proxy are independent of your RDS DB
instance. This separation helps lower overhead on your database servers, so that they can devote
their resources to serving database workloads. The RDS Proxy compute resources are serverless,
automatically scaling based on your database workload.

Topics

• Overview of RDS Proxy concepts

• Connection pooling

• RDS Proxy security

• Failover

• Transactions

Overview of RDS Proxy concepts

RDS Proxy handles the infrastructure to perform connection pooling and the other features
described in the sections that follow. You see the proxies represented in the RDS console on the
Proxies page.

Each proxy handles connections to a single RDS DB instance. The proxy automatically determines
the current writer instance for RDS Multi-AZ DB instance or cluster.

The connections that a proxy keeps open and available for your database applications to use make
up the connection pool.

By default, RDS Proxy can reuse a connection after each transaction in your session. This
transaction-level reuse is called multiplexing. When RDS Proxy temporarily removes a connection
from the connection pool to reuse it, that operation is called borrowing the connection. When it's
safe to do so, RDS Proxy returns that connection to the connection pool.

In some cases, RDS Proxy can't be sure that it's safe to reuse a database connection outside of the
current session. In these cases, it keeps the session on the same connection until the session ends.
This fallback behavior is called pinning.

A proxy has a default endpoint. You connect to this endpoint when you work with an Amazon RDS
DB instance. You do so instead of connecting to the read/write endpoint that connects directly
to the instance . For RDS DB clusters, you can also create additional read/write and read-only
endpoints. For more information, see Overview of proxy endpoints.

Overview of RDS Proxy concepts 2227

Amazon Relational Database Service User Guide

For example, you can still connect to the cluster endpoint for read/write connections without
connection pooling. You can still connect to the reader endpoint for load-balanced read-only
connections. You can still connect to the instance endpoints for diagnosis and troubleshooting
of specific DB instances within a cluster. If you use other AWS services such as AWS Lambda
to connect to RDS databases, change their connection settings to use the proxy endpoint. For
example, you specify the proxy endpoint to allow Lambda functions to access your database while
taking advantage of RDS Proxy functionality.

Each proxy contains a target group. This target group embodies the RDS DB instance that the
proxy can connect to. The RDS DB instance associated with a proxy are called the targets of that
proxy. For convenience, when you create a proxy through the console, RDS Proxy also creates the
corresponding target group and registers the associated targets automatically.

An engine family is a related set of database engines that use the same DB protocol. You choose
the engine family for each proxy that you create.

Connection pooling

Each proxy performs connection pooling separately for the writer and reader instance of its
associated RDS database . Connection pooling is an optimization that reduces the overhead
associated with opening and closing connections and with keeping many connections open
simultaneously. This overhead includes memory needed to handle each new connection. It
also involves CPU overhead to close each connection and open a new one. Examples include
Transport Layer Security/Secure Sockets Layer (TLS/SSL) handshaking, authentication, negotiating
capabilities, and so on. Connection pooling simplifies your application logic. You don't need to
write application code to minimize the number of simultaneous open connections.

Each proxy also performs connection multiplexing, also known as connection reuse. With
multiplexing, RDS Proxy performs all the operations for a transaction using one underlying
database connection. RDS then can use a different connection for the next transaction. You can
open many simultaneous connections to the proxy, and the proxy keeps a smaller number of
connections open to the DB instance or cluster. Doing so further minimizes the memory overhead
for connections on the database server. This technique also reduces the chance of "too many
connections" errors.

RDS Proxy security

RDS Proxy uses the existing RDS security mechanisms such as TLS/SSL and AWS Identity and
Access Management (IAM). For general information about those security features, see Security

Connection pooling 2228

Amazon Relational Database Service User Guide

in Amazon RDS. Also, make sure to familiarize yourself with how RDS work with authentication,
authorization, and other areas of security.

RDS Proxy can act as an additional layer of security between client applications and the underlying
database. For example, you can connect to the proxy using TLS 1.3, even if the underlying DB
instance supports an older version of TLS. You can connect to the proxy using an IAM role. This is
so even if the proxy connects to the database using the native user and password authentication
method. By using this technique, you can enforce strong authentication requirements for database
applications without a costly migration effort for the DB instances themselves.

You store the database credentials used by RDS Proxy in AWS Secrets Manager. Each database user
for the RDS DB instance accessed by a proxy must have a corresponding secret in Secrets Manager.
You can also set up IAM authentication for users of RDS Proxy. By doing so, you can enforce IAM
authentication for database access even if the databases use native password authentication.
We recommend using these security features instead of embedding database credentials in your
application code.

Using TLS/SSL with RDS Proxy

You can connect to RDS Proxy using the TLS/SSL protocol.

Note

RDS Proxy uses certificates from the AWS Certificate Manager (ACM). If you are using RDS
Proxy, you don't need to download Amazon RDS certificates or update applications that use
RDS Proxy connections.

To enforce TLS for all connections between the proxy and your database, you can specify a setting
Require Transport Layer Security when you create or modify a proxy in the AWS Management
Console.

RDS Proxy can also ensure that your session uses TLS/SSL between your client and the RDS
Proxy endpoint. To have RDS Proxy do so, specify the requirement on the client side. SSL session
variables are not set for SSL connections to a database using RDS Proxy.

• For RDS for MySQL, specify the requirement on the client side with the --ssl-mode parameter
when you run the mysql command.

Security 2229

Amazon Relational Database Service User Guide

• For Amazon RDS PostgreSQL, specify sslmode=require as part of the conninfo string when
you run the psql command.

RDS Proxy supports TLS protocol version 1.0, 1.1, 1.2, and 1.3. You can connect to the proxy using
a higher version of TLS than you use in the underlying database.

By default, client programs establish an encrypted connection with RDS Proxy, with further control
available through the --ssl-mode option. From the client side, RDS Proxy supports all SSL modes.

For the client, the SSL modes are the following:

PREFERRED

SSL is the first choice, but it isn't required.

DISABLED

No SSL is allowed.

REQUIRED

Enforce SSL.

VERIFY_CA

Enforce SSL and verify the certificate authority (CA).

VERIFY_IDENTITY

Enforce SSL and verify the CA and CA hostname.

When using a client with --ssl-mode VERIFY_CA or VERIFY_IDENTITY, specify the --ssl-ca
option pointing to a CA in .pem format. For the .pem file to use, download all root CA PEMs from
Amazon Trust Services and place them into a single .pem file.

RDS Proxy uses wildcard certificates, which apply to both a domain and its subdomains. If you use
the mysql client to connect with SSL mode VERIFY_IDENTITY, currently you must use the MySQL
8.0-compatible mysql command.

Failover

Failover is a high-availability feature that replaces a database instance with another one when
the original instance becomes unavailable. A failover might happen because of a problem with

Failover 2230

https://www.amazontrust.com/repository/

Amazon Relational Database Service User Guide

a database instance. It might also be part of normal maintenance procedures, such as during a
database upgrade. Failover applies to RDS DB instances in a Multi-AZ configuration.

Connecting through a proxy makes your applications more resilient to database failovers. When the
original DB instance becomes unavailable, RDS Proxy connects to the standby database without
dropping idle application connections. This helps speed up and simplify the failover process. This is
less disruptive to your application than a typical reboot or database problem.

Without RDS Proxy, a failover involves a brief outage. During the outage, you can't perform write
operations on the database in failover. Any existing database connections are disrupted, and your
application must reopen them. The database becomes available for new connections and write
operations when a read-only DB instance is promoted in place of one that's unavailable.

During DB failovers, RDS Proxy continues to accept connections at the same IP address and
automatically directs connections to the new primary DB instance. Clients connecting through RDS
Proxy are not susceptible to the following:

• Domain Name System (DNS) propagation delays on failover.

• Local DNS caching.

• Connection timeouts.

• Uncertainty about which DB instance is the current writer.

• Waiting for a query response from a former writer that became unavailable without closing
connections.

For applications that maintain their own connection pool, going through RDS Proxy means that
most connections stay alive during failovers or other disruptions. Only connections that are in
the middle of a transaction or SQL statement are canceled. RDS Proxy immediately accepts new
connections. When the database writer is unavailable, RDS Proxy queues up incoming requests.

For applications that don't maintain their own connection pools, RDS Proxy offers faster
connection rates and more open connections. It offloads the expensive overhead of frequent
reconnects from the database. It does so by reusing database connections maintained in the RDS
Proxy connection pool. This approach is particularly important for TLS connections, where setup
costs are significant.

Failover 2231

Amazon Relational Database Service User Guide

Transactions

All the statements within a single transaction always use the same underlying database
connection. The connection becomes available for use by a different session when the transaction
ends. Using the transaction as the unit of granularity has the following consequences:

• Connection reuse can happen after each individual statement when the RDS for MySQL
autocommit setting is turned on.

• Conversely, when the autocommit setting is turned off, the first statement you issue in a session
begins a new transaction. For example, suppose that you enter a sequence of SELECT, INSERT,
UPDATE, and other data manipulation language (DML) statements. In this case, connection reuse
doesn't happen until you issue a COMMIT, ROLLBACK, or otherwise end the transaction.

• Entering a data definition language (DDL) statement causes the transaction to end after that
statement completes.

RDS Proxy detects when a transaction ends through the network protocol used by the database
client application. Transaction detection doesn't rely on keywords such as COMMIT or ROLLBACK
appearing in the text of the SQL statement.

In some cases, RDS Proxy might detect a database request that makes it impractical to move your
session to a different connection. In these cases, it turns off multiplexing for that connection the
remainder of your session. The same rule applies if RDS Proxy can't be certain that multiplexing is
practical for the session. This operation is called pinning. For ways to detect and minimize pinning,
see Avoiding pinning an RDS Proxy.

Getting started with RDS Proxy

Use the information in the following pages to set up and manage Amazon RDS Proxy and set
related security options. The security options control who can access each proxy and how each
proxy connects to DB instances.

If you're new to RDS Proxy, we recommend following the pages in the order that we present them.

Topics

• Setting up network prerequisites for RDS Proxy

• Setting up database credentials in AWS Secrets Manager for RDS Proxy

Transactions 2232

Amazon Relational Database Service User Guide

• Configuring IAM authentication for RDS Proxy

• Creating a proxy for Amazon RDS

• Viewing a proxy

• Connecting to a database through RDS Proxy

Setting up network prerequisites for RDS Proxy

Using RDS Proxy requires you to have a common virtual private cloud (VPC) between your RDS
DB instance and RDS Proxy. This VPC should have a minimum of two subnets that are in different
Availability Zones. Your account can either own these subnets or share them with other accounts.
For information about VPC sharing, see Work with shared VPCs.

Your client application resources such as Amazon EC2, Lambda, or Amazon ECS can be in the same
VPC as the proxy. Or they can be in a separate VPC from the proxy. If you successfully connected to
any RDS DB instances , you already have the required network resources.

Topics

• Getting information about your subnets

• Planning for IP address capacity

Getting information about your subnets

To create a proxy, you must provide the subnets and the VPC that the proxy operates within. The
following Linux example shows AWS CLI commands that examine the VPCs and subnets owned by
your AWS account. In particular, you pass subnet IDs as parameters when you create a proxy using
the CLI.

aws ec2 describe-vpcs
aws ec2 describe-internet-gateways
aws ec2 describe-subnets --query '*[].[VpcId,SubnetId]' --output text | sort

The following Linux example shows AWS CLI commands to determine the subnet IDs
corresponding to a specific RDS DB instance. Find the VPC ID for the DB instance. Examine the VPC
to find its subnets. The following Linux example shows how.

$ #From the DB instance, trace through the DBSubnetGroup and Subnets to find the subnet
 IDs.

Set up a proxy network 2233

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

Amazon Relational Database Service User Guide

$ aws rds describe-db-instances --db-instance-identifier my_instance_id --query '*[].
[DBSubnetGroup]|[0]|[0]|[Subnets]|[0]|[*].SubnetIdentifier' --output text

subnet_id_1
subnet_id_2
subnet_id_3
...

$ #From the DB instance, find the VPC.
$ aws rds describe-db-instances --db-instance-identifier my_instance_id --query '*[].
[DBSubnetGroup]|[0]|[0].VpcId' --output text

my_vpc_id

$ aws ec2 describe-subnets --filters Name=vpc-id,Values=my_vpc_id --query '*[].
[SubnetId]' --output text

subnet_id_1
subnet_id_2
subnet_id_3
subnet_id_4
subnet_id_5
subnet_id_6

Planning for IP address capacity

An RDS Proxy automatically adjusts its capacity as needed based on the size and number of DB
instances registered with it. Certain operations might also require additional proxy capacity such as
increasing the size of a registered database or internal RDS Proxy maintenance operations. During
these operations, your proxy might need more IP addresses to provision the extra capacity. These
additional addresses allow your proxy to scale without affecting your workload. A lack of free IP
addresses in your subnets prevents a proxy from scaling up. This can lead to higher query latencies
or client connection failures. RDS notifies you through event RDS-EVENT-0243 when there aren't
enough free IP addresses in your subnets. For information about this event, see Working with RDS
Proxy events.

Reserve the following minimum numbers of free IP addresses in your subnets for your proxy, based
on DB instance class sizes.

Set up a proxy network 2234

Amazon Relational Database Service User Guide

DB instance class Minimum free IP addresses

db.*.xlarge or smaller 10

db.*.2xlarge 15

db.*.4xlarge 25

db.*.8xlarge 45

db.*.12xlarge 60

db.*.16xlarge 75

db.*.24xlarge 110

These recommended numbers of IP addresses are estimates for a proxy with only the default
endpoint. A proxy with additional endpoints or read replicas might need more free IP addresses.
For each additional endpoint, we recommend that you reserve three more IP addresses. For each
read replica, we recommend that you reserve additional IP addresses as specified in the table based
on that read replica's size.

Note

RDS Proxy doesn't consume more than 215 IP addresses in a VPC.

Setting up database credentials in AWS Secrets Manager for RDS Proxy

RDS Proxy in Amazon RDS uses AWS Secrets Manager to store and manage database credentials
securely. Instead of embedding credentials in your application, you associate a proxy with a Secrets
Manager secret that contains the necessary authentication details. You create a separate Secrets
Manager secret for each database user account that the proxy connects to on the RDS DB instance.

Topics

• Creating secrets to use with RDS Proxy

Setting up database credentials 2235

Amazon Relational Database Service User Guide

Creating secrets to use with RDS Proxy

Before you create a proxy, you must first create at least one secret that stores your database
credentials.

Console

To create a secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. Choose Credentials for Amazon RDS database.

4. Enter a user name and password. The credentials that you enter must match the credentials of
a database user that exists in the associated RDS database. RDS Proxy uses these credentials to
authenticate and establish connections to the database on behalf of applications.

If there's a mismatch, you can update the secret to match the database password. Until
you update the secret, attempts to connect through the proxy using that secret fail, but
connections using other valid secrets still work.

Note

For RDS for SQL Server, RDS Proxy requires a case-sensitive secret in Secrets Manager,
regardless of the DB instance collation settings. If your application allows usernames
with different capitalizations, such as "Admin" and "admin," you must create separate
secrets for each. RDS Proxy doesn't support case-insensitive username authentication
between the client and proxy.
For more information about collation in SQL Server, see the Microsoft SQL Server
documentation.

5. For Database, select the Amazon RDS database that the secret will access.

6. Fill in other settings for the secret, then choose Store. For comprehensive instructions, see
Creating an AWS Secrets Manager secret in the AWS Secrets Manager User Guide.

Setting up database credentials 2236

https://console.aws.amazon.com/secretsmanager/
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver16
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Relational Database Service User Guide

AWS CLI

When you create a proxy through the AWS CLI, you specify the Amazon Resource Names (ARNs) of
the corresponding secrets. You do so for all the DB user accounts that the proxy can access. In the
AWS Management Console, you choose the secrets by their descriptive names.

• To create a Secrets Manager secret for use with RDS Proxy, use the create-secret command:

aws secretsmanager create-secret \
 --name "secret_name" \
 --description "secret_description" \
 --region region_name \
 --secret-string '{"username":"db_user","password":"db_user_password"}'

• You can also create a custom key to encrypt your Secrets Manager secret. The following
command creates an example key.

aws kms create-key --description "test-key" --policy '{
 "Id":"kms-policy",
 "Version":"2012-10-17",
 "Statement":
 [
 {
 "Sid":"Enable IAM User Permissions",
 "Effect":"Allow",
 "Principal":{"AWS":"arn:aws:iam::account_id:root"},
 "Action":"kms:*","Resource":"*"
 },
 {
 "Sid":"Allow access for Key Administrators",
 "Effect":"Allow",
 "Principal":
 {
 "AWS":
 ["$USER_ARN","arn:aws:iam:account_id::role/Admin"]
 },
 "Action":
 [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",

Setting up database credentials 2237

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/create-secret.html

Amazon Relational Database Service User Guide

 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource":"*"
 },
 {
 "Sid":"Allow use of the key",
 "Effect":"Allow",
 "Principal":{"AWS":"$ROLE_ARN"},
 "Action":["kms:Decrypt","kms:DescribeKey"],
 "Resource":"*"
 }
]
}'

For example, the following commands create Secrets Manager secrets for two database users:

aws secretsmanager create-secret \
 --name secret_name_1 --description "db admin user" \
 --secret-string '{"username":"admin","password":"choose_your_own_password"}'

aws secretsmanager create-secret \
 --name secret_name_2 --description "application user" \
 --secret-string '{"username":"app-user","password":"choose_your_own_password"}'

To create these secrets encrypted with your custom AWS KMS key, use the following commands:

aws secretsmanager create-secret \
 --name secret_name_1 --description "db admin user" \
 --secret-string '{"username":"admin","password":"choose_your_own_password"}' \
 --kms-key-id arn:aws:kms:us-east-2:account_id:key/key_id

aws secretsmanager create-secret \
 --name secret_name_2 --description "application user" \
 --secret-string '{"username":"app-user","password":"choose_your_own_password"}' \

Setting up database credentials 2238

Amazon Relational Database Service User Guide

 --kms-key-id arn:aws:kms:us-east-2:account_id:key/key_id

To see the secrets owned by your AWS account, use the list-secrets command:

aws secretsmanager list-secrets

When you create a proxy using the CLI, you pass the Amazon Resource Names (ARNs) of one or
more secrets to the --auth parameter. The following example shows how to prepare a report
with only the name and ARN of each secret owned by your AWS account. This example uses the --
output table parameter that is available in AWS CLI version 2. If you are using AWS CLI version
1, use --output text instead.

aws secretsmanager list-secrets --query '*[].[Name,ARN]' --output table

To confirm that the secret contains the correct credentials in the proper format, use the get-secret-
value command. Replace your_secret_name with the secret’s short name or ARN.

aws secretsmanager get-secret-value --secret-id your_secret_name

The output contains a line with a JSON-encoded value similar to the following:

...
"SecretString": "{\"username\":\"your_username\",\"password\":\"your_password\"}",
...

Configuring IAM authentication for RDS Proxy

To set up AWS Identity and Access Management (IAM) authentication for RDS Proxy in Amazon
RDS, create and configure an IAM policy that grants the necessary permissions. RDS Proxy uses
AWS Secrets Manager to manage database credentials securely, which allows applications to
authenticate through the proxy without directly handling credentials.

This topic provides the steps to configure IAM authentication for RDS Proxy, including creating the
required IAM policy and attaching it to an IAM role.

Configuring IAM authentication 2239

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/list-secrets.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html

Amazon Relational Database Service User Guide

Tip

This procedure is only necessary if you want to create your own IAM role. Otherwise, RDS
can automatically create the required role when you set up the proxy, so you can skip these
steps.

Prerequisites

Before you set up IAM authentication for RDS Proxy, make sure that you have the following:

• AWS Secrets Manager – At least one stored secret that contains database credentials. For
instructions to create secrets, see the section called “Setting up database credentials”.

• IAM permissions – An IAM role or user with permissions to create and manage IAM policies,
roles, and secrets in AWS Secrets Manager.

Creating an IAM policy for Secrets Manager access

To allow RDS Proxy to retrieve database credentials from Secrets Manager, create an IAM role with
a policy that grants the necessary permissions.

Console

To create a role to access your secrets for use with your proxy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Create a permissions policy for the role. For general steps, see Create IAM policies (console).

Paste this policy into the JSON editor and make the following changes:

• Substitute your own account ID.

• Substitute us-east-2 with the Region where the proxy will reside.

• Substitute the secret names with the ones you created. For more information, see
Specifying KMS keys in IAM policy statements.

• Substitue the KMS key ID with the one you used to encrypt the Secrets Manager secrets,
either the default key or your own key.

Configuring IAM authentication 2240

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/kms/latest/developerguide/cmks-in-iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/cmks-in-iam-policies.html

Amazon Relational Database Service User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": [
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_1",
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_2"
]
 },
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:us-east-2:account_id:key/key_id",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.us-east-2.amazonaws.com"
 }
 }
 }
]
}

3. Create the role and attach the permissions policy to it. For general steps, see Create a role to
delegate permissions to an AWS service.

For the Trusted entity type, choose AWS service. Under Use case, select RDS and choose RDS
- Add Role to Database for the use case.

4. For Permissions policies, choose the policy that you created.

5. For Select trusted entities, enter the following trust policy for the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"

Configuring IAM authentication 2241

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

 },
 "Action": "sts:AssumeRole"
 }
]
}

AWS CLI

To create the role using the AWS CLI, send the following request:

aws iam create-role \
 --role-name my_role_name \
 --assume-role-policy-document '{"Version":"2012-10-17","Statement":
[{"Effect":"Allow","Principal":{"Service":
["rds.amazonaws.com"]},"Action":"sts:AssumeRole"}]}'

Then, attach the policy to the role:

aws iam put-role-policy \
 --role-name my_role_name \
 --policy-name secret_reader_policy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": [
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_1",
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_2"
]
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:us-east-2:account_id:key/key_id",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.us-east-2.amazonaws.com"
 }

Configuring IAM authentication 2242

Amazon Relational Database Service User Guide

 }
 }
]
}'

With the IAM role and permissions configured, you can now create a proxy and associate it with this
role. This allows the proxy to retrieve database credentials securely from AWS Secrets Manager and
enable IAM authentication for your applications. For instructions, see the section called “Creating a
proxy”.

Creating a proxy for Amazon RDS

You can associate a proxy with an RDS for MariaDB, RDS for Microsoft SQL Server, RDS for MySQL,
or RDS for PostgreSQL DB instance.

Console

To create a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Choose Create proxy.

4. Configure the following settings for your proxy.

Setting Description

Engine family The database network protocol the proxy recognizes when it
interprets network traffic to and from the database.

Proxy identifier A name that is unique within your AWS account ID and current
AWS Region.

Idle client connection
timeout

The proxy closes a client connection if it remains idle for a
set period. By default, this is 1,800 seconds (30 minutes). A
connection is idle when the application doesn’t submit a new
request within the specified time after completing the previous
request. The proxy keeps the underlying database connection

Creating a proxy 2243

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Setting Description

open and returns it to the connection pool, making it available
for new client connections.

To proactively remove stale connections, reduce the idle client
connection timeout. To minimize connection costs during
workload spikes, increase the timeout.

Database The RDS DB instance to access through this proxy. The list only
includes DB instances and clusters with compatible database
engines, engine versions, and other settings. If the list is empty,
create a new DB instance or cluster that's compatible with RDS
Proxy. To do so, follow the procedure in Creating an Amazon
RDS DB instance. Then, try creating the proxy again.

Connection pool maximum
connections

A value between 1 and 100 to define the percentage of the
max_connections limit that RDS Proxy can use. If you only
intend to use one proxy with this DB instance or cluster, set this
value to 100. For more information about how RDS Proxy uses
this setting, see the section called “MaxConnectionsPercent”.

Creating a proxy 2244

Amazon Relational Database Service User Guide

Setting Description

Session pinning filters Prevents RDS Proxy from pinning certain detected session
states, which bypasses default safety measures for multiplex
ing connections. Currently, PostgreSQL doesn't support
this setting, and the only available option is EXCLUDE_V
ARIABLE_SETS . Enabling it might cause session variables
from one connection to affect others, leading to errors or
correctness issues if queries rely on session variables set
outside the current transaction. Use this option only after
confirming that your applications can safely share database
connections.

The following patterns are considered safe:

• SET statements where there is no change to the effective
session variable value. In other words, there is no change to
the session variable.

• You change the session variable value and execute a
statement in the same transaction.

For more information, see Avoiding pinning an RDS Proxy.

Connection borrow timeout If you expect the proxy to use all available database connectio
ns, set the wait time before it returns a timeout error. You can
specify up to five minutes. This setting applies only when the
proxy has reached the maximum number of connections and
all are in use.

Creating a proxy 2245

Amazon Relational Database Service User Guide

Setting Description

Initialization query Add or modify an initialization query by specifying one or
more SQL statements for the proxy to run when it opens a new
database connection. This setting is typically used with SET
statements to ensure consistent connection settings. Make
sure the query is valid, and use commas to separate multiple
variables within a SET statement. For example:

SET variable1 =value1, variable2 =value2

For multiple statements, separate them with semicolons.

AWS Identity and Access
Management (IAM) role

An IAM role with permission to access the Secrets Manager
secrets, which represent the credentials for database user
accounts that the proxy can use. Alternatively, you can create a
new IAM role from the AWS Management Console.

Secrets Manager secrets Choose at least one Secrets Manager secret that contains
database user credentials that allow the proxy to access the
RDS DB instance.

Client authentication type The type of authentication the proxy uses for connections from
clients. Your choice applies to all Secrets Manager secrets that
you associate with this proxy. If you need to specify a different
client authentication type for each secret, create your proxy by
using the AWS CLI or the API instead.

IAM authentication Whether to require, allow, or disallow IAM authentication
for connections to your proxy. The allow option is only valid
for proxies for RDS for SQL Server. Your choice applies to all
Secrets Manager secrets that you associate with this proxy. If
you need to specify a different IAM authentication for each
secret, create your proxy by using the AWS CLI or the API
instead.

Creating a proxy 2246

Amazon Relational Database Service User Guide

Setting Description

Require Transport Layer
Security

Enforces TLS/SSL for all client connections. The proxy uses the
same encryption setting for its connection to the underlyin
g database, whether the client connection is encrypted or
unencrypted.

Subnets This field is prepopulated with all subnets associated with your
VPC. You can remove any subnets not needed for the proxy,
but you must leave at least two subnets.

Creating a proxy 2247

Amazon Relational Database Service User Guide

Setting Description

VPC security group Choose an existing VPC security group or create a new one
from the AWS Management Console. Configure the inbound
rules to allow your applications to access the proxy and the
outbound rules to permit traffic from your database targets.

Note

The security group must allow connections from the
proxy to the database. It serves both for ingress from
your applications to the proxy and egress from the
proxy to the database. For example, if you use the
same security group for both the database and the
proxy, make sure that resources within that security
group can communicate with each other.
When you use a shared VPC, avoid using the default
security group for the VPC or one associated with
another account. Instead, select a security group that
belongs to your account. If none exists, create one. For
more information, see Work with shared VPCs.

RDS deploys a proxy across multiple Availability Zones to
ensure high availability. To enable cross-AZ communication,
the network access control list (ACL) for your proxy subnet
must allow egress on the engine port and ingress on all ports.
For more information about network ACLs, see Control traffic
to subnets using network ACLs. If the network ACL for your
proxy and target are identical, you must add a TCP protocol
ingress rule where the Source is set to the VPC CIDR. You must
also add an engine port specific TCP protocol egress rule where
the Destination is set to the VPC CIDR.

Creating a proxy 2248

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html

Amazon Relational Database Service User Guide

Setting Description

Activate enhanced logging Enable this setting to troubleshoot proxy compatibility or
performance issues. When enabled, RDS Proxy logs detailed
performance information to help you debug SQL behavior or
proxy connection performance and scalability.

Only enable this setting for debugging and ensure proper
security measures are in place to protect sensitive informati
on in the logs. To minimize overhead, RDS Proxy automatically
disables this setting 24 hours after activation. Use it temporari
ly to troubleshoot specific issues.

5. Choose Create proxy.

AWS CLI

To create a proxy by using the AWS CLI, call the create-db-proxy command with the following
required parameters:

• --db-proxy-name

• --engine-family

• --role-arn

• --auth

• --vpc-subnet-ids

The --engine-family value is case-sensitive.

Example

For Linux, macOS, or Unix:

aws rds create-db-proxy \
 --db-proxy-name proxy_name \
 --engine-family { MYSQL | POSTGRESQL | SQLSERVER } \
 --auth ProxyAuthenticationConfig_JSON_string \
 --role-arn iam_role \
 --vpc-subnet-ids space_separated_list \

Creating a proxy 2249

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-proxy.html

Amazon Relational Database Service User Guide

 [--vpc-security-group-ids space_separated_list] \
 [--require-tls | --no-require-tls] \
 [--idle-client-timeout value] \
 [--debug-logging | --no-debug-logging] \
 [--tags comma_separated_list]

For Windows:

aws rds create-db-proxy ^
 --db-proxy-name proxy_name ^
 --engine-family { MYSQL | POSTGRESQL | SQLSERVER } ^
 --auth ProxyAuthenticationConfig_JSON_string ^
 --role-arn iam_role ^
 --vpc-subnet-ids space_separated_list ^
 [--vpc-security-group-ids space_separated_list] ^
 [--require-tls | --no-require-tls] ^
 [--idle-client-timeout value] ^
 [--debug-logging | --no-debug-logging] ^
 [--tags comma_separated_list]

The following is an example of the JSON value for the --auth option. This example applies a
different client authentication type to each secret.

[
 {
 "Description": "proxy description 1",
 "AuthScheme": "SECRETS",
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:123456789123:secret/1234abcd-12ab-34cd-56ef-1234567890ab",
 "IAMAuth": "DISABLED",
 "ClientPasswordAuthType": "POSTGRES_SCRAM_SHA_256"
 },

 {
 "Description": "proxy description 2",
 "AuthScheme": "SECRETS",
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:111122223333:secret/1234abcd-12ab-34cd-56ef-1234567890cd",
 "IAMAuth": "DISABLED",
 "ClientPasswordAuthType": "POSTGRES_MD5"

 },

Creating a proxy 2250

Amazon Relational Database Service User Guide

 {
 "Description": "proxy description 3",
 "AuthScheme": "SECRETS",
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:111122221111:secret/1234abcd-12ab-34cd-56ef-1234567890ef",
 "IAMAuth": "REQUIRED"
 }

]

Tip

If you don't already know the subnet IDs to use for the --vpc-subnet-ids parameter, see
Setting up network prerequisites for RDS Proxy for examples of how to find them.

Note

The security group must allow access to the database the proxy connects to. The same
security group is used for ingress from your applications to the proxy, and for egress from
the proxy to the database. For example, suppose that you use the same security group for
your database and your proxy. In this case, make sure that you specify that resources in that
security group can communicate with other resources in the same security group.
When using a shared VPC, you can't use the default security group for the VPC, or one that
belongs to another account. Choose a security group that belongs to your account. If one
doesn't exist, create one. For more information about this limitation, see Work with shared
VPCs.

To create the right associations for the proxy, you also use the register-db-proxy-targets command.
Specify the target group name default. RDS Proxy automatically creates a target group with this
name when you create each proxy.

aws rds register-db-proxy-targets
 --db-proxy-name value
 [--target-group-name target_group_name]
 [--db-instance-identifiers space_separated_list] # rds db instances, or
 [--db-cluster-identifiers cluster_id] # rds db cluster (all instances)

Creating a proxy 2251

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/cli/latest/reference/rds/register-db-proxy-targets.html

Amazon Relational Database Service User Guide

RDS API

To create an RDS proxy, call the Amazon RDS API operation CreateDBProxy. You pass a parameter
with the AuthConfig data structure.

RDS Proxy automatically creates a target group named default when you create each
proxy. You associate an RDS DB instance with the target group by calling the function
RegisterDBProxyTargets.

Viewing a proxy

After you create one or more RDS proxies, you can view and manage them in the AWS
Management Console, the AWS CLI, or the RDS API. You can review their configuration details,
monitor performance, and determine which proxies to modify or delete as needed.

To enable database applications to route traffic through a proxy, you must specify the proxy
endpoint in the connection string.

Console

To view a proxy in the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Select the proxy name to view its details.

4. On the details page, the Target groups section shows how the proxy is linked to a specific
RDS DB instance. You can navigate to the default target group page for a deeper view of this
association, including configuration settings defined during proxy creation. These settings
include the maximum connection percentage, connection borrow timeout, engine family, and
session pinning filters.

CLI

To view your proxy using the CLI, use the describe-db-proxies command. By default, the request
returns all proxies owned by your AWS account. To see details for a single proxy, specify its name
with the --db-proxy-name parameter.

aws rds describe-db-proxies [--db-proxy-name proxy_name]

Viewing a proxy 2252

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AuthConfig.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RegisterDBProxyTargets.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html

Amazon Relational Database Service User Guide

To view other information associated with the proxy, use the following commands.

aws rds describe-db-proxy-target-groups --db-proxy-name proxy_name

aws rds describe-db-proxy-targets --db-proxy-name proxy_name

Use the following sequence of commands to see more detail about the things that are associated
with the proxy:

1. To get a list of proxies, run describe-db-proxies.

2. To show connection parameters such as the maximum percentage of connections that the proxy
can use, run describe-db-proxy-target-groups --db-proxy-name. Use the name of the proxy as
the parameter value.

3. To see the details of the RDS DB instance associated with the returned target group, run
describe-db-proxy-targets.

RDS API

To view your proxies using the RDS API, use the DescribeDBProxies operation. It returns values of
the DBProxy data type.

To see details of the connection settings for the proxy, use the proxy identifiers from this
return value with the DescribeDBProxyTargetGroups operation. It returns values of the
DBProxyTargetGroup data type.

To see the RDS instance or Aurora DB cluster associated with the proxy, use the
DescribeDBProxyTargets operation. It returns values of the DBProxyTarget data type.

Connecting to a database through RDS Proxy

The way to connect to an RDS DB instance through a proxy or by connecting to the database is
generally the same. For more information, see Overview of proxy endpoints.

Topics

• Connecting to a proxy using native authentication

• Connecting to a proxy using IAM authentication

• Considerations for connecting to a proxy with Microsoft SQL Server

Connecting through RDS Proxy 2253

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-target-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxies.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyTargetGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyTargets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxyTarget.html

Amazon Relational Database Service User Guide

• Considerations for connecting to a proxy with PostgreSQL

Connecting to a proxy using native authentication

Use the following steps to connect to a proxy using native authentication:

1. Find the proxy endpoint. In the AWS Management Console, you can find the endpoint on the
details page for the corresponding proxy. With the AWS CLI, you can use the describe-db-proxies
command. The following example shows how.

Add --output text to get output as a simple tab-separated list.
$ aws rds describe-db-proxies --query '*[*].
{DBProxyName:DBProxyName,Endpoint:Endpoint}'
[
 [
 {
 "Endpoint": "the-proxy.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy"
 },
 {
 "Endpoint": "the-proxy-other-secret.proxy-demo.us-
east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-other-secret"
 },
 {
 "Endpoint": "the-proxy-rds-secret.proxy-demo.us-
east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-rds-secret"
 },
 {
 "Endpoint": "the-proxy-t3.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-t3"
 }
]
]

2. Specify the endpoint as the host parameter in the connection string for your client application.
For example, specify the proxy endpoint as the value for the mysql -h option or psql -h
option.

3. Supply the same database user name and password as you usually do.

Connecting through RDS Proxy 2254

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html

Amazon Relational Database Service User Guide

Connecting to a proxy using IAM authentication

When you use IAM authentication with RDS Proxy, set up your database users to authenticate with
regular user names and passwords. The IAM authentication applies to RDS Proxy retrieving the
user name and password credentials from Secrets Manager. The connection from RDS Proxy to the
underlying database doesn't go through IAM.

To connect to RDS Proxy using IAM authentication, use the same general connection procedure
as for IAM authentication with an RDS DB instance. For general information about using IAM, see
Security in Amazon RDS.

The major differences in IAM usage for RDS Proxy include the following:

• You don't configure each individual database user with an authorization plugin. The database
users still have regular user names and passwords within the database. You set up Secrets
Manager secrets containing these user names and passwords, and authorize RDS Proxy to
retrieve the credentials from Secrets Manager.

The IAM authentication applies to the connection between your client program and the proxy.
The proxy then authenticates to the database using the user name and password credentials
retrieved from Secrets Manager.

• Instead of the instance, cluster, or reader endpoint, you specify the proxy endpoint. For details
about the proxy endpoint, see Connecting to your DB instance using IAM authentication.

• In the direct database IAM authentication case, you selectively choose database users and
configure them to be identified with a special authentication plugin. You can then connect to
those users using IAM authentication.

In the proxy use case, you provide the proxy with Secrets that contain some user's user name and
password (native authentication). You then connect to the proxy using IAM authentication. Here,
you do this by generating an authentication token with the proxy endpoint, not the database
endpoint. You also use a user name that matches one of the user names for the secrets that you
provided.

• Make sure that you use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) when
connecting to a proxy using IAM authentication.

You can grant a specific user access to the proxy by modifying the IAM policy. An example follows.

"Resource": "arn:aws:rds-db:us-east-2:1234567890:dbuser:prx-ABCDEFGHIJKL01234/db_user"

Connecting through RDS Proxy 2255

Amazon Relational Database Service User Guide

Considerations for connecting to a proxy with Microsoft SQL Server

For connecting to a proxy using IAM authentication, you don't use the password field. Instead,
you provide the appropriate token property for each type of database driver in the token field.
For example, use the accessToken property for JDBC, or the sql_copt_ss_access_token
property for ODBC. Or use the AccessToken property for the .NET SqlClient driver. You can't use
IAM authentication with clients that don't support token properties.

Under some conditions, a proxy can't share a database connection and instead pins the connection
from your client application to the proxy to a dedicated database connection. For more information
about these conditions, see Avoiding pinning an RDS Proxy.

Considerations for connecting to a proxy with PostgreSQL

If you create a new PostgreSQL database user for connecting to RDS Proxy, make sure that
you grant the user CONNECT privilege on the database. Without this, the user can't establish
a connection. For more information, see the section called “Adding a new database user to a
PostgreSQL database when using RDS Proxy”.

When a client starts a connection to a PostgreSQL database, it sends a startup message. This
message includes pairs of parameter name and value strings. For details, see the StartupMessage
in PostgreSQL message formats in the PostgreSQL documentation.

When you connect through an RDS proxy, the startup message can include the following currently
recognized parameters:

• user

• database

The startup message can also include the following additional runtime parameters:

• application_name

• client_encoding

• DateStyle

• TimeZone

• extra_float_digits

• search_path

Connecting through RDS Proxy 2256

https://www.postgresql.org/docs/current/protocol-message-formats.html
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-APPLICATION-NAME
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-CLIENT-ENCODING
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DATESTYLE
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TIMEZONE
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-EXTRA-FLOAT-DIGITS
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-SEARCH-PATH

Amazon Relational Database Service User Guide

For more information about PostgreSQL messaging, see the Frontend/Backend protocol in the
PostgreSQL documentation.

For PostgreSQL, if you use JDBC, we recommend the following to avoid pinning:

• Set the JDBC connection parameter assumeMinServerVersion to at least 9.0 to avoid
pinning. This prevents the JDBC driver from performing an extra round trip during connection
startup when it runs SET extra_float_digits = 3.

• Set the JDBC connection parameter ApplicationName to any/your-application-name to
avoid pinning. Doing this prevents the JDBC driver from performing an extra round trip during
connection startup when it runs SET application_name = "PostgreSQL JDBC Driver".
Note the JDBC parameter is ApplicationName but the PostgreSQL StartupMessage
parameter is application_name.

For more information, see Avoiding pinning an RDS Proxy. For more information about connecting
using JDBC, see Connecting to the database in the PostgreSQL documentation.

Managing an RDS Proxy

This section provides information on how to manage RDS Proxy operation and configuration. These
procedures help your application make the most efficient use of database connections and achieve
maximum connection reuse. The more that you can take advantage of connection reuse, the more
CPU and memory overhead that you can save. This in turn reduces latency for your application and
enables the database to devote more of its resources to processing application requests.

Topics

• Modifying an RDS Proxy

• Adding a new database user when using RDS Proxy

• RDS Proxy connection considerations

• Avoiding pinning an RDS Proxy

• Deleting an RDS Proxy

Managing an RDS Proxy 2257

https://www.postgresql.org/docs/current/protocol.html
https://jdbc.postgresql.org/documentation/setup/

Amazon Relational Database Service User Guide

Modifying an RDS Proxy

You can change specific settings associated with a proxy after you create the proxy. You do so by
modifying the proxy itself, its associated target group, or both. Each proxy has an associated target
group.

AWS Management Console

Important

The values in the Client authentication type and IAM authentication fields apply to all
Secrets Manager secrets that are associated with this proxy. To specify different values for
each secret, modify your proxy by using the AWS CLI or the API instead.

To modify the settings for a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. In the list of proxies, choose the proxy whose settings you want to modify or go to its details
page.

4. For Actions, choose Modify.

5. Enter or choose the properties to modify. You can modify the following:

• Proxy identifier – Rename the proxy by entering a new identifier.

• Idle client connection timeout – Enter a time period for the idle client connection timeout.

• IAM role – Change the IAM role used to retrieve the secrets from Secrets Manager.

• Secrets Manager secrets – Add or remove Secrets Manager secrets. These secrets correspond
to database user names and passwords.

• Client authentication type – (PostgreSQL only) Change the type of authentication for client
connections to the proxy.

• IAM authentication – Require or disallow IAM authentication for connections to the proxy.

• Require Transport Layer Security – Turn the requirement for Transport layer Security (TLS)
on or off.

• VPC security group – Add or remove VPC security groups for the proxy to use.

Modifying an RDS Proxy 2258

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• Enable enhanced logging – Enable or disable enhanced logging.

6. Choose Modify.

If you didn't find the settings listed that you want to change, use the following procedure to
update the target group for the proxy. The target group associated with a proxy controls the
settings related to the physical database connections. Each proxy has one associated target group
named default, which is created automatically along with the proxy. You can't rename the
default target group.

You can only modify the target group from the proxy details page, not from the list on the Proxies
page.

To modify the settings for a proxy target group

1. On the Proxies page, go to the details page for a proxy.

2. For Target groups, choose the default link. Currently, all proxies have a single target group
named default.

3. On the details page for the default target group, choose Modify.

4. Choose new settings for the properties that you can modify:

• Database – Choose a different RDS DB instance or cluster.

• Connection pool maximum connections – Adjust what percentage of the maximum
available connections the proxy can use.

• Session pinning filters – (Optional) Choose a session pinning filter. This circumvents
the default safety measures for multiplexing database connections across client
connections. Currently, the setting isn't supported for PostgreSQL. The only choice is
EXCLUDE_VARIABLE_SETS.

Enabling this setting can cause session variables of one connection to impact other
connections. This can cause errors or correctness issues if your queries depend on session
variable values set outside of the current transaction. Consider using this option after
verifying it is safe for your applications to share database connections across client
connections.

The following patterns can be considered safe:

• SET statements where there is no change to the effective session variable value, i.e., there
is no change to the session variable.

Modifying an RDS Proxy 2259

Amazon Relational Database Service User Guide

• You change the session variable value and execute a statement in the same transaction.

For more information, see Avoiding pinning an RDS Proxy.

• Connection borrow timeout – Adjust the connection borrow timeout interval. This setting
applies when the maximum number of connections is already being used for the proxy. The
setting determines how long the proxy waits for a connection to become available before
returning a timeout error.

• Initialization query. (Optional) Add an initialization query, or modify the current one.
You can specify one or more SQL statements for the proxy to run when opening each new
database connection. The setting is typically used with SET statements to make sure that
each connection has identical settings. Make sure that the query you add is valid. To include
multiple variables in a single SET statement, use comma separators. For example:

SET variable1=value1, variable2=value2

For multiple statements, use semicolons as the separator.

You can't change certain properties, such as the target group identifier and the database
engine.

5. Choose Modify target group.

AWS CLI

To modify a proxy using the AWS CLI, use the commands modify-db-proxy, modify-db-proxy-
target-group, deregister-db-proxy-targets, and register-db-proxy-targets.

With the modify-db-proxy command, you can change properties such as the following:

• The set of Secrets Manager secrets used by the proxy.

• Whether TLS is required.

• The idle client timeout.

• Whether to log additional information from SQL statements for debugging.

• The IAM role used to retrieve Secrets Manager secrets.

• The security groups used by the proxy.

Modifying an RDS Proxy 2260

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/deregister-db-proxy-targets.html
https://docs.aws.amazon.com/cli/latest/reference/rds/register-db-proxy-targets.html

Amazon Relational Database Service User Guide

The following example shows how to rename an existing proxy.

aws rds modify-db-proxy --db-proxy-name the-proxy --new-db-proxy-name the_new_name

To modify connection-related settings or rename the target group, use the modify-db-proxy-
target-group command. Currently, all proxies have a single target group named default. When
you work with this target group, you specify the name of the proxy and default for the name of
the target group. You can't rename the default target group.

The following example shows how to first check the MaxIdleConnectionsPercent setting for a
proxy and then change it, using the target group.

aws rds describe-db-proxy-target-groups --db-proxy-name the-proxy

{
 "TargetGroups": [
 {
 "Status": "available",
 "UpdatedDate": "2019-11-30T16:49:30.342Z",
 "ConnectionPoolConfig": {
 "MaxIdleConnectionsPercent": 50,
 "ConnectionBorrowTimeout": 120,
 "MaxConnectionsPercent": 100,
 "SessionPinningFilters": []
 },
 "TargetGroupName": "default",
 "CreatedDate": "2019-11-30T16:49:27.940Z",
 "DBProxyName": "the-proxy",
 "IsDefault": true
 }
]
}

aws rds modify-db-proxy-target-group --db-proxy-name the-proxy --target-group-name
 default --connection-pool-config '
{ "MaxIdleConnectionsPercent": 75 }'

{
 "DBProxyTargetGroup": {
 "Status": "available",
 "UpdatedDate": "2019-12-02T04:09:50.420Z",
 "ConnectionPoolConfig": {

Modifying an RDS Proxy 2261

Amazon Relational Database Service User Guide

 "MaxIdleConnectionsPercent": 75,
 "ConnectionBorrowTimeout": 120,
 "MaxConnectionsPercent": 100,
 "SessionPinningFilters": []
 },
 "TargetGroupName": "default",
 "CreatedDate": "2019-11-30T16:49:27.940Z",
 "DBProxyName": "the-proxy",
 "IsDefault": true
 }
}

With the deregister-db-proxy-targets and register-db-proxy-targets commands, you
change which RDS DB instances the proxy is associated with through its target group. Currently,
each proxy can connect to one RDS DB instance. The target group tracks the connection details for
all the RDS DB instances in a Multi-AZ configuration.

The following example starts with a proxy that is associated with an Aurora MySQL cluster named
cluster-56-2020-02-25-1399. The example shows how to change the proxy so that it can
connect to a different cluster named provisioned-cluster.

When you work with an RDS DB instance, you specify the --db-instance-identifier option.

The following example modifies an Aurora MySQL proxy. An Aurora PostgreSQL proxy has port
5432.

aws rds describe-db-proxy-targets --db-proxy-name the-proxy

{
 "Targets": [
 {
 "Endpoint": "instance-9814.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-9814"
 },
 {
 "Endpoint": "instance-8898.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-8898"
 },
 {

Modifying an RDS Proxy 2262

Amazon Relational Database Service User Guide

 "Endpoint": "instance-1018.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-1018"
 },
 {
 "Type": "TRACKED_CLUSTER",
 "Port": 0,
 "RdsResourceId": "cluster-56-2020-02-25-1399"
 },
 {
 "Endpoint": "instance-4330.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-4330"
 }
]
}

aws rds deregister-db-proxy-targets --db-proxy-name the-proxy --db-cluster-identifier
 cluster-56-2020-02-25-1399

aws rds describe-db-proxy-targets --db-proxy-name the-proxy

{
 "Targets": []
}

aws rds register-db-proxy-targets --db-proxy-name the-proxy --db-cluster-identifier
 provisioned-cluster

{
 "DBProxyTargets": [
 {
 "Type": "TRACKED_CLUSTER",
 "Port": 0,
 "RdsResourceId": "provisioned-cluster"
 },
 {
 "Endpoint": "gkldje.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "gkldje"
 },

Modifying an RDS Proxy 2263

Amazon Relational Database Service User Guide

 {
 "Endpoint": "provisioned-1.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "provisioned-1"
 }
]
}

RDS API

To modify a proxy using the RDS API, you use the operations ModifyDBProxy,
ModifyDBProxyTargetGroup, DeregisterDBProxyTargets, and RegisterDBProxyTargets operations.

With ModifyDBProxy, you can change properties such as the following:

• The set of Secrets Manager secrets used by the proxy.

• Whether TLS is required.

• The idle client timeout.

• Whether to log additional information from SQL statements for debugging.

• The IAM role used to retrieve Secrets Manager secrets.

• The security groups used by the proxy.

With ModifyDBProxyTargetGroup, you can modify connection-related settings. Currently, all
proxies have a single target group named default. When you work with this target group, you
specify the name of the proxy and default for the name of the target group. You can't rename
the default target group.

With DeregisterDBProxyTargets and RegisterDBProxyTargets, you change which RDS DB
instance the proxy is associated with through its target group. Currently, each proxy can connect to
one RDS DB instance . The target group tracks the connection details for the RDS DB instances in a
Multi-AZ configuration .

Adding a new database user when using RDS Proxy

In some cases, you might add a new database user to an RDS DB instance or cluster that's
associated with a proxy. If so, add or repurpose a Secrets Manager secret to store the credentials
for that user. To do this, run through the following steps:

Adding a database user 2264

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeregisterDBProxyTargets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RegisterDBProxyTargets.html

Amazon Relational Database Service User Guide

1. Create a new Secrets Manager secret, using the procedure described in Setting up database
credentials in AWS Secrets Manager for RDS Proxy.

2. Update the IAM role to give RDS Proxy access to the new Secrets Manager secret. To do so,
update the resources section of the IAM role policy.

3. Modify the RDS Proxy to add the new Secrets Manager secret under Secrets Manager secrets.

4. If the new user takes the place of an existing one, update the credentials stored in the proxy's
Secrets Manager secret for the existing user.

Adding a new database user to a PostgreSQL database when using RDS Proxy

When adding a new user to your PostgreSQL database, if you have run the following command:

REVOKE CONNECT ON DATABASE postgres FROM PUBLIC;

Grant the rdsproxyadmin user the CONNECT privilege so the user can monitor connections on the
target database.

GRANT CONNECT ON DATABASE postgres TO rdsproxyadmin;

You can also allow other target database users to perform health checks by changing
rdsproxyadmin to the database user in the command above.

Changing the password for a database user when using RDS Proxy

In some cases, you might change the password for a database user in an RDS DB instance that's
associated with a proxy. If so, update the corresponding Secrets Manager secret with the new
password.

RDS Proxy connection considerations

Configuring connection settings

To adjust RDS Proxy's connection pooling, you can modify the following settings:

• IdleClientTimeout

• MaxConnectionsPercent

RDS Proxy connection considerations 2265

Amazon Relational Database Service User Guide

• MaxIdleConnectionsPercent

• ConnectionBorrowTimeout

IdleClientTimeout

You can specify how long a client connection can be idle before the proxy closes it. The default is
1,800 seconds (30 minutes).

A client connection is considered idle when the application doesn't submit a new request within
the specified time after the previous request completed. The underlying database connection
stays open and is returned to the connection pool. Thus, it's available to be reused for new client
connections. If you want the proxy to proactively remove stale connections, then lowering the idle
client connection timeout. If your workload establishes frequent connections with the proxy, then
raise the idle client connection timeout to save the cost of establishing connections.

This setting is represented by the Idle client connection timeout field in the RDS console and the
IdleClientTimeout setting in the AWS CLI and the API. To learn how to change the value of the
Idle client connection timeout field in the RDS console, see AWS Management Console. To learn
how to change the value of the IdleClientTimeout setting, see the CLI command modify-db-
proxy or the API operation ModifyDBProxy.

MaxConnectionsPercent

You can limit the number of connections that an RDS Proxy can establish with the target database.
You specify the limit as a percentage of the maximum connections available for your database. This
setting is represented by the Connection pool maximum connections field in the RDS console and
the MaxConnectionsPercent setting in the AWS CLI and the API.

The MaxConnectionsPercent value is expressed as a percentage of the max_connections
setting for the RDS DB instance used by the target group. The proxy doesn't create all of these
connections in advance. This setting allows the proxy to establish these connections as the
workload needs them.

For example, for a registered database target with max_connections set to 1000, and
MaxConnectionsPercent set to 95, RDS Proxy sets 950 connections as the upper limit for
concurrent connections to that database target.

A common side-effect of your workload reaching the maximum number of allowed
database connections is an increase in overall query latency, along with an increase in

RDS Proxy connection considerations 2266

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxy.html

Amazon Relational Database Service User Guide

the DatabaseConnectionsBorrowLatency metric. You can monitor currently used
and total allowed database connections by comparing the DatabaseConnections and
MaxDatabaseConnectionsAllowed metrics.

When setting this parameter, note the following best practices:

• Allow sufficient connection headroom for changes in workload pattern. It is recommended to
set the parameter at least 30% above your maximum recent monitored usage. As RDS Proxy
redistributes database connection quotas across multiple nodes, internal capacity changes might
require at least 30% headroom for additional connections to avoid increased borrow latencies.

• RDS Proxy reserves a certain number of connections for active monitoring to support fast
failover, traffic routing and internal operations. The MaxDatabaseConnectionsAllowed
metric does not include these reserved connections. It represents the number of connections
available to serve the workload, and can be lower than the value derived from the
MaxConnectionsPercent setting.

Minimal recommended MaxConnectionsPercent values

• db.t3.small: 30

• db.t3.medium or above: 20

To learn how to change the value of the Connection pool maximum connections field in
the RDS console, see AWS Management Console. To learn how to change the value of the
MaxConnectionsPercent setting, see the CLI command modify-db-proxy-target-group or the
API operation ModifyDBProxyTargetGroup.

For information on database connection limits, see Maximum number of database connections.

MaxIdleConnectionsPercent

You can control the number of idle database connections that RDS Proxy can keep in the
connection pool. By default, RDS Proxy considers a database connection in its pool to be idle when
there's been no activity on the connection for five minutes.

The MaxIdleConnectionsPercent value is expressed as a percentage of the
max_connections setting for the RDS DB instance target group. The default value
is 50 percent of MaxConnectionsPercent, and the upper limit is the value of
MaxConnectionsPercent. For example, if MaxConnectionsPercent, is 80, then the default
value of MaxIdleConnectionsPercent is 40. If the value of MaxConnectionsPercent isn’t

RDS Proxy connection considerations 2267

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html#RDS_Limits.MaxConnections

Amazon Relational Database Service User Guide

specified, then for RDS for SQL Server, MaxIdleConnectionsPercent is 5, and for all other
engines, the default is 50.

With a high value, the proxy leaves a high percentage of idle database connections open. With
a low value, the proxy closes a high percentage of idle database connections. If your workloads
are unpredictable, consider setting a high value for MaxIdleConnectionsPercent. Doing so
means that RDS Proxy can accommodate surges in activity without opening a lot of new database
connections.

This setting is represented by the MaxIdleConnectionsPercent setting of
DBProxyTargetGroup in the AWS CLI and the API. To learn how to change the value of the
MaxIdleConnectionsPercent setting, see the CLI command modify-db-proxy-target-group or
the API operation ModifyDBProxyTargetGroup.

For information on database connection limits, see Maximum number of database connections.

ConnectionBorrowTimeout

You can choose how long RDS Proxy waits for a database connection in the connection pool to
become available for use before returning a timeout error. The default is 120 seconds. This setting
applies when the number of connections is at the maximum, and so no connections are available in
the connection pool. It also applies when no appropriate database instance is available to handle
the request, such as when a failover operation is in process. Using this setting, you can set the best
wait period for your application without changing the query timeout in your application code.

This setting is represented by the Connection borrow timeout field in the RDS console
or the ConnectionBorrowTimeout setting of DBProxyTargetGroup in the AWS CLI
or API. To learn how to change the value of the Connection borrow timeout field in the
RDS console, see AWS Management Console. To learn how to change the value of the
ConnectionBorrowTimeout setting, see the CLI command modify-db-proxy-target-group or the
API operation ModifyDBProxyTargetGroup.

Client and database connections

Connections from your application to RDS Proxy are known as client connections. Connections
from a proxy to the database are database connections. When using RDS Proxy, client connections
terminate at the proxy while database connections are managed within RDS Proxy.

Application-side connection pooling can provide the benefit of reducing recurring connection
establishment between your application and RDS Proxy.

RDS Proxy connection considerations 2268

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html#RDS_Limits.MaxConnections
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html

Amazon Relational Database Service User Guide

Consider the following configuration aspects before implementing an application-side connection
pool:

• Client connection max life: RDS Proxy enforces a maximum life of client connections of 24 hours.
This value is not configurable. Configure your pool with a maximum connection life less than 24
hours to avoid unexpected client connection drops.

• Client connection idle timeout: RDS Proxy enforces a maximum idle time for client connections.
Configure your pool with an idle connection timeout of a value lower than your client connection
idle timeout setting for RDS Proxy to avoid unexpected connection drops.

The maximum number of client connections configured in your application-side connection pool
does not have to be limited to the max_connections setting for RDS Proxy.

Client connection pooling results in a longer client connection life. If your connections experience
pinning, then pooling client connections might reduce multiplexing efficiency. Client connections
that are pinned but idle in the application-side connection pool continue to hold on to a database
connection and prevent the database connection to be reused by other client connections. Review
your proxy logs to check whether your connections experience pinning.

Note

RDS Proxy closes database connections some time after 24 hours when they are no
longer in use. The proxy performs this action regardless of the value of the maximum idle
connections setting.

Avoiding pinning an RDS Proxy

Multiplexing is more efficient when database requests don't rely on state information from
previous requests. In that case, RDS Proxy can reuse a connection at the conclusion of each
transaction. Examples of such state information include most variables and configuration
parameters that you can change through SET or SELECT statements. SQL transactions on a client
connection can multiplex between underlying database connections by default.

Your connections to the proxy can enter a state known as pinning. When a connection is pinned,
each later transaction uses the same underlying database connection until the session ends. Other
client connections also can't reuse that database connection until the session ends. The session
ends when the client connection is dropped.

Avoid pinning RDS Proxy 2269

Amazon Relational Database Service User Guide

RDS Proxy automatically pins a client connection to a specific DB connection when it detects a
session state change that isn't appropriate for other sessions. Pinning reduces the effectiveness of
connection reuse. If all or almost all of your connections experience pinning, consider modifying
your application code or workload to reduce the conditions that cause the pinning.

For example, your application changes a session variable or configuration parameter. In this case,
later statements can rely on the new variable or parameter to be in effect. Thus, when RDS Proxy
processes requests to change session variables or configuration settings, it pins that session to the
DB connection. That way, the session state remains in effect for all later transactions in the same
session.

For some database engines, this rule doesn't apply to all parameters that you can set. RDS Proxy
tracks certain statements and variables. Thus, RDS Proxy doesn't pin the session when you modify
them. In this case, RDS Proxy only reuses the connection for other sessions that have the same
values for those settings. For details about what RDS Proxy tracks for a database engine, see the
following:

• What RDS Proxy tracks for RDS for SQL Server databases

• What RDS Proxy tracks for RDS for MariaDB and RDS for MySQL databases

What RDS Proxy tracks for RDS for SQL Server databases

RDS Proxy tracks the following SQL Server statements:

• USE

• SET ANSI_NULLS

• SET ANSI_PADDING

• SET ANSI_WARNINGS

• SET ARITHABORT

• SET CONCAT_NULL_YIELDS_NULL

• SET CURSOR_CLOSE_ON_COMMIT

• SET DATEFIRST

• SET DATEFORMAT

• SET LANGUAGE

• SET LOCK_TIMEOUT

Avoid pinning RDS Proxy 2270

Amazon Relational Database Service User Guide

• SET NUMERIC_ROUNDABORT

• SET QUOTED_IDENTIFIER

• SET TEXTSIZE

• SET TRANSACTION ISOLATION LEVEL

What RDS Proxy tracks for RDS for MariaDB and RDS for MySQL databases

RDS Proxy tracks the following MariaDB and MySQL statements:

• DROP DATABASE

• DROP SCHEMA

• USE

RDS Proxy tracks the following MySQL and MariaDB variables:

• AUTOCOMMIT

• AUTO_INCREMENT_INCREMENT

• CHARACTER SET (or CHAR SET)

• CHARACTER_SET_CLIENT

• CHARACTER_SET_DATABASE

• CHARACTER_SET_FILESYSTEM

• CHARACTER_SET_CONNECTION

• CHARACTER_SET_RESULTS

• CHARACTER_SET_SERVER

• COLLATION_CONNECTION

• COLLATION_DATABASE

• COLLATION_SERVER

• INTERACTIVE_TIMEOUT

• NAMES

• NET_WRITE_TIMEOUT

• QUERY_CACHE_TYPE

Avoid pinning RDS Proxy 2271

Amazon Relational Database Service User Guide

• SESSION_TRACK_SCHEMA

• SQL_MODE

• TIME_ZONE

• TRANSACTION_ISOLATION (or TX_ISOLATION)

• TRANSACTION_READ_ONLY (or TX_READ_ONLY)

• WAIT_TIMEOUT

Note

RDS Proxy tracks changes to the TRANSACTION_ISOLATION and
TRANSACTION_READ_ONLY variables when you set them at the session scope. However,
if you set them at the next transaction scope, RDS Proxy pins connections. This behavior
applies whether you use a SET statement or a SET TRANSACTION statement to configure
these values.

Minimizing pinning

Performance tuning for RDS Proxy involves trying to maximize transaction-level connection reuse
(multiplexing) by minimizing pinning.

You can minimize pinning by doing the following:

• Avoid unnecessary database requests that might cause pinning.

• Set variables and configuration settings consistently across all connections. That way, later
sessions are more likely to reuse connections that have those particular settings.

However, for PostgreSQL setting a variable leads to session pinning.

• For a MySQL engine family database, apply a session pinning filter to the proxy. You can exempt
certain kinds of operations from pinning the session if you know that doing so doesn't affect the
correct operation of your application.

• See how frequently pinning occurs by monitoring the Amazon CloudWatch metric
DatabaseConnectionsCurrentlySessionPinned. For information about this and other
CloudWatch metrics, see Monitoring RDS Proxy metrics with Amazon CloudWatch.

• If you use SET statements to perform identical initialization for each client connection, you can
do so while preserving transaction-level multiplexing. In this case, you move the statements

Avoid pinning RDS Proxy 2272

Amazon Relational Database Service User Guide

that set up the initial session state into the initialization query used by a proxy. This property is a
string containing one or more SQL statements, separated by semicolons.

For example, you can define an initialization query for a proxy that sets certain configuration
parameters. Then, RDS Proxy applies those settings whenever it sets up a new connection for
that proxy. You can remove the corresponding SET statements from your application code, so
that they don't interfere with transaction-level multiplexing.

For metrics about how often pinning occurs for a proxy, see Monitoring RDS Proxy metrics with
Amazon CloudWatch.

Conditions that cause pinning for all engine families

The proxy pins the session to the current connection in the following situations where multiplexing
might cause unexpected behavior:

• Any statement with a text size greater than 16 KB causes the proxy to pin the session.

Conditions that cause pinning for RDS for Microsoft SQL Server

For RDS for SQL Server, the following interactions also cause pinning:

• Using multiple active result sets (MARS). For information about MARS, see the SQL Server
documentation.

• Using distributed transaction coordinator (DTC) communication.

• Creating temporary tables, transactions, cursors, or prepared statements.

• Using the following SET statements:

• SET ANSI_DEFAULTS

• SET ANSI_NULL_DFLT

• SET ARITHIGNORE

• SET DEADLOCK_PRIORITY

• SET FIPS_FLAGGER

• SET FMTONLY

• SET FORCEPLAN

• SET IDENTITY_INSERT
Avoid pinning RDS Proxy 2273

https://docs.microsoft.com/en-us/sql/relational-databases/native-client/features/using-multiple-active-result-sets-mars?view=sql-server-ver16

Amazon Relational Database Service User Guide

• SET NOCOUNT

• SET NOEXEC

• SET OFFSETS

• SET PARSEONLY

• SET QUERY_GOVERNOR_COST_LIMIT

• SET REMOTE_PROC_TRANSACTIONS

• SET ROWCOUNT

• SET SHOWPLAN_ALL, SHOWPLAN_TEXT, and SHOWPLAN_XML

• SET STATISTICS

• SET XACT_ABORT

Conditions that cause pinning for RDS for MariaDB and RDS for MySQL

For MariaDB and MySQL, the following interactions also cause pinning:

• Explicit table lock statements LOCK TABLE, LOCK TABLES, or FLUSH TABLES WITH READ
LOCK cause the proxy to pin the session.

• Creating named locks by using GET_LOCK causes the proxy to pin the session.

• Setting a user or system variable (with some exceptions) pins the session to the proxy. If this
significantly limits connection reuse, you can configure SET operations to avoid pinning. To do
this, adjust the session pinning filters property. For more information, see Creating a proxy for
Amazon RDS and Modifying an RDS Proxy.

• Creating a temporary table causes the proxy to pin the session. That way, the contents of the
temporary table are preserved throughout the session regardless of transaction boundaries.

• Calling the ROW_COUNT and FOUND_ROWS functions sometimes causes pinning.

• Prepared statements cause the proxy to pin the session. This rule applies whether the prepared
statement uses SQL text or the binary protocol.

• RDS Proxy does not pin connections when you use SET LOCAL.

• Calling stored procedures and stored functions doesn't cause pinning. RDS Proxy doesn't detect
any session state changes resulting from such calls. Make sure that your application doesn't
change session state inside stored routines if you rely on that session state to persist across
transactions. For example, RDS Proxy isn't currently compatible with a stored procedure that
creates a temporary table that persists across all transactions.

Avoid pinning RDS Proxy 2274

Amazon Relational Database Service User Guide

If you have expert knowledge about your application behavior, you can skip the pinning behavior
for certain application statements. To do so, choose the Session pinning filters option when
creating the proxy. Currently, you can opt out of session pinning for setting session variables and
configuration settings.

Conditions that cause pinning for RDS for PostgreSQL

For PostgreSQL, the following interactions also cause pinning:

• Using SET commands.

• Using PREPARE, DISCARD, DEALLOCATE, or EXECUTE commands to manage prepared
statements.

• Creating temporary sequences, tables, or views.

• Declaring cursors.

• Discarding the session state.

• Listening on a notification channel.

• Loading a library module such as auto_explain.

• Manipulating sequences using functions such as nextval and setval.

• Interacting with locks using functions such as pg_advisory_lock and
pg_try_advisory_lock.

Note

RDS Proxy does not pin on transaction level advisory locks, specifically
pg_advisory_xact_lock, pg_advisory_xact_lock_shared,
pg_try_advisory_xact_lock, and pg_try_advisory_xact_lock_shared.

• Setting a parameter, or resetting a parameter to its default. Specifically, using SET and
set_config commands to assign default values to session variables.

• Calling stored procedures and stored functions doesn't cause pinning. RDS Proxy doesn't detect
any session state changes resulting from such calls. Make sure that your application doesn't
change session state inside stored routines if you rely on that session state to persist across
transactions. For example, RDS Proxy isn't currently compatible with a stored procedure that
creates a temporary table that persists across all transactions.

Avoid pinning RDS Proxy 2275

Amazon Relational Database Service User Guide

Deleting an RDS Proxy

You can delete a proxy when you no longer need it. Or, you might delete a proxy if you take the DB
instance or cluster associated with it out of service.

AWS Management Console

To delete a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Choose the proxy to delete from the list.

4. Choose Delete Proxy.

AWS CLI

To delete a DB proxy, use the AWS CLI command delete-db-proxy. To remove related associations,
also use the deregister-db-proxy-targets command.

aws rds delete-db-proxy --name proxy_name

aws rds deregister-db-proxy-targets
 --db-proxy-name proxy_name
 [--target-group-name target_group_name]
 [--target-ids comma_separated_list] # or
 [--db-instance-identifiers instance_id] # or
 [--db-cluster-identifiers cluster_id]

RDS API

To delete a DB proxy, call the Amazon RDS API function DeleteDBProxy. To delete related
items and associations, you also call the functions DeleteDBProxyTargetGroup and
DeregisterDBProxyTargets.

Working with Amazon RDS Proxy endpoints

RDS Proxy endpoints provide flexible and efficient ways to manage database connections, which
improves scalability, availability, and security. With proxy endpoints, you can:

Deleting an RDS Proxy 2276

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/deregister-db-proxy-targets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeregisterDBProxyTargets.html

Amazon Relational Database Service User Guide

• Simplify monitoring and troubleshooting – Use multiple endpoints to track and manage
connections from different applications independently.

Topics

• Overview of proxy endpoints

• Limitations for proxy endpoints

• Proxy endpoints for Multi-AZ DB clusters

• Accessing RDS databases across VPCs

• Creating a proxy endpoint

• Viewing proxy endpoints

• Modifying a proxy endpoint

• Deleting a proxy endpoint

Overview of proxy endpoints

Working with RDS Proxy endpoints involves the same kinds of procedures as with RDS instance
endpoints. If you aren't familiar with RDS endpoints, find more information in Connecting to a
DB instance running the MySQL database engine and Connecting to a DB instance running the
PostgreSQL database engine.

When you create a proxy endpoint, you can associate it with a different virtual private cloud (VPC)
than the proxy’s VPC. This allows you to connect to the proxy from another VPC, such as one used
by a different application within your organization.

For information about limits associated with proxy endpoints, see Limitations for proxy endpoints.

RDS Proxy logs prefix each entry with the name of the associated proxy endpoint. This can be
either the name that you specified for a user-defined endpoint, or the special name default for
the proxy’s default read/write endpoint.

Each proxy endpoint has its own set of CloudWatch metrics. Monitor metrics for all proxy
endpoints, a specific endpoint, or all read/write or read-only endpoints of a proxy. For more
information, see Monitoring RDS Proxy metrics with Amazon CloudWatch.

A proxy endpoint uses the same authentication mechanism as its associated proxy. RDS Proxy
automatically sets up permissions and authorizations for the user-defined endpoint, consistent
with the properties of the associated proxy.

Overview of proxy endpoints 2277

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html

Amazon Relational Database Service User Guide

Limitations for proxy endpoints

RDS Proxy endpoints have the following limitations:

• The RDS proxy default endpoint cannot be modified.

• The maximum number of user-defined endpoints for a proxy is 20. Thus, a proxy can have up to
21 endpoints: the default endpoint, plus 20 that you create.

• When you associate additional endpoints with a proxy, RDS Proxy automatically determines
which DB instances in your cluster to use for each endpoint.

When you create a proxy, RDS automatically creates a VPC endpoint for secure communication
between applications and the database. The VPC endpoint is visible and can be accessed from the
Amazon VPC Console.

Adding a new proxy endpoint provisions an AWS PrivateLink interface endpoint. If you add one or
more endpoints to your proxy, you incure additional charges. For more information, see RDS Proxy
Pricing.

Proxy endpoints for Multi-AZ DB clusters

By default, the endpoint that you connect to when you use RDS Proxy with a Multi-AZ DB cluster
has read/write capability. As a result, this endpoint sends all requests to the writer instance of
the cluster. All of those connections count against the max_connections value for the writer
instance. If your proxy is associated with a Multi-AZ DB cluster, then you can create additional read/
write or read-only endpoints for that proxy.

You can use a read-only endpoint with your proxy for read-only queries. You do this the same way
that you use the reader endpoint for a Multi-AZ DB cluster. Doing so helps you to take advantage
of the read scalability of a Multi-AZ DB cluster with one or more reader DB instances. You can
run more simultaneous queries and make more simultaneous connections by using a read-only
endpoint and adding more reader DB instances to your Multi-AZ DB cluster as needed. These
reader endpoints help to improve the read scalability of your query-intensive applications. Reader
endpoints also help to improve the availability of your connections if a reader DB instance in your
cluster becomes unavailable.

Limitations for proxy endpoints 2278

https://aws.amazon.com/rds/proxy/pricing/
https://aws.amazon.com/rds/proxy/pricing/

Amazon Relational Database Service User Guide

Reader endpoints for Multi-AZ DB clusters

With RDS Proxy, you can create and use reader endpoints. However, these endpoints only work
for proxies associated with Multi-AZ DB clusters. If you use the RDS CLI or API, you might see the
TargetRole attribute with a value of READ_ONLY. You can take advantage of such proxies by
changing the target of a proxy from an RDS DB instance to a Multi-AZ DB cluster.

You can create and connect to read-only endpoints called reader endpoints when you use RDS
Proxy with Multi-AZ DB clusters.

How reader endpoints help application availability

In some cases, a reader instance in your cluster might become unavailable. If that occurs,
connections that use a reader endpoint of a DB proxy can recover more quickly than ones that
use the Multi-AZ DB cluster reader endpoint. RDS Proxy routes connections to only the available
reader instance in the cluster. There isn't a delay due to DNS caching when an instance becomes
unavailable.

If the connection is multiplexed, RDS Proxy directs subsequent queries to a different reader
instance without any interruption to your application. If a reader instance is in an unavailable state,
all client connections to that instance endpoint are closed.

If the connection is pinned, the next query on the connection returns an error. However, your
application can immediately reconnect to the same proxy endpoint. RDS Proxy routes the
connection to a different reader DB instance that's in available state. When you manually
reconnect, RDS Proxy doesn't check the replication lag between the old and new reader instance.

If your Multi-AZ DB cluster doesn't have any available reader instances, RDS Proxy attempts to
connect to a reader endpoint when it becomes available. If no reader instance becomes available
within the connection borrow timeout period, the connection attempt fails. If a reader instance
does become available, the connection attempt succeeds.

How reader endpoints help query scalability

Reader endpoints for a proxy help with Multi-AZ DB cluster query scalability in the following ways:

• Where practical, RDS Proxy uses the same reader DB instance for all the queries issue using a
particular reader endpoint connection. That way, a set of related queries on the same tables can
take advantage of caching, plan optimization, and so on, on a particular DB instance.

Proxy endpoints for Multi-AZ DB clusters 2279

Amazon Relational Database Service User Guide

• If a reader DB instance becomes unavailable, the effect on your application depends on whether
the session is multiplexed or pinned. If the session is multiplexed, RDS Proxy routes any
subsequent queries to a different reader DB instance without any action on your part. If the
session is pinned, your application gets an error and must reconnect. You can reconnect to the
reader endpoint immediately and RDS Proxy routes the connection to an available reader DB
instance. For more information about multiplexing and pinning for proxy sessions, see Overview
of RDS Proxy concepts.

Accessing RDS databases across VPCs

By default, the components of your RDS technology stack are all in the same Amazon VPC. For
example, suppose that an application running on an Amazon EC2 instance connects to an Amazon
RDS DB instance. In this case, the application server and database must both be within the same
VPC.

With RDS Proxy, you can set up access to an Amazon RDS DB instance in one VPC from resources
in another VPC, such as EC2 instances. For example, your organization might have multiple
applications that access the same database resources. Each application might be in its own VPC.

To enable cross-VPC access, you create a new endpoint for the proxy. The proxy itself resides in
the same VPC as the Amazon RDS DB instance. However, the cross-VPC endpoint resides in the
other VPC, along with the other resources such as the EC2 instances. The cross-VPC endpoint is
associated with subnets and security groups from the same VPC as the EC2 and other resources.
These associations let you connect to the endpoint from the applications that otherwise can't
access the database due to the VPC restrictions.

The following steps explain how to create and access a cross-VPC endpoint through RDS Proxy:

1. Create two VPCs, or choose two VPCs that you already use for RDS work. Each VPC should have
its own associated network resources such as an internet gateway, route tables, subnets, and
security groups. If you only have one VPC, you can consult Getting started with Amazon RDS for
the steps to set up another VPC to use RDS successfully. You can also examine your existing VPC
in the Amazon EC2 console to see the kinds of resources to connect together.

2. Create a DB proxy associated with the Amazon RDS DB instance that you want to connect to.
Follow the procedure in Creating a proxy for Amazon RDS.

3. On the Details page for your proxy in the RDS console, under the Proxy endpoints section,
choose Create endpoint. Follow the procedure in Creating a proxy endpoint.

Accessing RDS databases across VPCs 2280

Amazon Relational Database Service User Guide

4. Choose whether to make the cross-VPC endpoint read/write or read-only.

5. Instead of accepting the default of the same VPC as the Amazon RDS DB instance, choose a
different VPC. This VPC must be in the same AWS Region as the VPC where the proxy resides.

6. Now instead of accepting the defaults for subnets and security groups from the same VPC as the
Amazon RDS DB instance, make new selections. Make these based on the subnets and security
groups from the VPC that you chose.

7. You don't need to change any of the settings for the Secrets Manager secrets. The same
credentials work for all endpoints for your proxy, regardless of which VPC each endpoint is in.

8. Wait for the new endpoint to reach the Available state.

9. Make a note of the full endpoint name. This is the value ending in
Region_name.rds.amazonaws.com that you supply as part of the connection string for your
database application.

10.Access the new endpoint from a resource in the same VPC as the endpoint. A simple way to test
this process is to create a new EC2 instance in this VPC. Then, log into the EC2 instance and run
the mysql or psql commands to connect by using the endpoint value in your connection string.

Creating a proxy endpoint

To create a proxy endpoint, follow these instructions:

Console

To create a proxy endpoint

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Click the name of the proxy that you want to create a new endpoint for.

The details page for that proxy appears.

4. In the Proxy endpoints section, choose Create proxy endpoint.

The Create proxy endpoint window appears.

5. For Proxy endpoint name, enter a descriptive name of your choice.

6. For Target role, choose whether to make the endpoint read/write or read-only.

Creating a proxy endpoint 2281

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Connections that use read/write endpoints can perform any kind of operations, such as data
definition language (DDL) statements, data manipulation language (DML) statements, and
queries. These endpoints always connect to the primary instance of the RDS DB cluster.
You can use read/write endpoints for general database operations when you only use a
single endpoint in your application. You can also use read/write endpoints for administrative
operations, online transaction processing (OLTP) applications, and extract-transform-load
(ETL) jobs.

Connections that use a read-only endpoint can only perform queries. RDS Proxy can use one
of the reader instances for each connection to the endpoint. That way, a query-intensive
application can take advantage of a Multi-AZ DB cluster's clustering capability. These read-only
connections don't impose any overhead on the primary instance of the cluster. That way, your
reporting and analysis queries don't slow down the write operations of your OLTP applications.

7. For Virtual Private Cloud (VPC), choose the default to access the endpoint from the same EC2
instances or other resources that normally use to access the proxy or its associated database.
To set up cross-VPC access for this proxy, choose a VPC other than the default. For more
information about cross-VPC access, see Accessing RDS databases across VPCs.

8. For Subnets, RDS Proxy fills in the same subnets as the associated proxy by default. To restrict
access to the endpoint to only a portion of the VPC's address range being able to connect to it,
remove one or more subnets.

9. For VPC security group, you can choose an existing security group or create a new one. RDS
Proxy fills in the same security group or groups as the associated proxy by default. If the
inbound and outbound rules for the proxy are appropriate for this endpoint, then keep the
default choice.

If you choose to create a new security group, specify a name for the security group on this
page. Then edit the security group settings from the EC2 console later.

10. Choose Create proxy endpoint.

AWS CLI

To create a proxy endpoint, use the AWS CLI create-db-proxy-endpoint command.

Include the following required parameters:

• --db-proxy-name value

Creating a proxy endpoint 2282

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-proxy-endpoint.html

Amazon Relational Database Service User Guide

• --db-proxy-endpoint-name value

• --vpc-subnet-ids list_of_ids. Separate the subnet IDs with spaces. You don't specify the
ID of the VPC itself.

You can also include the following optional parameters:

• --target-role { READ_WRITE | READ_ONLY }. This parameter defaults to READ_WRITE.
When the proxy is associated with a Multi-AZ DB cluster that only contains a writer DB instance,
you can't specify READ_ONLY. For more information about the intended use of read-only
endpoints with Multi-AZ DB clusters, see Reader endpoints for Multi-AZ DB clusters.

• --vpc-security-group-ids value. Separate the security group IDs with spaces. If you omit
this parameter, RDS Proxy uses the default security group for the VPC. RDS Proxy determines the
VPC based on the subnet IDs that you specify for the --vpc-subnet-ids parameter.

Example

The following example creates a proxy endpoint named my-endpoint.

For Linux, macOS, or Unix:

aws rds create-db-proxy-endpoint \
 --db-proxy-name my-proxy \
 --db-proxy-endpoint-name my-endpoint \
 --vpc-subnet-ids subnet_id subnet_id subnet_id ... \
 --target-role READ_ONLY \
 --vpc-security-group-ids security_group_id]

For Windows:

aws rds create-db-proxy-endpoint ^
 --db-proxy-name my-proxy ^
 --db-proxy-endpoint-name my-endpoint ^
 --vpc-subnet-ids subnet_id_1 subnet_id_2 subnet_id_3 ... ^
 --target-role READ_ONLY ^
 --vpc-security-group-ids security_group_id

RDS API

To create a proxy endpoint, use the RDS API CreateDBProxyEndpoint action.

Creating a proxy endpoint 2283

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBProxyEndpoint.html

Amazon Relational Database Service User Guide

Viewing proxy endpoints

To view existing proxy endpoints, follow these instructions:

Console

To view the details for a proxy endpoint

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. In the list, choose the proxy whose endpoint you want to view. Click the proxy name to view its
details page.

4. In the Proxy endpoints section, choose the endpoint that you want to view. Click its name to
view the details page.

5. Examine the parameters whose values you're interested in. You can check properties such as
the following:

• Whether the endpoint is read/write or read-only.

• The endpoint address that you use in a database connection string.

• The VPC, subnets, and security groups associated with the endpoint.

AWS CLI

To view one or more proxy endpoints, use the AWS CLI describe-db-proxy-endpoints command.

You can include the following optional parameters:

• --db-proxy-endpoint-name

• --db-proxy-name

The following example describes the my-endpoint proxy endpoint.

Example

For Linux, macOS, or Unix:

aws rds describe-db-proxy-endpoints \

Viewing proxy endpoints 2284

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-endpoints.html

Amazon Relational Database Service User Guide

 --db-proxy-endpoint-name my-endpoint

For Windows:

aws rds describe-db-proxy-endpoints ^
 --db-proxy-endpoint-name my-endpoint

RDS API

To describe one or more proxy endpoints, use the RDS API DescribeDBProxyEndpoints operation.

Modifying a proxy endpoint

To modify your proxy endpoints, follow these instructions:

Console

To modify one or more proxy endpoints

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. In the list, choose the proxy whose endpoint you want to modify. Click the proxy name to view
its details page.

4. In the Proxy endpoints section, choose the endpoint that you want to modify. You can select it
in the list, or click its name to view the details page.

5. On the proxy details page, under the Proxy endpoints section, choose Edit. Or, on the proxy
endpoint details page, for Actions, choose Edit.

6. Change the values of the parameters that you want to modify.

7. Choose Save changes.

AWS CLI

To modify a proxy endpoint, use the AWS CLI modify-db-proxy-endpoint command with the
following required parameters:

• --db-proxy-endpoint-name

Modifying a proxy endpoint 2285

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyEndpoints.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-endpoint.html

Amazon Relational Database Service User Guide

Specify changes to the endpoint properties by using one or more of the following parameters:

• --new-db-proxy-endpoint-name

• --vpc-security-group-ids. Separate the security group IDs with spaces.

The following example renames the my-endpoint proxy endpoint to new-endpoint-name.

Example

For Linux, macOS, or Unix:

aws rds modify-db-proxy-endpoint \
 --db-proxy-endpoint-name my-endpoint \
 --new-db-proxy-endpoint-name new-endpoint-name

For Windows:

aws rds modify-db-proxy-endpoint ^
 --db-proxy-endpoint-name my-endpoint ^
 --new-db-proxy-endpoint-name new-endpoint-name

RDS API

To modify a proxy endpoint, use the RDS API ModifyDBProxyEndpoint operation.

Deleting a proxy endpoint

To delete an endpoint for your proxy, follow these instructions:

Note

You can't delete the default proxy endpoint that RDS Proxy automatically creates for each
proxy.
When you delete a proxy, RDS Proxy automatically deletes all the associated endpoints.

Console

To delete a proxy endpoint using the AWS Management Console

1. In the navigation pane, choose Proxies.

Deleting a proxy endpoint 2286

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyEndpoint.html

Amazon Relational Database Service User Guide

2. In the list, choose the proxy whose endpoint you want to endpoint. Click the proxy name to
view its details page.

3. In the Proxy endpoints section, choose the endpoint that you want to delete. You can select
one or more endpoints in the list, or click the name of a single endpoint to view the details
page.

4. On the proxy details page, under the Proxy endpoints section, choose Delete. Or, on the proxy
endpoint details page, for Actions, choose Delete.

AWS CLI

To delete a proxy endpoint, run the delete-db-proxy-endpoint command with the following
required parameters:

• --db-proxy-endpoint-name

The following command deletes the proxy endpoint named my-endpoint.

For Linux, macOS, or Unix:

aws rds delete-db-proxy-endpoint \
 --db-proxy-endpoint-name my-endpoint

For Windows:

aws rds delete-db-proxy-endpoint ^
 --db-proxy-endpoint-name my-endpoint

RDS API

To delete a proxy endpoint with the RDS API, run the DeleteDBProxyEndpoint operation. Specify
the name of the proxy endpoint for the DBProxyEndpointName parameter.

Monitoring RDS Proxy metrics with Amazon CloudWatch

You can monitor RDS Proxy by using Amazon CloudWatch. CloudWatch collects and processes
raw data from the proxies into readable, near-real-time metrics. To find these metrics in the
CloudWatch console, choose Metrics, then choose RDS, and choose Per-Proxy Metrics. For more
information, see Using Amazon CloudWatch metrics in the Amazon CloudWatch User Guide.

Monitoring RDS Proxy with CloudWatch 2287

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-proxy-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxyEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon Relational Database Service User Guide

Note

RDS publishes these metrics for each underlying Amazon EC2 instance associated with a
proxy. A single proxy might be served by more than one EC2 instance. Use CloudWatch
statistics to aggregate the values for a proxy across all the associated instances.
Some of these metrics might not be visible until after the first successful connection by a
proxy.

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This
name can be the name you specified for a user-defined endpoint, or the special name default for
the default endpoint of a proxy that performs read/write requests.

All RDS Proxy metrics are in the group proxy.

Each proxy endpoint has its own CloudWatch metrics. You can monitor the usage of each proxy
endpoint independently. For more information about proxy endpoints, see Working with Amazon
RDS Proxy endpoints.

You can aggregate the values for each metric using one of the following dimension sets. For
example, by using the ProxyName dimension set, you can analyze all the traffic for a particular
proxy. By using the other dimension sets, you can split the metrics in different ways. You can split
the metrics based on the different endpoints or target databases of each proxy, or the read/write
and read-only traffic to each database.

• Dimension set 1: ProxyName

• Dimension set 2: ProxyName, EndpointName

• Dimension set 3: ProxyName, TargetGroup, Target

• Dimension set 4: ProxyName, TargetGroup, TargetRole

Metric Description Valid period CloudWatch
dimension set

Availabil
ityPercentage

The percentage of
time for which the
target group was
available in the role

1 minute Dimension set 4

Monitoring RDS Proxy with CloudWatch 2288

Amazon Relational Database Service User Guide

Metric Description Valid period CloudWatch
dimension set

indicated by the
dimension. This
metric is reported
every minute. The
most useful statistic
for this metric is
Average.

ClientCon
nections

The current number
of client connectio
ns. This metric is
reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute Dimension set 1,
Dimension set 2

ClientCon
nectionsClosed

The number of client
connections closed.
The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsNoTLS

The current number
of client connectio
ns without Transport
Layer Security
(TLS). This metric
is reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 2289

Amazon Relational Database Service User Guide

Metric Description Valid period CloudWatch
dimension set

ClientCon
nectionsR
eceived

The number of client
connection requests
received. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsS
etupFailedAuth

The number of
client connection
attempts that failed
due to misconfig
ured authentication
or TLS. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsS
etupSucceeded

The number of client
connections successfu
lly established with
any authentication
mechanism with or
without TLS. The
most useful statistic
for this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsTLS

The current number
of client connections
with TLS. This metric
is reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 2290

Amazon Relational Database Service User Guide

Metric Description Valid period CloudWatch
dimension set

DatabaseC
onnection
Requests

The number of
requests to create a
database connectio
n. The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
RequestsW
ithTLS

The number of
requests to create a
database connectio
n with TLS. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnections

The current number
of database
connections. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sBorrowLatency

The time in microseco
nds that it takes
for the proxy being
monitored to get a
database connectio
n. The most useful
statistic for this
metric is Average.

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 2291

Amazon Relational Database Service User Guide

Metric Description Valid period CloudWatch
dimension set

DatabaseC
onnection
sCurrentl
yBorrowed

The current number
of database
connections in the
borrow state. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sCurrentl
yInTransaction

The current number
of database
connections in a
transaction. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sCurrentl
ySessionPinned

The current number
of database
connections currently
pinned because of
operations in client
requests that change
session state. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

Monitoring RDS Proxy with CloudWatch 2292

Amazon Relational Database Service User Guide

Metric Description Valid period CloudWatch
dimension set

DatabaseC
onnection
sSetupFailed

The number of
database connection
requests that failed.
The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sSetupSuc
ceeded

The number of
database connections
successfully establish
ed with or without
TLS. The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sWithTLS

The current number
of database
connections with
TLS. This metric
is reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

MaxDataba
seConnect
ionsAllowed

The maximum
number of database
connections allowed.
This metric is
reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

Monitoring RDS Proxy with CloudWatch 2293

Amazon Relational Database Service User Guide

Metric Description Valid period CloudWatch
dimension set

QueryData
baseRespo
nseLatency

The time in microseco
nds that the database
took to respond
to the query. The
most useful statistic
for this metric is
Average.

1 minute and above Dimension set 1,
Dimension set 2,
Dimension set 3,
Dimension set 4

QueryRequests The number of
queries received.
A query including
multiple statement
s is counted as one
query. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

QueryRequ
estsNoTLS

The number of
queries received from
non-TLS connectio
ns. A query including
multiple statement
s is counted as one
query. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 2294

Amazon Relational Database Service User Guide

Metric Description Valid period CloudWatch
dimension set

QueryRequ
estsTLS

The number of
queries received from
TLS connections.
A query including
multiple statement
s is counted as one
query. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

QueryResp
onseLatency

The time in microseco
nds between getting
a query request and
the proxy responding
to it. The most useful
statistic for this
metric is Average.

1 minute and above Dimension set 1,
Dimension set 2

You can find logs of RDS Proxy activity under CloudWatch in the AWS Management Console. Each
proxy has an entry in the Log groups page.

Important

These logs are intended for human consumption for troubleshooting purposes and not for
programmatic access. The format and content of the logs is subject to change.
In particular, older logs don't contain any prefixes indicating the endpoint for each request.
In newer logs, each entry is prefixed with the name of the associated proxy endpoint. This
name can be the name that you specified for a user-defined endpoint, or the special name
default for requests using the default endpoint of a proxy.

Monitoring RDS Proxy with CloudWatch 2295

Amazon Relational Database Service User Guide

Working with RDS Proxy events

An event indicates a change in an environment such as an AWS environment or a service or
application from a software as a service (SaaS) partner. Or, it can be one of your own custom
applications or services. For example, Amazon RDS generates an event when you create or modify
an RDS Proxy. Amazon RDS delivers events to Amazon EventBridge in near-real time. Following,
you can find a list of RDS Proxy events that you can subscribe to and an example of an RDS Proxy
event.

For more information about working with events, see the following:

• For instructions on how to view events by using the AWS Management Console, AWS CLI, or RDS
API, see Viewing Amazon RDS events.

• To learn how to configure Amazon RDS to send events to EventBridge, see Creating a rule that
triggers on an Amazon RDS event.

RDS Proxy events

The following table shows the event category and a list of events when an RDS Proxy is the source
type.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0204 RDS modified DB proxy
name.

None

configuration
change

RDS-EVENT-0207 RDS modified the end
point of the DB proxy
name.

None

configuration
change

RDS-EVENT-0213 RDS detected the addition
of the DB instance and
automatically added it to
the target group of the DB
proxy name.

None

configuration
change

RDS-EVENT-0214 RDS detected deletion
of DB instance name and

None

Working with RDS Proxy events 2296

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

automatically removed it
from target group name of
DB proxy name.

configuration
change

RDS-EVENT-0215 RDS detected deletion
of DB cluster name and
automatically removed it
from target group name of
DB proxy name.

None

creation RDS-EVENT-0203 RDS created DB proxy
name.

None

creation RDS-EVENT-0206 RDS created endpoint
name for DB proxy name.

None

deletion RDS-EVENT-0205 RDS deleted DB proxy
name.

None

deletion RDS-EVENT-0208 RDS deleted endpoint
name for DB proxy name.

None

failure RDS-EVENT-0243 RDS failed to provision
capacity for proxy name
because there aren't
enough IP addresses
available in your subnets:
name. To fix the issue,
make sure that your
subnets have the minimum
number of unused IP
addresses as recommend
ed in the RDS Proxy
documentation.

To determine the
recommended number for
your instance class, see
Planning for IP address
capacity.

RDS Proxy events 2297

Amazon Relational Database Service User Guide

Category RDS event ID Message Notes

failure RDS-EVENT-0275 RDS throttled some
connections to DB proxy
name. The number of
simultaneous connection
requests from the client to
the proxy has exceeded the
limit.

None

The following is an example of an RDS Proxy event in JSON format. The event shows that RDS
modified the endpoint named my-endpoint of the RDS Proxy named my-rds-proxy. The event
ID is RDS-EVENT-0207.

{
 "version": "0",
 "id": "68f6e973-1a0c-d37b-f2f2-94a7f62ffd4e",
 "detail-type": "RDS DB Proxy Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-09-27T22:36:43Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:db-proxy:my-rds-proxy"
],
 "detail": {
 "EventCategories": [
 "configuration change"
],
 "SourceType": "DB_PROXY",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db-proxy:my-rds-proxy",
 "Date": "2018-09-27T22:36:43.292Z",
 "Message": "RDS modified endpoint my-endpoint of DB Proxy my-rds-proxy.",
 "SourceIdentifier": "my-endpoint",
 "EventID": "RDS-EVENT-0207"
 }
}

RDS Proxy events 2298

Amazon Relational Database Service User Guide

Troubleshooting for RDS Proxy

Following, you can find troubleshooting ideas for some common RDS Proxy issues and information
on CloudWatch logs for RDS Proxy.

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This
name can be the name that you specified for a user-defined endpoint. Or, it can be the special
name default for the default endpoint of a proxy that performs read/write requests. For more
information about proxy endpoints, see Working with Amazon RDS Proxy endpoints.

Topics

• Verifying connectivity for a proxy

• Common issues and solutions

• Troubleshooting RDS Proxy issues with RDS for MySQL

• Troubleshooting RDS Proxy issues with RDS for PostgreSQL

Verifying connectivity for a proxy

You can use the following commands to verify that all components such as the proxy, database,
and compute instances in the connection can communicate with the each other.

Examine the proxy itself using the describe-db-proxies command. Also examine the associated
target group using the describe-db-proxy-target-groups command. Check that the details of the
targets match the RDS DB instance that you intend to associate with the proxy. Use commands
such as the following.

aws rds describe-db-proxies --db-proxy-name $DB_PROXY_NAME
aws rds describe-db-proxy-target-groups --db-proxy-name $DB_PROXY_NAME

To confirm that the proxy can connect to the underlying database, examine the targets specified
in the target groups using the describe-db-proxy-targets command. Use a command such as the
following.

aws rds describe-db-proxy-targets --db-proxy-name $DB_PROXY_NAME

Troubleshooting RDS Proxy 2299

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-target-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html

Amazon Relational Database Service User Guide

The output of the describe-db-proxy-targets command includes a TargetHealth field. You can
examine the fields State, Reason, and Description inside TargetHealth to check if the proxy
can communicate with the underlying DB instance.

• A State value of AVAILABLE indicates that the proxy can connect to the DB instance.

• A State value of UNAVAILABLE indicates a temporary or permanent connection problem. In
this case, examine the Reason and Description fields. For example, if Reason has a value of
PENDING_PROXY_CAPACITY, try connecting again after the proxy finishes its scaling operation.
If Reason has a value of UNREACHABLE, CONNECTION_FAILED, or AUTH_FAILURE, use the
explanation from the Description field to help you diagnose the issue.

• The State field might have a value of REGISTERING for a brief time before changing to
AVAILABLE or UNAVAILABLE.

If the following Netcat command (nc) is successful, you can access the proxy endpoint from the
EC2 instance or other system where you're logged in. This command reports failure if you're not in
the same VPC as the proxy and the associated database. You might be able to log directly in to the
database without being in the same VPC. However, you can't log into the proxy unless you're in the
same VPC.

nc -zx MySQL_proxy_endpoint 3306

nc -zx PostgreSQL_proxy_endpoint 5432

You can use the following commands to make sure that your EC2 instance has the required
properties. In particular, the VPC for the EC2 instance must be the same as the VPC for the that the
proxy connects to.

aws ec2 describe-instances --instance-ids your_ec2_instance_id

Examine the Secrets Manager secrets used for the proxy.

aws secretsmanager list-secrets
aws secretsmanager get-secret-value --secret-id your_secret_id

Make sure that the SecretString field displayed by get-secret-value is encoded as a JSON
string that includes the username and password fields. The following example shows the format
of the SecretString field.

Verifying connectivity for a proxy 2300

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html

Amazon Relational Database Service User Guide

{
 "ARN": "some_arn",
 "Name": "some_name",
 "VersionId": "some_version_id",
 "SecretString": '{"username":"some_username","password":"some_password"}',
 "VersionStages": ["some_stage"],
 "CreatedDate": some_timestamp
}

Common issues and solutions

This section describes some common issues and potential solutions when using RDS Proxy.

After running the aws rds describe-db-proxy-targets CLI command, if the TargetHealth
description states Proxy does not have any registered credentials, verify the
following:

• There are credentials registered for the user to access the proxy.

• The IAM role to access the Secrets Manager secret used by the proxy is valid.

You might encounter the following RDS events while creating or connecting to a DB proxy.

Category RDS event ID Description

failure RDS-EVENT-0243 RDS couldn't provision
capacity for the proxy
because there aren't enough
IP addresses available in your
subnets. To fix the issue,
make sure that your subnets
have the minimum number
of unused IP addresses. To
determine the recommend
ed number for your instance
class, see Planning for IP
address capacity.

Common issues and solutions 2301

Amazon Relational Database Service User Guide

Category RDS event ID Description

failure RDS-EVENT-0275 RDS throttled some connectio
ns to DB proxy name. The
number of simultaneous
connection requests from
the client to the proxy has
exceeded the limit.

You might encounter the following issues while creating a new proxy or connecting to a proxy.

Error Causes or workarounds

403: The
security token
included in
the request is
invalid

Select an existing IAM role instead of choosing to create a new one.

Troubleshooting RDS Proxy issues with RDS for MySQL

You might encounter the following issues while connecting to a MySQL proxy.

Error Causes or workarounds

ERROR 1040
(HY000):
Connections
rate limit
exceeded
(limit_value)

The rate of connection requests from the client to the proxy has
exceeded the limit.

ERROR 1040
(HY000): IAM
authentication

The number of simultaneous requests with IAM authentication from
the client to the proxy has exceeded the limit.

Troubleshooting for RDS for MySQL 2302

Amazon Relational Database Service User Guide

Error Causes or workarounds

rate limit
exceeded

ERROR 1040
(HY000): Number
simultane
ous connectio
ns exceeded
(limit_value)

The number of simultaneous connection requests from the client to the
proxy exceeded the limit.

ERROR 1045
(28000): Access
denied for user
'DB_USER'@'%' (using
password: YES)

The Secrets Manager secret used by the proxy doesn't match the user
name and password of an existing database user. Either update the
credentials in the Secrets Manager secret, or make sure the database
user exists and has the same password as in the secret.

ERROR 1105
(HY000): Unknown
error

An unknown error occurred.

ERROR 1231
(42000):
Variable
''charact
er_set_cl
ient'' can't be
set to the value
of value

The value set for the character_set_client parameter is not
valid. For example, the value ucs2 is not valid because it can crash the
MySQL server.

ERROR 3159
(HY000): This
RDS Proxy
requires TLS
connections.

You enabled the setting Require Transport Layer Security in the proxy
but your connection included the parameter ssl-mode=DISABLED in
the MySQL client. Do either of the following:

• Disable the setting Require Transport Layer Security for the proxy.

• Connect to the database using the minimum setting of ssl-mode=
REQUIRED in the MySQL client.

Troubleshooting for RDS for MySQL 2303

Amazon Relational Database Service User Guide

Error Causes or workarounds

ERROR 2026
(HY000): SSL
connection
error: Internal
Server Error

The TLS handshake to the proxy failed. Some possible reasons include
the following:

• SSL is required but the server doesn't support it.

• An internal server error occurred.

• A bad handshake occurred.

ERROR 9501
(HY000): Timed-
out waiting to
acquire database
connection

The proxy timed-out waiting to acquire a database connection. Some
possible reasons include the following:

• The proxy is unable to establish a database connection because the
maximum connections have been reached

• The proxy is unable to establish a database connection because the
database is unavailable.

Troubleshooting RDS Proxy issues with RDS for PostgreSQL

You might encounter the following issues while connecting to a PostgreSQL proxy.

Error Cause Solution

ERROR 28000: IAM
authentication is
allowed only with SSL
connections.

The user tried to connect
to the database using IAM
authentication with the
setting sslmode=disable
in the PostgreSQL client.

The user needs to connect
to the database using
the minimum setting of
sslmode=require in
the PostgreSQL client. For
more information, see the
PostgreSQL SSL support
documentation.

ERROR 28000: This RDS
proxy has no credentia
ls for the role
role_name . Check the

There is no Secrets Manager
secret for this role.

Add a Secrets Manager
secret for this role. For more
information, see Configuring
IAM authentication for RDS
Proxy.

Troubleshooting for RDS for PostgreSQL 2304

https://www.postgresql.org/docs/current/libpq-ssl.html

Amazon Relational Database Service User Guide

Error Cause Solution

credentials for this
role and try again.

ERROR 28000: RDS
supports only
IAM, MD5, or SCRAM
authentication.

The database client being
used to connect to the proxy
is using an authentication
mechanism not currently
supported by the proxy.

If you're not using IAM
authentication, use the MD5
or SCRAM password authentic
ation.

ERROR 28000: A user
name is missing
from the connectio
n startup packet.
Provide a user name
for this connection.

The database client being
used to connect to the proxy
isn't sending a user name
when trying to establish a
connection.

Make sure to define a user
name when setting up a
connection to the proxy using
the PostgreSQL client of your
choice.

ERROR 28000: IAM is
allowed only with SSL
connections.

A client tried to connect using
IAM authentication, but SSL
wasn't enabled.

Enable SSL in the PostgreSQL
client.

ERROR 28000: This RDS
Proxy requires TLS
connections.

The user enabled the option
Require Transport Layer
Security but tried to connect
with sslmode=disable in
the PostgreSQL client.

To fix this error, do one of the
following:

• Disable the proxy's Require
Transport Layer Security
option.

• Connect to the database
using the minimum setting
of sslmode=allow in the
PostgreSQL client.

Troubleshooting for RDS for PostgreSQL 2305

Amazon Relational Database Service User Guide

Error Cause Solution

ERROR 28P01: IAM
authentication failed
for user user_name .
Check the IAM token
for this user and try
again.

This error might be due to the
following reasons:

• The client supplied the
incorrect IAM user name.

• The client supplied an
incorrect IAM authorization
token for the user.

• The client is using an IAM
policy that does not have
the necessary permissions.

• The client supplied an
expired IAM authorization
token for the user.

To fix this error, do the
following:

1. Confirm that the provided
IAM user exists.

2. Confirm that the IAM
authorization token
belongs to the provided
IAM user.

3. Confirm that the IAM
policy has adequate
permissions for RDS.

4. Check the validity of the
IAM authorization token
used.

ERROR 28P01: The
password that was
provided for the role
role_name is wrong.

The password for this role
doesn't match the Secrets
Manager secret.

Check the secret for this role
in Secrets Manager to see
if the password is the same
as what's being used in your
PostgreSQL client.

ERROR 28P01: The IAM
authentication failed
for the role role_name
. Check the IAM token

for this role and try
again.

There is a problem with
the IAM token used for IAM
authentication.

Generate a new authentic
ation token and use it in a
new connection.

ERROR 0A000: Feature
not supported: RDS
Proxy supports only
version 3.0 of the
PostgreSQL messaging
protocol.

 The PostgreSQL client used
to connect to the proxy uses a
protocol older than 3.0.

 Use a newer PostgreSQL
client that supports the 3.0
messaging protocol. If you're
using the PostgreSQL psql
CLI, use a version greater than
or equal to 7.4.

Troubleshooting for RDS for PostgreSQL 2306

Amazon Relational Database Service User Guide

Error Cause Solution

ERROR 0A000: Feature
not supported:
RDS Proxy currently
doesn't support
streaming replication
mode.

 The PostgreSQL client used
to connect to the proxy is
trying to use the streaming
replication mode, which isn't
currently supported by RDS
Proxy.

 Turn off the streaming
replication mode in the
PostgreSQL client being used
to connect.

ERROR 0A000: Feature
not supported:
RDS Proxy currently
doesn't support the
option option_name .

 Through the startup
message, the PostgreSQL
client used to connect to the
proxy is requesting an option
that isn't currently supported
by RDS Proxy.

 Turn off the option being
shown as not supported from
the message above in the
PostgreSQL client being used
to connect.

ERROR 53300: The IAM
authentication failed
because of too many
competing requests.

 The number of simultaneous
requests with IAM authentic
ation from the client to the
proxy has exceeded the limit.

 Reduce the rate in which
connections using IAM
authentication from a
PostgreSQL client are
established.

ERROR 53300: The
maximum number of
client connections
to the proxy exceeded
number_value .

 The number of simultaneous
connection requests from the
client to the proxy exceeded
the limit.

 Reduce the number of active
connections from PostgreSQL
clients to this RDS proxy.

ERROR 53300: Rate of
connection to proxy
exceeded number_va
lue .

 The rate of connection
requests from the client to
the proxy has exceeded the
limit.

 Reduce the rate in which
connections from a
PostgreSQL client are
established.

ERROR XX000: Unknown
error.

 An unknown error occurred. Reach out to AWS Support to
investigate the issue.

Troubleshooting for RDS for PostgreSQL 2307

Amazon Relational Database Service User Guide

Error Cause Solution

ERROR 08000: Timed-
out waiting to acquire
database connection.

The proxy timed-out waiting
to acquire a database
connection within the
duration specified by the
ConnectionBorrowTi
meout setting. Some
possible reasons include the
following:

• The proxy can't establish
a database connection
because the maximum
connections have been
reached.

• The proxy can't establish
a database connection
because the database is
unavailable or if connectio
n establishment to the
database takes longer than
the configured Connectio
nBorrowTimeout .

Possible solutions are the
following:

• Avoid pinning proxy
connections. See Avoiding
pinning an RDS Proxy.

• Review Connectio
nBorrowTimeout and
MaxConnectionsPerc
ent settings. See RDS
Proxy connection considera
tions.

• Review target availabil
ity. See Availabil
ityPercentage in
Monitoring RDS Proxy
metrics with Amazon
CloudWatch.

Troubleshooting for RDS for PostgreSQL 2308

Amazon Relational Database Service User Guide

Error Cause Solution

ERROR XX000: Request
returned an error:
database_error .

 The database connection
established from the proxy
returned an error.

The solution depends on
the specific database error.
One example is: Request
returned an error:
database "your-dat
abase-name" does not
exist. This means that the
specified database name
doesn't exist on the database
server. Or it means that the
user name used as a database
name (if a database name
isn't specified) doesn't exist
on the server.

Using RDS Proxy with AWS CloudFormation

You can use RDS Proxy with AWS CloudFormation. This helps you to create groups of related
resources. Such a group can include a proxy that can connect to a newly created Amazon RDS DB
instance. RDS Proxy support in AWS CloudFormation involves two new registry types: DBProxy and
DBProxyTargetGroup.

The following listing shows a sample AWS CloudFormation template for RDS Proxy.

Resources:
 DBProxy:
 Type: AWS::RDS::DBProxy
 Properties:
 DBProxyName: CanaryProxy
 EngineFamily: MYSQL
 RoleArn:
 Fn::ImportValue: SecretReaderRoleArn
 Auth:
 - {AuthScheme: SECRETS, SecretArn: !ImportValue ProxySecret, IAMAuth: DISABLED}
 VpcSubnetIds:
 Fn::Split: [",", "Fn::ImportValue": SubnetIds]

Using RDS Proxy with AWS CloudFormation 2309

Amazon Relational Database Service User Guide

 ProxyTargetGroup:
 Type: AWS::RDS::DBProxyTargetGroup
 Properties:
 DBProxyName: CanaryProxy
 TargetGroupName: default
 DBInstanceIdentifiers:
 - Fn::ImportValue: DBInstanceName
 DependsOn: DBProxy

For more information about the resources in this sample, see DBProxy and
DBProxyTargetGroup.

For more information about resources that you can create using AWS CloudFormation, see RDS
resource type reference.

Using RDS Proxy with AWS CloudFormation 2310

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbproxy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbproxytargetgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html

Amazon Relational Database Service User Guide

Amazon RDS zero-ETL integrations with Amazon
Redshift

An Amazon RDS zero-ETL integration with Amazon Redshift enables near real-time analytics and
machine learning (ML) using Amazon Redshift on petabytes of transactional data from RDS. It's
a fully managed solution for making transactional data available in Amazon Redshift after it is
written to an RDS database. Extract, transform, and load (ETL) is the process of combining data
from multiple sources into a large, central data warehouse.

A zero-ETL integration makes the data in your RDS database available in Amazon Redshift in
near real-time. Once that data is in Amazon Redshift, you can power your analytics, ML, and
AI workloads using the built-in capabilities of Amazon Redshift, such as machine learning,
materialized views, data sharing, federated access to multiple data stores and data lakes, and
integrations with Amazon SageMaker AI, QuickSight, and other AWS services.

To create a zero-ETL integration, you specify an RDS database as the source, and an Amazon
Redshift data warehouse as the target. The integration replicates data from the source database
into the target data warehouse.

The following diagram illustrates this functionality:

The integration monitors the health of the data pipeline and recovers from issues when possible.
You can create integrations from multiple RDS databases into a single Amazon Redshift
namespace, enabling you to derive insights across multiple applications.

2311

Amazon Relational Database Service User Guide

Topics

• Benefits

• Key concepts

• Limitations

• Quotas

• Supported Regions

• Getting started with Amazon RDS zero-ETL integrations with Amazon Redshift

• Creating Amazon RDS zero-ETL integrations with Amazon Redshift

• Data filtering for Amazon RDS zero-ETL integrations with Amazon Redshift

• Adding data to a source RDS database and querying it in Amazon Redshift

• Viewing and monitoring Amazon RDS zero-ETL integrations with Amazon Redshift

• Modifying Amazon RDS zero-ETL integrations with Amazon Redshift

• Deleting Amazon RDS zero-ETL integrations with Amazon Redshift

• Troubleshooting Amazon RDS zero-ETL integrations with Amazon Redshift

Benefits

RDS zero-ETL integrations with Amazon Redshift have the following benefits:

• Help you derive holistic insights from multiple data sources.

• Eliminate the need to build and maintain complex data pipelines that perform extract,
transform, and load (ETL) operations. Zero-ETL integrations remove the challenges that come
with building and managing pipelines by provisioning and managing them for you.

• Reduce operational burden and cost, and let you focus on improving your applications.

• Let you leverage Amazon Redshift's analytics and ML capabilities to derive insights from
transactional and other data, to respond effectively to critical, time-sensitive events.

Key concepts

As you get started with zero-ETL integrations, consider the following concepts:

Benefits 2312

Amazon Relational Database Service User Guide

Integration

A fully managed data pipeline that automatically replicates transactional data and schemas
from an RDS database to an Amazon Redshift data warehouse.

Source database

The RDS database where data is replicated from. You can specify a Single-AZ or Multi-AZ DB
instance, or a Multi-AZ DB cluster.

Target data warehouse

The Amazon Redshift data warehouse where the data is replicated to. There are two types
of data warehouse: a provisioned cluster data warehouse and a serverless data warehouse.
A provisioned cluster data warehouse is a collection of computing resources called nodes,
which are organized into a group called a cluster. A serverless data warehouse is comprised of a
workgroup that stores compute resources, and a namespace that houses the database objects
and users. Both data warehouses run an Amazon Redshift engine and contain one or more
databases.

Multiple source databases can write to the same target.

For more information, see Data warehouse system architecture in the Amazon Redshift
Developer Guide.

Limitations

The following limitations apply to RDS zero-ETL integrations with Amazon Redshift.

Topics

• General limitations

• RDS for MySQL limitations

• Amazon Redshift limitations

General limitations

• The source database must be in the same Region as the target Amazon Redshift data warehouse.

• You can't rename a database if it has existing integrations.

• You can't create multiple integrations between the same source and target databases.

Limitations 2313

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-namespace.html
https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html

Amazon Relational Database Service User Guide

• You can't delete a database that has existing integrations. You must delete all associated
integrations first.

• If you stop the source database, the last few transactions might not be replicated to the target
data warehouse until you resume the database.

• You can’t delete an integration if the source database is stopped.

• If your database is the source of a blue/green deployment, the blue and green environments
can't have existing zero-ETL integrations during switchover. You must delete the integration first
and switch over, then recreate it.

• You can't create an integration for a source database that has another integration being actively
created.

• When you initially create an integration, or when a table is being resynchronized, data seeding
from the source to the target can take 20-25 minutes or more depending on the size of the
source database. This delay can lead to increased replica lag.

• Some data types aren't supported. For more information, see the section called “Data type
differences”.

• System tables, temporary tables, and views aren't replicated to Amazon Redshift.

RDS for MySQL limitations

• Your source database must be running a supported version of RDS for MySQL. For a list of
supported versions, see the section called “Zero-ETL integrations ”.

• Zero-ETL integrations rely on MySQL binary logging (binlog) to capture ongoing data changes.
Don't use binlog-based data filtering, as it can cause data inconsistencies between the source
and target databases.

• Zero-ETL integrations are supported only for databases configured to use the InnoDB storage
engine.

• Foreign key references with predefined table updates aren't supported. Specifically, ON DELETE
and ON UPDATE rules aren't supported with CASCADE, SET NULL, and SET DEFAULT actions.
Attempting to create or update a table with such references to another table will put the table
into a failed state.

• ALTER TABLE partition operations cause your table to resynchronize in order to reload
data from RDS to Amazon Redshift. The table will be unavailable for querying while it's
resynchronizing. For more information, see the section called “One or more of my Amazon
Redshift tables requires a resync”.

RDS for MySQL limitations 2314

Amazon Relational Database Service User Guide

Amazon Redshift limitations

For a list of Amazon Redshift limitations related to zero-ETL integrations, see Considerations when
using zero-ETL integrations with Amazon Redshift in the Amazon Redshift Management Guide.

Quotas

Your account has the following quotas related to RDS zero-ETL integrations with Amazon Redshift.
Each quota is per-Region unless otherwise specified.

Name Default Description

Integrations 100 The total number of integrations within an AWS account.

Integrati
ons per
target data
warehouse

50 The number of integrations sending data to a single target
Amazon Redshift data warehouse.

Integrations
per source
instance

5 The number of integrations sending data from a single source
DB instance.

In addition, Amazon Redshift places certain limits on the number of tables allowed in each DB
instance or cluster node. For more information, see Quotas and limits in Amazon Redshift in the
Amazon Redshift Management Guide.

Supported Regions

RDS zero-ETL integrations with Amazon Redshift are available in a subset of AWS Regions. For a list
of supported Regions, see the section called “Zero-ETL integrations ”.

Amazon Redshift limitations 2315

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl.reqs-lims.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl.reqs-lims.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Relational Database Service User Guide

Getting started with Amazon RDS zero-ETL integrations with
Amazon Redshift

Before you create a zero-ETL integration with Amazon Redshift, configure your RDS database
and your Amazon Redshift data warehouse with the required parameters and permissions. During
setup, you'll complete the following steps:

1. Create a custom DB parameter group.

2. Create a source database.

3. Create a target Amazon Redshift data warehouse.

After you complete these tasks, continue to the section called “Creating zero-ETL integrations”.

Tip

You can have RDS complete these setup steps for you while you're creating the integration,
rather than performing them manually. To immediately start creating an integration, see
the section called “Creating zero-ETL integrations”.

Step 1: Create a custom DB parameter group

Amazon RDS zero-ETL integrations with Amazon Redshift require specific values for the DB
parameters that control binary logging (binlog). To configure binary logging, you must first create
a custom DB parameter group, and then associate it with the source database. Configure the
following parameter values. For instructions to create a parameter group, see the section called
“DB parameter groups”. We recommend that you configure all parameter values within the same
request to avoid dependency issues.

• binlog_format=ROW

• binlog_row_image=full

In addition, make sure that the binlog_row_value_options parameter is not set
to PARTIAL_JSON. If the source database is a Multi-AZ DB cluster, make sure that the
binlog_transaction_compression parameter is not set to ON.

Getting started with zero-ETL integrations 2316

Amazon Relational Database Service User Guide

Step 2: Select or create a source database

After you create a custom DB parameter group, choose or create an RDS for MySQL database. This
database will be the source of data replication to Amazon Redshift. For instructions to create a
Single-AZ or Multi-AZ DB instance, see the section called “Creating a DB instance”. For instructions
to create a Multi-AZ DB cluster, see the section called “Creating a Multi-AZ DB cluster”.

The database must be running a supported DB engine version. For a list of supported versions, see
the section called “Zero-ETL integrations ”.

When you create the database, under Additional configuration, change the default DB parameter
group to the custom parameter group that you created in the previous step.

Note

If you associate the parameter group with the database after the database is already
created, you must reboot the database to apply the changes before you can create a zero-
ETL integration. For instructions, see the section called “Rebooting a DB instance” or the
section called “Rebooting a Multi-AZ DB cluster”.

In addition, make sure that automated backups are enabled on the database. For more
information, see the section called “Enabling automated backups”.

Step 3: Create a target Amazon Redshift data warehouse

After you create your source database, you must create and configure a target data warehouse in
Amazon Redshift. The data warehouse must meet the following requirements:

• Using an RA3 node type with at least two nodes, or Redshift Serverless.

• Encrypted (if using a provisioned cluster). For more information, see Amazon Redshift database
encryption.

For instructions to create a data warehouse, see Creating a cluster for provisioned clusters, or
Creating a workgroup with a namespace for Redshift Serverless.

Step 2: Select or create a source database 2317

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/create-cluster
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html

Amazon Relational Database Service User Guide

Enable case sensitivity on the data warehouse

For the integration to be successful, the case sensitivity parameter
(enable_case_sensitive_identifier) must be enabled for the data warehouse. By default,
case sensitivity is disabled on all provisioned clusters and Redshift Serverless workgroups.

To enable case sensitivity, perform the following steps depending on your data warehouse type:

• Provisioned cluster – To enable case sensitivity on a provisioned cluster, create a custom
parameter group with the enable_case_sensitive_identifier parameter enabled. Then,
associate the parameter group with the cluster. For instructions, see Managing parameter groups
using the console or Configuring parameter values using the AWS CLI.

Note

Remember to reboot the cluster after you associate the custom parameter group with it.

• Serverless workgroup – To enable case sensitivity on a Redshift Serverless workgroup, you must
use the AWS CLI. The Amazon Redshift console doesn't currently support modifying Redshift
Serverless parameter values. Send the following update-workgroup request:

aws redshift-serverless update-workgroup \
 --workgroup-name target-workgroup \
 --config-parameters
 parameterKey=enable_case_sensitive_identifier,parameterValue=true

You don't need to reboot a workgroup after you modify its parameter values.

Configure authorization for the data warehouse

After you create a data warehouse, you must configure the source RDS database as an authorized
integration source. For instructions, see Configure authorization for your Amazon Redshift data
warehouse.

Set up an integration using the AWS SDKs

Rather than setting up each resource manually, you can run the following Python script to
automatically set up the required resources for you. The code example uses the AWS SDK for
Python (Boto3) to create a source RDS for MySQL DB instance and target Amazon Redshift data

Set up an integration using the AWS SDKs 2318

https://docs.aws.amazon.com/redshift/latest/dg/r_enable_case_sensitive_identifier.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html#configure-parameters-using-the-clil
https://docs.aws.amazon.com/cli/latest/reference/redshift-serverless/update-workgroup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Amazon Relational Database Service User Guide

warehouse, each with the required parameter values. It then waits for the databases to be available
before creating a zero-ETL integration between them. You can comment out different functions
depending on which resources you need to set up.

To install the required dependencies, run the following commands:

pip install boto3
pip install time

Within the script, optionally modify the names of the source, target, and parameter groups. The
final function creates an integration named my-integration after the resources are set up.

Python code example

import boto3
import time

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default Region.

rds = boto3.client('rds')
redshift = boto3.client('redshift')
sts = boto3.client('sts')

source_db_name = 'my-source-db' # A name for the source database
source_param_group_name = 'my-source-param-group' # A name for the source parameter
 group
target_cluster_name = 'my-target-cluster' # A name for the target cluster
target_param_group_name = 'my-target-param-group' # A name for the target parameter
 group

def create_source_db(*args):
 """Creates a source RDS for MySQL DB instance"""

 response = rds.create_db_parameter_group(
 DBParameterGroupName=source_param_group_name,
 DBParameterGroupFamily='mysql8.0',
 Description='RDS for MySQL zero-ETL integrations'
)
 print('Created source parameter group: ' + response['DBParameterGroup']
['DBParameterGroupName'])

Set up an integration using the AWS SDKs 2319

Amazon Relational Database Service User Guide

 response = rds.modify_db_parameter_group(
 DBParameterGroupName=source_param_group_name,
 Parameters=[
 {
 'ParameterName': 'binlog_format',
 'ParameterValue': 'ROW',
 'ApplyMethod': 'pending-reboot'
 },
 {
 'ParameterName': 'binlog_row_image',
 'ParameterValue': 'full',
 'ApplyMethod': 'pending-reboot'
 }
]
)
 print('Modified source parameter group: ' + response['DBParameterGroupName'])

 response = rds.create_db_instance(
 DBInstanceIdentifier=source_db_name,
 DBParameterGroupName=source_param_group_name,
 Engine='mysql',
 EngineVersion='8.0.32',
 DBName='mydb',
 DBInstanceClass='db.m5.large',
 AllocatedStorage=15,
 MasterUsername='username',
 MasterUserPassword='Password01**'
)
 print('Creating source database: ' + response['DBInstance']
['DBInstanceIdentifier'])
 source_arn = (response['DBInstance']['DBInstanceArn'])
 create_target_cluster(target_cluster_name, source_arn, target_param_group_name)
 return(response)

def create_target_cluster(target_cluster_name, source_arn, target_param_group_name):
 """Creates a target Redshift cluster"""

 response = redshift.create_cluster_parameter_group(
 ParameterGroupName=target_param_group_name,
 ParameterGroupFamily='redshift-1.0',
 Description='RDS for MySQL zero-ETL integrations'
)
 print('Created target parameter group: ' + response['ClusterParameterGroup']
['ParameterGroupName'])

Set up an integration using the AWS SDKs 2320

Amazon Relational Database Service User Guide

 response = redshift.modify_cluster_parameter_group(
 ParameterGroupName=target_param_group_name,
 Parameters=[
 {
 'ParameterName': 'enable_case_sensitive_identifier',
 'ParameterValue': 'true'
 }
]
)
 print('Modified target parameter group: ' + response['ParameterGroupName'])

 response = redshift.create_cluster(
 ClusterIdentifier=target_cluster_name,
 NodeType='ra3.4xlarge',
 NumberOfNodes=2,
 Encrypted=True,
 MasterUsername='username',
 MasterUserPassword='Password01**',
 ClusterParameterGroupName=target_param_group_name
)
 print('Creating target cluster: ' + response['Cluster']['ClusterIdentifier'])

 # Retrieve the target cluster ARN
 response = redshift.describe_clusters(
 ClusterIdentifier=target_cluster_name
)
 target_arn = response['Clusters'][0]['ClusterNamespaceArn']

 # Retrieve the current user's account ID
 response = sts.get_caller_identity()
 account_id = response['Account']

 # Create a resource policy granting access to source database and account ID
 response = redshift.put_resource_policy(
 ResourceArn=target_arn,
 Policy='''
 {
 \"Version\":\"2012-10-17\",
 \"Statement\":[
 {\"Effect\":\"Allow\",
 \"Principal\":{
 \"Service\":\"redshift.amazonaws.com\"
 },

Set up an integration using the AWS SDKs 2321

Amazon Relational Database Service User Guide

 \"Action\":[\"redshift:AuthorizeInboundIntegration\"],
 \"Condition\":{
 \"StringEquals\":{
 \"aws:SourceArn\":\"%s\"}
 }
 },
 {\"Effect\":\"Allow\",
 \"Principal\":{
 \"AWS\":\"arn:aws:iam::%s:root\"},
 \"Action\":\"redshift:CreateInboundIntegration\"}
]
 }
 ''' % (source_arn, account_id)
)
 return(response)

def wait_for_db_availability(*args):
 """Waits for both databases to be available"""

 print('Waiting for source and target to be available...')

 response = rds.describe_db_instances(
 DBInstanceIdentifier=source_db_name
)
 source_status = response['DBInstances'][0]['DBInstanceStatus']
 source_arn = response['DBInstances'][0]['DBInstanceArn']

 response = redshift.describe_clusters(
 ClusterIdentifier=target_cluster_name
)
 target_status = response['Clusters'][0]['ClusterStatus']
 target_arn = response['Clusters'][0]['ClusterNamespaceArn']

 # Every 60 seconds, check whether the databases are available
 if source_status != 'available' or target_status != 'available':
 time.sleep(60)
 response = wait_for_db_availability(
 source_db_name, target_cluster_name)
 else:
 print('Databases available. Ready to create zero-ETL integration.')
 create_integration(source_arn, target_arn)
 return

def create_integration(source_arn, target_arn):

Set up an integration using the AWS SDKs 2322

Amazon Relational Database Service User Guide

 """Creates a zero-ETL integration using the source and target databases"""

 response = rds.create_integration(
 SourceArn=source_arn,
 TargetArn=target_arn,
 IntegrationName='my-integration'
)
 print('Creating integration: ' + response['IntegrationName'])

def main():
 """main function"""
 create_source_db(source_db_name, source_param_group_name)
 wait_for_db_availability(source_db_name, target_cluster_name)

if __name__ == "__main__":
 main()

Next steps

With a source RDS database and an Amazon Redshift target data warehouse, you can now create a
zero-ETL integration and replicate data. For instructions, see the section called “Creating zero-ETL
integrations”.

Creating Amazon RDS zero-ETL integrations with Amazon
Redshift

When you create an Amazon RDS zero-ETL integration, you specify the source RDS database and
the target Amazon Redshift data warehouse. You can also customize encryption settings and add
tags. Amazon RDS creates an integration between the source database and its target. Once the
integration is active, any data that you insert into the source database will be replicated into the
configured Amazon Redshift target.

Topics

• Prerequisites

• Required permissions

• Creating zero-ETL integrations

• Encrypting integrations with a customer managed key

• Next steps

Next steps 2323

Amazon Relational Database Service User Guide

Prerequisites

Before you create a zero-ETL integration, you must create a source database and a target Amazon
Redshift data warehouse. You also must allow replication into the data warehouse by adding the
database as an authorized integration source.

For instructions to complete each of these steps, see the section called “Getting started with zero-
ETL integrations”.

Required permissions

Certain IAM permissions are required to create a zero-ETL integration. At minimum, you need
permissions to perform the following actions:

• Create zero-ETL integrations for the source RDS database.

• View and delete all zero-ETL integrations.

• Create inbound integrations into the target data warehouse. You don't need this permission if
the same account owns the Amazon Redshift data warehouse and this account is an authorized
principal for that data warehouse. For information about adding authorized principals, see
Configure authorization for your Amazon Redshift data warehouse.

The following sample policy demonstrates the least privilege permissions required to create and
manage integrations. You might not need these exact permissions if your user or role has broader
permissions, such as an AdministratorAccess managed policy.

Note

Redshift Amazon Resource Names (ARNs) have the following format. Note the use of a
forward slash (/) rather than a colon (:) before the serverless namespace UUID.

• Provisioned cluster – arn:aws:redshift:{region}:{account-
id}:namespace:namespace-uuid

• Serverless – arn:aws:redshift-serverless:{region}:{account-
id}:namespace/namespace-uuid

Prerequisites 2324

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon Relational Database Service User Guide

Sample policy

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "rds:CreateIntegration"
],
 "Resource": [
 "arn:aws:rds:{region}:{account-id}:db:source-db",
 "arn:aws:rds:{region}:{account-id}:integration:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "rds:DescribeIntegrations"
],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "rds:DeleteIntegration",
 "rds:ModifyIntegration"
],
 "Resource": [
 "arn:aws:rds:{region}:{account-id}:integration:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "redshift:CreateInboundIntegration"
],
 "Resource": [
 "arn:aws:redshift:{region}:{account-id}:namespace:namespace-uuid"
]
 }]
}

Required permissions 2325

Amazon Relational Database Service User Guide

Choosing a target data warehouse in a different account

If you plan to specify a target Amazon Redshift data warehouse that's in another AWS account, you
must create a role that allows users in the current account to access resources in the target account.
For more information, see Providing access to an IAM user in another AWS account that you own.

The role must have the following permissions, which allow the user to view available Amazon
Redshift provisioned clusters and Redshift Serverless namespaces in the target account.

Required permissions and trust policy

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "redshift:DescribeClusters",
 "redshift-serverless:ListNamespaces"
],
 "Resource":[
 "*"
]
 }
]
}

The role must have the following trust policy, which specifies the target account ID.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "AWS": "arn:aws:iam::{external-account-id}:root"
 },
 "Action":"sts:AssumeRole"
 }
]
}

Required permissions 2326

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon Relational Database Service User Guide

For instructions to create the role, see Creating a role using custom trust policies.

Creating zero-ETL integrations

You can create a zero-ETL integration using the AWS Management Console, the AWS CLI, or the
RDS API.

By default, RDS for MySQL immediately purges binary log files. Because zero-ETL integrations rely
on binary logs to replicate data from the source to the target, the retention period for the source
database must be at least one hour. As soon as you create an integration, Amazon RDS checks the
binary log file retention period for the selected source database. If the current value is 0 hours,
Amazon RDS automatically changes it to 1 hour. Otherwise, the value remains the same.

RDS console

To create a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Zero-ETL integrations.

3. Choose Create zero-ETL integration.

4. For Integration identifier, enter a name for the integration. The name can have up to 63
alphanumeric characters and can include hyphens.

5. Choose Next.

6. For Source, select the RDS database where the data will originate from.

Note

RDS notifies you if the DB parameters aren't configured correctly. If you receive
this message, you can either choose Fix it for me, or configure them manually. For
instructions to fix them manually, see the section called “Step 1: Create a custom DB
parameter group”.
Modifying DB parameters requires a reboot. Before you can create the integration, the
reboot must be complete and the new parameter values must be successfully applied
to the database.

7. Once your source database is successfully configured, choose Next.

Creating zero-ETL integrations 2327

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

8. For Target, do the following:

1. (Optional) To use a different AWS account for the Amazon Redshift target, choose Specify
a different account. Then, enter the ARN of an IAM role with permissions to display your
data warehouses. For instructions to create the IAM role, see the section called “Choosing a
target data warehouse in a different account”.

2. For Amazon Redshift data warehouse, select the target for replicated data from the source
database. You can choose a provisioned Amazon Redshift cluster or a Redshift Serverless
namespace as the target.

Note

RDS notifies you if the resource policy or case sensitivity settings for the specified
data warehouse aren't configured correctly. If you receive this message, you can
either choose Fix it for me, or configure them manually. For instructions to fix
them manually, see Turn on case sensitivity for your data warehouse and Configure
authorization for your data warehouse in the Amazon Redshift Management Guide.
Modifying case sensitivity for a provisioned Redshift cluster requires a reboot. Before
you can create the integration, the reboot must be complete and the new parameter
value must be successfully applied to the cluster.
If your selected source and target are in different AWS accounts, then Amazon RDS
cannot fix these settings for you. You must navigate to the other account and fix them
manually in Amazon Redshift.

9. Once your target data warehouse is configured correctly, choose Next.

10. (Optional) For Tags, add one or more tags to the integration. For more information, see the
section called “Tagging RDS resources”.

11. For Encryption, specify how you want your integration to be encrypted. By default, RDS
encrypts all integrations with an AWS owned key. To choose a customer managed key instead,
enable Customize encryption settings and choose a KMS key to use for encryption. For more
information, see the section called “Encrypting Amazon RDS resources”.

Optionally, add an encryption context. For more information, see Encryption context in the
AWS Key Management Service Developer Guide.

Creating zero-ETL integrations 2328

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-setting-up.case-sensitivity
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

Amazon Relational Database Service User Guide

Note

Amazon RDS adds the following encryption context pairs in addition to any that you
add:

• aws:redshift:integration:arn - IntegrationArn

• aws:servicename:id - Redshift

This reduces the overall number of pairs that you can add from 8 to 6, and contributes
to the overall character limit of the grant constraint. For more information, see Using
grant constraints in the AWS Key Management Service Developer Guide.

12. Choose Next.

13. Review your integration settings and choose Create zero-ETL integration.

If creation fails, see the section called “I can't create a zero-ETL integration” for
troubleshooting steps.

The integration has a status of Creating while it's being created, and the target Amazon Redshift
data warehouse has a status of Modifying. During this time, you can't query the data warehouse
or make any configuration changes on it.

When the integration is successfully created, the status of the integration and the target Amazon
Redshift data warehouse both change to Active.

AWS CLI

To create a zero-ETL integration using the AWS CLI, use the create-integration command with the
following options:

• --integration-name – Specify a name for the integration.

• --source-arn – Specify the ARN of the RDS database that will be the source for the
integration.

• --target-arn – Specify the ARN of the Amazon Redshift data warehouse that will be the
target for the integration.

Creating zero-ETL integrations 2329

https://docs.aws.amazon.com/kms/latest/developerguide/create-grant-overview.html#grant-constraints
https://docs.aws.amazon.com/kms/latest/developerguide/create-grant-overview.html#grant-constraints
https://docs.aws.amazon.com/cli/latest/reference/rds/create-integration.html

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds create-integration \
 --integration-name my-integration \
 --source-arn arn:aws:rds:{region}:{account-id}:my-db \
 --target-arn arn:aws:redshift:{region}:{account-id}:namespace:namespace-uuid

For Windows:

aws rds create-integration ^
 --integration-name my-integration ^
 --source-arn arn:aws:rds:{region}:{account-id}:my-db ^
 --target-arn arn:aws:redshift:{region}:{account-id}:namespace:namespace-uuid

RDS API

To create a zero-ETL integration by using the Amazon RDS API, use the CreateIntegration
operation with the following parameters:

• IntegrationName – Specify a name for the integration.

• SourceArn – Specify the ARN of the RDS database that will be the source for the integration.

• TargetArn – Specify the ARN of the Amazon Redshift data warehouse that will be the target for
the integration.

Encrypting integrations with a customer managed key

If you specify a custom KMS key rather than an AWS owned key when you create an integration,
the key policy must provide the Amazon Redshift service principal access to the CreateGrant
action. In addition, it must allow the current user to perform to the DescribeKey and
CreateGrant actions.

The following sample policy demonstrates how to provide the required permissions in the key
policy. It includes context keys to further reduce the scope of permissions.

Sample key policy

{
 "Version": "2012-10-17",

Encrypting integrations 2330

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateIntegration.html

Amazon Relational Database Service User Guide

 "Id": "Key policy",
 "Statement": [
 {
 "Sid": "Enables IAM user permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{account-ID}:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allows the Redshift service principal to add a grant to a KMS key",
 "Effect": "Allow",
 "Principal": {
 "Service": "redshift.amazonaws.com"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:{context-key}":"{context-value}"
 },
 "ForAllValues:StringEquals": {
 "kms:GrantOperations": [
 "Decrypt",
 "GenerateDataKey",
 "CreateGrant"
]
 }
 }
 },
 {
 "Sid": "Allows the current user or role to add a grant to a KMS key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{account-ID}:role/{role-name}"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:{context-key}":"{context-value}",
 "kms:ViaService": "rds.us-east-1.amazonaws.com"

Encrypting integrations 2331

Amazon Relational Database Service User Guide

 },
 "ForAllValues:StringEquals": {
 "kms:GrantOperations": [
 "Decrypt",
 "GenerateDataKey",
 "CreateGrant"
]
 }
 }
 },
 {
 "Sid": "Allows the current uer or role to retrieve information about a KMS
 key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{account-ID}:role/{role-name}"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*"
 }
]
}

For more information, see Creating a key policy in the AWS Key Management Service Developer
Guide.

Next steps

After you successfully create a zero-ETL integration, you must create a destination database within
your target Amazon Redshift cluster or workgroup. Then, you can start adding data to the source
RDS database and querying it in Amazon Redshift. For instructions, see Creating destination
databases in Amazon Redshift.

Data filtering for Amazon RDS zero-ETL integrations with
Amazon Redshift

Amazon RDS zero-ETL integrations support data filtering, which lets you control which data
is replicated from your source Amazon RDS database to your target Amazon Redshift data
warehouse. Instead of replicating the entire database, you can apply one or more filters
to selectively include or exclude specific tables. This helps you optimize storage and query

Next steps 2332

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-overview.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html

Amazon Relational Database Service User Guide

performance by ensuring that only relevant data is transferred. Currently, filtering is limited to the
database and table levels. Column- and row-level filtering are not supported.

Data filtering can be useful when you want to:

• Join certain tables from two or more different source databases, and you don't need complete
data from either database.

• Save costs by performing analytics using only a subset of tables rather than an entire fleet of
databases.

• Filter out sensitive information—such as phone numbers, addresses, or credit card details—from
certain tables.

You can add data filters to a zero-ETL integration using the AWS Management Console, the AWS
Command Line Interface (AWS CLI), or the Amazon RDS API.

If the integration has a provisioned Amazon Redshift cluster as its target, the cluster must be on
patch 180 or higher to use data filtering.

Topics

• Format of a data filter

• Filter logic

• Filter precedence

• Examples

• Adding data filters to an integration

• Removing data filters from an integration

Format of a data filter

You can define multiple filters for a single integration. Each filter either includes or excludes any
existing and future database tables that match one of the patterns in the filter expression. Amazon
RDS zero-ETL integrations use Maxwell filter syntax for data filtering.

Each filter has the following elements:

Format of a data filter 2333

https://docs.aws.amazon.com/redshift/latest/mgmt/cluster-versions.html#cluster-version-180
https://maxwells-daemon.io/filtering/

Amazon Relational Database Service User Guide

Element Description

Filter type An Include filter type includes all tables
that match one of the patterns in the filter
expression. An Exclude filter type excludes
all tables that match one of the patterns.

Filter expression A comma-separated list of patterns.
Expressions must use Maxwell filter syntax.

Pattern A filter pattern in the format
database.table. You can specify literal
names, or define regular expressions.

You can't include column-level filters or
denylists.

A single integration can have a maximum
of 99 total patterns. In the console, you can
enter patterns within a single filter expressio
n, or spread them out among multiple
expressions. A single pattern can't exceed
256 characters in length.

The following image shows the structure of data filters in the console:

Format of a data filter 2334

https://maxwells-daemon.io/filtering/

Amazon Relational Database Service User Guide

Important

Do not include personally identifying, confidential, or sensitive information in your filter
patterns.

Data filters in the AWS CLI

When using the AWS CLI to add a data filter, the syntax differs slightly from the console. You must
assign a filter type (Include or Exclude) to each pattern individually, so you can't group multiple
patterns under one filter type.

For example, in the console you can group the following comma-separated patterns under a single
Include statement:

mydb.mytable, mydb./table_\d+/

However, when using the AWS CLI, the same data filter must be in the following format:

'include: mydb.mytable, include: mydb./table_\d+/'

Filter logic

If you don't specify any data filters in your integration, Amazon RDS assumes a default filter of
include:*.*, which replicates all tables to the target data warehouse. However, if you add at
least one filter, the default logic switches to exclude:*.*, which excludes all tables by default.
This lets you explicitly define which databases and tables to include in replication.

For example, if you define the following filter:

'include: db.table1, include: db.table2'

Amazon RDS evaluates the filter as follows:

'exclude:*.*, include: db.table1, include: db.table2'

Therefore, Amazon RDS only replicates table1 and table2 from the database named db to the
target data warehouse.

Filter logic 2335

Amazon Relational Database Service User Guide

Filter precedence

Amazon RDS evaluates data filters in the order you specify. In the AWS Management Console, it
processes filter expressions from left to right and top to bottom. A second filter or an individual
pattern that follows the first can override it.

For example, if the first filter is Include books.stephenking, it includes only the
stephenking table from the books database. However, if you add a second filter, Exclude
books.*, it overrides the first filter. This prevents any tables from the books index from being
replicated to Amazon Redshift.

When you specify at least one filter, the logic starts by assuming exclude:*.* by default, which
automatically excludes all tables from replication. As a best practice, define filters from broadest
to most specific. Start with one or more Include statements to specify the data to replicate, then
add Exclude filters to selectively remove certain tables.

The same principle applies to filters that you define using the AWS CLI. Amazon RDS evaluates
these filter patterns in the order that you specify them, so a pattern might override one that you
specify before it.

Examples

The following examples demonstrate how data filtering works for zero-ETL integrations:

• Include all databases and all tables:

'include: *.*'

• Include all tables within the books database:

'include: books.*'

• Exclude any tables named mystery:

'include: *.*, exclude: *.mystery'

• Include two specific tables within the books database:

'include: books.stephen_king, include: books.carolyn_keene'

• Include all tables in the books database, except for those containing the substring mystery:

Filter precedence 2336

Amazon Relational Database Service User Guide

'include: books.*, exclude: books./.*mystery.*/'

• Include all tables in the books database, except those starting with mystery:

'include: books.*, exclude: books./mystery.*/'

• Include all tables in the books database, except those ending with mystery:

'include: books.*, exclude: books./.*mystery/'

• Include all tables in the books database that start with table_, except for the one named
table_stephen_king. For example, table_movies or table_books would be replicated, but
not table_stephen_king.

'include: books./table_.*/, exclude: books.table_stephen_king'

Adding data filters to an integration

You can configure data filtering using the AWS Management Console, the AWS CLI, or the Amazon
RDS API.

Important

If you add a filter after you create an integration, Amazon RDS treats it as if it always
existed. It removes any data in the target Amazon Redshift data warehouse that doesn’t
match the new filtering criteria and resynchronizes all affected tables.

RDS console

To add data filters to a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Zero-ETL integrations. Select the integration that you want to
add data filters to, and then choose Modify.

3. Under Source, add one or more Include and Exclude statements.

Adding data filters 2337

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The following image shows an example of data filters for a MySQL integration:

4. When you're satisfied with the changes, choose Continue and Save changes.

AWS CLI

To add data filters to a zero-ETL integration using the AWS CLI, call the modify-integration
command. In addition to the integration identifier, specify the --data-filter parameter with a
comma-separated list of Include and Exclude Maxwell filters.

Example

The following example adds filter patterns to my-integration.

For Linux, macOS, or Unix:

Adding data filters 2338

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/modify-integration.html

Amazon Relational Database Service User Guide

aws rds modify-integration \
 --integration-identifier my-integration \
 --data-filter 'include: foodb.*, exclude: foodb.tbl, exclude: foodb./table_\d+/'

For Windows:

aws rds modify-integration ^
 --integration-identifier my-integration ^
 --data-filter 'include: foodb.*, exclude: foodb.tbl, exclude: foodb./table_\d+/'

RDS API

To modify a zero-ETL integration using the RDS API, call the ModifyIntegration operation. Specify
the integration identifier and provide a comma-separated list of filter patterns.

Removing data filters from an integration

When you remove a data filter from an integration, Amazon RDS reevaluates the remaining
filters as if the removed filter never existed. It then replicates any previously excluded data
that now meets the criteria into the target Amazon Redshift data warehouse. This triggers a
resynchronization of all affected tables.

Adding data to a source RDS database and querying it in
Amazon Redshift

To finish creating a zero-ETL integration that replicates data from Amazon RDS into Amazon
Redshift, you must create a destination database in Amazon Redshift.

First, connect to your Amazon Redshift cluster or workgroup and create a database with a reference
to your integration identifier. Then, you can add data to your source RDS database and see it
replicated in Amazon Redshift.

Topics

• Creating a destination database in Amazon Redshift

• Adding data to the source database

• Querying your Amazon RDS data in Amazon Redshift

• Data type differences between RDS and Amazon Redshift databases

Removing data filters 2339

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyIntegration.html

Amazon Relational Database Service User Guide

Creating a destination database in Amazon Redshift

Before you can start replicating data into Amazon Redshift, after you create an integration, you
must create a destination database in your target data warehouse. This destination database must
include a reference to the integration identifier. You can use the Amazon Redshift console or the
Query editor v2 to create the database.

For instructions to create a destination database, see Create a destination database in Amazon
Redshift.

Adding data to the source database

After you configure your integration, you can add some data to the RDS database that you want to
replicate into your Amazon Redshift data warehouse.

Note

There are differences between data types in Amazon RDS and Amazon Redshift. For a table
of data type mappings, see the section called “Data type differences”.

First, connect to the source database using the MySQL client of your choice. For instructions, see
the section called “Connecting to a DB instance running MySQL”.

Then, create a table and insert a row of sample data.

Important

Make sure that the table has a primary key. Otherwise, it can't be replicated to the target
data warehouse.

The following example uses the MySQL Workbench utility.

CREATE DATABASE my_db;

USE my_db;

CREATE TABLE books_table (ID int NOT NULL, Title VARCHAR(50) NOT NULL, Author
 VARCHAR(50) NOT NULL,

Creating a destination database in Amazon Redshift 2340

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db
https://dev.mysql.com/downloads/workbench/

Amazon Relational Database Service User Guide

Copyright INT NOT NULL, Genre VARCHAR(50) NOT NULL, PRIMARY KEY (ID));

INSERT INTO books_table VALUES (1, 'The Shining', 'Stephen King', 1977, 'Supernatural
 fiction');

Querying your Amazon RDS data in Amazon Redshift

After you add data to the RDS database, it's replicated into Amazon Redshift and is ready to be
queried.

To query the replicated data

1. Navigate to the Amazon Redshift console and choose Query editor v2 from the left navigation
pane.

2. Connect to your cluster or workgroup and choose your destination database (which you
created from the integration) from the dropdown menu (destination_database in this
example). For instructions to create a destination database, see Create a destination database
in Amazon Redshift.

3. Use a SELECT statement to query your data. In this example, you can run the following
command to select all data from the table that you created in the source RDS database:

SELECT * from my_db."books_table";

• my_db is the RDS database schema name.

• books_table is the RDS table name.

You can also query the data using the a command line client. For example:

destination_database=# select * from my_db."books_table";

Querying your Amazon RDS data in Amazon Redshift 2341

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db

Amazon Relational Database Service User Guide

 ID | Title | Author | Copyright | Genre | txn_seq |
 txn_id
----+–------------+---------------+-------------+------------------------+----------
+--------+
 1 | The Shining | Stephen King | 1977 | Supernatural fiction | 2 |
 12192

Note

For case-sensitivity, use double quotes (" ") for schema, table, and column names. For more
information, see enable_case_sensitive_identifier.

Data type differences between RDS and Amazon Redshift databases

The following table shows the mapping of an RDS for MySQL data type to a corresponding
Amazon Redshift data type. Amazon RDS currently supports only these data types for zero-ETL
integrations.

If a table in your source database includes an unsupported data type, the table goes out of sync
and isn't consumable by the Amazon Redshift target. Streaming from the source to the target
continues, but the table with the unsupported data type isn't available. To fix the table and make it
available in Amazon Redshift, you must manually revert the breaking change and then refresh the
integration by running ALTER DATABASE...INTEGRATION REFRESH.

RDS for MySQL

RDS for MySQL data type Amazon Redshift data
type

Description Limitations

INT INTEGER Signed four-byte
integer

None

SMALLINT SMALLINT Signed two-byte
integer

None

TINYINT SMALLINT Signed two-byte
integer

None

Data type differences 2342

https://docs.aws.amazon.com/redshift/latest/dg/r_enable_case_sensitive_identifier.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_DATABASE.html

Amazon Relational Database Service User Guide

RDS for MySQL data type Amazon Redshift data
type

Description Limitations

MEDIUMINT INTEGER Signed four-byte
integer

None

BIGINT BIGINT Signed eight-byt
e integer

None

INT UNSIGNED BIGINT Signed eight-byt
e integer

None

TINYINT UNSIGNED SMALLINT Signed two-byte
integer

None

MEDIUMINT UNSIGNED INTEGER Signed four-byte
integer

None

BIGINT UNSIGNED DECIMAL(20,0) Exact numeric
of selectable
precision

None

DECIMAL(p,s) = NUMERIC(p,s) DECIMAL(p,s) Exact numeric
of selectable
precision

Precision greater
than 38 and
scale greater
than 37 not
supported

DECIMAL(p,s) UNSIGNED =
NUMERIC(p,s) UNSIGNED

DECIMAL(p,s) Exact numeric
of selectable
precision

Precision greater
than 38 and
scale greater
than 37 not
supported

FLOAT4/REAL REAL Single precision
floating-point
number

None

Data type differences 2343

Amazon Relational Database Service User Guide

RDS for MySQL data type Amazon Redshift data
type

Description Limitations

FLOAT4/REAL UNSIGNED REAL Single precision
floating-point
number

None

DOUBLE/REAL/FLOAT8 DOUBLE PRECISION Double precision
floating-point
number

None

DOUBLE/REAL/FLOAT8
UNSIGNED

DOUBLE PRECISION Double precision
floating-point
number

None

BIT(n) VARBYTE(8) Variable-length
binary value

None

BINARY(n) VARBYTE(n) Variable-length
binary value

None

VARBINARY(n) VARBYTE(n) Variable-length
binary value

None

CHAR(n) VARCHAR(n) Variable-length
string value

None

VARCHAR(n) VARCHAR(n) Variable-length
string value

None

TEXT VARCHAR(65535) Variable-length
string value
up to 65,535
characters

None

TINYTEXT VARCHAR(255) Variable-length
string value up
to 255 character
s

None

Data type differences 2344

Amazon Relational Database Service User Guide

RDS for MySQL data type Amazon Redshift data
type

Description Limitations

MEDIUMTEXT VARCHAR(65535) Variable-length
string value
up to 65,535
characters

None

LONGTEXT VARCHAR(65535) Variable-length
string value
up to 65,535
characters

None

ENUM VARCHAR(1020) Variable-length
string value
up to 1,020
characters

None

SET VARCHAR(1020) Variable-length
string value
up to 1,020
characters

None

DATE DATE Calendar date
(year, month,
day)

None

DATETIME TIMESTAMP Date and time
(without time
zone)

None

TIMESTAMP(p) TIMESTAMP Date and time
(without time
zone)

None

TIME VARCHAR(18) Variable-length
string value up
to 18 characters

None

Data type differences 2345

Amazon Relational Database Service User Guide

RDS for MySQL data type Amazon Redshift data
type

Description Limitations

YEAR VARCHAR(4) Variable-length
string value up
to 4 characters

None

JSON SUPER Semistruc
tured data or
documents as
values

None

Viewing and monitoring Amazon RDS zero-ETL integrations
with Amazon Redshift

You can view the details of an Amazon RDS zero-ETL integration to see its configuration
information and current status. You can also monitor the status of your integration by querying
specific system views in Amazon Redshift. In addition, Amazon Redshift publishes certain
integration-related metrics to Amazon CloudWatch, which you can view within the Amazon
Redshift console.

Topics

• Viewing integrations

• Monitoring integrations using system tables

• Monitoring integrations with Amazon EventBridge

Viewing integrations

You can view Amazon RDS zero-ETL integrations with Amazon Redshift using the AWS
Management Console, the AWS CLI, or the RDS API.

Viewing and monitoring zero-ETL integrations 2346

Amazon Relational Database Service User Guide

Console

To view the details of a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. From the left navigation pane, choose Zero-ETL integrations.

3. Select an integration to view more details about it, such as its source database and target data
warehouse.

An integration can have the following statuses:

• Creating – The integration is being created.

• Active – The integration is sending transactional data to the target data warehouse.

• Syncing – The integration has encountered a recoverable error and is reseeding data. Affected
tables aren't available for querying in Amazon Redshift until they finish resyncing.

• Needs attention – The integration encountered an event or error that requires manual
intervention to resolve it. To fix the issue, follow the instructions in the error message on the
integration details page.

• Failed – The integration encountered an unrecoverable event or error that can't be fixed. You
must delete and recreate the integration.

• Deleting – The integration is being deleted.

Viewing integrations 2347

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To view all zero-ETL integrations in the current account using the AWS CLI, use the describe-
integrations command and specify the --integration-identifier option.

Example

For Linux, macOS, or Unix:

aws rds describe-integrations \
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

For Windows:

aws rds describe-integrations ^
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

RDS API

To view zero-ETL integration using the Amazon RDS API, use the DescribeIntegrations
operation with the IntegrationIdentifier parameter.

Monitoring integrations using system tables

Amazon Redshift has system tables and views that contain information about how the system is
functioning. You can query these system tables and views the same way that you would query any
other database table. For more information about system tables and views in Amazon Redshift, see
System tables and views reference in the Amazon Redshift Database Developer Guide.

You can query the following system views and tables to get information about your zero-ETL
integrations with Amazon Redshift:

• SVV_INTEGRATION – Provides configuration details for your integrations.

• SVV_INTEGRATION_TABLE_STATE – Describes the state of each table within an integration.

• SYS_INTEGRATION_TABLE_STATE_CHANGE – Displays table state change logs for an integration.

• SYS_INTEGRATION_ACTIVITY – Provides information about completed integration runs.

All integration-related Amazon CloudWatch metrics originate from Amazon Redshift. For more
information, see Metrics for zero-ETL integrations in the Amazon Redshift Management Guide.
Currently, Amazon RDS doesn't publish any integration metrics to CloudWatch.

Monitoring using system tables 2348

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-integrations.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-integrations.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeIntegrations.html
https://docs.aws.amazon.com/redshift/latest/dg/cm_chap_system-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION_TABLE_STATE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SYS_INTEGRATION_TABLE_STATE_CHANGE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SYS_INTEGRATION_ACTIVITY.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.monitoring.html

Amazon Relational Database Service User Guide

Monitoring integrations with Amazon EventBridge

Amazon Redshift sends integration-related events to Amazon EventBridge. For a list of events
and their corresponding event IDs, see Zero-ETL integration event notifications with Amazon
EventBridge in the Amazon Redshift Management Guide.

Modifying Amazon RDS zero-ETL integrations with Amazon
Redshift

You can modify only the name, description, and data filtering options for a zero-ETL integration
with Amazon Redshift. You can't modify the AWS KMS key used to encrypt the integration, or the
source or target databases.

If you add a data filter to an existing integration, Amazon RDS reevaluates the filter as if it always
existed. It removes any data that is currently in the target Amazon Redshift data warehouse that
doesn't match the new filtering criteria. If you remove a data filter from an integration, it replicates
any data that previously didn't match the filtering criteria (but now does) into the target data
warehouse. For more information, see the section called “Data filtering for zero-ETL integrations”.

You can modify a zero-ETL integration using the AWS Management Console, the AWS CLI, or the
Amazon RDS API.

RDS console

To modify a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Zero-ETL integrations, and then choose the integration that
you want to modify.

3. Choose Modify and make modifications to any available settings.

4. When all the changes are as you want them, choose Modify.

AWS CLI

To modify a zero-ETL integration using the AWS CLI, call the modify-integration command. Along
with the --integration-identifier, specify any of the following options:

Monitoring with EventBridge 2349

https://docs.aws.amazon.com/redshift/latest/mgmt/integration-event-notifications
https://docs.aws.amazon.com/redshift/latest/mgmt/integration-event-notifications
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-integration.html

Amazon Relational Database Service User Guide

• --integration-name – Specify a new name for the integration.

• --description – Specify a new description for the integration.

• --data-filter – Specify data filtering options for the integration. For more information, see
the section called “Data filtering for zero-ETL integrations”.

Example

The following request modifies an existing integration.

For Linux, macOS, or Unix:

aws rds modify-integration \
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374 \
 --integration-name my-renamed-integration

For Windows:

aws rds modify-integration ^
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374 ^
 --integration-name my-renamed-integration

RDS API

To modify a zero-ETL integration using the RDS API, call the ModifyIntegration operation. Specify
the integration identifier, and the parameters that you want to modify.

Deleting Amazon RDS zero-ETL integrations with Amazon
Redshift

When you delete a zero-ETL integration, Amazon RDS removes it from the source database. Your
transactional data isn't deleted from Amazon RDS or Amazon Redshift, but Amazon RDS doesn't
send new data to Amazon Redshift.

You can only delete an integration when it has a status of Active, Failed, Syncing, or Needs
attention.

You can delete zero-ETL integrations using the AWS Management Console, the AWS CLI, or the RDS
API.

Deleting zero-ETL integrations 2350

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyIntegration.html

Amazon Relational Database Service User Guide

Console

To delete a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. From the left navigation pane, choose Zero-ETL integrations.

3. Select the zero-ETL integration that you want to delete.

4. Choose Actions, Delete, and confirm deletion.

AWS CLI

To delete a zero-ETL integration, use the delete-integration command and specify the --
integration-identifier option.

Example

For Linux, macOS, or Unix:

aws rds delete-integration \
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

For Windows:

aws rds delete-integration ^
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

RDS API

To delete a zero-ETL integration using the Amazon RDS API, use the DeleteIntegration
operation with the IntegrationIdentifier parameter.

Troubleshooting Amazon RDS zero-ETL integrations with
Amazon Redshift

You can check the state of a zero-ETL integration by querying the SVV_INTEGRATION system table
in Amazon Redshift. If the state column has a value of ErrorState, it means something's wrong.
For more information, see the section called “Monitoring using system tables”.

Troubleshooting zero-ETL integrations 2351

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteIntegration.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION.html

Amazon Relational Database Service User Guide

Use the following information to troubleshoot common issues with Amazon RDS zero-ETL
integrations with Amazon Redshift.

Topics

• I can't create a zero-ETL integration

• My integration is stuck in a state of Syncing

• My tables aren't replicating to Amazon Redshift

• One or more of my Amazon Redshift tables requires a resync

I can't create a zero-ETL integration

If you can't create a zero-ETL integration, make sure that the following are correct for your source
database:

• Your source database must be running a supported DB engine version. For a list of supported
versions, see the section called “Zero-ETL integrations ”.

• You correctly configured DB parameters. If the required parameters are set incorrectly or not
associated with the database, creation fails. See the section called “Step 1: Create a custom DB
parameter group”.

In addition, make sure the following are correct for your target data warehouse:

• Case sensitivity is enabled. See Turn on case sensitivity for your data warehouse.

• You added the correct authorized principal and integration source. See Configure authorization
for your Amazon Redshift data warehouse.

• The data warehouse is encrypted (if it's a provisioned cluster). See Amazon Redshift database
encryption.

My integration is stuck in a state of Syncing

Your integration might consistently show a status of Syncing if you change the value of one of
the required DB parameters.

To fix this issue, check the values of the parameters in the parameter group associated with the
source database, and make sure that they match the required values. For more information, see the
section called “Step 1: Create a custom DB parameter group”.

I can't create a zero-ETL integration 2352

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-setting-up.case-sensitivity
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html

Amazon Relational Database Service User Guide

If you modify any parameters, make sure to reboot the database to apply the changes.

My tables aren't replicating to Amazon Redshift

If you don't see one or more tables reflected in Amazon Redshift, you can run the following
command to resynchronize them:

ALTER DATABASE dbname INTEGRATION REFRESH TABLES table1, table2;

For more information, see ALTER DATABASE in the Amazon Redshift SQL reference.

Your data might not be replicating because one or more of your source tables doesn't have a
primary key. The monitoring dashboard in Amazon Redshift displays the status of these tables
as Failed, and the status of the overall zero-ETL integration changes to Needs attention. To
resolve this issue, you can identify an existing key in your table that can become a primary key,
or you can add a synthetic primary key. For detailed solutions, see Handle tables without primary
keys while creating Amazon Aurora MySQL or Amazon RDS for MySQL zero-ETL integrations with
Amazon Redshift.

One or more of my Amazon Redshift tables requires a resync

Running certain commands on your source database might require your tables to be
resynchronized. In these cases, the SVV_INTEGRATION_TABLE_STATE system view shows a
table_state of ResyncRequired, which means that the integration must completely reload
data for that specific table from MySQL to Amazon Redshift.

When the table starts to resynchronize, it enters a state of Syncing. You don't need to take any
manual action to resynchronize a table. While table data is resynchronizing, you can't access it in
Amazon Redshift.

The following are some example operations that can put a table into a ResyncRequired state,
and possible alternatives to consider.

Operation Example Alternative

Adding a
column into
a specific
position

ALTER TABLE table_name
 ADD COLUMN column_name INTEGER
 NOT NULL first;

Amazon
Redshift
doesn't
support

My tables aren't replicating to Amazon Redshift 2353

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_DATABASE.html
https://aws.amazon.com/blogs/database/handle-tables-without-primary-keys-while-creating-amazon-aurora-mysql-or-amazon-rds-for-mysql-zero-etl-integrations-with-amazon-redshift/
https://aws.amazon.com/blogs/database/handle-tables-without-primary-keys-while-creating-amazon-aurora-mysql-or-amazon-rds-for-mysql-zero-etl-integrations-with-amazon-redshift/
https://aws.amazon.com/blogs/database/handle-tables-without-primary-keys-while-creating-amazon-aurora-mysql-or-amazon-rds-for-mysql-zero-etl-integrations-with-amazon-redshift/
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION_TABLE_STATE.html

Amazon Relational Database Service User Guide

Operation Example Alternative

adding
columns
into specific
positions
using first
or after
keywords.
If the order
of columns
in the target
table isn't
critical, add
the column
to the end
of the table
using a
simpler
command:

ALTER
 TABLE table_nam
e
 ADD
 COLUMN column_na
me column_ty
pe ;

One or more of my Amazon Redshift tables requires a resync 2354

Amazon Relational Database Service User Guide

Operation Example Alternative

Adding a
timestamp
column with
the default
CURRENT_T
IMESTAMP

ALTER TABLE table_name
 ADD COLUMN column_name TIMESTAMP
 NOT NULL DEFAULT CURRENT_TIMESTAMP;

The
CURRENT_T
IMESTAMP
value for
existing
table rows
is calculate
d by RDS
for MySQL
and can't be
simulated
in Amazon
Redshift
without full
table data
resynchro
nization.

If possible,
switch the
default value
to a literal
constant like
2023-01-0
1
00:00:15 to
avoid latency
in table
availability.

One or more of my Amazon Redshift tables requires a resync 2355

Amazon Relational Database Service User Guide

Operation Example Alternative

Performin
g multiple
column
operation
s within
a single
command

ALTER TABLE table_name
 ADD COLUMN column_1,
 RENAME COLUMN column_2 TO column_3;

Consider
splitting the
command
into two
separate
operation
s, ADD and
RENAME,
which won't
require
resynchro
nization.

One or more of my Amazon Redshift tables requires a resync 2356

Amazon Relational Database Service User Guide

Amazon RDS for Db2

Amazon RDS supports DB instances that run the following editions of IBM Db2:

• Db2 Standard Edition

• Db2 Advanced Edition

Amazon RDS supports DB instances that run the following versions of Db2:

• Db2 11.5

For more information about minor version support, see Db2 on Amazon RDS versions.

Before creating a DB instance, complete the steps in the Setting up your Amazon RDS environment
section of this user guide. When you create a DB instance using your master user, the user gets
DBADM authority, with some limitations. Use this user for administrative tasks such as creating
additional database accounts. You can't use SYSADM, SYSCTRL, SYSMAINT instance-level authority,
or SECADM database-level authority.

You can create the following:

• DB instances

• DB snapshots

• Point-in-time restores

• Automated storage backups

• Manual storage backups

You can use DB instances running Db2 inside a virtual private cloud (VPC). You can also add
features to your Amazon RDS for Db2 DB instance by enabling various options. Amazon RDS
supports Multi-AZ deployments for RDS for Db2 as a high availability, failover solution.

Important

To deliver a managed service experience, Amazon RDS doesn't provide shell access to DB
instances. It also restricts access to certain system procedures and tables that need elevated

2357

Amazon Relational Database Service User Guide

privileges. You can access your database using standard SQL clients such as IBM Db2 CLP.
However, you can't access the host directly by using Telnet or Secure Shell (SSH).

Topics

• Overview of Db2 on Amazon RDS

• Prerequisites for creating an Amazon RDS for Db2 DB instance

• Multiple databases on an Amazon RDS for Db2 DB instance

• Connecting to your Db2 DB instance

• Securing Amazon RDS for Db2 DB instance connections

• Administering your Amazon RDS for Db2 DB instance

• Integrating an Amazon RDS for Db2 DB instance with Amazon S3

• Migrating data to Amazon RDS for Db2

• Amazon RDS for Db2 federation

• Options for Amazon RDS for Db2 DB instances

• External stored procedures for Amazon RDS for Db2

• Known issues and limitations for Amazon RDS for Db2

• Amazon RDS for Db2 stored procedure reference

• Amazon RDS for Db2 user-defined function reference

• Troubleshooting for Amazon RDS for Db2

Overview of Db2 on Amazon RDS

You can read the following sections to get an overview of Db2 on Amazon RDS.

Topics

• Amazon RDS for Db2 features

• Db2 on Amazon RDS versions

• Amazon RDS for Db2 licensing options

• Amazon RDS for Db2 instance classes

• Amazon RDS for Db2 default roles

• Amazon RDS for Db2 parameters

Db2 overview 2358

Amazon Relational Database Service User Guide

• EBCDIC collation for Db2 databases on Amazon RDS

• Local time zone for Amazon RDS for Db2 DB instances

Amazon RDS for Db2 features

Amazon RDS for Db2 supports most of the features and capabilities of the IBM Db2 database.
Some features might have limited support or restricted privileges. For more information about the
Db2 database features for specific Db2 versions, see the IBM Db2 documentation.

You can filter new Amazon RDS features on the What's New with Database? page. For Products,
choose Amazon RDS. Then, you can search by using keywords such as Db2 2023.

Note

The following lists aren't exhaustive.

Topics

• Supported features in RDS for Db2

• Unsupported features in RDS for Db2

Supported features in RDS for Db2

RDS for Db2 supports features that include features that are native to IBM Db2 and features that
are core to Amazon RDS.

Features native to IBM Db2

RDS for Db2 supports the following Db2 database features:

• Creation of a standard database that uses a customer-defined code set, collation, page size, and
territory. Use the Amazon RDS rdsadmin.create_database stored procedure.

• Addition, deletion, or modification of local users and groups. Use the Amazon RDS stored
procedures for Stored procedures for granting and revoking privileges for RDS for Db2.

• Creation of roles with the Amazon RDS rdsadmin.create_role stored procedure.

• Support for standard row-organized tables.

• Support for analytic workload for column-organized tables.

Db2 features 2359

https://www.ibm.com/docs/en/db2
https://aws.amazon.com/about-aws/whats-new/database/

Amazon Relational Database Service User Guide

• Ability to define Db2-compatibility features such as Oracle and MySQL.

• Support for Java-based external stored procedures.

• Support for data encryption in transit by using SSL/TLS.

• Monitoring the status of a database (ALIVE, DOWN, STORAGE_FULL, UNKNOWN, and
STANDBY_CONNECTABLE).

• Restoration of a customer-provided offline or online Linux (LE) database. Use Amazon RDS
stored procedures for Stored procedures for databases for RDS for Db2.

• Application of customer-provided Db2 archive logs to keep the database synchronized with
self-managed Db2 databases. Use Amazon RDS stored procedures for Stored procedures for
databases for RDS for Db2.

• Support for Db2 instance-level and database-level auditing.

• Support for homogeneous federation.

• Ability to load a table from data files in Amazon Simple Storage Service (Amazon S3).

• Authorizations granted to users, groups or roles, such as CONNECT, SYSMON, ACCESSCTRL,
DATAACCESS, SQLADM, WLMADM, EXPLAIN, LOAD, or IMPLICIT_SCHEMA

• Creation of multiple databases.

Note

An RDS for Db2 DB instance can contain up to 50 databases. For more information, see
the section called “Multiple Db2 databases”.

Features core to Amazon RDS

RDS for Db2 supports the following core Amazon RDS features:

• Custom parameter groups to assign to DB instances.

• Creation, modification, and deletion of DB instances.

• Restoration of a self-managed Db2 offline or online Linux (LE) database backup.

• Support of gp3, io2, and io1 storage types.

• Use of AWS Managed Microsoft AD for Kerberos authentication, and LDAP group authorization
for RDS for Db2.

• Modification of security groups, ports, instance types, storage, backup retention periods, and
other settings for existing Db2 instances.

Db2 features 2360

Amazon Relational Database Service User Guide

• Deletion protection for DB instances.

• Cross-Region point-in-time recovery (PITR).

• Use of AWS Key Management Service (AWS KMS) for storage encryption and encryption at rest.

• Multi-AZ DB instances with one standby for high availability.

• Reboots of DB instances.

• Updates to master passwords.

• Restoration of DB instances to a specific time.

• Backup and restoration of DB instances by using storage-level backups.

• Start and stop of DB instances.

• Maintenance of DB instances.

Unsupported features in RDS for Db2

RDS for Db2 doesn't support the following Db2 database features:

• SYSADM, SECADM, and SYSMAINT access for the master user.

• External stored procedures written in C, C++, or Cobol.

• Multiple Db2 DB instances on a single host.

• External GSS-API plugins for authentication.

• External third-party plugins to back up or restore Db2 databases.

• Multi-node massively parallel processing (MPP), such as IBM Db2 Warehouse.

• IBM Db2 pureScale.

• Db2 High Availability Disaster Recovery (HADR) feature.

Note

RDS for Db2 supports Multi-AZ deployments, cross-Region automated backups, and
replication. For more information, see Multi-AZ DB instance deployments for Amazon
RDS and Replicating automated backups to another AWS Region.

• Native database encryption.

• Heterogeneous federation to Informix, Sybase, and Teradata. For more information, see the
section called “Federation”.

• Cross-Region point-in-time-recovery (PITR) for encrypted backups.

Db2 features 2361

Amazon Relational Database Service User Guide

• Creation of non-fenced routines and migration of existing non-fenced routines by backing up
and restoring data. For more information, see Non-fenced routines.

• Creation of new non-automatic storage tablespaces. For more information, see Non-automatic
storage tablespaces during migration.

• External tables.

Db2 on Amazon RDS versions

For Db2, version numbers take the form of major.minor.build.revision, for example,
11.5.9.0.sb00000000.r1. Our version implementation matches that of Db2.

major

The major version number is both the integer and the first fractional part of the version
number, for example, 11.5. A version change is considered major if the major version number
changes—for example, going from version 11.5 to 12.1.

minor

The minor version number is both the third and fourth parts of the version number, for
example, 9.0 in 11.5.9.0. The third part indicates the Db2 modpack, for example, 9 in 9.0. The
fourth part indicates the Db2 fixpack, for example, 0 in 9.0. A version change is considered
minor if either the Db2 modpack or the Db2 fixpack changes—for example, going from version
11.5.9.0 to 11.5.9.1, or from 11.5.9.0 to 11.5.10.0, with exceptions to provide catalog table
updates. (Amazon RDS takes care of these exceptions.)

build

The build number is the fifth part of the version number, for example, sb00000000 in
11.5.9.0.sb00000000. A build number where the number portion is all zeroes indicates a
standard build. A build number where the number portion isn't all zeroes indicates a special
build. A build number changes if there is a security fix or special build of an existing Db2
version. A build number change also indicates that Amazon RDS automatically applied a new
minor version.

revision

The revision number is the sixth part of the version number, for example, r1 in
11.5.9.0.sb00000000.r1. A revision is an Amazon RDS revision to an existing Db2 release. A
revision number change indicates that Amazon RDS automatically applied a new minor version.

Db2 versions 2362

Amazon Relational Database Service User Guide

Topics

• Supported Db2 minor versions on Amazon RDS

• Supported Db2 major versions on Amazon RDS

Supported Db2 minor versions on Amazon RDS

The following table shows the minor versions of Db2 11.5 that Amazon RDS currently supports.

Note

Dates with only a month and a year are approximate and are updated with an exact date
when it’s known.

Db2 engine version IBM release date RDS release date

11.5.9.0 15 November 2023 27 November 2023

You can specify any currently supported Db2 version when creating a new DB instance. You can
specify the major version (such as Db2 11.5) and any supported minor version for the specified
major version. If no version is specified, Amazon RDS defaults to a supported version, typically
the most recent version. If a major version is specified but a minor version is not, Amazon RDS
defaults to a recent release of the major version that you have specified. To see a list of supported
versions, as well as defaults for newly created DB instances, use the describe-db-engine-versions
AWS Command Line Interface (AWS CLI) command.

For example, to list the supported engine versions for Amazon RDS for Db2, run the following AWS
CLI command. Replace region with your AWS Region.

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --filters Name=engine,Values=db2-ae,db2-se \
 --query "DBEngineVersions[].{Engine:Engine, EngineVersion:EngineVersion,
 DBParameterGroupFamily:DBParameterGroupFamily}" \
 --region region

Db2 versions 2363

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

For Windows:

aws rds describe-db-engine-versions ^
 --filters Name=engine,Values=db2-ae,db2-se ^
 --query "DBEngineVersions[].{Engine:Engine, EngineVersion:EngineVersion,
 DBParameterGroupFamily:DBParameterGroupFamily}" ^
 --region region

This command produces output similar to the following example:

[
 {
 "Engine": "db2-ae",
 "EngineVersion": "11.5.9.0.sb00000000.r1",
 "DBParameterGroupFamily": "db2-ae-11.5"
 },
 {
 "Engine": "db2-se",
 "EngineVersion": "11.5.9.0.sb00000000.r1",
 "DBParameterGroupFamily": "db2-se-11.5"
 }
]

The default Db2 version might vary by AWS Region. To create a DB instance with a specific minor
version, specify the minor version during DB instance creation. You can determine the default
version for an AWS Region for db2-ae and db2-se database engines by running the describe-
db-engine-versions command. The following example returns the default version for db2-ae
in US East (N. Virginia).

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --default-only --engine db2-ae \
 --query "DBEngineVersions[].{Engine:Engine, EngineVersion:EngineVersion,
 DBParameterGroupFamily:DBParameterGroupFamily}" \
 --region us-east-1

For Windows:

aws rds describe-db-engine-versions ^
 --default-only --engine db2-ae ^

Db2 versions 2364

Amazon Relational Database Service User Guide

 --query "DBEngineVersions[].{Engine:Engine, EngineVersion:EngineVersion,
 DBParameterGroupFamily:DBParameterGroupFamily}" ^
 --region us-east-1

This command produces output similar to the following example:

[
 {
 "Engine": "db2-ae",
 "EngineVersion": "11.5.9.0.sb00000000.r1",
 "DBParameterGroupFamily": "db2-ae-11.5"
 }
]

With Amazon RDS, you control when to upgrade your Db2 instance to a new major version
supported by Amazon RDS. You can maintain compatibility with specific Db2 versions, test new
versions with your application before deploying in production, and perform major version upgrades
at times that best fit your schedule.

When automatic minor version upgrade is enabled, Amazon RDS automatically upgrades your DB
instances to new Db2 minor versions as they are supported by Amazon RDS. This patching occurs
during your scheduled maintenance window. You can modify a DB instance to enable or disable
automatic minor version upgrades.

Except for Db2 versions 11.5.9.1 and 11.5.10.0, automatic upgrades to new Db2 minor version
includes automatic upgrades to new builds and revisions. For 11.5.9.1 and 11.5.10.0, manually
upgrade minor versions.

If you opt out of automatically scheduled upgrades, you can manually upgrade to a supported
minor version release by following the same procedure as you would for a major version update.
For information, see Upgrading a DB instance engine version.

Supported Db2 major versions on Amazon RDS

RDS for Db2 major versions are available under standard support at least until IBM end of support
(base) for the corresponding IBM version. The following table shows the dates that you can use to
plan your testing and upgrade cycles. If Amazon extends support for an RDS for Db2 version for
longer than originally stated, we plan to update this table to reflect the later date.

You can use the following dates to plan your testing and upgrade cycles.

Db2 versions 2365

Amazon Relational Database Service User Guide

Note

Dates with only a month and a year are approximate and are updated with an exact date
when it’s known.

Db2 major
version

IBM release
date

RDS release
date

IBM end
of support
(Standard
and
Advanced
Edition)

IBM end
of support
(extended)

Db2 11.5 27 June 2019 27 November
2023

Not yet
announced
by IBM.1

4 years
after end of
support

1 For the latest information, see Db2 product end-of-support dates in the IBM Db2 documentation.

Amazon RDS for Db2 licensing options

Amazon RDS for Db2 has two licensing options: Bring Your Own License (BYOL) and Db2 license
through AWS Marketplace.

Topics

• Bring Your Own License for Db2

• Db2 license through AWS Marketplace

• Switching between Db2 licenses

Bring Your Own License for Db2

In the BYOL model, you use your existing Db2 database licenses to deploy databases on Amazon
RDS. Verify that you have the appropriate Db2 database license for the DB instance class and Db2
database edition that you want to run. You must also follow IBM policies for licensing IBM database
software in the cloud computing environment.

Db2 licensing 2366

https://www.ibm.com/docs/en/db2/11.5.x?topic=database-db2-eos-dates

Amazon Relational Database Service User Guide

Note

Multi-AZ DB instances are cold standbys because the Db2 database is installed but not
running. Standbys aren't readable, running, or serving requests. For more information, see
IBM Db2 licensing information on the IBM website.

In this model, you continue to use your active IBM support account, and you contact IBM directly
for Db2 database service requests. If you have an Support account with case support, you can
contact Support for Amazon RDS issues. Amazon Web Services and IBM have a multi-vendor
support process for cases that require assistance from both organizations.

Amazon RDS supports the BYOL model for Db2 Standard Edition and Db2 Advanced Edition.

Topics

• IBM IDs for Bring Your Own License for Db2

• Adding IBM IDs to a parameter group for RDS for Db2 DB instances

• Integrating with AWS License Manager

IBM IDs for Bring Your Own License for Db2

In the BYOL model, you need your IBM Customer ID and your IBM Site ID to create, modify,
or restore RDS for Db2 DB instances. You must create a custom parameter group with your
IBM Customer ID and your IBM Site ID before you create an RDS for Db2 DB instance. For more
information, see Adding IBM IDs to a parameter group for RDS for Db2 DB instances. You can run
multiple RDS for Db2 DB instances with different IBM Customer IDs and IBM Site IDs in the same
AWS account or AWS Region.

Important

If we can't verify your license by your IBM Customer ID and your IBM Site ID, we might
terminate any DB instances running with these unverified licenses.

If you're a new IBM Db2 customer, you must first purchase a Db2 software license from IBM. After
you purchase a Db2 software license, you will receive a Proof of Entitlement from IBM, which lists
your IBM Customer ID and your IBM Site ID.

Db2 licensing 2367

https://www.ibm.com/support/customer/csol/terms/licenses#license-search
https://www.ibm.com/products/db2/pricing

Amazon Relational Database Service User Guide

If you're an existing IBM Db2 customer, you can find your IBM Customer ID and your IBM Site ID on
your Proof of Entitlement certificate from IBM.

You can also find your IBM Customer ID and your IBM Site ID in your IBM Passport Advantage
Online account. After your log in, you can view both IDs on either the main page or the Software
downloads page.

Adding IBM IDs to a parameter group for RDS for Db2 DB instances

Because you can't modify default parameter groups, you must create a custom parameter group
and then modify it to include the values for your IBM Customer ID and your IBM Site ID. For
information about parameter groups, see DB parameter groups for Amazon RDS DB instances.

Important

You must create a custom parameter group with your IBM Customer ID and your IBM Site ID
before you create an RDS for Db2 DB instance.

Use the parameter settings in the following table.

Parameter Value

rds.ibm_customer_id <your IBM Customer ID>

rds.ibm_site_id <your IBM Site ID>

ApplyMethod immediate , pending-reboot

These parameters are dynamic, which means that any changes to them take effect immediately
and that you don't need to reboot the DB instance. If you don't want the changes to take effect
immediately, you can set ApplyMethod to pending-reboot and schedule these changes to be
made during a maintenance window.

You can create and modify a custom parameter group by using the AWS Management Console, the
AWS CLI, or the Amazon RDS API.

Db2 licensing 2368

https://www.ibm.com/software/passportadvantage/pao_customer.html
https://www.ibm.com/software/passportadvantage/pao_customer.html

Amazon Relational Database Service User Guide

Console

To add your IBM Customer ID and your IBM Site ID to a parameter group

1. Create a new DB parameter group. For more information about creating a DB parameter
group, see Creating a DB parameter group in Amazon RDS.

2. Modify the parameter group that you created. For more information about modifying a
parameter group, see Modifying parameters in a DB parameter group in Amazon RDS.

AWS CLI

To add your IBM Customer ID and your IBM Site ID to a parameter group

1. Create a custom parameter group by running the create-db-parameter-group command.

Include the following required options:

• --db-parameter-group-name – A name for the parameter group that you are creating.

• --db-parameter-group-family – The Db2 engine edition and major version. Valid
values: db2-se-11.5, db2-ae-11.5.

• --description – A description for this parameter group.

For more information about creating a DB parameter group, see Creating a DB parameter
group in Amazon RDS.

2. Modify the parameters in the custom parameter group that you created by running the
modify-db-parameter-group command.

Include the following required options:

• --db-parameter-group-name – The name of the parameter group that you created.

• --parameters – An array of parameter names, values, and the application methods for the
parameter update.

For more information about modifying a parameter group, see Modifying parameters in a DB
parameter group in Amazon RDS.

Db2 licensing 2369

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

RDS API

To add your IBM Customer ID and your IBM Site ID to a parameter group

1. Create a custom DB parameter group by using the Amazon RDS API CreateDBParameterGroup
operation.

Include the following required parameters:

• DBParameterGroupName

• DBParameterGroupFamily

• Description

For more information about creating a DB parameter group, see Creating a DB parameter
group in Amazon RDS.

2. Modify the parameters in the custom parameter group that you created by using the RDS API
ModifyDBParameterGroup operation.

Include the following required parameters:

• DBParameterGroupName

• Parameters

For more information about modifying a parameter group, see Modifying parameters in a DB
parameter group in Amazon RDS.

Now you are ready to create a DB instance and attach the custom parameter group to the DB
instance. For more information, see Creating an Amazon RDS DB instance and Associating a DB
parameter group with a DB instance in Amazon RDS.

Integrating with AWS License Manager

To aid in monitoring RDS for Db2 license usage in the BYOL model, AWS License Manager
integrates with RDS for Db2. License Manager supports tracking of RDS for Db2 engine editions
based on virtual CPUs (vCPUs). You can also use License Manager with AWS Organizations to
manage all of your organizational accounts centrally.

Db2 licensing 2370

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html
https://aws.amazon.com/license-manager/

Amazon Relational Database Service User Guide

To track license usage of your RDS for Db2 DB instances, you must create self-managed licenses.
You can create self-managed licenses by using the AWS Management Console, the AWS License
Manager CLI, and the AWS License Manager API. Or, you can automate the creation of self-
managed licenses with AWS CloudFormation and Terraform templates.

RDS for Db2 resources that match the product information filter are automatically associated with
the self-managed license. Discovery of RDS for Db2 DB instances can take up to 24 hours.

The following table shows available values for the Engine Edition product information filter for
RDS for Db2.

Value Description

db2-se Db2 Standard Edition

db2-ae Db2 Advanced Edition

Topics

• Terminology

• Creating a self-managed license in AWS License Manager

• Automating the creation of self-managed licenses in AWS License Manager with templates

• Settings for creating self-managed licenses

Terminology

This page uses the following terminology when discussing the Amazon RDS integration with AWS
License Manager.

Self-managed license

Self-managed license is a term used in AWS License Manager. The Amazon RDS console refers
to the license as an AWS License Manager configuration. A self-managed license contains
licensing rules based on the terms of your enterprise agreements. The rules that you create
determine how AWS processes commands that consume licenses. While creating a self-
managed license, work closely with your organization's compliance team to review your
enterprise agreements. For more information, see Self-managed licenses in License Manager.

Db2 licensing 2371

https://docs.aws.amazon.com/license-manager/latest/userguide/license-configurations.html

Amazon Relational Database Service User Guide

Creating a self-managed license in AWS License Manager

You can create a self-managed license by using the AWS Management Console, the AWS License
Manager CLI, and the AWS License Manager API.

Note

If you create an RDS for Db2 DB instance by using the AWS Management Console, you
will create a self-managed license by entering a name for the license. Then Amazon RDS
associates the DB instance with this license. (In the Amazon RDS console, this license is
referred to as an AWS License Manager configuration.) If you want to create an RDS for Db2
DB instance by using the AWS License Manager CLI or AWS License Manager API, you must
first create a self-managed license with the following steps. The same situation applies to
restoring an RDS for Db2 DB instance to a point in time or from a snapshot.

Console

To create a self-managed license to track the license usage of your RDS for Db2 DB instances

1. Go to https://console.aws.amazon.com/license-manager/.

2. Create a self-managed license.

For instructions, see Create a self-managed license in the AWS License Manager User Guide.

Add a rule for an RDS Product Information Filter in the Product Information panel.

For more information, see ProductInformation in the AWS License Manager API Reference.

AWS License Manager CLI

Note

This procedure uses an AWS License Manager CLI command.

To create a self-managed license by using the AWS CLI, run the AWS License Manager create-
license-configuration command. Use the --cli-input-json or --cli-input-yaml options to
pass the options to the command.

Db2 licensing 2372

https://console.aws.amazon.com/license-manager/
https://docs.aws.amazon.com/license-manager/latest/userguide/create-license-configuration.html
https://docs.aws.amazon.com/license-manager/latest/APIReference/API_ProductInformation.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/create-license-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/create-license-configuration.html

Amazon Relational Database Service User Guide

For more information, see the section called “Settings for creating self-managed licenses”.

The following command creates a self-managed license for Db2 Standard Edition.

aws license-manager create-license-configuration --cli-input-json file://rds-db2-
se.json

The following JSON is the content of the rds-db2-se.json file used in the previous command.

{
 "Name": "rds-db2-se",
 "Description": "RDS Db2 Standard Edition",
 "LicenseCountingType": "vCPU",
 "LicenseCountHardLimit": false,
 "ProductInformationList": [
 {
 "ResourceType": "RDS",
 "ProductInformationFilterList": [
 {
 "ProductInformationFilterName": "Engine Edition",
 "ProductInformationFilterValue": ["db2-se"],
 "ProductInformationFilterComparator": "EQUALS"
 }
]
 }
]
}

For more information about product information, see Automated discovery of resource inventory in
the AWS License Manager User Guide.

For more information about the --cli-input parameter, see Generating AWS CLI skeleton and
input parameters from a JSON or YAML input file in the AWS CLI User Guide.

AWS License Manager API

Note

This procedure uses an AWS License Manager API command.

Db2 licensing 2373

https://docs.aws.amazon.com/license-manager/latest/userguide/automated-discovery.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html

Amazon Relational Database Service User Guide

To create a self-managed license, use the CreateLicenseConfiguration AWS License Manager
API operation with the following required parameters:

• Name

• LicenseCountingType

• ProductInformationList

• ResourceType

• ProductInformationFilterList

• ProductInformationFilterName

• ProductInformationFilterValue

• ProductInformationFilterComparator

For more information about the parameters, see the section called “Settings for creating self-
managed licenses”.

Automating the creation of self-managed licenses in AWS License Manager with templates

You can automate the creation of self-managed licenses by using AWS CloudFormation and
Terraform templates.

The following example AWS CloudFormation template creates self-managed licenses for Db2
Standard Edition on RDS for Db2. For a template for Db2 Advanced Edition, update the values for
Name, Description, and ProductInformationFilter.

AWSTemplateFormatVersion: "2010-09-09"
Description: CloudFormation template to create a License Configuration for Db2 Standard
 Edition on RDS for Db2.

Resources:
 Db2LicenseConfiguration:
 Type: "AWS::LicenseManager::LicenseConfiguration"
 Properties:
 Name: "rds-db2-se"
 Description: "Db2 Standard Edition on RDS for Db2"
 LicenseCountingType: "vCPU"
 LicenseCountHardLimit: false
 ProductInformationList:
 - ResourceType: "RDS"

Db2 licensing 2374

https://docs.aws.amazon.com/license-manager/latest/APIReference/API_CreateLicenseConfiguration.html

Amazon Relational Database Service User Guide

 ProductInformationFilterList:
 - ProductInformationFilterName: "Engine Edition"
 ProductInformationFilterValue:
 - "db2-se"
 ProductInformationFilterComparator: "EQUALS"

For more information about using AWS CloudFormation with Amazon RDS, see Creating Amazon
RDS resources with AWS CloudFormation.

The following example Terraform template creates self-managed licenses for Db2 Standard Edition
on RDS for Db2. Replace us-east-1 with your AWS Region. For a template for Db2 Advanced
Edition, update the values for name, description, and product_information_filter.

provider "aws" {
 region = "us-east-1"
}

resource "aws_licensemanager_license_configuration" "rds_db2_license_config" {
 name = "rds-db2-se"
 description = "Db2 Standard Edition on RDS for Db2
 license_counting_type = "vCPU"
 license_count_hard_limit = false

 product_information_list {
 resource_type = "RDS"

 product_information_filter {
 name = "Engine Edition"
 comparator = "EQUALS"
 value = ["db2-se"]
 }
 }
}

For more information about using Terraform and Amazon RDS, see Using Terraform as an IaC tool
for the AWS Cloud and Best practices for using the Terraform AWS Provider in AWS Prescriptive
Guidance.

Settings for creating self-managed licenses

In the following table, you can find details about the settings for creating self-managed licenses
by using the AWS License Manager CLI, the AWS License Manager API, an AWS CloudFormation

Db2 licensing 2375

https://docs.aws.amazon.com/prescriptive-guidance/latest/choose-iac-tool/terraform.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/choose-iac-tool/terraform.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/terraform-aws-provider-best-practices/introduction.html

Amazon Relational Database Service User Guide

template, and a Terraform template. The parameter name in the following table appears in the
format of the name used in the AWS License Manager API and the AWS CloudFormation template.

Parameter name Data type Required Description

Name string Yes The name of the
license configuration.

Description string No The description of
the license configura
tion.

LicenseCountingType string Yes The dimension used
to track the license
inventory. Valid
value: vCPU.

LicenseCountHardLi
mit

boolean No Indicates whether
hard or soft license
enforcement is
used. Exceeding a
hard limit blocks
the launch of new
instances.

ProductInformation
List

array of objects Yes A list of product
information for a
license configuration.

ResourceType string Yes The resource type.
Valid value: RDS.

ProductInformation
FilterList

array of objects Yes A list of product
information filters for
a license configura
tion.

ProductInformation
FilterName

string Yes The name of the
type of filter being

Db2 licensing 2376

Amazon Relational Database Service User Guide

Parameter name Data type Required Description

declared. Valid value:
Engine Edition.

ProductInformation
FilterValue

array of strings Yes The value to filter
on. You must only
specify one value.
Valid values: db2-se
or db2-ae.

ProductInformation
FilterComparator

string Yes The logical operator
for ProductIn
formation
FilterName .
Valid value: EQUALS.

Db2 license through AWS Marketplace

In the Db2 license through AWS Marketplace model, you pay an hourly rate to subscribe to Db2
licenses. This model helps you get started quickly with RDS for Db2 without needing to purchase
licenses.

To use Db2 license through AWS Marketplace, you need an active AWS Marketplace subscription
for the particular IBM Db2 edition that you want to use. If you don't already have one, subscribe to
AWS Marketplace for that IBM Db2 edition.

Amazon RDS supports Db2 license through AWS Marketplace for IBM Db2 Standard Edition and
IBM Db2 Advanced Edition.

Topics

• Terminology

• Payments and billing

• Subscribing to Db2 Marketplace listings and registering with IBM

• Obtaining a private offer

Db2 licensing 2377

Amazon Relational Database Service User Guide

Terminology

This page uses the following terminology when discussing the Amazon RDS integration with AWS
Marketplace.

SaaS subscription

In AWS Marketplace, software-as-a-service (SaaS) products such as the pay-as-you-go license
model adopt a usage-based subscription model. IBM, the software seller for Db2, tracks your
usage and you pay only for what you use.

Public offer

Public offers allow you to purchase AWS Marketplace products directly from the AWS
Management Console.

Private offer

Private offers are a purchasing program that allow sellers and buyers to negotiate custom prices
and end user licensing agreement (EULA) terms for purchases in AWS Marketplace.

Db2 Marketplace fees

Fees charged for the Db2 software license usage by IBM. These service fees are metered
through AWS Marketplace and appear on your AWS bill under the AWS Marketplace section.

Amazon RDS fees

Fees that AWS charges for the RDS for Db2 services, which excludes licenses when using AWS
Marketplace for Db2 licenses. Fees are metered through the Amazon RDS service being used
and appear on your AWS bill.

Payments and billing

RDS for Db2 integrates with AWS Marketplace to offer hourly, pay-as-you-go licenses for Db2. The
Db2 Marketplace fees cover the license costs of the Db2 software, and the Amazon RDS fees cover
the costs of your RDS for Db2 DB instance usage. For information about pricing, see Amazon RDS
for Db2 pricing.

To stop these fees, you must delete any RDS for Db2 DB instances. In addition, you can remove
your subscriptions to AWS Marketplace for Db2 licenses. If you remove your subscriptions without
deleting your DB instances, Amazon RDS will continue to bill you for the use of the DB instances.
For more information, see the section called “Deleting a DB instance”.

Db2 licensing 2378

https://aws.amazon.com/rds/db2/pricing/
https://aws.amazon.com/rds/db2/pricing/

Amazon Relational Database Service User Guide

You can view bills and manage payments for your RDS for Db2 DB instances that use Db2 license
through AWS Marketplace in the AWS Billing console. Your bills includes two charges: one for
your usage of Db2 license through AWS Marketplace and one for your usage of Amazon RDS. For
more information about billing, see Viewing your bill in the AWS Billing and Cost Management User
Guide.

Subscribing to Db2 Marketplace listings and registering with IBM

To use Db2 license through AWS Marketplace, you must use the AWS Management Console to
complete the following two tasks. You can't complete these tasks through the AWS CLI or the RDS
API.

Note

If you want to create your DB instances by using the AWS CLI or the RDS API, you must
complete these two tasks first.

Topics

• Task 1: Subscribe to Db2 in AWS Marketplace

• Task 2: Register your subscription with IBM

Task 1: Subscribe to Db2 in AWS Marketplace

To use Db2 license with AWS Marketplace, you need to have an active AWS Marketplace
subscription for Db2. Because subscriptions are associated with a specific IBM Db2 edition, you
need to subscribe to Db2 in AWS Marketplace for each edition of Db2 that you want to use:
IBM Db2 Advanced Edition, IBM Db2 Standard Edition. For information about AWS Marketplace
subscriptions, see Saas usage-based subscriptions in the AWS Marketplace Buyer Guide.

We recommend that you subscribe to Db2 in AWS Marketplace before you start to create a DB
instance.

Task 2: Register your subscription with IBM

After you subscribe to Db2 in AWS Marketplace, complete the registration of your IBM order
from the AWS Marketplace page for the type of Db2 subscription that you chose. On the AWS
Marketplace page, choose View purchase options, and then choose Set up your account. You can
register either with your existing IBM account or by creating a free IBM account.

Db2 licensing 2379

https://console.aws.amazon.com/https://console.aws.amazon.com/billing
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/getting-viewing-bill.html
https://aws.amazon.com/marketplace/pp/prodview-w6m4yctzzy5fk
https://aws.amazon.com/marketplace/pp/prodview-gbsgwalbkphv6
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-saas-products.html#saas-pricing-models

Amazon Relational Database Service User Guide

Obtaining a private offer

You can request an AWS Marketplace private offer for Db2 from IBM. For more information, see
Private offers in the AWS Marketplace Buyer Guide.

Note

If you are an AWS Organizations user and received a private offer that was issued to your
payer and member accounts, follow the procedure below to subscribe to Db2 directly on
each account in your organization.

To obtain a Db2 private offer

1. After a private offer has been issued, sign in to the AWS Marketplace Console.

2. Open the email with a Db2 private offer link.

3. Follow the link to directly access the private offer.

Note

Following this link before logging in to the correct account will result in a Page note
found (404) error.

4. Review the terms and conditions.

5. Choose Accept terms.

Note

If an AWS Marketplace private offer is not accepted, the Db2 service fees from AWS
Marketplace will continue to be billed at the public hourly rate.

6. To verify the offer details, select Show details in the product listing.

After you've completed the procedure, you can create your DB instance by following the steps in
the section called “Creating a DB instance”. In the AWS Management Console, under License, make
sure that you choose Through AWS Marketplace.

Db2 licensing 2380

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-private-offers.html

Amazon Relational Database Service User Guide

Switching between Db2 licenses

You can switch between Db2 licenses in RDS for Db2. For example, you can start with Bring Your
Own License, and then switch to Db2 license through AWS Marketplace.

Important

If you want to switch to Db2 license through AWS Marketplace, make sure that you have an
active AWS Marketplace subscription for the IBM Db2 edition that you want to use. If you
don't, first subscribe to Db2 in AWS Marketplace for that Db2 edition, and then complete
the restore procedure.

Console

To switch between Db2 licenses

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

The automated backups are displayed on the Current Region tab.

3. Choose the DB instance that you want to restore.

4. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

5. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

If you chose Custom, enter the date and time you want to restore the instance to.

Note

Times are shown in your local time zone, which is indicated by an offset from
Coordinated Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/
Central Daylight Time.

6. For DB engine, choose the Db2 license you want to use.

Db2 licensing 2381

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. For DB instance identifier, enter the name of the target restored DB instance. The name must
be unique.

8. Choose other options as needed, such as DB instance class, storage, and whether you want to
use storage autoscaling.

For information about each setting, see Settings for DB instances.

9. Choose Restore to point in time.

For more information, see Restoring a DB instance to a specified time for Amazon RDS.

AWS CLI

To switch between Db2 licenses, run the restore-db-instance-to-point-in-time command. The
following example restores the latest point-in-time version, sets the DB engine to IBM Db2
Advanced Edition, and sets the license model to Db2 license through AWS Marketplace.

You can specify other settings. For information about each setting, see Settings for DB instances.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-to-point-in-time \
 --source-db-instance-identifier my_source_db_instance \
 --target-db-instance-identifier my_target_db_instance \
 --use-latest-restorable-time \
 --engine db2-ae \
 --license-model marketplace-license

For Windows:

aws rds restore-db-instance-to-point-in-time ^
 --source-db-instance-identifier my_source_db_instance ^
 --target-db-instance-identifier my_target_db_instance ^
 --use-latest-restorable-time ^
 --engine db2-ae ^
 --license-model marketplace-license

For more information, see Restoring a DB instance to a specified time for Amazon RDS.

Db2 licensing 2382

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

RDS API

To switch between Db2 licenses, call the Amazon RDS API RestoreDBInstanceToPointInTime
operation with the following parameters:

• SourceDBInstanceIdentifier

• TargetDBInstanceIdentifier

• RestoreTime

• Engine

• LicenseModel

For more information, see Restoring a DB instance to a specified time for Amazon RDS.

Amazon RDS for Db2 instance classes

The computation and memory capacity of a DB instance is determined by its instance class. The DB
instance class you need depends on your processing power and memory requirements.

Supported RDS for Db2 instance classes

The supported Amazon RDS for Db2 instance classes are a subset of the Amazon RDS DB instance
classes. For the complete list of Amazon RDS instance classes, see DB instance classes.

Topics

• Supported RDS for Db2 instance classes for Db2 Standard Edition

• Supported RDS for Db2 instance classes for Db2 Advanced Edition

Supported RDS for Db2 instance classes for Db2 Standard Edition

The following table lists all instance classes supported for the Db2 Standard Edition of Db2
database version 11.5.9.0. These instance classes are available for both Bring Your Own License
(BYOL) and Db2 license through AWS Marketplace.

Db2 instance classes 2383

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Instance class type Instance class

General purpose instance classes with 3rd generation Intel
Xeon Scalable processors, SSD storage, and network optimizat
ion

db.m6idn.large–db.m6idn.8xl
arge

General purpose instance classes powered by 3rd generation
Intel Xeon Scalable processors

db.m6in.large–db.m6in.8xlar
ge

General purpose instance classes db.m7i.large–db.m7i.8xlarge

db.m6i.large–db.m6i.8xlarge

Memory optimized instance classes with local NVMe-based
SSDs, powered by 3rd generation Intel Xeon Scalable processor
s

db.x2iedn.xlarge

Memory optimized instance classes powered by 3rd generation
Intel Xeon Scalable processors

db.r6idn.large–db.r6idn.4xl
arge

db.r6in.large–db.r6in.4xlarge

Memory optimized instance classes db.r7i.large–db.r7i.8xlarge

db.r6i.large–db.r6i.4xlarge

Burstable performance instance classes db.t3.small–db.t3.2xlarge

Supported RDS for Db2 instance classes for Db2 Advanced Edition

The following table lists all instance classes supported for the Db2 Advanced Edition of Db2
database version 11.5.9.0. These instance classes are available for both Bring Your Own License
(BYOL) and Db2 license through AWS Marketplace.

Instance class type Instance class

General purpose instance classes with 3rd generation Intel
Xeon Scalable processors, SSD storage, and network optimizat
ion

db.m6idn.large–db.m6idn.32x
large

Db2 instance classes 2384

Amazon Relational Database Service User Guide

Instance class type Instance class

General purpose instance classes powered by 3rd generation
Intel Xeon Scalable processors

db.m6in.large–db.m6in.32xla
rge

General purpose instance classes db.m6i.large–db.m7i.48xlarge

db.m7i.large–db.m7i.48xlarge

Memory optimized instance classes with local NVMe-based
SSDs, powered by 3rd generation Intel Xeon Scalable processor
s

db.x2iedn.xlarge–db.x2iedn.
32xlarge

Memory optimized instance classes powered by 3rd generation
Intel Xeon Scalable processors

db.r6idn.large–db.r6idn.32x
large

db.r6in.8xlarge–db.r6in.32x
large

Memory optimized instance classes db.r6i.large–db.r7i.48xlarge

db.r7i.large–db.r7i.48xlarge

Burstable performance instance classes db.t3.small–db.t3.2xlarge

Amazon RDS for Db2 default roles

RDS for Db2 adds the following six roles and grants them to the master_user_role with the
ADMIN option. When the database is provisioned, RDS for Db2 grants master_user_role to the
master user. The master user can in turn grant these roles to other users, groups, or roles with
native GRANT statements by connecting to the database.

• DBA – RDS for Db2 creates this empty role with DATAACCESS authorization. The master user can
add more authorizations or privileges to this role, and then grant the role to other users, groups,
or roles.

• DBA_RESTRICTED – RDS for Db2 creates this empty role. The master user can add privileges to
this role, and then grant the role to other users, groups, or roles.

Db2 default roles 2385

Amazon Relational Database Service User Guide

• DEVELOPER – RDS for Db2 creates this empty role with DATAACCESS authorization. The master
user can add more authorizations or privileges to this role, and then grant the role to other users,
groups, or roles.

• ROLE_NULLID_PACKAGES – RDS for Db2 grants EXECUTE privileges to this role on ALL NULLID
packages that were bound by Db2 when CREATE DATABASE was run.

• ROLE_PROCEDURES – RDS for Db2 grants EXECUTE privileges to this role on all SYSIBM
procedures.

• ROLE_TABLESPACES – RDS for Db2 grants USAGE privileges on tablespaces created by the
CREATE DATABASE command.

Amazon RDS for Db2 parameters

Amazon RDS for Db2 uses three types of parameters: database manager configuration parameters,
registry variables, and database configuration parameters. You can manage the first two types
through parameter groups and the last type through the rdsadmin.update_db_param stored
procedure.

By default, an RDS for Db2 DB instance uses a DB parameter group that is specific to a Db2
database and DB instance. This parameter group contains parameters for the IBM Db2 database
engine, specifically the database manager configuration parameters and registry variables. For
information about working with parameter groups, see Parameter groups for Amazon RDS.

RDS for Db2 database configuration parameters are set to the default values of the storage
engine that you have selected. For more information about Db2 parameters, see the Db2 database
configuration parameters in the IBM Db2 documentation.

Topics

• Viewing the parameters in parameter groups

• Viewing all parameters with Db2 commands

• Modifying the parameters in parameter groups

• Modifying the database configuration parameters with Db2 commands

Db2 parameters 2386

https://www.ibm.com/docs/en/db2/11.5?topic=parameters-database-configuration
https://www.ibm.com/docs/en/db2/11.5?topic=parameters-database-configuration

Amazon Relational Database Service User Guide

Viewing the parameters in parameter groups

The database manager configuration parameters and the registry variables are set in parameter
groups. You can view the database manager configuration parameters and the registry variables
for a specific Db2 version by using the AWS Management Console, the AWS CLI, or the RDS API.

Console

To view the parameter values for a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

3. Choose the name of the parameter group to see its list of parameters.

AWS CLI

You can view the database manager configuration parameters and the registry variables for a Db2
version by running the describe-engine-default-parameters command. Specify one of the following
values for the --db-parameter-group-family option:

• db2-ae-11.5

• db2-se-11.5

For example, to view the parameters for Db2 Standard Edition 11.5, run the following command:

aws rds describe-engine-default-parameters --db-parameter-group-family db2-se-11.5

This command produces output similar to the following example:

{
 "EngineDefaults": {
 "Parameters": [
 {
 "ParameterName": "agent_stack_sz",
 "ParameterValue": "1024",

Db2 parameters 2387

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-parameters.html

Amazon Relational Database Service User Guide

 "Description": "You can use this parameter to determine the amount of
 memory that is allocated by Db2 for each agent thread stack.",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "integer",
 "AllowedValues": "256-32768",
 "IsModifiable": false
 },
 {
 "ParameterName": "agentpri",
 "ParameterValue": "-1",
 "Description": "This parameter controls the priority given to all
 agents and to other database manager instance processes and threads by the operating
 system scheduler. This priority determines how CPU time is allocated to the database
 manager processes, agents, and threads relative to other processes and threads running
 on the machine.",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "integer",
 "AllowedValues": "1-99",
 "IsModifiable": false
 },
 ...
]
 }
}

To list only the modifiable parameters for Db2 Standard Edition 11.5, run the following command:

For Linux, macOS, or Unix:

aws rds describe-engine-default-parameters \
 --db-parameter-group-family db2-se-11.5 \
 --query 'EngineDefaults.Parameters[?IsModifiable==`true`].
{ParameterName:ParameterName, DefaultValue:ParameterValue}'

For Windows:

aws rds describe-engine-default-parameters ^
 --db-parameter-group-family db2-se-11.5 ^
 --query 'EngineDefaults.Parameters[?IsModifiable==`true`].
{ParameterName:ParameterName, DefaultValue:ParameterValue}'

Db2 parameters 2388

Amazon Relational Database Service User Guide

RDS API

To view the parameter values for a DB parameter group, use the DescribeDBParameters
operation with the following required parameter.

• DBParameterGroupName

Viewing all parameters with Db2 commands

You can view the settings for database manager configuration parameters, database configuration
parameters, and registry variables by using Db2 commands.

To view the settings

1. Connect to your Db2 database. In the following example, replace database_name,
master_username, and master_password with your information.

db2 "connect to database_name user master_username using master_password"

2. Find the supported Db2 version.

db2 "select service_level, fixpack_num from table(sysproc.env_get_inst_info()) as
 instanceinfo"

3. View the parameters for a specific Db2 version.

• View database manager configuration parameters by running the following command:

db2 "select cast(substr(name,1,24) as varchar(24)) as name, case
 when value_flags = 'NONE' then '' else value_flags end flags,
 cast(substr(value,1,64) as varchar(64)) as current_value
 from sysibmadm.dbmcfg
 order by name asc with UR"

• View all of your database configuration parameters by running the following command:

db2 "select cast(substr(name,1,24) as varchar(24)) as name, case
 when value_flags = 'NONE' then '' else value_flags end flags,
 cast(substr(value,1,64) as varchar(64)) as current_value
 from table(db_get_cfg(null)) order by name asc, member asc with UR"

Db2 parameters 2389

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html

Amazon Relational Database Service User Guide

• View the currently set registry variables by running the following command:

db2 "select cast(substr(reg_var_name,1,50) as varchar(50)) as reg_var_name,
 cast(substr(reg_var_value,1,50) as varchar(50)) as reg_var_value,
 level from table(env_get_reg_variables(null))
 order by reg_var_name,member with UR"

Modifying the parameters in parameter groups

You can modify the database manager configuration parameters and the registry variables in
custom parameter groups by using the AWS Management Console, the AWS CLI, or the RDS API.
For more information, see DB parameter groups for Amazon RDS DB instances.

Console

To modify database manager configuration parameters and registry variables

1. Create a custom parameter group. For more information about creating a DB parameter group,
see Creating a DB parameter group in Amazon RDS.

2. Modify the parameters in that custom parameter group. For more information about
modifying a parameter group, see Modifying parameters in a DB parameter group in Amazon
RDS.

AWS CLI

To modify database manager configuration parameters and registry variables

1. Create a custom parameter group by running the create-db-parameter-group command.

Include the following required options:

• --db-parameter-group-name – A name for the parameter group that you are creating.

• --db-parameter-group-family – The Db2 engine edition and major version. Valid
values: db2-se-11.5, db2-ae-11.5.

• --description – A description for this parameter group.

For more information about creating a DB parameter group, see Creating a DB parameter
group in Amazon RDS.

Db2 parameters 2390

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Relational Database Service User Guide

2. Modify the parameters in the custom parameter group that you created by running the
modify-db-parameter-group command.

Include the following required options:

• --db-parameter-group-name – The name of the parameter group that you created.

• --parameters – An array of parameter names, values, and the application methods for the
parameter update.

For more information about modifying a parameter group, see Modifying parameters in a DB
parameter group in Amazon RDS.

RDS API

To modify database manager configuration parameters and registry variables

1. Create a custom DB parameter group by using the CreateDBParameterGroup operation.

Include the following required parameters:

• DBParameterGroupName

• DBParameterGroupFamily

• Description

For more information about creating a DB parameter group, see Creating a DB parameter
group in Amazon RDS.

2. Modify the parameters in the custom parameter group that you created by using the
ModifyDBParameterGroup operation.

Include the following required parameters:

• DBParameterGroupName

• Parameters

For more information about modifying a parameter group, see Modifying parameters in a DB
parameter group in Amazon RDS.

Db2 parameters 2391

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Relational Database Service User Guide

Modifying the database configuration parameters with Db2 commands

You can modify the database configuration parameters with Db2 commands.

To modify the database configuration parameters

1. Connect to the rdsadmin database. In the following example, replace master_username and
master_password with your information.

db2 "connect to rdsadmin user master_username using master_password"

2. Change the database configuration parameters by calling the rdsadmin.update_db_param
stored procedure. For more information, see rdsadmin.update_db_param.

db2 "call rdsadmin.update_db_param(
 'database_name',
 'parameter_to_modify',
 'changed_value')"

EBCDIC collation for Db2 databases on Amazon RDS

Amazon RDS for Db2 supports EBCDIC collation for Db2 databases. You can only specify an EBCDIC
collation sequence for a database when you create the database by using the Amazon RDS the
section called “rdsadmin.create_database” stored procedure.

When you create an RDS for Db2 DB instance by using the AWS Management Console, AWS CLI, or
RDS API, you can specify a database name. If you specify a database name, Amazon RDS creates
a database with the default collation of SYSTEM. If you need to create a database with EBCDIC
collation, don't specify a database name when you create a DB instance.

The collation for a database in RDS for Db2 is set at the time of creation and is immutable.

To create a Db2 database with EBCDIC collation

1. If you don't have an RDS for Db2 DB instance, create a DB instance but don't specify a
database name You can create a DB instance by using the AWS Management Console, AWS CLI,
or RDS API. For more information, see Creating a DB instance.

EBCDIC collation 2392

Amazon Relational Database Service User Guide

2. Create a Db2 database and set the collation option to an EBCDIC value by calling
the rdsadmin.create_database stored procedure. For more information, see
rdsadmin.create_database.

Important

After you create a database using the stored procedure, you can't change the collation
sequence. If you want a database to use a different collation sequence, drop the
database by calling the the section called “rdsadmin.drop_database” stored procedure.
Then, create a database with the required collation sequence.

Local time zone for Amazon RDS for Db2 DB instances

The time zone of an Amazon RDS DB instance running Db2 is set by default. The default is
Coordinated Universal Time (UTC). To match the time zone of your applications, you can set the
time zone of your DB instance to a local time zone instead.

You set the time zone when you first create your DB instance. You can create your DB instance
by using the AWS Management Console, the RDS API, or the AWS CLI. For more information, see
Creating a DB instance.

If your DB instance is part of a Multi-AZ deployment, then when it fails over, its time zone remains
the local time zone that you set.

You can restore your DB instance to a point in time that you specify. The time appears in your local
time zone. For more information, see Restoring a DB instance to a specified time for Amazon RDS.

Setting the local time zone on your DB instance has the following limitations:

• You can't modify the time zone of an existing Amazon RDS for Db2 DB instance.

• You can't restore a snapshot from a DB instance in one time zone to a DB instance in a different
time zone.

• We strongly recommend that you don't restore a backup file from one time zone to a different
time zone. If you restore a backup file from one time zone to another, then you must audit your
queries and applications for the effects of the time zone change.

Db2 local time zone 2393

Amazon Relational Database Service User Guide

Available time zones

You can use the following values for the time zone setting.

Zone Time zone

Africa Africa/Cairo, Africa/Casablanca, Africa/Harare, Africa/Lagos, Africa/Luanda,
Africa/Monrovia, Africa/Nairobi, Africa/Tripoli, Africa/Windhoek

America America/Araguaina, America/Argentina/Buenos_Aires, America/Asuncion,
America/Bogota, America/Caracas, America/Chicago, America/Chihuahua,
America/Cuiaba, America/Denver, America/Detroit, America/Fortaleza,
America/Godthab, America/Guatemala, America/Halifax, America/Lima,
America/Los_Angeles, America/Manaus, America/Matamoros, America/M
exico_City, America/Monterrey, America/Montevideo, America/New_York,
America/Phoenix, America/Santiago, America/Sao_Paulo, America/Tijuana,
America/Toronto

Asia Asia/Amman, Asia/Ashgabat, Asia/Baghdad, Asia/Baku, Asia/Bangkok, Asia/
Beirut, Asia/Calcutta, Asia/Damascus, Asia/Dhaka, Asia/Hong_Kong, Asia/
Irkutsk, Asia/Jakarta, Asia/Jerusalem, Asia/Kabul, Asia/Karachi, Asia/Kath
mandu, Asia/Kolkata, Asia/Krasnoyarsk, Asia/Magadan, Asia/Manila, Asia/
Muscat, Asia/Novosibirsk, Asia/Rangoon, Asia/Riyadh, Asia/Seoul, Asia/
Shanghai, Asia/Singapore, Asia/Taipei, Asia/Tehran, Asia/Tokyo, Asia/Ulaa
nbaatar, Asia/Vladivostok, Asia/Yakutsk, Asia/Yerevan

Atlantic Atlantic/Azores, Atlantic/Cape_Verde

Australia Australia/Adelaide, Australia/Brisbane, Australia/Darwin, Australia/Eucla,
Australia/Hobart, Australia/Lord_Howe, Australia/Perth, Australia/Sydney

Brazil Brazil/DeNoronha, Brazil/East

Canada Canada/Newfoundland, Canada/Saskatchewan

Etc Etc/GMT-3

Europe Europe/Amsterdam, Europe/Athens, Europe/Berlin, Europe/Dublin, Europe/
Helsinki, Europe/Kaliningrad, Europe/London, Europe/Madrid, Europe/

Db2 local time zone 2394

Amazon Relational Database Service User Guide

Zone Time zone

Moscow, Europe/Paris, Europe/Prague, Europe/Rome, Europe/Sarajevo,
Europe/Stockholm

Pacific Pacific/Apia, Pacific/Auckland, Pacific/Chatham, Pacific/Fiji, Pacific/Guam,
Pacific/Honolulu, Pacific/Kiritimati, Pacific/Marquesas, Pacific/Samoa,
Pacific/Tongatapu, Pacific/Wake

US US/Alaska, US/Central, US/East-Indiana, US/Eastern, US/Pacific

UTC UTC

Db2 local time zone 2395

Amazon Relational Database Service User Guide

Prerequisites for creating an Amazon RDS for Db2 DB instance

The following items are prerequisites before creating a DB instance.

Topics

• Administrator account

• Additional considerations

Administrator account

When you create a DB instance, you must designate an administrator account for the instance.
Amazon RDS grants DBADM authority to this local database administrator account.

The administrator account has the following characteristics, capabilities, and limitations:

• Is a local user and not an AWS account.

• Doesn't have Db2 instance-level authorities such as SYSADM, SYSMAINT, or SYSCTRL.

• Can't stop or start a Db2 instance.

• Can't drop a Db2 database if you specified the name when you created the DB instance.

• Has full access to the Db2 database including catalog tables and views.

• Can create local users and groups by using Amazon RDS stored procedures.

• Can grant and revoke authorities and privileges.

The administrator account can perform the following tasks:

• Create, modify, or delete DB instances.

• Create DB snapshots.

• Initiate point-in-time restores.

• Create automated backups of DB snapshots.

• Create manual backups of DB snapshots.

• Use other Amazon RDS features.

Additional considerations

Before creating a DB instance, consider the following items:

DB instance prerequisites 2396

Amazon Relational Database Service User Guide

• Each Amazon RDS for Db2 DB instance can host up to 50 Db2 databases. For more information,
see Multiple databases on an Amazon RDS for Db2 DB instance.

• Initial database name

• If you don't provide a database name when you create a DB instance, Amazon RDS doesn't
create a database.

• Don't provide a database name under the following circumstances:

• You want to modify the db2_compatibility_vector parameter. For more information,
see Setting the db2_compatibility_vector parameter.

• In the Bring Your Own License (BYOL) model, you must first create a custom parameter group
that contains your IBM Customer ID and your IBM Site ID. For more information, see Bring Your
Own License for Db2.

• In the Db2 license through AWS Marketplace model, you need an active AWS Marketplace
subscription for the particular IBM Db2 edition that you want to use. If you don't already have
one, subscribe to Db2 in AWS Marketplace for the IBM Db2 edition that you want to use. For
more information, see Db2 license through AWS Marketplace.

Additional considerations 2397

Amazon Relational Database Service User Guide

Multiple databases on an Amazon RDS for Db2 DB instance

You can create multiple databases on a single RDS for Db2 DB instance by calling the
rdsadmin.create_database stored procedure. A single RDS for Db2 DB instance is limited to 50
databases. This number includes databases in both activated and deactivated states.

Note

If you create multiple databases on an RDS for Db2 DB instance that was created before
November 15, 2024, then you must reboot the DB instance to enable support for multiple
databases.

By default, Amazon RDS activates databases when you create them. To optimize memory
resources, you can deactivate databases that you use infrequently and then activate them later
when needed. For more information, see the section called “Deactivating a database” and the
section called “Activating a database”.

The number of activated databases on a DB instance depends on the available memory resources
on the server. Memory resources differ based on the DB instance class and the amount of memory
configured for the database. For information about DB instance classes, see the section called “DB
instance classes”. For information about how to update the memory for an RDS for Db2 database,
see the section called “rdsadmin.update_db_param”.

We recommend that you choose a DB instance class that has 2 GB of memory for common
database tasks, operating system requirements, and other Amazon RDS automation tasks such
as backups. For more information about changing the DB instance class, see the section called
“Modifying a DB instance”.

In addition, IBM recommends a minimum of 1 GB of memory for each active database. For more
information, see Disk and memory requirements in the IBM documentation.

You can calculate the maximum number of active databases a DB instance can have with the
following formula:

Active database limit = (total server memory - 2 GB) / 1 GB

The following example shows the maximum number of active databases for a DB instance with a
db.m6i.xlarge DB instance class:

Multiple Db2 databases 2398

https://www.ibm.com/docs/en/db2/11.5?topic=servers-disk-memory-requirements

Amazon Relational Database Service User Guide

Active database limit = (total server memory - 2 GB) / 1 GB
 = (16 GB - 2 GB) / 1 GB
 = 14 databases

When Amazon RDS recovers a database after a crash, it activates the database if it was previously
active. In certain cases, such as when you modify a DB instance class to a lower memory
configuration, there might be insufficient memory to activate all databases on the DB instance. In
those cases, Amazon RDS activates databases in the order in which they were created.

Note

Any databases that Amazon RDS can't activate because of insufficient memory remain in a
deactivated state.

Multiple Db2 databases 2399

Amazon Relational Database Service User Guide

Connecting to your Db2 DB instance

After Amazon RDS provisions your Amazon RDS for Db2 DB instance, you can use any standard SQL
client application to connect to the DB instance. Because Amazon RDS is a managed service, you
can't sign in as SYSADM, SYSCTRL, SECADM, or SYSMAINT.

You can connect to a DB instance that is running the IBM Db2 database engine by using IBM Db2
CLP, IBM CLPPlus, DBeaver, or IBM Db2 Data Management Console.

Note

Connecting to a Db2 database can fail if your RDS for Db2 DB instance doesn't have
sufficient memory. For more information, see the section called “Database connection
error”.

Topics

• Finding the endpoint of your Amazon RDS for Db2 DB instance

• Connecting to your Amazon RDS for Db2 DB instance with IBM Db2 CLP

• Connecting to your Amazon RDS for Db2 DB instance with IBM CLPPlus

• Connecting to your Amazon RDS for Db2 DB instance with DBeaver

• Connecting to your Amazon RDS for Db2 DB instance with IBM Db2 Data Management Console

• Considerations for security groups with Amazon RDS for Db2

Finding the endpoint of your Amazon RDS for Db2 DB instance

Each Amazon RDS DB instance has an endpoint, and each endpoint has the DNS name and port
number for the DB instance. To connect to your Amazon RDS for Db2 DB instance with a SQL client
application, you need the DNS name and port number for your DB instance.

You can find the endpoint for a DB instance by using the AWS Management Console or the AWS
CLI.

Connecting to your Db2 DB instance 2400

Amazon Relational Database Service User Guide

Console

To find the endpoint of an RDS for Db2 DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the console, choose the AWS Region of your DB instance.

3. Find the DNS name and port number for your RDS for Db2 DB Instance.

a. Choose Databases to display a list of your DB instances.

b. Choose the RDS for Db2 DB instance name to display the instance details.

c. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You
need both the endpoint and the port number to connect to the DB instance.

AWS CLI

To find the endpoint of an RDS for Db2 DB instance, run the describe-db-instances command. In
the following example, replace database-1 with the name of your DB instance.

For Linux, macOS, or Unix:

aws rds describe-db-instances \

Finding the endpoint 2401

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

 --db-instance-identifier database-1 \
 --query 'DBInstances[].
{DBInstanceIdentifier:DBInstanceIdentifier,DBName:DBName,Endpoint:Endpoint}' \
 --output json

For Windows:

aws rds describe-db-instances ^
 --db-instance-identifier database-1 ^
 --query 'DBInstances[].
{DBInstanceIdentifier:DBInstanceIdentifier,DBName:DBName,Endpoint:Endpoint}' ^
 --output json

This command produces output similar to the following example. The Address line in the output
contains the DNS name.

[
 {
 "DBInstanceIdentifier": "database-1",
 "DBName": "DB2DB",
 "Endpoint": {
 "Address": "database-1.123456789012.us-east-2.amazonaws.com",
 "Port": 50000,
 "HostedZoneId": "Z2OC4A7DETW6VH"
 }
 }
]

Connecting to your Amazon RDS for Db2 DB instance with IBM Db2 CLP

You can use a command line utility such as IBM Db2 CLP to connect to Amazon RDS for Db2 DB
instances. This utility is part of IBM Data Server Runtime Client. To download the client from IBM
Fix Central, see IBM Data Server Client Packages Version 11.5 Mod 8 Fix Pack 0 in IBM Support.

Topics

• Terminology

• Installing the client

• Connecting to a DB instance

• Troubleshooting connections to your RDS for Db2 DB instance

IBM Db2 CLP 2402

https://www.ibm.com/support/pages/node/6830885

Amazon Relational Database Service User Guide

Terminology

The following terms help explain commands used when connecting to your RDS for Db2 DB
instance.

catalog tcpip node

This command registers a remote database node with a local Db2 client, which makes the
node accessible to the client application. To catalog a node, you provide information such as
the server's host name, port number, and communication protocol. The cataloged node then
represents a target server where one or more remote databases reside. For more information,
see CATALOG TCPIP/TCPIP4/TCPIP6 NODE command in the IBM Db2 documentation.

catalog database

This command registers a remote database with a local Db2 client, which makes the database
accessible to the client application. To catalog a database, you provide information such as the
database's alias, the node on which it resides, and the authentication type needed to connect
to the database. For more information, see CATALOG DATABASE command in the IBM Db2
documentation.

Installing the client

After downloading the package for Linux, install the client using root or administrator privileges.

Note

To install the client on AIX or Windows, follow the same procedure but modify the
commands for your operating system.

To install the client on Linux

1. Run ./db2_install -f sysreq and choose yes to accept the license.

2. Choose the location to install the client.

3. Run clientInstallDir/instance/db2icrt -s client instance_name. Replace
instance_name with a valid operating system user on Linux. In Linux, the Db2 DB instance
name is tied to the operating system username.

IBM Db2 CLP 2403

https://www.ibm.com/docs/en/db2/11.5?topic=commands-catalog-tcpip-node
https://www.ibm.com/docs/en/db2/11.5?topic=commands-catalog-database

Amazon Relational Database Service User Guide

This command creates a sqllib directory in the home directory of the designated user on
Linux.

Connecting to a DB instance

To connect to your RDS for Db2 DB instance, you need its DNS name and port number. For
information about finding them, see Finding the endpoint. You also need to know the database
name, master username, and master password that you defined when you created your RDS for
Db2 DB instance. For more information about finding them, see Creating a DB instance.

To connect to an RDS for Db2 DB instance with IBM Db2 CLP

1. Sign in with the username that you specified during the IBM Db2 CLP client installation.

2. Catalog your RDS for Db2 DB instance. In the following example, replace node_name,
dns_name, and port with a name for the node in the local catalog, the DNS name for your DB
instance, and the port number.

db2 catalog TCPIP node node_name remote dns_name server port

Example

db2 catalog TCPIP node remnode remote database-1.123456789012.us-
east-1.amazonaws.com server 50000

3. Catalog the rdsadmin database and your database. This will allow you to connect to
the rdsadmin database to perform some administrative tasks using Amazon RDS stored
procedures. For more information, see Administering your RDS for Db2 DB instance.

In the following example, replace database_alias, node_name, and database_name with
aliases for this database, the name of the node defined in the previous step, and the name of
your database. server_encrypt encrypts your username and password over the network.

db2 catalog database rdsadmin [as database_alias] at node node_name
 authentication server_encrypt

db2 catalog database database_name [as database_alias] at node node_name
 authentication server_encrypt

IBM Db2 CLP 2404

Amazon Relational Database Service User Guide

Example

db2 catalog database rdsadmin at node remnode authentication server_encrypt

db2 catalog database testdb as rdsdb2 at node remnode authentication server_encrypt

4. Connect to your RDS for Db2 database. In the following example, replace
rds_database_alias, master_username, and master_password with the name of your
database, the master username, and master password of your RDS for Db2 DB instance.

db2 connect to rds_database_alias user master_username using master_password

This command produces output similar to the following example:

Database Connection Information

 Database server = DB2/LINUXX8664 11.5.9.0
 SQL authorization ID = ADMIN
 Local database alias = TESTDB

5. Run queries and view results. The following example shows a SQL statement that selects the
database you created.

db2 "select current server from sysibm.dual"

This command produces output similar to the following example:

1

 TESTDB

 1 record(s) selected.

Troubleshooting connections to your RDS for Db2 DB instance

If you receive the following NULLID error, it usually indicates that your client and RDS for Db2
server versions don't match. For supported Db2 client versions, see Supported combinations of
clients, drivers and server levels in the IBM Db2 documentation.

IBM Db2 CLP 2405

https://www.ibm.com/docs/en/db2/11.5?topic=communications-supported-combinations-clients-drivers-server-levels
https://www.ibm.com/docs/en/db2/11.5?topic=communications-supported-combinations-clients-drivers-server-levels

Amazon Relational Database Service User Guide

db2 "select * from syscat.tables"
SQL0805N Package "NULLID.SQLC2O29 0X4141414141454A69" was not found.
SQLSTATE=51002

After you receive this error, you must bind packages from your older Db2 client to a Db2 server
version supported by RDS for Db2.

To bind packages from an older Db2 client to a newer Db2 server

1. Locate the bind files on the client machine. Typically, these files are located in the bnd
directory of the Db2 client's installation path and have the extension .bnd.

2. Connect to the Db2 server. In the following example, replace database_name with the
name of your Db2 server. Replace master_username and master_password with your
information. This user has DBADM authority.

db2 connect to database_name user master_username using master_password

3. Run the bind command to bind the packages.

a. Navigate to the directory where the bind files exist on the client machine.

b. Run the bind command for each file.

The following options are required:

• blocking all – Binds all packages in the bind file in a single database request.

• grant public – Grants permission to public to execute the package.

• sqlerror continue – Specifies that the bind process continues even if errors occur.

For more information about the bind command see BIND command in the IBM Db2
documentation.

4. Verify that the bind was successful by either querying the syscat.package catalog view or
checking the message returned after the bind command.

For more information, see DB2 v11.5 Bind File and Package Name List in IBM Support.

IBM Db2 CLP 2406

https://www.ibm.com/docs/en/db2/11.5?topic=commands-bind
https://www.ibm.com/support/pages/node/6190455

Amazon Relational Database Service User Guide

Connecting to your Amazon RDS for Db2 DB instance with IBM CLPPlus

You can use a utility such as IBM CLPPlus to connect to an Amazon RDS for Db2 DB instance. This
utility is part of IBM Data Server Runtime Client. To download the client from IBM Fix Central, see
IBM Data Server Client Packages Version 11.5 Mod 8 Fix Pack 0 in IBM Support.

Important

We recommend that you run IBM CLPPlus on an operating system that supports graphical
user interfaces such as macOS, Windows, or Linux with Desktop. If running headless Linux,
use switch -nw with CLPPlus commands.

Topics

• Installing the client

• Connecting to a DB instance

Installing the client

After downloading the package for Linux, install the client.

Note

To install the client on AIX or Windows, follow the same procedure but modify the
commands for your operating system.

To install the client on Linux

1. Run ./db2_install.

2. Run clientInstallDir/instance/db2icrt -s client instance_name. Replace
instance_name with a valid operating system user on Linux. In Linux, the Db2 DB instance
name is tied to the operating system username.

This command creates a sqllib directory in the home directory of the designated user on
Linux.

IBM CLPPlus 2407

https://www.ibm.com/support/pages/node/6830885

Amazon Relational Database Service User Guide

Connecting to a DB instance

To connect to your RDS for Db2 DB instance, you need its DNS name and port number. For
information about finding them, see Finding the endpoint. You also need to know the database
name, master username, and master password that you defined when you created your RDS for
Db2 DB instance. For more information about finding them, see Creating a DB instance.

To connect to an RDS for Db2 DB instance with IBM CLPPlus

1. Review the command syntax. In the following example, replace clientDir with the location
where the client is installed.

cd clientDir/bin
 ./clpplus -h

2. Configure your Db2 server. In the following example, replace dsn_name, database_name,
endpoint, and port with the DSN name, database name, endpoint, and port for your RDS for
Db2 DB instance. For more information, see Finding the endpoint of your Amazon RDS for Db2
DB instance.

db2cli writecfg add -dsn dsn_name -database database_name -host endpoint -port port
 -parameter "Authentication=SERVER_ENCRYPT"

3. Connect to your RDS for Db2 DB instance. In the following example, replace
master_username and dsn_name with the master username and DSN name.

./clpplus -nw master_username@dsn_name

4. A Java Shell window opens. Enter the master password for your RDS for Db2 DB instance.

Note

If a Java Shell window doesn't open, run ./clpplus -nw to use the same command
line window.

Enter password: *********

A connection is made and produces output similar to the following example:

IBM CLPPlus 2408

Amazon Relational Database Service User Guide

Database Connection Information :

Hostname = database-1.abcdefghij.us-east-1.rds.amazonaws.com
Database server = DB2/LINUXX8664 SQL110590
SQL authorization ID = admin
Local database alias = DB2DB
Port = 50000

5. Run queries and view results. The following example shows a SQL statement that selects the
database you created.

SQL > select current server from sysibm.dual;

This command produces output similar to the following example:

1

 DB2DB
 SQL>

Connecting to your Amazon RDS for Db2 DB instance with DBeaver

You can use third-party tools such as DBeaver to connect to Amazon RDS for Db2 DB instances. To
download this utility, see DBeaver Community.

To connect to your RDS for Db2 DB instance, you need its DNS name and port number. For
information about finding them, see Finding the endpoint. You also need to know the database
name, master username, and master password that you defined when you created your RDS for
Db2 DB instance. For more information about finding them, see Creating a DB instance.

To connect to an RDS for Db2 DB instance with DBeaver

1. Start DBeaver.

2. Choose the New Connection icon in the toolbar and then choose Db2 for LUW.

DBeaver 2409

https://dbeaver.io/

Amazon Relational Database Service User Guide

3. In the Connect to a database window, provide information for your RDS for Db2 DB instance.

a. Enter the following information:

• For Host, enter the DNS name of the DB instance.

• For Port, enter the port number for the DB instance.

• For Database, enter the name of the database.

• For Username, enter the name of the database administrator for the DB instance.

• For Password, enter the password of the database administrator for the DB instance.

b. Select Save password.

c. Choose Driver Settings.

DBeaver 2410

Amazon Relational Database Service User Guide

4. In the Edit Driver window, specify additional security properties.

a. Choose the Driver properties tab.

b. Add two User Properties.

i. Open the context (right-click) menu, and then choose Add new property.

ii. For Property Name, add encryptionAlgorithm, and then choose OK.

iii. With the encryptionAlgorithm row selected, choose the Value column and add 2.

iv. Open the context (right-click) menu, and then choose Add new property.

v. For Property Name, add securityMechanism, and then choose OK.

vi. With the securityMechanism row selected, choose the Value column and add 7.

c. Choose OK.

DBeaver 2411

Amazon Relational Database Service User Guide

5. In the Connect to a database window, choose Test Connection. If you don't have a DB2 JBDC
driver installed on your computer, then the driver automatically downloads.

6. Choose OK.

7. Choose Finish.

8. In the Database Navigation tab, choose the name of the database. You can now explore
objects.

You are now ready to run SQL commands.

To run SQL commands and view the results

1. In the top menu, choose SQL. This opens a SQL script panel.

2. In the Script panel, enter a SQL command.

3. To run the command, choose the Execute SQL query button.

4. In the SQL results panel, view the results of your SQL queries.

DBeaver 2412

Amazon Relational Database Service User Guide

Connecting to your Amazon RDS for Db2 DB instance with IBM Db2
Data Management Console

You can connect to your Amazon RDS for Db2 DB instance with IBM Db2 Data Management
Console. IBM Db2 Data Management Console can administer and monitor several RDS for Db2 DB
instances.

Note

You must have an Amazon EC2 Linux or Windows machine that is on the same VPC and
security group as your RDS for Db2 DB instance. The VPC and security group controls the
connection to your DB instance through the internal network.

IBM Db2 Data Management Console requires a repository Db2 database to store metadata and
performance metrics but can't automatically create a repository database for RDS for Db2. Instead,
you must first create a repository database to monitor one or more RDS for Db2 DB instances. Then
you can install IBM Db2 Data Management Console and connect to your RDS for Db2 DB instance
with IBM Db2 Data Management Console.

IBM Db2 Data Management Console 2413

Amazon Relational Database Service User Guide

Topics

• Step 1: Creating a repository database to monitor DB instances

• Step 2: Installing and setting up IBM Db2 Data Management Console

• Step 3: Configuring the repository database and connecting to RDS for Db2 DB instances

• Using IBM Db2 Data Management Console

Step 1: Creating a repository database to monitor DB instances

You can use an existing properly sized RDS for Db2 DB instance as a repository for IBM Db2 Data
Management Console to monitor other RDS for Db2 DB instances. However, because the admin
user doesn't have SYSCTRL authority to create buffer pools and tablespaces, using IBM Db2 Data
Management Console repository creation to create a repository database fails. Instead, you must
create a repository database. This repository database monitors your RDS for Db2 DB instances.

You can create a repository database in two different ways. You can create an RDS for Db2
database and then manually create a buffer pool, a user tablespace, and a system temporary
tablespace. Or, you can create a separate Amazon EC2 instance to host an IBM Db2 Data
Management Console repository database.

Topics

• Manually creating a buffer pool, a user tablespace, and a system temporary tablespace

• Creating an Amazon EC2 instance to host an IBM Db2 Data Management Console repository

Manually creating a buffer pool, a user tablespace, and a system temporary tablespace

To create a buffer pool, a user tablespace, and a system temporary tablespace

1. Connect to the rdsadmin database. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Create a buffer pool for IBM Db2 Data Management Console. In the following example, replace
database_name with the name of the repository you created for IBM Db2 Data Management
Console to monitor your RDS for Db2 DB instances.

db2 "call rdsadmin.create_bufferpool('database_name',

IBM Db2 Data Management Console 2414

Amazon Relational Database Service User Guide

 'BP4CONSOLE', 1000, 'Y', 'Y', 32768)"

3. Create a user tablespace for IBM Db2 Data Management Console. In the following example,
replace database_name with the name of the repository you created for IBM Db2 Data
Management Console to monitor your RDS for Db2 DB instances.

db2 "call rdsadmin.create_tablespace('database_name',
 'TS4CONSOLE', 'BP4CONSOLE', 32768)"

4. Create a system temporary tablespace for IBM Db2 Data Management Console. In the
following example, replace database_name with the name of the repository you created for
IBM Db2 Data Management Console to monitor your RDS for Db2 DB instances.

db2 "call rdsadmin.create_tablespace('database_name',
 'TS4CONSOLE_TEMP', 'BP4CONSOLE', 32768, 0, 0, 'S')"

You are now ready to install IBM Db2 Data Management Console. For more information about
installation and setup, see Step 2: Installing and setting up IBM Db2 Data Management Console.

Creating an Amazon EC2 instance to host an IBM Db2 Data Management Console repository

You can create a separate Amazon Elastic Compute Cloud (Amazon EC2) instance to host an
IBM Db2 Data Management Console repository. For information about creating an Amazon EC2
instance, see Tutorial: Get started with Amazon EC2 Linux instances in the Amazon EC2 User Guide.

Step 2: Installing and setting up IBM Db2 Data Management Console

After you create a buffer pool, a user tablespace, and a system temporary tablespace, you are ready
to install and set up IBM Db2 Data Management Console.

Important

You must have an Amazon EC2 Linux or Windows machine that is on the same VPC and
security group as your RDS for Db2 DB instance. The VPC and security group controls the
connection to your DB instance through the internal network. Also, you must have already
created a repository database for IBM Db2 Data Management Console.

IBM Db2 Data Management Console 2415

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

Amazon Relational Database Service User Guide

To install and set up IBM Db2 Data Management Console

1. Download IBM Db2 Data Management Console from IBM Db2 Data Management Console
Version 3.1x releases on the IBM Support website.

2. Install IBM Db2 Data Management Console.

3. Open IBM Db2 Data Management Console and use the IP address of your Amazon
EC2 machine and the port number you used for the HTTP or HTTPS connection to
your Amazon EC2 instance. For example, use http://xx.xx.xx.xx:11080 or
https://xx.xx.xx.xx.11081. Replace xx.xx.xx.xx with the IP address of your Amazon
EC2 machine. 11080 and 11081 are the default ports for HTTP and HTTPS connections.

4. (Optional) If you want to use port 80 or 443 on your Amazon EC2 instance, you can use either
Apache httpd or a Nginx HTTP server to proxy the IBM Db2 Data Management Console port
to either port 80 or 443. For more information, see Apache HTTP Server Project and the nginx
website.

To allow connection to IBM Db2 Data Management Console, you must edit the inbound rules in
your security group. If you use a proxy, change the TCP/IP port 80 or 443 to redirect to the IBM
Db2 Data Management Console ports. If you aren't using a proxy, change the TCP/IP port 80 or
443 to the default ports 11080 (HTTP) or 11081 (HTTPS).

You are now ready to log in to IBM Db2 Data Management Console to configure the repository
database and to connect to your RDS for Db2 DB instances. For more information, see Configuring
the repository database and connecting to DB instances.

Step 3: Configuring the repository database and connecting to RDS for Db2 DB
instances

When you connect to the repository database for the first time, IBM Db2 Data Management
Console automatically configures the repository. After the repository database is configured, you
can add database connections to IBM Db2 Data Management Console.

To connect to your RDS for Db2 DB instance, you need its DNS name and port number. For
information about finding them, see Finding the endpoint. You also need to know the database
name, master username, and master password that you defined when you created your RDS for
Db2 DB instance. For more information about finding them, see Creating a DB instance. If you are
connecting over the internet, allow traffic to the database port. For more information, see Creating
a DB instance.

IBM Db2 Data Management Console 2416

https://www.ibm.com/support/pages/ibm-db2-data-management-console-version-31x-releases-new-features-and-enhancements
https://www.ibm.com/support/pages/ibm-db2-data-management-console-version-31x-releases-new-features-and-enhancements
https://httpd.apache.org
https://nginx.org/en/
https://nginx.org/en/

Amazon Relational Database Service User Guide

To connect to RDS for Db2 DB instances with IBM Db2 Data Management Console

1. Log in to IBM Db2 Data Management Console with the credentials you set during installation.

2. Configure the repository.

a. In the Connection and database section, enter the following information for your RDS for
Db2 DB instance:

• For Host, enter the DNS name of the DB instance.

• For Port, enter the port number for the DB instance.

• For Database, enter the name of the database.

b. In the Security and credential section, enter the following information for your RDS for
Db2 DB instance:

• For Security type, choose Encrypted user and password.

• For Username, enter the name of the database administrator for the DB instance.

• For Password, enter the password of the database administrator for the DB instance.

c. Choose Test connection.

IBM Db2 Data Management Console 2417

Amazon Relational Database Service User Guide

Note

If the connection is unsuccessful, confirm that the database port is open through
the inbound rules in your security group. For more information, see Considerations
for security groups with Amazon RDS for Db2.

If you didn't manually create a buffer pool, a user tablespace, and a system temporary
tablespace in RDS for Db2, you might see the following error message:

Make sure that you created a buffer table, a tablespace, and objects for an IBM Db2 Data
Management Console repository to monitor your RDS for Db2 DB instance. Or, you can
use an Amazon EC2 Db2 DB instance to host an IBM Db2 Data Management Console
repository to monitor your RDS for Db2 DB instance. For more information, see Step 1:
Creating a repository database to monitor DB instances.

d. After you successfully test your connection, choose Next.

If IBM Db2 Data Management Console finds the buffer pool, the user tablespace, and the
system temporary tablespace in the RDS for Db2 DB instance, then IBM Db2 Data Management
Console automatically configures the repository database. If you use your Db2 instance on
your Amazon EC2 instance as the repository database, then IBM Db2 Data Management
Console automatically creates the buffer pool and other objects.

IBM Db2 Data Management Console 2418

Amazon Relational Database Service User Guide

3. In the Set statistics event monitor opt-in window, choose Next.

4. (Optional) Add new connection. If you want to use a different RDS for Db2 DB instance for
administration and monitoring, then add a connection to a non-repository RDS for Db2 DB
instance.

a. In the Connection and database section, enter the following information for the RDS for
Db2 DB instance to use for administration and monitoring:

• For Connection name, enter the Db2 database identifier.

• For Host, enter the DNS name of the DB instance.

• For Port, enter the port number for the DB instance.

• For Database, enter the name of the database.

b. In the Security and credential section, select Enable monitoring data collection.

c. Enter the following information for your RDS for Db2 DB instance:

• For Username, enter the name of the database administrator for the DB instance.

• For Password, enter the password of the database administrator for the DB instance.

d. Choose Test connection.

e. After you successfully test your connection, choose Save.

IBM Db2 Data Management Console 2419

Amazon Relational Database Service User Guide

After the connection is added, a window similar to the following appears. This window
indicates that your database was successfully configured.

5. Choose Go to Databases. A Databases window similar to the following appears. This window is
a dashboard that shows metrics, statuses, and connections.

IBM Db2 Data Management Console 2420

Amazon Relational Database Service User Guide

You can now start using IBM Db2 Data Management Console.

Using IBM Db2 Data Management Console

You can use IBM Db2 Data Management Console to do the following types of tasks:

• Manage multiple RDS for Db2 DB instances.

• Run SQL commands.

• Explore, create, or change data and database objects.

• Create EXPLAIN PLAN statements in SQL.

• Tune queries.

To run SQL commands and view the results

1. In the left navigation bar, choose SQL.

2. Enter a SQL command.

3. Choose Run all.

4. To view the results, choose the Results tab.

IBM Db2 Data Management Console 2421

Amazon Relational Database Service User Guide

Considerations for security groups with Amazon RDS for Db2

For you to connect to your Amazon RDS for Db2 DB instance, it must be associated with a security
group that contains the necessary IP addresses and network configuration. Your RDS for Db2
DB instance might use the default security group. If you assigned a default nonconfigured
security group when you created the RDS for Db2 DB instance, then the firewall prevents internet
connections. For information about creating a new security group, see Controlling access with
security groups.

After you create the new security group, you modify your DB instance to associate it with the
security group. For more information, see Modifying an Amazon RDS DB instance.

You can enhance security by using SSL to encrypt connections to your DB instance. For more
information, see Using SSL/TLS with an Amazon RDS for Db2 DB instance.

Security group considerations 2422

Amazon Relational Database Service User Guide

Securing Amazon RDS for Db2 DB instance connections

Amazon RDS for Db2 supports ways to improve security for your RDS for Db2 DB instance.

Topics

• Using SSL/TLS with an Amazon RDS for Db2 DB instance

• Using Kerberos authentication for Amazon RDS for Db2

Using SSL/TLS with an Amazon RDS for Db2 DB instance

SSL is an industry-standard protocol for securing network connections between client and server.
After SSL version 3.0, the name was changed to TLS, but we still often refer to the protocol as SSL.
Amazon RDS supports SSL encryption for Amazon RDS for Db2 DB instances. Using SSL/TLS, you
can encrypt a connection between your application client and your RDS for Db2 DB instance. SSL/
TLS support is available in all AWS Regions for RDS for Db2.

To enable SSL/TLS encryption for an RDS for Db2 DB instance, add the Db2 SSL option to the
parameter group associated with the DB instance. Amazon RDS uses a second port, as required by
Db2, for SSL/TLS connections. Doing this allows both clear text and SSL-encrypted communication
to occur at the same time between a DB instance and a Db2 client. For example, you can use the
port with clear text communication to communicate with other resources inside a VPC while using
the port with SSL-encrypted communication to communicate with resources outside the VPC.

Topics

• Creating an SSL/TLS connection

• Connect to your Db2 database server

Creating an SSL/TLS connection

To create an SSL/TLS connection, choose a certificate authority (CA), download a certificate bundle
for all AWS Regions, and add parameters to a custom parameter group.

Step 1: Choose a CA and download a certificate

Choose a certificate authority (CA) and download a certificate bundle for all AWS Regions. For more
information, see Using SSL/TLS to encrypt a connection to a DB instance or cluster.

Securing Db2 connections 2423

Amazon Relational Database Service User Guide

Step 2: Update parameters in a custom parameter group

Important

If you're using the Bring Your Own License (BYOL) model for RDS for Db2, modify the
custom parameter group that you created for your IBM Customer ID and your IBM Site ID. If
you're using a different licensing model for RDS for Db2, then follow the procedure to add
parameters to a custom parameter group. For more information, see Amazon RDS for Db2
licensing options.

You can't modify default parameter groups for RDS for Db2 DB instances. Therefore, you must
create a custom parameter group, modify it, and then attach it to your RDS for Db2 DB instances.
For information about parameter groups, see DB parameter groups for Amazon RDS DB instances.

Use the parameter settings in the following table.

Parameter Value

DB2COMM TCPIP,SSL or SSL

SSL_SVCENAME <any port number except the number
used for the non-SSL port>

To update parameters in a custom parameter group

1. Create a custom parameter group by running the create-db-parameter-group command.

Include the following required options:

• --db-parameter-group-name – A name for the parameter group that you are creating.

• --db-parameter-group-family – The Db2 engine edition and major version. Valid
values: db2-se-11-5, db2-ae-11.5.

• --description – A description for this parameter group.

For more information about creating a DB parameter group, see Creating a DB parameter
group in Amazon RDS.

Encrypting with SSL/TLS 2424

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Relational Database Service User Guide

2. Modify the parameters in the custom parameter group that you created by running the
modify-db-parameter-group command.

Include the following required options:

• --db-parameter-group-name – The name of the parameter group that you created.

• --parameters – An array of parameter names, values, and the application methods for the
parameter update.

For more information about modifying a parameter group, see Modifying parameters in a DB
parameter group in Amazon RDS.

3. Associate the parameter group with your RDS for Db2 DB instance. For more information, see
Associating a DB parameter group with a DB instance in Amazon RDS.

Connect to your Db2 database server

Instructions for connecting to your Db2 database server are language-specific.

Java

To connect to your Db2 database server using Java

1. Download the JDBC driver. For more information, see DB2 JDBC Driver Versions and
Downloadsin the IBM Support documentation.

2. Create a shell script file with the following content. This script adds all certificates from the
bundle to a Java KeyStore.

Important

Verify that keytool exists on the path in the script so that the script can locate it.
If you use a Db2 client, you can locate the keytool under ~sqlib/java/jdk64/
jre/bin.

#!/bin/bash
PEM_FILE=$1
PASSWORD=$2
KEYSTORE=$3

Encrypting with SSL/TLS 2425

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads

Amazon Relational Database Service User Guide

number of certs in the PEM file
CERTS=$(grep 'END CERTIFICATE' $PEM_FILE| wc -l)
for N in $(seq 0 $(($CERTS - 1))); do
 ALIAS="${PEM_FILE%.*}-$N"
 cat $PEM_FILE |
 awk "n==$N { print }; /END CERTIFICATE/ { n++ }" |
 keytool -noprompt -import -trustcacerts -alias $ALIAS -keystore $KEYSTORE -
storepass $PASSWORD
done

3. To run the shell script and import the PEM file with the certificate bundle into a Java
KeyStore, run the following command. Replace shell_file_name.sh with the name of
your shell script file and password with the password for your Java KeyStore.

 ./shell_file_name.sh global-bundle.pem password truststore.jks

4. To connect to your Db2 server, run the following command. Replace the following
placeholders in the example with your RDS for Db2 DB instance information.

• ip_address – The IP address for your DB instance endpoint.

• port – The port number for the SSL connection. This can be any port number except the
number that's used for the non-SSL port.

• database_name – The name of your database in your DB instance.

• master_username – The master username for your DB instance.

• master_password – The master password for your DB instance.

export trustStorePassword=MyPassword
java -cp ~/dsdriver/jdbc_sqlj_driver/linuxamd64/db2jcc4.jar \
com.ibm.db2.jcc.DB2Jcc -url \
"jdbc:db2://ip_address:port/database_name:\
sslConnection=true;sslTrustStoreLocation=\
~/truststore.jks;\
sslTrustStorePassword=${trustStorePassword};\
sslVersion=TLSv1.2;\
encryptionAlgorithm=2;\
securityMechanism=7;" \
-user master_username -password master_password

Encrypting with SSL/TLS 2426

Amazon Relational Database Service User Guide

Node.js

To connect to your Db2 database server using Node.js

1. Install the node-ibm_db driver. For more information, see Installing the node-ibm_db
driver on Linux and UNIX systems in the IBM Db2 documentation.

2. Create a JavaScript file based on the following content. Replace the following placeholders
in the example with your RDS for Db2 DB instance information.

• ip_address – The IP address for your DB instance endpoint.

• master_username – The master username for your DB instance.

• master_password – The master password for your DB instance.

• database_name – The name of your database in your DB instance.

• port – The port number for the SSL connection. This can be any port number except the
number that's used for the non-SSL port.

var ibmdb = require("ibm_db");
const hostname = "ip_address";
const username = "master_username";
const password = "master_password";
const database = "database_name";
const port = "port";
const certPath = "/root/qa-bundle.pem";
ibmdb.open("DRIVER={DB2};DATABASE=" + database + ";HOSTNAME=" +
 hostname + ";UID=" + username + ";PWD=" + password + ";PORT=" + port +
 ";PROTOCOL=TCPIP;SECURITY=SSL;SSLServerCertificate=" + certPath + ";", function
 (err, conn){
 if (err) return console.log(err);
 conn.close(function () {
 console.log('done');
 });
});

3. To run the JavaScript file, run the following command.

node ssl-test.js

Encrypting with SSL/TLS 2427

https://www.ibm.com/docs/en/db2/11.5?topic=nodejs-installing-node-db-driver-linux-unix-systems
https://www.ibm.com/docs/en/db2/11.5?topic=nodejs-installing-node-db-driver-linux-unix-systems

Amazon Relational Database Service User Guide

Python

To connect to your Db2 database server using Python

1. Create a Python file with the following content. Replace the following placeholders in the
example with your RDS for Db2 DB instance information.

• port – The port number for the SSL connection. This can be any port number except the
number that's used for the non-SSL port.

• master_username – The master username for your DB instance.

• master_password – The master password for your DB instance.

• database_name – The name of your database in your DB instance.

• ip_address – The IP address for your DB instance endpoint.

import click
import ibm_db
import sys

port = port;
master_user_id = "master_username" # Master id used to create your DB instance
master_password = "master_password" # Master password used to create your DB
 instance
db_name = "database_name" # If not given "db-name'
vpc_customer_private_ip = "ip_address" # Hosts end points - Customer private IP
 Addressicert_path = "/root/ssl/global-bundle.pem" # cert path

@click.command()
@click.option("--path", help="certificate path")
def db2_connect(path):

 try:
 conn =
 ibm_db.connect(f"DATABASE={db_name};HOSTNAME={vpc_customer_private_ip};PORT={port};

 PROTOCOL=TCPIP;UID={master_user_id};PWD={master_password};SECURITY=ssl;SSLServerCertificate={path};",
 "", "")
 try:
 ibm_db.exec_immediate(conn, 'create table tablename (a int);')
 print("Query executed successfully")
 except Exception as e:

Encrypting with SSL/TLS 2428

Amazon Relational Database Service User Guide

 print(e)
 finally:
 ibm_db.close(conn)
 sys.exit(1)
 except Exception as ex:
 print("Trying to connect...")

if __name__ == "__main__":
 db2_connect()

2. Create the following shell script, which runs the Python file you created. Replace
python_file_name.py with the name of your Python script file.

#!/bin/bash
PEM_FILE=$1
number of certs in the PEM file
CERTS=$(grep 'END CERTIFICATE' $PEM_FILE| wc -l)

for N in $(seq 0 $(($CERTS - 1))); do
 ALIAS="${PEM_FILE%.*}-$N"
 cert=`cat $PEM_FILE | awk "n==$N { print }; /END CERTIFICATE/ { n++ }"`
 cat $PEM_FILE | awk "n==$N { print }; /END CERTIFICATE/ { n++ }" >
 $ALIAS.pem
 python3 <python_file_name.py> --path $ALIAS.pem
 output=`echo $?`
 if [$output == 1]; then
 break
 fi
done

3. To import the PEM file with the certificate bundle and run the shell script, run the following
command. Replace shell_file_name.sh with the name of your shell script file.

./shell_file_name.sh global-bundle.pem

Encrypting with SSL/TLS 2429

Amazon Relational Database Service User Guide

Db2 CLP

To connect to your Db2 database server using Db2 CLP

1. To connect to your Db2 instance using Db2 CLP, you require GSKit. Download the software
for your client from IBM Fix Central. Alternatively, you can either set up a thick client or
have a run-time client download GSKit.

2. Create a keystore.

gsk8capicmd_64 -keydb -create -db "directory/keystore-filename" -pw
 "changeThisPassword" -type pkcs12 -stash

3. Import the certificate bundles to the keystore.

gsk8capicmd_64 -cert -import -file global-bundle.pem -target directory/keystore-
filename> -target_stashed

4. Update the Db2 instance configuration.

db2 update dbm cfg using SSL_CLNT_KEYDB keystore-filename
 SSL_CLNT_STASH keystore stash file immediate

5. Catalog the node and database.

db2 catalog tcpip node ssluse1 REMOTE endpoint ssl_svcename security ssl

db2 catalog database testdb as ssltest at node ssluse1

6. Connect to the database.

db2 connect to ssltest user username using password

Using Kerberos authentication for Amazon RDS for Db2

You can use Kerberos authentication to authenticate users when they connect to your Amazon
RDS for Db2 DB instance. Your DB instance works with AWS Directory Service for Microsoft
Active Directory (AWS Managed Microsoft AD) to enable Kerberos authentication. When users
authenticate with an RDS for Db2 DB instance joined to the trusting domain, authentication

Using Kerberos authentication 2430

https://www.ibm.com/support/fixcentral/swg/selectFixes?parent=Security+Systems&product=ibm/Tivoli/IBM+Global+Security+Kit&release=All&platform=All&function=fixId&fixids=8.0.*&source=fc

Amazon Relational Database Service User Guide

requests are forwarded to the directory that you create with AWS Directory Service. For more
information, see What is AWS Directory Service? in the AWS Directory Service Administration Guide.

First, create an AWS Managed Microsoft AD directory to store user credentials. Then, add the
domain and other information of your AWS Managed Microsoft AD directory to your RDS for Db2
DB instance. When users authenticate with the RDS for Db2 DB instance, authentication requests
are forwarded to the AWS Managed Microsoft AD directory.

Keeping all of your credentials in the same directory can save you time and effort. With this
approach, you have a centralized place for storing and managing credentials for multiple DB
instances. Using a directory can also improve your overall security profile.

For information about Kerberos authentication, see the following topics.

Topics

• Setting up Kerberos authentication for Amazon RDS for Db2 DB instances

• Connecting to Amazon RDS for Db2 with Kerberos authentication

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information about version and Region availability of RDS for Db2 with
Kerberos authentication, see Supported Regions and DB engines for Kerberos authentication in
Amazon RDS.

Note

Kerberos authentication isn't supported for DB instance classes that are deprecated for RDS
for Db2 DB instances. For more information, see Amazon RDS for Db2 instance classes.

Overview of Kerberos authentication for RDS for Db2 DB instances

To set up Kerberos authentication for an RDS for Db2 DB instance, complete the following general
steps, which are described in more detail later:

1. Use AWS Managed Microsoft AD to create an AWS Managed Microsoft AD directory. You can use
the AWS Management Console, the AWS Command Line Interface (AWS CLI), or AWS Directory

Using Kerberos authentication 2431

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/what_is.html

Amazon Relational Database Service User Guide

Service to create the directory. For more information, see Create your AWS Managed Microsoft
AD directory in the AWS Directory Service Administration Guide.

2. Create an AWS Identity and Access Management (IAM) role that uses the managed IAM policy
AmazonRDSDirectoryServiceAccess. The IAM role allows Amazon RDS to make calls to your
directory.

For the IAM role to allow access, the AWS Security Token Service (AWS STS) endpoint must
be activated in the correct AWS Region for your AWS account. AWS STS endpoints are active
by default in all AWS Regions, and you can use them without any further actions. For more
information, see Activating and deactivating AWS STS in an AWS Region in the IAM User Guide.

3. Create or modify an RDS for Db2 DB instance by using the AWS Management Console, the AWS
CLI, or the RDS API with one of the following methods:

• Create a new RDS for Db2 DB instance using the console, the create-db-instance command,
or the CreateDBInstance API operation. For instructions, see Creating an Amazon RDS DB
instance.

• Modify an existing RDS for Db2 DB instance using the console, the modify-db-instance
command, or the ModifyDBInstance API operation. For instructions, see Modifying an Amazon
RDS DB instance.

• Restore an RDS for Db2 DB instance from a DB snapshot using the console, the restore-
db-instance-from-db-snapshot command, or the RestoreDBInstanceFromDBSnapshot API
operation. For instructions, see Restoring to a DB instance.

• Restore an RDS for Db2 DB instance to a point-in-time using the console, the restore-db-
instance-to-point-in-time command, or the RestoreDBInstanceToPointInTime API operation.
For instructions, see Restoring a DB instance to a specified time for Amazon RDS.

You can locate the DB instance in the same Amazon Virtual Private Cloud (VPC) as the directory
or in a different AWS account or VPC. When you create or modify the RDS for Db2 DB instance,
do the following tasks:

• Provide the domain identifier (d-* identifier) that was generated when you created your
directory.

• Provide the name of the IAM role that you created.

• Verify that the DB instance security group can receive inbound traffic from the directory
security group.

4. Configure your Db2 client, and verify that traffic can flow between the client host and AWS
Directory Service for the following ports:

Using Kerberos authentication 2432

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_create_directory.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_create_directory.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

• TCP/UDP port 53 – DNS

• TCP 88 – Kerberos authentication

• TCP 389 – LDAP

• TCP 464 – Kerberos authentication

Managing a DB instance in a domain

You can use the AWS Management Console, the AWS CLI, or the RDS API to manage your DB
instance and its relationship with your Microsoft Active Directory. For example, you can associate
an Active Directory to enable Kerberos authentication. You can also remove the association for
an Active Directory to disable Kerberos authentication. You can also move a DB instance to be
externally authenticated by one Microsoft Active Directory to another.

For example, running the modify-db-instance CLI command, you can perform the following
actions:

• Re-attempt enabling Kerberos authentication for a failed membership by specifying the current
membership's directory ID for the --domain option.

• Disable Kerberos authentication on a DB instance by specifying none for the --domain option.

• Move a DB instance from one domain to another by specifying the domain identifier of the new
domain for the --domain option.

Understanding domain membership

After you create or modify your DB instance, it becomes a member of the domain. You can view
the status of the domain membership in the console or by running the describe-db-instances
command. The status of the DB instance can be one of the following:

• kerberos-enabled – The DB instance has Kerberos authentication enabled.

• enabling-kerberos – AWS is in the process of enabling Kerberos authentication on this DB
instance.

• pending-enable-kerberos – Enabling Kerberos authentication is pending on this DB
instance.

• pending-maintenance-enable-kerberos – AWS will attempt to enable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

Using Kerberos authentication 2433

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• pending-disable-kerberos – Disabling Kerberos authentication is pending on this DB
instance.

• pending-maintenance-disable-kerberos – AWS will attempt to disable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• enable-kerberos-failed – A configuration problem prevented AWS from enabling Kerberos
authentication on the DB instance. Correct the configuration problem before re-issuing the
command to modify the DB instance.

• disabling-kerberos – AWS is in the process of disabling Kerberos authentication on this DB
instance.

A request to enable Kerberos authentication can fail because of a network connectivity issue or an
incorrect IAM role. In some cases, the attempt to enable Kerberos authentication might fail when
you create or modify a DB instance. If this happens, verify that you are using the correct IAM role,
and then modify the DB instance to join the domain.

Setting up Kerberos authentication for Amazon RDS for Db2 DB instances

You use AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) to set
up Kerberos authentication for an RDS for Db2 DB instance. To set up Kerberos authentication,
follow these steps:

Topics

• Step 1: Create a directory using AWS Managed Microsoft AD

• Step 2: Create an IAM role for Amazon RDS to access AWS Directory Service

• Step 3: Create and configure users

• Step 4: Create an RDS for Db2 admin group in AWS Managed Microsoft AD

• Step 5: Create or modify an RDS for Db2 DB instance

• Step 6: Configure a Db2 client

Step 1: Create a directory using AWS Managed Microsoft AD

AWS Directory Service creates a fully managed Active Directory in the AWS Cloud. When you create
an AWS Managed Microsoft AD directory, AWS Directory Service creates two domain controllers
and DNS servers for you. The directory servers are created in different subnets in a VPC. This
redundancy helps ensure that your directory remains accessible even if a failure occurs.

Using Kerberos authentication 2434

Amazon Relational Database Service User Guide

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the
following tasks on your behalf:

• Sets up an Active Directory within your VPC.

• Creates a directory administrator account with the username Admin and the specified password.
You use this account to manage your directory.

Important

Make sure to save this password. AWS Directory Service doesn't store this password, and
it can't be retrieved or reset.

• Creates a security group for the directory controllers. The security group must permit
communication with the RDS for Db2 DB instance.

When you launch AWS Directory Service for Microsoft Active Directory, AWS creates an
organizational unit (OU) that contains all of your directory's objects. This OU, which has the
NetBIOS name that you entered when you created your directory, is located in the domain root.
The domain root is owned and managed by AWS.

The Admin account that was created with your AWS Managed Microsoft AD directory has
permissions for the most common administrative activities for your OU:

• Create, update, or delete users.

• Add resources to your domain such as file or print servers, and then assign permissions for those
resources to users in your OU.

• Create additional OUs and containers.

• Delegate authority.

• Restore deleted objects from the Active Directory Recycle Bin.

• Run Active Directory and Domain Name Service (DNS) modules for Windows PowerShell on the
AWS Directory Service.

The Admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders).

• View DNS event logs.

Using Kerberos authentication 2435

Amazon Relational Database Service User Guide

• View security event logs.

To create a directory with AWS Managed Microsoft AD

1. Sign in to the AWS Management Console and open the AWS Directory Service console at
https://console.aws.amazon.com/directoryservicev2/.

2. Choose Set up directory.

3. Choose AWS Managed Microsoft AD. AWS Managed Microsoft AD is the only option currently
supported for use with Amazon RDS.

4. Choose Next.

5. On the Enter directory information page, provide the following information:

• Edition – Choose the edition that meets your requirements.

• Directory DNS name – The fully qualified name for the directory, such as
corp.example.com.

• Directory NetBIOS name – An optional short name for the directory, such as CORP.

• Directory description – An optional description for the directory.

• Admin password – The password for the directory administrator. The directory creation
process creates an administrator account with the username Admin and this password.

The directory administrator password can't include the word "admin." The password is case-
sensitive and must be 8–64 characters in length. It must also contain at least one character
from three of the following four categories:

• Lowercase letters (a–z)

• Uppercase letters (A–Z)

• Numbers (0–9)

• Nonalphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

• Confirm password – Retype the administrator password.

Important

Make sure that you save this password. AWS Directory Service doesn't store this
password, and it can't be retrieved or reset.

6. Choose Next.
Using Kerberos authentication 2436

https://console.aws.amazon.com/directoryservicev2/

Amazon Relational Database Service User Guide

7. On the Choose VPC and subnets page, provide the following information:

• VPC – Choose the VPC for the directory. You can create the RDS for Db2 DB instance in this
same VPC or in a different VPC.

• Subnets – Choose the subnets for the directory servers. The two subnets must be in
different Availability Zones.

8. Choose Next.

9. Review the directory information. If changes are needed, choose Previous and make the
changes. When the information is correct, choose Create directory.

Using Kerberos authentication 2437

Amazon Relational Database Service User Guide

It takes several minutes for the directory to be created. When it has been successfully created, the
Status value changes to Active.

To see information about your directory, choose the directory ID under Directory ID. Make a note
of the Directory ID value. You need this value when you create or modify your RDS for Db2 DB
instance.

Step 2: Create an IAM role for Amazon RDS to access AWS Directory Service

For Amazon RDS to call AWS Directory Service for you, your AWS account needs an IAM role that
uses the managed IAM policy AmazonRDSDirectoryServiceAccess. This role allows Amazon
RDS to make calls to AWS Directory Service.

When you create a DB instance using the AWS Management Console and your console user account
has the iam:CreateRole permission, the console creates the needed IAM role automatically. In
this case, the role name is rds-directoryservice-kerberos-access-role. Otherwise, you
must create the IAM role manually. When you create this IAM role, choose Directory Service,
and attach the AWS managed policy AmazonRDSDirectoryServiceAccess to it.

For more information about creating IAM roles for a service, see Creating a role to delegate
permissions to an AWS service in the IAM User Guide.

Using Kerberos authentication 2438

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

Note

The IAM role used for Windows Authentication for RDS for Microsoft SQL Server can't be
used for RDS for Db2.

As an alternative to using the AmazonRDSDirectoryServiceAccess managed policy, you can
create policies with the required permissions. In this case, the IAM role must have the following IAM
trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role must also have the following IAM role policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",
 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"
],
 "Effect": "Allow",
 "Resource": "*"

Using Kerberos authentication 2439

Amazon Relational Database Service User Guide

 }
]
}

Step 3: Create and configure users

You can create users by using the Active Directory Users and Computers tool. This is one of the
Active Directory Domain Services and Active Directory Lightweight Directory Services tools. For
more information, see Add Users and Computers to the Active Directory domain in the Microsoft
documentation. In this case, users are individuals or other entities, such as their computers, that are
part of the domain and whose identities are being maintained in the directory.

To create users in an AWS Directory Service directory, you must be connected to a Windows-based
Amazon EC2 instance that's a member of the AWS Directory Service directory. At the same time,
you must be signed in as a user that has privileges to create users. For more information, see Create
a user in the AWS Directory Service Administration Guide.

Step 4: Create an RDS for Db2 admin group in AWS Managed Microsoft AD

RDS for Db2 doesn't support Kerberos authentication for the master user or the two Amazon RDS
reserved users rdsdb and rdsadmin. Instead, you need to create a new group called masterdba
in AWS Managed Microsoft AD. For more information, see Create a Group Account in Active
Directory in the Microsoft documentation. Any users that you add to this group will have master
user privileges.

After you enable Kerberos authentication, the master user loses the masterdba role. As a result,
the master user won't be able to access the instance local user group membership unless you
disable Kerberos authentication. To continue to use the master user with password login, create a
user on AWS Managed Microsoft AD with the same name as the master user. Then, add that user to
the group masterdba.

Step 5: Create or modify an RDS for Db2 DB instance

Create or modify an RDS for Db2 DB instance for use with your directory. You can use the AWS
Management Console, the AWS CLI, or the RDS API to associate a DB instance with a directory. You
can do this in one of the following ways:

• Create a new RDS for Db2 DB instance using the console, the create-db-instance command, or
the CreateDBInstance API operation. For instructions, see Creating an Amazon RDS DB instance.

Using Kerberos authentication 2440

https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/create-an-active-directory-server#add-users-and-computers-to-the-active-directory-domain
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups_create_user.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups_create_user.html
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/create-a-group-account-in-active-directory
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/create-a-group-account-in-active-directory
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

• Modify an existing RDS for Db2 DB instance using the console, the modify-db-instance
command, or the ModifyDBInstance API operation. For instructions, see Modifying an Amazon
RDS DB instance.

• Restore an RDS for Db2 DB instance from a DB snapshot using the console, the restore-db-
instance-from-db-snapshot command, or the RestoreDBInstanceFromDBSnapshot API operation.
For instructions, see Restoring to a DB instance.

• Restore an RDS for Db2 DB instance to a point-in-time using the console, the restore-db-
instance-to-point-in-time command, or the RestoreDBInstanceToPointInTime API operation. For
instructions, see Restoring a DB instance to a specified time for Amazon RDS.

Kerberos authentication is only supported for RDS for Db2 DB instances in a VPC. The DB instance
can be in the same VPC as the directory, or in a different VPC. The DB instance must use a
security group that allows ingress and egress within the directory's VPC so the DB instance can
communicate with the directory.

Console

When you use the console to create, modify, or restore a DB instance, choose Password and
Kerberos authentication in the Database authentication section. Then choose Browse Directory.
Select the directory or choose Create directory to use the Directory Service.

Using Kerberos authentication 2441

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

AWS CLI

When you use the AWS CLI, the following parameters are required for the DB instance to be able to
use the directory that you created:

• For the --domain parameter, use the domain identifier ("d-*" identifier) generated when you
created the directory.

• For the --domain-iam-role-name parameter, use the role you created that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess.

The following example modifies a DB instance to use a directory. Replace the following
placeholders in the example with your own values:

• db_instance_name – The name of your RDS for Db2 DB instance.

• directory_id – The ID of the AWS Directory Service for Microsoft Active Directory directory
that you created.

• role_name – The name of the IAM role that you created.

aws rds modify-db-instance --db-instance-identifier db_instance_name --domain
 d-directory_id --domain-iam-role-name role_name

Important

If you modify a DB instance to enable Kerberos authentication, reboot the DB instance after
making the change.

Step 6: Configure a Db2 client

To configure a Db2 client

1. Create an /etc/krb5.conf file (or equivalent) to point to the domain.

Note

For Windows operating systems, create a C:\windows\krb5.ini file.

Using Kerberos authentication 2442

Amazon Relational Database Service User Guide

2. Verify that traffic can flow between the client host and AWS Directory Service. Use a network
utility such as Netcat for the following tasks:

a. Verify traffic over DNS for port 53.

b. Verify traffic over TCP/UDP for port 53 and for Kerberos, which includes ports 88 and 464
for AWS Directory Service.

3. Verify that traffic can flow between the client host and the DB instance over the database port.
You can use the command db2 to connect and access the database.

The following example is /etc/krb5.conf file content for AWS Managed Microsoft AD:

[libdefaults]
default_realm = EXAMPLE.COM
[realms]
EXAMPLE.COM = {
kdc = example.com
admin_server = example.com
}
[domain_realm]
.example.com = EXAMPLE.COM
example.com = EXAMPLE.COM

Connecting to Amazon RDS for Db2 with Kerberos authentication

Use the following procedure to connect to your Amazon RDS for Db2 DB instance with Kerberos
authentication.

To connect to RDS for Db2 with Kerberos authentication

1. At a command prompt, run the following command. In the following example, replace
username with your Microsoft Active Directory username.

kinit username

2. If the RDS for Db2 DB instance is using a publicly accessible VPC, add the IP address for your
DB instance endpoint to your /etc/hosts file on the Amazon EC2 client. The following
example obtains the IP address and then adds it to the /etc/hosts file.

% dig +short Db2-endpoint.AWS-Region.rds.amazonaws.com
;; Truncated, retrying in TCP mode.

Using Kerberos authentication 2443

Amazon Relational Database Service User Guide

ec2-34-210-197-118.AWS-Region.compute.amazonaws.com.
34.210.197.118

% echo "34.210.197.118 Db2-endpoint.AWS-Region.rds.amazonaws.com" >> /etc/hosts

3. Use the following command to log in to an RDS for Db2 DB instance that is associated with
Active Directory. Replace database_name with the name of your RDS for Db2 database.

db2 connect to database_name

Using Kerberos authentication 2444

Amazon Relational Database Service User Guide

Administering your Amazon RDS for Db2 DB instance

This topic covers the common management tasks that you perform with an Amazon RDS for Db2
DB instance. Some tasks are the same for all Amazon RDS DB instances. Other tasks are specific to
RDS for Db2.

The following tasks are common to all RDS databases. There are also tasks specific to RDS for Db2,
such as connecting to an RDS for Db2 database with a standard SQL client.

Task area Relevant documentation

Instance classes, storage, and PIOPS

If you are creating a production instance, learn how instance
classes, storage types, and Provisioned IOPS work in Amazon
RDS.

DB instance classes

Amazon RDS storage types

Multi-AZ deployments

A production DB instance should use Multi-AZ deploymen
ts. Multi-AZ deployments provide increased availability, data
durability, and fault tolerance for DB instances.

Configuring and managing
a Multi-AZ deployment for
Amazon RDS

Amazon VPC

If your AWS account has a default virtual private cloud (VPC),
then your DB instance is automatically created inside the
default VPC. If your account doesn't have a default VPC, and
you want the DB instance in a VPC, create the VPC and subnet
groups before you create the DB instance.

Working with a DB instance in
a VPC

Security groups

By default, DB instances use a firewall that prevents access.
Make sure that you create a security group with the correct IP
addresses and network configuration to access the DB instance.

Controlling access with
security groups

Parameter groups Adding IBM IDs to a
parameter group for RDS for
Db2 DB instances

Administering your RDS for Db2 DB instance 2445

Amazon Relational Database Service User Guide

Task area Relevant documentation

Because your RDS for Db2 DB instance requires that you add
the rds.ibm_customer_id and rds.ibm_site_id
parameters, create a parameter group before you create
the DB instance. If your DB instance requires other specific
database parameters, also add them to this parameter group
before you create the DB instance.

Parameter groups for Amazon
RDS

Option groups

If your DB instance requires specific database options, create
an option group before you create the DB instance.

Options for Amazon RDS for
Db2 DB instances

Connecting to your DB instance

After creating a security group and associating it to a DB
instance, you can connect to the DB instance with any standard
SQL client application such as IBM Db2 CLP.

Connecting to your Db2 DB
instance

Backup and restore

You can configure your DB instance to take automated storage
backups, or take manual storage snapshots, and then restore
instances from the backups or snapshots.

Backing up, restoring, and
exporting data

Monitoring

You can monitor an RDS for Db2 DB instance with IBM Db2
Data Management Console.

You can also monitor an RDS for Db2 DB instance by using
CloudWatch Amazon RDS metrics, events, and enhanced
monitoring.

Connecting to your Amazon
RDS for Db2 DB instance with
IBM Db2 Data Management
Console

Viewing metrics in the
Amazon RDS console

Viewing Amazon RDS events

Monitoring OS metrics with
Enhanced Monitoring

Administering your RDS for Db2 DB instance 2446

Amazon Relational Database Service User Guide

Task area Relevant documentation

Log files

You can access the log files for your RDS for Db2 DB instance.

Monitoring Amazon RDS log
files

Topics

• Performing common system tasks for Amazon RDS for Db2 DB instances

• Performing common database tasks for Amazon RDS for Db2 DB instances

Performing common system tasks for Amazon RDS for Db2 DB
instances

You can perform certain common database administrator tasks related to the system on your
Amazon RDS DB instances running Db2. To deliver a managed service experience, Amazon RDS
doesn't provide shell access to DB instances, and restricts access to certain system procedures and
tables that require advanced privileges.

For information about granting and revoking privileges and attaching to the remote database for
RDS for Db2, see the following topics.

Topics

• Granting and revoking privileges for RDS for Db2

• Attaching to the remote RDS for Db2 DB instance

Creating a custom database endpoint

When you migrate to Amazon RDS for Db2, you can use custom database endpoint URLs to
minimize changes to your application. For example, if you use db2.example.com as your current
DNS record, you can add it to Amazon Route 53. In Route 53, you can use private hosted zones to
map your current DNS database endpoint to an RDS for Db2 database endpoint. To add a custom
A or CNAME record for an Amazon RDS database endpoint, see Registering and managing domains
using Amazon Route 53 in the Amazon Route 53 Developer Guide.

System tasks 2447

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/registrar.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/registrar.html

Amazon Relational Database Service User Guide

Note

If you can't transfer your domain to Route 53, you can use your DNS provider to create
a CNAME record for the RDS for Db2 database endpoint URL. Consult your DNS provider
documentation.

Granting and revoking privileges for RDS for Db2

Users gain access to databases through membership in groups that are attached to databases.

Use the following procedures to grant and revoke privileges to control access to your database.

These procedures use IBM Db2 CLP running on a local machine to connect to an RDS for Db2 DB
instance. Be sure to catalog the TCPIP node and the database to connect to your RDS for Db2 DB
instance running on your local machine. For more information, see Connecting to your Amazon
RDS for Db2 DB instance with IBM Db2 CLP.

Topics

• Granting a user access to your database

• Changing a user's password

• Adding groups to a user

• Removing groups from a user

• Removing a user

• Listing users

• Creating a role

• Granting a role

• Revoking a role

• Dropping a role

• Granting database authorization

• Revoking database authorization

System tasks 2448

Amazon Relational Database Service User Guide

Granting a user access to your database

To grant a user access to your database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

This command produces output similar to the following example:

Database Connection Information

Database server = DB2/LINUXX8664 11.5.8.0
SQL authorization ID = ADMIN
Local database alias = RDSADMIN

2. Add a user to your authorization list by calling rdsadmin.add_user. For more information,
see rdsadmin.add_user.

db2 "call rdsadmin.add_user(
 'username',
 'password',
 'group_name,group_name')"

3. (Optional) Add additional groups to the user by calling rdsadmin.add_groups. For more
information, see rdsadmin.add_groups.

db2 "call rdsadmin.add_groups(
 'username',
 'group_name,group_name')"

4. Confirm the authorities that are available to the user. In the following example, replace
rds_database_alias, master_user, and master_password with your own information.
Also, replace username with the user's username.

db2 terminate
db2 connect to rds_database_alias user master_user using master_password
db2 "SELECT SUBSTR(AUTHORITY,1,20) AUTHORITY, D_USER, D_GROUP, D_PUBLIC

System tasks 2449

Amazon Relational Database Service User Guide

 FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID ('username', 'U')) AS
 T
 ORDER BY AUTHORITY"

This command produces output similar to the following example:

AUTHORITY D_USER D_GROUP D_PUBLIC
-------------------- ------ ------- --------
ACCESSCTRL N N N
BINDADD N N N
CONNECT N N N
CREATETAB N N N
CREATE_EXTERNAL_ROUT N N N
CREATE_NOT_FENCED_RO N N N
CREATE_SECURE_OBJECT N N N
DATAACCESS N N N
DBADM N N N
EXPLAIN N N N
IMPLICIT_SCHEMA N N N
LOAD N N N
QUIESCE_CONNECT N N N
SECADM N N N
SQLADM N N N
SYSADM * N *
SYSCTRL * N *
SYSMAINT * N *
SYSMON * N *
WLMADM N N N

5. Grant the RDS for Db2 roles ROLE_NULLID_PACKAGES, ROLE_TABLESPACES, and
ROLE_PROCEDURES to the group that you added the user to. For more information, see
Amazon RDS for Db2 default roles.

Note

We create RDS for Db2 DB instances in RESTRICTIVE mode. Therefore, the RDS for
Db2 roles ROLE_NULLID_PACKAGES, ROLE_TABLESPACES, and ROLE_PROCEDURES
grant execute privileges on NULLID packages for IBM Db2 CLP and Dynamic SQL.
These roles also grant user privileges on tablespaces.

System tasks 2450

Amazon Relational Database Service User Guide

a. Connect to your Db2 database. In the following example, replace database_name,
master_user, and master_password with your own information.

db2 connect to database_name user master_user using master_password

b. Grant the role ROLE_NULLED_PACKAGES to a group. In the following example, replace
group_name with the name of the group that you want to add the role to.

db2 "grant role ROLE_NULLID_PACKAGES to group group_name"

c. Grant the role ROLE_TABLESPACES to the same group. In the following example, replace
group_name with the name of the group that you want to add the role to.

db2 "grant role ROLE_TABLESPACES to group group_name"

d. Grant the role ROLE_PROCEDURES to the same group. In the following example, replace
group_name with the name of the group that you want to add the role to.

db2 "grant role ROLE_PROCEDURES to group group_name"

6. Grant connect, bindadd, createtab, and IMPLICIT_SCHEMA authorities to the group that
you added the user to. In the following example, replace group_name with the name of the
second group that you added the user to.

db2 "grant usage on workload SYSDEFAULTUSERWORKLOAD to public"
db2 "grant connect, bindadd, createtab, implicit_schema on database to
 group group_name"

7. Repeat steps 4 through 6 for each additional group that you added the user to.

8. Test the user's access by connecting as the user, creating a table, inserting values
into the table, and returning data from the table. In the following example, replace
rds_database_alias, username, and password with the name of the database and the
user's username and password.

db2 connect to rds_database_alias user username using password
db2 "create table t1(c1 int not null)"
db2 "insert into t1 values (1),(2),(3),(4)"
db2 "select * from t1"

System tasks 2451

Amazon Relational Database Service User Guide

Changing a user's password

To change a user's password

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Change the password by calling rdsadmin.change_password. For more information, see
rdsadmin.change_password.

db2 "call rdsadmin.change_password(
 'username',
 'new_password')"

Adding groups to a user

To add groups to a user

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Add groups to a user by calling rdsadmin.add_groups. For more information, see
rdsadmin.add_groups.

db2 "call rdsadmin.add_groups(
 'username',
 'group_name,group_name')"

System tasks 2452

Amazon Relational Database Service User Guide

Removing groups from a user

To remove groups from a user

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Remove groups by calling rdsadmin.remove_groups. For more information, see
rdsadmin.remove_groups.

db2 "call rdsadmin.remove_groups(
 'username',
 'group_name,group_name')"

Removing a user

To remove a user from the authorization list

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Remove a user from your authorization list by calling rdsadmin.remove_user. For more
information, see rdsadmin.remove_user.

db2 "call rdsadmin.remove_user('username')"

Listing users

To list users on an authorization list, call the rdsadmin.list_users stored procedure. For more
information, see rdsadmin.list_users.

db2 "call rdsadmin.list_users()"

System tasks 2453

Amazon Relational Database Service User Guide

Creating a role

You can use the rdsadmin.create_role stored procedure to create a role.

To create a role

1. Connect to the rdsadmin database. In the following example, replace master_username and
master_password with your information.

db2 connect to rdsadmin user master_username using master_password

2. Set Db2 to output content.

db2 set serveroutput on

3. Create a role. For more information, see the section called “rdsadmin.create_role”.

db2 "call rdsadmin.create_role(
 'database_name',
 'role_name')"

4. Set Db2 to not output content.

db2 set serveroutput off

Granting a role

You can use the rdsadmin.grant_role stored procedure to assign a role to a role, user, or group.

To assign a role

1. Connect to the rdsadmin database. In the following example, replace master_username and
master_password with your information.

db2 connect to rdsadmin user master_username using master_password

2. Set Db2 to output content.

db2 set serveroutput on

3. Assign a role. For more information, see the section called “rdsadmin.grant_role”.

System tasks 2454

Amazon Relational Database Service User Guide

db2 "call rdsadmin.grant_role(
 'database_name',
 'role_name',
 'grantee',
 'admin_option')"

4. Set Db2 to not output content.

db2 set serveroutput off

Revoking a role

You can use the rdsadmin.revoke_role stored procedure to revoke a role from a role, user, or group.

To revoke a role

1. Connect to the rdsadmin database. In the following example, replace master_username and
master_password with your information.

db2 connect to rdsadmin user master_username using master_password

2. Revoke a role. For more information, see the section called “rdsadmin.revoke_role”.

db2 "call rdsadmin.revoke_role(
 ?,
 'database_name',
 'role_name',
 'grantee')"

Dropping a role

You can use the rdsadmin.drop_role stored procedure to drop a role.

To drop a role

1. Connect to the rdsadmin database. In the following example, replace master_username and
master_password with your information.

System tasks 2455

Amazon Relational Database Service User Guide

db2 connect to rdsadmin user master_username using master_password

2. Drop a role. For more information, see the section called “rdsadmin.drop_role”.

db2 "call rdsadmin.drop_role(
 ?,
 'database_name',
 'role_name')"

Granting database authorization

The master user, who has DBADM authorization, can grant DBADM, ACCESSCTRL, or DATAACCESS
authorization to a role, user, or group.

To grant database authorization

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Grant a user access by calling rdsadmin.dbadm_grant. For more information, see
rdsadmin.dbadm_grant.

db2 "call rdsadmin.dbadm_grant(
 ?,
 'database_name,
 'authorization',
 'grantee')"

Example use case

The following procedure walks you through creating a role, granting DBADM authorization to the
role, assigning the role to a user, and granting the role to a group.

System tasks 2456

Amazon Relational Database Service User Guide

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Create a role called PROD_ROLE for a database called TESTDB. For more information, see
rdsadmin.create_role.

db2 "call rdsadmin.create_role(
 'TESTDB',
 'PROD_ROLE')"

3. Assign the role to a user called PROD_USER. The PROD_USER is given admin authorization to
assign roles. For more information, see rdsadmin.grant_role.

db2 "call rdsadmin.grant_role(
 ?,
 'TESTDB',
 'PROD_ROLE',
 'USER PROD_USER',
 'Y')"

4. (Optional) Provide additional authorization or privileges. The following example grants
DBADM authorization to a role named PROD_ROLE for a database called FUNDPROD. For more
information, see rdsadmin.dbadm_grant.

db2 "call rdsadmin.dbadm_grant(
 ?,
 'FUNDPROD',
 'DBADM',
 'ROLE PROD_ROLE')"

5. Terminate your session.

db2 terminate

6. Connect to the TESTDB database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

System tasks 2457

Amazon Relational Database Service User Guide

db2 connect to TESTDB user master_username using master_password

7. Add more authorizations to the role.

db2 "grant connect, implicit_schema on database to role PROD_ROLE"

8. Grant the role PROD_ROLE to a group.

db2 "grant role PROD_ROLE to group PRODGRP"

Users who belong to the group PRODGRP can now perform actions such as connecting to the
TESTDB database, creating tables, or creating schemas.

Revoking database authorization

The master user, who has DBADM authorization, can revoke DBADM, ACCESSCTRL, or DATAACCESS
authorization from a role, user, or group.

To revoke database authorization

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Revoke user access by calling rdsadmin.dbadm_revoke. For more information, see
rdsadmin.dbadm_revoke.

db2 "call rdsadmin.dbadm_revoke(
 ?,
 'database_name,
 'authorization',
 'grantee')"

System tasks 2458

Amazon Relational Database Service User Guide

Attaching to the remote RDS for Db2 DB instance

Use the following steps to attach to your remote RDS for Db2 DB instance and run get snapshot
operations.

To attach to the remote RDS for Db2 DB instance

1. Run a client-side IBM Db2 CLP session. For information about cataloging your RDS for Db2
DB instance and database, see Connecting to your Amazon RDS for Db2 DB instance with IBM
Db2 CLP. Make a note of the master username and master password for your RDS for Db2 DB
instance.

2. Attach to the RDS for Db2 DB instance. In the following example, replace node_name,
master_username, and master_password with the TCPIP node name that you catalogued
and the master username and master password for your RDS for Db2 DB instance.

db2 attach to node_name user master_username using master_password

After attaching to the remote RDS for Db2 DB instance, you can run the following commands and
other get snapshot commands. For more information, see GET SNAPSHOT command in the IBM
Db2 documentation.

db2 list applications
db2 get snapshot for all databases
db2 get snapshot for database manager
db2 get snapshot for all applications

Performing common database tasks for Amazon RDS for Db2 DB
instances

You can perform certain common DBA tasks related to databases on your Amazon RDS for Db2 DB
instances. To deliver a managed service experience, Amazon RDS doesn't provide shell access to DB
instances. Also, the master user can't run commands or utilities requiring SYSADM, SYSMAINT, or
SYSCTRL authorities.

For information about common tasks for buffer pools, databases, and tablespaces, see the
following topics.

Database tasks 2459

https://www.ibm.com/docs/en/db2/11.5?topic=commands-get-snapshot

Amazon Relational Database Service User Guide

Topics

• Common tasks for buffer pools

• Common tasks for databases

• Common tasks for tablespaces

Common tasks for buffer pools

You can create, alter, or drop buffer pools for an RDS for Db2 database. Creating, altering, or
dropping buffer pools requires higher-level SYSADM or SYSCTRL authority, which isn't available to
the master user. Instead, use Amazon RDS stored procedures.

You can also flush buffer pools.

Topics

• Creating a buffer pool

• Altering a buffer pool

• Dropping a buffer pool

• Flushing the buffer pools

Creating a buffer pool

To create a buffer pool for your RDS for Db2 database, call the rdsadmin.create_bufferpool
stored procedure. For more information, see CREATE BUFFERPOOL statement in the IBM Db2
documentation.

To create a buffer pool

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. Create a buffer pool by calling rdsadmin.create_bufferpool. For more information, see
rdsadmin.create_bufferpool.

db2 "call rdsadmin.create_bufferpool(

Database tasks 2460

https://www.ibm.com/docs/en/db2/11.5?topic=statements-create-bufferpool

Amazon Relational Database Service User Guide

 'database_name',
 'buffer_pool_name',
 buffer_pool_size,
 'immediate',
 'automatic',
 page_size,
 number_block_pages,
 block_size)"

Altering a buffer pool

To alter a buffer pool for your RDS for Db2 database, call the rdsadmin.alter_bufferpool
stored procedure. For more information, see ALTER BUFFERPOOL statement in the IBM Db2
documentation.

To alter a buffer pool

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_username using master_password"

2. Alter a buffer pool by calling rdsadmin.alter_bufferpool. For more information, see
rdsadmin.alter_bufferpool.

db2 "call rdsadmin.alter_bufferpool(
 'database_name',
 'buffer_pool_name',
 buffer_pool_size,
 'immediate',
 'automatic',
 change_number_blocks,
 number_block_pages,
 block_size)"

Dropping a buffer pool

To drop a buffer pool for your RDS for Db2 database, call the rdsadmin.drop_bufferpool
stored procedure. For more information, see Dropping buffer pools in the IBM Db2 documentation.

Database tasks 2461

https://www.ibm.com/docs/en/db2/11.5?topic=statements-alter-bufferpool
https://www.ibm.com/docs/en/db2/11.5?topic=pools-dropping-buffer

Amazon Relational Database Service User Guide

Important

Make sure that no tablespaces are assigned to the buffer pool that you want to drop.

To drop a buffer pool

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. Drop a buffer pool by calling rdsadmin.drop_bufferpool. For more information, see
rdsadmin.drop_bufferpool.

db2 "call rdsadmin.drop_bufferpool(
 'database_name',
 'buffer_pool_name')"

Flushing the buffer pools

You can flush the buffer pools to force a checkpoint so that RDS for Db2 writes pages from
memory to storage.

Note

You don't need to flush the buffer pools. Db2 writes logs synchronously before it commits
transactions. The dirty pages might still be in a buffer pool, but Db2 writes them to
storage asynchronously. Even if the system shuts down unexpectedly, when you restart the
database, Db2 automatically performs crash recovery. During crash recovery, Db2 writes
committed changes to the database or rolls back changes for uncommitted transactions.

Database tasks 2462

Amazon Relational Database Service User Guide

To flush the buffer pools

1. Connect to your Db2 database using the master username and master password for your
RDS for Db2 DB instance. In the following example, replace rds_database_alias,
master_username, and master_password with your own information.

db2 connect to rds_database_alias user master_username using master_password

2. Flush the buffer pools.

db2 flush bufferpools all

Common tasks for databases

You can create, drop, or restore databases on your RDS for Db2 DB instance. Creating, dropping,
or restoring databases requires higher-level SYSADM authority, which isn't available to the master
user. Instead, use Amazon RDS stored procedures.

You can also perform common management tasks such as monitoring, maintenance, and the
collection of information about your databases.

Topics

• Creating a database

• Configuring settings for a database

• Modifying database parameters

• Configuring log retention

• Listing log information

• Deactivating a database

• Activating a database

• Reactivating a database

• Dropping a database

• Restoring a database

• Listing databases

• Collecting information about databases

Database tasks 2463

Amazon Relational Database Service User Guide

• Forcing applications off of databases

• Generating performance reports

Creating a database

To create a database on your RDS for Db2 DB instance, call the rdsadmin.create_database
stored procedure. For more information, see CREATE DATABASE command in the IBM Db2
documentation.

Note

If you plan on modifying the db2_compatibility_vector parameter, modify
the parameter before creating a database. For more information, see Setting the
db2_compatibility_vector parameter.

To create a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. Create a database by calling rdsadmin.create_database. For more information, see
rdsadmin.create_database.

db2 "call rdsadmin.create_database('database_name')"

3. (Optional) Create additional databases by calling rdsadmin.create_database for each
database you want to create. Each Db2 DB instance can contain up to 50 databases. For more
information, see rdsadmin.create_database.

db2 "call rdsadmin.create_database('database_name')"

4. (Optional) Confirm that your database was created by using one of the following methods:

• Call rdsadmin.list_databases. For more information, see rdsadmin.list_databases.

• Run the following SQL command:

Database tasks 2464

https://www.ibm.com/docs/en/db2/11.5?topic=commands-create-database

Amazon Relational Database Service User Guide

db2 "select varchar(r.task_type,25) as task_type, r.database_name,
 varchar(r.lifecycle,15) as lifecycle, r.created_at, r.database_name,
 varchar(bson_to_json(task_input_params),256) as input_params,
 varchar(r.task_output,1024) as task_output
 from table(rdsadmin.get_task_status(null,null,'create_database'))
 as r order by created_at desc"

Configuring settings for a database

To configure the settings for a database on your RDS for Db2 DB instance, call the
rdsadmin.set_configuration stored procedure. For example, you could configure the number
of buffers or buffer manipulators to create during a restore operation.

To configure settings for a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. (Optional) Check your current configuration settings by calling
rdsadmin.show_configuration. For more information, see the section called
“rdsadmin.show_configuration”.

db2 "call rdsadmin.show_configuration('name')"

3. Configure the settings for the database by calling rdsadmin.set_configuration. For more
information, see the section called “rdsadmin.set_configuration”.

db2 "call rdsadmin.set_configuration(
 'name',
 'value')"

Modifying database parameters

Amazon RDS for Db2 uses three types of parameters: database manager configuration parameters,
registry variables, and database configuration parameters. You can update the first two types

Database tasks 2465

Amazon Relational Database Service User Guide

through parameter groups and the last type through the rdsadmin.update_db_param stored
procedure.

Note

You can only modify the values of existing parameters. You can't add new parameters that
RDS for Db2 doesn't support.

For more information these parameters and how to modify their values, see the section called
“Db2 parameters”.

Configuring log retention

To configure how long Amazon RDS retains log files for your RDS for Db2 database, call the
rdsadmin.set_archive_log_retention stored procedure.

To configure log retention for a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. (Optional) Check your current configuration for log retention by calling
rdsadmin.show_archive_log_retention. For more information, see the section called
“rdsadmin.show_archive_log_retention”.

db2 "call rdsadmin.show_archive_log_retention(
 ?,
 'database_name')"

3. Configure log retention for the database by calling
rdsadmin.set_archive_log_retention. For more information, see the section called
“rdsadmin.set_archive_log_retention”.

db2 "call rdsadmin.set_archive_log_retention(
 ?,
 'database_name',

Database tasks 2466

Amazon Relational Database Service User Guide

 'archive_log_retention_hours')"

Listing log information

To list details about archive log files, including such details as total storage size used, call the
rdsadmin.list_archive_log_information stored procedure.

To list log information for a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. Return a list of log file information by calling
rdsadmin.list_archive_log_information. For more information, see the section called
“rdsadmin.list_archive_log_information”.

db2 "call rdsadmin.list_archive_log_information(
 ?,
 'database_name')"

Deactivating a database

To deactivate a database on your RDS for Db2 DB instance, call the
rdsadmin.deactivate_database stored procedure.

By default, Amazon RDS activates a database when you create a database on your RDS for Db2 DB
instance. You can deactivate infrequently used databases to conserve memory resources.

To deactivate a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

Database tasks 2467

Amazon Relational Database Service User Guide

2. Deactivate a database by calling rdsadmin.deactivate_database. For more information,
see rdsadmin.deactivate_database.

db2 "call rdsadmin.deactivate_database(
 ?,
 'database_name')"

Activating a database

To activate a database on a standalone RDS for Db2 DB instance, call the
rdsadmin.activate_database stored procedure.

By default, Amazon RDS activates a database when you create a database on your RDS for Db2 DB
instance. You can deactivate infrequently used databases to conserve memory resources, and then
later activate a deactivated database.

To activate a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. Activate a database by calling rdsadmin.activate_database. For more information, see
rdsadmin.activate_database.

db2 "call rdsadmin.activate_database(
 ?,
 'database_name')"

Reactivating a database

To reactivate a database, call the rdsadmin.reactivate_database stored procedure. After you
make changes to database configurations, you might need to reactivate a database on an RDS for
Db2 DB instance. To determine if you need to reactivate a database, connect to the database and
run db2 get db cfg show detail.

Database tasks 2468

Amazon Relational Database Service User Guide

You can also call this stored procedure to reactivate a database on a standalone RDS for Db2 DB
instance after you make changes to database configurations. Or, you could reactivate a database
on a standalone RDS for Db2 DB instance by first calling the rdsadmin.deactivate_database
stored procedure and then the rdsadmin.activate_database stored procedure. For more
information, see Deactivating a database and Activating a database.

To reactivate a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. Reactivate a database by calling rdsadmin.reactivate_database. For more information,
see rdsadmin.reactivate_database.

db2 "call rdsadmin.reactivate_database(
 ?,
 'database_name')"

Dropping a database

To drop a database from your RDS for Db2 DB instance, call the rdsadmin.drop_database
stored procedure. For more information, see Dropping databases in the IBM Db2 documentation.

Note

You can drop a database by calling the stored procedure only if certain conditions
are met. For more information, see the section called “Usage notes” for
rdsadmin.drop_database.

To drop a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

Database tasks 2469

https://www.ibm.com/docs/en/db2/11.5?topic=databases-dropping

Amazon Relational Database Service User Guide

db2 "connect to rdsadmin user master_user using master_password"

2. Drop a database by calling rdsadmin.drop_database. For more information, see
rdsadmin.drop_database.

db2 "call rdsadmin.drop_database('database_name')"

Restoring a database

To move a database from an Amazon S3 bucket to your RDS for Db2 DB instance, call the
rdsadmin.restore_database stored procedure. For more information, see RESTORE DATABASE
command in the IBM Db2 documentation.

To restore a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. (Optional) Check your current configuration settings to optimize the restore operation by
calling rdsadmin.show_configuration. For more information, see the section called
“rdsadmin.show_configuration”.

db2 "call rdsadmin.show_configuration('name')"

3. Configure the settings to optimize the restore operation by calling
rdsadmin.set_configuration. Explicitly setting these values can improve the
performance when restoring databases with large volumes of data. For more information, see
the section called “rdsadmin.set_configuration”.

db2 "call rdsadmin.set_configuration(
 'name',
 'value')"

4. Restore the database by calling rdsadmin.restore_database. For more information, see
the section called “rdsadmin.restore_database”.

Database tasks 2470

https://www.ibm.com/docs/en/db2/11.5?topic=commands-restore-database
https://www.ibm.com/docs/en/db2/11.5?topic=commands-restore-database

Amazon Relational Database Service User Guide

db2 "call rdsadmin.restore_database(
 ?,
 'database_name',
 's3_bucket_name',
 's3_prefix',
 restore_timestamp,
 'backup_type')"

5. (Optional) Confirm that your database was restored by calling rdsadmin.list_databases
and checking that the restored database is listed. For more information, see
rdsadmin.list_databases.

6. Bring the database back online and apply additional transaction logs by calling
rdsadmin.rollforward_database. For more information, see the section called
“rdsadmin.rollforward_database”.

db2 "call rdsadmin.rollforward_database(
 ?,
 'database_name',
 's3_bucket_name',
 s3_prefix,
 'rollfoward_to_option',
 'complete_rollforward')"

7. If you set complete_rollforward to FALSE in the previous step, then you must finish
bringing the database back online by calling rdsadmin.complete_rollforward. For more
information, see the section called “rdsadmin.complete_rollforward”.

db2 "call rdsadmin.complete_rollforward(
 ?,
 'database_name')"

Listing databases

You can list all of your databases running on Amazon RDS for Db2 by calling the
rdsadmin.list_databases user-defined function.

Database tasks 2471

Amazon Relational Database Service User Guide

To list your databases

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

2. List your databases by calling rdsadmin.list_databases. For more information, see
rdsadmin.list_databases.

db2 "select * from table(rdsadmin.list_databases())"

Collecting information about databases

To collect information about a database on a RDS for Db2 DB instance, call the
rdsadmin.db2pd_command stored procedure. This information can help with monitoring your
databases or troubleshooting issues.

To collect information about a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_username using master_password"

2. Collect information about the database by calling rdsadmin.db2pd_command. For more
information, see rdsadmin.db2pd_command.

db2 "call rdsadmin.db2pd_command('db2pd_cmd')"

Forcing applications off of databases

To force applications off of a database on your RDS for Db2 DB instance, call the
rdsadmin.force_application stored procedure. Before you perform maintenance on your
databases, force applications off of your databases.

Database tasks 2472

Amazon Relational Database Service User Guide

To force applications off of a database

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_username using master_password"

2. Force applications off of a database by calling rdsadmin.force_application. For more
information, see rdsadmin.force_application.

db2 "call rdsadmin.force_application(
 ?,
 'applications')"

Generating performance reports

You can generate performance reports with a procedure or a script. For information about using
a procedure, see DBSUMMARY procedure ‐ Generate a summary report of system and application
performance metrics in the IBM Db2 documentation.

Db2 includes a db2mon.sh file in its ~sqllib/sample/perf directory. Running the script
produces a low-cost, extensive SQL metrics report. To download the db2mon.sh file and related
script files, see the perf directory in the IBM db2-samples GitHub repository.

To generate performance reports with the script

1. Connect to your Db2 database using the master username and master password for your
RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

2. Create a buffer pool named db2monbp with a page size of 4096 by calling
rdsadmin.create_bufferpool. For more information, see rdsadmin.create_bufferpool.

db2 "call rdsadmin.create_bufferpool('database_name','db2monbp',4096)"

Database tasks 2473

https://www.ibm.com/docs/en/db2/11.5?topic=mm-dbsummary-procedure-generate-summary-report-system-application-performance-metrics
https://www.ibm.com/docs/en/db2/11.5?topic=mm-dbsummary-procedure-generate-summary-report-system-application-performance-metrics
https://github.com/IBM/db2-samples/tree/master/perf

Amazon Relational Database Service User Guide

3. Create a temporary tablespace named db2montmptbsp that uses the db2monbp
buffer pool by calling rdsadmin.create_tablespace. For more information, see
rdsadmin.create_tablespace.

db2 "call rdsadmin.create_tablespace('database_name',\
 'db2montmptbsp','db2monbp',4096,1000,100,'T')"

4. Open the db2mon.sh script, and modify the line about connecting to a database.

a. Remove the following line.

db2 -v connect to $dbName

b. Replace the line in the previous step with the following line. In the following example,
replace master_username and master_password with the master username and
master password for your RDS for Db2 DB instance.

db2 -v connect to $dbName user master_username using master_password

c. Remove the following lines.

db2 -v create bufferpool db2monbp

db2 -v create user temporary tablespace db2montmptbsp bufferpool db2monbp

db2 -v drop tablespace db2montmptbsp

db2 -v drop bufferpool db2monbp

5. Run the db2mon.sh script to output a report at specified intervals. In the following example,
replace absolute_path with the complete path to the script file, rds_database_alias
with the name of your database, and seconds with the number of seconds (0 to 3600)
between report generation.

absolute_path/db2mon.sh rds_database_alias seconds | tee -a db2mon.out

Examples

The following example shows that the script file is located in the perf directory under the
home directory.

Database tasks 2474

Amazon Relational Database Service User Guide

/home/db2inst1/sqllib/samples/perf/db2mon.sh rds_database_alias seconds | tee -a
 db2mon.out

6. Drop the buffer pool and the tablespace that were created for the db2mon.sh file. In the
following example, replace master_username and master_password with the master
username and master password for your RDS for Db2 DB instance. Replace database_name
with the name of your database. For more information, see rdsadmin.drop_tablespace and
rdsadmin.drop_bufferpool.

db2 connect to rdsadmin user master_username using master_password

db2 "call rdsadmin.drop_tablespace('database_name','db2montmptbsp')"

db2 "call rdsadmin.drop_bufferpool('database_name','db2monbp')"

Managing storage

Db2 uses automatic storage to manage the physical storage for database objects such as tables,
indexes, and temporary files. Instead of manually allocating storage space and keeping track
of which storage paths are being used, automatic storage allows the Db2 system to create and
manage storage paths as needed. This can simplify administration of Db2 databases and reduce
the likelihood of errors due to human mistakes. For more information, see Automatic storage in the
IBM Db2 documentation.

With RDS for Db2, you can dynamically increase the storage size with automatic expansion of the
logical volumes and the file system. For more information, see Working with storage for Amazon
RDS DB instances.

Common tasks for tablespaces

You can create, alter, rename, or drop tablespaces for an RDS for Db2 database. Creating, altering,
renaming, or dropping tablespaces requires higher-level SYSADM authority, which isn't available to
the master user. Instead, use Amazon RDS stored procedures.

Topics

• Creating a tablespace

• Altering a tablespace

Database tasks 2475

https://www.ibm.com/docs/en/db2/11.5?topic=overview-automatic-storage

Amazon Relational Database Service User Guide

• Renaming a tablespace

• Dropping a tablespace

• Checking the status of a tablespace

• Returning detailed information about tablespaces

• Listing the state and storage group for a tablespace

• Listing the tablespaces of a table

• Listing tablespace containers

Creating a tablespace

To create a tablespace for your RDS for Db2 database, call the rdsadmin.create_tablespace
stored procedure. For more information, see CREATE TABLESPACE statement in the IBM Db2
documentation.

Important

To create a tablespace, you must have a buffer pool of the same page size to associate with
the tablespace. For more information, see Common tasks for buffer pools.

To create a tablespace

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_username using master_password"

2. Create a tablespace by calling rdsadmin.create_tablespace. For more information, see
rdsadmin.create_tablespace.

db2 "call rdsadmin.create_tablespace(
 'database_name',
 'tablespace_name',
 'buffer_pool_name',
 tablespace_initial_size,
 tablespace_increase_size,

Database tasks 2476

https://www.ibm.com/docs/en/db2/11.5?topic=statements-create-tablespace

Amazon Relational Database Service User Guide

 'tablespace_type')"

Altering a tablespace

To alter a tablespace for your RDS for Db2 database, call the rdsadmin.alter_tablespace
stored procedure. You can use this stored procedure to change the buffer pool of a tablespace,
lower the high water mark, or bring a tablespace online. For more information, see ALTER
TABLESPACE statement in the IBM Db2 documentation.

To alter a tablespace

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_username using master_password"

2. Alter a tablespace by calling rdsadmin.alter_tablespace. For more information, see
rdsadmin.alter_tablespace.

db2 "call rdsadmin.alter_tablespace(
 'database_name',
 'tablespace_name',
 'buffer_pool_name',
 buffer_pool_size,
 tablespace_increase_size,
 'max_size', 'reduce_max',
 'reduce_stop',
 'reduce_value',
 'lower_high_water',
 'lower_high_water_stop',
 'switch_online')"

Renaming a tablespace

To change the name of a tablespace for your RDS for Db2 database, call the
rdsadmin.rename_tablespace stored procedure. For more information, see RENAME
TABLESPACE statement in the IBM Db2 documentation.

Database tasks 2477

https://www.ibm.com/docs/en/db2/11.5?topic=statements-alter-tablespace
https://www.ibm.com/docs/en/db2/11.5?topic=statements-alter-tablespace
https://www.ibm.com/docs/en/db2/11.5?topic=statements-rename-tablespace
https://www.ibm.com/docs/en/db2/11.5?topic=statements-rename-tablespace

Amazon Relational Database Service User Guide

To rename a tablespace

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_username using master_password"

2. Rename a tablespace by calling rdsadmin.rename_tablespace. For more information,
including restrictions on what you can name a tablespace, see rdsadmin.rename_tablespace.

db2 "call rdsadmin.rename_tablespace(
 'database_name',
 'source_tablespace_name',
 'target_tablespace_name')"

Dropping a tablespace

To drop a tablespace for your RDS for Db2 database, call the rdsadmin.drop_tablespace
stored procedure. Before you drop a tablespace, first drop any objects in the tablespace such as
tables, indexes, or large objects (LOBs). For more information, see Dropping table spaces in the IBM
Db2 documentation.

To drop a tablespace

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 "connect to rdsadmin user master_username using master_password"

2. Drop a tablespace by calling rdsadmin.drop_tablespace. For more information, see
rdsadmin.drop_tablespace.

db2 "call rdsadmin.drop_tablespace(
 'database_name',
 'tablespace_name')"

Database tasks 2478

https://www.ibm.com/docs/en/db2/11.5?topic=spaces-dropping-table

Amazon Relational Database Service User Guide

Checking the status of a tablespace

You can check the status of a tablespace by using the cast function.

To check the status of a tablespace

1. Connect to your Db2 database using the master username and master password for your
RDS for Db2 DB instance. In the following example, replace rds_database_alias,
master_username, and master_password with your own information.

db2 connect to rds_database_alias user master_username using master_password

2. Return a summary output.

For a summary output:

db2 "select cast(tbsp_id as smallint) as tbsp_id,
cast(tbsp_name as varchar(35)) as tbsp_name,
cast(tbsp_type as varchar(3)) as tbsp_type,
cast(tbsp_state as varchar(10)) as state,
cast(tbsp_content_type as varchar(8)) as contents from
 table(mon_get_tablespace(null,-1)) order by tbsp_id"

Returning detailed information about tablespaces

You can return information about a tablespace for one member or all members by using the cast
function.

To return detailed information about tablespaces

1. Connect to your Db2 database using the master username and master password for your
RDS for Db2 DB instance. In the following example, replace rds_database_alias,
master_username, and master_password with your own information.

db2 connect to rds_database_alias user master_username using master_password

2. Return details about all tablespaces in the database for one member or for all members.

For one member:

db2 "select cast(member as smallint) as member,

Database tasks 2479

Amazon Relational Database Service User Guide

cast(tbsp_id as smallint) as tbsp_id,
cast(tbsp_name as varchar(35)) as tbsp_name,
cast(tbsp_type as varchar(3)) as tbsp_type,
cast(tbsp_state as varchar(10)) as state,
cast(tbsp_content_type as varchar(8)) as contents,
cast(tbsp_total_pages as integer) as total_pages,
cast(tbsp_used_pages as integer) as used_pages,
cast(tbsp_free_pages as integer) as free_pages,
cast(tbsp_page_top as integer) as page_hwm,
cast(tbsp_page_size as integer) as page_sz,
cast(tbsp_extent_size as smallint) as extent_sz,
cast(tbsp_prefetch_size as smallint) as prefetch_sz,
cast(tbsp_initial_size as integer) as initial_size,
cast(tbsp_increase_size_percent as smallint) as increase_pct,
cast(storage_group_name as varchar(12)) as stogroup from
 table(mon_get_tablespace(null,-1)) order by member, tbsp_id "

For all members:

db2 "select cast(member as smallint) as member
cast(tbsp_id as smallint) as tbsp_id,
cast(tbsp_name as varchar(35)) as tbsp_name,
cast(tbsp_type as varchar(3)) as tbsp_type,
cast(tbsp_state as varchar(10)) as state,
cast(tbsp_content_type as varchar(8)) as contents,
cast(tbsp_total_pages as integer) as total_pages,
cast(tbsp_used_pages as integer) as used_pages,
cast(tbsp_free_pages as integer) as free_pages,
cast(tbsp_page_top as integer) as page_hwm,
cast(tbsp_page_size as integer) as page_sz,
cast(tbsp_extent_size as smallint) as extent_sz,
cast(tbsp_prefetch_size as smallint) as prefetch_sz,
cast(tbsp_initial_size as integer) as initial_size,
cast(tbsp_increase_size_percent as smallint) as increase_pct,
cast(storage_group_name as varchar(12)) as stogroup from
 table(mon_get_tablespace(null,-2)) order by member, tbsp_id "

Listing the state and storage group for a tablespace

You can list the state and storage group for a tablespace by running a SQL statement.

To list the state and storage group for a tablespace, run the following SQL statement:

Database tasks 2480

Amazon Relational Database Service User Guide

db2 "SELECT varchar(tbsp_name, 30) as tbsp_name,
 varchar(TBSP_STATE, 30) state,
 tbsp_type,
 varchar(storage_group_name,30) storage_group
FROM TABLE(MON_GET_TABLESPACE('',-2)) AS t"

Listing the tablespaces of a table

You can list the tablespaces for a table by running a SQL statement.

To list the tablespaces of a table, run the following SQL statement. In the following example,
replace SCHEMA_NAME and TABLE_NAME with the names of your schema and table:

db2 "SELECT
 VARCHAR(SD.TBSPACE,30) AS DATA_SPACE,
 VARCHAR(SL.TBSPACE,30) AS LONG_SPACE,
 VARCHAR(SI.TBSPACE,30) AS INDEX_SPACE
 FROM
 SYSCAT.DATAPARTITIONS P
 JOIN SYSCAT.TABLESPACES SD ON SD.TBSPACEID = P.TBSPACEID
 LEFT JOIN SYSCAT.TABLESPACES SL ON SL.TBSPACEID = P.LONG_TBSPACEID
 LEFT JOIN SYSCAT.TABLESPACES SI ON SI.TBSPACEID = P.INDEX_TBSPACEID
 WHERE
 TABSCHEMA = 'SCHEMA_NAME'
 AND TABNAME = 'TABLE_NAME'"

Listing tablespace containers

You can list all tablespace containers or specific tablespace containers by using the cast command.

To list the tablespace containers for a tablespace

1. Connect to your Db2 database using the master username and master password for your
RDS for Db2 DB instance. In the following example, replace rds_database_alias,
master_username, and master_password with your own information:

db2 connect to rds_database_alias user master_username using master_password

2. Return a list of all tablespace containers in the database or specific tablespace containers.

For all tablespace containers:

Database tasks 2481

Amazon Relational Database Service User Guide

db2 "select cast(member as smallint) as member,
cast(tbsp_name as varchar(35)) as tbsp_name,
cast(container_id as smallint) as id,
cast(container_name as varchar(60)) as container_path, container_type as type from
 table(mon_get_container(null,-2)) order by member,tbsp_id,container_id"

For specific tablespace containers:

db2 "select cast(member as smallint) as member,
cast(tbsp_name as varchar(35)) as tbsp_name,
cast(container_id as smallint) as id,
cast(container_name as varchar(60)) as container_path, container_type as type from
 table(mon_get_container('TBSP_1',-2)) order by member, tbsp_id,container_id"

Database tasks 2482

Amazon Relational Database Service User Guide

Integrating an Amazon RDS for Db2 DB instance with Amazon
S3

You can transfer files between your Amazon RDS for Db2 DB instance and an Amazon Simple
Storage Service (Amazon S3) bucket with Amazon RDS stored procedures. For more information,
see Amazon RDS for Db2 stored procedure reference.

Note

Your DB instance and your Amazon S3 bucket must be in the same AWS Region.

For RDS for Db2 to integrate with Amazon S3, your DB instance must have access to an Amazon S3
bucket where your RDS for Db2 resides. If you don't currently have an S3 bucket, create a bucket.

Topics

• Step 1: Create an IAM policy

• Step 2: Create an IAM role and attach your IAM policy

• Step 3: Add your IAM role to your RDS for Db2 DB instance

Step 1: Create an IAM policy

In this step, you create an AWS Identity and Access Management (IAM) policy with the permissions
required to transfer files from your Amazon S3 bucket to your RDS DB instance. This step assumes
that you have already created an S3 bucket. For more information, see Creating a bucket in the
Amazon S3 User Guide.

Before you create the policy, note the following pieces of information:

• The Amazon Resource Name (ARN) for your bucket

• The ARN for your AWS Key Management Service (AWS KMS) key, if your bucket uses SSE-KMS or
SSE-S3 encryption.

Create an IAM policy that includes the following permissions:

"kms:GenerateDataKey",
"kms:Decrypt",

Integrating with S3 2483

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Relational Database Service User Guide

"s3:PutObject",
"s3:GetObject",
"s3:AbortMultipartUpload",
"s3:ListBucket",
"s3:DeleteObject",
"s3:GetObjectVersion",
"s3:ListMultipartUploadParts"

You can create an IAM policy by using the AWS Management Console or the AWS Command Line
Interface (AWS CLI).

Console

To create an IAM policy to allow Amazon RDS to access your Amazon S3 bucket

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose Create policy, and then choose JSON.

4. Add actions by service. To transfer files from an Amazon S3 bucket to Amazon RDS, you must
select bucket permissions and object permissions.

5. Expand Resources. You must specify your bucket and object resources.

6. Choose Next.

7. For Policy name, enter a name for this policy.

8. (Optional) For Description, enter a description for this policy.

9. Choose Create policy.

AWS CLI

To create an IAM policy to allow Amazon RDS to access your Amazon S3 bucket

1. Run the create-policy command. In the following example, replace iam_policy_name and
s3_bucket_name with a name for your IAM policy and the name of the Amazon S3 bucket
where your RDS for Db2 database resides.

For Linux, macOS, or Unix:

aws iam create-policy \

Create an IAM policy 2484

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html

Amazon Relational Database Service User Guide

 --policy-name iam_policy_name \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
 "s3:PutObject",
 "s3:GetObject",
 "s3:AbortMultipartUpload",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:GetObjectVersion",
 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::s3_bucket_name/*",
 "arn:aws:s3:::s3_bucket_name"
]
 }
]
 }'

For Windows:

aws iam create-policy ^
 --policy-name iam_policy_name ^
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:AbortMultipartUpload",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:GetObjectVersion",
 "s3:ListMultipartUploadParts"
],

Create an IAM policy 2485

Amazon Relational Database Service User Guide

 "Resource": [
 "arn:aws:s3:::s3_bucket_name/*",
 "arn:aws:s3:::s3_bucket_name"
]
 }
]
 }'

2. After the policy is created, note the ARN of the policy. You need the ARN for Step 2: Create an
IAM role and attach your IAM policy.

For information about creating an IAM policy, see Creating IAM policies in the IAM User Guide.

Step 2: Create an IAM role and attach your IAM policy

This step assumes that you have created the IAM policy in Step 1: Create an IAM policy. In this step,
you create a IAM role for your RDS for Db2 DB instance and then attach your IAM policy to the role.

You can create an IAM role for your DB instance by using the AWS Management Console or the
AWS CLI.

Console

To create an IAM role and attach your IAM policy to it

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. For Trusted entity type, select AWS service.

5. For Service or use case, select RDS, and then select RDS – Add Role to Database.

6. Choose Next.

7. For Permissions policies, search for and select the name of the IAM policy that you created.

8. Choose Next.

9. For Role name, enter a role name.

10. (Optional) For Description, enter a description for the new role.

11. Choose Create role.

Create an IAM role and attach your IAM policy 2486

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

AWS CLI

To create an IAM role and attach your IAM policy to it

1. Run the create-role command. In the following example, replace iam_role_name with a name
for your IAM role.

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name iam_role_name \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

For Windows:

aws iam create-role ^
 --role-name iam_role_name ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

Create an IAM role and attach your IAM policy 2487

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

Amazon Relational Database Service User Guide

2. After the role is created, note the ARN of the role. You need the ARN for Step 3: Add your IAM
role to your RDS for Db2 DB instance.

3. Run the attach-role-policy command. In the following example, replace iam_policy_arn
with the ARN of the IAM policy that you created in Step 1: Create an IAM policy. Replace
iam_role_name with the name of the IAM role that you just created.

For Linux, macOS, or Unix:

aws iam attach-role-policy \
 --policy-arn iam_policy_arn \
 --role-name iam_role_name

For Windows:

aws iam attach-role-policy ^
 --policy-arn iam_policy_arn ^
 --role-name iam_role_name

For more information, see Creating a role to delegate permissions to an IAM user in the IAM User
Guide.

Step 3: Add your IAM role to your RDS for Db2 DB instance

In this step, you add your IAM role to your RDS for Db2 DB instance. Note the following
requirements:

• You must have access to an IAM role with the required Amazon S3 permissions policy attached to
it.

• You can only associate one IAM role with your RDS for Db2 DB instance at a time.

• Your RDS for Db2 DB instance must be in the Available state.

You can add an IAM role to your DB instance by using the AWS Management Console or the AWS
CLI.

Add your IAM role to your DB instance 2488

https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Relational Database Service User Guide

Console

To add an IAM role to your RDS for Db2 DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose your RDS for Db2 DB instance name.

4. On the Connectivity & security tab, scroll down to the Manage IAM roles section at the
bottom of the page.

5. For Add IAM roles to this instance, choose the role that you created in Step 2: Create an IAM
role and attach your IAM policy.

6. For Feature, choose S3_INTEGRATION.

7. Choose Add role.

AWS CLI

To add an IAM role to your RDS for Db2 DB instance, run the add-role-to-db-instance command. In
the following example, replace db_instance_name and iam_role_arn with the name of your
DB instance and the ARN of the IAM role that you created in Step 2: Create an IAM role and attach
your IAM policy.

For Linux, macOS, or Unix:

aws rds add-role-to-db-instance \
 --db-instance-identifier db_instance_name \
 --feature-name S3_INTEGRATION \
 --role-arn iam_role_arn \

For Windows:

Add your IAM role to your DB instance 2489

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-instance.html

Amazon Relational Database Service User Guide

aws rds add-role-to-db-instance ^
 --db-instance-identifier db_instance_name ^
 --feature-name S3_INTEGRATION ^
 --role-arn iam_role_arn ^

To confirm that the role was successfully added to your RDS for Db2 DB instance, run the describe-
db-instances command. In the following example, replace db_instance_name with the name of
your DB instance.

For Linux, macOS, or Unix:

aws rds describe-db-instances \
 --filters "Name=db-instance-id,Values=db_instance_name" \
 --query 'DBInstances[].AssociatedRoles'

For Windows:

aws rds describe-db-instances ^
 --filters "Name=db-instance-id,Values=db_instance_name" ^
 --query 'DBInstances[].AssociatedRoles'

This command produces output similar to the following example:

[
 [
 {
 "RoleArn": "arn:aws:iam::0123456789012:role/rds-db2-s3-role",
 "FeatureName": "S3_INTEGRATION",
 "Status": "ACTIVE"
 }
]
]

Add your IAM role to your DB instance 2490

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

Migrating data to Amazon RDS for Db2

You can migrate self-managed Db2 databases to Amazon RDS for Db2 by using either AWS or
native Db2 tools.

For information about migrating from your Db2 database to Amazon RDS for Db2 using AWS
services, see Using AWS services to migrate data from Db2 to Amazon RDS for Db2.

For information about migrating from your Db2 database to Amazon RDS for Db2 using native Db2
tools, see Using native Db2 tools to migrate data from Db2 to Amazon RDS for Db2.

Using AWS services to migrate data from Db2 to Amazon RDS for Db2

In Amazon RDS, there are several ways you can migrate data from a Db2 database to Amazon
RDS for Db2. You can perform a one-time migration of your Db2 database from Linux, AIX, or
Windows environments to Amazon RDS for Db2. To minimize downtime, you can perform a near-
zero downtime migration. You can migrate your data by saving it to Amazon S3 and loading it one
table at a time into your Db2 database. You can also perform a synchronous migration through
replication or use AWS Database Migration Service.

For one-time migrations for Linux-based Db2 databases, Amazon RDS only supports offline and
online backups. Amazon RDS doesn't support incremental and Delta backups. For near-zero
downtime migrations for Linux-based Db2 databases, Amazon RDS requires online backups. We
recommend that you use online backups for near-zero downtime migrations and offline backups
for migrations that can handle downtime.

Topics

• Migrating from Linux to Linux for Amazon RDS for Db2

• Migrating from Linux to Linux with near-zero downtime for Amazon RDS for Db2

• Migrating synchronously from Linux to Linux for Amazon RDS for Db2

• Migrating from AIX or Windows to Linux for Amazon RDS for Db2

• Migrating Db2 data through Amazon S3 to Amazon RDS for Db2

• Migrating to Amazon RDS for Db2 with AWS Database Migration Service (AWS DMS)

Migrating from Linux to Linux for Amazon RDS for Db2

With this migration approach, you back up your self-managed Db2 database to an Amazon S3
bucket. Then, you use Amazon RDS stored procedures to restore your Db2 database to an Amazon

Migrating data to RDS for Db2 2491

Amazon Relational Database Service User Guide

RDS for Db2 DB instance. For more information about using Amazon S3, see Integrating an
Amazon RDS for Db2 DB instance with Amazon S3.

Backup and restore for RDS for Db2 follows the IBM Db2 supported upgrade paths and restrictions.
For more information, see Supported upgrade paths for Db2 servers and Upgrade restrictions for
Db2 servers in the IBM Db2 documentation.

Topics

• Limitations and recommendations for using native restore

• Backing up your database to Amazon S3

• Creating a default automatic storage group

• Restoring your Db2 database

Limitations and recommendations for using native restore

The following limitations and recommendations apply to using native restore:

• Amazon RDS only supports migrating on-premises versions of Db2 that match supported RDS
for Db2 versions. For more information about the supported versions, see Supported Db2 minor
versions on Amazon RDS.

• Amazon RDS only supports offline and online backups for native restore. Amazon RDS doesn't
support incremental or Delta backups.

• You can't restore from an Amazon S3 bucket in an AWS Region that is different from the Region
where your RDS for Db2 DB instance is located.

• Amazon S3 limits the size of files that are uploaded to an Amazon S3 bucket to 5 TB. If your
database backup file exceeds 5 TB, then split the backup file into smaller files.

• Amazon RDS doesn't support non-fenced external routines, incremental restores, or Delta
restores.

• You can't restore from an encrypted source database, but you can restore to an encrypted
Amazon RDS DB instance.

When you restore your database, the backup is copied and then extracted on your RDS for Db2 DB
instance. We recommend that you provision storage space for your RDS for Db2 DB instance that is
equal to or greater than the sum of the backup size plus the original database's size on disk.

Migrating data with AWS services 2492

https://www.ibm.com/docs/en/db2/11.5?topic=servers-supported-upgrade-paths-db2
https://www.ibm.com/docs/en/db2/11.5?topic=servers-upgrade-restrictions
https://www.ibm.com/docs/en/db2/11.5?topic=servers-upgrade-restrictions

Amazon Relational Database Service User Guide

The maximum size of the restored database is the maximum database size that is supported minus
the size of the backup. For example, if the maximum database size that is supported is 64 TiB and
the size of the backup is 30 TiB, then the maximum size of the restored database is 34 TiB.

64 TiB - 30 TiB = 34 TiB

Backing up your database to Amazon S3

To back up your database on Amazon S3, you need the following AWS components:

• An Amazon S3 bucket to store your backup files: Upload any backup files that you want to migrate
to Amazon RDS. We recommend that you use offline backups for migrations that can handle
downtime. If you already have an S3 bucket, you can use that bucket. If you don't have an S3
bucket, see Creating a bucket in the Amazon S3 User Guide.

Note

If your database is large and would take a long time to transfer to an S3 bucket, you can
order an AWS Snow Family device and ask AWS to perform the backup. After you copy
your files to the device and return it to the Snow Family team, the team transfers your
backed-up images to your S3 bucket. For more information, see the AWS Snow Family
documentation.

• An IAM role to access the S3 bucket: If you already have an IAM role, you can use that role. If you
don't have a role, see Step 2: Create an IAM role and attach your IAM policy.

• An IAM policy with trust relationships and permissions attached to your IAM role: For more
information, see Step 1: Create an IAM policy.

• The IAM role added to your RDS for Db2 DB instance: For more information, see Step 3: Add your
IAM role to your RDS for Db2 DB instance.

Creating a default automatic storage group

Your source database must have a default automatic storage group. If your database doesn't have a
default automatic storage group, you must create one.

Migrating data with AWS services 2493

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/snowball/
https://docs.aws.amazon.com/snowball/

Amazon Relational Database Service User Guide

To create a default automatic storage group

1. Connect to your source database. In the following example, replace source_database with
the name of your database.

db2 connect to source_database

2. Create an automatic storage group and set it as the default. In the following example, replace
storage_path with the absolute path to where the storage group is located.

db2 "create stogroup IBMSTOGROUP ON storage_path set as default"

3. Terminate backend processes.

db2 terminate

4. Deactivate the database and stop all database services. In the following example, replace
source_database with the name of the database that you created the storage group for.

db2 deactivate db source_database

5. Back up the database. In the following example, replace source_database with the name of
the database that you created the storage group for. Replace file_system_path with the
absolute path to where you want to back up the database.

db2 backup database source_database to file_system_path

Restoring your Db2 database

After you back up your database on Amazon S3 and create an automatic storage group, you are
ready to restore your Db2 database to your RDS for Db2 DB instance.

To restore your Db2 database to your RDS for Db2 DB instance

1. Connect to your RDS for Db2 DB instance. For more information, see Connecting to your Db2
DB instance.

2. (Optional) To make sure your database is configured with the optimal settings for the restore
operation, you can call the section called “rdsadmin.show_configuration” to check the values
for RESTORE_DATABASE_PARALLELISM and RESTORE_DATABASE_NUM_BUFFERS. Call the

Migrating data with AWS services 2494

Amazon Relational Database Service User Guide

section called “rdsadmin.set_configuration” to change these values, as needed. Explicitly
setting these values can improve the performance when restoring databases with large
volumes of data.

3. Restore your database by calling rdsadmin.restore_database. For more information, see
rdsadmin.restore_database.

Migrating from Linux to Linux with near-zero downtime for Amazon RDS for Db2

With this migration approach, you migrate a Linux-based Db2 database from one self-managed
Db2 database (source) to Amazon RDS for Db2. This approach results in minimal to no outage or
downtime for the application or users. This approach backs up your database and restores it with
log replay, which helps prevent disruptions to ongoing operations and provides high availability of
your database.

To achieve near-zero downtime migration, RDS for Db2 implements restore with log replay. This
approach takes a backup of your self-managed Linux-based Db2 database and restores it on the
RDS for Db2 server. With Amazon RDS stored procedures, you then apply subsequent transaction
logs to bring the database up to date.

Topics

• Limitations and recommendations for near-zero downtime migration

• Backing up your database to Amazon S3

• Creating a default automatic storage group

• Migrating your Db2 database

Limitations and recommendations for near-zero downtime migration

The following limitations and recommendations apply to using near-zero downtime migration:

• Amazon RDS requires an online backup for near-zero downtime migration. This is because
Amazon RDS keeps your database in a rollforward pending state as you upload your archived
transaction logs. For more information, see the section called “Migrating your Db2 database”.

• You can't restore from an Amazon S3 bucket in an AWS Region that is different from the Region
where your RDS for Db2 DB instance is located.

• Amazon S3 limits the size of files uploaded to an S3 bucket to 5 TB. If your database backup file
exceeds 5 TB, then split the backup file into smaller files.

Migrating data with AWS services 2495

Amazon Relational Database Service User Guide

• Amazon RDS doesn't support non-fenced external routines, incremental restores, or Delta
restores.

• You can't restore from an encrypted source database, but you can restore to an encrypted
Amazon RDS DB instance.

When you restore your database, Amazon RDS copies your backup and then extracts it on your RDS
for Db2 DB instance. We recommend that you provision storage space for your RDS for Db2 DB
instance that is equal to or greater than the sum of the backup size plus the original database's size
on disk.

The maximum size of the restored database is the maximum database size that is supported minus
the size of the backup. For example, if the maximum database size that is supported is 64 TiB and
the size of the backup is 30 TiB, then the maximum size of the restored database is 34 TiB.

64 TiB - 30 TiB = 34 TiB

Backing up your database to Amazon S3

To back up your database on Amazon S3, you need the following AWS components:

• An Amazon S3 bucket to store your backup files: Upload any backup files that you want to migrate
to Amazon RDS. Amazon RDS requires an online backup for near-zero downtime migration.
If you already have an S3 bucket, you can use that bucket. If you don't have an S3 bucket, see
Creating a bucket in the Amazon S3 User Guide.

Note

If your database is large and would take a long time to transfer to an S3 bucket, you can
order an AWS Snow Family device and ask AWS to perform the backup. After you copy
your files to the device and return it to the Snow Family team, the team transfers your
backed-up images to your S3 bucket. For more information, see the AWS Snow Family
documentation.

• An IAM role to access the S3 bucket: If you already have an AWS Identity and Access Management
(IAM) role, you can use that role. If you don't have a role, see Step 2: Create an IAM role and
attach your IAM policy.

• An IAM policy with trust relationships and permissions attached to your IAM role: For more
information, see Step 1: Create an IAM policy.

Migrating data with AWS services 2496

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/snowball/
https://docs.aws.amazon.com/snowball/

Amazon Relational Database Service User Guide

• The IAM role added to your RDS for Db2 DB instance: For more information, see Step 3: Add your
IAM role to your RDS for Db2 DB instance.

Creating a default automatic storage group

Your source database must have a default automatic storage group. If your database doesn't have a
default automatic storage group, you must create one.

To create a default automatic storage group

1. Connect to your source database. In the following example, replace source_database with
the name of your database.

db2 connect to source_database

2. Create an automatic storage group and set it as the default. In the following example, replace
storage_path with the absolute path to where the storage group is located.

db2 "create stogroup IBMSTOGROUP ON storage_path set as default"

3. Terminate backend processes.

db2 terminate

Migrating your Db2 database

After you back up your database on Amazon S3 and create an automatic storage group, you are
ready to migrate your Db2 database to your RDS for Db2 DB instance.

To perform a near-zero downtime migration

1. Perform an online backup of your source database. For more information, see BACKUP
DATABASE command in the IBM Db2 documentation.

2. Copy the backup of your database to an Amazon S3 bucket. For information about using
Amazon S3, see the Amazon Simple Storage Service User Guide.

3. Connect to the rdsadmin server with the master_username and master_password for
your RDS for Db2 DB instance.

Migrating data with AWS services 2497

https://www.ibm.com/docs/en/db2/11.5?topic=commands-backup-database
https://www.ibm.com/docs/en/db2/11.5?topic=commands-backup-database
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

Amazon Relational Database Service User Guide

db2 connect to rdsadmin user master_username using master_password

4. (Optional) To make sure your database is configured with the optimal settings for the restore
operation, you can call the section called “rdsadmin.show_configuration” to check the values
for RESTORE_DATABASE_PARALLELISM and RESTORE_DATABASE_NUM_BUFFERS. Call the
section called “rdsadmin.set_configuration” to change these values, as needed. Explicitly
setting these values can improve the performance when restoring databases with large
volumes of data.

5. Restore the backup on the RDS for Db2 server by calling rdsadmin.restore_database. Set
backup_type to ONLINE. For more information, see rdsadmin.restore_database.

6. Copy your archive logs from your source server to your S3 bucket. For more information, see
Archive logging in the IBM Db2 documentation.

7. Apply archive logs as many times as needed by calling rdsadmin.rollforward_database.
Set complete_rollforward to FALSE to keep the database in a ROLL-FORWARD PENDING
state. For more information, see rdsadmin.rollforward_database.

8. After you apply all of the archive logs, bring the database online by
calling rdsadmin.complete_rollforward. For more information, see
rdsadmin.complete_rollforward.

9. Switch application connections to the RDS for Db2 server by either updating your application
endpoints for the database or by updating the DNS endpoints to redirect traffic to the RDS for
Db2 server. You can also use the Db2 automatic client reroute feature on your self-managed
Db2 database with the RDS for Db2 database endpoint. For more information, see Automatic
client reroute description and setup in the IBM Db2 documentation.

10. (Optional) Shut down your source database.

Migrating synchronously from Linux to Linux for Amazon RDS for Db2

With this migration approach, you set up replication between your self-managed Db2 database and
your Amazon RDS for Db2 DB instance. Changes made to the self-managed database replicates to
the RDS for Db2 DB instance in near real-time. This approach can provide continuous availability
and minimize downtime during the migration process.

Migrating data with AWS services 2498

https://www.ibm.com/docs/en/db2/11.5?topic=logging-archive
https://www.ibm.com/docs/en/db2/11.5?topic=reroute-configuring-automatic-client
https://www.ibm.com/docs/en/db2/11.5?topic=reroute-configuring-automatic-client

Amazon Relational Database Service User Guide

Migrating from AIX or Windows to Linux for Amazon RDS for Db2

With this migration approach, you use native Db2 tools to back up your self-managed Db2
database to an Amazon S3 bucket. Native Db2 tools include the export utility, the db2move
system command, or the db2look system command. Your Db2 database can either be self-
managed or in Amazon Elastic Compute Cloud (Amazon EC2). You can move data from your AIX or
Windows system to your Amazon S3 bucket. Then, use a Db2 client to load data directly from the
S3 bucket to your Amazon RDS for Db2 database. Downtime depends on the size of your database.
For more information about using Amazon S3, see Integrating an Amazon RDS for Db2 DB instance
with Amazon S3.

To migrate your Db2 database to RDS for Db2

1. Prepare to back up your database. Configure sufficient storage amount to hold the backup on
your self-managed Db2 system.

2. Back up your database.

a. Run the db2look system command to extract the data definition language (DDL) file for
all objects.

b. Run either the Db2 export utility, the db2move system command, or a CREATE EXTERNAL
TABLE statement to unload the Db2 table data to storage on your Db2 system.

3. Move your backup to an Amazon S3 bucket. For more information, see Integrating an Amazon
RDS for Db2 DB instance with Amazon S3.

Note

If your database is large and would take a long time to transfer to an S3 bucket, you
can order an AWS Snow Family device and ask AWS to perform the backup. After you
copy your files to the device and return it to the Snow Family team, the team transfers
your backed-up images to your S3 bucket. For more information, see the AWS Snow
Family documentation.

4. Use a Db2 client to load data directly from your S3 bucket to your RDS for Db2 database. For
more information, see Migrating with Amazon S3.

Migrating data with AWS services 2499

https://www.ibm.com/docs/en/db2/11.5?topic=commands-db2look-db2-statistics-ddl-extraction-tool
https://www.ibm.com/docs/en/db2/11.5?topic=utility-exporting-data
https://www.ibm.com/docs/en/db2/11.5?topic=commands-db2move-database-movement-tool
https://www.ibm.com/docs/en/db2/11.5?topic=statements-create-table-external
https://www.ibm.com/docs/en/db2/11.5?topic=statements-create-table-external
https://docs.aws.amazon.com/snowball/
https://docs.aws.amazon.com/snowball/

Amazon Relational Database Service User Guide

Migrating Db2 data through Amazon S3 to Amazon RDS for Db2

With this migration approach, you first save data from a single table into a data file that you place
in an Amazon S3 bucket. Then, you use the LOAD command to load the data from that data file
into a table in your Amazon RDS for Db2 database. For more information about using Amazon S3,
see Integrating an Amazon RDS for Db2 DB instance with Amazon S3.

Topics

• Saving your data to Amazon S3

• Loading your data into RDS for Db2 tables

Saving your data to Amazon S3

To save data from a single table to Amazon S3, use a database utility to extract the data from your
database management system (DBMS) into a CSV file. Then, upload the data file to Amazon S3.

For storing data files on Amazon S3, you need the following AWS components:

• An Amazon S3 bucket to store your backup files: If you already have an S3 bucket, you can use
that bucket. If you don't have an S3 bucket, see Creating a bucket in the Amazon S3 User Guide.

• An IAM role to access the S3 bucket: If you already have an IAM role, you can use that role. If you
don't have a role, see Step 2: Create an IAM role and attach your IAM policy.

• An IAM policy with trust relationships and permissions attached to your IAM role: For more
information, see Step 1: Create an IAM policy.

• The IAM role added to your RDS for Db2 DB instance: For more information, see Step 3: Add your
IAM role to your RDS for Db2 DB instance.

Loading your data into RDS for Db2 tables

After you save your data files to Amazon S3, you can load the data from these files into individual
tables on your RDS for Db2 DB instance.

To load your Db2 table data into your RDS for Db2 DB database table

1. Connect to the rdsadmin database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

Migrating data with AWS services 2500

https://www.ibm.com/docs/en/db2/11.5?topic=commands-load
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Relational Database Service User Guide

db2 connect to rdsadmin user master_username using master_password

2. Catalog a storage access alias that points to the Amazon S3 bucket where your saved files are
stored. Take note of the name of this alias for use in the next step. You only need to perform
this step once if you plan to load multiple tables from data files stored in the same Amazon S3
bucket.

The following example catalogs an alias named my_s3_alias that grants a user named
jorge_souza access to a bucket named amzn-s3-demo-bucket.

db2 "call rdsadmin.catalog_storage_access(?, 'my_s3_alias', 'amzn-s3-demo-bucket',
 'USER', 'jorge_souza')"

For more information about this stored procedure, See the section called
“rdsadmin.catalog_storage_access”.

3. Run the LOAD command using the storage access alias that points to your Amazon S3 bucket.

Note

If the LOAD command returns an error, then you might need to create a VPC gateway
endpoint for Amazon S3 and add outbound rules to the security group. For more
information, see the section called “File I/O error”.

The following example loads data from a data file named my_s3_datafile.csv into a table
named my_db2_table. The example assumes that the data file is in the Amazon S3 bucket
that the alias named my_s3_alias points to.

db2 "load from db2remote://my_s3_alias//my_s3_datafile.csv of DEL insert
 into my_db2_table";

The following example loads LOBs from a data file named my_table1_export.ixf into a
table named my_db2_table. The example assumes that the data file is in the Amazon S3
bucket that the alias named my_s3_alias points to.

db2 "call sysproc.admin_cmd('load from
 "db2remote://my_s3_alias//my_table1_export.ixf" of ixf

Migrating data with AWS services 2501

Amazon Relational Database Service User Guide

 lobs from "db2remote://my_s3_alias//" xml from "db2remote://my_s3_alias//"
 modified by lobsinfile implicitlyhiddeninclude identityoverride
 generatedoverride periodoverride transactionidoverride
 messages on server
 replace into "my_schema"."my_db2_table"
 nonrecoverable
 indexing mode incremental allow no access')"

Repeat this step for each data file in the Amazon S3 bucket that you want to load into a table
in your RDS for Db2 DB instance.

For more information about the LOAD command, see LOAD command.

Migrating to Amazon RDS for Db2 with AWS Database Migration Service (AWS
DMS)

You can use AWS DMS for one-time migrations and then synchronize from Db2 on Linux, Unix
(such as AIX), and Windows to Amazon RDS for Db2. For more information, see What is AWS
Database Migration Service?.

Using native Db2 tools to migrate data from Db2 to Amazon RDS for
Db2

You can use several native Db2 tools, utilities, and commands to move data directly from a Db2
database to an Amazon RDS for Db2 database. To use these native Db2 tools, you must be able to
connect your client machine to an RDS for Db2 DB instance. For more information, see Connecting
a client machine to an Amazon RDS for Db2 DB instance.

Note

Another way to move your data is to first save it to an Amazon S3 bucket, and then use
the LOAD command to transfer that data into a table in your RDS for Db2 database. This
method provides the best performance when migrating a large amount of data because
of good network connectivity between RDS for Db2 and S3. For more information, see the
section called “Migrating with Amazon S3”.

Migrating data with native Db2 tools 2502

https://www.ibm.com/docs/en/db2/11.5?topic=commands-load
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Relational Database Service User Guide

Tool name Use case Limitations

db2look Copying metadata from a
self-managed Db2 database
to an RDS for Db2 database.

• You must modify the syntax
for creating buffer pools,
creating tablespaces, and
creating roles to match the
syntax used by the RDS for
Db2 stored procedures.

IMPORT command Migrating small tables and
tables with large objects
(LOBs) from a client machine
to the RDS for Db2 DB
instance.

• Slower than the LOAD
utility because of INSERT
and DELETE logging
operations.

• Poor performance with
limited network bandwidth.

INGEST utility Continually streaming data
from files and pipes without
large objects (LOBs) on the
client machine to the RDS for
Db2 DB instance. Supports
INSERT and MERGE operation
s.

• Can't stream data files
that contain LOBs. Use the
IMPORT command instead.

• Connectivity required
between self-managed Db2
database and RDS for Db2
database.

INSERT command Copying data in small tables
from a self-managed Db2
database to an RDS for Db2
database.

• Connectivity required
between self-managed Db2
database and RDS for Db2
database.

• Poor performance with
limited network bandwidth.

LOAD CLIENT command Migrating small tables
without large objects (LOBs)
from a client machine to the
RDS for Db2 DB instance.

• Can't migrate data files
that contain LOBs. Use the
IMPORT command instead.

• Poor performance with
limited network bandwidth.

Migrating data with native Db2 tools 2503

Amazon Relational Database Service User Guide

Connecting a client machine to an Amazon RDS for Db2 DB instance

To use any of the native Db2 tools to move data from a Db2 database to an Amazon RDS for Db2
database, you must first connect your client machine to an RDS for Db2 DB instance.

The client machine can be any of the following:

• An Amazon Elastic Compute Cloud (Amazon EC2) instance on Linux, Windows, or macOS. This
instance should be in the same virtual private cloud (VPC) as your RDS for Db2 DB instance, AWS
Cloud9, or AWS CloudShell.

• A self-managed Db2 instance in an Amazon EC2 instance. The instances should be in the same
VPC.

• A self-managed Db2 instance in an Amazon EC2 instance. The instances can be in different VPCs
if you enabled VPC peering. For more information, see Create a VPC peering connection in the
Amazon Virtual Private Cloud VPC Peering Guide.

• A local machine running Linux, Windows, or macOS in a self-managed environment. You
must either have public connectivity to RDS for Db2 or enable VPN connectivity between self-
managed Db2 instances and AWS.

To connect your client machine to your RDS for Db2 DB instance, log in to your client machine
with IBM Db2 Data Management Console. For more information, see Creating an Amazon RDS DB
instance and IBM Db2 Data Management Console.

You can use AWS Database Migration Service (AWS DMS) to run queries against the database,
run an SQL execution plan, and monitor the database. For more information, see What is AWS
Database Migration Service? in the AWS Database Migration Service User Guide.

After you successfully connect your client machine to your RDS for Db2 DB instance, you are ready
to use any native Db2 tool to copy data. For more information, see Using native Db2 tools to
migrate data from Db2 to Amazon RDS for Db2.

Copying database metadata from Db2 to Amazon RDS for Db2 with db2look

db2look is a native Db2 tool that extracts data definition language (DDL) files, objects,
authorizations, configurations, WLM, and database layouts. You can use db2look to copy database
metadata from a self-managed Db2 database to an Amazon RDS for Db2 database. For more
information, see Mimicking databases using db2look in the IBM Db2 documentation.

Migrating data with native Db2 tools 2504

https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://www.ibm.com/docs/en/db2/11.5?topic=tools-db2look

Amazon Relational Database Service User Guide

To copy the database metadata

1. Run the db2look tool on your self-managed Db2 system to extract the DDL file. In the
following example, replace database_name with the name of your Db2 database.

db2look -d database_name -e -l -a -f -wlm -cor -createdb -printdbcfg -o db2look.sql

2. If your client machine has access to the source (self-managed Db2) database and the RDS
for Db2 DB instance, you can create the db2look.sql file on the client machine by directly
attaching to the remote instance. Then catalog the remote self-managed Db2 instance.

a. Catalog the node. In the following example, replace dns_ip_address and port with the
DNS name or the IP address and the port number of the self-managed Db2 database.

db2 catalog tcpip node srcnode REMOTE dns_ip_address server port

b. Catalog the database. In the following example, replace source_database_name and
source_database_alias with the name of the self-managed Db2 database and the
alias that you want to use for this database.

db2 catalog database source_database_name as source_database_alias at node
 srcnode \
 authentication server_encrypt

c. Attach to the source database. In the following example, replace
source_database_alias, user_id, and user_password with the alias that you
created in the previous step and the user ID and password for the self-managed Db2
database.

db2look -d source_database_alias -i user_id -w user_password -e -l -a -f -wlm \
 -cor -createdb -printdbcfg -o db2look.sql

3. If you can't access the remote self-managed Db2 database from the client machine, copy the
db2look.sql file to the client machine. Then catalog the RDS for Db2 DB instance.

a. Catalog the node. In the following example, replace dns_ip_address and port with the
DNS name or the IP address and the port number of the RDS for Db2 DB instance.

db2 catalog tcpip node remnode REMOTE dns_ip_address server port

Migrating data with native Db2 tools 2505

Amazon Relational Database Service User Guide

b. Catalog the database. In the following example, replace rds_database_name and
rds_database_alias with the name of the RDS for Db2 database and the alias that you
want to use for this database.

db2 catalog database rds_database_name as rds_database_alias at node remnode \
 authentication server_encrypt

c. Catalog the admin database that manages RDS for Db2. You can't use this database to
store any data.

db2 catalog database rdsadmin as rdsadmin at node remnode authentication
 server_encrypt

4. Create buffer pools and tablespaces. The administrator doesn't have privileges to create buffer
pools or tablespaces. However, you can use Amazon RDS stored procedures to create them.

a. Find the names and definitions of the buffer pools and tablespaces in the db2look.sql
file.

b. Connect to Amazon RDS using the master username and master password for your
RDS for Db2 DB instance. In the following example, replace master_username and
master_password with your own information.

db2 connect to rdsadmin user master_username using master_password

c. Create a buffer pool by calling rdsadmin.create_bufferpool. For more information,
see rdsadmin.create_bufferpool.

db2 "call rdsadmin.create_bufferpool(
 'database_name',
 'buffer_pool_name',
 buffer_pool_size,
 'immediate',
 'automatic',
 page_size,
 number_block_pages,
 block_size)"

d. Create a tablespace by calling rdsadmin.create_tablespace. For more information,
see rdsadmin.create_tablespace.

Migrating data with native Db2 tools 2506

Amazon Relational Database Service User Guide

db2 "call rdsadmin.create_tablespace(
 'database_name',
 'tablespace_name',
 'buffer_pool_name',
 tablespace_initial_size,
 tablespace_increase_size,
 'tablespace_type')"

e. Repeat steps c or d for each additional buffer pool or tablespace that you want to add.

f. Terminate your connection.

db2 terminate

5. Create tables and objects.

a. Connect to your RDS for Db2 database using the master username and master
password for your RDS for Db2 DB instance. In the following example, replace
rds_database_name, master_username, and master_password with your own
information.

db2 connect to rds_database_name user master_username using master_password

b. Run the db2look.sql file.

db2 -tvf db2look.sql

c. Terminate your connection.

db2 terminate

Importing data from a client machine to Amazon RDS for Db2 with the IMPORT
command

You can use the IMPORT command from a client machine to import your data into the Amazon RDS
for Db2 server.

Migrating data with native Db2 tools 2507

Amazon Relational Database Service User Guide

Important

The IMPORT command method is useful for migrating small tables and tables that include
large objects (LOBs). The IMPORT command is slower than the LOAD utility because of the
INSERT and DELETE logging operations. If your network bandwidth between the client
machine and RDS for Db2 is limited, we recommend that you use a different migration
approach. For more information, see Using native Db2 tools to migrate data from Db2 to
Amazon RDS for Db2.

To import data into the RDS for Db2 server

1. Log in to your client machine with IBM Db2 Data Management Console. For more information,
see Connecting to your Amazon RDS for Db2 DB instance with IBM Db2 Data Management
Console.

2. Catalog the RDS for Db2 database on the client machine.

a. Catalog the node. In the following example, replace dns_ip_address and port with the
DNS name or the IP address and the port number of the self-managed Db2 database.

db2 catalog tcpip node srcnode REMOTE dns_ip_address server port

b. Catalog the database. In the following example, replace source_database_name and
source_database_alias with the name of the self-managed Db2 database and the
alias that you want to use for this database.

db2 catalog database source_database_name as source_database_alias at node
 srcnode \
 authentication server_encrypt

3. Attach to the source database. In the following example, replace source_database_alias,
user_id, and user_password with the alias you created in the previous step and the user ID
and password for the self-managed Db2 database.

db2look -d source_database_alias -i user_id -w user_password -e -l -a -f -wlm \
 -cor -createdb -printdbcfg -o db2look.sql

4. Generate the data file by using the EXPORT command on your self-managed Db2 system. In
the following example, replace directory with the directory on your client machine where

Migrating data with native Db2 tools 2508

Amazon Relational Database Service User Guide

your data file exists. Replace file_name and table_name with the name of the data file and
the name of the table.

db2 "export to /directory/file_name.txt of del lobs to /directory/lobs/ \
 modified by coldel\| select * from table_name"

5. Connect to your RDS for Db2 database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace rds_database_alias,
master_username, and master_password with your own information.

db2 connect to rds_database_alias user master_username using master_password

6. Use the IMPORT command to import data from a file on the client machine into the remote
RDS for Db2 database. For more information, see IMPORT command in the IBM Db2
documentation. In the following example, replace directory and file_name with the
directory on your client machine where your data file exists and the name of the data file.
Replace SCHEMA_NAME and TABLE_NAME with the name of your schema and table.

db2 "IMPORT from /directory/file_name.tbl OF DEL LOBS FROM /directory/lobs/ \
 modified by coldel\| replace into SCHEMA_NAME.TABLE_NAME"

7. Terminate your connection.

db2 terminate

Importing data from a client machine to Amazon RDS for Db2 with the LOAD
command

You can use the LOAD CLIENT command to load data from a file on a client machine to the RDS
for Db2 server. Because no SSH connectivity exists to the RDS for Db2 server, you can use the LOAD
CLIENT command on either your self-managed Db2 server or your Db2 client machine.

Important

The LOAD CLIENT command method is useful for migrating small tables. If your network
bandwidth between the client and RDS for Db2 is limited, we recommend that you use
a different migration approach. For more information, see the Using native Db2 tools to
migrate data from Db2 to Amazon RDS for Db2.

Migrating data with native Db2 tools 2509

https://www.ibm.com/docs/en/db2/11.5?topic=commands-import

Amazon Relational Database Service User Guide

If your data file includes references to large object file names, then the LOAD command
won't work because large objects (LOBs) need to reside on the Db2 server. If you try to load
LOBs from the client machine to the RDS for Db2 server, you will receive an SQL3025N
error. Use the IMPORT command instead.

To load data to the RDS for Db2 server

1. Log in to your client machine with IBM Db2 Data Management Console. For more information,
see Connecting to your Amazon RDS for Db2 DB instance with IBM Db2 Data Management
Console.

2. Catalog the RDS for Db2 database on the client machine.

a. Catalog the node. In the following example, replace dns_ip_address and port with the
DNS name or the IP address and the port number of the self-managed Db2 database.

db2 catalog tcpip node srcnode REMOTE dns_ip_address server port

b. Catalog the database. In the following example, replace source_database_name and
source_database_alias with the name of the self-managed Db2 database and the
alias that you want to use for this database.

db2 catalog database source_database_name as source_database_alias at node
 srcnode \
 authentication server_encrypt

3. Attach to the source database. In the following example, replace source_database_alias,
user_id, and user_password with the alias you that created in the previous step and the
user ID and password for the self-managed Db2 database.

db2look -d source_database_alias -i user_id -w user_password -e -l -a -f -wlm \
 -cor -createdb -printdbcfg -o db2look.sql

4. Generate the data file by using the EXPORT command on your self-managed Db2 system. In
the following example, replace directory with the directory on your client machine where
your data file exists. Replace file_name and TABLE_NAME with the name of the data file and
the name of the table.

db2 "export to /directory/file_name.txt of del modified by coldel\| \

Migrating data with native Db2 tools 2510

Amazon Relational Database Service User Guide

 select * from TPCH.TABLE_NAME"

5. Connect to your RDS for Db2 database using the master username and master password for
your RDS for Db2 DB instance. In the following example, replace rds_database_alias,
master_username, and master_password with your own information.

db2 connect to rds_database_alias user master_username using master_password

6. Use the LOAD command to load data from a file on the client machine to the remote RDS for
Db2 database. For more information, see LOAD command in the IBM Db2 documentation. In
the following example, replace directory with the directory on your client machine where
your data file exists. Replace file_name and TABLE_NAME with the name of the data file and
the name of the table.

db2 "LOAD CLIENT from /directory/file_name.txt \
 modified by coldel\| replace into TPCH.TABLE_NAME \
 nonrecoverable without prompting"

7. Terminate your connection.

db2 terminate

Importing data from Db2 to Amazon RDS for Db2 with the INSERT command

You can use the INSERT command from a self-managed Db2 server to insert your data into an
Amazon RDS for Db2 database. With this migration approach, you use a nickname for the remote
RDS for Db2 DB instance. Your self-managed Db2 database (source) must be able to connect to the
RDS for Db2 database (target).

Important

The INSERT command method is useful for migrating small tables. If your network
bandwidth between your self-managed Db2 database and RDS for Db2 database is limited,
we recommend that you use a different migration approach. For more information, see
Using native Db2 tools to migrate data from Db2 to Amazon RDS for Db2.

Migrating data with native Db2 tools 2511

https://www.ibm.com/docs/en/db2/11.5?topic=commands-load

Amazon Relational Database Service User Guide

To copy data from a self-managed Db2 database to an RDS for Db2 database

1. Catalog the RDS for Db2 DB instance on the self-managed Db2 instance.

a. Catalog the node. In the following example, replace dns_ip_address and port with the
DNS name or the IP address and the port number of the self-managed Db2 database.

db2 catalog tcpip node remnode REMOTE dns_ip_address SERVER port

b. Catalog the database. In the following example, replace rds_database_name with the
name of the database on your RDS for Db2 DB instance.

db2 catalog database rds_database_name as remdb at node remnode \
 authentication server_encrypt

2. Enable federation on the self-managed Db2 instance. In the following example, replace
source_database_name with the name of your database on the self-managed Db2 instance.

db2 update dbm cfg using FEDERATED YES source_database_name

3. Create tables on the RDS for Db2 DB instance.

a. Catalog the node. In the following example, replace dns_ip_address and port with the
DNS name or the IP address and the port number of the self-managed Db2 database.

db2 catalog tcpip node srcnode REMOTE dns_ip_address server port

b. Catalog the database. In the following example, replace source_database_name and
source_database_alias with the name of the self-managed Db2 database and the
alias that you want to use for this database.

db2 catalog database source_database_name as source_database_alias at node
 srcnode \
 authentication server_encrypt

4. Attach to the source database. In the following example, replace source_database_alias,
user_id, and user_password with the alias that you created in the previous step and the
user ID and password for the self-managed Db2 database.

db2look -d source_database_alias -i user_id -w user_password -e -l -a -f -wlm \

Migrating data with native Db2 tools 2512

Amazon Relational Database Service User Guide

 -cor -createdb -printdbcfg -o db2look.sql

5. Set up federation, and create a nickname for the RDS for Db2 database table on the self-
managed Db2 instance.

a. Connect to your local database. In the following example, replace
source_database_name with the name of the database on your self-managed Db2
instance.

db2 connect to source_database_name

b. Create a wrapper to access Db2 data sources.

db2 create wrapper drda

c. Define a data source on a federated database. In the following example, replace admin
and admin_password with your credentials for your self-managed Db2 instance. Replace
rds_database_name with the name of the database on your RDS for Db2 DB instance.

db2 "create server rdsdb2 type DB2/LUW version '11.5.9.0' \
 wrapper drda authorization "admin" password "admin_password" \
 options(dbname 'rds_database_name', node 'remnode')"

d. Map the users on the two databases. In the following example, replace
master_username and master_password with your credentials for your RDS for Db2
DB instance.

db2 "create user mapping for user server rdsdb2 \
 options (REMOTE_AUTHID 'master_username', REMOTE_PASSWORD
 'master_password')"

e. Verify the connection to the RDS for Db2 server.

db2 set passthru rdsdb2

f. Create a nickname for the table in the remote RDS for Db2 database. In the following
example, replace NICKNAME and TABLE_NAME with a nickname for the table and the
name of the table.

db2 create nickname REMOTE.NICKNAME for RDSDB2.TABLE_NAME.NICKNAME

Migrating data with native Db2 tools 2513

Amazon Relational Database Service User Guide

6. Insert data into the table in the remote RDS for Db2 database. Use the nickname in a select
statement on the local table in the self-managed Db2 instance. In the following example,
replace NICKNAME and TABLE_NAME with a nickname for the table and the name of the table.

db2 "INSERT into REMOTE.NICKNAME select * from RDS2DB2.TABLE_NAME.NICKNAME"

Importing data from Db2 to Amazon RDS for Db2 with the INGEST utility

You can use the INGEST utility to continually stream data from files and pipes on a client machine
to a target Amazon RDS for Db2 DB instance. The INGEST utility supports INSERT and MERGE
operations. For more information, see Ingest utility in the IBM Db2 documentation.

Because the INGEST utility supports nicknames, you can use the utility to transfer data from your
self-managed Db2 database to an RDS for Db2 database. This approach works as long as network
connectivity exists between the two databases.

Important

The INGEST utility doesn't support large objects (LOBs). Use the IMPORT command
instead.

To use the RESTARTABLE feature of the INGEST utility, run the following command on the RDS for
Db2 database.

db2 "call sysproc.sysinstallobjects(‘INGEST’,‘C’,NULL,NULL)"

Migrating data with native Db2 tools 2514

https://www.ibm.com/docs/en/db2/11.1?topic=reference-ingest-utility

Amazon Relational Database Service User Guide

Amazon RDS for Db2 federation

You can use your Amazon RDS for Db2 database as a federated database. After setting up
federation for RDS for Db2, you will be able to access and query data across multiple databases
from your RDS for Db2 database. Federation saves you from needing to migrate data to your RDS
for Db2 database or consolidate data into a single database.

By using your RDS for Db2 database as a federated database, you can continue to access to all
RDS for Db2 features and can take advantage of various AWS services, all while keeping your data
in different databases. You can set up both homogeneous federation which connects different
databases of the same type, or heterogeneous federation which connects different databases of
different types.

You first connect your Db2 database in RDS for Db2 to remote databases. Then you can run queries
against all your connected databases. For example, you can run a SQL JOIN statement that join
tables in your RDS for Db2 database with tables in a remote Db2 on z/OS database.

Topics

• Homogeneous federation

• Heterogeneous federation

Homogeneous federation

You can set up homogeneous federation between your RDS for Db2 database and the following
Db2 family of products:

• Db2 for Linux, UNIX, Windows (LUW)

• Db2 iSeries

• Db2 for z/OS

RDS for Db2 homogeneous federation doesn't support the following actions:

• Running CATALOG commands to set up a node directory and a remote database on an RDS for
Db2 host database

• Settting up Workload Balancing (WLB) when federating to Db2 on z/OS

• Configuring the IBM data server driver configuration file (db2dsdriver.cfg)

Federation 2515

Amazon Relational Database Service User Guide

RDS for Db2 homogeneous federation has the following requirements:

• You must create the DRDA wrapper in UNFENCED mode. If you don't, then federation won't work
in RDS for Db2.

• You must allow incoming and outgoing traffic from your RDS for Db2 host database to your
remote host databases. For more information, see Provide access to your DB instance in your VPC
by creating a security group.

Topics

• Step 1: Create a DRDA wrapper and a federated server

• Step 2: Create a user mapping

• Step 3: Check the connection

Step 1: Create a DRDA wrapper and a federated server

For homogeneous federation, create a DRDA wrapper and a federated server. The connection to
the remote host uses HOST, PORT, and DBNAME.

Choose one of the following methods based on the type of your remote Db2 database:

• Db2 for Linux, UNIX, and Windows (LUX) database – Run the following SQL commands. In
the following example, replace server_name with the name of the server that you will use
for federation. Replace db2_version with the version of your remote Db2 database. Replace
username and password with your credentials for the remote Db2 database you want to
connect to. Replace db_name, dns_name, and port with the appropriate values for the remote
Db2 database you want to connect to.

create wrapper drda options(DB2_FENCED 'N');
create server server_name type DB2/LUW wrapper drda version 'db2_version'
 authorization "master_username" password "master_password" options (add DBNAME
 'db_name',add HOST 'dns_name',add PORT 'port');

Example

create wrapper drda options(DB2_FENCED 'N');

Homogeneous federation 2516

Amazon Relational Database Service User Guide

create server SERVER1 type DB2/LUW wrapper drda version '11.5' authorization
 "sysuser" password "******" options (add DBNAME 'TESTDB2',add HOST
 'ip-123-45-67-899.us-west-1.compute.internal',add PORT '25010');

• Db2 iSeries – Run the following SQL commands. In the following example, replace
wrapper_name and library_name with a name for your DRDA wrapper and the wrapper
library file. Replace server_name with the name of the server that you will use for federation.
Replace db2_version with the version of your remote Db2 database. Replace username and
password with your credentials for the remote Db2 database you want to connect to. Replace
dns_name, port, and db_name with the appropriate values for the remote Db2 database you
want to connect to.

create wrapper wrapper_name library 'library name' options(DB2_FENCED 'N');
create server server_name type db2/mvs version db2_version wrapper wrapper_name
 authorization "sername" password "password" options (HOST 'dns_name', PORT 'port',
 DBNAME 'db_name');

Example

create wrapper WRAPPER1 library 'libdb2drda.so' options(DB2_FENCED 'N');
create server SERVER1 type db2/mvs version 11 wrapper WRAPPER1 authorization
 "sysuser" password "******" options (HOST 'test1.123.com', PORT '446', DBNAME
 'STLEC1');

• Db2 for z/OS – Run the following SQL commands. In the following example, replace
wrapper_name and library_name with a name for your DRDA wrapper and the wrapper
library file. Replace server_name with the name of the server that you will use for federation.
Replace db2_version with the version of your remote Db2 database. Replace username and
password with your credentials for the remote Db2 database you want to connect to. Replace
dns_name, port, and db_name with the appropriate values for the remote Db2 database you
want to connect to.

create wrapper wrapper_name library 'library_name' options(DB2_FENCED 'N');
create server server_name type db2/mvs version db2_version wrapper wrapper_name
 authorization "username" password "password" options (HOST 'dns_name', PORT 'port',
 DBNAME 'db_name');

Example

Homogeneous federation 2517

https://www.ibm.com/docs/en/db2/11.5?topic=wrapper-db2-library-files
https://www.ibm.com/docs/en/db2/11.5?topic=wrapper-db2-library-files
https://www.ibm.com/docs/en/db2/11.5?topic=wrapper-db2-library-files
https://www.ibm.com/docs/en/db2/11.5?topic=wrapper-db2-library-files

Amazon Relational Database Service User Guide

create wrapper WRAPPER1 library 'libdb2drda.so' OPTIONS(DB2_FENCED 'N');
create server SERVER1 type db2/mvs version 11 wrapper WRAPPER1 authorization
 "sysuser" password "******" options (HOST 'test1.123.com', PORT '446', DBNAME
 'STLEC1');

Step 2: Create a user mapping

Create a user mapping to associate your federated server with your data source server by running
the following SQL command. In the following example, replace server_name with the name of
the remote server than you want to perform operations on. This is the server that you created in
step 1. Replace username and password with your credentials for this remote server.

create user mapping for user server server_name options (REMOTE_AUTHID 'username',
 REMOTE_PASSWORD 'password');

For more information, see User mappings in the IBM Db2 documentation.

Step 3: Check the connection

Confirm that setting up your federation was successful by checking the connection. Open a session
to send native SQL commands to your remote data source using the SET PASSTHRU command, and
then create a table on the remote data server.

1. Open and close a session to submit SQL to a data source. In the following example, replace
server_name with the name of the server that you created for federation in step 1.

set passthru server_name;

2. Create a new table. In the following example, replace column_name, data_type, and value
with the appropriate items for your table.

create table table_name
 (column_name data_type(value), column_name data_type(value);

For more information, see CREATE TABLE statement in the IBM Db2 documentation.

3. Create an index, insert values for rows into the table, and reset the connection. Resetting
the connection drops the connection but retains the back-end processes. In the following

Homogeneous federation 2518

https://www.ibm.com/docs/en/db2/11.5?topic=systems-user-mappings
https://www.ibm.com/docs/en/db2-event-store/2.0.0?topic=statements-create-table

Amazon Relational Database Service User Guide

example, replace index_name, table_name, column_name, and columnx_value with your
information.

create index index_name on table_name(column_name);
insert into table_name values(column1_value,column2_value,column3_value);
insert into table_name values(column1_value,column2_value,column3_value);
set passthru reset;

connect reset;

4. Connect to your remote Db2 database, create a nickname for your remote server, and perform
operations. When you are done accessing data in the remote Db2 database, reset and then
terminate the connection. In the following example, replace database_name with the name
of your remote Db2 database. Replace nickname with a name. Replace server_name and
table_name with the name of the remote server and table on that server that you want
to perform operations on. Replace username with the information for your remote server.
Replace sql_command with the operation to perform on the remote server.

connect to database_name;
create nickname nickname for server_name."username"."table_name";
select sql_command from nickname;
connect reset;
terminate;

Example

The following example creates a pass-through session to allow operations on the federated server
testdb10.

Next, it creates the table t1 with three columns with different data types.

Then, the example creates the index i1_t1 on three columns in table t1. Afterwards, it inserts two
rows with values for these three columns, and then disconnects.

Last, the example connects to the remote Db2 database testdb2 and creates a nickname for
the table t1 in the federated server testdb10. It creates the nickname with the username
TESTUSER for that data source. An SQL command outputs all data from the table t1. The example
disconnects and ends the session.

set passthru testdbl0;

Homogeneous federation 2519

Amazon Relational Database Service User Guide

create table t1 (c1 decimal(13,0), c2 char(200), c3 int);

create index i1_t1 on t1(c3);
insert into t1 values(1,'Test',1);
insert into t1 values(2,'Test 2',2);
connect reset;

connect to testdb2;
create nickname remote_t1 for testdbl0."TESTUSER"."T1";
select * from remote_t1;
connect reset;
terminate;

Heterogeneous federation

You can set up heterogeneous federation between your RDS for Db2 database and other data
sources such as Oracle and Microsoft SQL Server. For a complete list of data sources that Db2 LUW
supports, see Data Source Support Matrix of Federation Bundled in Db2 LUW V11.5 on the IBM
Support site.

RDS for Db2 heterogeneous federation doesn't support the following items:

• Native wrappers for the other data sources

• JDBC wrappers for the other data sources

• Federation to Sybase, Informix, and Teradata data sources because these data sources require
client software installation on RDS for Db2

RDS for Db2 heterogeneous federation has the following requirements:

• RDS for Db2 only supports the ODBC wrapper method.

• If you create an explicit definition of a wrapper, then you must set the option DB2_FENCED
to 'N'. For a list of valid wrapper options for ODBC, see ODBC options in the IBM Db2
documentation.

• You must allow incoming and outgoing traffic from your RDS for Db2 host database to your
remote host database. For more information, see Provide access to your DB instance in your VPC
by creating a security group.

Heterogeneous federation 2520

https://www.ibm.com/support/pages/data-source-support-matrix-federation-bundled-db2-luw-v115
https://www.ibm.com/docs/en/db2/11.5?topic=options-odbc

Amazon Relational Database Service User Guide

For information about federation to Oracle, see How to query Oracle by using Db2 Federation and
the ODBC driver? on the IBM Support site.

For more information about data sources that support federation, see Data Source Support Matrix
of Federation Bundled in Db2 LUW V11.5 on the IBM Support site.

Topics

• Step 1: Create an ODBC wrapper

• Step 2: Create a federated server

• Step 3: Create a user mapping

• Step 4: Check the connection

Step 1: Create an ODBC wrapper

Create a wrapper by running the following command:

db2 "create wrapper odbc options(module '/home/rdsdb/sqllib/federation/odbc/lib/
libodbc.so')"

Step 2: Create a federated server

Create a federated server by running the following command. In the following example,
replace server_name with the name of the server that you will use for federation. Replace
wrapper_type with the appropriate wrapper. Replace db_version with the version of your
remote database. Replace dns_name, port, and service_name with the appropriate values for
the remote database that you want to connect to.

db2 "create server server_name type wrapper_type version db_version options (HOST
 'dns_name', PORT 'port', SERVICE_NAME 'service_name')“

For information about wrapper types, see Data Source Support Matrix of Federation Bundled in
Db2 LUW V11.5 on the IBM Support site.

Example

The following example creates a federated server for a remote Oracle database.

Heterogeneous federation 2521

https://www.ibm.com/support/pages/node/6431133
https://www.ibm.com/support/pages/node/6431133
https://www.ibm.com/support/pages/node/957245
https://www.ibm.com/support/pages/node/957245
https://www.ibm.com/support/pages/node/957245
https://www.ibm.com/support/pages/node/957245

Amazon Relational Database Service User Guide

db2 "create server server1 type oracle_odbc version 12.1 options (HOST
 'test1.amazon.com', PORT '1521', SERVICE_NAME 'pdborcl.amazon.com')“

Step 3: Create a user mapping

Create a user mapping to associate your federated server with your data source server by running
the following SQL command. In the following example, replace server_name with the name of
the remote server than you want to perform operations on. This is the server that you created in
step 2. Replace username and password with your credentials for this remote server.

create user mapping for user server server_name options (REMOTE_AUTHID 'username',
 REMOTE_PASSWORD 'password');

For more information, see User mappings in the IBM Db2 documentation.

Step 4: Check the connection

Confirm that setting up your federation was successful by checking the connection. Open a session
to send native SQL commands to your remote data source using the SET PASSTHRU command, and
then create a table on the remote data server.

1. Open and close a session to submit SQL to a data source. In the following example, replace
server_name with the name of the server that you created for federation in step 2.

set passthru server_name;

2. Create a new table. In the following example, replace column_name, data_type, and value
with the appropriate items for your table.

create table table_name
 (column_name data_type(value), column_name data_type(value);

For more information, see CREATE TABLE statement in the IBM Db2 documentation.

3. Create an index, insert values for rows into the table, and reset the connection. Resetting
the connection drops the connection but retains the back-end processes. In the following
example, replace index_name, table_name, column_name, and columnx_value with your
information.

create index index_name on table_name(column_name);

Heterogeneous federation 2522

https://www.ibm.com/docs/en/db2/11.5?topic=systems-user-mappings
https://www.ibm.com/docs/en/db2-event-store/2.0.0?topic=statements-create-table

Amazon Relational Database Service User Guide

insert into table_name values(column1_value,column2_value,column3_value);
insert into table_name values(column1_value,column2_value,column3_value);
set passthru reset;

connect reset;

4. Connect to your remote Db2 database, create a nickname for your remote server, and perform
operations. When you are done accessing data in the remote Db2 database, reset and then
terminate the connection. In the following example, replace database_name with the name
of your remote Db2 database. Replace nickname with a name. Replace server_name and
table_name with the name of the remote server and table on that server that you want
to perform operations on. Replace username with the information for your remote server.
Replace sql_command with the operation to perform on the remote server.

connect to database_name;
create nickname nickname for server_name."username"."table_name";
select sql_command from nickname;
connect reset;
terminate;

Example

The following example creates a pass-through session to allow operations on the federated server
testdb10.

Next, it creates the table t1 with three columns with different data types.

Then, the example creates the index i1_t1 on three columns in table t1. Afterwards, it inserts two
rows with values for these three columns, and then disconnects.

Last, the example connects to the remote Db2 database testdb2 and creates a nickname for
the table t1 in the federated server testdb10. It creates the nickname with the username
TESTUSER for that data source. An SQL command outputs all data from the table t1. The example
disconnects and ends the session.

set passthru testdbl0;

create table t1 (c1 decimal(13,0), c2 char(200), c3 int);

create index i1_t1 on t1(c3);

Heterogeneous federation 2523

Amazon Relational Database Service User Guide

insert into t1 values(1,'Test',1);
insert into t1 values(2,'Test 2',2);
connect reset;

connect to testdb2;
create nickname remote_t1 for testdbl0."TESTUSER"."T1";
select * from remote_t1;
connect reset;
terminate;

Heterogeneous federation 2524

Amazon Relational Database Service User Guide

Options for Amazon RDS for Db2 DB instances

The following shows the options, or additional features, that are available for Amazon RDS
instances running the Db2 DB engine. To enable these options, you can add them to a custom
option group, and then associate the option group with your DB instance. For more information
about working with option groups, see Working with option groups.

Amazon RDS supports the following options for Db2:

Option Option ID

Db2 audit logging DB2_AUDIT

Options for RDS for Db2 DB instances 2525

Amazon Relational Database Service User Guide

Db2 audit logging

With Db2 audit logging, Amazon RDS records database activity, including users logging on to the
database and queries run against the database. RDS uploads the completed audit logs to your
Amazon S3 bucket, using the AWS Identity and Access Management (IAM) role that you provide.

Topics

• Setting up Db2 audit logging

• Managing Db2 audit logging

• Viewing audit logs

• Troubleshooting Db2 audit logging

Setting up Db2 audit logging

To enable audit logging for an Amazon RDS for Db2 database, you enable the DB2_AUDIT option
on the RDS for Db2 DB instance. Then, configure an audit policy to enable the feature for the
specific database. To enable the option on the RDS for Db2 DB instance, you configure the option
settings for the DB2_AUDIT option. You do so by providing the Amazon Resource Names (ARNs) for
your Amazon S3 bucket and the IAM role with permissions to access your bucket.

To set up Db2 audit logging for an RDS for Db2 database, complete the following steps.

Topics

• Step 1: Create an Amazon S3 bucket

• Step 2: Create an IAM policy

• Step 3: Create an IAM role and attach your IAM policy

• Step 4: Configure an option group for Db2 audit logging

• Step 5: Configure the audit policy

• Step 6: Check the audit configuration

Step 1: Create an Amazon S3 bucket

If you haven't already done so, create an Amazon S3 bucket where Amazon RDS can upload your
RDS for Db2 database's audit log files. The following restrictions apply to the S3 bucket that you
use as a target for audit files:

Db2 audit logging 2526

Amazon Relational Database Service User Guide

• It must be in the same AWS Region as your RDS for Db2 DB instance.

• It must not be open to the public.

• The bucket owner must also be the IAM role owner.

To learn how to create an Amazon S3 bucket, see Creating a bucket in the Amazon S3 User Guide.

After you enable audit logging, Amazon RDS automatically sends the logs from your DB instance to
the following locations:

• DB instance level logs – bucket_name/db2-audit-
logs/dbi_resource_id/date_time_utc/

• Database level logs – bucket_name/db2-audit-
logs/dbi_resource_id/date_time_utc/db_name/

Take note of the Amazon Resource Name (ARN) for your bucket. This information is needed to
complete subsequent steps.

Step 2: Create an IAM policy

Create an IAM policy with the permissions required to transfer audit log files from your DB instance
to your Amazon S3 bucket. This step assumes that you have an S3 bucket.

Before you create the policy, gather the following information:

• The ARN for your bucket.

• The ARN for your AWS Key Management Service (AWS KMS) key, if your bucket uses SSE-KMS
encryption.

Create an IAM policy that includes the following permissions:

"s3:ListBucket",
 "s3:GetBucketACL",
 "s3:GetBucketLocation",
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:ListAllMyBuckets"

Db2 audit logging 2527

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Relational Database Service User Guide

Note

Amazon RDS needs the s3:ListAllMyBuckets action internally to verify that the same
AWS account owns both the S3 bucket and the RDS for Db2 DB instance.

If your bucket uses SSE-KMS encryption, also include the following permissions for your IAM role
and AWS KMS key.

Include the following permissions to the policy for your IAM role.

"kms:GenerateDataKey",
 "kms:Decrypt"

Include the following permissions to the key policy for your AWS KMS key. Replace 111122223333
with your account number and AROA123456789EXAMPLE with your IAM role name.

{
 "Sid": "Allow RDS role to use the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:sts::111122223333:assumed-role/AROA123456789EXAMPLE/RDS-Db2Audit",
 "arn:aws:iam::111122223333:role/AROA123456789EXAMPLE"
]
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
}

You can create an IAM policy by using the AWS Management Console or the AWS Command Line
Interface (AWS CLI).

Db2 audit logging 2528

Amazon Relational Database Service User Guide

Console

To create an IAM policy to allow Amazon RDS to access your Amazon S3 bucket

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose Create policy, and then choose JSON.

4. In Add actions, filter by S3. Add access ListBucket, GetBucketAcl, and GetBucketLocation.

5. For Add a resource, choose Add. For Resource type, choose bucket, and enter the name of
your bucket. Then, choose Add resource.

6. Choose Add new statement.

7. In Add actions, filter by S3. Add access PutObject, ListMultipartUploadParts, and
AbortMultipartUpload.

8. For Add a resource, choose Add. For Resource type, choose object, and enter your bucket
name/*. Then, choose Add resource.

9. Choose Add new statement.

10. In Add actions, filter by S3. Add access ListAllMyBuckets.

11. For Add a resource, choose Add. For Resource type, choose All Resources. Then, choose Add
resource.

12. If you're using your own KMS keys to encrypt the data:

1. Choose Add new statement.

2. In Add actions, filter by KMS. Add access GenerateDataKey and Decrypt.

3. For Add a resource, choose Add. For Resource type, choose All Resources. Then, choose
Add resource.

13. Choose Next.

14. For Policy name, enter a name for this policy.

15. (Optional) For Description, enter a description for this policy.

16. Choose Create policy.

Db2 audit logging 2529

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

AWS CLI

To create an IAM policy to allow Amazon RDS to access your Amazon S3 bucket

1. Run the create-policy command. In the following example, replace iam_policy_name
and amzn-s3-demo-bucket with a name for your IAM policy and the name of your target
Amazon S3 bucket.

For Linux, macOS, or Unix:

aws iam create-policy \
 --policy-name iam_policy_name \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket"
]
 },
 {
 "Sid": "Statement2",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Sid": "Statement3",
 "Effect": "Allow",
 "Action": [

Db2 audit logging 2530

https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html

Amazon Relational Database Service User Guide

 "s3:ListAllMyBuckets"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Statement4",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": [
 "*"
]
 }
]
 }'

For Windows:

aws iam create-policy ^
 --policy-name iam_policy_name ^
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket"
]
 },
 {
 "Sid": "Statement2",
 "Effect": "Allow",
 "Action": [

Db2 audit logging 2531

Amazon Relational Database Service User Guide

 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Sid": "Statement3",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Statement4",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": [
 "*"
]
 }
]
 }'

2. After the policy is created, note the ARN of the policy. You need the ARN for Step 3: Create an
IAM role and attach your IAM policy.

For information about creating an IAM policy, see Creating IAM policies in the IAM User Guide.

Step 3: Create an IAM role and attach your IAM policy

This step assumes that you created the IAM policy in Step 2: Create an IAM policy. In this step, you
create an IAM role for your RDS for Db2 DB instance and then attach your IAM policy to the role.

You can create an IAM role for your DB instance by using the console or the AWS CLI.

Db2 audit logging 2532

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Relational Database Service User Guide

Console

To create an IAM role and attach your IAM policy to it

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. For Trusted entity type, select AWS service.

5. For Service or use case, select RDS, and then select RDS – Add Role to Database.

6. Choose Next.

7. For Permissions policies, search for and select the name of the IAM policy that you created.

8. Choose Next.

9. For Role name, enter a role name.

10. (Optional) For Description, enter a description for the new role.

11. Choose Create role.

AWS CLI

To create an IAM role and attach your IAM policy to it

1. Run the create-role command. In the following example, replace iam_role_name with a name
for your IAM role.

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name iam_role_name \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

Db2 audit logging 2533

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

Amazon Relational Database Service User Guide

]
 }'

For Windows:

aws iam create-role ^
 --role-name iam_role_name ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

2. After the role is created, note the ARN of this role. You need this ARN for the next step, Step 4:
Configure an option group for Db2 audit logging.

3. Run the attach-role-policy command. In the following example, replace iam_policy_arn
with the ARN of the IAM policy that you created in Step 2: Create an IAM policy. Replace
iam_role_name with the name of the IAM role that you just created.

For Linux, macOS, or Unix:

aws iam attach-role-policy \
 --policy-arn iam_policy_arn \
 --role-name iam_role_name

For Windows:

aws iam attach-role-policy ^
 --policy-arn iam_policy_arn ^
 --role-name iam_role_name

For more information, see Creating a role to delegate permissions to an IAM user in the IAM User
Guide.

Db2 audit logging 2534

https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Relational Database Service User Guide

Step 4: Configure an option group for Db2 audit logging

The process for adding the Db2 audit logging option to an RDS for Db2 DB instance is as follows:

1. Create a new option group, or copy or modify an existing option group.

2. Add and configure all required options.

3. Associate the option group with the DB instance.

After you add the Db2 audit logging option, you don't need to restart your DB instance. As soon as
the option group is active, you can create audits and store audit logs in your S3 bucket.

To add and configure Db2 audit logging on a DB instance's option group

1. Choose one of the following:

• Use an existing option group.

• Create a custom DB option group, and use that option group. For more information, see
Creating an option group.

2. Add the DB2_AUDIT option to the option group, and configure the option settings. For more
information about adding options, see Adding an option to an option group.

• For IAM_ROLE_ARN, enter the ARN of the IAM role that you created in the section called
“Create an IAM role and attach your IAM policy”.

• For S3_BUCKET_ARN, enter the ARN of the S3 bucket to use for your Db2 audit logs. The
bucket must be in the same Region as your RDS for Db2 DB instance. The policy associated
with the IAM role you entered must allow the required operations on this resource.

3. Apply the option group to a new or existing DB instance. Choose one of the following:

• If you are creating a new DB instance, apply the option group when you launch the instance.

• On an existing DB instance, apply the option group by modifying the instance and then
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

Step 5: Configure the audit policy

To configure the audit policy for your RDS for Db2 database, connect to the rdsadmin database
using the master username and master password for your RDS for Db2 DB instance. Then, call the

Db2 audit logging 2535

Amazon Relational Database Service User Guide

rdsadmin.configure_db_audit stored procedure with the DB name of your database and the
applicable parameter values.

The following example connects to the database and configures an audit policy for testdb
with the categories AUDIT, CHECKING, OBJMAINT, SECMAINT, SYSADMIN, and VALIDATE.
The status value BOTH logs success and failures, and the ERROR TYPE is NORMAL by default.
For more information about how to use this stored procedure, see the section called
“rdsadmin.configure_db_audit”.

db2 "connect to rdsadmin user master_user using master_password"
db2 "call rdsadmin.configure_db_audit('testdb', 'ALL', 'BOTH', ?)"

Step 6: Check the audit configuration

To make sure that your audit policy is set up correctly, check the status of your audit configuration.

To check the configuration, connect to the rdsadmin database using the master username and
master password for your RDS for Db2 DB instance. Then, run the following SQL statement with
the DB name of your database. In the following example, the DB name is testdb.

db2 "select task_id, task_type, database_name, lifecycle,
 varchar(bson_to_json(task_input_params), 500) as task_params,
 cast(task_output as varchar(500)) as task_output
 from table(rdsadmin.get_task_status(null,'testdb','CONFIGURE_DB_AUDIT'))"

Sample Output

TASK_ID TASK_TYPE DATABASE_NAME LIFECYCLE
-------------------- -------------------- --------------- -------------
 2 CONFIGURE_DB_AUDIT DB2DB SUCCESS

... continued ...
TASK_PARAMS
--
{ "AUDIT_CATEGORY" : "ALL", "CATEGORY_SETTING" : "BOTH" }

... continued ...
 TASK_OUTPUT

2023-12-22T20:27:03.029Z Task execution has started.

Db2 audit logging 2536

Amazon Relational Database Service User Guide

2023-12-22T20:27:04.285Z Task execution has completed successfully.

Managing Db2 audit logging

After you set up Db2 audit logging, you can modify the audit policy for a specific database, or
disable audit logging at the database level or for the entire DB instance. You can also change the
Amazon S3 bucket where your log files are uploaded to.

Topics

• Modifying a Db2 audit policy

• Modifying the location of your log files

• Disabling Db2 audit logging

Modifying a Db2 audit policy

To modify the audit policy for a specific RDS for Db2 database, run the
rdsadmin.configure_db_audit stored procedure. With this stored procedure, you can change
the categories, category settings, and error type configuration of the audit policy. For more
information, see the section called “rdsadmin.configure_db_audit”.

Modifying the location of your log files

To change the Amazon S3 bucket where your log files are uploaded to, do one of the following:

• Modify the current option group attached to your RDS for Db2 DB instance – Update the
S3_BUCKET_ARN setting for the DB2_AUDIT option to point to the new bucket. Also, make sure
to update the IAM policy attached to the IAM role specified by the IAM_ROLE_ARN setting in the
attached option group. This IAM policy must provide your new bucket with the required access
permissions. For information about the permissions required in the IAM policy, see Create an IAM
policy.

• Attach your RDS for Db2 DB instance to a different option group – Modify your DB instance to
change the option group that's attached to it. Make sure that the new option group is configured
with the correct S3_BUCKET_ARN and IAM_ROLE_ARN settings. For information about how to
configure these settings for the DB2_AUDIT option, see Configure an option group.

When you modify the option group, make sure that you apply the changes immediately. For more
information, see the section called “Modifying a DB instance”.

Db2 audit logging 2537

Amazon Relational Database Service User Guide

Disabling Db2 audit logging

To disable Db2 audit logging, do one of the following:

• Disable audit logging for the RDS for Db2 DB instance – Modify your DB instance and remove the
option group with the DB2_AUDIT option from it. For more information, see the section called
“Modifying a DB instance”.

• Disable audit logging for a specific database – Stop audit logging and remove the audit policy
by calling rdsadmin.disable_db_audit with the DB name of your database. For more
information, see the section called “rdsadmin.disable_db_audit”.

db2 "call rdsadmin.disable_db_audit(
 'db_name',
 ?)"

Viewing audit logs

After you enable Db2 audit logging, wait for at least one hour before viewing the audit data in your
Amazon S3 bucket. Amazon RDS automatically sends the logs from your RDS for Db2 DB instance
to the following locations:

• DB instance level logs – bucket_name/db2-audit-
logs/dbi_resource_id/date_time_utc/

• Database level logs – bucket_name/db2-audit-
logs/dbi_resource_id/date_time_utc/db_name/

The following example screenshot of the Amazon S3 console shows a list of folders for RDS for
Db2 DB instance level log files.

Db2 audit logging 2538

Amazon Relational Database Service User Guide

The following example screenshot of the Amazon S3 console shows database level log files for the
RDS for Db2 DB instance.

Db2 audit logging 2539

Amazon Relational Database Service User Guide

Troubleshooting Db2 audit logging

Use the following information to troubleshoot common issues with Db2 audit logging.

Can't configure the audit policy

If calling the stored procedure rdsadmin.configure_db_audit returns an error, it could be that
the option group with the DB2_AUDIT option isn't associated with the RDS for Db2 DB instance.
Modify the DB instance to add the option group, and then try calling the stored procedure again.
For more information, see Modifying an Amazon RDS DB instance.

No data in the Amazon S3 bucket

If logging data is missing from the Amazon S3 bucket, check the following:

• The Amazon S3 bucket is in the same Region as your RDS for Db2 DB instance.

• The role you specified in the IAM_ROLE_ARN option setting is configured with the required
permissions to upload logs to your Amazon S3 bucket. For more information, see Create an IAM
policy.

• The ARNs for the IAM_ROLE_ARN and S3_BUCKET_ARN option settings are correct in the option
group associated with your RDS for Db2 DB instance. For more information, see Configure an
option group.

You can check the task status of your audit logging configuration by connecting to the database
and running a SQL statement. For more information, see Check the audit configuration.

You can also check events to find out more about why logs might be missing. For information
about how to view events, see the section called “Viewing logs, events, and streams in the Amazon
RDS console”.

Db2 audit logging 2540

Amazon Relational Database Service User Guide

External stored procedures for Amazon RDS for Db2

You can create external routines and register them with your Amazon RDS for Db2 databases as
external stored procedures. Currently, RDS for Db2 only supports Java-based routines for external
stored procedures.

Java-based external stored procedures

Java-based external stored procedures are external Java routines that you register with your RDS
for Db2 database as external stored procedures.

Topics

• Limitations for Java-based external stored procedures

• Configuring Java-based external stored procedures

Limitations for Java-based external stored procedures

Before you develop your external routine, consider the following limitations and restrictions.

To create your external routine, make sure to use the Java Development Kit (JDK) provided by Db2.
For more information, see Java software support for Db2 database products.

Your Java program can create files only in the /tmp directory, and Amazon RDS doesn't support
enabling executable or Set User ID (SUID) permissions on these files. Your Java program also can't
use socket system calls or the following system calls:

• _sysctl

• acct

• afs_syscall

• bpf

• capset

• chown

• chroot

• create_module

• delete_module

External stored procedures 2541

https://www.ibm.com/docs/en/db2/11.5?topic=servers-java-software-support-db2-database-products

Amazon Relational Database Service User Guide

• fanotify_init

• fanotify_mark

• finit_module

• fsconfig

• fsopen

• fspick

• get_kernel_syms

• getpmsg

• init_module

• mount

• move_mount

• nfsservctl

• open_by_handle_at

• open_tree

• pivot_root

• putpmsg

• query_module

• quotactl

• reboot

• security

• setdomainname

• setfsuid

• sethostname

• sysfs

• tuxcall

• umount2

• uselib

• ustat

• vhangup

• vserver

Java-based external stored procedures 2542

Amazon Relational Database Service User Guide

For additional restrictions on external routines for Db2, see Restrictions on external routines in the
IBM Db2 documentation.

Configuring Java-based external stored procedures

To configure an external stored procedure, create a .jar file with your external routine, install it on
your RDS for Db2 database, and then register it as an external stored procedure.

Topics

• Step 1: Enable external stored procedures

• Step 2: Install the .jar file with your external routine

• Step 3: Register the external stored procedure

• Step 4: Validate the external stored procedure

Step 1: Enable external stored procedures

To enable external stored procedures, in a custom parameter group associated with your DB
instance, set the parameter db2_alternate_authz_behaviour to one of the following values:

• EXTERNAL_ROUTINE_DBADM – Implicitly grants any user, group, or role with DBADM authority the
CREATE_EXTERNAL_ROUTINE permission.

• EXTERNAL_ROUTINE_DBAUTH – Allows a user with DBADM authority to grant
CREATE_EXTERNAL_ROUTINE permission to any user, group, or role. In this case, no user, group,
or role is implicitly granted this permission, not even a user with DBADM authority.

For more information about this setting, see GRANT (database authorities) statement in the IBM
Db2 documentation.

You can create and modify a custom parameter group by using the AWS Management Console, the
AWS CLI, or the Amazon RDS API.

Console

To configure the db2_alternate_authz_behaviour parameter in a custom parameter group

1. If you want to use a different custom DB parameter group than the one your DB instance is
using, create a new DB parameter group. If you're using the Bring Your Own License (BYOL)
model, make sure that the new custom parameter group includes the IBM IDs. For information

Java-based external stored procedures 2543

https://www.ibm.com/docs/en/db2/11.5?topic=routines-restrictions-external
https://www.ibm.com/docs/en/db2/11.5?topic=statements-grant-database-authorities

Amazon Relational Database Service User Guide

about these IDs, see the section called “IBM IDs for Bring Your Own License for Db2”. For more
information about creating a DB parameter group, see Creating a DB parameter group in
Amazon RDS.

2. Set the value for the db2_alternate_authz_behaviour parameter in your custom
parameter group. For more information about modifying a parameter group, see Modifying
parameters in a DB parameter group in Amazon RDS.

AWS CLI

To configure the db2_alternate_authz_behaviour parameter in a custom parameter group

1. If you want to use a different custom DB parameter group than the one your DB instance is
using, create a custom parameter group by running the create-db-parameter-group command.
If you're using the Bring Your Own License (BYOL) model, make sure that the new custom
parameter group includes the IBM IDs. For information about these IDs, see the section called
“IBM IDs for Bring Your Own License for Db2”.

Include the following required options:

• --db-parameter-group-name – A name for the parameter group that you are creating.

• --db-parameter-group-family – The Db2 engine edition and major version. Valid
values are db2-se-11.5 and db2-ae-11.5.

• --description – A description for this parameter group.

For more information about creating a DB parameter group, see Creating a DB parameter
group in Amazon RDS.

The following example shows you how to create a custom parameter group named
MY_EXT_SP_PARAM_GROUP for the parameter group family db2-se-11.5.

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
--region us-east-1 \
--db-parameter-group-name MY_EXT_SP_PARAM_GROUP \
--db-parameter-group-family db2-se-11.5 \
--description "test db2 external routines"

Java-based external stored procedures 2544

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Relational Database Service User Guide

For Windows:

aws rds create-db-parameter-group ^
--region us-east-1 ^
--db-parameter-group-name MY_EXT_SP_PARAM_GROUP ^
--db-parameter-group-family db2-se-11.5 ^
--description "test db2 external routines"

2. Modify the db2_alternate_authz_behaviour parameter in your custom parameter group
by running the modify-db-parameter-group command.

Include the following required options:

• --db-parameter-group-name – The name of the parameter group that you created.

• --parameters – An array of parameter names, values, and the application methods for the
parameter update.

For more information about modifying a parameter group, see Modifying parameters in a DB
parameter group in Amazon RDS.

The following example shows you how to modify the parameter group
MY_EXT_SP_PARAM_GROUP by setting the value of db2_alternate_authz_behaviour to
EXTERNAL_ROUTINE_DBADM.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name MY_EXT_SP_PARAM_GROUP \
 --parameters
 "ParameterName='db2_alternate_authz_behaviour',ParameterValue='EXTERNAL_ROUTINE_DBADM',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name MY_EXT_SP_PARAM_GROUP ^
 --parameters
 "ParameterName='db2_alternate_authz_behaviour',ParameterValue='EXTERNAL_ROUTINE_DBADM',ApplyMethod=immediate"

Java-based external stored procedures 2545

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

RDS API

To configure the db2_alternate_authz_behaviour parameter in a custom parameter group

1. If you want to use a different custom DB parameter group than the one your DB
instance is using, create a new DB parameter group by using the Amazon RDS API
CreateDBParameterGroup operation. If you're using the Bring Your Own License (BYOL) model,
make sure that the new custom parameter group includes the IBM Db2 IDs. For information
about these IDs, see the section called “IBM IDs for Bring Your Own License for Db2”.

Include the following required parameters:

• DBParameterGroupName

• DBParameterGroupFamily

• Description

For more information about creating a DB parameter group, see Creating a DB parameter
group in Amazon RDS.

2. Modify the db2_alternate_authz_behaviour parameter in your custom parameter group
that you created by using the RDS API ModifyDBParameterGroup operation.

Include the following required parameters:

• DBParameterGroupName

• Parameters

For more information about modifying a parameter group, see Modifying parameters in a DB
parameter group in Amazon RDS.

Step 2: Install the .jar file with your external routine

After you create your Java routine, create the .jar file and then run db2 "call
sqlj.install_jar('file:file_path',jar_ID)" to install it on your RDS for Db2 database.

The following example shows you how to create a Java routine and install it on an RDS for Db2
database. The example includes sample code for a simple routine that you can use to test the
process. This example makes the following assumptions:

Java-based external stored procedures 2546

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Relational Database Service User Guide

• The Java code is compiled on a server where Db2 is installed. This is a best practice because not
compiling with the IBM-provided JDK can result in unexplained errors.

• The server has the RDS for Db2 database cataloged locally.

If you'd like to try out the process with the following sample code, copy it and then save it to a file
named MYJAVASP.java.

import java.sql.*;
public class MYJAVASP
{
public static void my_JAVASP (String inparam) throws SQLException, Exception
{
try
{
// Obtain the calling context's connection details.
Connection myConn = DriverManager.getConnection("jdbc:default:connection");
String myQuery = "INSERT INTO TEST.TEST_TABLE VALUES (?, CURRENT DATE)";
PreparedStatement myStmt = myConn.prepareStatement(myQuery);
myStmt.setString(1, inparam);
myStmt.executeUpdate();
}
catch (SQLException sql_ex)
{
throw sql_ex;
}
catch (Exception ex)
{
throw ex;
}
}

The following command compiles the Java routine.

~/sqllib/java/jdk64/bin/javac MYJAVASP.java

The following command creates the .jar file.

~/sqllib/java/jdk64/bin/jar cvf MYJAVASP.jar MYJAVASP.class

Java-based external stored procedures 2547

Amazon Relational Database Service User Guide

The following commands connect to the database named MY_DB2_DATABASE and install the .jar
file.

db2 "connect to MY_DB2_DATABASE user master_username using master_password"

db2 "call sqlj.install_jar('file:/tmp/MYJAVASP.jar','MYJAVASP')"
db2 "call sqlj.refresh_classes()"

Step 3: Register the external stored procedure

After you install the .jar file on your RDS for Db2 database, register it as a stored procedure by
running the db2 CREATE PROCEDURE or db2 REPLACE PROCEDURE command.

The following example shows you how to connect to the database and register the Java routine
created in the previous step as a stored procedure.

db2 "connect to MY_DB2_DATABASE user master_username using master_password"

create procedure TESTSP.MYJAVASP (in input char(6))
specific myjavasp
dynamic result sets 0
deterministic
language java
parameter style java
no dbinfo
fenced
threadsafe
modifies sql data
program type sub
external name 'MYJAVASP!my_JAVASP';

Step 4: Validate the external stored procedure

Use the following steps to test the sample external stored procedure that was registered in the
previous step.

To validate the external stored procedure

1. Create a table like TEST.TEST_TABLE in the following example.

db2 "create table TEST.TEST_TABLE(C1 char(6), C2 date)"

Java-based external stored procedures 2548

Amazon Relational Database Service User Guide

2. Call the new external stored procedure. The call returns a status of 0.

db2 "call TESTSP.MYJAVASP('test')"
Return Status = 0

3. Query the table you created in step 1 to verify the results of the stored procedure call.

db2 "SELECT * from TEST.TEST_TABLE"

The query produces output similar to the following example:

C1 C2
------ ----------
test 02/05/2024

Java-based external stored procedures 2549

Amazon Relational Database Service User Guide

Known issues and limitations for Amazon RDS for Db2

The following items are known issues and limitations for working with Amazon RDS for Db2:

Topics

• Authentication limitation

• Non-fenced routines

• Non-automatic storage tablespaces during migration

• Setting the db2_compatibility_vector parameter

• Migrating databases that contain INVALID packages

Authentication limitation

Amazon RDS sets db2auth to JCC_ENFORCE_SECMEC by default. However, if you don't want to
enforce userid and password encryption over the wire, you can override this setting by changing
the db2auth parameter to CLEAR_TEXT in the parameter group. For more information, see
Modifying parameters in a DB parameter group in Amazon RDS.

Non-fenced routines

RDS for Db2 doesn't support the creation of non-fenced routines and the migration of these
routines by backing up and restoring data. To check if your database contains any non-fenced
routines, run the following SQL command:

SELECT 'COUNT:' || count(*) FROM SYSCAT.ROUTINES where fenced='N' and routineschema not
 in ('SQLJ','SYSCAT','SYSFUN','SYSIBM','SYSIBMADM','SYSPROC','SYSTOOLS')

Non-automatic storage tablespaces during migration

RDS for Db2 doesn't support the creation of new non-automatic storage tablespaces. When you
use native restore for a one-time migration of your database, RDS for Db2 automatically converts
your non-automatic storage tablespaces to automatic ones, and then restores your database to
RDS for Db2. For information about one-time migrations, see Migrating from Linux to Linux for
Amazon RDS for Db2 and Migrating from AIX or Windows to Linux for Amazon RDS for Db2.

Known issues and limitations 2550

Amazon Relational Database Service User Guide

Setting the db2_compatibility_vector parameter

With Amazon RDS, you can create an initial database when you create the DB instance and then
modify parameters in an associated parameter group. However, for Db2, if you want to set the
db2_compatibility_vector parameter in a parameter group, you must first modify the
parameter in a custom parameter group, create the DB instance without a database, and then
create a database using the rdsadmin.create_database stored procedure.

To set the db2_compatibility_vector parameter

1. Create a custom parameter group. (You can't modify parameters in default parameter groups.)

2. Modify the parameter.

3. Create a DB instance.

4. Create a database using the rdsadmin.create_database stored procedure.

5. Associate the parameter group with the DB instance that contains the database.

Migrating databases that contain INVALID packages

If you migrate Db2 databases that contain INVALID packages to RDS for Db2 by using the
RESTORE command, you could encounter issues when you start to use the databases. INVALID
packages can cause issues because of the authorization setup for the DB instance user rdsdb and
the removal of authorization from PUBLIC. INVALID packages cause the following commands to
fail:

• db2updv115

• db2 "call SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS()"

Before migrating your database with the RESTORE command, ensure that your database doesn't
contain INVALID packages by running the following command:

db2 "select count(*) from sysibm.sysroutines where valid = 'N'"

If the command returns a count greater than zero, then call the following command:

db2 "call SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS()"

Setting the db2_compatibility_vector parameter 2551

Amazon Relational Database Service User Guide

Afterwards, call the previous command to confirm that your database no longer contains INVALID
packages.

db2 "select count(*) from sysibm.sysroutines where valid = 'N'"

Now you are ready to make a backup of your database and restore it to your RDS for Db2 DB
instance.

Migrating databases that contain INVALID packages 2552

Amazon Relational Database Service User Guide

Amazon RDS for Db2 stored procedure reference

You can manage your Amazon RDS for Db2 DB instances running the Db2 engine by calling built-in
stored procedures.

Stored procedure Category Description

the section called
“rdsadmin.activate
_database”

Databases Use the rdsadmin.activate_database
stored procedure to activate a database on a
standalone RDS for Db2 DB instance.

the section called
“rdsadmin.add_grou
ps”

Granting and
revoking privileges

Use the rdsadmin.add_groups stored
procedure to add one or more groups to a user
for a database on an RDS for Db2 DB instance.

the section called
“rdsadmin.add_user”

Granting and
revoking privileges

Use the rdsadmin.add_user stored
procedure to add a user to an authorization
list for a database on an RDS for Db2 DB
instance.

the section called
“rdsadmin.alter_bu
fferpool”

Buffer pools Use the rdsadmin.alter_bufferpool
stored procedure to modify a buffer pool for a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.alter_ta
blespace”

Tablespaces Use the rdsadmin.alter_tablespace
stored procedure to modify a tablespace for a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.catalog_
storage_access”

Storage access Use the rdsadmin.catalog_storage_ac
cess stored procedure to catalog a storage
alias for accessing an Amazon S3 bucket with
Db2 data files for a database on an RDS for
Db2 DB instance.

the section called
“rdsadmin.change_p
assword”

Granting and
revoking privileges

Use the rdsadmin.change_password
stored procedure to change a user's password
for a database on an RDS for Db2 DB instance.

RDS for Db2 stored procedures 2553

Amazon Relational Database Service User Guide

Stored procedure Category Description

the section called
“rdsadmin.complete
_rollforward”

Databases Use the rdsadmin.complete_rollforwa
rd stored procedure to bring a database on
an RDS for Db2 DB instance online from a
ROLL-FORWARD PENDING state. A ROLL-
FORWARD PENDING state occurs when you
called the section called “rdsadmin.rollforw
ard_database” but set the complete_
rollforward parameter to FALSE.

the section called
“rdsadmin.configur
e_db_audit”

Audit policies Use the rdsadmin.configure_db_audit
 stored procedure to modify an audit policy

for a database on an RDS for Db2 DB instance.
If no audit policy exists, running this stored
procedure creates an audit policy.

the section called
“rdsadmin.create_b
ufferpool”

Buffer pools Use the rdsadmin.create_bufferpool
stored procedure to create a buffer pool for a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.create_d
atabase”

Databases Use the rdsadmin.create_database
stored procedure to create a database on an
RDS for Db2 DB instance.

the section called
“rdsadmin.create_r
ole”

Granting and
revoking privileges

Use the rdsadmin.create_role stored
procedure to create a role to attach to a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.create_t
ablespace”

Tablespaces Use the rdsadmin.create_tablespace
stored procedure to create a tablespace for a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.db2pd_co
mmand”

Databases Use the rdsadmin.db2pd_command
stored procedure collect information about
a database on an RDS for Db2 DB instance.
This information can help with monitoring and
troubleshooting databases in RDS for Db2.

RDS for Db2 stored procedures 2554

Amazon Relational Database Service User Guide

Stored procedure Category Description

the section called
“rdsadmin.dbadm_gr
ant”

Granting and
revoking privileges

Use the rdsadmin.dbadm_grant stored
procedure to grant one or more authorization
types (DBADM, ACCESSCTRL , or DATAACCES
S) to one or more roles, users, or groups for a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.dbadm_re
voke”

Granting and
revoking privileges

Use the rdsadmin.dbadm_revoke
stored procedure to revoke one or more
authorization types (DBADM, ACCESSCTRL ,
or DATAACCESS) from one or more roles,
users, or groups for a database on an RDS for
Db2 DB instance.

the section called
“rdsadmin.deactiva
te_database”

Databases Use the rdsadmin.deactivate_databas
e stored procedure to deactivate a database
on an RDS for Db2 DB instance. You can
deactivate databases to conserve memory
resources.

the section called
“rdsadmin.disable_
db_audit”

Audit policies Use the rdsadmin.disable_db_audit
stored procedure to stop audit logging and
remove an audit policy from a database on an
RDS for Db2 DB instance.

the section called
“rdsadmin.drop_buf
ferpool”

Buffer pools Use the rdsadmin.drop_bufferpool
stored procedure to drop a buffer pool from a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.drop_dat
abase”

Databases Use the rdsadmin.drop_database
stored procedure to drop a database from an
RDS for Db2 DB instance.

the section called
“rdsadmin.drop_role”

Granting and
revoking privileges

Use the rdsadmin.drop_role stored
procedure to delete a role from a database on
an RDS for Db2 DB instance.

RDS for Db2 stored procedures 2555

Amazon Relational Database Service User Guide

Stored procedure Category Description

the section called
“rdsadmin.drop_tab
lespace”

Tablespaces Use the rdsadmin.drop_tablespace
stored procedure to drop a tablespace from a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.force_ap
plication”

Databases Use the rdsadmin.force_application
stored procedure to force applications off of
a database on an RDS for Db2 DB instance to
perform maintenance.

the section called
“rdsadmin.grant_ro
le”

Granting and
revoking privileges

Use the rdsadmin.grant_role stored
procedure to assign a role to a grantee role,
user, or group in a database on an RDS for
Db2 DB instance. You can also use this stored
procedure to give the grantee role DBADM
authorization to assign roles.

the section called
“rdsadmin.list_arc
hive_log_informati
on”

Databases Use the rdsadmin.list_archive_log_i
nformation stored procedure to return
information about archive logs for a database
on an RDS for Db2 DB instance. This informati
on includes details such as size and creation
date of individual log files, and the total
storage used by the archive log files.

the section called
“rdsadmin.list_users”

Granting and
revoking privileges

Use the rdsadmin.list_users stored
procedure to return a list of users on an
authorization list for a database on an RDS for
Db2 DB instance.

RDS for Db2 stored procedures 2556

Amazon Relational Database Service User Guide

Stored procedure Category Description

the section called
“rdsadmin.reactiva
te_database”

Databases Use the rdsadmin.reactivate_databas
e stored procedure to reactivate a database
on an RDS for Db2 DB instance after you
make database configuration changes. For a
database on a standalone DB instance, you
can use either this stored procedure or the
rdsadmin.activate_database stored procedure.

the section called
“rdsadmin.remove_g
roups”

Granting and
revoking privileges

Use the rdsadmin.remove_groups
stored procedure to remove one or more
groups from a user for a database on an RDS
for Db2 DB instance.

the section called
“rdsadmin.remove_u
ser”

Granting and
revoking privileges

Use the rdsadmin.remove_user stored
procedure to remove a user from an authoriza
tion list for a database on an RDS for Db2 DB
instance.

the section called
“rdsadmin.rename_t
ablespace”

Tablespaces Use the rdsadmin.rename_tablespace
stored procedure to rename a tablespace for a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.restore_
database”

Databases Use the rdsadmin.restore_database
stored procedure to restore a database on an
RDS for Db2 DB instance from an Amazon S3
bucket.

the section called
“rdsadmin.revoke_r
ole”

Granting and
revoking privileges

Use the rdsadmin.revoke_role stored
procedure to revoke a role from a grantee role,
user, or group in a database on an RDS for Db2
DB instance.

RDS for Db2 stored procedures 2557

Amazon Relational Database Service User Guide

Stored procedure Category Description

the section called
“rdsadmin.rollforw
ard_database”

Databases Use the rdsadmin.rollforward_databa
se stored procedure to bring a database on
an RDS for Db2 DB instance online, and to
apply transaction logs after you restored a
database on an RDS for Db2 DB instance by
calling the section called “rdsadmin.restore_
database”.

the section called
“rdsadmin.set_arch
ive_log_retention”

Databases Use the rdsadmin.set_archive_log_re
tention stored procedure to configure how
long to retain archive log files for a database
on an RDS for Db2 DB instance. You can also
use this stored procedure to disable archive
log retention.

the section called
“rdsadmin.set_conf
iguration”

Databases Use the rdsadmin.set_configuration
stored procedure to configure certain settings
for a database on an RDS for Db2 DB instance.

the section called
“rdsadmin.show_arc
hive_log_retention”

Databases Use the rdsadmin.show_archive_log_r
etention stored procedure to return the
current archive log retention setting for a
database on an RDS for Db2 DB instance.

the section called
“rdsadmin.show_con
figuration”

Databases Use the rdsadmin.show_configuration
 stored procedure to return one or more

settings that are modifiable for a database on
an RDS for Db2 DB instance.

the section called
“rdsadmin.uncatalo
g_storage_access”

Storage access Use the rdsadmin.uncatalog_storage_
access stored procedure to remove a
storage alias for accessing an Amazon S3
bucket with Db2 data files.

RDS for Db2 stored procedures 2558

Amazon Relational Database Service User Guide

Stored procedure Category Description

the section called
“rdsadmin.update_d
b_param”

Databases Use the rdsadmin.update_db_param
stored procedure to update database
parameters for a database on an RDS for Db2
DB instance.

Topics

• Considerations for Amazon RDS for Db2 stored procedures

• Stored procedures for granting and revoking privileges for RDS for Db2

• Stored procedures for audit policies for RDS for Db2

• Stored procedures for buffer pools for RDS for Db2

• Stored procedures for databases for RDS for Db2

• Stored procedures for storage access for RDS for Db2

• Stored procedures for tablespaces for RDS for Db2

RDS for Db2 stored procedures 2559

Amazon Relational Database Service User Guide

Considerations for Amazon RDS for Db2 stored procedures

Before using the Amazon RDS system stored procedures for RDS for Db2 DB instances running the
Db2 engine, review the following information:

• You can only run the stored procedures from the Db2 command line tool, not in an SQL client
application such as DBeaver.

• Before running the stored procedures, you must first connect to the rdsadmin database
as the master user for your RDS for Db2 DB instance. In the following example, replace
master_username and master_password with your own information.

db2 "connect to rdsadmin user master_user using master_password"

• The stored procedures return the ERR_MESSAGE parameter, which indicates whether the stored
procedure ran successfully or not and why it didn't run successfully.

Examples

The following example indicates that the stored procedure ran successfully.

Parameter Name : ERR_MESSAGE
Parameter Value : -
Return Status = 0

The following example indicates that the stored procedure didn't run successfully because the
Amazon S3 bucket name used in the stored procedure wasn't valid.

Parameter Name : ERR_MESSAGE
Parameter Value : Invalid S3 bucket name
Return Status = -1006

For error messages returned when calling stored procedures, see the section called “Stored
procedure errors”.

For information about checking the status of a stored procedure, see rdsadmin.get_task_status.

Considerations for stored procedures 2560

Amazon Relational Database Service User Guide

Stored procedures for granting and revoking privileges for RDS for Db2

The built-in stored procedures described in this topic manage users, roles, groups, and
authorization for Amazon RDS for Db2 databases. To run these procedures, the master user must
first connect to the rdsadmin database.

For tasks that use these stored procedures, see the section called “Granting and revoking
privileges”.

Refer to the following built-in stored procedures for information about their syntax, parameters,
usage notes, and examples.

Stored procedures

• rdsadmin.create_role

• rdsadmin.grant_role

• rdsadmin.revoke_role

• rdsadmin.drop_role

• rdsadmin.add_user

• rdsadmin.change_password

• rdsadmin.list_users

• rdsadmin.remove_user

• rdsadmin.add_groups

• rdsadmin.remove_groups

• rdsadmin.dbadm_grant

• rdsadmin.dbadm_revoke

rdsadmin.create_role

Creates a role.

Syntax

db2 "call rdsadmin.create_role(
 'database_name',

Granting and revoking privileges 2561

Amazon Relational Database Service User Guide

 'role_name')"

Parameters

The following parameters are required:

database_name

The name of the database the command will run on. The data type is varchar.

role_name

The name of the role that you want to create. The data type is varchar.

Usage notes

For information about checking the status of creating a role, see rdsadmin.get_task_status.

Examples

The following example creates a role called MY_ROLE for database DB2DB.

db2 "call rdsadmin.create_role(
 'DB2DB',
 'MY_ROLE')"

rdsadmin.grant_role

Assigns a role to a role, user, or group.

Syntax

db2 "call rdsadmin.grant_role(
 ?,
 'database_name',
 'role_name',
 'grantee',
 'admin_option')"

Parameters

The following output parameter is required:

Granting and revoking privileges 2562

Amazon Relational Database Service User Guide

?

A parameter marker that outputs the unique identifier for the task. This parameter only accepts
?.

The following input parameters are required:

database_name

The name of the database the command will run on. The data type is varchar.

role_name

The name of the role that you want to create. The data type is varchar.

grantee

The role, user, or group to receive authorization. The data type is varchar. Valid values: ROLE,
USER, GROUP, PUBLIC.

Format must be value followed by name. Separate multiple values and names with commas.
Example: 'USER user1, user2, GROUP group1, group2'. Replace the names with your
own information.

The following input parameter is optional:

admin_option

Specifies whether the grantee ROLE has DBADM authorization to assign roles. The data type is
char. The default is N.

Usage notes

For information about checking the status of assigning a role, see rdsadmin.get_task_status.

Examples

Example 1: Assigning role to role, user, and group, and granting authorization

The following example assigns a role called ROLE_TEST for database TESTDB to the role
called role1, the user called user1, and the group called group1. ROLE_TEST is given admin
authorization to assign roles.

Granting and revoking privileges 2563

Amazon Relational Database Service User Guide

db2 "call rdsadmin.grant_role(
 ?,
 'TESTDB',
 'ROLE_TEST',
 'ROLE role1, USER user1, GROUP group1',
 'Y')"

Example 2: Assigning role to PUBLIC and not granting authorization

The following example assigns a role called ROLE_TEST for database TESTDB to PUBLIC.
ROLE_TEST isn't given admin authorization to assign roles.

db2 "call rdsadmin.grant_role(
 ?,
 'TESTDB',
 'ROLE_TEST',
 'PUBLIC')"

rdsadmin.revoke_role

Revokes a role from a role, user, or group.

Syntax

db2 "call rdsadmin.revoke_role(
 ?,
 'database_name',
 'role_name',
 'grantee')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs the unique identifier for the task. This parameter only
accepts ?.

The following input parameters are required:

Granting and revoking privileges 2564

Amazon Relational Database Service User Guide

database_name

The name of the database the command will run on. The data type is varchar.

role_name

The name of the role that you want to revoke. The data type is varchar.

grantee

The role, user, or group to lose authorization. The data type is varchar. Valid values: ROLE,
USER, GROUP, PUBLIC.

Format must be value followed by name. Separate multiple values and names with commas.
Example: 'USER user1, user2, GROUP group1, group2'. Replace the names with your
own information.

Usage notes

For information about checking the status of revoking a role, see rdsadmin.get_task_status.

Examples

Example 1: Revoking role from role, user, and group

The following example revokes a role called ROLE_TEST for database TESTDB from the role called
role1, the user called user1, and the group called group1.

db2 "call rdsadmin.revoke_role(
 ?,
 'TESTDB',
 'ROLE_TEST',
 'ROLE role1, USER user1, GROUP group1')"

Example 2: Revoking role from PUBLIC

The following example revokes a role called ROLE_TEST for database TESTDB from PUBLIC.

db2 "call rdsadmin.revoke_role(
 ?,
 'TESTDB',
 'ROLE_TEST',
 'PUBLIC')"

Granting and revoking privileges 2565

Amazon Relational Database Service User Guide

rdsadmin.drop_role

Drops a role.

Syntax

db2 "call rdsadmin.drop_role(
 ?,
 'database_name',
 'role_name')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs the unique identifier for the task. This parameter only
accepts ?.

The following input parameters are required:

database_name

The name of the database the command will run on. The data type is varchar.

role_name

The name of the role that you want to drop. The data type is varchar.

Usage notes

For information about checking the status of dropping a role, see rdsadmin.get_task_status.

Examples

The following example drops a role called ROLE_TEST for database TESTDB.

db2 "call rdsadmin.drop_role(
 ?,
 'TESTDB',
 'ROLE_TEST')"

Granting and revoking privileges 2566

Amazon Relational Database Service User Guide

rdsadmin.add_user

Adds a user to an authorization list.

Syntax

db2 "call rdsadmin.add_user(
 'username',
 'password',
 'group_name,group_name')"

Parameters

The following parameters are required:

username

A user's username. The data type is varchar.

password

A user's password. The data type is varchar.

The following parameter is optional:

group_name

The name of a group that you want to add the user to. The data type is varchar. The default is
an empty string or null.

Usage notes

You can add a user to one or more groups by separating the group names with commas.

You can create a group when you create a new user, or when you add a group to an existing user.
You can't create a group by itself.

Note

The maximum number of users that you can add by calling rdsadmin.add_user is 5,000.

Granting and revoking privileges 2567

Amazon Relational Database Service User Guide

For information about checking the status of adding a user, see rdsadmin.get_task_status.

Examples

The following example creates a user called jorge_souza and assigns the user to the groups
called sales and inside_sales.

db2 "call rdsadmin.add_user(
 'jorge_souza',
 '*******',
 'sales,inside_sales')"

rdsadmin.change_password

Changes a user's password.

Syntax

db2 "call rdsadmin.change_password(
 'username',
 'new_password')"

Parameters

The following parameters are required:

username

A user's username. The data type is varchar.

new_password

A new password for the user. The data type is varchar.

Usage notes

For information about checking the status of changing a password, see rdsadmin.get_task_status.

Examples

The following example changes the password for jorge_souza.

Granting and revoking privileges 2568

Amazon Relational Database Service User Guide

db2 "call rdsadmin.change_password(
 'jorge_souza',
 '*******')"

rdsadmin.list_users

Lists users on an authorization list.

Syntax

db2 "call rdsadmin.list_users()"

Usage notes

For information about checking the status of listing users, see rdsadmin.get_task_status.

rdsadmin.remove_user

Removes user from authorization list.

Syntax

db2 "call rdsadmin.remove_user('username')"

Parameters

The following parameter is required:

username

A user's username. The data type is varchar.

Usage notes

For information about checking the status of removing a user, see rdsadmin.get_task_status.

Examples

The following example removes jorge_souza from being able to access databases in RDS for Db2
DB instances.

Granting and revoking privileges 2569

Amazon Relational Database Service User Guide

db2 "call rdsadmin.remove_user('jorge_souza')"

rdsadmin.add_groups

Adds groups to a user.

Syntax

db2 "call rdsadmin.add_groups(
 'username',
 'group_name,group_name')"

Parameters

The following parameters are required:

username

A user's username. The data type is varchar.

group_name

The name of a group that you want to add the user to. The data type is varchar. The default is
an empty string.

Usage notes

You can add one or more groups to a user by separating the group names with commas. For
information about checking the status of adding groups, see rdsadmin.get_task_status.

Examples

The following example adds the direct_sales and b2b_sales groups to user jorge_souza.

db2 "call rdsadmin.add_groups(
 'jorge_souza',
 'direct_sales,b2b_sales')"

rdsadmin.remove_groups

Removes groups from a user.

Granting and revoking privileges 2570

Amazon Relational Database Service User Guide

Syntax

db2 "call rdsadmin.remove_groups(
 'username',
 'group_name,group_name')"

Parameters

The following parameters are required:

username

A user's username. The data type is varchar.

group_name

The name of a group that you want to remove the user from. The data type is varchar.

Usage notes

You can remove one or more groups from a user by separating the group names with commas.

For information about checking the status of removing groups, see rdsadmin.get_task_status.

Examples

The following example removes the direct_sales and b2b_sales groups from user
jorge_souza.

db2 "call rdsadmin.remove_groups(
 'jorge_souza',
 'direct_sales,b2b_sales')"

rdsadmin.dbadm_grant

Grants DBADM, ACCESSCTRL, or DATAACCESS authorization to a role, user, or group.

Syntax

db2 "call rdsadmin.dbadm_grant(
 ?,

Granting and revoking privileges 2571

Amazon Relational Database Service User Guide

 'database_name',
 'authorization',
 'grantee')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs the unique identifier for the task. This parameter only accepts
?.

The following input parameters are required:

database_name

The name of the database the command will run on. The data type is varchar.

authorization

The type of authorization to grant. The data type is varchar. Valid values: DBADM,
ACCESSCTRL, DATAACCESS.

Separate multiple types with commas.

grantee

The role, user, or group to receive authorization. The data type is varchar. Valid values: ROLE,
USER, GROUP.

Format must be value followed by name. Separate multiple values and names with commas.
Example: 'USER user1, user2, GROUP group1, group2'. Replace the names with your
own information.

Usage notes

The role to receive access must exist.

For information about checking the status of granting database admin access, see
rdsadmin.get_task_status.

Granting and revoking privileges 2572

Amazon Relational Database Service User Guide

Examples

Example 1: Granting database admin access to role

The following example grants database admin access to the database named TESTDB for the role
ROLE_DBA.

db2 "call rdsadmin.dbadm_grant(
 ?,
 'TESTDB',
 'DBADM',
 'ROLE ROLE_DBA')"

Example 2: Granting database admin access to user and group

The following example grants database admin access to the database named TESTDB for user1
and group1.

db2 "call rdsadmin.dbadm_grant(
 ?,
 'TESTDB',
 'DBADM',
 'USER user1, GROUP group1')"

Example 3: Granting database admin access to multiple users and groups

The following example grants database admin access to the database named TESTDB for user1,
user2, group1, and group2.

db2 "call rdsadmin.dbadm_grant(
 ?,
 'TESTDB',
 'DBADM',
 'USER user1, user2, GROUP group1, group2')"

rdsadmin.dbadm_revoke

Revokes DBADM, ACCESSCTRL, or DATAACCESS authorization from a role, user, or group.

Syntax

db2 "call rdsadmin.dbadm_revoke(

Granting and revoking privileges 2573

Amazon Relational Database Service User Guide

 ?,
 'database_name',
 'authorization',
 'grantee')"

Parameters

The following output parameter is required:

?

The unique identifier for the task. This parameter only accepts ?.

The following input parameters are required:

database_name

The name of the database the command will run on. The data type is varchar.

authorization

The type of authorization to revoke. The data type is varchar. Valid values: DBADM,
ACCESSCTRL, DATAACCESS.

Separate multiple types with commas.

grantee

The role, user, or group to revoke authorization from. The data type is varchar. Valid values:
ROLE, USER, GROUP.

Format must be value followed by name. Separate multiple values and names with commas.
Example: 'USER user1, user2, GROUP group1, group2'. Replace the names with your
own information.

Usage notes

For information about checking the status of revoking database admin access, see
rdsadmin.get_task_status.

Examples

Example 1: Revoking database admin access from role

Granting and revoking privileges 2574

Amazon Relational Database Service User Guide

The following example revokes database admin access to the database named TESTDB for the role
ROLE_DBA.

db2 "call rdsadmin.dbadm_revoke(
 ?,
 'TESTDB',
 'DBADM',
 'ROLE ROLE_DBA')"

Example 2: Revoking database admin access from user and group

The following example revokes database admin access to the database named TESTDB for user1
and group1.

db2 "call rdsadmin.dbadm_revoke(
 ?,
 'TESTDB',
 'DBADM',
 'USER user1, GROUP group1')"

Example 3: Revoking database admin access from multiple users and groups

The following example revokes database admin access to the database named TESTDB for user1,
user2, group1, and group2.

db2 "call rdsadmin.dbadm_revoke(
 ?,
 'TESTDB',
 'DBADM',
 'USER user1, user2, GROUP group1, group2')"

Granting and revoking privileges 2575

Amazon Relational Database Service User Guide

Stored procedures for audit policies for RDS for Db2

The built-in stored procedures described in this topic manage audit policies for Amazon RDS for
Db2 databases that use audit logging. For more information, see the section called “Db2 audit
logging”. To run these procedures, the master user must first connect to the rdsadmin database.

Refer to the following built-in stored procedures for information about their syntax, parameters,
usage notes, and examples.

Stored procedures

• rdsadmin.configure_db_audit

• rdsadmin.disable_db_audit

rdsadmin.configure_db_audit

Configures the audit policy for the RDS for Db2 database specified by db_name. If the policy you're
configuring doesn't exist, calling this stored procedure creates it. If this policy does exist, calling
this stored procedure modifies it with the parameter values that you provide.

Syntax

db2 "call rdsadmin.configure_db_audit(
 'db_name',
 'category',
 'category_setting',
 '?')"

Parameters

The following parameters are required.

db_name

The DB name of the RDS for Db2 database to configure the audit policy for. The data type is
varchar.

category

The name of the category to configure this audit policy for. The data type is varchar. The
following are valid values for this parameter:

Audit policies 2576

Amazon Relational Database Service User Guide

• ALL – With ALL, Amazon RDS doesn't include the CONTEXT, EXECUTE, or ERROR categories.

• AUDIT

• CHECKING

• CONTEXT

• ERROR

• EXECUTE – You can configure this category with data or without data. With data means
to also log input data values provided for any host variables and parameter markers. The
default is without data. For more information, see the description of the category_setting
parameter and the the section called “Examples”.

• OBJMAINT

• SECMAINT

• SYSADMIN

• VALIDATE

For more information about these categories, see the IBM Db2 documentation.

category_setting

The setting for the specified audit category. The data type is varchar.

The following table shows the valid category setting values for each category.

Category Valid category settings

ALL

AUDIT

CHECKING

CONTEXT

OBJMAINT

SECMAINT

SYSADMIN

BOTH|FAILURE|SUCCESS|NONE

Audit policies 2577

https://www.ibm.com/docs/en/db2/11.1?topic=statements-create-audit-policy

Amazon Relational Database Service User Guide

Category Valid category settings

VALIDATE

ERROR AUDIT|NORMAL . The default is NORMAL.

EXECUTE BOTH,WITH|BOTH,WITHOUT|FAILURE,WITH|
FAILURE,WITHOUT|SUCCESS,WITH|SUCCESS
,WITHOUT|NONE

Usage notes

Before you call rdsadmin.configure_db_audit, make sure the RDS for Db2 DB instance with
the database you're configuring the audit policy for is associated with an option group that has the
DB2_AUDIT option. For more information, see the section called “Setting up Db2 audit logging”.

After you configure the audit policy, you can check the status of the audit configuration for the
database by following the steps in Check the audit configuration.

Specifying ALL for the category parameter doesn't include the CONTEXT, EXECUTE, or ERROR
categories. To add these categories to your audit policy, call rdsadmin.configure_db_audit
separately with each category that you want to add. For more information, see the section called
“Examples”.

Examples

The following examples create or modify the audit policy for a database named TESTDB. In
examples 1 through 5, if the ERROR category wasn't previously configured, this category is set to
NORMAL (the default). To change that setting to AUDIT, follow Example 6: Specifying the ERROR
category.

Example 1: Specifying the ALL category

db2 "call rdsadmin.configure_db_audit('TESTDB', 'ALL', 'BOTH', ?)"

In the example, the call configures the AUDIT, CHECKING, OBJMAINT, SECMAINT, SYSADMIN, and
VALIDATE categories in the audit policy. Specifying BOTH means that both successful and failing
events will be audited for each of these categories.

Audit policies 2578

Amazon Relational Database Service User Guide

Example 2: Specifying the EXECUTE category with data

db2 "call rdsadmin.configure_db_audit('TESTDB', 'EXECUTE', 'SUCCESS,WITH', ?)"

In the example, the call configures the EXECUTE category in the audit policy. Specifying
SUCCESS,WITH means that logs for this category will include only successful events, and will
include input data values provided for host variables and parameter markers.

Example 3: Specifying the EXECUTE category without data

db2 "call rdsadmin.configure_db_audit('TESTDB', 'EXECUTE', 'FAILURE,WITHOUT', ?)"

In the example, the call configures the EXECUTE category in the audit policy. Specifying
FAILURE,WITHOUT means that logs for this category will include only failing events, and won't
include input data values provided for host variables and parameter markers.

Example 4: Specifying the EXECUTE category without status events

db2 "call rdsadmin.configure_db_audit('TESTDB', 'EXECUTE', 'NONE', ?)"

In the example, the call configures the EXECUTE category in the audit policy. Specifying NONE
means that no events in this category will be audited.

Example 5: Specifying the OBJMAINT category

db2 "call rdsadmin.configure_db_audit('TESTDB', 'OBJMAINT', 'NONE', ?)"

In the example, the call configures the OBJMAINT category in the audit policy. Specifying NONE
means that no events in this category will be audited.

Example 6: Specifying the ERROR category

db2 "call rdsadmin.configure_db_audit('TESTDB', 'ERROR', 'AUDIT', ?)"

In the example, the call configures the ERROR category in the audit policy. Specifying AUDIT means
that all errors, including errors occurring within audit logging itself, are captured in the logs. The
default error type is NORMAL. With NORMAL, errors generated by the audit are ignored and only the
SQLCODEs for errors associated with the operation being performed are captured.

Audit policies 2579

Amazon Relational Database Service User Guide

rdsadmin.disable_db_audit

Stops audit logging for the RDS for Db2 database specified by db_name and removes the audit
policy configured for it.

Note

This stored procedure only removes audit policies that were configured by calling the
section called “rdsadmin.configure_db_audit”.

Syntax

db2 "call rdsadmin.disable_db_audit('db_name', ?)"

Parameters

The following parameters are required.

db_name

The DB name of the RDS for Db2 database to disable audit logging for. The data type is
varchar.

Usage notes

Calling rdsadmin.disable_db_audit doesn't disable audit logging for the RDS for Db2 DB
instance. To disable audit logging at the DB instance level, remove the option group from the DB
instance. For more information, see Disabling Db2 audit logging.

Examples

The following example disables audit logging for a database named TESTDB.

db2 "call rdsadmin.disable_db_audit('TESTDB', ?)"

Audit policies 2580

Amazon Relational Database Service User Guide

Stored procedures for buffer pools for RDS for Db2

The built-in stored procedures described in this topic manage buffer pools for Amazon RDS for Db2
databases. To run these procedures, the master user must first connect to the rdsadmin database.

These stored procedures are used in a variety of tasks. This list isn't exhaustive.

• Common tasks for buffer pools

• Generating performance reports

• Copying database metadata with db2look

• Creating a repository database for IBM Db2 Data Management Console

Refer to the following built-in stored procedures for information about their syntax, parameters,
usage notes, and examples.

Stored procedures

• rdsadmin.create_bufferpool

• rdsadmin.alter_bufferpool

• rdsadmin.drop_bufferpool

rdsadmin.create_bufferpool

Creates a buffer pool.

Syntax

db2 "call rdsadmin.create_bufferpool(
 'database_name',
 'buffer_pool_name',
 buffer_pool_size,
 'immediate',
 'automatic',
 page_size,
 number_block_pages,
 block_size)"

Parameters

The following parameters are required:

Buffer pools 2581

Amazon Relational Database Service User Guide

database_name

The name of the database to run the command on. The data type is varchar.

buffer_pool_name

The name of the buffer pool to create. The data type is varchar.

The following parameters are optional:

buffer_pool_size

The size of the buffer pool in number of pages. The data type is integer. The default is -1.

immediate

Specifies whether the command runs immediately. The data type is char. The default is Y.

automatic

Specifies whether to set the buffer pool to automatic. The data type is char. The default is Y.

page_size

The page size of the buffer pool. The data type is integer. Valid values: 4096, 8192, 16384,
32768. The default is 8192.

number_block_pages

The number of block pages in the buffer pools. The data type is integer. The default is 0.

block_size

The block size for the block pages. The data type is integer. Valid values: 2 to 256. The
default is 32.

Usage notes

For information about checking the status of creating a buffer pool, see rdsadmin.get_task_status.

Examples

Example 1: Creating buffer pool with default parameters

Buffer pools 2582

Amazon Relational Database Service User Guide

The following example creates a buffer pool called BP8 for a database called TESTDB with default
parameters, so the buffer pool uses an 8 KB page size.

db2 "call rdsadmin.create_bufferpool(
 'TESTDB',
 'BP8')"

Example 2: Creating buffer pool to run immediately with automatic allocation

The following example creates a buffer pool called BP16 for a database called TESTDB that uses a
16 KB page size with an initial page count of 1,000 and is set to automatic. Db2 runs the command
immediately. If you use an initial page count of -1, then Db2 will use automatic allocation of pages.

db2 "call rdsadmin.create_bufferpool(
 'TESTDB',
 'BP16',
 1000,
 'Y',
 'Y',
 16384)"

Example 3: Creating buffer pool to run immediately using block pages

The following example creates a buffer pool called BP16 for a database called TESTDB. This
buffer pool has a 16 KB page size with an initial page count of 10,000. Db2 runs the command
immediately using 500 block pages with a block size of 512.

db2 "call rdsadmin.create_bufferpool(
 'TESTDB',
 'BP16',
 10000,
 'Y',
 'Y',
 16384,
 500,
 512)"

rdsadmin.alter_bufferpool

Alters a buffer pool.

Buffer pools 2583

Amazon Relational Database Service User Guide

Syntax

db2 "call rdsadmin.alter_bufferpool(
 'database_name',
 'buffer_pool_name',
 buffer_pool_size,
 'immediate',
 'automatic',
 change_number_blocks,
 number_block_pages,
 block_size)"

Parameters

The following parameters are required:

database_name

The name of the database to run the command on. The data type is varchar.

buffer_pool_name

The name of the buffer pool to alter. The data type is varchar.

buffer_pool_size

The size of the buffer pool in number of pages. The data type is integer.

The following parameters are optional:

immediate

Specifies whether the command runs immediately. The data type is char. The default is Y.

automatic

Specifies whether to set the buffer pool to automatic. The data type is char. The default is N.

change_number_blocks

Specifies whether there is a change to the number of block pages in the buffer pool. The data
type is char. The default is N.

number_block_pages

The number of block pages in the buffer pools. The data type is integer. The default is 0.

Buffer pools 2584

Amazon Relational Database Service User Guide

block_size

The block size for the block pages. The data type is integer. Valid values: 2 to 256. The
default is 32.

Usage notes

For information about checking the status of altering a buffer pool, see rdsadmin.get_task_status.

Examples

The following example alters a buffer pool called BP16 for a database called TESTDB to non-
automatic, and changes the size to 10,000 pages. Db2 runs this command immediately.

db2 "call rdsadmin.alter_bufferpool(
 'TESTDB',
 'BP16',
 10000,
 'Y',
 'N')"

rdsadmin.drop_bufferpool

Drops a buffer pool.

Syntax

db2 "call rdsadmin.drop_bufferpool(
 'database_name',
 'buffer_pool_name'"

Parameters

The following parameters are required:

database_name

The name of the database that the buffer pool belongs to. The data type is varchar.

buffer_pool_name

The name of the buffer pool to drop. The data type is varchar.

Buffer pools 2585

Amazon Relational Database Service User Guide

Usage notes

For information about checking the status of dropping a buffer pool, see rdsadmin.get_task_status.

Examples

The following example drops a buffer pool called BP16 for a database called TESTDB.

db2 "call rdsadmin.drop_bufferpool(
 'TESTDB',
 'BP16')"

Buffer pools 2586

Amazon Relational Database Service User Guide

Stored procedures for databases for RDS for Db2

The built-in stored procedures described in this topic manage databases for Amazon RDS for Db2.
To run these procedures, the master user must first connect to the rdsadmin database.

These stored procedures are used in a variety of tasks. This list isn't exhaustive.

• Common tasks for databases,

• Creating databases with EBCDIC collation

• Collecting information about databases

• Modifying database configuration parameters

• Migrating from Linux to Linux

• Migrating from Linux to Linux with near-zero downtime

Refer to the following built-in stored procedures for information about their syntax, parameters,
usage notes, and examples.

Stored procedures

• rdsadmin.create_database

• rdsadmin.deactivate_database

• rdsadmin.activate_database

• rdsadmin.reactivate_database

• rdsadmin.drop_database

• rdsadmin.update_db_param

• rdsadmin.set_configuration

• rdsadmin.show_configuration

• rdsadmin.restore_database

• rdsadmin.rollforward_database

• rdsadmin.complete_rollforward

• rdsadmin.db2pd_command

• rdsadmin.force_application

• rdsadmin.set_archive_log_retention

Databases 2587

Amazon Relational Database Service User Guide

• rdsadmin.show_archive_log_retention

• rdsadmin.list_archive_log_information

rdsadmin.create_database

Creates a database.

Syntax

db2 "call rdsadmin.create_database('database_name')"

Parameters

Note

This stored procedure doesn't validate the combination of required parameters. When you
call rdsadmin.get_task_status, the user-defined function could return an error because of a
combination of database_codeset, database_territory, and database_collation
that is not valid. For more information, see Choosing the code page, territory, and collation
for your database in the IBM Db2 documentation.

The following parameter is required:

database_name

The name of the database to create. The data type is varchar.

The following parameters are optional:

database_page_size

The default page size of the database. Valid values: 4096, 8192, 16384, 32768. The data type is
integer. The default is 8192.

Important

Amazon RDS supports write atomicity for 4 KiB, 8 KiB, and 16 KiB pages. In contrast,
32 KiB pages risk torn writes, or partial data being written to the desk. If you use 32

Databases 2588

https://www.ibm.com/docs/en/db2/11.5?topic=support-choosing-code-page-territory-collation-your-database
https://www.ibm.com/docs/en/db2/11.5?topic=support-choosing-code-page-territory-collation-your-database

Amazon Relational Database Service User Guide

KiB pages, we recommend that you enable point-in-time recovery and automated
backups. Otherwise, you run the risk of being unable to recover from torn pages. For
more information, see the section called “Introduction to backups” and the section
called “Point-in-time recovery”.

database_code_set

The code set for the database. The data type is varchar. The default is UTF-8.

database_territory

The two-letter country code for the database. The data type is varchar. The default is US.

database_collation

The collation sequence that determines how character strings stored in the database are sorted
and compared. The data type is varchar.

Valid values:

• COMPATIBILITY – An IBM Db2 Version 2 collation sequence.

• EBCDIC_819_037 – ISO Latin code page, collation; CCSID 037 (EBCDIC US English).

• EBCDIC_819_500 – ISO Latin code page, collation; CCSID 500 (EBCDIC International).

• EBCDIC_850_037 – ASCII Latin code page, collation; CCSID 037 (EBCDIC US English).

• EBCDIC_850_500 – ASCII Latin code page, collation; CCSID 500 (EBCDIC International).

• EBCDIC_932_5026 – ASCII Japanese code page, collation; CCSID 037 (EBCDIC US English).

• EBCDIC_932_5035 – ASCII Japanese code page, collation; CCSID 500 (EBCDIC International).

• EBCDIC_1252_037 – Windows Latin code page, collation; CCSID 037 (EBCDIC US English).

• EBCDIC_1252_500 – Windows Latin code page, collation; CCSID 500 (EBCDIC International).

• IDENTITY – Default collation. Strings are compared byte for byte.

• IDENTITY_16BIT – The Compatibility Encoding Scheme for UTF-16: 8-bit (CESU-8)
collation sequence. For more information, see Unicode Technical Report #26 on the Unicode
Consortium website.

• NLSCHAR – Only for use with the Thai code page (CP874).

• SYSTEM – If you use SYSTEM, the database uses the collation sequence automatically for
database_codeset and database_territory.

Databases 2589

https://www.unicode.org/reports/tr26/tr26-4.html

Amazon Relational Database Service User Guide

The default is IDENTITY.

Additionally, RDS for Db2 supports the following groups of collations: language-aware-
collation and locale-sensitive-collation. For more information, see Choosing a
collation for a Unicode database in the IBM Db2 documentation.

database_autoconfigure_str

The AUTOCONFIGURE command syntax, for example, 'AUTOCONFIGURE APPLY DB'. The data
type is varchar. The default is an empty string or null.

For more information, see AUTOCONFIGURE command in the IBM Db2 documentation.

Usage notes

If you plan on modifying the db2_compatibility_vector parameter, modify the parameter
before creating a database. For more information, see Setting the db2_compatibility_vector
parameter.

Special considerations:

• The CREATE DATABASE command sent to the Db2 instance uses the RESTRICTIVE option.

• RDS for Db2 only uses AUTOMATIC STORAGE tablespaces.

• RDS for Db2 uses the default values for NUMSEGS and DFT_EXTENT_SZ.

• RDS for Db2 uses storage encryption and doesn't support database encryption.

For more information about these considerations, see CREATE DATABASE command in the IBM Db2
documentation.

Before calling rdsadmin.create_database, you must connect to the rdsadmin database. In
the following example, replace master_username and master_password with your RDS for Db2
DB instance information:

db2 connect to rdsadmin user master_username using master_password

For information about checking the status of creating a database, see rdsadmin.get_task_status.

For error messages returned when calling rdsadmin.create_database, see the section called
“Stored procedure errors”.

Databases 2590

https://www.ibm.com/docs/en/db2/11.5?topic=collation-choosing-unicode-database
https://www.ibm.com/docs/en/db2/11.5?topic=collation-choosing-unicode-database
https://www.ibm.com/docs/en/db2/11.5?topic=cc-autoconfigure
https://www.ibm.com/docs/en/db2/11.5?topic=commands-create-database#:~:text=in%20the%20database.-,RESTRICTIVE,-If%20the%20RESTRICTIVE

Amazon Relational Database Service User Guide

Examples

The following example creates a database called TESTJP with a correct combination of the
database_code_set, database_territory, and database_collation parameters for Japan:

db2 "call rdsadmin.create_database('TESTJP', 4096, 'IBM-437', 'JP', 'SYSTEM')"

rdsadmin.deactivate_database

Deactivates a database.

Syntax

db2 "call rdsadmin.deactivate_database(
 ?,
 'database_name')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameter is required:

database_name

The name of the database to deactivate. The data type is varchar.

Usage notes

You can deactivate databases to conserve memory resources or to make other
database configuration changes. To bring deactivated databases back online, call the
rdsadmin.activate_database stored procedure.

For information about checking the status of deactivating a database, see
rdsadmin.get_task_status.

Databases 2591

Amazon Relational Database Service User Guide

For error messages returned when calling rdsadmin.deactivate_database, see the section
called “Stored procedure errors”.

Examples

The following example deactivates a database called TESTDB.

db2 "call rdsadmin.deactivate_database(?, 'TESTDB')"

rdsadmin.activate_database

Activates a database.

For information about the differences between rdsadmin.reactivate_database and
rdsadmin.activate_database, see Usage notes.

Syntax

db2 "call rdsadmin.activate_database(
 ?,
 'database_name')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameter is required:

database_name

The name of the database to activate. The data type is varchar.

Usage notes

All databases are activated by default when they are created. If you deactivate a database on a
standalone DB instance to conserve memory resources or to make other database configuration

Databases 2592

Amazon Relational Database Service User Guide

changes, call the rdsadmin.activate_database stored procedure to activate the database
again.

For information about checking the status of activating a database, see rdsadmin.get_task_status.

For error messages returned when calling rdsadmin.activate_database, see the section called
“Stored procedure errors”.

Examples

The following example activates a database called TESTDB.

db2 "call rdsadmin.activate_database(?, 'TESTDB')"

rdsadmin.reactivate_database

Reactivates a database.

For information about differences between rdsadmin.activate_database and
rdsadmin.reactivate_database, see Usage notes.

Syntax

db2 "call rdsadmin.reactivate_database(
 ?,
 'database_name')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameter is required:

database_name

The name of the database to reactivate. The data type is varchar.

Databases 2593

Amazon Relational Database Service User Guide

Usage notes

When you call the rdsadmin.reactivate_database stored procedure, the stored procedure
first deactivates the database by calling the rdsadmin.deactivate_database stored procedure, and
then activates the database by calling the rdsadmin.activate_database stored procedure.

After you make changes to database configurations, you might need to reactivate a database on
an RDS for Db2 DB instance. To determine if you need to reactivate a database, connect to the
database and run db2 get db cfg show detail.

For a database on a standalone DB instance, you can use the rdsadmin.reactivate_database
store procedure to reactivate the database. Or, if you already called the
rdsadmin.deactivate_database stored procedure, you can call the rdsadmin.activate_database
stored procedure instead.

For information about checking the status of reactivating a database, see
rdsadmin.get_task_status.

For error messages returned when calling rdsadmin.reactivate_database, see the section
called “Stored procedure errors”.

Examples

The following example reactivates a database called TESTDB.

db2 "call rdsadmin.reactivate_database(?, 'TESTDB')"

rdsadmin.drop_database

Drops a database.

Syntax

db2 "call rdsadmin.drop_database('database_name')"

Parameters

The following parameter is required:

database_name

The name of the database to drop. The data type is varchar.

Databases 2594

Amazon Relational Database Service User Guide

Usage notes

You can drop a database by calling rdsadmin.drop_database only if the following conditions
are met:

• You didn't specify the name of the database when you created your RDS for Db2 DB instance by
using either the Amazon RDS console or the AWS CLI. For more information, see Creating a DB
instance.

• You created the database by calling the the section called “rdsadmin.create_database” stored
procedure.

• You restored the database from an offline or backed-up image by calling the the section called
“rdsadmin.restore_database” stored procedure.

Before calling rdsadmin.drop_database, you must connect to the rdsadmin database. In the
following example, replace master_username and master_password with your RDS for Db2 DB
instance information:

db2 connect to rdsadmin user master_username using master_password

For information about checking the status of dropping a database, see rdsadmin.get_task_status.

For error messages returned when calling rdsadmin.drop_database, see the section called
“Stored procedure errors”.

Examples

The following example drops a database called TESTDB:

db2 "call rdsadmin.drop_database('TESTDB')"

rdsadmin.update_db_param

Updates database parameters.

Syntax

db2 "call rdsadmin.update_db_param(
 'database_name',
 'parameter_to_modify',

Databases 2595

Amazon Relational Database Service User Guide

 'changed_value)"

Parameters

The following parameters are required:

database_name

The name of the database to run the task for. The data type is varchar.

parameter_to_modify

The name of the parameter to modify. The data type is varchar. For more information, see
Amazon RDS for Db2 parameters.

changed_value

The value to change the parameter value to. The data type is varchar.

Usage notes

For information about checking the status of updating database parameters, see
rdsadmin.get_task_status.

For error messages returned when calling rdsadmin.update_db_param, see the section called
“Stored procedure errors”.

Examples

Example 1: Updating a parameter

The following example updates the archretrydelay parameter to 100 for a database called
TESTDB:

db2 "call rdsadmin.update_db_param(
 'TESTDB',
 'archretrydelay',
 '100')"

Example 2: Deferring validation of objects

The following example defers the validation of created objects on a database called TESTDB to
avoid dependency checking:

Databases 2596

Amazon Relational Database Service User Guide

db2 "call rdsadmin.update_db_param(
 'TESTDB',
 'auto_reval',
 'deferred_force')"

rdsadmin.set_configuration

Configures specific settings for the database.

Syntax

db2 "call rdsadmin.set_configuration(
 'name',
 'value')"

Parameters

The following parameters are required:

name

The name of the configuration setting. The data type is varchar.

value

The value for the configuration setting. The data type is varchar.

Usage notes

The following table shows the configuration settings that you can control with
rdsadmin.set_configuration.

Name Description

RESTORE_DATABASE_N
UM_BUFFERS

The number of buffers to create during a restore operation.
This value must be less than the total memory size of the DB
instance class. If this setting isn't configured, Db2 determine
s the value to use during the restore operation. For more
information, see the IBM Db2 documentation.

Databases 2597

https://www.ibm.com/docs/en/db2/11.5?topic=commands-restore-database

Amazon Relational Database Service User Guide

Name Description

RESTORE_DATABASE_P
ARALLELISM

The number of buffer manipulators to create during a restore
operation. This value must be less than double the number of
vCPUs for the DB instance. If this setting isn't configured, Db2
determines the value to use during the restore operation. For
more information, see the IBM Db2 documentation.

Examples

Example 1: Specifying number of buffer manipulators to create

The following example sets the RESTORE_DATABASE_PARALLELISM configuration to 8.

db2 "call rdsadmin.set_configuration(
 'RESTORE_DATABASE_PARALLELISM',
 '8')"

Example 2: Specifying number of buffers to create

The following example sets the RESTORE_DATABASE_NUM_BUFFERS configuration to 150.

db2 "call rdsadmin.set_configuration(
 'RESTORE_DATABASE_NUM_BUFFERS',
 '150')"

rdsadmin.show_configuration

Returns the current settings that you can set by using the stored procedure
rdsadmin.set_configuration.

Syntax

db2 "call rdsadmin.show_configuration(
 'name')"

Parameters

The following parameter is optional:

Databases 2598

https://www.ibm.com/docs/en/db2/11.5?topic=commands-restore-database

Amazon Relational Database Service User Guide

name

The name of the configuration setting to return information about. The data type is varchar.

The following configuration names are valid:

• RESTORE_DATABASE_NUM_BUFFERS – The number of buffers to create during a restore
operation.

• RESTORE_DATABASE_PARALLELISM – The number of buffer manipulators to create during a
restore operation.

Usage notes

If you don't specify the name of a configuration setting, rdsadmin.show_configuration
returns information for all configuration settings that you can set by using the stored procedure
rdsadmin.set_configuration.

Examples

The following example returns information about the current RESTORE_DATABASE_PARALLELISM
configuration.

db2 "call rdsadmin.show_configuration(
 'RESTORE_DATABASE_PARALLELISM')"

rdsadmin.restore_database

Restores a database from an Amazon S3 bucket to your RDS for Db2 DB instance.

Syntax

db2 "call rdsadmin.restore_database(
 ?,
 'database_name',
 's3_bucket_name',
 's3_prefix',
 restore_timestamp,
 'backup_type')"

Parameters

The following output parameter is required:

Databases 2599

Amazon Relational Database Service User Guide

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameters are required:

database_name

The name of the target database to restore in RDS for Db2. The data type is varchar.

For example, if the source database name was TESTDB and you set database_name to NEWDB,
then Amazon RDS restores NEWDB as the source database.

s3_bucket_name

The name of the Amazon S3 bucket where your backup resides. The data type is varchar.

s3_prefix

The prefix to use for file matching during download. The data type is varchar.

If this parameter is empty, then all files in the Amazon S3 bucket will be downloaded. The
following is an example prefix:

backupfolder/SAMPLE.0.rdsdb.DBPART000.20230615010101

restore_timestamp

The timestamp of the database backup image. The data type is varchar.

The timestamp is included in the backup file name. For example, 20230615010101 is the
timestamp for the file name SAMPLE.0.rdsdb.DBPART000.20230615010101.001.

backup_type

The type of backup. The data type is varchar. Valid values: OFFLINE, ONLINE.

Use ONLINE for near-zero downtime migrations. For more information, see Migrating from
Linux to Linux with near-zero downtime for Amazon RDS for Db2.

Usage notes

You can use this stored procedure to migrate a Db2 database to an RDS for Db2 DB instance. For
more information, see Using AWS services to migrate data from Db2 to Amazon RDS for Db2. You

Databases 2600

Amazon Relational Database Service User Guide

can also use this stored procedure to create multiple copies of the same database with different
database names that use the same restore image.

Before calling the stored procedure, review the following considerations:

• Before restoring a database, you must provision storage space for your RDS for Db2 DB instance
that is equal to or greater than the sum of the size of your backup and the original Db2 database
on disk. For more information, see Insufficient disk space.

• When you restore the backup, Amazon RDS extracts the backup file on your RDS for Db2 DB
instance. Each backup file must be 5 TB or smaller. If a backup file exceeds 5 TB, then you must
split the backup file into smaller files.

• To restore all files using the rdsadmin.restore_database stored procedure, don't include
the file number suffix after the timestamp in the file names. For example, the s3_prefix
backupfolder/SAMPLE.0.rdsdb.DBPART000.20230615010101 restores the following files:

SAMPLE.0.rdsdb.DBPART000.20230615010101.001
SAMPLE.0.rdsdb.DBPART000.20230615010101.002
SAMPLE.0.rdsdb.DBPART000.20230615010101.003
SAMPLE.0.rdsdb.DBPART000.20230615010101.004
SAMPLE.0.rdsdb.DBPART000.20230615010101.005

• RDS for Db2 doesn't support non-automatic storage. For more information, see Tablespaces not
restored.

• RDS for Db2 doesn't support non-fenced routines. For more information, see Non-fenced
routines not allowed.

• To improve the performance of database restore operations, you can configure the number
of buffers and buffer manipulators for RDS to use. To check the current configuration, use the
section called “rdsadmin.show_configuration”. To change the configuration, use the section
called “rdsadmin.set_configuration”.

To bring the database online and apply additional transaction logs after restoring the database, see
rdsadmin.rollforward_database.

For information about checking the status of restoring your database, see
rdsadmin.get_task_status.

For error messages returned when calling rdsadmin.restore_database, see the section called
“Stored procedure errors”.

Databases 2601

Amazon Relational Database Service User Guide

Examples

The following example restores an offline backup with a single file or multiple files that have the
s3_prefix backupfolder/SAMPLE.0.rdsdb.DBPART000.20230615010101:

db2 "call rdsadmin.restore_database(
 ?,
 'SAMPLE',
 'amzn-s3-demo-bucket',
 'backupfolder/SAMPLE.0.rdsdb.DBPART000.20230615010101',
 20230615010101,
 'OFFLINE')"

rdsadmin.rollforward_database

Brings the database online and applies additional transaction logs after restoring a database by
calling rdsadmin.restore_database.

Syntax

db2 "call rdsadmin.rollforward_database(
 ?,
 'database_name',
 's3_bucket_name',
 s3_prefix,
 'rollfoward_to_option',
 'complete_rollforward')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameters are required:

database_name

The name of the database to perform the operation on. The data type is varchar.

Databases 2602

Amazon Relational Database Service User Guide

s3_bucket_name

The name of the Amazon S3 bucket where your backup resides. The data type is varchar.

s3_prefix

The prefix to use for file matching during download. The data type is varchar.

If this parameter is empty, then all files in the S3 bucket will be downloaded. The following
example is an example prefix:

backupfolder/SAMPLE.0.rdsdb.DBPART000.20230615010101

The following input parameters are optional:

rollforward_to_option

The point to which you want to roll forward. The data type is varchar. Valid values:
END_OF_LOGS, END_OF_BACKUP. The default is END OF LOGS.

complete_rollforward

Specifies whether to complete the roll-forward process. The data type is varchar. The default
is TRUE.

If TRUE, then after completion, the database is online and accessible. If FALSE, then the
database remains in a ROLL-FORWARD PENDING state.

Usage notes

After you call rdsadmin.restore_database, you must call rollforward_database to apply archive
logs from an S3 bucket. You can also use this stored procedure to restore additional transaction
logs after calling rdsadmin.restore_database.

If you set complete_rollforward to FALSE, then your database is in a ROLL-
FORWARD PENDING state and offline. To bring the database online, you must call
rdsadmin.complete_rollforward.

For information about checking the status of rolling forward the database, see
rdsadmin.get_task_status.

Databases 2603

Amazon Relational Database Service User Guide

Examples

Example 1: Bringing database with transaction logs online

The following example rolls forward to an online backup of the database with transaction logs and
then brings the database online:

db2 "call rdsadmin.rollforward_database(
 ?,
 null,
 null,
 'END_OF_LOGS',
 'TRUE')"

Example 2: Bringing database without transaction logs online

The following example rolls forward to an online backup of the database without transaction logs,
and then brings the database online:

db2 "call rdsadmin.rollforward_database(
 ?,
 'TESTDB',
 'amzn-s3-demo-bucket',
 'logsfolder/,
 'END_OF_BACKUP',
 'TRUE')"

Example 3: Not bringing database with transaction logs online

The following example rolls forward to an online backup of the database with transaction logs, and
then doesn't bring the database online:

db2 "call rdsadmin.rollforward_database(
 ?,
 'TESTDB',
 null,
 'onlinebackup/TESTDB',
 'END_OF_LOGS',
 'FALSE')"

Example 4: Not bringing database with additional transaction logs online

Databases 2604

Amazon Relational Database Service User Guide

The following example rolls forward to an online backup of the database with additional
transaction logs, and then doesn't bring the database online:

db2 "call rdsadmin.rollforward_database(
 ?,
 'TESTDB',
 'amzn-s3-demo-bucket',
 'logsfolder/S0000155.LOG',
 'END_OF_LOGS',
 'FALSE')"

rdsadmin.complete_rollforward

Brings database online from a ROLL-FORWARD PENDING state.

Syntax

db2 "call rdsadmin.complete_rollforward(
 ?,
 'database_name')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameter is required:

database_name

The name of the database that you want to bring online. The data type is varchar.

Usage notes

If you called rdsadmin.rollforward_database with complete_rollforward set to FALSE, then
your database is in a ROLL-FORWARD PENDING state and offline. To complete the roll-forward
process and bring the database online, call rdsadmin.complete_rollforward.

Databases 2605

Amazon Relational Database Service User Guide

For information about checking the status of completing the roll-forward process, see
rdsadmin.get_task_status.

Examples

The following example brings the TESTDB database online:

db2 "call rdsadmin.complete_rollfoward(
 ?,
 'TESTDB')"

rdsadmin.db2pd_command

Collects information about an RDS for Db2 database.

Syntax

db2 "call rdsadmin.db2pd_command('db2pd_cmd')"

Parameters

The following input parameter is required:

db2pd_cmd

The name of the db2pd command that you want to run. The data type is varchar.

The parameter must start with a hyphen. For a list of parameters, see db2pd - Monitor and
troubleshoot Db2 database command in the IBM Db2 documentation.

The following options aren't supported:

• -addnode

• -alldatabases

• -alldbp

• -alldbs

• -allmembers

• -alm_in_memory

• -cfinfo

• -cfpool

Databases 2606

https://www.ibm.com/docs/en/db2/11.5?topic=commands-db2pd-monitor-troubleshoot-db2-engine-activities
https://www.ibm.com/docs/en/db2/11.5?topic=commands-db2pd-monitor-troubleshoot-db2-engine-activities

Amazon Relational Database Service User Guide

• -command

• -dbpartitionnum

• -debug

• -dump

• -everything

• -file | -o

• -ha

• -interactive

• -member

• -pages

Note

-pages summary is supported.

• -pdcollection

• -repeat

• -stack

• -totalmem

The file suboption isn't supported, for example, db2pd -db testdb -tcbstats
file=tcbstat.out.

The use of the stacks option isn't supported, for example, db2pd -edus interval=5
top=10 stacks.

Usage notes

This stored procedure gathers information that can help with monitoring and troubleshooting RDS
for Db2 databases.

The stored procedure uses the IBM db2pd utility to run various commands. The db2pd utility
requires SYSADM authorization, which the RDS for Db2 master user doesn't have. However, with the
Amazon RDS stored procedure, the master user is able to use the utility to run various commands.
For more information about the utility, see db2pd - Monitor and troubleshoot Db2 database
command in the IBM Db2 documentation.

Databases 2607

https://www.ibm.com/docs/en/db2/11.5?topic=commands-db2pd-monitor-troubleshoot-db2-engine-activities
https://www.ibm.com/docs/en/db2/11.5?topic=commands-db2pd-monitor-troubleshoot-db2-engine-activities

Amazon Relational Database Service User Guide

The output is restricted to a maximum of 2 GB.

For information about checking the status of collecting information about the database, see
rdsadmin.get_task_status.

Examples

Example 1: Returning uptime of DB instance

The following example returns the uptime of an RDS for Db2 DB instance:

db2 "call rdsadmin.db2pd_command('-')"

Example 2: Returning uptime of database

The following example returns the uptime of a database called TESTDB:

db2 "call rdsadmin.db2pd_command('-db TESTDB -')"

Example 3: Returning memory usage of DB instance

The following example returns the memory usage of an RDS for Db2 DB instance:

db2 "call rdsadmin.db2pd_command('-dbptnmem')"

Example 4: Returning memory sets of DB instance and database

The following example returns the memory sets of an RDS for Db2 DB instance and a database
called TESTDB:

db2 "call rdsadmin.db2pd_command('-inst -db TESTDB -memsets')"

rdsadmin.force_application

Forces applications off of an RDS for Db2 database.

Syntax

db2 "call rdsadmin.force_application(
 ?,

Databases 2608

Amazon Relational Database Service User Guide

 'applications')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameter is required:

applications

The applications that you want to force off of an RDS for Db2 database. The data type is
varchar. Valid values: ALL or application_handle.

Separate the names of multiple applications with commas. Example:
'application_handle_1, application_handle_2'.

Usage notes

This stored procedure forces all applications off of a database so you can perform maintenance.

The stored procedure uses the IBM FORCE APPLICATION command. The FORCE APPLICATION
command requires SYSADM, SYSMAINT, or SYSCTRL authorization, which the RDS for Db2 master
user doesn't have. However, with the Amazon RDS stored procedure, the master user is able to
use the command. For more information, see FORCE APPLICATION command in the IBM Db2
documentation.

For information about checking the status of forcing applications off of a database, see
rdsadmin.get_task_status.

Examples

Example 1: Specifying all applications

The following example forces all applications off of an RDS for Db2 database:

db2 "call rdsadmin.force_application(
 ?,

Databases 2609

https://www.ibm.com/docs/en/db2/11.1?topic=commands-force-application

Amazon Relational Database Service User Guide

 'ALL')"

Example 2: Specifying multiple applications

The following example forces application handles 9991, 8891, and 1192 off of an RDS for Db2
database:

db2 "call rdsadmin.force_application(
 ?,
 '9991, 8891, 1192')"

rdsadmin.set_archive_log_retention

Configures the amount of time (in hours) to retain archive log files for the specified RDS for Db2
database.

Syntax

db2 "call rdsadmin.set_archive_log_retention(
 ?,
 'database_name',
 'archive_log_retention_hours')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameters are required:

database_name

The name of the database to configure archive log retention for. The data type is varchar.

archive_log_retention_hours

The number of hours to retain the archive log files. The data type is smallint. The default is 0,
and the maximum is 168 (7 days).

Databases 2610

Amazon Relational Database Service User Guide

If the value is 0, Amazon RDS doesn't retain the archive log files.

Usage notes

By default, RDS for Db2 retains logs for 5 minutes. We recommend that if you use replication tools
such as AWS DMS for change data capture (CDC) or IBM Q Replication, you set log retention in
those tools for longer than 5 minutes.

You can view the current archive log retention setting by calling the section called
“rdsadmin.show_archive_log_retention”.

You can't configure the archive log retention setting on the rdsadmin database.

Examples

Example 1: Setting retention time

The following example sets the archive log retention time for a database called TESTDB to 24
hours.

db2 "call rdsadmin.set_archive_log_retention(
 ?,
 'TESTDB',
 '24')"

Example 2: Disabling retention time

The following example disables archive log retention for a database called TESTDB.

db2 "call rdsadmin.set_archive_log_retention(
 ?,
 'TESTDB',
 '0')"

rdsadmin.show_archive_log_retention

Returns the current archive log retention setting for the specified database.

Syntax

db2 "call rdsadmin.show_archive_log_retention(

Databases 2611

Amazon Relational Database Service User Guide

 ?,
 'database_name')"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameter is required:

database_name

The name of the database to show the archive log retention setting for. The data type is
varchar.

Examples

The following example shows the archive log retention setting for a database called TESTDB.

db2 "call rdsadmin.show_archive_log_retention(
 ?
 'TESTDB')"

rdsadmin.list_archive_log_information

Returns details about the archive log files, such as the size, the creation date and time, and the
name of individual log files for the specified database. It also returns the total storage amount
used by the log files in the database.

Syntax

db2 "call rdsadmin.list_archive_log_information(
 ?,
 'database_name')"

Parameters

The following output parameter is required:

Databases 2612

Amazon Relational Database Service User Guide

?

A parameter marker that outputs an error message. This parameter only accepts ?.

The following input parameter is required:

database_name

The name of the database to list archive log information for. The data type is varchar.

Examples

The following example returns archive log information for a database called TESTDB.

db2 "call rdsadmin.list_archive_log_information(
 ?
 'TESTDB')"

Databases 2613

Amazon Relational Database Service User Guide

Stored procedures for storage access for RDS for Db2

The built-in stored procedures described in this topic manage storage access for RDS for Db2
databases that use Amazon S3 for migrating data. For more information, see the section called
“Migrating with Amazon S3”.

Refer to the following built-in stored procedures for information about their syntax, parameters,
usage notes, and examples.

Stored procedures

• rdsadmin.catalog_storage_access

• rdsadmin.uncatalog_storage_access

rdsadmin.catalog_storage_access

Catalogs a storage alias for accessing an Amazon S3 bucket with Db2 data files.

Syntax

db2 "call rdsadmin.catalog_storage_access(
 ?,
 'alias',
 's3_bucket_name',
 'grantee_type',
 'grantee'
)"

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. The datatype is varchar.

The following input parameters are required:

alias

The alias name for accessing remote storage in an Amazon S3 bucket. The datatype is varchar.

Storage access 2614

Amazon Relational Database Service User Guide

s3_bucket_name

The name of the Amazon S3 bucket where your data resides. The data type is varchar.

grantee_type

The type of grantee to receive authorization. The data type is varchar. Valid values: USER,
GROUP.

grantee

The user or group to receive authorization. The data type is varchar.

Usage notes

Amazon RDS includes the cataloged alias in the IAM role that you added to your RDS for Db2 DB
instance. If you remove the IAM role from your DB instance, then Amazon RDS deletes the alias. For
more information, see the section called “Migrating with Amazon S3”.

For information about checking the status of cataloging your alias, see rdsadmin.get_task_status.

Examples

The following example registers an alias called SAMPLE. The user jorge_souza is granted access
to the Amazon S3 bucket called amzn-s3-demo-bucket.

db2 "call rdsadmin.catalog_storage_access(
 ?,
 'SAMPLE',
 'amzn-s3-demo-bucket',
 'USER',
 'jorge_souza')"

rdsadmin.uncatalog_storage_access

Removes a storage access alias.

Syntax

db2 "call rdsadmin.uncatalog_storage_access(
 ?,
 'alias')"

Storage access 2615

Amazon Relational Database Service User Guide

Parameters

The following output parameter is required:

?

A parameter marker that outputs an error message. The datatype is varchar.

The following input parameter is required:

alias

The name of the storage alias to remove. The datatype is varchar.

Usage notes

For information about checking the status of removing your alias, see rdsadmin.get_task_status.

Examples

The following example removes an alias called SAMPLE. This alias no longer provides access to the
Amazon S3 bucket it was associated with.

db2 "call rdsadmin.uncatalog_storage_access(
 ?,
 'SAMPLE')"

Storage access 2616

Amazon Relational Database Service User Guide

Stored procedures for tablespaces for RDS for Db2

The built-in stored procedures described in this topic manage tablespaces for Amazon RDS for Db2
databases. To run these procedures, the master user must first connect to the rdsadmin database.

These stored procedures are used in a variety of tasks. This list isn't exhaustive.

• Common tasks for tablespaces

• Generating performance reports

• Copying database metadata with db2look

• Creating a repository database for IBM Db2 Data Management Console

Refer to the following built-in stored procedures for information about their syntax, parameters,
usage notes, and examples.

Stored procedures

• rdsadmin.create_tablespace

• rdsadmin.alter_tablespace

• rdsadmin.rename_tablespace

• rdsadmin.drop_tablespace

rdsadmin.create_tablespace

Creates a tablespace.

Syntax

db2 "call rdsadmin.create_tablespace(
 'database_name',
 'tablespace_name',
 'buffer_pool_name',
 tablespace_page_size,
 tablespace_initial_size,
 tablespace_increase_size,
 'tablespace_type',
 'tablespace_prefetch_size')"

Tablespaces 2617

Amazon Relational Database Service User Guide

Parameters

The following parameters are required:

database_name

The name of the database to create the tablespace in. The data type is varchar.

tablespace_name

The name of the tablespace to create. The data type is varchar.

The tablespace name has the following restrictions:

• It can't be the same as the name of an existing tablespace in this database.

• It can only contain the characters _$#@a-zA-Z0-9.

• It can't start with _ or $.

• It can't start with SYS.

The following parameters are optional:

buffer_pool_name

The name of the buffer pool to assign the tablespace. The data type is varchar. The default is
an empty string.

Important

You must already have a buffer pool of the same page size to associate with the
tablespace.

tablespace_page_size

The page size of the tablespace in bytes. The data type is integer. Valid values: 4096, 8192,
16384, 32768. The default is the page size used when you created the database by calling
rdsadmin.create_database.

Important

Amazon RDS supports write atomicity for 4 KiB, 8 KiB, and 16 KiB pages. In contrast,
32 KiB pages risk torn writes, or partial data being written to the desk. If you use 32

Tablespaces 2618

Amazon Relational Database Service User Guide

KiB pages, we recommend that you enable point-in-time recovery and automated
backups. Otherwise, you run the risk of being unable to recover from torn pages. For
more information, see the section called “Introduction to backups” and the section
called “Point-in-time recovery”.

tablespace_initial_size

The initial size of the tablespace in kilobytes (KB). The data type is integer. Valid values: 48 or
higher. The default is null.

If you don't set a value, Db2 sets an appropriate value for you.

Note

This parameter isn't applicable for temporary tablespaces because the system manages
temporary tablespaces.

tablespace_increase_size

The percentage by which to increase the tablespace when it becomes full. The data type is
integer. Valid values: 1–100. The default is null.

If you don't set a value, Db2 sets an appropriate value for you.

Note

This parameter isn't applicable for temporary tablespaces because the system manages
temporary tablespaces.

tablespace_type

The type of the tablespace. The data type is char. Valid values: U (for user data), T (for user
temporary data), or S (for system temporary data). The default is U.

tablespace_prefetch_size

The prefetch page size of the tablespace. The data type is char. Valid values: AUTOMATIC (case
insensitive), or non-zero positive integers that are less than or equal to 32767.

Tablespaces 2619

Amazon Relational Database Service User Guide

Usage notes

RDS for Db2 always creates a large database for data.

For information about checking the status of creating a tablespace, see rdsadmin.get_task_status.

Examples

Example 1: Creating a tablespace and assigning a buffer pool

The following example creates a tablespace called SP8 and assigns a buffer pool called BP8 for a
database called TESTDB. The tablespace has an initial tablespace page size of 4,096 bytes, an initial
tablespace of 1,000 KB, and a table size increase set to 50%.

db2 "call rdsadmin.create_tablespace(
 'TESTDB',
 'SP8',
 'BP8',
 4096,
 1000,
 50)"

Example 2: Creating a temporary tablespace and assigning a buffer pool

The following example creates a temporary tablespace called SP8. It assigns a buffer pool called
BP8 that is 8 KiB in size for a database called TESTDB.

db2 "call rdsadmin.create_tablespace(
 'TESTDB',
 'SP8',
 'BP8',
 8192,
 NULL,
 NULL,
 'T')"

Example 3: Creating a tablespace and assigning a prefetch page size

The following example creates a tablespace called SP8 for a database called TESTDB. The
tablespace has an initial tablespace increase size of 50 and a prefetch page size of 800.

db2 "call rdsadmin.create_tablespace(

Tablespaces 2620

Amazon Relational Database Service User Guide

 'TESTDB',
 'SP8',
 NULL,
 NULL,
 NULL,
 50,
 NULL,
 '800')"

rdsadmin.alter_tablespace

Alters a tablespace.

Syntax

db2 "call rdsadmin.alter_tablespace(
 'database_name',
 'tablespace_name',
 'buffer_pool_name',
 tablespace_increase_size,
 'max_size',
 'reduce_max',
 'reduce_stop',
 'reduce_value',
 'lower_high_water',
 'lower_high_water_stop',
 'switch_online',
 'tablespace_prefetch_size')"

Parameters

The following parameters are required:

database_name

The name of the database that uses the tablespace. The data type is varchar.

tablespace_name

The name of the tablespace to alter. The data type is varchar.

The following parameters are optional:

Tablespaces 2621

Amazon Relational Database Service User Guide

buffer_pool_name

The name of the buffer pool to assign the tablespace. The data type is varchar. The default is
an empty string.

Important

You must already have a buffer pool of the same page size to associate with the
tablespace.

tablespace_increase_size

The percentage by which to increase the tablespace when it becomes full. The data type is
integer. Valid values: 1–100. The default is 0.

max_size

The maximum size for the tablespace. The data type is varchar. Valid values: integer K | M |
G, or NONE. The default is NONE.

reduce_max

Specifies whether to reduce the high water mark to its maximum limit. The data type is char.
The default is N.

reduce_stop

Specifies whether to interrupt a previous reduce_max or reduce_value command. The data
type is char. The default is N.

reduce_value

The number or percentage to reduce the tablespace high water mark by. The data type is
varchar. Valid values: integer K| M | G, or 1–100. The default is N.

lower_high_water

Specifies whether to run the ALTER TABLESPACE LOWER HIGH WATER MARK command. The
data type is char. The default is N.

lower_high_water_stop

Specifies whether to run the ALTER TABLESPACE LOWER HIGH WATER MARK STOP
command. The data type is char. The default is N.

Tablespaces 2622

Amazon Relational Database Service User Guide

switch_online

Specifies whether to run the ALTER TABLESPACE SWITCH ONLINE command. The data type
is char. The default is N.

tablespace_prefetch_size

The prefetch page size of the tablespace. The data type is char. Valid values: AUTOMATIC (case
insensitive), or non-zero positive integers that are less than or equal to 32767.

Note

This parameter only works with buffer_pool_name, table_increase_size,
max_size, and switch_online. It doesn't work with reduce_max, reduce_stop,
reduce_value, lower_high_water, and lower_high_water_stop.

Usage notes

Before calling the stored procedure, review the following considerations:

• The rdsadmin.alter_tablespace stored procedure won't work on a tablespace with the
tablespace_type set to T for user temporary data.

• The optional parameters reduce_max, reduce_stop, reduce_value, lower_high_water,
lower_high_water_stop, and switch_online are mutually exclusive. You can't
combine them with any other optional parameter, such as buffer_pool_name, in the
rdsadmin.alter_tablespace command. For more information, see Statement not valid.

For information about checking the status of altering a tablespace, see rdsadmin.get_task_status.

For error messages returned when calling stored procedures, see the section called “Stored
procedure errors”.

Examples

Example 1: Lowering the high water mark

The following example alters a tablespace called SP8 and assigns a buffer pool called BP8 for a
database called TESTDB to lower the high water mark.

db2 "call rdsadmin.alter_tablespace(

Tablespaces 2623

Amazon Relational Database Service User Guide

 'TESTDB',
 'SP8',
 'BP8',
 NULL,
 NULL,
 'Y')"

Example 2: Reducing the high water mark

The following example runs the REDUCE MAX command on a tablespace called TBSP_TEST in the
database TESTDB.

db2 "call rdsadmin.alter_tablespace(
 'TESTDB',
 'TBSP_TEST',
 NULL,
 NULL,
 NULL,
 'Y')"

Example 3: Interrupting commands to reduce high water mark

The following example runs the REDUCE STOP command on a tablespace called TBSP_TEST in the
database TESTDB.

db2 "call rdsadmin.alter_tablespace(
 'TESTDB',
 'TBSP_TEST',
 NULL,
 NULL,
 NULL,
 NULL,
 'Y')"

Example 4: Changing existing prefetch page size

The following example runs the ALTER TABLESPACE SWITCH ONLINE command on a tablespace
called TSBP_TEST and changes the existing prefetch page size to 64.

db2 "call rdsadmin.alter_tablespace(
 'TESTDB',

Tablespaces 2624

Amazon Relational Database Service User Guide

 'TBSP_TEST',
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 ‘Y’,
 ‘64’)"

rdsadmin.rename_tablespace

Renames a tablespace.

Syntax

db2 "call rdsadmin.rename_tablespace(
 ?,
 'database_name',
 'source_tablespace_name',
 'target_tablespace_name')"

Parameters

The following parameters are required:

?

A parameter marker that outputs an error message. This parameter only accepts ?.

database_name

The name of the database that the tablespace belongs to. The data type is varchar.

source_tablespace_name

The name of the tablespace to rename. The data type is varchar.

target_tablespace_name

The new name of the tablespace. The data type is varchar.

Tablespaces 2625

Amazon Relational Database Service User Guide

The new name has the following restrictions:

• It can't be the same as the name of an existing tablespace.

• It can only contain the characters _$#@a-zA-Z0-9.

• It can't start with _ or $.

• It can't start with SYS.

Usage notes

For information about checking the status of renaming a tablespace, see rdsadmin.get_task_status.

You can't rename tablespaces that belong to the rdsadmin database.

Examples

The following example renames a tablespace called SP8 to SP9 in a database called TESTDB.

db2 "call rdsadmin.rename_tablespace(
 ?,
 'TESTDB',
 'SP8'.
 'SP9')"

rdsadmin.drop_tablespace

Drops a tablespace.

Syntax

db2 "call rdsadmin.drop_tablespace(
 'database_name',
 'tablespace_name')"

Parameters

The following parameters are required:

database_name

The name of the database that the tablespace belongs to. The data type is varchar.

Tablespaces 2626

Amazon Relational Database Service User Guide

tablespace_name

The name of the tablespace to drop. The data type is varchar.

Usage notes

For information about checking the status of dropping a tablespace, see rdsadmin.get_task_status.

Examples

The following example drops a tablespace called SP8 from a database called TESTDB.

db2 "call rdsadmin.drop_tablespace(
 'TESTDB',
 'SP8')"

Tablespaces 2627

Amazon Relational Database Service User Guide

Amazon RDS for Db2 user-defined function reference

The following user-defined functions are available for Amazon RDS DB instances running the Db2
engine.

Topics

• rdsadmin.get_task_status

• rdsadmin.list_databases

rdsadmin.get_task_status

Returns the status of a task.

Syntax

db2 "select task_id, task_type, database_name, lifecycle,
 varchar(bson_to_json(task_input_params), 500) as task_params,
 cast(task_output as varchar(500)) as task_output
 from table(rdsadmin.get_task_status(task_id,'database_name','task_type'))"

Parameters

The following parameters are optional. If you do not provide any parameters, the user-defined
function returns the status of all tasks for all databases. Amazon RDS retains task history for 35
days.

task_id

The ID of the task being run. This ID is returned when you run a task. Default: 0.

database_name

The name of the database for which the task is being run.

task_type

The type of the task to query. Valid values: ADD_GROUPS, ADD_USER, ALTER_BUFFERPOOL,
ALTER_TABLESPACE, CHANGE_PASSWORD, COMPLETE_ROLLFORWARD, CREATE_BUFFERPOOL,
CREATE_DATABASE, CREATE_ROLE, CREATE_TABLESPACE, DROP_BUFFERPOOL,

RDS for Db2 user-defined functions 2628

Amazon Relational Database Service User Guide

DROP_DATABASE, DROP_TABLESPACE, LIST_USERS, REMOVE_GROUPS, REMOVE_USER,
RESTORE_DB, ROLLFORWARD_DB_LOG, ROLLFORWARD_STATUS, UPDATE_DB_PARAM.

Usage notes

You can use the rdsadmin.get_task_status user-defined function to check the status of the
following tasks for Amazon RDS for Db2. This list is not exhaustive.

• Creating, altering, or dropping a buffer pool

• Creating, altering, or dropping a tablespace

• Creating or dropping a database

• Restoring a database backup from Amazon S3

• Rolling forward database logs from Amazon S3

Examples

The following example displays the columns returned when rdsadmin.get_task_status is
called.

db2 "describe select * from table(rdsadmin.get_task_status())"

The following example lists the status of all tasks.

db2 "select task_id, task_type, database_name, lifecycle,
 varchar(bson_to_json(task_input_params), 500) as task_params,
 cast(task_output as varchar(500)) as task_output
 from table(rdsadmin.get_task_status(null,null,null))"

The following example lists the status of a specific task.

db2 "select task_id, task_type, database_name,
 varchar(bson_to_json(task_input_params), 500) as task_params
 from table(rdsadmin.get_task_status(1,null,null))"

The following example lists the status of a specific task and database.

db2 "select task_id, task_type, database_name,

rdsadmin.get_task_status 2629

Amazon Relational Database Service User Guide

 varchar(bson_to_json(task_input_params), 500) as task_params
 from table(rdsadmin.get_task_status(2,'SAMPLE',null))"

The following example lists the status of all ADD_GROUPS tasks.

db2 "select task_id, task_type, database_name,
 varchar(bson_to_json(task_input_params), 500) as task_params
 from table(rdsadmin.get_task_status(null,null,'add_groups'))"

The following example lists the status of all tasks for a specific database.

db2 "select task_id, task_type, database_name,
 varchar(bson_to_json(task_input_params), 500) as task_params
 from table(rdsadmin.get_task_status(null,'testdb', null))"

The following example outputs the JSON values as columns.

db2 "select varchar(r.task_type,25) as task_type, varchar(r.lifecycle,10) as lifecycle,
 r.created_at, u.* from
 table(rdsadmin.get_task_status(null,null,'restore_db')) as r,
 json_table(r.task_input_params, 'strict $' columns(s3_prefix varchar(500)
 null on empty, s3_bucket_name varchar(500) null on empty) error on error) as U"

Response

The rdsadmin.get_task_status user-defined function returns the following columns:

TASK_ID

The ID of the task.

TASK_TYPE

Depends on the input parameters.

• ADD_GROUPS – Adds groups.

• ADD_USER – Adds a user.

• ALTER_BUFFERPOOL – Alters a buffer pool.

• ALTER_TABLESPACE – Alters a tablespace.

• CHANGE_PASSWORD – Changes a user's password.

rdsadmin.get_task_status 2630

Amazon Relational Database Service User Guide

• COMPLETE_ROLLFORWARD – Completes an rdsadmin.rollforward_database task and
activates a database.

• CREATE_BUFFERPOOL – Creates a buffer pool.

• CREATE_DATABASE – Creates a database.

• CREATE_ROLE – Creates a Db2 role for a user.

• CREATE_TABLESPACE – Creates a tablespace.

• DROP_BUFFERPOOL – Drops a buffer pool.

• DROP_DATABASE – Drops a database.

• DROP_TABLESPACE – Drops a tablespace.

• LIST_USERS – Lists all users.

• REMOVE_GROUPS – Removes groups.

• REMOVE_USER – Removes a user.

• RESTORE_DB – Restores a full database.

• ROLLFORWARD_DB_LOG – Performs an rdsadmin.rollforward_database task on
database logs.

• ROLLFORWARD_STATUS – Returns the status of an rdsadmin.rollforward_database
task.

• UPDATE_DB_PARAM – Updates the data parameters.

DATABASE_NAME

The name of the database with which the task is associated.

COMPLETED_WORK_BYTES

The number of bytes restored by the task.

DURATION_MINS

The time taken to complete the task.

LIFECYCLE

The status of the task. Possible statuses:

• CREATED – After a task is submitted to Amazon RDS, Amazon RDS sets the status to
CREATED.

• IN_PROGRESS – After a task starts, Amazon RDS sets the status to IN_PROGRESS. It can take
up to 5 minutes for a status to change from CREATED to IN_PROGRESS.

rdsadmin.get_task_status 2631

Amazon Relational Database Service User Guide

• SUCCESS – After a task completes, Amazon RDS sets the status to SUCCESS.

• ERROR – If a restore task fails, Amazon RDS sets the status to ERROR. For more information
about the error, see TASK_OUPUT.

CREATED_BY

The authid that created the command.

CREATED_AT

The date and time when the task was created.

LAST_UPDATED_AT

The data and time when the task was last updated.

TASK_INPUT_PARAMS

The parameters differ based on the task type. All of the input parameters are represented as a
JSON object. For example, the JSON keys for the RESTORE_DB task are the following:

• DBNAME

• RESTORE_TIMESTAMP

• S3_BUCKET_NAME

• S3_PREFIX

TASK_OUTPUT

Additional information about the task. If an error occurs during native restore, this column
includes information about the error.

Response examples

The following response example shows that a database called TESTJP was successfully created. For
more information, see the the section called “rdsadmin.create_database” stored procedure.

`1 SUCCESS CREATE_DATABASE RDSDB 2023-10-24-18.32.44.962689 2023-10-24-18.34.50.038523
 1 TESTJP { "CODESET" : "IBM-437", "TERRITORY" : "JP", "COLLATION" : "SYSTEM",
 "AUTOCONFIGURE_CMD" : "", "PAGESIZE" : 4096 }
2023-10-24-18.33.30.079048 Task execution has started.

rdsadmin.get_task_status 2632

Amazon Relational Database Service User Guide

2023-10-24-18.34.50.038523 Task execution has completed successfully`.

The following response example explains why dropping a database failed. For more information,
see the the section called “rdsadmin.drop_database” stored procedure.

1 ERROR DROP_DATABASE RDSDB 2023-10-10-16.33.03.744122 2023-10-10-16.33.30.143797 -
 2023-10-10-16.33.30.098857 Task execution has started.
2023-10-10-16.33.30.143797 Caught exception during executing task id 1, Aborting task.
Reason Dropping database created via rds CreateDBInstance api is not allowed.
Only database created using rdsadmin.create_database can be dropped

The following response example shows the successful restoration of a database. For more
information, see the the section called “rdsadmin.restore_database” stored procedure.

1 RESTORE_DB SAMPLE SUCCESS

{ "S3_BUCKET_NAME" : "amzn-s3-demo-bucket", "S3_PREFIX" :
 "SAMPLE.0.rdsdb3.DBPART000.20230413183211.001", "RESTORE_TIMESTAMP" :
 "20230413183211", "BACKUP_TYPE" : "offline" }

2023-11-06-18.31.03.115795 Task execution has started.
2023-11-06-18.31.04.300231 Preparing to download
2023-11-06-18.31.08.368827 Download complete. Starting Restore
2023-11-06-18.33.13.891356 Task Completed Successfully

rdsadmin.list_databases

Returns a list of all databases running on an RDS for Db2 DB instance.

Syntax

db2 "select * from table(rdsadmin.list_databases())"

Usage notes

This user-defined function doesn't specify whether databases are in an activated or deactivated
state.

rdsadmin.list_databases 2633

Amazon Relational Database Service User Guide

If you don't see your databases in the list, call the the section called “rdsadmin.get_task_status”
user-defined function and look for error messages.

Response

The rdsadmin.list_databases user-defined function returns the following columns:

DATABASE_NAME

The name of a database.

CREATE_TIME

The date and time when the database was created.

Response examples

The following response example shows a list of databases and the times when they were created.
rdsadmin is a database that Amazon RDS manages and always appears in the output.

DATABASE_NAME CREATE_TIME
--------------- --------------------------
rdsadmin 2024-10-22-03.37.48.535671
TEST 2024-10-22-03.39.36.818679
TEST1 2024-10-22-03.57.15.218009
TEST2 2024-10-22-03.59.28.029556

rdsadmin.list_databases 2634

Amazon Relational Database Service User Guide

Troubleshooting for Amazon RDS for Db2

The following content can help you troubleshoot issues that you encounter with RDS for Db2.

For more information about general Amazon RDS troubleshooting issues, see Troubleshooting for
Amazon RDS.

Topics

• Database connection error

• File I/O error

• Troubleshooting errors from stored procedures

Database connection error

The following error message indicates that a database failed to connect because the server doesn't
have sufficient memory.

SQL1643C The database manager failed to allocate shared memory because the
database manager instance memory limit has been reached.

Increase the memory for your DB instance and then try to connect to your database again. For
information about memory usage and recommendations for databases, see the section called
“Multiple Db2 databases”. For information about how to update the memory for an RDS for Db2
database, see the section called “rdsadmin.update_db_param”.

File I/O error

You might encounter a file I/O error for different reasons, such as when you use the LOAD
command or call the rdsadmin.restore_database stored procedure.

In this example, you run the following LOAD command.

db2 "call sysproc.admin_cmd('load from "DB2REMOTE://s3test//public/datapump/t6.del" of
 del lobs from "DB2REMOTE://s3test/public/datapump/" modified by lobsinfile MESSAGES ON
 SERVER insert INTO RDSDB.t6 nonrecoverable ')"

The LOAD command returns the following message:

Troubleshooting 2635

Amazon Relational Database Service User Guide

 Result set 1

 ROWS_READ ROWS_SKIPPED ROWS_LOADED ROWS_REJECTED
 ROWS_DELETED ROWS_COMMITTED ROWS_PARTITIONED NUM_AGENTINFO_ENTRIES
 MSG_RETRIEVAL

 MSG_REMOVAL
 -------------------- -------------------- -------------------- --------------------
 -------------------- -------------------- -------------------- ---------------------
 --
 --
 - - - -
 - - - -
 SELECT SQLCODE, MSG FROM TABLE(SYSPROC.ADMIN_GET_MSGS('1594987316_285548770')) AS MSG

 CALL
 SYSPROC.ADMIN_REMOVE_MSGS('1594987316_285548770')

 1 record(s) selected.

 Return Status = 0

SQL20397W Routine "SYSPROC.ADMIN_CMD" execution has completed, but at least
one error, "SQL1652", was encountered during the execution. More information
is available. SQLSTATE=01H52

To view the error message, you run the SQL command as suggested in the previous response.
SELECT SQLCODE, MSG FROM
TABLE(SYSPROC.ADMIN_GET_MSGS('1594987316_285548770')) AS MSG returns the
following message:

SQLCODE MSG

 --

File I/O error 2636

Amazon Relational Database Service User Guide

SQL2025N An I/O error occurred. Error code “438”. Media on which this error occurred:
 “DB2REMOTE://s3test//public/datapump/t6.del”

SQL3500W The utility is beginning the LOAD phase at time “07/05/2024 21:21:48.082954”

SQL1652N File I/O error occurred

The Db2 diagnostic logs contain a log file similar to the following one:

2024-07-05-21.20.09.440609+000 I1191321E864 LEVEL: Error
PID : 2710 TID : 139619509200640 PROC : db2sysc 0
INSTANCE: rdsdb NODE : 000 DB : NTP
APPHDL : 0-12180 APPID: xxx.xx.x.xxx.xxxxx.xxxxxxxxxxxx
UOWID : 5 ACTID: 1
AUTHID : ADMIN HOSTNAME: ip-xx-xx-x-xx
EDUID : 147 EDUNAME: db2lmr 0
FUNCTION: DB2 UDB, oper system services, sqloS3Client_GetObjectInfo, probe:219
MESSAGE : ZRC=0x870F01B6=-2029059658=SQLO_FAILED
 "An unexpected error is encountered"
DATA #1 : String, 29 bytes
S3:HeadObject request failed.
DATA #2 : signed integer, 4 bytes
99
DATA #3 : String, 0 bytes
Object not dumped: Address: 0x00007EFC08A9AE38 Size: 0 Reason: Zero-length data
DATA #4 : String, 33 bytes
curlCode: 28, Timeout was reached

This file I/O error could result from a number of different scenarios. For example, the VPC
associated with the security group used to create your RDS for Db2 DB instance might lack an
Amazon S3 gateway endpoint. This endpoint is essential for enabling RDS for Db2 to access
Amazon S3. If your RDS for Db2 DB instance is in private subnets, then an Amazon S3 gateway
endpoint is required. You can specify whether your DB instance uses private or public subnets
by configuring Amazon RDS subnet groups. For more information, see Working with DB subnet
groups.

Topics

• Step 1: Create a VPC gateway endpoint for Amazon S3

• Step 2: Confirm that your VPC gateway endpoint for Amazon S3 exists

File I/O error 2637

Amazon Relational Database Service User Guide

Step 1: Create a VPC gateway endpoint for Amazon S3

For your RDS for Db2 DB instance to interact with Amazon S3, create a VPC and then an Amazon
S3 gateway endpoint for private subnets to use.

To create a VPC gateway endpoint for S3

1. Create a VPC. For more information see Create a VPC in the Amazon Virtual Private Cloud User
Guide.

2. Create an Amazon S3 gateway endpoint for private subnets to use. For more information, see
Gateway endpoints in the AWS PrivateLink Guide.

Step 2: Confirm that your VPC gateway endpoint for Amazon S3 exists

Confirm that you successfully created an Amazon S3 gateway endpoint by using the AWS
Management Console or the AWS CLI.

Console

To confirm an Amazon S3 gateway endpoint

1. Sign in to the AWS Management Console and open the Amazon VPC Console at https://
console.aws.amazon.com/vpc.

2. In the upper-right corner of the console, choose the AWS Region of your VPC.

3. Select the VPC that you created.

4. On the Resource map tab, under Network connections, confirm that an Amazon S3 gateway
endpoint is listed.

AWS CLI

To confirm an Amazon S3 gateway endpoint, run the describe-vpc-endpoints command. In the
following example, replace vpc_id with the VPC ID, region with your AWS Region, and profile
with your profile name.

For Linux, macOS, or Unix:

aws ec2 describe-vpc-endpoints \

File I/O error 2638

https://docs.aws.amazon.com/vpc/latest/userguide/create-vpc.html
https://docs.aws.amazon.com/vpc/latest/privatelink/gateway-endpoints.html
https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-vpc-endpoints.html

Amazon Relational Database Service User Guide

 --filters "Name=vpc-id,Values=$vpc_id" \
 "Name=service-name,\
 Values=com.amazonaws.${region}.s3" \
 --region $region --profile=$profile \
 --query "VpcEndpoints[*].VpcEndpointId" --output text

For Windows:

aws ec2 describe-vpc-endpoints ^
 --filters "Name=vpc-id,Values=$vpc_id" ^
 "Name=service-name,^
 Values=com.amazonaws.${region}.s3" ^
 --region $region --profile=$profile ^
 --query "VpcEndpoints[*].VpcEndpointId" --output text

This command produces output similar to the following example if an Amazon S3 gateway
endpoint exists.

[
 "vpce-0ea810434ff0b97e4"
]

This command produces output similar to the following example if an Amazon S3 gateway
endpoint doesn't exist.

[]

If you don't see an Amazon S3 gateway endpoint listed, then Step 1: Create a VPC gateway
endpoint for Amazon S3.

Troubleshooting errors from stored procedures

This topic describes various errors returned when calling stored procedures and how to resolve
them.

Category Stored procedure errors

Databases rdsadmin.activate_database errors

Stored procedure errors 2639

Amazon Relational Database Service User Guide

Category Stored procedure errors

Databases rdsadmin.create_database errors

Databases rdsadmin.deactivate_database errors

Databases rdsadmin.drop_database errors

Databases rdsadmin.reactivate_database errors

Databases rdsadmin.restore_database errors

Databases rdsadmin.update_db_param errors

Tablespaces rdsadmin.alter_tablespace errors

rdsadmin.activate_database errors

The following errors can occur when you call the the section called “rdsadmin.activate_database”
stored procedure.

Error Error message

Failed to allocate
shared memory

SQL1643C The database manager failed to allocate
shared memory because the database manager instance
memory limit has been reached.

Unable to activate
because of running
processes

The database can’t be activated because it's in the
process of being created or restored.

Failed to allocate shared memory

The following error message indicates that the stored procedure failed to activate a database
because the DB instance doesn't have sufficient memory.

SQL1643C The database manager failed to allocate shared memory because the database
 manager instance memory limit has been reached.

Stored procedure errors 2640

Amazon Relational Database Service User Guide

Increase the memory for your DB instance and then call the rdsadmin.activate_database
stored procedure again. For information about memory usage and recommendations for
databases, see the section called “Multiple Db2 databases”.

Unable to activate because of running processes

The following error message indicates that the stored procedure couldn't activate a database
because the rdsadmin.create_database or rdsadmin.restore_database stored procedure
is running.

The database can’t be activated because it's in the process of being created or
 restored.

Wait a few minutes, and then call the rdsadmin.activate_database stored procedure again.

rdsadmin.alter_tablespace errors

The following errors can occur when you call the the section called “rdsadmin.alter_tablespace”
stored procedure.

Error Error message

Statement not valid DB21034E The command was processed as an SQL statement
 because it was not a valid Command Line Processor
command. During SQL processing it returned:

SQL1763N Invalid ALTER TABLESPACE statement for table
space "TBSP_TEST" due to reason "12"

tablespace_prefetc
h_size value not valid

Invalid tablespace_prefetch_size. Set value to
AUTOMATIC or to a non-zero positive numerical value.

tablespace_prefetc
h_size numerical
value not valid

Invalid tablespace_prefetch_size. The number of
pages can't be greater than 32767.

Parameter can't be
used with tablespac
e_prefetch_size

You can't use tablespace_prefetch_size with
{parameter }.

Stored procedure errors 2641

Amazon Relational Database Service User Guide

Error Error message

Tablespace change
failed

The change to tablespace { tablespace_name} failed
because you can only alter LARGE or REGULAR tablespac
es.

Statement not valid

The following error message indicates that the stored procedure combined mutually exclusive
optional parameters with other optional parameters. The optional parameters reduce_max,
reduce_stop, reduce_value, lower_high_water, lower_high_water_stop, and
switch_online for the rdsadmin.alter_tablespace stored procedure are mutually exclusive.
You can't combine them with any other optional parameter, such as buffer_pool_name, in the
rdsadmin.alter_tablespace stored procedure. If you combine them, then when you call the
rdsadmin.get_task_status user-defined function, Db2 will return this error message.

DB21034E The command was processed as an SQL statement because it was not a valid
 Command Line Processor command. During SQL processing it returned:
SQL1763N Invalid ALTER TABLESPACE statement for table space "TBSP_TEST" due to reason
 "12"

Call the rdsadmin.alter_tablespace stored procedure again without combining
mutually exclusive optional parameters with other optional parameters. Then call
the rdsadmin.get_task_status user-defined function. For more information, see
rdsadmin.alter_tablespace and rdsadmin.get_task_status.

tablespace_prefetch_size value not valid

The following error message indicates that you didn't set tablespace_prefetch_size to
AUTOMATIC or a non-positive numerical value. For example, you tried to set it to testinput.

Invalid tablespace_prefetch_size. Set value to AUTOMATIC or to a non-zero positive
 numerical value.

Call the rdsadmin.alter_tablespace stored procedure again and set
tablespace_prefetch_size to AUTOMATIC or a non-positive numerical value.

tablespace_prefetch_size numerical value not valid

Stored procedure errors 2642

Amazon Relational Database Service User Guide

The following error message indicates that you set tablespace_prefetch_size to a numerical
value larger than 32767.

Invalid tablespace_prefetch_size. The number of pages can't be greater than 32767.

Call the rdsadmin.alter_tablespace stored procedure again and set
tablespace_prefetch_size to a non-zero positive numerical value less than or equal to 32767.

Parameter can't be used with tablespace_prefetch_size

The following error message indicates that you tried to use tablespace_prefetch_size with an
incompatible parameter.

You can't use tablespace_prefetch_size with {parameter}.

Call the rdsadmin.alter_tablespace stored procedure again and only use
tablespace_prefetch_size with compatible parameters. For information about parameters
you can use with tablespace_prefetch_size, see rdsadmin.alter_tablespace.

Tablespace change failed

The following error message indicates that you tried to alter a tablespace.

The change to tablespace {tablespace_name} failed because you can only alter LARGE or
 REGULAR tablespaces.

rdsadmin.create_database errors

The following error can occur when you call the the section called “rdsadmin.create_database”
stored procedure.

Error Error message

Failed to allocate
shared memory

SQL1643C The database manager failed to allocate
shared memory because the database manager instance
memory limit has been reached.

Failed to allocate shared memory

Stored procedure errors 2643

Amazon Relational Database Service User Guide

The following error message indicates that the stored procedure failed to create a database
because the DB instance doesn't have sufficient memory.

SQL1643C The database manager failed to allocate shared memory because the database
 manager instance memory limit has been reached.

Increase the memory for your DB instance and then call the rdsadmin.create_database stored
procedure again. For information about memory usage and recommendations for databases, see
the section called “Multiple Db2 databases”.

To confirm that the database was created, call the the section called “rdsadmin.list_databases”
user-defined function and check that the new database is listed.

rdsadmin.deactivate_database errors

The following error can occur when you call the the section called “rdsadmin.deactivate_database”
stored procedure.

Error Error message

Unable to deactivat
e because of running
processes

The database can’t be deactivated because it's in the
process of being created or restored.

Unable to deactivate because of running processes

The following error message indicates that the stored procedure couldn't deactivate a database
because the rdsadmin.create_database or rdsadmin.restore_database stored procedure
is running.

The database can’t be deactivated because it's in the process of being created or
 restored.

Wait a few minutes, and then call the rdsadmin.deactivate_database stored procedure again.

rdsadmin.drop_database errors

The following errors can occur when you call the the section called “rdsadmin.drop_database”
stored procedure.

Stored procedure errors 2644

Amazon Relational Database Service User Guide

Error Error message

Database name
doesn't exist

SQL0438N Application raised error or warning with
diagnostic text: "Cannot drop database. Database with
provided name does not exist". SQLSTATE=99993

Return status = 0 Return Status = 0

Dropping database
not allowed

1 ERROR DROP_DATABASE RDSDB 2023-10-10-16.33.0
3.744122 2023-10-10-16.33.30.143797 - 2023-10-1
0-16.33.30.098857 Task execution has started.
2023-10-10-16.33.30.143797 Caught exception during
executing task id 1, Aborting task. Reason Dropping
database created via rds CreateDBInstance api is
not allowed. Only database created using rdsadmin.
create_database can be dropped

Database name doesn't exist

The following error message indicates that you passed an incorrect database name in the
rdsadmin.drop_database stored procedure.

QL0438N Application raised error or warning with diagnostic text: "Cannot
drop database. Database with provided name does not exist". SQLSTATE=99993

Call the rdsadmin.drop_database stored procedure again with a correct database name. To
confirm that the database was dropped, call the the section called “rdsadmin.list_databases” user-
defined function and check that the dropped database isn't listed.

Return status = 0

The following error message indicates that the stored procedure couldn't be completed.

Return Status = 0

After you receive Return Status = 0, call the rdsadmin.get_task_status user-defined function.

Dropping database not allowed

Stored procedure errors 2645

Amazon Relational Database Service User Guide

The following error message indicates that you created the database by using either the Amazon
RDS console or the AWS CLI. You can only use the rdsadmin.drop_database stored procedure
if you created the database by calling the the section called “rdsadmin.create_database” stored
procedure.

1 ERROR DROP_DATABASE RDSDB 2023-10-10-16.33.03.744122 2023-10-10-16.33.30.143797 -
 2023-10-10-16.33.30.098857 Task execution has started.
2023-10-10-16.33.30.143797 Caught exception during executing task id 1, Aborting task.
Reason Dropping database created via rds CreateDBInstance api is not allowed.
Only database created using rdsadmin.create_database can be dropped

To drop a database that you created by using either the Amazon RDS console or the AWS CLI, use a
client to connect to the database and then run the appropriate command.

rdsadmin.reactivate_database errors

The following error can occur when you call the the section called “rdsadmin.reactivate_database”
stored procedure.

Error Error message

Failed to allocate
shared memory

SQL1643C The database manager failed to allocate
shared memory because the database manager instance
memory limit has been reached.

Unable to reactivat
e because of running
processes

The database can’t be reactivated because it's in the
process of being created or restored.

Failed to allocate shared memory

The following error message indicates that the stored procedure failed to activate a database
because the DB instance doesn't have sufficient memory.

SQL1643C The database manager failed to allocate shared memory because the database
 manager instance memory limit has been reached.

Stored procedure errors 2646

Amazon Relational Database Service User Guide

Increase the memory for your DB instance and then call the rdsadmin.activate_database
stored procedure again. For information about memory usage and recommendations for
databases, see the section called “Multiple Db2 databases”.

Unable to reactivate because of running processes

The following error message indicates that the stored procedure couldn't reactivate a database
because the rdsadmin.create_database or rdsadmin.restore_database stored procedure
is running.

The database can’t be reactivated because it's in the process of being created or
 restored.

Wait a few minutes, and then call the rdsadmin.reactivate_database stored procedure again.

rdsadmin.restore_database errors

The following errors can occur when you call the the section called “rdsadmin.restore_database”
stored procedure:

Error Error message

Insufficient disk space Aborting task. Reason Restoring your database failed
because of insufficient disk space. Increase the
storage for your DB instance and rerun the rdsadmin.
restore_database stored procedure.

Internal error Caught exception during executing task id 104,
Aborting task. Reason Internal Error

Non-fenced routines
not allowed

Caught exception during executing task id 2, Aborting
task. Reason Non fenced routines are not allowed.
Please delete the routines and retry the restore.

Tablespaces not
restored

Reason SQL0970N The system attempted to write to a
read-only file. Reason SQL2563W The Restore process
has completed successfully. However one or more table
spaces from the backup were not restored.

Stored procedure errors 2647

Amazon Relational Database Service User Guide

Insufficient disk space

The following error message indicates that your DB instance has insufficient disk space to restore
your database:

Aborting task. Reason Restoring your database failed because of insufficient
 disk space. Increase the storage for your DB instance and rerun the
 rdsadmin.restore_database stored procedure.

The free space on your DB instance must be more than double the size of your backup image. If
your backup image is compressed, the free space on your DB instance must be more than triple the
size of your backup image. For more information, see the section called “Increasing DB instance
storage capacity”.

Increase your disk space and then call the rdsadmin.restore_database stored procedure again.
To confirm that the database was restored, call the the section called “rdsadmin.list_databases”
user-defined function and check that the restored database is listed.

Internal error

The following error message indicates that the stored procedure encountered an internal error:

Caught exception during executing task id 104, Aborting task. Reason Internal Error

Contact AWS Support.

Non-fenced routines not allowed

The following error message indicates that your database contains non-fenced routines:

Caught exception during executing task id 2, Aborting task. Reason Non fenced routines
 are not allowed. Please delete the routines and retry the restore.

RDS for Db2 doesn't support non-fenced routines. Remove the non-fenced routines from the
source database, and then call rdsadmin.restore_database again. To confirm that the
database was restored, call the the section called “rdsadmin.list_databases” user-defined function
and check that the restored database is listed. For more information, see the section called “Non-
fenced routines”.

Tablespaces not restored

Stored procedure errors 2648

https://aws.amazon.com/premiumsupport/

Amazon Relational Database Service User Guide

The following error message indicates that RDS for Db2 successfully restored your database, but
couldn't restore one or more tablespaces:

Reason SQL0970N The system attempted to write to a read-only file.
Reason SQL2563W The Restore process has completed successfully. However one or more
 table spaces from the backup were not restored.

RDS for Db2 doesn't support non-automatic storage. Convert non-automatic storage to
automatic storage and then call rdsadmin.restore_database again. For more information,
see Converting a nonautomatic storage database to use automatic storage in the IBM Db2
documentation.

Databases with non-automatic SMS storage require manual restoration. If your database has non-
automatic SMS storage, contact AWS Support.

For information about non-automatic storage and one-time migrations, see the section called
“Non-automatic storage tablespaces during migration”.

rdsadmin.update_db_param errors

The following error can occur when you call the the section called “rdsadmin.update_db_param”
stored procedure.

Error Error message

Parameter not
supported or
modifiable

QL0438N Application raised error or warning with
diagnostic text: "Parameter is either not supported
or not modifiable to customers". SQLSTATE=99993

Parameter not supported or modifiable

The following error message indicates that you tried to modify a database configuration parameter
that either isn't supported or isn't modifiable.

SQL0438N Application raised error or warning with diagnostic text: "Parameter
is either not supported or not modifiable to customers". SQLSTATE=99993

You can see which parameters are modifiable by viewing your parameter groups. For more
information, see the section called “View parameter values for a DB parameter group”.

Stored procedure errors 2649

https://www.ibm.com/docs/en/db2/11.5?topic=databases-converting-nonautomatic-storage-database-use-automatic-storage
https://aws.amazon.com/premiumsupport/

Amazon Relational Database Service User Guide

Amazon RDS for MariaDB

Amazon RDS supports several versions of MariaDB for DB instances. For complete information
about the supported versions, see MariaDB on Amazon RDS versions.

To create a MariaDB DB instance, use the Amazon RDS management tools or interfaces. You can
then use the Amazon RDS tools to perform management actions for the DB instance. These include
actions such as the following:

• Reconfiguring or resizing the DB instance

• Authorizing connections to the DB instance

• Creating and restoring from backups or snapshots

• Creating Multi-AZ secondaries

• Creating read replicas

• Monitoring the performance of your DB instance

To store and access the data in your DB instance, use standard MariaDB utilities and applications.

MariaDB is available in all of the AWS Regions. For more information about AWS Regions, see
Regions, Availability Zones, and Local Zones.

You can use Amazon RDS for MariaDB databases to build HIPAA-compliant applications. You
can store healthcare-related information, including protected health information (PHI), under a
Business Associate Agreement (BAA) with AWS. For more information, see HIPAA compliance. AWS
Services in Scope have been fully assessed by a third-party auditor and result in a certification,
attestation of compliance, or Authority to Operate (ATO). For more information, see AWS services
in scope by compliance program.

Before creating a DB instance, complete the steps in Setting up your Amazon RDS environment.
When you create a DB instance, the RDS master user gets DBA privileges, with some limitations.
Use this account for administrative tasks such as creating additional database accounts.

You can create the following:

• DB instances

• DB snapshots

• Point-in-time restores

2650

https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Relational Database Service User Guide

• Automated backups

• Manual backups

You can use DB instances running MariaDB inside a virtual private cloud (VPC) based on Amazon
VPC. You can also add features to your MariaDB DB instance by enabling various options. Amazon
RDS supports Multi-AZ deployments for MariaDB as a high-availability, failover solution.

Important

To deliver a managed service experience, Amazon RDS doesn't provide shell access to
DB instances. It also restricts access to certain system procedures and tables that need
advanced privileges. You can access your database using standard SQL clients such as the
mysql client. However, you can't access the host directly by using Telnet or Secure Shell
(SSH).

Topics

• MariaDB feature support on Amazon RDS

• MariaDB on Amazon RDS versions

• Connecting to your MariaDB DB instance

• Securing MariaDB DB instance connections

• Improving query performance for RDS for MariaDB with Amazon RDS Optimized Reads

• Improving write performance with Amazon RDS Optimized Writes for MariaDB

• Upgrades of the MariaDB DB engine

• Upgrading a MariaDB DB snapshot engine version

• Importing data into an Amazon RDS for MariaDB DB instance

• Working with MariaDB replication in Amazon RDS

• Options for MariaDB database engine

• Parameters for MariaDB

• Migrating data from a MySQL DB snapshot to a MariaDB DB instance

• MariaDB on Amazon RDS SQL reference

• Local time zone for MariaDB DB instances

• Known issues and limitations for RDS for MariaDB

2651

Amazon Relational Database Service User Guide

MariaDB feature support on Amazon RDS

RDS for MariaDB supports most of the features and capabilities of MariaDB. Some features might
have limited support or restricted privileges.

You can filter new Amazon RDS features on the What's New with Database? page. For Products,
choose Amazon RDS. Then search using keywords such as MariaDB 2023.

Note

The following lists are not exhaustive.

For more information about MariaDB feature support on Amazon RDS, see the following topics.

Topics

• Supported storage engines for MariaDB on Amazon RDS

• Cache warming for MariaDB on Amazon RDS

• MariaDB features not supported by Amazon RDS

MariaDB feature support on Amazon RDS for MariaDB major versions

In the following sections, find information about MariaDB feature support on Amazon RDS for
MariaDB major versions:

Topics

• MariaDB 11.4 support on Amazon RDS

• MariaDB 10.11 support on Amazon RDS

• MariaDB 10.6 support on Amazon RDS

• MariaDB 10.5 support on Amazon RDS

• MariaDB 10.4 support on Amazon RDS

For information about supported minor versions of Amazon RDS for MariaDB, see MariaDB on
Amazon RDS versions.

MariaDB feature support 2652

https://aws.amazon.com/about-aws/whats-new/database/

Amazon Relational Database Service User Guide

MariaDB 11.4 support on Amazon RDS

Amazon RDS supports the following new features for your DB instances running MariaDB version
11.4 or higher.

• Crypographic library – RDS for MariaDB replaced OpenSSL with AWS Libcrypto (AWS-LC), which
is FIPS 140-3 certified.

• Simple Password Check plugin – You can use the MariaDB Simple Password Check Plugin to
check whether a password contains at least a specific number of characters of a specific type. For
more information, see the section called “Password validation plugins”.

• Cracklib Password Check plugin – You can use the MariaDB Cracklib Password Check Plugin to
check the strength of new passwords. For more information, see the section called “Password
validation plugins”.

• InnoDB enhancements – These enhancements include the following items:

• The change buffer was removed. For more information, see InnoDB Change Buffering.

• InnoDB Defragmentation was removed. For more information, see InnoDB Defragmentation.

• New privilege – The admin user now also has the SHOW CREATE ROUTINE privilege. This
privilege permits the grantee to view the SHOW CREATE definition statement of a routine that's
owned by another user. For more information, see Database Privileges.

• Replication improvement – MariaDB version 11.4 DB instances support binlog indexing. You can
create a GTID index for each binlog file. These indexes improve the performance of replication by
reducing the time it takes to locate a GTID. For more information, see Binlog Indexing.

• Deprecated or removed parameters – The following parameters have been deprecated or
removed for MariaDB version 11.4 DB instances:

• engine_condition_pushdown is removed from optimizer_switch

• innodb_change_buffer_max_size

• innodb_defragment

• TLSv1.0 and TLSv1.1 are removed from tls_version

• New default values for a parameter – The default value of the innodb_undo_tablespaces
parameter changed from 0 to 3.

• New valid values for parameters – The following parameters have new valid values for MariaDB
version 11.4 DB instances:

• The valid values for the binlog_row_image parameter now include FULL_NODUP.

• The valid values for the OLD_MODE parameter now include NO_NULL_COLLATION_IDS.

MariaDB major versions 2653

https://mariadb.com/kb/en/simple-password-check-plugin/
https://mariadb.com/kb/en/cracklib-password-check-plugin/
https://mariadb.com/kb/en/innodb-change-buffering/
https://mariadb.com/kb/en/defragmenting-innodb-tablespaces/#innodb-defragmentation
https://mariadb.com/kb/en/grant/#database-privileges
https://mariadb.com/kb/en/gtid/#binlog-indexing
https://mariadb.com/kb/en/optimizer-switch/
https://mariadb.com/kb/en/innodb-system-variables/#innodb_change_buffer_max_size
https://mariadb.com/kb/en/innodb-system-variables/#innodb_defragment
https://mariadb.com/kb/en/ssltls-system-variables/#tls_version
https://mariadb.com/kb/en/innodb-system-variables/#innodb_undo_tablespaces
https://mariadb.com/kb/en/replication-and-binary-log-system-variables/#binlog_row_image
https://mariadb.com/kb/en/old-mode/

Amazon Relational Database Service User Guide

• New parameters – The following parameters are new for MariaDB version 11.4 DB instances:

• The transaction_isolation parameter replaces the tx_isolation parameter.

• The transaction_read_only parameter replaces the tx_read_only parameter.

• The block_encryption_mode parameter defines the default block encryption mode for the
AES_ENCRYPT() and AES_DECRYPT() functions.

• The character_set_collations defines overrides for character set default collations.

• The binlog_gtid_index, binlog_gtid_index_page_size, and binlog_gtid_index_span_min define
the properties of the binlog GTID index. For more information, see Binlog Indexing.

For a list of all MariaDB 11.4 features and their documentation, see Changes and improvements in
MariaDB 11.4 and Release notes - MariaDB 11.4 series on the MariaDB website.

For a list of unsupported features, see MariaDB features not supported by Amazon RDS.

MariaDB 10.11 support on Amazon RDS

Amazon RDS supports the following new features for your DB instances running MariaDB version
10.11 or higher.

• Password Reuse Check plugin – You can use the MariaDB Password Reuse Check plugin to
prevent users from reusing passwords and to set the retention period of passwords. For more
information, see Password Reuse Check Plugin.

• GRANT TO PUBLIC authorization – You can grant privileges to all users who have access to your
server. For more information, see GRANT TO PUBLIC.

• Separation of SUPER and READ ONLY ADMIN privileges – You can remove READ ONLY ADMIN
privileges from all users, even users that previously had SUPER privileges.

• Security – You can now set option --ssl as the default for your MariaDB client. MariaDB no
longer silently disables SSL if the configuration is incorrect.

• SQL commands and functions – You can now use the SHOW ANALYZE FORMAT=JSON command
and the functions ROW_NUMBER, SFORMAT, and RANDOM_BYTES. SFORMAT allows string
formatting and is enabled by default. You can convert partition to table and table to partition
in a single command. There are also several improvements around JSON_*() functions.
DES_ENCRYPT and DES_DECRYPT functions were deprecated for version 10.10 and higher. For
more information, see SFORMAT.

• InnoDB enhancements – These enhancements include the following items:

MariaDB major versions 2654

https://mariadb.com/kb/en/server-system-variables/#transaction_isolation
https://mariadb.com/kb/en/server-system-variables/#tx_isolation
https://mariadb.com/kb/en/server-system-variables/#transaction_read_only
https://mariadb.com/kb/en/server-system-variables/#tx_read_only
https://mariadb.com/kb/en/server-system-variables/#block_encryption_mode
https://mariadb.com/kb/en/aes_encrypt/
https://mariadb.com/kb/en/aes_decrypt/
https://mariadb.com/kb/en/server-system-variables/#character_set_collations
https://mariadb.com/kb/en/system-versioned-tables/#binlog_gtid_index
https://mariadb.com/kb/en/system-versioned-tables/#binlog_gtid_index_page_size
https://mariadb.com/kb/en/system-versioned-tables/#binlog_gtid_index_span_min
https://mariadb.com/kb/en/gtid/#binlog-indexing
https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-4/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-4/
https://mariadb.com/kb/en/release-notes-mariadb-11-4-series/
https://mariadb.com/kb/en/password-reuse-check-plugin/
https://mariadb.com/kb/en/grant/#to-public
https://mariadb.com/kb/en/sformat/

Amazon Relational Database Service User Guide

• Performance improvements in the redo log to reduce write amplification and to improve
concurrency.

• The ability for you to change the undo tablespace without reinitializing the data directory.
This enhancement reduces control plane overhead. It requires restarting but it doesn't require
reinitialization after changing undo tablespace.

• Support for CHECK TABLE … EXTENDED and for descending indexes internally.

• Improvements to bulk insert.

• Binlog changes – These changes include the following items:

• Logging ALTER in two phases to decrease replication latency. The
binlog_alter_two_phase parameter is disabled by default, but can be enabled through
parameter groups.

• Logging explicit_defaults_for_timestamp.

• No longer logging INCIDENT_EVENT if the transaction can be safely rolled back.

• Replication improvements – MariaDB version 10.11 DB instances use GTID replication by default
if the master supports it. Also, Seconds_Behind_Master is more precise.

• Clients – You can use new command-line options for mysqlbinglog and mariadb-dump. You
can use mariadb-dump to dump and restore historical data.

• System versioning – You can modify history. MariaDB automatically creates new partitions.

• Atomic DDL – CREATE OR REPLACE is now atomic. Either the statement succeeds or it's
completely reversed.

• Redo log write – Redo log writes asynchronously.

• Stored functions – Stored functions now support the same IN, OUT, and INOUT parameters as in
stored procedures.

• Deprecated or removed parameters – The following parameters have been deprecated or
removed for MariaDB version 10.11 DB instances:

• innodb_change_buffering

• innodb_disallow_writes

• innodb_log_write_ahead_size

• innodb_prefix_index_cluster_optimization

• keep_files_on_create

• old
MariaDB major versions 2655

https://mariadb.com/kb/en/innodb-system-variables/#innodb_change_buffering
https://mariadb.com/kb/en/innodb-system-variables/#innodb_disallow_writes
https://mariadb.com/kb/en/innodb-system-variables/#innodb_log_write_ahead_size
https://mariadb.com/kb/en/innodb-system-variables/#innodb_prefix_index_cluster_optimization
https://mariadb.com/kb/en/server-system-variables/#keep_files_on_create
https://mariadb.com/kb/en/server-system-variables/#old

Amazon Relational Database Service User Guide

• Dynamic parameters – The following parameters are now dynamic for MariaDB version 10.11 DB
instances:

• innodb_log_file_size

• innodb_write_io_threads

• innodb_read_io_threads

• New default values for parameters – The following parameters have new default values for
MariaDB version 10.11 DB instances:

• The default value of the explicit_defaults_for_timestamp parameter changed from OFF to ON.

• The default value of the optimizer_prune_level parameter changed from 1 to 2.

• New valid values for parameters – The following parameters have new valid values for MariaDB
version 10.11 DB instances:

• The valid values for the old parameter were merged into those for the old_mode parameter.

• The valid values for the histogram_type parameter now include JSON_HB.

• The valid value range for the innodb_log_buffer_size parameter is now 262144 to
4294967295 (256KB to 4096MB).

• The valid value range for the innodb_log_file_size parameter is now 4194304 to 512GB (4MB
to 512GB).

• The valid values for the optimizer_prune_level parameter now include 2.

• New parameters – The following parameters are new for MariaDB version 10.11 DB instances:

• The binlog_alter_two_phase parameter can improve replication performance.

• The log_slow_min_examined_row_limit parameter can improve performance.

• The log_slow_query parameter and the log_slow_query_file parameter are aliases for
slow_query_log and slow_query_log_file, respectively.

• optimizer_extra_pruning_depth

• system_versioning_insert_history

For a list of all MariaDB 10.11 features and their documentation, see Changes and improvements in
MariaDB 10.11 and Release notes - MariaDB 10.11 series on the MariaDB website.

For a list of unsupported features, see MariaDB features not supported by Amazon RDS.

MariaDB major versions 2656

https://mariadb.com/kb/en/innodb-system-variables/#innodb_log_file_size
https://mariadb.com/kb/en/innodb-system-variables/#innodb_write_io_threads
https://mariadb.com/kb/en/innodb-system-variables/#innodb_read_io_threads
https://mariadb.com/kb/en/server-system-variables/#explicit_defaults_for_timestamp
https://mariadb.com/kb/en/server-system-variables/#optimizer_prune_level
https://mariadb.com/kb/en/server-system-variables/#old
https://mariadb.com/kb/en/server-system-variables/#old_mode
https://mariadb.com/kb/en/server-system-variables/#histogram_type
https://mariadb.com/kb/en/innodb-system-variables/#innodb_log_buffer_size
https://mariadb.com/kb/en/innodb-system-variables/#innodb_log_file_size
https://mariadb.com/kb/en/server-system-variables/#optimizer_prune_level
https://mariadb.com/kb/en/replication-and-binary-log-system-variables//#binlog_alter_two_phase
https://mariadb.com/kb/en/server-system-variables/#log_slow_min_examined_row_limit
https://mariadb.com/kb/en/server-system-variables/#log_slow_query
https://mariadb.com/kb/en/server-system-variables/#log_slow_query_file
https://mariadb.com/kb/en/server-system-variables/#optimizer_extra_pruning_depth
https://mariadb.com/kb/en/system-versioned-tables/#system_versioning_insert_history
https://mariadb.com/kb/en/changes-improvements-in-mariadb-1011/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-1011/
https://mariadb.com/kb/en/release-notes-mariadb-1011-series/

Amazon Relational Database Service User Guide

MariaDB 10.6 support on Amazon RDS

Amazon RDS supports the following new features for your DB instances running MariaDB version
10.6 or higher:

• MyRocks storage engine – You can use the MyRocks storage engine with RDS for MariaDB to
optimize storage consumption of your write-intensive, high-performance web applications. For
more information, see Supported storage engines for MariaDB on Amazon RDS and MyRocks.

• AWS Identity and Access Management (IAM) DB authentication – You can use IAM DB
authentication for better security and central management of connections to your MariaDB DB
instances. For more information, see IAM database authentication for MariaDB, MySQL, and
PostgreSQL.

• Upgrade options – You can now upgrade to RDS for MariaDB version 10.6 from any prior major
release (10.3, 10.4, 10.5). You can also restore a snapshot of an existing MySQL 5.6 or 5.7 DB
instance to a MariaDB 10.6 instance. For more information, see Upgrades of the MariaDB DB
engine.

• Delayed replication – You can now set a configurable time period for which a read replica lags
behind the source database. In a standard MariaDB replication configuration, there is minimal
replication delay between the source and the replica. With delayed replication, you can set an
intentional delay as a strategy for disaster recovery. For more information, see Configuring
delayed replication with MariaDB.

• Oracle PL/SQL compatibility – By using RDS for MariaDB version 10.6, you can more
easily migrate your legacy Oracle applications to Amazon RDS. For more information, see
SQL_MODE=ORACLE.

• Atomic DDL – Your dynamic data language (DDL) statements can be relatively crash-safe with
RDS for MariaDB version 10.6. CREATE TABLE, ALTER TABLE, RENAME TABLE, DROP TABLE,
DROP DATABASE and related DDL statements are now atomic. Either the statement succeeds, or
it's completely reversed. For more information, see Atomic DDL.

• Other enhancements – These enhancements include a JSON_TABLE function for transforming
JSON data to relational format within SQL, and faster empty table data load with Innodb.
They also include new sys_schema for analysis and troubleshooting, optimizer enhancement
for ignoring unused indexes, and performance improvements. For more information, see
JSON_TABLE.

• New default values for parameters – The following parameters have new default values for
MariaDB version 10.6 DB instances:

MariaDB major versions 2657

https://mariadb.com/kb/en/myrocks/
https://mariadb.com/kb/en/sql_modeoracle/
https://mariadb.com/kb/en/atomic-ddl/
https://mariadb.com/kb/en/json_table/

Amazon Relational Database Service User Guide

• The default value for the following parameters has changed from utf8 to utf8mb3:

• character_set_client

• character_set_connection

• character_set_results

• character_set_system

Although the default values have changed for these parameters, there is no functional
change. For more information, see Supported Character Sets and Collations in the MariaDB
documentation.

• The default value of the collation_connection parameter has changed from
utf8_general_ci to utf8mb3_general_ci. Although the default value has changed for
this parameter, there is no functional change.

• The default value of the old_mode parameter has changed from unset to UTF8_IS_UTF8MB3.
Although the default value has changed for this parameter, there is no functional change.

For a list of all MariaDB 10.6 features and their documentation, see Changes and improvements in
MariaDB 10.6 and Release notes - MariaDB 10.6 series on the MariaDB website.

For a list of unsupported features, see MariaDB features not supported by Amazon RDS.

MariaDB 10.5 support on Amazon RDS

Amazon RDS supports the following new features for your DB instances running MariaDB version
10.5 or later:

• InnoDB enhancements – MariaDB version 10.5 includes InnoDB enhancements. For more
information, see InnoDB: Performance Improvements etc. in the MariaDB documentation.

• Performance schema updates – MariaDB version 10.5 includes performance schema updates.
For more information, see Performance Schema Updates to Match MySQL 5.7 Instrumentation
and Tables in the MariaDB documentation.

• One file in the InnoDB redo log – In versions of MariaDB before version 10.5, the value of the
innodb_log_files_in_group parameter was set to 2. In MariaDB version 10.5, the value of
this parameter is set to 1.

If you are upgrading from a prior version to MariaDB version 10.5, and you don't modify
the parameters, the innodb_log_file_size parameter value is unchanged. However, it

MariaDB major versions 2658

https://mariadb.com/kb/en/server-system-variables/#character_set_client
https://mariadb.com/kb/en/server-system-variables/#character_set_connection
https://mariadb.com/kb/en/server-system-variables/#character_set_results
https://mariadb.com/kb/en/server-system-variables/#character_set_system
https://mariadb.com/kb/en/supported-character-sets-and-collations/
https://mariadb.com/kb/en/server-system-variables/#collation_connection
https://mariadb.com/kb/en/server-system-variables/#old_mode
https://mariadb.com/kb/en/changes-improvements-in-mariadb-106/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-106/
https://mariadb.com/kb/en/release-notes-mariadb-106-series/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/#innodb-performance-improvements-etc
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/#performance-schema-updates-to-match-mysql-57-instrumentation-and-tables
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/#performance-schema-updates-to-match-mysql-57-instrumentation-and-tables

Amazon Relational Database Service User Guide

applies to one log file instead of two. The result is that your upgraded MariaDB version 10.5
DB instance uses half of the redo log size that it was using before the upgrade. This change
can have a noticeable performance impact. To address this issue, you can double the value of
the innodb_log_file_size parameter. For information about modifying parameters, see
Modifying parameters in a DB parameter group in Amazon RDS.

• SHOW SLAVE STATUS command not supported – In versions of MariaDB before version 10.5,
the SHOW SLAVE STATUS command required the REPLICATION SLAVE privilege. In MariaDB
version 10.5, the equivalent SHOW REPLICA STATUS command requires the REPLICATION
REPLICA ADMIN privilege. This new privilege isn't granted to the RDS master user.

Instead of using the SHOW REPLICA STATUS command, run the new
mysql.rds_replica_status stored procedure to return similar information. For more
information, see mysql.rds_replica_status.

• SHOW RELAYLOG EVENTS command not supported – In versions of MariaDB before version
10.5, the SHOW RELAYLOG EVENTS command required the REPLICATION SLAVE privilege. In
MariaDB version 10.5, this command requires the REPLICATION REPLICA ADMIN privilege.
This new privilege isn't granted to the RDS master user.

• New default values for parameters – The following parameters have new default values for
MariaDB version 10.5 DB instances:

• The default value of the max_connections parameter has changed to
LEAST({DBInstanceClassMemory/25165760},12000). For information about the LEAST
parameter function, see DB parameter functions.

• The default value of the innodb_adaptive_hash_index parameter has changed to OFF (0).

• The default value of the innodb_checksum_algorithm parameter has changed to
full_crc32.

• The default value of the innodb_log_file_size parameter has changed to 2 GB.

For a list of all MariaDB 10.5 features and their documentation, see Changes and improvements in
MariaDB 10.5 and Release notes - MariaDB 10.5 series on the MariaDB website.

For a list of unsupported features, see MariaDB features not supported by Amazon RDS.

MariaDB 10.4 support on Amazon RDS

Amazon RDS supports the following new features for your DB instances running MariaDB version
10.4 or later:

MariaDB major versions 2659

https://mariadb.com/kb/en/server-system-variables/#max_connections
https://mariadb.com/kb/en/innodb-system-variables/#innodb_adaptive_hash_index
https://mariadb.com/kb/en/innodb-system-variables/#innodb_checksum_algorithm
https://mariadb.com/kb/en/innodb-system-variables/#innodb_log_file_size
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/
https://mariadb.com/kb/en/release-notes-mariadb-105-series/

Amazon Relational Database Service User Guide

• User account security enhancements – Password expiration and account locking improvements

• Optimizer enhancements – Optimizer trace feature

• InnoDB enhancements – Instant DROP COLUMN support and instant VARCHAR extension for
ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT

• New parameters – Including tcp_nodedelay, tls_version, and gtid_cleanup_batch_size

For a list of all MariaDB 10.4 features and their documentation, see Changes and improvements in
MariaDB 10.4 and Release notes - MariaDB 10.4 series on the MariaDB website.

For a list of unsupported features, see MariaDB features not supported by Amazon RDS.

Supported storage engines for MariaDB on Amazon RDS

RDS for MariaDB supports the following storage engines.

Topics

• The InnoDB storage engine

• The MyRocks storage engine

Other storage engines aren't currently supported by RDS for MariaDB.

The InnoDB storage engine

Although MariaDB supports multiple storage engines with varying capabilities, not all of them
are optimized for recovery and data durability. InnoDB is the recommended storage engine
for MariaDB DB instances on Amazon RDS. Amazon RDS features such as point-in-time restore
and snapshot restore require a recoverable storage engine and are supported only for the
recommended storage engine for the MariaDB version.

For more information, see InnoDB.

The MyRocks storage engine

The MyRocks storage engine is available in RDS for MariaDB version 10.6 and higher. Before using
the MyRocks storage engine in a production database, we recommend that you perform thorough
benchmarking and testing to verify any potential benefits over InnoDB for your use case.

Supported storage engines 2660

https://mariadb.com/kb/en/user-password-expiry/
https://mariadb.com/kb/en/account-locking/
https://mariadb.com/kb/en/optimizer-trace-overview/
https://mariadb.com/kb/en/alter-table/#drop-column
https://mariadb.com/kb/en/server-system-variables/#tcp_nodelay
https://mariadb.com/kb/en/ssltls-system-variables/#tls_version
https://mariadb.com/kb/en/gtid/#gtid_cleanup_batch_size
https://mariadb.com/kb/en/library/changes-improvements-in-mariadb-104/
https://mariadb.com/kb/en/library/changes-improvements-in-mariadb-104/
https://mariadb.com/kb/en/library/release-notes-mariadb-104-series/
https://mariadb.com/kb/en/innodb/

Amazon Relational Database Service User Guide

The default parameter group for MariaDB version 10.6 includes MyRocks parameters. For more
information, see Parameters for MariaDB and Parameter groups for Amazon RDS.

To create a table that uses the MyRocks storage engine, specify ENGINE=RocksDB in the CREATE
TABLE statement. The following example creates a table that uses the MyRocks storage engine.

CREATE TABLE test (a INT NOT NULL, b CHAR(10)) ENGINE=RocksDB;

We strongly recommend that you don't run transactions that span both InnoDB and MyRocks
tables. MariaDB doesn't guarantee ACID (atomicity, consistency, isolation, durability) for
transactions across storage engines. Although it is possible to have both InnoDB and MyRocks
tables in a DB instance, we don't recommend this approach except during a migration from one
storage engine to the other. When both InnoDB and MyRocks tables exist in a DB instance, each
storage engine has its own buffer pool, which might cause performance to degrade.

MyRocks doesn’t support SERIALIZABLE isolation or gap locks. So, generally you can't use
MyRocks with statement-based replication. For more information, see MyRocks and Replication.

Currently, you can modify only the following MyRocks parameters:

• rocksdb_block_cache_size

• rocksdb_bulk_load

• rocksdb_bulk_load_size

• rocksdb_deadlock_detect

• rocksdb_deadlock_detect_depth

• rocksdb_max_latest_deadlocks

The MyRocks storage engine and the InnoDB storage engine can compete for memory based
on the settings for the rocksdb_block_cache_size and innodb_buffer_pool_size
parameters. In some cases, you might only intend to use the MyRocks storage engine on a
particular DB instance. If so, we recommend setting the innodb_buffer_pool_size minimal
parameter to a minimal value and setting the rocksdb_block_cache_size as high as possible.

You can access MyRocks log files by using the DescribeDBLogFiles and
DownloadDBLogFilePortion operations.

For more information about MyRocks, see MyRocks on the MariaDB website.

Supported storage engines 2661

https://mariadb.com/kb/en/myrocks-and-replication/
https://mariadb.com/kb/en/myrocks-system-variables/#rocksdb_block_cache_size
https://mariadb.com/kb/en/myrocks-system-variables/#rocksdb_bulk_load
https://mariadb.com/kb/en/myrocks-system-variables/#rocksdb_bulk_load_size
https://mariadb.com/kb/en/myrocks-system-variables/#rocksdb_deadlock_detect
https://mariadb.com/kb/en/myrocks-system-variables/#rocksdb_deadlock_detect_depth
https://mariadb.com/kb/en/myrocks-system-variables/#rocksdb_max_latest_deadlocks
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBLogFiles.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DownloadDBLogFilePortion.html
https://mariadb.com/kb/en/myrocks/

Amazon Relational Database Service User Guide

Cache warming for MariaDB on Amazon RDS

InnoDB cache warming can provide performance gains for your MariaDB DB instance by saving the
current state of the buffer pool when the DB instance is shut down, and then reloading the buffer
pool from the saved information when the DB instance starts up. This approach bypasses the need
for the buffer pool to "warm up" from normal database use and instead preloads the buffer pool
with the pages for known common queries. For more information on cache warming, see Dumping
and restoring the buffer pool in the MariaDB documentation.

Cache warming is enabled by default on MariaDB 10.3 and higher DB instances.
To enable it, set the innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup parameters to 1 in the parameter group for your DB
instance. Changing these parameter values in a parameter group affects all MariaDB DB instances
that use that parameter group. To enable cache warming for specific MariaDB DB instances, you
might need to create a new parameter group for those DB instances. For information on parameter
groups, see Parameter groups for Amazon RDS.

Cache warming primarily provides a performance benefit for DB instances that use standard
storage. If you use PIOPS storage, you don't commonly see a significant performance benefit.

Important

If your MariaDB DB instance doesn't shut down normally, such as during a failover, then
the buffer pool state isn't saved to disk. In this case, MariaDB loads whatever buffer pool
file is available when the DB instance is restarted. No harm is done, but the restored buffer
pool might not reflect the most recent state of the buffer pool before the restart. To ensure
that you have a recent state of the buffer pool available to warm the cache on startup, we
recommend that you periodically dump the buffer pool "on demand." You can dump or
load the buffer pool on demand.
You can create an event to dump the buffer pool automatically and at a
regular interval. For example, the following statement creates an event named
periodic_buffer_pool_dump that dumps the buffer pool every hour.

CREATE EVENT periodic_buffer_pool_dump
 ON SCHEDULE EVERY 1 HOUR
 DO CALL mysql.rds_innodb_buffer_pool_dump_now();

For more information, see Events in the MariaDB documentation.

Cache warming 2662

http://mariadb.com/kb/en/mariadb/xtradbinnodb-buffer-pool/#dumping-and-restoring-the-buffer-pool
http://mariadb.com/kb/en/mariadb/xtradbinnodb-buffer-pool/#dumping-and-restoring-the-buffer-pool
http://mariadb.com/kb/en/mariadb/stored-programs-and-views-events/

Amazon Relational Database Service User Guide

Dumping and loading the buffer pool on demand

You can save and load the cache on demand using the following stored procedures:

• To dump the current state of the buffer pool to disk, call the
mysql.rds_innodb_buffer_pool_dump_now stored procedure.

• To load the saved state of the buffer pool from disk, call the
mysql.rds_innodb_buffer_pool_load_now stored procedure.

• To cancel a load operation in progress, call the mysql.rds_innodb_buffer_pool_load_abort stored
procedure.

MariaDB features not supported by Amazon RDS

The following MariaDB features are not supported on Amazon RDS:

• S3 storage engine

• Authentication plugin – GSSAPI

• Authentication plugin – Unix Socket

• AWS Key Management encryption plugin

• Delayed replication for MariaDB versions lower than 10.6

• Native MariaDB encryption at rest for InnoDB and Aria

You can enable encryption at rest for a MariaDB DB instance by following the instructions in
Encrypting Amazon RDS resources.

• HandlerSocket

• JSON table type for MariaDB versions lower than 10.6

• MariaDB ColumnStore

• MariaDB Galera Cluster

• Multisource replication

• MyRocks storage engine for MariaDB versions lower than 10.6

• Password validation plugin, simple_password_check, and cracklib_password_check for
MariaDB versions lower than 11.4

• Spider storage engine

• Sphinx storage engine

Features not supported 2663

Amazon Relational Database Service User Guide

• TokuDB storage engine

• Storage engine-specific object attributes, as described in Engine-defined new Table/Field/Index
attributes in the MariaDB documentation

• Table and tablespace encryption

• Hashicorp Key Management plugin

• Running two upgrades in parallel

To deliver a managed service experience, Amazon RDS doesn't provide shell access to DB instances,
and it restricts access to certain system procedures and tables that require advanced privileges.
Amazon RDS supports access to databases on a DB instance using any standard SQL client
application. Amazon RDS doesn't allow direct host access to a DB instance by using Telnet, Secure
Shell (SSH), or Windows Remote Desktop Connection.

Features not supported 2664

http://mariadb.com/kb/en/mariadb/engine-defined-new-tablefieldindex-attributes/
http://mariadb.com/kb/en/mariadb/engine-defined-new-tablefieldindex-attributes/

Amazon Relational Database Service User Guide

MariaDB on Amazon RDS versions

For MariaDB, version numbers are organized as version X.Y.Z. In Amazon RDS terminology, X.Y
denotes the major version, and Z is the minor version number. For Amazon RDS implementations,
a version change is considered major if the major version number changes, for example going
from version 10.5 to 10.6. A version change is considered minor if only the minor version number
changes, for example going from version 10.6.14 to 10.6.16.

Topics

• Supported MariaDB minor versions on Amazon RDS

• Supported MariaDB major versions on Amazon RDS

• Working with the Database Preview environment

• MariaDB version 11.8 in the Database Preview environment

• MariaDB version 11.7 in the Database Preview environment

• MariaDB version 11.4 in the Database Preview environment

• Deprecated versions for Amazon RDS for MariaDB

Supported MariaDB minor versions on Amazon RDS

Amazon RDS currently supports the following minor versions of MariaDB.

Note

Dates with only a month and a year are approximate and are updated with an exact date
when it’s known.

The following table shows the minor versions of MariaDB 11.4 that Amazon RDS currently
supports.

MariaDB engine
version

Community release
date

RDS release date RDS end of standard
support date

11.4.5 4 February 2025 24 February 2025 March 2026

MariaDB versions 2665

Amazon Relational Database Service User Guide

MariaDB engine
version

Community release
date

RDS release date RDS end of standard
support date

11.4.4 1 November 2024 20 December 2024 March 2026

11.4.3 8 August 2024 15 October 2024 March 2026

The following table shows the minor versions of MariaDB 10.11 that Amazon RDS currently
supports.

MariaDB engine
version

Community release
date

RDS release date RDS end of standard
support date

10.11.11 4 February 2025 24 February 2025 March 2026

10.11.10 1 November 2024 20 December 2024 March 2026

10.11.9 8 August 2024 4 September 2024 March 2026

10.11.8 16 May 2024 14 June 2024 September 2025

The following table shows the minor versions of MariaDB 10.6 that Amazon RDS currently
supports.

MariaDB engine
version

Community release
date

RDS release date RDS end of standard
support date

10.6.21 4 February 2025 24 February 2025 March 2026

10.6.20 1 November 2024 20 December 2024 March 2026

10.6.19 8 August 2024 4 September 2024 March 2026

10.6.18 16 May 2024 14 June 2024 September 2025

The following table shows the minor versions of MariaDB 10.5 that Amazon RDS currently
supports.

Supported MariaDB minor versions 2666

Amazon Relational Database Service User Guide

MariaDB engine
version

Community release
date

RDS release date RDS end of standard
support date

10.5.28 4 February 2025 24 February 2025 March 2026

10.5.27 1 November 2024 20 December 2024 February 2026

10.5.26 8 August 2024 4 September 2024 June 2025

10.5.25 16 May 2024 14 June 2024 June 2025

The following table shows the minor versions of MariaDB 10.4 that Amazon RDS currently
supports.

MariaDB engine
version

Community release
date

RDS release date RDS end of standard
support date

10.4.34 16 May 2024 14 June 2024 28 February 2025

10.4.33 7 February 2024 26 February 2024 28 February 2025

10.4.32 13 November 2023 12 December 2023 28 February 2025

10.4.31 14 August 2023 7 September 2023 28 February 2025

10.4.30 7 June 2023 22 June 2023 28 February 2025

10.4.29 10 May 2023 15 June 2023 28 February 2025

You can specify any currently supported MariaDB version when creating a new DB instance. You can
specify the major version (such as MariaDB 10.5), and any supported minor version for the specified
major version. If no version is specified, Amazon RDS defaults to a supported version, typically the
most recent version. If a major version is specified but a minor version is not, Amazon RDS defaults
to a recent release of the major version you have specified. To see a list of supported versions, as
well as defaults for newly created DB instances, use the describe-db-engine-versions AWS
CLI command.

Supported MariaDB minor versions 2667

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

For example, to list the supported engine versions for RDS for MariaDB, run the following CLI
command:

aws rds describe-db-engine-versions --engine mariadb --query "*[].
{Engine:Engine,EngineVersion:EngineVersion}" --output text

The default MariaDB version might vary by AWS Region. To create a DB instance with a specific
minor version, specify the minor version during DB instance creation. You can determine the
default minor version for an AWS Region by running the following AWS CLI command:

aws rds describe-db-engine-versions --default-only --engine mariadb
 --engine-version major_engine_version --region region --query "*[].
{Engine:Engine,EngineVersion:EngineVersion}" --output text

Replace major_engine_version with the major engine version, and replace region with the
AWS Region. For example, the following AWS CLI command returns the default MariaDB minor
engine version for the 10.5 major version and the US West (Oregon) AWS Region (us-west-2):

aws rds describe-db-engine-versions --default-only --engine mariadb --engine-version
 10.5 --region us-west-2 --query "*[].{Engine:Engine,EngineVersion:EngineVersion}" --
output text

MariaDB minor versions on Amazon RDS

Minor versions

• MariaDB version 11.4.5

• MariaDB version 11.4.4

• MariaDB version 10.11.11

• MariaDB version 10.11.10

• MariaDB version 10.6.21

• MariaDB version 10.6.20

• MariaDB version 10.5.28

• MariaDB version 10.5.27

Supported MariaDB minor versions 2668

Amazon Relational Database Service User Guide

MariaDB version 11.4.5

MariaDB version 11.4.5 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Updated the time zone information to base it on tzdata2025a.

MariaDB version 11.4.4

MariaDB version 11.4.4 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Reverted two MariaDB community changes that cause point-in-time recovery (PITR) to fail. For
more information, see MariaDB Server Jira issue MDEV-35528.

MariaDB version 10.11.11

MariaDB version 10.11.11 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Updated the time zone information to base it on tzdata2025a.

MariaDB version 10.11.10

MariaDB version 10.11.10 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Reverted two MariaDB community changes that cause point-in-time recovery (PITR) to fail. For
more information, see MariaDB Server Jira issue MDEV-35528.

Supported MariaDB minor versions 2669

https://jira.mariadb.org/browse/MDEV-35528
https://jira.mariadb.org/browse/MDEV-35528

Amazon Relational Database Service User Guide

MariaDB version 10.6.21

MariaDB version 10.6.21 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Updated the time zone information to base it on tzdata2025a.

MariaDB version 10.6.20

MariaDB version 10.6.20 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Reverted two MariaDB community changes that cause point-in-time recovery (PITR) to fail. For
more information, see MariaDB Server Jira issue MDEV-35528.

MariaDB version 10.5.28

MariaDB version 10.5.28 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Updated the time zone information to base it on tzdata2025a.

MariaDB version 10.5.27

MariaDB version 10.5.27 is now available on Amazon RDS. This release contains fixes and
improvements added by the MariaDB community and Amazon RDS.

New features and enhancements

• Reverted two MariaDB community changes that cause point-in-time recovery (PITR) to fail. For
more information, see MariaDB Server Jira issue MDEV-35528.

Supported MariaDB minor versions 2670

https://jira.mariadb.org/browse/MDEV-35528
https://jira.mariadb.org/browse/MDEV-35528

Amazon Relational Database Service User Guide

Supported MariaDB major versions on Amazon RDS

RDS for MariaDB major versions remain available at least until community end of life for the
corresponding community version. You can use the following dates to plan your testing and
upgrade cycles. If Amazon extends support for an RDS for MariaDB version for longer than
originally stated, we plan to update this table to reflect the later date.

Note

Dates with only a month and a year are approximate and are updated with an exact date
when it’s known.

MariaDB major
version

Community
release date

RDS release
date

Community end
of life date

RDS end of
standard
support date

MariaDB 11.4 8 August 2024 15 October
2024

May 2029 May 2029

MariaDB 10.11 16 February
2023

21 August 2023 16 February
2028

February 2028

MariaDB 10.6 6 July 2021 3 February 2022 6 July 2026 July 2026

MariaDB 10.5 24 June 2020 21 January 2021 24 June 2025 February 2026

MariaDB 10.4 18 June 2019 6 April 2020 18 June 2024 February 2025

Working with the Database Preview environment

RDS for MariaDB DB instances in the Database Preview environment are functionally similar to
other RDS for MariaDB DB instances. However, you can't use the Database Preview environment for
production workloads.

Preview environments have the following limitations:

Supported MariaDB major versions 2671

Amazon Relational Database Service User Guide

• Amazon RDS deletes all DB instances 60 days after you create them, along with any backups and
snapshots.

• You can only use General Purpose SSD and Provisioned IOPS SSD storage.

• You can't get help from Support with DB instances. Instead, you can post your questions to the
AWS‐managed Q&A community, AWS re:Post.

• You can't copy a snapshot of a DB instance to a production environment.

The following options are supported by the preview.

• You can create DB instances using db.m6i, db.r6i, db.m6g, db.m5, db.t3, db.r6g, and db.r5 DB
instance classes. For more information about RDS instance classes, see DB instance classes.

• You can use both single-AZ and Multi-AZ deployments.

• You can use standard MariaDB dump and load functions to export databases from or import
databases to the Database Preview environment.

Features not supported in the Database Preview environment

The following features aren't available in the Database Preview environment:

• Cross-Region snapshot copy

• Cross-Region read replicas

• RDS Proxy

Creating a new DB instance in the Database Preview environment

You can create a DB instance in the Database Preview environment using the AWS Management
Console, AWS CLI, or RDS API.

Console

To create a DB instance in the Database Preview environment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Dashboard from the navigation pane.

The Database Preview environment 2672

https://repost.aws/tags/TAsibBK6ZeQYihN9as4S_psg/amazon-relational-database-service
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. In the Dashboard page, locate the Database Preview Environment section, as shown in the
following image.

You can navigate directly to the Database Preview environment. Before you can proceed, you
must acknowledge and accept the limitations.

The Database Preview environment 2673

https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#

Amazon Relational Database Service User Guide

4. To create the RDS for MariaDB DB instance, follow the same process that you would for
creating any Amazon RDS DB instance. For more information, see the Console procedure in
Creating a DB instance.

AWS CLI

To create a DB instance in the Database Preview environment using the AWS CLI, use the following
endpoint.

rds-preview.us-east-2.amazonaws.com

To create the RDS for MariaDB DB instance, follow the same process that you would for creating
any Amazon RDS DB instance. For more information, see the AWS CLI procedure in Creating a DB
instance.

RDS API

To create a DB instance in the Database Preview environment using the RDS API, use the following
endpoint.

The Database Preview environment 2674

Amazon Relational Database Service User Guide

rds-preview.us-east-2.amazonaws.com

To create the RDS for MariaDB DB instance, follow the same process that you would for creating
any Amazon RDS DB instance. For more information, see the RDS API procedure in Creating a DB
instance.

MariaDB version 11.8 in the Database Preview environment

MariaDB version 11.8 is now available in the Amazon RDS Database Preview environment. MariaDB
version 11.8 contains several improvements that are described in Changes and improvements in
MariaDB 11.8. This version also includes support for the vector data type, indexing, and search. For
more information, see Vector Overview in the MariaDB documentation.

You can use the Database Preview environment to test your workloads against this release before it
is available in all AWS Regions for production workloads. For information on the Database Preview
environment, see the section called “The Database Preview environment”. To access the Preview
Environment from the console, select rds-preview/.

MariaDB version 11.7 in the Database Preview environment

MariaDB version 11.7 is now available in the Amazon RDS Database Preview environment. MariaDB
version 11.7 contains several improvements that are described in Changes and improvements in
MariaDB 11.7. This version also includes support for the vector data type, indexing, and search. For
more information, see Vector Overview in the MariaDB documentation.

You can use the Database Preview environment to test your workloads against this release before it
is available in all AWS Regions for production workloads. For information on the Database Preview
environment, see the section called “The Database Preview environment”. To access the Preview
Environment from the console, select rds-preview/.

MariaDB version 11.4 in the Database Preview environment

MariaDB version 11.4 is now available in the Amazon RDS Database Preview environment. MariaDB
version 11.4 contains several improvements that are described in Changes and improvements in
MariaDB 11.4. You can use the Database Preview environment to test your workloads against this
release before it is available in all AWS Regions for production workloads.

For information on the Database Preview environment, see the section called “The Database
Preview environment”. To access the Preview Environment from the console, select rds-preview/.

MariaDB version 11.8 in the Database Preview environment 2675

https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-8/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-8/
https://mariadb.com/kb/en/vector-overview/
https://console.aws.amazon.com/rds-preview/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-7/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-7/
https://mariadb.com/kb/en/vector-overview/
https://console.aws.amazon.com/rds-preview/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-4/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-11-4/
https://console.aws.amazon.com/rds-preview/

Amazon Relational Database Service User Guide

Deprecated versions for Amazon RDS for MariaDB

Amazon RDS for MariaDB versions 10.0, 10.1, 10.2, and 10.3 are deprecated.

For information about the Amazon RDS deprecation policy for MariaDB, see Amazon RDS FAQs.

Deprecated MariaDB versions 2676

https://aws.amazon.com/rds/faqs/

Amazon Relational Database Service User Guide

Connecting to your MariaDB DB instance

After Amazon RDS provisions your DB instance, you can use any standard MariaDB client
application or utility to connect to the instance. In the connection string, you specify the Domain
Name System (DNS) address from the DB instance endpoint as the host parameter. You also specify
the port number from the DB instance endpoint as the port parameter.

You can connect to an Amazon RDS for MariaDB DB instance by using tools like the MySQL
command-line client. For more information on using the MySQL command-line client, see mysql
command-line client in the MariaDB documentation. One GUI-based application that you can use
to connect is Heidi. For more information, see the Download HeidiSQL page. For information about
installing MySQL (including the MySQL command-line client), see Installing and upgrading MySQL.

Most Linux distributions include the MariaDB client instead of the Oracle MySQL client. To install
the MySQL command-line client on Amazon Linux 2023, run the following command:

sudo dnf install mariadb105

To install the MySQL command-line client on Amazon Linux 2, run the following command:

sudo yum install mariadb

To install the MySQL command-line client on most DEB-based Linux distributions, run the
following command.

apt-get install mariadb-client

To check the version of your MySQL command-line client, run the following command.

mysql --version

To read the MySQL documentation for your current client version, run the following command.

man mysql

To connect to a DB instance from outside of a virtual private cloud (VPC) based on Amazon VPC,
the DB instance must be publicly accessible. Also, access must be granted using the inbound rules
of the DB instance's security group, and other requirements must be met. For more information,
see Can't connect to Amazon RDS DB instance.

Connecting to a DB instance running MariaDB 2677

http://mariadb.com/kb/en/mariadb/mysql-command-line-client/
http://mariadb.com/kb/en/mariadb/mysql-command-line-client/
http://www.heidisql.com/download.php
https://dev.mysql.com/doc/refman/8.0/en/installing.html

Amazon Relational Database Service User Guide

You can use SSL encryption on connections to a MariaDB DB instance. For information, see SSL/TLS
support for MariaDB DB instances on Amazon RDS.

To find and connect to a RDS for MariaDB DB instance, see the following topics.

Topics

• Finding the connection information for a MariaDB DB instance

• Connecting from the MySQL command-line client (unencrypted) for RDS for MariaDB

• Connecting to RDS for MariaDB with the AWS JDBC Driver and AWS Python Driver;

• Troubleshooting connections to your MariaDB DB instance

Finding the connection information for a MariaDB DB instance

The connection information for a DB instance includes its endpoint, port, and a valid
database user, such as the master user. For example, suppose that an endpoint value is
mydb.123456789012.us-east-1.rds.amazonaws.com. In this case, the port value is 3306,
and the database user is admin. Given this information, you specify the following values in a
connection string:

• For host or host name or DNS name, specify mydb.123456789012.us-
east-1.rds.amazonaws.com.

• For port, specify 3306.

• For user, specify admin.

To connect to a DB instance, use any client for the MariaDB DB engine. For example, you might use
the MySQL command-line client or MySQL Workbench.

To find the connection information for a DB instance, you can use the AWS Management Console,
the AWS Command Line Interface (AWS CLI) describe-db-instances command, or the Amazon RDS
API DescribeDBInstances operation to list its details.

Console

To find the connection information for a DB instance in the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Finding the connection information 2678

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Databases to display a list of your DB instances.

3. Choose the name of the MariaDB DB instance to display its details.

4. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You need
both the endpoint and the port number to connect to the DB instance.

Finding the connection information 2679

Amazon Relational Database Service User Guide

5. If you need to find the master user name, choose the Configuration tab and view the Master
username value.

AWS CLI

To find the connection information for a MariaDB DB instance by using the AWS CLI, run the
describe-db-instances command. In the call, query for the DB instance ID, endpoint, port, and
master user name.

For Linux, macOS, or Unix:

aws rds describe-db-instances \
 --filters "Name=engine,Values=mariadb" \
 --query "*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

For Windows:

aws rds describe-db-instances ^
 --filters "Name=engine,Values=mariadb" ^
 --query "*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

Your output should be similar to the following.

[
 [
 "mydb1",
 "mydb1.123456789012.us-east-1.rds.amazonaws.com",
 3306,
 "admin"
],
 [
 "mydb2",
 "mydb2.123456789012.us-east-1.rds.amazonaws.com",
 3306,
 "admin"
]
]

Finding the connection information 2680

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

RDS API

To find the connection information for a DB instance by using the Amazon RDS API, call the
DescribeDBInstances operation. In the output, find the values for the endpoint address, endpoint
port, and master user name.

Connecting from the MySQL command-line client (unencrypted) for
RDS for MariaDB

Important

Only use an unencrypted MySQL connection when the client and server are in the same
VPC and the network is trusted. For information about using encrypted connections, see
Connecting to your MariaDB DB instance on Amazon RDS with SSL/TLS from the MySQL
command-line client (encrypted).

To connect to a DB instance using the MySQL command-line client, enter the following command
at a command prompt on a client computer. Doing this connects you to a database on a MariaDB
DB instance. Substitute the DNS name (endpoint) for your DB instance for <endpoint> and the
master user name that you used for <mymasteruser>. Provide the master password that you used
when prompted for a password.

mysql -h <endpoint> -P 3306 -u <mymasteruser> -p

After you enter the password for the user, you see output similar to the following.

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 31
Server version: 10.6.10-MariaDB-log Source distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

Connecting from the command-line client 2681

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

Connecting to RDS for MariaDB with the AWS JDBC Driver and AWS
Python Driver;

Connect to RDS for MariaDB DB instances with the AWS JDBC Driver and the AWS Python Driver.
For more information, see the following topics.

Topics

• Connecting to RDS for MariaDB with the Amazon Web Services (AWS) JDBC Driver

• Connecting to RDS for MariaDB with the Amazon Web Services (AWS) Python Driver

Connecting to RDS for MariaDB with the Amazon Web Services (AWS) JDBC Driver

The Amazon Web Services (AWS) JDBC Driver is designed as an advanced JDBC wrapper. This
wrapper is complementary to and extends the functionality of an existing JDBC driver. The driver
is drop-in compatible with the community MySQL Connector/J driver and the community MariaDB
Connector/J driver.

To install the AWS JDBC Driver, append the AWS JDBC Driver .jar file (located in the application
CLASSPATH), and keep references to the respective community driver. Update the respective
connection URL prefix as follows:

• jdbc:mysql:// to jdbc:aws-wrapper:mysql://

• jdbc:mariadb:// to jdbc:aws-wrapper:mariadb://

For more information about the AWS JDBC Driver and complete instructions for using it, see the
Amazon Web Services (AWS) JDBC Driver GitHub repository.

Connecting to RDS for MariaDB with the Amazon Web Services (AWS) Python
Driver

The Amazon Web Services (AWS) Python Driver is designed as an advanced Python wrapper.
This wrapper is complementary to and extends the functionality of the open-source Psycopg
driver. The AWS Python Driver supports Python versions 3.8 and higher. You can install the aws-
advanced-python-wrapper package using the pip command, along with the psycopg open-
source packages.

Connecting with the AWS drivers 2682

https://github.com/awslabs/aws-advanced-jdbc-wrapper

Amazon Relational Database Service User Guide

For more information about the AWS Python Driver and complete instructions for using it, see the
Amazon Web Services (AWS) Python Driver GitHub repository.

Troubleshooting connections to your MariaDB DB instance

Two common causes of connection failures to a new DB instance are the following:

• The DB instance was created using a security group that doesn't authorize connections from
the device or Amazon EC2 instance where the MariaDB application or utility is running. The DB
instance must have a VPC security group that authorizes the connections. For more information,
see Amazon VPC and Amazon RDS.

You can add or edit an inbound rule in the security group. For Source, choose My IP. This allows
access to the DB instance from the IP address detected in your browser.

• The DB instance was created using the default port of 3306, and your company has firewall rules
blocking connections to that port from devices in your company network. To fix this failure,
recreate the instance with a different port.

For more information on connection issues, see Can't connect to Amazon RDS DB instance.

Troubleshooting 2683

https://github.com/awslabs/aws-advanced-python-wrapper

Amazon Relational Database Service User Guide

Securing MariaDB DB instance connections

You can manage the security of your MariaDB DB instances.

Topics

• MariaDB security on Amazon RDS

• Using the password validation plugins for RDS for MariaDB

• Encrypting client connections with SSL/TLS to MariaDB DB instances on Amazon RDS

• Updating applications to connect to MariaDB instances using new SSL/TLS certificates

MariaDB security on Amazon RDS

Security for MariaDB DB instances is managed at three levels:

• AWS Identity and Access Management controls who can perform Amazon RDS management
actions on DB instances. When you connect to AWS using IAM credentials, your IAM account must
have IAM policies that grant the permissions required to perform Amazon RDS management
operations. For more information, see Identity and access management for Amazon RDS.

• When you create a DB instance, you use a VPC security group to control which devices and
Amazon EC2 instances can open connections to the endpoint and port of the DB instance. These
connections can be made using Secure Socket Layer (SSL) and Transport Layer Security (TLS). In
addition, firewall rules at your company can control whether devices running at your company
can open connections to the DB instance.

• Once a connection has been opened to a MariaDB DB instance, authentication of the login and
permissions are applied the same way as in a stand-alone instance of MariaDB. Commands such
as CREATE USER, RENAME USER, GRANT, REVOKE, and SET PASSWORD work just as they do in
stand-alone databases, as does directly modifying database schema tables.

When you create an Amazon RDS DB instance, the master user has the following default privileges:

• alter

• alter routine

• create

• create routine

• create temporary tables

Securing MariaDB connections 2684

Amazon Relational Database Service User Guide

• create user

• create view

• delete

• drop

• event

• execute

• grant option

• index

• insert

• lock tables

• process

• references

• reload

This privilege is limited on MariaDB DB instances. It doesn't grant access to the FLUSH LOGS or
FLUSH TABLES WITH READ LOCK operations.

• replication client

• replication slave

• select

• show create routine

This privilege is only on MariaDB DB instances running version 11.4 and higher.

• show databases

• show view

• trigger

• update

For more information about these privileges, see User account management in the MariaDB
documentation.

MariaDB security 2685

http://mariadb.com/kb/en/mariadb/grant/

Amazon Relational Database Service User Guide

Note

Although you can delete the master user on a DB instance, we don't recommend doing
so. To recreate the master user, use the ModifyDBInstance API or the modify-db-
instance AWS CLI and specify a new master user password with the appropriate
parameter. If the master user does not exist in the instance, the master user is created with
the specified password.

To provide management services for each DB instance, the rdsadmin user is created when the DB
instance is created. Attempting to drop, rename, change the password for, or change privileges for
the rdsadmin account results in an error.

To allow management of the DB instance, the standard kill and kill_query commands have
been restricted. The Amazon RDS commands mysql.rds_kill, mysql.rds_kill_query, and
mysql.rds_kill_query_id are provided for use in MariaDB and also MySQL so that you can end
user sessions or queries on DB instances.

Using the password validation plugins for RDS for MariaDB

Starting with RDS for MariaDB version 11.4, you can use the following password validation plugins
to enhance the security of your database connections:

• simple_password_check – checks whether a password contains at least a specific number of
characters of a specific type.

• cracklib_password_check – checks whether a password appears in a dictionary file of the
CrackLib library.

To enable these plugins, set the value of the parameter simple_password_check or
cracklib_password_check to FORCE_PLUS_PERMANENT in the DB parameter group associated
with the DB instance. When this value is set, the plugin can't be uninstalled by using the
UNINSTALL PLUGIN statement at runtime.

To disable these plugins, set the value of the parameter simple_password_check or
cracklib_password_check to OFF in the DB parameter group associated with the DB instance.
When this value is set, the plugin validation rules no longer apply for new passwords.

Password validation plugins 2686

https://mariadb.com/kb/en/simple-password-check-plugin/
https://mariadb.com/kb/en/cracklib_password_check/
https://github.com/cracklib/cracklib

Amazon Relational Database Service User Guide

For information about setting the values of parameters in parameter groups, see the section called
“Modifying parameters in a DB parameter group”.

Encrypting client connections with SSL/TLS to MariaDB DB instances
on Amazon RDS

Secure Sockets Layer (SSL) is an industry-standard protocol for securing network connections
between client and server. After SSL version 3.0, the name was changed to Transport Layer
Security (TLS). Amazon RDS supports SSL/TLS encryption for MariaDB DB instances. Using SSL/
TLS, you can encrypt a connection between your application client and your MariaDB DB instance.
SSL/TLS support is available in all AWS Regions.

With Amazon RDS, you can secure data in transit by encrypting client connections to MariaDB
DB instances with SSL/TLS, requiring SSL/TLS for all connections to a MariaDB DB instance, and
connecting from the MySQL command-line client with SSL/TLS (encrypted). The following sections
provide guidance on configuring and utilizing SSL/TLS encryption for MariaDB DB instances on
Amazon RDS.

Topics

• SSL/TLS support for MariaDB DB instances on Amazon RDS

• Requiring SSL/TLS for specific user accounts to a MariaDB DB instance on Amazon RDS

• Requiring SSL/TLS for all connections to a MariaDB DB instance on Amazon RDS

• Connecting to your MariaDB DB instance on Amazon RDS with SSL/TLS from the MySQL
command-line client (encrypted)

SSL/TLS support for MariaDB DB instances on Amazon RDS

Amazon RDS creates an SSL/TLS certificate and installs the certificate on the DB instance when
Amazon RDS provisions the instance. These certificates are signed by a certificate authority. The
SSL/TLS certificate includes the DB instance endpoint as the Common Name (CN) for the SSL/TLS
certificate to guard against spoofing attacks.

An SSL/TLS certificate created by Amazon RDS is the trusted root entity and should work in most
cases, but might fail if your application doesn't accept certificate chains. If your application doesn't
accept certificate chains, try using an intermediate certificate to connect to your AWS Region. For
example, you must use an intermediate certificate to connect to the AWS GovCloud (US) Regions
with SSL/TLS.

Encrypting with SSL/TLS 2687

Amazon Relational Database Service User Guide

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster. For more information about using SSL/TLS with MySQL, see Updating
applications to connect to MariaDB instances using new SSL/TLS certificates.

Amazon RDS for MariaDB supports Transport Layer Security (TLS) versions 1.3, 1.2, 1.1, and 1.0.
TLS support depends on the MariaDB minor version. The following table shows the TLS support for
MariaDB minor versions.

TLS version MariaDB
11.4

MariaDB
10.11

MariaDB
10.6

MariaDB
10.5

MariaDB
10.4

TLS 1.3 All minor
versions

All minor
versions

All minor
versions

All minor
versions

All minor
versions

TLS 1.2 All minor
versions

All minor
versions

All minor
versions

All minor
versions

All minor
versions

TLS 1.1 Not
supported

10.11.6 and
lower

10.6.16 and
lower

10.5.23 and
lower

10.4.32 and
lower

TLS 1.0 Not
supported

10.11.6 and
lower

10.6.16 and
lower

10.5.23 and
lower

10.4.32 and
lower

Requiring SSL/TLS for specific user accounts to a MariaDB DB instance on Amazon
RDS

You can require SSL/TLS encryption for specified user account connections to your MariaDB
DB instances on Amazon RDS. Protecting sensitive information from unauthorized access or
interception is crucial to enforce security policies where data confidentiality is a concern.

To require SSL/TLS connections for specific users' accounts, use one of the following statements,
depending on your MySQL version, to require SSL/TLS connections on the user account
encrypted_user.

To do so, use the following statement.

ALTER USER 'encrypted_user'@'%' REQUIRE SSL;

Encrypting with SSL/TLS 2688

Amazon Relational Database Service User Guide

For more information on SSL/TLS connections with MariaDB, see Securing Connections for Client
and Server in the MariaDB documentation.

Requiring SSL/TLS for all connections to a MariaDB DB instance on Amazon RDS

Use the require_secure_transport parameter to require that all user connections to your
MariaDB DB instance use SSL/TLS. By default, the require_secure_transport parameter is set
to OFF. You can set the require_secure_transport parameter to ON to require SSL/TLS for
connections to your DB instance.

Note

The require_secure_transport parameter is only supported for MariaDB version 10.5
and higher.

You can set the require_secure_transport parameter value by updating the DB parameter
group for your DB instance. You don't need to reboot your DB instance for the change to take
effect.

When the require_secure_transport parameter is set to ON for a DB instance, a database
client can connect to it if it can establish an encrypted connection. Otherwise, an error message
similar to the following is returned to the client:

ERROR 1045 (28000): Access denied for user 'USER'@'localhost' (using password: YES |
 NO)

For information about setting parameters, see Modifying parameters in a DB parameter group in
Amazon RDS.

For more information about the require_secure_transport parameter, see the MariaDB
documentation.

Connecting to your MariaDB DB instance on Amazon RDS with SSL/TLS from the
MySQL command-line client (encrypted)

The mysql client program parameters are slightly different if you are using the MySQL 5.7 version,
the MySQL 8.0 version, or the MariaDB version.

Encrypting with SSL/TLS 2689

https://mariadb.com/kb/en/securing-connections-for-client-and-server/
https://mariadb.com/kb/en/securing-connections-for-client-and-server/
https://mariadb.com/docs/ent/ref/mdb/system-variables/require_secure_transport/
https://mariadb.com/docs/ent/ref/mdb/system-variables/require_secure_transport/

Amazon Relational Database Service User Guide

To find out which version you have, run the mysql command with the --version option. In the
following example, the output shows that the client program is from MariaDB.

$ mysql --version
mysql Ver 15.1 Distrib 10.5.15-MariaDB, for osx10.15 (x86_64) using readline 5.1

Most Linux distributions, such as Amazon Linux, CentOS, SUSE, and Debian have replaced MySQL
with MariaDB, and the mysql version in them is from MariaDB.

To connect to your DB instance using SSL/TLS, follow these steps:

To connect to a DB instance with SSL/TLS using the MySQL command-line client

1. Download a root certificate that works for all AWS Regions.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster.

2. Use a MySQL command-line client to connect to a DB instance with SSL/TLS encryption. For
the -h parameter, substitute the DNS name (endpoint) for your DB instance. For the --ssl-ca
parameter, substitute the SSL/TLS certificate file name. For the -P parameter, substitute the
port for your DB instance. For the -u parameter, substitute the user name of a valid database
user, such as the master user. Enter the master user password when prompted.

The following example shows how to launch the client using the --ssl-ca parameter using
the MariaDB client:

mysql -h mysql–instance1.123456789012.us-east-1.rds.amazonaws.com --ssl-ca=global-
bundle.pem --ssl -P 3306 -u myadmin -p

To require that the SSL/TLS connection verifies the DB instance endpoint against the endpoint
in the SSL/TLS certificate, enter the following command:

mysql -h mysql–instance1.123456789012.us-east-1.rds.amazonaws.com --ssl-ca=global-
bundle.pem --ssl-verify-server-cert -P 3306 -u myadmin -p

The following example shows how to launch the client using the --ssl-ca parameter using
the MySQL 5.7 client or later:

Encrypting with SSL/TLS 2690

Amazon Relational Database Service User Guide

mysql -h mysql–instance1.123456789012.us-east-1.rds.amazonaws.com --ssl-ca=global-
bundle.pem --ssl-mode=REQUIRED -P 3306 -u myadmin -p

3. Enter the master user password when prompted.

You should see output similar to the following.

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 31
Server version: 10.6.10-MariaDB-log Source distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

Updating applications to connect to MariaDB instances using new SSL/
TLS certificates

As of January 13, 2023, Amazon RDS has published new Certificate Authority (CA) certificates
for connecting to your RDS DB instances using Secure Socket Layer or Transport Layer Security
(SSL/TLS). Following, you can find information about updating your applications to use the new
certificates.

This topic can help you to determine whether your applications require certificate verification to
connect to your DB instances.

Note

Some applications are configured to connect to MariaDB only if they can successfully verify
the certificate on the server. For such applications, you must update your client application
trust stores to include the new CA certificates.
You can specify the following SSL modes: disabled, preferred, and required. When
you use the preferred SSL mode and the CA certificate doesn't exist or isn't up to date,
the connection falls back to not using SSL and still connects successfully.

Using new SSL/TLS certificates 2691

Amazon Relational Database Service User Guide

We recommend avoiding preferred mode. In preferred mode, if the connection
encounters an invalid certificate, it stops using encryption and proceeds unencrypted.

After you update your CA certificates in the client application trust stores, you can rotate
the certificates on your DB instances. We strongly recommend testing these procedures in a
development or staging environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate. For more
information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
instance or cluster. For information about using SSL/TLS with MariaDB DB instances, see SSL/TLS
support for MariaDB DB instances on Amazon RDS.

Topics

• Determining whether a client requires certificate verification in order to connect

• Updating your application trust store

• Example Java code for establishing SSL connections

Determining whether a client requires certificate verification in order to connect

You can check whether JDBC clients and MySQL clients require certificate verification to connect.

JDBC

The following example with MySQL Connector/J 8.0 shows one way to check an application's JDBC
connection properties to determine whether successful connections require a valid certificate. For
more information on all of the JDBC connection options for MySQL, see Configuration properties
in the MySQL documentation.

When using the MySQL Connector/J 8.0, an SSL connection requires verification against
the server CA certificate if your connection properties have sslMode set to VERIFY_CA or
VERIFY_IDENTITY, as in the following example.

Properties properties = new Properties();
properties.setProperty("sslMode", "VERIFY_IDENTITY");
properties.put("user", DB_USER);
properties.put("password", DB_PASSWORD);

Using new SSL/TLS certificates 2692

https://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

Amazon Relational Database Service User Guide

Note

If you use either the MySQL Java Connector v5.1.38 or later, or the MySQL Java Connector
v8.0.9 or later to connect to your databases, even if you haven't explicitly configured
your applications to use SSL/TLS when connecting to your databases, these client drivers
default to using SSL/TLS. In addition, when using SSL/TLS, they perform partial certificate
verification and fail to connect if the database server certificate is expired.
Specify a password other than the prompt shown here as a security best practice.

MySQL

The following examples with the MySQL Client show two ways to check a script's MySQL
connection to determine whether successful connections require a valid certificate. For more
information on all of the connection options with the MySQL Client, see Client-side configuration
for encrypted connections in the MySQL documentation.

When using the MySQL 5.7 or MySQL 8.0 Client, an SSL connection requires verification against the
server CA certificate if for the --ssl-mode option you specify VERIFY_CA or VERIFY_IDENTITY,
as in the following example.

mysql -h mysql-database.rds.amazonaws.com -uadmin -ppassword --ssl-ca=/tmp/ssl-cert.pem
 --ssl-mode=VERIFY_CA

When using the MySQL 5.6 Client, an SSL connection requires verification against the server CA
certificate if you specify the --ssl-verify-server-cert option, as in the following example.

mysql -h mysql-database.rds.amazonaws.com -uadmin -ppassword --ssl-ca=/tmp/ssl-cert.pem
 --ssl-verify-server-cert

Updating your application trust store

For information about updating the trust store for MySQL applications, see Using TLS/SSL with
MariaDB Connector/J in the MariaDB documentation.

Using new SSL/TLS certificates 2693

https://dev.mysql.com/doc/refman/en/using-encrypted-connections.html#using-encrypted-connections-client-side-configuration
https://dev.mysql.com/doc/refman/en/using-encrypted-connections.html#using-encrypted-connections-client-side-configuration
https://mariadb.com/kb/en/library/using-tls-ssl-with-mariadb-java-connector/
https://mariadb.com/kb/en/library/using-tls-ssl-with-mariadb-java-connector/

Amazon Relational Database Service User Guide

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB instance or cluster.

For sample scripts that import certificates, see Sample script for importing certificates into your
trust store.

Note

When you update the trust store, you can retain older certificates in addition to adding the
new certificates.

If you are using the MariaDB Connector/J JDBC driver in an application, set the following properties
in the application.

System.setProperty("javax.net.ssl.trustStore", certs);
System.setProperty("javax.net.ssl.trustStorePassword", "password");

When you start the application, set the following properties.

java -Djavax.net.ssl.trustStore=/path_to_truststore/MyTruststore.jks -
Djavax.net.ssl.trustStorePassword=my_truststore_password com.companyName.MyApplication

Note

Specify passwords other than the prompts shown here as a security best practice.

Example Java code for establishing SSL connections

The following code example shows how to set up the SSL connection using JDBC.

private static final String DB_USER = "admin";

Using new SSL/TLS certificates 2694

Amazon Relational Database Service User Guide

 private static final String DB_USER = "user name";
 private static final String DB_PASSWORD = "password";
 // This key store has only the prod root ca.
 private static final String KEY_STORE_FILE_PATH = "file-path-to-keystore";
 private static final String KEY_STORE_PASS = "keystore-password";

 public static void main(String[] args) throws Exception {
 Class.forName("org.mariadb.jdbc.Driver");

 System.setProperty("javax.net.ssl.trustStore", KEY_STORE_FILE_PATH);
 System.setProperty("javax.net.ssl.trustStorePassword", KEY_STORE_PASS);

 Properties properties = new Properties();
 properties.put("user", DB_USER);
 properties.put("password", DB_PASSWORD);

 Connection connection = DriverManager.getConnection("jdbc:mysql://ssl-mariadb-
public.cni62e2e7kwh.us-east-1.rds.amazonaws.com:3306?useSSL=true",properties);
 Statement stmt=connection.createStatement();

 ResultSet rs=stmt.executeQuery("SELECT 1 from dual");

 return;
 }

Important

After you have determined that your database connections use SSL/TLS and have updated
your application trust store, you can update your database to use the rds-ca-rsa2048-g1
certificates. For instructions, see step 3 in Updating your CA certificate by modifying your
DB instance or cluster.
Specify a password other than the prompt shown here as a security best practice.

Using new SSL/TLS certificates 2695

Amazon Relational Database Service User Guide

Improving query performance for RDS for MariaDB with
Amazon RDS Optimized Reads

You can achieve faster query processing for RDS for MariaDB with Amazon RDS Optimized Reads.
An RDS for MariaDB DB instance that uses RDS Optimized Reads can achieve up to 2x faster query
processing compared to a DB instance that doesn't use it.

Topics

• Overview of RDS Optimized Reads

• Use cases for RDS Optimized Reads

• Best practices for RDS Optimized Reads

• Using RDS Optimized Reads

• Monitoring DB instances that use RDS Optimized Reads

• Limitations for RDS Optimized Reads

Overview of RDS Optimized Reads

When you use an RDS for MariaDB DB instance that has RDS Optimized Reads turned on, your
DB instance achieves faster query performance through the use of an instance store. An instance
store provides temporary block-level storage for your DB instance. The storage is located on
Non-Volatile Memory Express (NVMe) solid state drives (SSDs) that are physically attached to the
host server. This storage is optimized for low latency, high random I/O performance, and high
sequential read throughput.

RDS Optimized Reads is turned on by default when a DB instance uses a DB instance class with an
instance store, such as db.m5d or db.m6gd. With RDS Optimized Reads, some temporary objects
are stored on the instance store. These temporary objects include internal temporary files, internal
on-disk temp tables, memory map files, and binary log (binlog) cache files. For more information
about the instance store, see Amazon EC2 instance store in the Amazon Elastic Compute Cloud User
Guide for Linux Instances.

The workloads that generate temporary objects in MariaDB for query processing can take
advantage of the instance store for faster query processing. This type of workload includes queries
involving sorts, hash aggregations, high-load joins, Common Table Expressions (CTEs), and queries
on unindexed columns. These instance store volumes provide higher IOPS and performance,
regardless of the storage configurations used for persistent Amazon EBS storage. Because RDS

Improving query performance with RDS Optimized Reads 2696

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Amazon Relational Database Service User Guide

Optimized Reads offloads operations on temporary objects to the instance store, the input/output
operations per second (IOPS) or throughput of the persistent storage (Amazon EBS) can now be
used for operations on persistent objects. These operations include regular data file reads and
writes and background engine operations, such as flushing and insert buffer merges.

Note

Both manual and automated RDS snapshots contain only the engine files for persistent
objects. The temporary objects created in the instance store aren't included in RDS
snapshots.

Use cases for RDS Optimized Reads

If you have workloads that rely heavily on temporary objects, such as internal tables or files, for
their query execution, then you can benefit from turning on RDS Optimized Reads. The following
use cases are candidates for RDS Optimized Reads:

• Applications that run analytical queries with complex common table expressions (CTEs), derived
tables, and grouping operations

• Read replicas that serve heavy read traffic with unoptimized queries

• Applications that run on-demand or dynamic reporting queries that involve complex operations,
such as queries with GROUP BY and ORDER BY clauses

• Workloads that use internal temporary tables for query processing

You can monitor the engine status variable created_tmp_disk_tables to determine the
number of disk-based temporary tables created on your DB instance.

• Applications that create large temporary tables, either directly or in procedures, to store
intermediate results

• Database queries that perform grouping or ordering on non-indexed columns

Best practices for RDS Optimized Reads

Use the following best practices for RDS Optimized Reads:

• Add retry logic for read-only queries in case they fail because the instance store is full during the
execution.

Use cases 2697

Amazon Relational Database Service User Guide

• Monitor the storage space available on the instance store with the CloudWatch metric
FreeLocalStorage. If the instance store is reaching its limit because of workload on the DB
instance, modify the DB instance to use a larger DB instance class.

• When your DB instance has sufficient memory but is still reaching the storage limit on the
instance store, increase the binlog_cache_size value to maintain the session-specific binlog
entries in memory. This configuration prevents writing the binlog entries to temporary binlog
cache files on disk.

The binlog_cache_size parameter is session-specific. You can change the value for each
new session. The setting for this parameter can increase the memory utilization on the DB
instance during peak workload. Therefore, consider increasing the parameter value based on the
workload pattern of your application and available memory on the DB instance.

• Use the default value of MIXED for the binlog_format. Depending on the size of the
transactions, setting binlog_format to ROW can result in large binlog cache files on the
instance store.

• Avoid performing bulk changes in a single transaction. These types of transactions can generate
large binlog cache files on the instance store and can cause issues when the instance store is
full. Consider splitting writes into multiple small transactions to minimize storage use for binlog
cache files.

Using RDS Optimized Reads

When you provision an RDS for MariaDB DB instance with one of the following DB instance classes
in a Single-AZ DB instance deployment or Multi-AZ DB instance deployment, the DB instance
automatically uses RDS Optimized Reads.

To turn on RDS Optimized Reads, do one of the following:

• Create an RDS for MariaDB DB instance using one of these DB instance classes. For more
information, see Creating an Amazon RDS DB instance.

• Modify an existing RDS for MariaDB DB instance to use one of these DB instance classes. For
more information, see Modifying an Amazon RDS DB instance.

RDS Optimized Reads is available in all AWS Regions where one or more of the DB instance classes
with local NVMe SSD storage are supported. For information about DB instance classes, see the
section called “DB instance classes”.

Using 2698

Amazon Relational Database Service User Guide

DB instance class availability differs for AWS Regions. To determine whether a DB instance class is
supported in a specific AWS Region, see the section called “Determining DB instance class support
in AWS Regions”.

If you don't want to use RDS Optimized Reads, modify your DB instance so that it doesn't use a DB
instance class that supports the feature.

Monitoring DB instances that use RDS Optimized Reads

You can monitor DB instances that use RDS Optimized Reads with the following CloudWatch
metrics:

• FreeLocalStorage

• ReadIOPSLocalStorage

• ReadLatencyLocalStorage

• ReadThroughputLocalStorage

• WriteIOPSLocalStorage

• WriteLatencyLocalStorage

• WriteThroughputLocalStorage

These metrics provide data about available instance store storage, IOPS, and throughput. For more
information about these metrics, see Amazon CloudWatch instance-level metrics for Amazon RDS.

Limitations for RDS Optimized Reads

The following limitations apply to RDS Optimized Reads:

• RDS Optimized Reads is supported for the following RDS for MariaDB versions:

• 10.11.4 and higher 10.11 versions

• 10.6.7 and higher 10.6 versions

• 10.5.16 and higher 10.5 versions

• 10.4.25 and higher 10.4 versions

For information about RDS for MariaDB versions, see MariaDB on Amazon RDS versions.

• You can't change the location of temporary objects to persistent storage (Amazon EBS) on the
DB instance classes that support RDS Optimized Reads.

Monitoring 2699

Amazon Relational Database Service User Guide

• When binary logging is enabled on a DB instance, the maximum transaction size is limited by
the size of the instance store. In MariaDB, any session that requires more storage than the value
of binlog_cache_size writes transaction changes to temporary binlog cache files, which are
created on the instance store.

• Transactions can fail when the instance store is full.

Limitations 2700

Amazon Relational Database Service User Guide

Improving write performance with Amazon RDS Optimized
Writes for MariaDB

You can improve the performance of write transactions with RDS Optimized Writes for MariaDB.
When your RDS for MariaDB database uses RDS Optimized Writes, it can achieve up to two times
higher write transaction throughput.

Topics

• Overview of RDS Optimized Writes

• Using RDS Optimized Writes

• Enabling RDS Optimized Writes on an existing database

• Limitations for RDS Optimized Writes

Overview of RDS Optimized Writes

When you turn on RDS Optimized Writes, your RDS for MariaDB databases write only once when
flushing data to durable storage without the need for the doublewrite buffer. The databases
continue to provide ACID property protections for reliable database transactions, along with
improved performance.

Relational databases, like MariaDB, provide the ACID properties of atomicity, consistency, isolation,
and durability for reliable database transactions. To help provide these properties, MariaDB uses a
data storage area called the doublewrite buffer that prevents partial page write errors. These errors
occur when there is a hardware failure while the database is updating a page, such as in the case
of a power outage. A MariaDB database can detect partial page writes and recover with a copy
of the page in the doublewrite buffer. While this technique provides protection, it also results in
extra write operations. For more information about the MariaDB doublewrite buffer, see InnoDB
Doublewrite Buffer in the MariaDB documentation.

With RDS Optimized Writes turned on, RDS for MariaDB databases write only once when flushing
data to durable storage without using the doublewrite buffer. RDS Optimized Writes is useful if
you run write-heavy workloads on your RDS for MariaDB databases. Examples of databases with
write-heavy workloads include ones that support digital payments, financial trading, and gaming
applications.

Improving write performance with RDS Optimized Writes for MariaDB 2701

https://mariadb.com/kb/en/innodb-doublewrite-buffer/
https://mariadb.com/kb/en/innodb-doublewrite-buffer/

Amazon Relational Database Service User Guide

These databases run on DB instance classes that use the AWS Nitro System. Because of the
hardware configuration in these systems, the database can write 16-KiB pages directly to data files
reliably and durably in one step. The AWS Nitro System makes RDS Optimized Writes possible.

You can set the new database parameter rds.optimized_writes to control the RDS Optimized
Writes feature for RDS for MariaDB databases. Access this parameter in the DB parameter groups of
RDS for MariaDB for the following versions:

• 11.4.3 and higher 11.4 versions

• 10.11.4 and higher 10.11 versions

• 10.6.10 and higher 10.6 versions

Set the parameter using the following values:

• AUTO – Turn on RDS Optimized Writes if the database supports it. Turn off RDS Optimized Writes
if the database doesn't support it. This setting is the default.

• OFF – Turn off RDS Optimized Writes even if the database supports it.

If you migrate an RDS for MariaDB database that is configured to use RDS Optimized Writes to a
DB instance class that doesn't support the feature, RDS automatically turns off RDS Optimized
Writes for the database.

When RDS Optimized Writes is turned off, the database uses the MariaDB doublewrite buffer.

To determine whether an RDS for MariaDB database is using RDS Optimized Writes, view the
current value of the innodb_doublewrite parameter for the database. If the database is using
RDS Optimized Writes, this parameter is set to FALSE (0).

Using RDS Optimized Writes

You can turn on RDS Optimized Writes when you create an RDS for MariaDB database with the RDS
console, the AWS CLI, or the RDS API. RDS Optimized Writes is turned on automatically when both
of the following conditions apply during database creation:

• You specify a DB engine version and DB instance class that support RDS Optimized Writes.

• RDS Optimized Writes is supported for the following RDS for MariaDB versions:

• 11.4.3 and higher 11.4 versions

• 10.11.4 and higher 10.11 versions

Using with a new database 2702

Amazon Relational Database Service User Guide

• 10.6.10 and higher 10.6 versions

For information about RDS for MariaDB versions, see MariaDB on Amazon RDS versions.

• RDS Optimized Writes is supported for RDS for MariaDB databases that use the following DB
instance classes:

• db.m7i

• db.m7g

• db.m6g

• db.m6gd

• db.m6i

• db.m5

• db.m5d

• db.r7i

• db.r7g

• db.r6g

• db.r6gd

• db.r6i

• db.r5

• db.r5b

• db.r5d

• db.x2idn

• db.x2iedn

For information about DB instance classes, see the section called “DB instance classes”.

DB instance class availability differs for AWS Regions. To determine whether a DB instance
class is supported in a specific AWS Region, see the section called “Determining DB instance
class support in AWS Regions”.

• In the parameter group associated with the database, the rds.optimized_writes parameter
is set to AUTO. In default parameter groups, this parameter is always set to AUTO.

If you want to use a DB engine version and DB instance class that support RDS Optimized Writes,
but you don't want to use this feature, then specify a custom parameter group when you create Using with a new database 2703

Amazon Relational Database Service User Guide

the database. In this parameter group, set the rds.optimized_writes parameter to OFF. If
you want the database to use RDS Optimized Writes later, you can set the parameter to AUTO to
turn it on. For information about creating custom parameter groups and setting parameters, see
Parameter groups for Amazon RDS.

For information about creating a DB instance, see Creating an Amazon RDS DB instance.

Console

When you use the RDS console to create an RDS for MariaDB database, you can filter for the DB
engine versions and DB instance classes that support RDS Optimized Writes. After you turn on the
filters, you can choose from the available DB engine versions and DB instance classes.

To choose a DB engine version that supports RDS Optimized Writes, filter for the RDS for MariaDB
DB engine versions that support it in Engine version, and then choose a version.

Using with a new database 2704

Amazon Relational Database Service User Guide

Using with a new database 2705

Amazon Relational Database Service User Guide

In the Instance configuration section, filter for the DB instance classes that support RDS
Optimized Writes, and then choose a DB instance class.

After you make these selections, you can choose other settings that meet your requirements and
finish creating the RDS for MariaDB database with the console.

AWS CLI

To create a DB instance by using the AWS CLI, run the create-db-instance command. Make
sure the --engine-version and --db-instance-class values support RDS Optimized
Writes. In addition, make sure the parameter group associated with the DB instance has the
rds.optimized_writes parameter set to AUTO. This example associates the default parameter
group with the DB instance.

Example Creating a DB instance that uses RDS Optimized Writes

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --engine mariadb \
 --engine-version 10.6.10 \
 --db-instance-class db.r5b.large \
 --manage-master-user-password \
 --master-username admin \
 --allocated-storage 200

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^

Using with a new database 2706

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

 --engine mariadb ^
 --engine-version 10.6.10 ^
 --db-instance-class db.r5b.large ^
 --manage-master-user-password ^
 --master-username admin ^
 --allocated-storage 200

RDS API

You can create a DB instance using the CreateDBInstance operation. When you use this operation,
make sure the EngineVersion and DBInstanceClass values support RDS Optimized
Writes. In addition, make sure the parameter group associated with the DB instance has the
rds.optimized_writes parameter set to AUTO.

Enabling RDS Optimized Writes on an existing database

In order to modify an existing RDS for MariaDB database to turn on RDS Optimized Writes, the
database must have been created with a supported DB engine version and DB instance class. In
addition, the database must have been created after RDS Optimized Writes was released on March
7, 2023, as the required underlying file system configuration is incompatible with that of databases
created before it was released. If these conditions are met, you can turn on RDS Optimized Writes
by setting the rds.optimized_writes parameter to AUTO.

If your database was not created with a supported engine version, instance class, or file system
configuration, you can use RDS Blue/Green Deployments to migrate to a supported configuration.
While creating the blue/green deployment, do the following:

• Select Enable Optimized Writes on green database, then specify an engine version and DB
instance class that supports RDS Optimized Writes. For a list of supported engine versions and
instance classes, see the section called “Using with a new database”.

• Under Storage, choose Upgrade storage file system configuration. This option upgrades the
database to a compatible underlying file system configuration.

When you create the blue/green deployment, if the rds.optimized_writes parameter is set
to AUTO, RDS Optimized Writes will be automatically enabled on the green environment. You can
then switch over the blue/green deployment, which promotes the green environment to be the
new production environment.

For more information, see the section called “Creating a blue/green deployment”.

Enabling on an existing database 2707

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

Limitations for RDS Optimized Writes

When you're restoring an RDS for MariaDB database from a snapshot, you can only turn on RDS
Optimized Writes for the database if all of the following conditions apply:

• The snapshot was created from a database that supports RDS Optimized Writes.

• The snapshot was created from a database that was created after RDS Optimized Writes was
released.

• The snapshot is restored to a database that supports RDS Optimized Writes.

• The restored database is associated with a parameter group that has the
rds.optimized_writes parameter set to AUTO.

Limitations 2708

Amazon Relational Database Service User Guide

Upgrades of the MariaDB DB engine

When Amazon RDS supports a new version of a database engine, you can upgrade your DB
instances to the new version. There are two kinds of upgrades for MariaDB DB instances: major
version upgrades and minor version upgrades.

Major version upgrades can contain database changes that are not backward-compatible with
existing applications. As a result, you must manually perform major version upgrades of your DB
instances. You can initiate a major version upgrade by modifying your DB instance. However, before
you perform a major version upgrade, we recommend that you follow the instructions in Major
version upgrades for RDS for MariaDB.

In contrast, minor version upgrades include only changes that are backward-compatible with
existing applications. You can initiate a minor version upgrade manually by modifying your DB
instance. Or you can enable the Auto minor version upgrade option when creating or modifying
a DB instance. Doing so means that your DB instance is automatically upgraded after Amazon RDS
tests and approves the new version. For information about performing an upgrade, see Upgrading
a DB instance engine version.

If your MariaDB DB instance is using read replicas, you must upgrade all of the read replicas before
upgrading the source instance. If your DB instance is in a Multi-AZ deployment, both the writer
and standby replicas are upgraded. Your DB instance might not be available until the upgrade is
complete.

For more information about MariaDB supported versions and version management, see MariaDB on
Amazon RDS versions.

Database engine upgrades require downtime. The duration of the downtime varies based on the
size of your DB instance.

Tip

You can minimize the downtime required for DB instance upgrade by using a blue/green
deployment. For more information, see Using Amazon RDS Blue/Green Deployments for
database updates.

Topics

Upgrades of the MariaDB DB engine 2709

Amazon Relational Database Service User Guide

• Considerations for MariaDB upgrades

• Finding valid upgrade targets

• MariaDB version numbers

• RDS version numbers in RDS for MariaDB

• Major version upgrades for RDS for MariaDB

• Upgrading a MariaDB DB instance

• Automatic minor version upgrades for RDS for MariaDB

• Using a read replica to reduce downtime when upgrading an RDS for MariaDB database

Considerations for MariaDB upgrades

Amazon RDS takes two or more DB snapshots during the upgrade process. Amazon RDS takes up to
two snapshots of the DB instance before making any upgrade changes. If the upgrade doesn't work
for your databases, you can restore one of these snapshots to create a DB instance running the
old version. Amazon RDS takes another snapshot of the DB instance when the upgrade completes.
Amazon RDS takes these snapshots regardless of whether AWS Backup manages the backups for
the DB instance.

Note

Amazon RDS only takes DB snapshots if you have set the backup retention period for your
DB instance to a number greater than 0. To change your backup retention period, see
Modifying an Amazon RDS DB instance.

After the upgrade is complete, you can't revert to the previous version of the database engine. If
you want to return to the previous version, restore the first DB snapshot taken to create a new DB
instance.

You control when to upgrade your DB instance to a new version supported by Amazon RDS. This
level of control helps you maintain compatibility with specific database versions and test new
versions with your application before deploying in production. When you are ready, you can
perform version upgrades at the times that best fit your schedule.

If your DB instance is using read replication, you must upgrade all of the Read Replicas before
upgrading the source instance.

Considerations 2710

Amazon Relational Database Service User Guide

If your DB instance is in a Multi-AZ deployment, both the primary and standby DB instances are
upgraded. The primary and standby DB instances are upgraded at the same time and you will
experience an outage until the upgrade is complete. The time for the outage varies based on your
database engine, engine version, and the size of your DB instance.

Finding valid upgrade targets

When you use the AWS Management Console to upgrade a DB instance, it shows the valid upgrade
targets for the DB instance. You can also run the following AWS CLI command to identify the valid
upgrade targets for a DB instance:

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine mariadb \
 --engine-version version_number \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For Windows:

aws rds describe-db-engine-versions ^
 --engine mariadb ^
 --engine-version version_number ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For example, to identify the valid upgrade targets for a MariaDB version 10.5.17 DB instance, run
the following AWS CLI command:

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine mariadb \
 --engine-version 10.5.17 \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For Windows:

Finding valid upgrade targets 2711

Amazon Relational Database Service User Guide

aws rds describe-db-engine-versions ^
 --engine mariadb ^
 --engine-version 10.5.17 ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

MariaDB version numbers

The version numbering sequence for the RDS for MariaDB database engine is either in the form of
major.minor.patch.YYYYMMDD or major.minor.patch, for example, 10.11.5.R2.20231201 or 10.4.30.
The format used depends on the MariaDB engine version.

major

The major version number is both the integer and the first fractional part of the version
number, for example, 10.11. A major version upgrade increases the major part of the version
number. For example, an upgrade from 10.5.20 to 10.6.12 is a major version upgrade, where
10.5 and 10.6 are the major version numbers.

minor

The minor version number is the third part of the version number, for example, the 5 in 10.11.5.

patch

The patch is the fourth part of the version number, for example, the R2 in 10.11.5.R2. An RDS
patch version includes important bug fixes added to a minor version after its release.

YYYYMMDD

The date is the fifth part of the version number, for example, the 20231201 in
10.11.5.R2.20231201. An RDS date version is a security patch that includes important security
fixes added to a minor version after its release. It doesn't include any fixes that might change an
engine's behavior.

The following table explains the naming scheme for RDS for MariaDB version 10.11.

10.11 minor version Naming scheme

≥5 New DB instances use major.minor.patch.YYMMDD, for
example, 10.11.5.R2.20231201.

MariaDB version numbers 2712

Amazon Relational Database Service User Guide

10.11 minor version Naming scheme

Existing DB instances might use major.minor.patch, for
example, 10.11.5.R2, until your next major or minor version
upgrade.

< 5 Existing DB instances use major.minor.patch, for example,
10.11.4.R2.

The following table explains the naming scheme for RDS for MariaDB version 10.6.

10.6 minor version Naming scheme

≥ 14 New DB instances use major.minor.patch.YYMMDD, for
example, 10.6.14.R2.20231201.

Existing DB instances might use major.minor.patch, for
example, 10.6.14.R2, until your next major or minor version
upgrade.

< 14 Existing DB instances use major.minor.patch, for example,
10.6.13.R2.

The following table explains the naming scheme for RDS for MariaDB version 10.5.

10.5 minor version Naming scheme

≥ 21 New DB instances use major.minor.patch.YYMMDD, for
example, 10.5.21.R2.20231201.

Existing DB instances might use major.minor.patch, for
example, 10.5.21.R2, until your next major or minor version
upgrade.

< 21 Existing DB instances use major.minor.patch, for example,
10.5.20.R2.

MariaDB version numbers 2713

Amazon Relational Database Service User Guide

The following table explains the naming scheme for RDS for MariaDB version 10.4.

10.4 minor version Naming scheme

≥ 30 New DB instances use major.minor.patch.YYMMDD, for
example, 10.4.30.R2.20231201.

Existing DB instances might use major.minor.patch, for
example, 10.4.30.R2, until your next major or minor version
upgrade.

< 30 Existing DB instances use major.minor.patch, for example,
10.4.29.R2.

RDS version numbers in RDS for MariaDB

RDS version numbers use either the major.minor.patch or the
major.minor.patch.YYYYMMDD naming scheme. An RDS patch version includes important bug
fixes added to a minor version after its release. An RDS date version (YYMMDD) is a security patch. A
security patch doesn't include any fixes that might change the engine's behavior.

To identify the Amazon RDS version number of your database, you must first create the
rds_tools extension by using the following command:

CREATE EXTENSION rds_tools;

You can find out the RDS version number of your RDS for MariaDB database with the following SQL
query:

mysql> select mysql.rds_version();

For example, querying an RDS for MariaDB 10.6.14 database returns the following output:

+---------------------+
| mysql.rds_version() |
+---------------------+
| 10.6.14.R2.20231201 |
+---------------------+

RDS version numbers 2714

Amazon Relational Database Service User Guide

1 row in set (0.01 sec)

Major version upgrades for RDS for MariaDB

Major version upgrades can contain database changes that are not backward-compatible with
existing applications. As a result, Amazon RDS doesn't apply major version upgrades automatically.
You must manually modify your DB instance. We recommend that you thoroughly test any upgrade
before applying it to your production instances.

Amazon RDS supports the following in-place upgrades for major versions of the MariaDB database
engine:

• Any MariaDB version to MariaDB 11.4

• Any MariaDB version to MariaDB 10.11

• Any MariaDB version to MariaDB 10.6

• MariaDB 10.4 to MariaDB 10.5

If you are using a custom parameter group, and you perform a major version upgrade, you must
specify either a default parameter group for the new DB engine version or create your own custom
parameter group for the new DB engine version. Associating the new parameter group with the DB
instance requires a customer-initiated database reboot after the upgrade completes. The instance's
parameter group status will show pending-reboot if the instance needs to be rebooted to apply
the parameter group changes. An instance's parameter group status can be viewed in the AWS
Management Console or by running a "describe" call such as describe-db-instances.

Upgrading a MariaDB DB instance

For information about manually or automatically upgrading a MariaDB DB instance, see Upgrading
a DB instance engine version.

Automatic minor version upgrades for RDS for MariaDB

If you specify the following settings when creating or modifying a DB instance, you can have your
DB instance automatically upgraded.

• The Auto minor version upgrade setting is enabled.

• The Backup retention period setting is greater than 0.

Major version upgrades 2715

Amazon Relational Database Service User Guide

In the AWS Management Console, these settings are under Additional configuration. The
following image shows the Auto minor version upgrade setting.

For more information about these settings, see Settings for DB instances.

For some RDS for MariaDB major versions in some AWS Regions, one minor version is designated
by RDS as the automatic upgrade version. After a minor version has been tested and approved by
Amazon RDS, the minor version upgrade occurs automatically during your maintenance window.
RDS doesn't automatically set newer released minor versions as the automatic upgrade version.
Before RDS designates a newer automatic upgrade version, several criteria are considered, such as
the following:

• Known security issues

• Bugs in the MariaDB community version

• Overall fleet stability since the minor version was released

Note

Support for using TLS version 1.0 and 1.1 was removed starting with specific minor
versions of MariaDB. For information about supported MariaDB minor versions, see the
section called “SSL/TLS support for MariaDB”.

Automatic minor version upgrades 2716

Amazon Relational Database Service User Guide

You can run the following AWS CLI command to determine the current automatic minor upgrade
target version for a specified MariaDB minor version in a specific AWS Region.

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine mariadb \
--engine-version minor_version \
--region region \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output text

For Windows:

aws rds describe-db-engine-versions ^
--engine mariadb ^
--engine-version minor_version ^
--region region ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output text

For example, the following AWS CLI command determines the automatic minor upgrade target for
MariaDB minor version 10.5.16 in the US East (Ohio) AWS Region (us-east-2).

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine mariadb \
--engine-version 10.5.16 \
--region us-east-2 \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output table

For Windows:

aws rds describe-db-engine-versions ^
--engine mariadb ^

Automatic minor version upgrades 2717

Amazon Relational Database Service User Guide

--engine-version 10.5.16 ^
--region us-east-2 ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output table

Your output is similar to the following.

| DescribeDBEngineVersions |
+--------------+-----------------+
| AutoUpgrade | EngineVersion |
+--------------+-----------------+
True	10.5.17
False	10.5.18
False	10.5.19
False	10.6.5
False	10.6.7
False	10.6.8
False	10.6.10
False	10.6.11
False	10.6.12
+--------------+-----------------+

In this example, the AutoUpgrade value is True for MariaDB version 10.5.17. So, the automatic
minor upgrade target is MariaDB version 10.5.17, which is highlighted in the output.

A MariaDB DB instance is automatically upgraded during your maintenance window if the following
criteria are met:

• The Auto minor version upgrade setting is enabled.

• The Backup retention period setting is greater than 0.

• The DB instance is running a minor DB engine version that is less than the current automatic
upgrade minor version.

For more information, see Automatically upgrading the minor engine version.

Automatic minor version upgrades 2718

Amazon Relational Database Service User Guide

Using a read replica to reduce downtime when upgrading an RDS for
MariaDB database

In most cases, a blue/green deployment is the best option to reduce downtime when upgrading a
MariaDB DB instance. For more information, see Using Amazon RDS Blue/Green Deployments for
database updates.

If you can't use a blue/green deployment and your MariaDB DB instance is currently in use with a
production application, you can use the following procedure to upgrade the database version for
your DB instance. This procedure can reduce the amount of downtime for your application.

By using a read replica, you can perform most of the maintenance steps ahead of time and
minimize the necessary changes during the actual outage. With this technique, you can test and
prepare the new DB instance without making any changes to your existing DB instance.

The following procedure shows an example of upgrading from MariaDB version 10.5 to MariaDB
version 10.6. You can use the same general steps for upgrades to other major versions.

To upgrade a MariaDB database while a DB instance is in use

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Create a read replica of your MariaDB 10.5 DB instance. This process creates an upgradable
copy of your database. Other read replicas of the DB instance might also exist.

a. In the console, choose Databases, and then choose the DB instance that you want to
upgrade.

b. For Actions, choose Create read replica.

c. Provide a value for DB instance identifier for your read replica and ensure that the DB
instance class and other settings match your MariaDB 10.5 DB instance.

d. Choose Create read replica.

3. (Optional) When the read replica has been created and Status shows Available, convert the
read replica into a Multi-AZ deployment and enable backups.

By default, a read replica is created as a Single-AZ deployment with backups disabled. Because
the read replica ultimately becomes the production DB instance, it is a best practice to
configure a Multi-AZ deployment and enable backups now.

Upgrading with reduced downtime 2719

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

a. In the console, choose Databases, and then choose the read replica that you just created.

b. Choose Modify.

c. For Multi-AZ deployment, choose Create a standby instance.

d. For Backup Retention Period, choose a positive nonzero value, such as 3 days, and then
choose Continue.

e. For Scheduling of modifications, choose Apply immediately.

f. Choose Modify DB instance.

4. When the read replica Status shows Available, upgrade the read replica to MariaDB 10.6.

a. In the console, choose Databases, and then choose the read replica that you just created.

b. Choose Modify.

c. For DB engine version, choose the MariaDB 10.6 version to upgrade to, and then choose
Continue.

d. For Scheduling of modifications, choose Apply immediately.

e. Choose Modify DB instance to start the upgrade.

5. When the upgrade is complete and Status shows Available, verify that the upgraded read
replica is up-to-date with the source MariaDB 10.5 DB instance. To verify, connect to the read
replica and run the SHOW REPLICA STATUS command. If the Seconds_Behind_Master
field is 0, then replication is up-to-date.

Note

Previous versions of MariaDB used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MariaDB version before 10.6, then use SHOW SLAVE
STATUS.

6. (Optional) Create a read replica of your read replica.

If you want the DB instance to have a read replica after it is promoted to a standalone DB
instance, you can create the read replica now.

a. In the console, choose Databases, and then choose the read replica that you just
upgraded.

b. For Actions, choose Create read replica.

Upgrading with reduced downtime 2720

Amazon Relational Database Service User Guide

c. Provide a value for DB instance identifier for your read replica and ensure that the DB
instance class and other settings match your MariaDB 10.5 DB instance.

d. Choose Create read replica.

7. (Optional) Configure a custom DB parameter group for the read replica.

If you want the DB instance to use a custom parameter group after it is promoted to a
standalone DB instance, you can create the DB parameter group now and associate it with the
read replica.

a. Create a custom DB parameter group for MariaDB 10.6. For instructions, see Creating a DB
parameter group in Amazon RDS.

b. Modify the parameters that you want to change in the DB parameter group you just
created. For instructions, see Modifying parameters in a DB parameter group in Amazon
RDS.

c. In the console, choose Databases, and then choose the read replica.

d. Choose Modify.

e. For DB parameter group, choose the MariaDB 10.6 DB parameter group you just created,
and then choose Continue.

f. For Scheduling of modifications, choose Apply immediately.

g. Choose Modify DB instance to start the upgrade.

8. Make your MariaDB 10.6 read replica a standalone DB instance.

Important

When you promote your MariaDB 10.6 read replica to a standalone DB instance, it
is no longer a replica of your MariaDB 10.5 DB instance. We recommend that you
promote your MariaDB 10.6 read replica during a maintenance window when your
source MariaDB 10.5 DB instance is in read-only mode and all write operations are
suspended. When the promotion is completed, you can direct your write operations to
the upgraded MariaDB 10.6 DB instance to ensure that no write operations are lost.
In addition, we recommend that, before promoting your MariaDB 10.6 read replica,
you perform all necessary data definition language (DDL) operations on your MariaDB
10.6 read replica. An example is creating indexes. This approach avoids negative effects
on the performance of the MariaDB 10.6 read replica after it has been promoted. To
promote a read replica, use the following procedure.

Upgrading with reduced downtime 2721

Amazon Relational Database Service User Guide

a. In the console, choose Databases, and then choose the read replica that you just
upgraded.

b. For Actions, choose Promote.

c. Choose Yes to enable automated backups for the read replica instance. For more
information, see Introduction to backups.

d. Choose Continue.

e. Choose Promote Read Replica.

9. You now have an upgraded version of your MariaDB database. At this point, you can direct
your applications to the new MariaDB 10.6 DB instance.

Upgrading with reduced downtime 2722

Amazon Relational Database Service User Guide

Upgrading a MariaDB DB snapshot engine version

With Amazon RDS, you can create a storage volume DB snapshot of your MariaDB DB instance.
When you create a DB snapshot, the snapshot is based on the engine version used by your DB
instance. You can upgrade the engine version for your DB snapshots.

For RDS for MariaDB, you can upgrade to all available engine versions. You can upgrade encrypted
or unencrypted DB snapshots.

To view the available engine versions for your RDS for MariaDB DB snapshot, use the following
AWS CLI example.

aws rds describe-db-engine-versions --engine mariadb --include-all --engine-
version example-engine-version --query "DBEngineVersions[*].ValidUpgradeTarget[*].
{EngineVersion:EngineVersion}" --output text

If you don't see results for your snapshot, your engine version might be deprecated. If your engine
version is deprecated, we recommend that you upgrade to the newest major version upgrade
target or to one of the other available upgrade targets for that version. For more information, see
Upgrade options for DB snapshots with unsupported engine versions for RDS for MariaDB.

After restoring a DB snapshot upgraded to a new engine version, make sure to test that the
upgrade was successful. For more information about a major version upgrade, see the section
called “Upgrades of the MariaDB DB engine”. To learn how to restore a DB snapshot, see the
section called “Restoring to a DB instance”.

Note

You can't upgrade automated DB snapshots that were created during the automated
backup process.

You can upgrade a DB snapshot using the AWS Management Console, AWS CLI, or RDS API.

Console

To upgrade a DB snapshot engine version using the AWS Management Console, use the
following procedure.

Upgrading a MariaDB DB snapshot engine version 2723

Amazon Relational Database Service User Guide

To upgrade a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the snapshot that you want to upgrade.

4. For Actions, choose Upgrade snapshot. The Upgrade snapshot page appears.

5. Choose the New engine version to upgrade to.

6. Choose Save changes to upgrade the snapshot.

During the upgrade process, all snapshot actions are disabled for this DB snapshot. Also,
the DB snapshot status changes from Available to Upgrading, and then changes to Active
upon completion. If the DB snapshot can't be upgraded because of snapshot corruption
issues, the status changes to Unavailable. You can't recover the snapshot from this state.

Note

If the DB snapshot upgrade fails, the snapshot is rolled back to the original state
with the original version.

AWS CLI

To upgrade a DB snapshot to a new database engine version, run the AWS CLI modify-db-
snapshot command.

Options

• --db-snapshot-identifier – The identifier of the DB snapshot to upgrade. The identifier
must be a unique Amazon Resource Name (ARN). For more information, see Amazon Resource
Names (ARNs) in Amazon RDS.

• --engine-version – The engine version to upgrade the DB snapshot to.

Example

For Linux, macOS, or Unix:

aws rds modify-db-snapshot \

Upgrading a MariaDB DB snapshot engine version 2724

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-snapshot.html

Amazon Relational Database Service User Guide

 --db-snapshot-identifier my_db_snapshot \
 --engine-version new_version

For Windows:

aws rds modify-db-snapshot ^
 --db-snapshot-identifier my_db_snapshot ^
 --engine-version new_version

Amazon RDS API

To upgrade a DB snapshot to a new database engine version, call the RDS API
ModifyDBSnapshot operation.

Parameters

• DBSnapshotIdentifier – The identifier of the DB snapshot to upgrade. The identifier must
be a unique Amazon Resource Name (ARN). For more information, see Amazon Resource
Names (ARNs) in Amazon RDS.

• EngineVersion – The engine version to upgrade the DB snapshot to.

Upgrade options for DB snapshots with unsupported engine versions
for RDS for MariaDB

The following table shows which engine versions you can upgrade to from an unsupported engine
version for RDS for MariaDB DB snapshots.

Note

You might have to upgrade your DB snapshot more than once to upgrade to your chosen
engine version.

Upgrade options for unsupported engine versions 2725

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBSnapshot.html

Amazon Relational Database Service User Guide

DB snapshot engine version Engine versions available for upgrade

10.0.17, 10.0.24, 10.0.28,
10.0.31, 10.0.32, 10.0.34,
10.0.35

10.0.38, 10.1.48, 10.6.19, 10.6.20, 10.11.9, 10.11.10, 11.4.3,
11.4.4

10.1.14, 10.1.16, 10.1.19,
10.1.23, 10.1.26, 10.1.31,
10.1.34

10.1.48, 10.2.44, 10.6.19, 10.6.20, 10.11.9, 10.11.10, 11.4.3,
11.4.4

10.2.11, 10.2.12, 10.2.15,
10.2.21, 10.2.32, 10.2.37,
10.2.39, 10.2.40, 10.2.41,
10.2.43

10.2.44, 10.3.39, 10.6.19, 10.6.20, 10.6.21, 10.11.9, 10.11.10,
10.11.11, 11.4.3, 11.4.4

10.3.8, 10.3.13, 10.3.20,
10.3.23, 10.3.28, 10.3.31,
10.3.32

10.3.39, 10.4.34, 10.6.19, 10.6.20 10.6.21, 10.11.9, 10.11.10,
10.11.11, 11.4.3, 11.4.4

10.4.8 10.4.34, 10.5.16, 10.5.17, 10.5.18, 10.5.20, 10.5.21, 10.5.22,
10.5.23, 10.5.24, 10.5.25, 10.5.26, 10.5.27, 10.5.28, 10.6.8,
10.6.10, 10.6.11, 10.6.13, 10.6.14, 10.6.15, 10.6.16, 10.6.18,
10.6.19, 10.6.20, 10.6.21, 10.11.4, 10.6.17, 10.11.5, 10.11.6,
10.11.7, 10.11.8, 10.11.9, 10.11.10, 10.11.11

Upgrade options for unsupported engine versions 2726

Amazon Relational Database Service User Guide

Importing data into an Amazon RDS for MariaDB DB instance

You can use several different techniques to import data into an RDS for MariaDB DB instance. The
best approach depends on a number of factors:

• Source of the data

• Amount of data

• One-time import or ongoing

• Amount of downtime

If you are also migrating an application with the data, the amount of downtime is important to
consider.

The following table lists techniques to importing data into an RDS for MariaDB DB instance:

Note

Amazon RDS only supports importing from Amazon S3 into RDS for MySQL DB instances.
Importing backups created with mariadb-backup into RDS for MariaDB isn't currently
supported.

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

Existing
MariaDB
database
on
premises
or on
Amazon
EC2

Any Ongoing Minimal Configure replication with an existing
MariaDB database as the replication
source.

You can configure replication into a
MariaDB DB instance using MariaDB
global transaction identifiers (GTIDs)
when the external instance is MariaDB
version 10.0.24 or higher, or using binary
log coordinates for MariaDB instances on
earlier versions than 10.0.24. MariaDB

Configuri
ng
binary
log file
position
replicati
on
with an
external

Importing data into an RDS for MariaDB DB instance 2727

Amazon Relational Database Service User Guide

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

GTIDs are implemented differently than
MySQL GTIDs, which aren't supported by
Amazon RDS.

source
instance

Importing
data
to an
Amazon
RDS for
MariaDB
DB
instance
with
reduced
downtime

Importing data into an RDS for MariaDB DB instance 2728

Amazon Relational Database Service User Guide

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

Any
existing
database

Any One
time or
ongoing

Minimal Use AWS Database Migration Service
to migrate the database with minimal
downtime and, for many database DB
engines, continue ongoing replication.

What
is AWS
Database
Migration
Service
and
Using a
MySQL-
com
patible
database
as a
target
for AWS
DMS
in the
AWS
Database
Migration
Service
User
Guide

Existing
MariaDB
DB
instance

Any One
time or
ongoing

Minimal Create a read replica for ongoing
replication. Promote the read replica for
one-time creation of a new DB instance.

Working
with DB
instance
read
replicas

Importing data into an RDS for MariaDB DB instance 2729

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html

Amazon Relational Database Service User Guide

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

Existing
MariaDB
database

Small One
time

Some Copy the data directly to your MariaDB
DB instance using a command-line
utility.

Importing
data
from an
external
MariaDB
database
to an
Amazon
RDS for
MariaDB
DB
instance

Data
not
stored
in an
existing
database

Medium One
time

Some Create flat files and import them using
MariaDB LOAD DATA LOCAL INFILE
statements.

Importing
data
from
any
source
to an
Amazon
RDS for
MariaDB
DB
instance

Note

The mysql system database contains authentication and authorization information
required to log in to your DB instance and access your data. Dropping, altering, renaming,
or truncating tables, data, or other contents of the mysql database in your DB instance can
result in errors and might render the DB instance and your data inaccessible. If this occurs,
you can restore the DB instance from a snapshot using the AWS CLI restore-db-instance-

Importing data into an RDS for MariaDB DB instance 2730

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html

Amazon Relational Database Service User Guide

from-db-snapshot command. You can recover the DB instance using restore-db-instance-
to-point-in-time command.

Importing data considerations for MariaDB

The following content contains technical information related to loading data into MariaDB. This
content is aimed at users who are familiar with the MariaDB server architecture.

Binary logging

Enabling binary logging reduces data load performance and requires up to four times additional
disk space compared to disabled logging. The transaction size used to load the data directly affects
system performance and disk space needs—larger transactions require more resources.

Transaction size

Transaction size influences the following aspects of MariaDB data loads:

• Resource consumption

• Disk space utilization

• Resume process

• Time to recover

• Input format (flat files or SQL)

This section describes how transaction size affects binary logging and makes the case for disabling
binary logging during large data loads. You can enable and disable binary logging by setting the
Amazon RDS automated backup retention period. Non-zero values enable binary logging, and zero
disables it. For more information, see Backup retention period.

This section also describes the impact of large transactions on InnoDB and why it's important to
keep transaction sizes small.

Small transactions

For small transactions, binary logging doubles the number of disk writes required to load the data.
This effect can severely degrade performance for other database sessions and increase the time
required to load the data. The degradation experienced depends in part on the following factors:

Importing data considerations 2731

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

• Upload rate

• Other database activity taking place during the load

• Capacity of your Amazon RDS DB instance

The binary logs also consume disk space roughly equal to the amount of data loaded until the logs
are backed up and removed. Amazon RDS minimizes this by frequently backing up and removing
binary logs.

Large transactions

For large transactions, binary logging triples IOPS and disk usage for the following reasons:

• The binary log cache stores transaction data temporarily on disk.

• This cache grows with the transaction size, which consumes disk space.

• When the transaction (commit or rollback) completes, the system copies the cache to the binary
log.

This process creates three copies of the data:

• The original data

• The cache on disk

• The final binary log entry

Each write operation incurs additional IO, further impacting performance.

Because of this, binary logging requires triple the disk space compared to disabled logging. For
example, loading 10 GiB of data as a single transaction creates three copies:

• 10 GiB for the table data

• 10 GiB for the binary log cache

• 10 GiB for the binary log file

The total temporary disk space required is 30 GiB.

Important disk space considerations:

Importing data considerations 2732

Amazon Relational Database Service User Guide

• The cache file persists until either the session ends or a new transaction creates another cache.

• The binary log remains until it's backed up, potentially holding 20 GiB (cache and log) for an
extended period.

If you use LOAD DATA LOCAL INFILE to load the data, data recovery creates a fourth copy in
case the database has to be recovered from a backup made before the load. During recovery,
MariaDB extracts the data from the binary log into a flat file. MariaDB then runs LOAD DATA
LOCAL INFILE. Building on the preceding example, this recovery requires a total temporary disk
space of 40 GiB, or 10 GiB each for table, cache, log, and local file. Without at least 40 GiB of free
disk space, recovery fails.

Optimizing large data loads

For large data loads, disable binary logging to reduce overhead and disk space requirements. You
can disable binary logging by setting the backup retention period to 0. After loading completes,
restore the backup retention period to the appropriate non-zero value. For more information, see
Modifying an Amazon RDS DB instance and Backup retention period in the settings table.

Note

If the DB instance is a source DB instance for read replicas, then you can't set the backup
retention period to 0.

Before loading the data, we recommend that you create a DB snapshot. For more information, see
Managing manual backups.

InnoDB

The following information about undo logging and recovery options supports keeping InnoDB
transactions small to optimize database performance.

Understanding InnoDB undo logging

Undo is a logging mechanism that enables transaction rollback and supports multi-version
concurrency control (MVCC).

For MariaDB 10.11 and lower versions, undo logs are stored in the InnoDB system tablespace
(usually ibdata1) and are retained until the purge thread removes them. As a result, large data load

Importing data considerations 2733

Amazon Relational Database Service User Guide

transactions can cause the system tablespace to become quite large and consume disk space that
you can't reclaim unless you recreate the database.

For all MariaDB versions, the purge thread must wait to remove any undo logs until the oldest
active transaction either commits or rolls back. If the database is processing other transactions
during the load, their undo logs also accumulate and can't be removed, even if the transactions
commit and no other transaction needs the undo logs for MVCC. In this situation, all transactions—
including read-only transactions—slow down. This slowdown occurs because all transactions access
all rows that any transaction—not just the load transaction—changes. In effect, transactions must
scan through undo logs that long-running load transactions prevented from being purged during
an undo log cleanup. This affects performance for any operation accessing modified rows.

InnoDB transaction recovery options

Although InnoDB optimizes commit operations, large transaction rollbacks are slow. For faster
recovery, perform a point-in-time recovery or restore a DB snapshot. For more information, see
Point-in-time recovery and Restoring to a DB instance.

Data import formats

MariaDB supports two data import formats: flat files and SQL. Review the information about each
format to determine the best option for your needs.

Flat files

For small transactions, load flat files with LOAD DATA LOCAL INFILE. This data import format
can provide the following benefits over using SQL:

• Less network traffic

• Lower data transmission costs

• Decreased database processing overhead

• Faster processing

LOAD DATA LOCAL INFILE loads the entire flat file as one transaction. Keep the size of the
individual files small for the following advantages:

• Resume capability – You can keep track of which files have been loaded. If a problem arises
during the load, you can pick up where you left off. You might need to retransmit some data to
Amazon RDS, but with small files, the amount retransmitted is minimal.

Importing data considerations 2734

Amazon Relational Database Service User Guide

• Parallel data loading – If you have sufficient IOPS and network bandwidth for a single file load,
loading in parallel could save time.

• Load rate control – If your data load has a negative impact on other processes, you can control
the load rate by increasing the interval between files.

Large transactions reduce the benefits of using LOAD DATA LOCAL INFILE to import data. When
you can't break a large amount of data into smaller files, consider using SQL.

SQL

SQL has one main advantage over flat files: you can easily keep transaction sizes small. However,
SQL can take significantly longer to load than flat files. Also, after a failure, it can be difficult
to determine where to resume—you can't restart mariadb-dump files. If a failure occurs while
loading mariadb-dump file, you must modify or replace the file before the load can resume. Or,
alternatively, after you correct the cause of the failure, you can restore to the point in time before
the load and resend the file. For more information, see Point-in-time recovery.

Using Amazon RDS DB snapshots for database checkpoints

If you load data over long durations—such as hours or days—without binary logging, use DB
snapshots to provide periodic checkpoints for data safety. Each DB snapshot creates a consistent
copy of your database instance that serves as a recovery point during system failures or data
corruption events. Because DB snapshots are fast, frequent checkpointing has minimal impact on
load performance. You can delete previous DB snapshots without impacting database durability or
recovery capabilities. For more information about DB snapshots, see Managing manual backups.

Reducing database load times

The following items are additional tips to reduce load times:

• Create all secondary indexes before loading data into MariaDB databases. Unlike other database
systems, MariaDB rebuilds the entire table when adding or modifying secondary indexes. This
process creates a new table with index changes, copies all data, and drops the original table.

• Load data in primary key order. For InnoDB tables, this can reduce load times by 75%–80% and
reduce data file size by 50%.

• Disable foreign key constraints by setting foreign_key_checks to 0. This is often required
for flat files loaded with LOAD DATA LOCAL INFILE. For any load, disabling foreign key

Importing data considerations 2735

Amazon Relational Database Service User Guide

checks accelerates data loading. After loading completes, re-enable constraints by setting
foreign_key_checks to 1 and verify the data.

• Load data in parallel unless approaching a resource limit. To enable concurrent loading across
multiple table segments, use partitioned tables when appropriate.

• To reduce SQL execution overhead, combine multiple INSERT statements into single multi-value
INSERT operations. mariadb-dump implements this optimization automatically.

• Reduce InnoDB log IO operations by setting innodb_flush_log_at_trx_commit to 0. After
loading completes, restore innodb_flush_log_at_trx_commit to 1.

Warning

Setting innodb_flush_log_at_trx_commit to 0 causes InnoDB to flush its logs
every second instead of at each commit. This setting increases performance but can risk
transaction loss during system failures.

• If you are loading data into a DB instance that doesn't have read replicas, set sync_binlog to 0.
After loading completes, restore sync_binlog parameterto 1.

• Load data into a Single-AZ DB instance before converting the DB instance to a Multi-AZ
deployment. If the DB instance already uses a Multi-AZ deployment, we don't recommend
switching to a Single-AZ deployment for data loading. Doing so only provides marginal
improvements

Importing data from an external MariaDB database to an Amazon RDS
for MariaDB DB instance

You can import data from an existing MariaDB or MySQL database to an RDS for MariaDB or RDS
for MySQL DB instance. You do so by copying the database with mysqldump and piping it directly
into the RDS for MariaDB or RDS for MySQL DB instance. The mysqldump command line utility is
commonly used to make backups and transfer data from one MariaDB or MySQL server to another.
It's included with MySQL and MariaDB client software.

In MariaDB 10.5, the client is called mariadb-dump. Starting with MariaDB 11.0.1, you must use
mariadb-dump instead of mysqldump.

Importing data from an external database 2736

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://mariadb.com/kb/en/mariadb-dump/

Amazon Relational Database Service User Guide

Note

If you are importing or exporting large amounts of data with a MySQL DB instance, it's
more reliable and faster to move data in and out of Amazon RDS by using xtrabackup
backup files and Amazon S3. For more information, see Restoring a backup into an Amazon
RDS for MySQL DB instance.
Amazon RDS doesn't support xtrabackup for MariaDB or mariabackup. Amazon RDS
only supports importing from Amazon S3 for MySQL.

A typical mysqldump command to move data from an external database to an Amazon RDS DB
instance looks similar to the following example. Replace values with your own information. For
MariaDB 11.0.1 and higher versions, replace mysqldump with mariadb-dump and mysql with
mariadb.

mysqldump -u local_user \
 --databases database_name \
 --single-transaction \
 --compress \
 --order-by-primary \
 --routines=0 \
 --triggers=0 \
 --events=0 \
 -plocal_password | mysql -u RDS_user \
 --port=port_number \
 --host=host_name \
 -pRDS_password

Important

Make sure not to leave a space between the -p option and the entered password.
As a security best practice, specify credentials other than the prompts shown in this
example.

Make sure that you're aware of the following recommendations and considerations:

• Exclude the following schemas from the dump file:

• sys

Importing data from an external database 2737

Amazon Relational Database Service User Guide

• performance_schema

• information_schema

The mysqldump and mariadb-dump utility excludes these schemas by default.

• If you need to migrate users and privileges, consider using a tool that generates the data control
language (DCL) for recreating them, such as the pt-show-grants utility.

• To perform the import, make sure the user doing so has access to the DB instance. For more
information, see Controlling access with security groups.

The parameters used are as follows:

• -u local_user – Use to specify a user name. In the first usage of this parameter, specify the
name of a user account on the local MariaDB or MySQL database that you identify with the --
databases parameter.

• --databases database_name – Use to specify the name of the database on the local MariaDB
or MySQL instance that you want to import into Amazon RDS.

• --single-transaction – Use to ensure that all of the data loaded from the local database
is consistent with a single point in time. If there are other processes changing the data while
mysqldump is reading it, using this parameter helps maintain data integrity.

• --compress – Use to reduce network bandwidth consumption by compressing the data from
the local database before sending it to Amazon RDS.

• --order-by-primary – Use to reduce load time by sorting each table's data by its primary key.

• --routines – Use if routines such as stored procedures or functions exist in the database that
you are copying. Set the parameter to 0, which excludes the routines during the import process.
Then later manually recreate the routines in the Amazon RDS database.

• --triggers – Use if triggers exist in the database that you are copying. Set the parameter to 0,
which excludes the triggers during the import process. Then later manually recreate the triggers
in the Amazon RDS database.

• --events – Use if events exist in the database that you are copying. Set the parameter to 0,
which excludes the events during the import process. Then later manually recreate the events in
the Amazon RDS database.

• -plocal_password – Use to specify a password. In the first usage of this parameter, specify the
password for the user account that you identify with the first -u parameter.

Importing data from an external database 2738

https://www.percona.com/doc/percona-toolkit/LATEST/pt-show-grants.html

Amazon Relational Database Service User Guide

• -u RDS_user – Use to specify a user name. In the second usage of this parameter, specify the
name of a user account on the default database for the MariaDB or MySQL DB instance that you
identify with the --host parameter.

• --port port_number – Use to specify the port for your MariaDB or MySQL DB instance. By
default, this is 3306 unless you changed the value when creating the DB instance.

• --host host_name – Use to specify the Domain Name System (DNS) name from the
Amazon RDS DB instance endpoint, for example, myinstance.123456789012.us-
east-1.rds.amazonaws.com. You can find the endpoint value in the DB instance details in the
Amazon RDS console.

• -pRDS_password – Use to specify a password. In the second usage of this parameter, you
specify the password for the user account identified by the second -u parameter.

Make sure to create any stored procedures, triggers, functions, or events manually in your Amazon
RDS database. If you have any of these objects in the database that you are copying, then exclude
them when you run mysqldump or mariadb-dump. To do so, include the following parameters
with your mysqldump or mariadb-dump command:

• --routines=0

• --triggers=0

• --events=0

Example

The following example copies the world sample database on the local host to an RDS for MySQL
DB instance. Replace values with your own information. To copy the sample database to an RDS for
MariaDB DB instance, replace mysqldump with mariadb-dump and mysql with mariadb.

For Linux, macOS, or Unix:

sudo mysqldump -u local_user \
 --databases world \
 --single-transaction \
 --compress \
 --order-by-primary \
 --routines=0 \
 --triggers=0 \
 --events=0 \

Importing data from an external database 2739

Amazon Relational Database Service User Guide

 -plocal_password | mysql -u rds_user \
 --port=3306 \
 --host=my_instance.123456789012.us-east-1.rds.amazonaws.com \
 -pRDS_password

For Windows:

Run the following command in a command prompt that has been opened by right-clicking
Command Prompt on the Windows programs menu and choosing Run as administrator. Replace
values with your own information. To copy the sample database to an RDS for MariaDB DB
instance, replace mysqldump with mariadb-dump and mysql with mariadb.

mysqldump -u local_user ^
 --databases world ^
 --single-transaction ^
 --compress ^
 --order-by-primary ^
 --routines=0 ^
 --triggers=0 ^
 --events=0 ^
 -plocal_password | mysql -u RDS_user ^
 --port=3306 ^
 --host=my_instance.123456789012.us-east-1.rds.amazonaws.com ^
 -pRDS_password

Note

As a security best practice, specify credentials other than the prompts shown in the
example.

Importing data to an Amazon RDS for MariaDB DB instance with
reduced downtime

In some cases, you might need to import data from an external MariaDB or MySQL database that
supports a live application to an RDS for MariaDB DB instance, an RDS for MySQL DB instance,
or an RDS for MySQL Multi-AZ DB cluster. Use the following procedure to minimize the impact
on availability of applications. This procedure can also help if you are working with a very large
database. Using this procedure, you can reduce the cost of the import by reducing the amount of
data that is passed across the network to AWS.

Importing data with reduced downtime 2740

Amazon Relational Database Service User Guide

In this procedure, you transfer a copy of your database data to an Amazon EC2 instance and import
the data into a new Amazon RDS database. You then use replication to bring the Amazon RDS
database up-to-date with your live external instance, before redirecting your application to the
Amazon RDS database. If the external instance is MariaDB 10.0.24 or higher and the target instance
is RDS for MariaDB, configure MariaDB replication based on global transaction identifiers (GTIDs).
Otherwise, configure replication based on binary log coordinates. We recommend GTID-based
replication if your external database supports it because GTID-based replication is a more reliable
method. For more information, see Global transaction ID in the MariaDB documentation.

Note

If you want to import data into an RDS for MySQL DB instance and your scenario supports
it, we recommend moving data in and out of Amazon RDS by using backup files and
Amazon S3. For more information, see Restoring a backup into an Amazon RDS for MySQL
DB instance.

The following diagram shows importing an external MySQL database into a MySQL database on
Amazon RDS.

Importing data with reduced downtime 2741

http://mariadb.com/kb/en/mariadb/global-transaction-id/

Amazon Relational Database Service User Guide

Task 1: Create a copy of your existing database

The first step in the process of migrating a large amount of data to an RDS for MariaDB or RDS for
MySQL database with minimal downtime is to create a copy of the source data.

The following diagram shows creating a backup of the MySQL database.

You can use the mysqldump utility to create a database backup in either SQL or delimited-text
format. In MariaDB 10.5, the client is called mariadb-dump. Starting with MariaDB 11.0.1, you
must use mariadb-dump instead of mysqldump. We recommend that you do a test run with each
format in a non-production environment to see which method minimizes the amount of time that
mysqldump runs.

We also recommend that you weigh mysqldump performance against the benefit offered by
using the delimited-text format for loading. A backup using delimited-text format creates a
tab-separated text file for each table being dumped. To reduce the amount of time required to
import your database, you can load these files in parallel using the LOAD DATA LOCAL INFILE
command. For more information, see Load the data for MariaDB or Load the data for MySQL.

Before you start the backup operation, make sure to set the replication options on the MariaDB
or MySQL database that you are copying to Amazon RDS. The replication options include turning
on binary logging and setting a unique server ID. Setting these options causes your server to

Importing data with reduced downtime 2742

https://mariadb.com/kb/en/mariadb-dump/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.AnySourceMariaDB.html#MySQL.Procedural.Importing.AnySource.Step5
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.AnySource.html#MySQL.Procedural.Importing.AnySource.Step5

Amazon Relational Database Service User Guide

start logging database transactions and prepares it to be a source replication instance later in this
process.

Make sure that you're aware of the following recommendations and considerations:

• Use the --single-transaction option with mysqldump because it dumps a consistent state
of the database. To ensure a valid dump file, don't run data definition language (DDL) statements
while mysqldump is running. You can schedule a maintenance window for these operations.

• Exclude the following schemas from the dump file:

• sys

• performance_schema

• information_schema

The mysqldump and mariadb-dump utility excludes these schemas by default.

• If you need to migrate users and privileges, consider using a tool that generates the data control
language (DCL) for recreating them, such as the pt-show-grants utility.

To set replication options

1. Edit the my.cnf file. This file is usually located under /etc.

sudo vi /etc/my.cnf

Add the log_bin and server_id options to the [mysqld] section. The log_bin option
provides a file name identifier for binary log files. The server_id option provides a unique
identifier for the server in source-replica relationships.

The following example shows the updated [mysqld] section of a my.cnf file:

[mysqld]
log-bin=mysql-bin
server-id=1

For more information, see Setting the Replication Source Configuration in the MySQL
documentation.

2. For replication with a Multi-AZ DB cluster set the ENFORCE_GTID_CONSISTENCY and the
GTID_MODE parameter to ON.

Importing data with reduced downtime 2743

https://www.percona.com/doc/percona-toolkit/LATEST/pt-show-grants.html
https://dev.mysql.com/doc/refman/8.4/en/replication-howto-masterbaseconfig.html

Amazon Relational Database Service User Guide

mysql> SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = ON;

mysql> SET @@GLOBAL.GTID_MODE = ON;

These settings aren't required for replication with a DB instance.

3. Restart the mysql service.

sudo service mysqld restart

To create a backup copy of your existing database

1. Create a backup of your data using the mysqldump utility or the mariadb-dump utility,
specifying either SQL or delimited-text format.

For MySQL 8.0.25 and lower versions, specify --master-data=2 to create a backup file
that can be used to start replication between servers. For MySQL 8.0.26 and higher versions,
specify --source-data=2 to create a backup file that can be used to start replication between
servers. For more information, see the mysqldump — A Database Backup Program in the MySQL
documentation.

To improve performance and ensure data integrity, use the --order-by-primary and --
single-transaction options for mysqldump.

To avoid including the MySQL system database in the backup, don't use the --all-databases
option with mysqldump. For more information, see Creating a Data Snapshot Using mysqldump
in the MySQL documentation.

Use chmod, if necessary, to make sure that the directory where the backup file is being created is
writeable.

Important

On Windows, run the command window as an administrator.

• To produce SQL output, use the following command:

Importing data with reduced downtime 2744

https://dev.mysql.com/doc/refman/8.4/en/mysqldump.html
https://dev.mysql.com/doc/mysql-replication-excerpt/8.0/en/replication-howto-mysqldump.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

sudo mysqldump \
 --databases database_name \
 --master-data=2 \
 --single-transaction \
 --order-by-primary \
 -r backup.sql \
 -u local_user \
 -ppassword

Note

As a security best practice, specify credentials other than the prompts shown in the
example.

For Windows:

mysqldump ^
 --databases database_name ^
 --master-data=2 ^
 --single-transaction ^
 --order-by-primary ^
 -r backup.sql ^
 -u local_user ^
 -ppassword

Note

As a security best practice, specify credentials other than the prompts shown in the
example.

• To produce delimited-text output, use the following command:

For Linux, macOS, or Unix:

sudo mysqldump \
 --tab=target_directory \

Importing data with reduced downtime 2745

Amazon Relational Database Service User Guide

 --fields-terminated-by ',' \
 --fields-enclosed-by '"' \
 --lines-terminated-by 0x0d0a \
 database_name \
 --master-data=2 \
 --single-transaction \
 --order-by-primary \
 -ppassword

For Windows:

mysqldump ^
 --tab=target_directory ^
 --fields-terminated-by "," ^
 --fields-enclosed-by """ ^
 --lines-terminated-by 0x0d0a ^
 database_name ^
 --master-data=2 ^
 --single-transaction ^
 --order-by-primary ^
 -ppassword

Note

As a security best practice, specify credentials other than the prompts shown in the
example.
Make sure to create any stored procedures, triggers, functions, or events manually
in your Amazon RDS database. If you have any of these objects in the database that
you are copying, then exclude them when you run mysqldump. To do so, include the
following arguments with your mysqldump command:

• --routines=0

• --triggers=0

• --events=0

For MySQL 8.0.22 and lower versions and MariaDB versions, when you run mysqldump and
specify the delimited-text format, a CHANGE MASTER TO comment is returned. This comment
contains the master log file name and position. For MySQL 8.0.23 and higher versions, when
you run mysqldump using the delimited-text format, a CHANGE REPLICATION SOURCE

Importing data with reduced downtime 2746

Amazon Relational Database Service User Guide

TO comment is returned. This comment contains the source log file name and position. If
the external instance is anything other than MariaDB 10.0.24 and higher versions, or MySQL
8.0.23 and higher versions, note the values for MASTER_LOG_FILE and MASTER_LOG_POS.
You need these values when setting up replication.

The following output is returned for MariaDB versions and for MySQL 8.0.22 and lower
versions:

-- Position to start replication or point-in-time recovery from
--
-- CHANGE MASTER TO MASTER_LOG_FILE='mysql-bin-changelog.000031',
 MASTER_LOG_POS=107;

The following output is returned for MySQL 8.0.23 and higher versions:

-- Position to start replication or point-in-time recovery from
--
-- CHANGE SOURCE TO SOURCE_LOG_FILE='mysql-bin-changelog.000031',
 SOURCE_LOG_POS=107;

For MySQL 8.0.22 and lower versions, if you are using SQL format, you can get the master log
file name and position in the CHANGE MASTER TO comment in the backup file. For MySQL
8.0.23 and higher versions, if you are using SQL format, you can get the source log file name
and position in the CHANGE REPLICATION SOURCE TO comment in the backup file. If the
external instance is MariaDB version 10.0.24 or higher, you can get the GTID in the next step.

2. If the external instance you are using is MariaDB version 10.0.24 or higher, use GTID-based
replication. Run SHOW MASTER STATUS on the external MariaDB instance to get the binary log
file name and position, and then convert them to a GTID by running BINLOG_GTID_POS on the
external MariaDB instance.

SELECT BINLOG_GTID_POS('binary_log_file_name', binary_log_file_position);

Note the GTID returned. You need the GTID to configure replication.

3. Compress the copied data to reduce the amount of network resources needed to copy your data
to the Amazon RDS database. Note the size of the backup file. You need this information when
determining how large an Amazon EC2 instance to create. When you are done, compress the
backup file using GZIP or your preferred compression utility.

Importing data with reduced downtime 2747

Amazon Relational Database Service User Guide

• To compress SQL output, use the following command:

gzip backup.sql

• To compress delimited-text output, use the following command:

tar -zcvf backup.tar.gz target_directory

Task 2: Create an Amazon EC2 instance and copy the compressed database

Copying your compressed database backup file to an Amazon EC2 instance takes fewer network
resources than doing a direct copy of uncompressed data between database instances. After your
data is in Amazon EC2, you can copy it from there directly to your MariaDB or MySQL database. For
you to save on the cost of network resources, your Amazon EC2 instance must be in the same AWS
Region as your Amazon RDS DB instance. Having the Amazon EC2 instance in the same AWS Region
as your Amazon RDS database also reduces network latency during the import.

The following diagram shows copying the database backup to an Amazon EC2 instance.

Importing data with reduced downtime 2748

Amazon Relational Database Service User Guide

To create an Amazon EC2 instance and copy your data

1. In the AWS Region where you plan to create the Amazon RDS database, create a virtual private
cloud (VPC), a VPC security group, and a VPC subnet. Ensure that the inbound rules for your
VPC security group allow the IP addresses required for your application to connect to AWS. You
can specify a range of IP addresses—for example, 203.0.113.0/24—or another VPC security
group. You can use the Amazon VPC console to create and manage VPCs, subnets, and security
groups. For more information, see Getting started with Amazon VPC in the Amazon Virtual
Private Cloud User Guide.

2. Open the Amazon EC2 console and choose the AWS Region to contain both your Amazon EC2
instance and your Amazon RDS database. Launch an Amazon EC2 instance using the VPC,
subnet, and security group that you created in Step 1. Ensure that you select an instance type
with enough storage for your database backup file when it is uncompressed. For details on
Amazon EC2 instances, see Getting started with Amazon EC2 in the Amazon Elastic Compute
Cloud User Guide.

3. To connect to your Amazon RDS database from your Amazon EC2 instance, edit your VPC
security group. Add an inbound rule specifying the private IP address of your EC2 instance.
You can find the private IP address on the Details tab of the Instance pane in the EC2 console
window. To edit the VPC security group and add an inbound rule, choose Security Groups in
the EC2 console navigation pane, choose your security group, and then add an inbound rule for
MySQL or Aurora specifying the private IP address of your EC2 instance. To learn how to add
an inbound rule to a VPC security group, see Security group rules in the Amazon Virtual Private
Cloud User Guide.

4. Copy your compressed database backup file from your local system to your Amazon EC2
instance. Use chmod, if necessary, to make sure that you have write permission for the target
directory of the Amazon EC2 instance. You can use scp or a Secure Shell (SSH) client to copy the
file. The following command is an example scp command:

scp -r -i key pair.pem backup.sql.gz ec2-user@EC2 DNS:/target_directory/backup.sql.gz

Important

When copying sensitive data, be sure to use a secure network transfer protocol.

5. Connect to your Amazon EC2 instance and install the latest updates and the MySQL client tools
using the following commands:

Importing data with reduced downtime 2749

https://console.aws.amazon.com/vpc
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html#getting-started
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html

Amazon Relational Database Service User Guide

sudo yum update -y
sudo yum install mysql -y

For more information, see Connect to your instance for Linux instances in the Amazon Elastic
Compute Cloud User Guide.

Important

This example installs the MySQL client on an Amazon Machine Image (AMI) for an
Amazon Linux distribution. This example doesn't install the MySQL client on a different
distribution, such as Ubuntu or Red Hat Enterprise Linux. For information about
installing MySQL, see Installing MySQL in the MySQL documentation.

6. While connected to your Amazon EC2 instance, decompress your database backup file. The
following commands are examples.

• To decompress SQL output, use the following command:

gzip backup.sql.gz -d

• To decompress delimited-text output, use the following command:

tar xzvf backup.tar.gz

Task 3: Create a MySQL or MariaDB database and import data from your Amazon
EC2 instance

By creating an RDS for MariaDB DB instance, an RDS for MySQL DB instance, or an RDS for MySQL
Multi-AZ DB cluster in the same AWS Region as your Amazon EC2 instance, you can import the
database backup file from Amazon EC2 faster than over the internet.

The following diagram shows importing the backup from an Amazon EC2 instance into a MySQL
database.

Importing data with reduced downtime 2750

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux
https://dev.mysql.com/doc/refman/8.4/en/installing.html

Amazon Relational Database Service User Guide

To create a MariaDB or MySQL database and import your data

1. Determine which DB instance class and what amount of storage space is required to support
the expected workload for this Amazon RDS database. As part of this process, decide what
is sufficient space and processing capacity for your data load procedures. Also, decide what
is required to handle the production workload. You can estimate this based on the size and
resources of the source MariaDB or MySQL database. For more information, see DB instance
classes.

2. Create a DB instance or Multi-AZ DB cluster in the AWS Region that contains your Amazon EC2
instance.

To create an RDS for MySQL Multi-AZ DB cluster, follow the instructions in Creating a Multi-AZ
DB cluster for Amazon RDS.

To create an RDS for MariaDB or RDS for MySQL DB instance, follow the instructions in
Creating an Amazon RDS DB instance and use the following guidelines:

• Specify a DB engine version that is compatible with your source DB instance.

• If your source instance is MySQL 5.5.x, the Amazon RDS DB instance must be MySQL.

• If your source instance is MySQL 5.6.x or 5.7.x, the Amazon RDS DB instance must be
MySQL or MariaDB.

Importing data with reduced downtime 2751

Amazon Relational Database Service User Guide

• If your source instance is MySQL 8.0.x, the Amazon RDS DB instance must be MySQL 8.0.x.

• If your source instance is MySQL 8.4.x, the Amazon RDS DB instance must be MySQL 8.4.x.

• If your source instance is MariaDB 5.5 or higher, the Amazon RDS DB instance must be
MariaDB.

• Specify the same virtual private cloud (VPC) and VPC security group as for your Amazon
EC2 instance. This approach ensures that your Amazon EC2 instance and your Amazon RDS
instance are visible to each other over the network. Make sure your DB instance is publicly
accessible. To set up replication with your source database as described in a following
section, your DB instance must be publicly accessible.

• Don't configure multiple Availability Zones, backup retention, or read replicas until after
you have imported the database backup. When that import is completed, you can configure
Multi-AZ and backup retention for the production instance.

3. Review the default configuration options for the Amazon RDS database. If the default
parameter group for the database doesn't have the configuration options that you want, find a
different one that does or create a new parameter group. For more information about creating
a parameter group, see Parameter groups for Amazon RDS.

4. Connect to the new Amazon RDS database as the master user. Create the users required
to support the administrators, applications, and services that need to access the DB
instance. The hostname for the Amazon RDS database is the Endpoint value for this
DB instance without the port number, for example, mysampledb.123456789012.us-
west-2.rds.amazonaws.com. You can find the endpoint value in the database details in the
Amazon RDS console.

5. Connect to your Amazon EC2 instance. For more information, see Connect to your instance for
Linux instances in the Amazon Elastic Compute Cloud User Guide.

6. Connect to your Amazon RDS database as a remote host from your Amazon EC2 instance using
the mysql command. The following command is an example:

mysql -h host_name -P 3306 -u db_master_user -p

The host_name is the Amazon RDS database endpoint.

7. At the mysql prompt, run the source command and pass it the name of your database dump
file. This command loads the data into the Amazon RDS DB instance.

• For SQL format, use the following command:

Importing data with reduced downtime 2752

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

Amazon Relational Database Service User Guide

mysql> source backup.sql;

• For delimited-text format, first create the database, if it isn't the default database that you
created when setting up the Amazon RDS database.

mysql> create database database_name;
mysql> use database_name;

Then create the tables.

mysql> source table1.sql
mysql> source table2.sql
etc...

Then import the data.

mysql> LOAD DATA LOCAL INFILE 'table1.txt' INTO TABLE table1 FIELDS TERMINATED BY
 ',' ENCLOSED BY '"' LINES TERMINATED BY '0x0d0a';
mysql> LOAD DATA LOCAL INFILE 'table2.txt' INTO TABLE table2 FIELDS TERMINATED BY
 ',' ENCLOSED BY '"' LINES TERMINATED BY '0x0d0a';
etc...

To improve performance, you can perform these operations in parallel from multiple
connections so that all of your tables are created and then loaded at the same time.

Note

If you used any data-formatting options with mysqldump when you initially dumped
the table, make sure to use the same options with LOAD DATA LOCAL INFILE to
ensure proper interpretation of the data file contents.

8. Run a simple SELECT query against one or two of the tables in the imported database to
verify that the import was successful.

If you no longer need the Amazon EC2 instance used in this procedure, terminate the EC2 instance
to reduce your AWS resource usage. To terminate an EC2 instance, see Terminate an instance in the
Amazon Elastic Compute Cloud User Guide.

Importing data with reduced downtime 2753

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html#terminating-instances-console

Amazon Relational Database Service User Guide

Task 4: Replicate data from your external database to your new Amazon RDS
database

Your source database was likely updated during the time that it took to copy and transfer the data
to the MariaDB or MySQL database. Thus, you can use replication to bring the copied database up-
to-date with the source database.

The permissions required to start replication on an Amazon RDS database are restricted and aren't
available to your Amazon RDS master user. Because of this, use the appropriate Amazon RDS
stored procedure for your major engine version:

• mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_set_external_master_gtid to configure replication and mysql.rds_start_replication to
start replication

Importing data with reduced downtime 2754

Amazon Relational Database Service User Guide

To start replication

In Task 1 when you set replication options, you turned on binary logging and set a unique server ID
for your source database. Now you can set up your Amazon RDS database as a replica with your live
database as the source replication instance.

1. In the Amazon RDS console, add the IP address of the server that hosts the source database to
the VPC security group for the Amazon RDS database. For more information on configuring a
VPC security group, see Configure security group rules in the Amazon Virtual Private Cloud User
Guide.

You might also need to configure your local network to permit connections from the IP address
of your Amazon RDS database so that it can communicate with your source instance. To find the
IP address of the Amazon RDS database, use the host command:

host host_name

The host_name is the DNS name from the Amazon RDS database endpoint, for example
myinstance.123456789012.us-east-1.rds.amazonaws.com. You can find the endpoint
value in the DB instance details in the Amazon RDS console.

2. Using the client of your choice, connect to the source instance and create a user to be used for
replication. This account is used solely for replication and must be restricted to your domain to
improve security. The following command is an example:

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

Note

Specify credentials other than the prompts shown here as a security best practice.

3. For the source instance, grant REPLICATION CLIENT and REPLICATION SLAVE privileges
to your replication user. For example, to grant the REPLICATION CLIENT and REPLICATION
SLAVE privileges on all databases for the 'repl_user' user for your domain, issue the following
command:

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

Importing data with reduced downtime 2755

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-security-group-rules.html

Amazon Relational Database Service User Guide

4. If you used SQL format to create your backup file and the external instance isn't MariaDB
10.0.24 or higher, look at the contents of that file by running the following command:

cat backup.sql

The file includes a CHANGE MASTER TO comment that contains the master log file name and
position. This comment is included in the backup file when you use the --master-data option
with mysqldump. Note the values for MASTER_LOG_FILE and MASTER_LOG_POS.

--
-- Position to start replication or point-in-time recovery from
--

-- CHANGE MASTER TO MASTER_LOG_FILE='mysql-bin-changelog.000031', MASTER_LOG_POS=107;

If you used delimited text format to create your backup file and the external instance isn't
MariaDB 10.0.24 or higher, you should already have binary log coordinates from Step 1 of the To
create a backup copy of your existing database procedure under Task 1.

If the external instance is MariaDB 10.0.24 or higher, you should already have the GTID from
which to start replication from Step 2 of the To create a backup copy of your existing database
procedure under Task 1.

5. Make the Amazon RDS database the replica. If the external instance isn't MariaDB 10.0.24
or higher, connect to the Amazon RDS database as the master user and identify the source
database as the source replication instance by using the appropriate Amazon RDS stored
procedure:

• mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher)

If you have a SQL format backup file, use the master log file name and master log position that
you determined in Step 4. If you used delimited-text format, use the name and position that you
determined when creating the backup files. The following commands are examples:

MySQL 8.4 and higher versions

CALL mysql.rds_set_external_source ('myserver.mydomain.com', 3306,

Importing data with reduced downtime 2756

Amazon Relational Database Service User Guide

 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

MariaDB and MySQL 8.0 and lower versions

CALL mysql.rds_set_external_master ('myserver.mydomain.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

Note

Specify credentials other than the prompts shown here as a security best practice.

If the external instance is MariaDB 10.0.24 or higher, connect to the Amazon RDS database as
the master user and identify the source database as the source replication instance by using the
mysql.rds_set_external_master_gtid command. Use the GTID that you determined in Step 2 of
the To create a backup copy of your existing database procedure under Task 1. The following
command is an example:

CALL mysql.rds_set_external_master_gtid ('source_server_ip_address', 3306,
 'ReplicationUser', 'password', 'GTID', 1);

The source_server_ip_address is the IP address of source replication instance. An EC2
private DNS address isn't currently supported.

Note

Specify credentials other than the prompts shown here as a security best practice.

6. On the Amazon RDS database, to start replication, run the following mysql.rds_start_replication
command:

CALL mysql.rds_start_replication;

7. On the Amazon RDS database, to determine when the replica is up to date with the source
replication instance, run the SHOW REPLICA STATUS command. The results of the SHOW
REPLICA STATUS command include the Seconds_Behind_Master field. When the

Importing data with reduced downtime 2757

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

Seconds_Behind_Master field returns 0, then the replica is up to date with the source
replication instance.

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE STATUS.

For a MariaDB 10.5, 10.6, or 10.11 DB instance, run the mysql.rds_replica_status stored
procedure instead of the MySQL command.

8. After the Amazon RDS database is up to date, turn on automated backups so you can restore
that database if needed. You can turn on or modify automated backups for your Amazon RDS
database by using the Amazon RDS console. For more information, see Introduction to backups.

Task 5: Redirect your live application to your Amazon RDS instance

After the MariaDB or MySQL database is up to date with the source replication instance, you can
now update your live application to use the Amazon RDS instance.

Importing data with reduced downtime 2758

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To redirect your live application to your MariaDB or MySQL database and stop replication

1. To add the VPC security group for the Amazon RDS database, add the IP address of the server
that hosts the application. For more information on modifying a VPC security group, see
Configure security group rules in the Amazon Virtual Private Cloud User Guide.

2. Verify that the Seconds_Behind_Master field in the SHOW REPLICA STATUS command results
is 0, which indicates that the replica is up to date with the source replication instance.

SHOW REPLICA STATUS;

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE STATUS.

For a MariaDB 10.5, 10.6, or 10.11 DB instance, run the mysql.rds_replica_status procedure
instead of the MySQL command.

3. Close all connections to the source when their transactions complete.

4. Update your application to use the Amazon RDS database. This update typically involves
changing the connection settings to identify the hostname and port of the Amazon RDS
database, the user account and password to connect with, and the database to use.

5. Connect to the DB instance.

For a Multi-AZ DB cluster, connect to the writer DB instance.

6. Stop replication for the Amazon RDS instance by using the following mysql.rds_stop_replication
command:

CALL mysql.rds_stop_replication;

7. Run the appropriate Amazon RDS stored procedure on your Amazon RDS database to reset the
replication configuration so this instance is no longer identified as a replica.

• mysql.rds_reset_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_reset_external_source (RDS for MySQL major versions 8.4 and higher)

MySQL 8.4 and higher versions

Importing data with reduced downtime 2759

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-security-group-rules.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

CALL mysql.rds_reset_external_source;

MariaDB and MySQL 8.0 and lower versions

CALL mysql.rds_reset_external_master;

8. Turn on additional Amazon RDS features such as Multi-AZ support and read replicas. For more
information, see Configuring and managing a Multi-AZ deployment for Amazon RDS and
Working with DB instance read replicas.

Importing data from any source to an Amazon RDS for MariaDB DB
instance

The following steps walk you through importing data to an Amazon RDS DB instance:

Step 1: Create flat files containing the data to be loaded

Use a common format, such as comma-separated values (CSV), to store the data to be loaded. Each
table must have its own file—you can't combine data for multiple tables in the same file. Give each
file the same name as the table it corresponds to. The file extension can be anything you like. For
example, if the table name is sales, the file name could be sales.csv or sales.txt.

If possible, order the data by the primary key of the table being loaded. Doing this drastically
improves load times and minimizes disk storage requirements.

The speed and efficiency of this procedure depends on keeping the size of the files small. If the
uncompressed size of any individual file is larger than 1 GiB, split it into multiple files and load
each one separately.

On Unix-like systems (including Linux), use the split command. For example, the following
command splits the sales.csv file into multiple files of less than 1 GiB, splitting only at line
breaks (-C 1024m). The names of the new files include ascending numerical suffixes. The following
command produces files with names such as sales.part_00 and sales.part_01.

split -C 1024m -d sales.csv sales.part_

Similar utilities are available for other operating systems.

Importing data from any source 2760

Amazon Relational Database Service User Guide

You can store the flat files anywhere. However, when you load the data in Step 5, you must invoke
the mysql shell from the same location where the files exist, or use the absolute path for the files
when you run LOAD DATA LOCAL INFILE.

Step 2: Stop any applications from accessing the target DB instance

Before starting a large load, stop all application activity from accessing the target DB instance that
you plan to load to. We recommend this particularly if other sessions will be modifying the tables
being loaded or tables that they reference. Doing this reduces the risk of constraint violations
occurring during the load and improves load performance. It also makes it possible to restore
the DB instance to the point just before the load without losing changes made by processes not
involved in the load.

Of course, this might not be possible or practical. If you can't stop applications from accessing the
DB instance before the load, take steps to ensure the availability and integrity of your data. The
specific steps required vary greatly depending upon specific use cases and site requirements.

Step 3: Create a DB snapshot

If you plan to load data into a new DB instance that contains no data, you can skip this step.
Otherwise, we recommend that you create DB snapshots of the target Amazon RDS DB instance
both before and after the data load. Amazon RDS DB snapshots are complete backups of your DB
instance that you can use to restore your DB instance to a known state. When you initiate a DB
snapshot, I/O operations to your DB instance are momentarily suspended while your database is
backed up.

Creating a DB snapshot immediately before the load makes it possible for you to restore the
database to its state before the load, if you need to. A DB snapshot taken immediately after the
load protects you from having to load the data again in case of a mishap. You can also use DB
snapshots after the load to import data into new database instances.

The following example runs the AWS CLI create-db-snapshot command to create a DB snapshot of
the AcmeRDS instance and give the DB snapshot the identifier "preload".

For Linux, macOS, or Unix:

aws rds create-db-snapshot \
 --db-instance-identifier AcmeRDS \
 --db-snapshot-identifier preload

Importing data from any source 2761

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html

Amazon Relational Database Service User Guide

For Windows:

aws rds create-db-snapshot ^
 --db-instance-identifier AcmeRDS ^
 --db-snapshot-identifier preload

You can also use the restore from DB snapshot functionality to create test DB instances for dry runs
or to undo changes made during the load.

Keep in mind that restoring a database from a DB snapshot creates a new DB instance that, like all
DB instances, has a unique identifier and endpoint. To restore the DB instance without changing
the endpoint, first delete the DB instance so that you can reuse the endpoint.

For example, to create a DB instance for dry runs or other testing, you give the DB instance its own
identifier. In the example, AcmeRDS-2" is the identifier. The example connects to the DB instance
using the endpoint associated with AcmeRDS-2. For more information, see restore-db-instance-
from-db-snapshot.

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-db-snapshot \
 --db-instance-identifier AcmeRDS-2 \
 --db-snapshot-identifier preload

For Windows:

aws rds restore-db-instance-from-db-snapshot ^
 --db-instance-identifier AcmeRDS-2 ^
 --db-snapshot-identifier preload

To reuse the existing endpoint, first delete the DB instance and then give the restored database the
same identifier. For more information, see delete-db-instance.

The following example also takes a final DB snapshot of the DB instance before deleting it. This is
optional but recommended.

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier AcmeRDS \

Importing data from any source 2762

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html

Amazon Relational Database Service User Guide

 --final-db-snapshot-identifier AcmeRDS-Final

aws rds restore-db-instance-from-db-snapshot \
 --db-instance-identifier AcmeRDS \
 --db-snapshot-identifier preload

For Windows:

aws rds delete-db-instance ^
 --db-instance-identifier AcmeRDS ^
 --final-db-snapshot-identifier AcmeRDS-Final

aws rds restore-db-instance-from-db-snapshot ^
 --db-instance-identifier AcmeRDS ^
 --db-snapshot-identifier preload

Step 4 (Optional): Turn off Amazon RDS automated backups

Warning

Don't turn off automated backups if you need to perform point-in-time recovery.

Turning off automated backups is a performance optimization and isn't required for data
loads. Turning off automated backups erases all existing backups. As a result, after you turn off
automated backups, point-in-time recovery isn't possible. Manual DB snapshots aren't affected by
turning off automated backups. All existing manual DB snapshots are still available for restore.

Turning off automated backups reduces load time by about 25 percent and reduces the amount
of storage space required during the load. If you plan to load data into a new DB instance that
contains no data, turning off backups is an easy way to speed up the load and avoid using the
additional storage needed for backups. However, in some cases you might plan to load into a DB
instance that already contains data. If so, weigh the benefits of turning off backups against the
impact of losing the ability to perform point-in-time-recovery.

DB instances have automated backups turned on by default (with a one day retention period). To
turn off automated backups, set the backup retention period to zero. After the load, you can turn
backups back on by setting the backup retention period to a nonzero value. To turn on or turn off
backups, Amazon RDS shuts the DB instance down and then restarts it to turn MariaDB or MySQL
logging on or off.

Importing data from any source 2763

Amazon Relational Database Service User Guide

Run the AWS CLI modify-db-instance command to set the backup retention to zero and apply
the change immediately. Setting the retention period to zero requires a DB instance restart, so wait
until the restart has completed before proceeding. For more information, see modify-db-instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier AcmeRDS \
 --apply-immediately \
 --backup-retention-period 0

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier AcmeRDS ^
 --apply-immediately ^
 --backup-retention-period 0

You can check the status of your DB instance with the AWS CLI describe-db-instances command.
The following example displays the DB instance status of the AcmeRDS DB instance:

aws rds describe-db-instances --db-instance-identifier AcmeRDS --query "*[].
{DBInstanceStatus:DBInstanceStatus}"

When the DB instance status is available, you're ready to proceed to the next step.

Step 5: Load the data

To read rows from your flat files into the database tables, use the MySQL LOAD DATA LOCAL
INFILE statement.

Note

You must invoke the mysql shell from the same location where your flat files exist, or use
the absolute path for the files when you run LOAD DATA LOCAL INFILE.

The following example shows how to load data from a file named sales.txt into a table named
Sales in the database:

Importing data from any source 2764

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

mysql> LOAD DATA LOCAL INFILE 'sales.txt' INTO TABLE Sales FIELDS TERMINATED BY ' '
 ENCLOSED BY '' ESCAPED BY '\\';
Query OK, 1 row affected (0.01 sec)
Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

For more information about the LOAD DATA statement, see LOAD DATA Statement in the MySQL
documentation.

Step 6: Turn back on Amazon RDS automated backups

If you turned off Amazon RDS automated backups in Step 4, after the load is finished, turn
automated backups on by setting the backup retention period back to its preload value. As noted
in Step 4, Amazon RDS restarts the DB instance, so be prepared for a brief outage.

The following example runs the AWS CLI modify-db-instance command to turn on automated
backups for the AcmeRDS DB instance and set the retention period to one day:

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier AcmeRDS \
 --backup-retention-period 1 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier AcmeRDS ^
 --backup-retention-period 1 ^
 --apply-immediately

Importing data from any source 2765

https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

Working with MariaDB replication in Amazon RDS

You usually use read replicas to configure replication between Amazon RDS DB instances. For
general information about read replicas, see Working with DB instance read replicas. For specific
information about working with read replicas on Amazon RDS for MariaDB, see Working with
MariaDB read replicas.

You can also configure replication based on binary log coordinates for a MariaDB DB instance.
For MariaDB instances, you can also configure replication based on global transaction IDs (GTIDs),
which provides better crash safety. For more information, see Configuring GTID-based replication
with an external source instance.

The following are other replication options available with RDS for MariaDB:

• You can set up replication between an RDS for MariaDB DB instance and a MySQL or MariaDB
instance that is external to Amazon RDS. For information about configuring replication with
an external source, see Configuring binary log file position replication with an external source
instance.

• You can configure replication to import databases from a MySQL or MariaDB instance that
is external to Amazon RDS, or to export databases to such instances. For more information,
see Importing data to an Amazon RDS for MariaDB DB instance with reduced downtime and
Exporting data from a MySQL DB instance by using replication.

For any of these replication options, you can use either row-based replication, statement-based,
or mixed replication. Row-based replication only replicates the changed rows that result from a
SQL statement. Statement-based replication replicates the entire SQL statement. Mixed replication
uses statement-based replication when possible, but switches to row-based replication when
SQL statements that are unsafe for statement-based replication are run. In most cases, mixed
replication is recommended. The binary log format of the DB instance determines whether
replication is row-based, statement-based, or mixed. For information about setting the binary log
format, see Configuring MariaDB binary logging.

For information about replication compatibility between MariaDB versions, see Replication
Compatibility in the MariaDB documentation.

Topics

• Working with MariaDB read replicas

MariaDB replication 2766

https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/#replication-compatibility
https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/#replication-compatibility

Amazon Relational Database Service User Guide

• Configuring GTID-based replication with an external source instance

• Configuring binary log file position replication with an external source instance

Working with MariaDB read replicas

Following, you can find specific information about working with read replicas on Amazon RDS for
MariaDB. For general information about read replicas and instructions for using them, see Working
with DB instance read replicas.

• Configuring replication filters with MariaDB

• Configuring delayed replication with MariaDB

• Updating read replicas with MariaDB

• Working with Multi-AZ read replica deployments with MariaDB

• Using cascading read replicas with RDS for MariaDB

• Monitoring MariaDB read replicas

• Starting and stopping replication with MariaDB read replicas

• Troubleshooting a MariaDB read replica problem

Configuring read replicas with MariaDB

Before a MariaDB DB instance can serve as a replication source, make sure to turn on automatic
backups on the source DB instance by setting the backup retention period to a value other than
0. This requirement also applies to a read replica that is the source DB instance for another read
replica.

You can create up to 15 read replicas from one DB instance within the same Region. For replication
to operate effectively, each read replica should have as the same amount of compute and storage
resources as the source DB instance. If you scale the source DB instance, also scale the read replicas.

RDS for MariaDB supports cascading read replicas. To learn how to configure cascading read
replicas, see Using cascading read replicas with RDS for MariaDB.

You can run multiple read replica create and delete actions at the same time that reference the
same source DB instance. When you perform these actions, stay within the limit of 15 read replicas
for each source instance.

MariaDB read replicas 2767

Amazon Relational Database Service User Guide

Configuring replication filters with MariaDB

You can use replication filters to specify which databases and tables are replicated with a read
replica. Replication filters can include databases and tables in replication or exclude them from
replication.

The following are some use cases for replication filters:

• To reduce the size of a read replica. With replication filtering, you can exclude the databases and
tables that aren't needed on the read replica.

• To exclude databases and tables from read replicas for security reasons.

• To replicate different databases and tables for specific use cases at different read replicas. For
example, you might use specific read replicas for analytics or sharding.

• For a DB instance that has read replicas in different AWS Regions, to replicate different databases
or tables in different AWS Regions.

Note

You can also use replication filters to specify which databases and tables are replicated
with a primary MariaDB DB instance that is configured as a replica in an inbound replication
topology. For more information about this configuration, see Configuring binary log file
position replication with an external source instance.

Topics

• Setting replication filtering parameters for RDS for MariaDB

• Replication filtering limitations for RDS for MariaDB

• Replication filtering examples for RDS for MariaDB

• Viewing the replication filters for a read replica

Setting replication filtering parameters for RDS for MariaDB

To configure replication filters, set the following replication filtering parameters on the read
replica:

MariaDB read replicas 2768

Amazon Relational Database Service User Guide

• replicate-do-db – Replicate changes to the specified databases. When you set this parameter
for a read replica, only the databases specified in the parameter are replicated.

• replicate-ignore-db – Don't replicate changes to the specified databases. When the
replicate-do-db parameter is set for a read replica, this parameter isn't evaluated.

• replicate-do-table – Replicate changes to the specified tables. When you set this parameter
for a read replica, only the tables specified in the parameter are replicated. Also, when the
replicate-do-db or replicate-ignore-db parameter is set, the database that includes the
specified tables must be included in replication with the read replica.

• replicate-ignore-table – Don't replicate changes to the specified tables. When the
replicate-do-table parameter is set for a read replica, this parameter isn't evaluated.

• replicate-wild-do-table – Replicate tables based on the specified database and table
name patterns. The % and _ wildcard characters are supported. When the replicate-do-db or
replicate-ignore-db parameter is set, make sure to include the database that includes the
specified tables in replication with the read replica.

• replicate-wild-ignore-table – Don't replicate tables based on the specified database and
table name patterns. The % and _ wildcard characters are supported. When the replicate-do-
table or replicate-wild-do-table parameter is set for a read replica, this parameter isn't
evaluated.

The parameters are evaluated in the order that they are listed. For more information about how
these parameters work, see the MariaDB documentation.

By default, each of these parameters has an empty value. On each read replica, you can use these
parameters to set, change, and delete replication filters. When you set one of these parameters,
separate each filter from others with a comma.

You can use the % and _ wildcard characters in the replicate-wild-do-table and replicate-
wild-ignore-table parameters. The % wildcard matches any number of characters, and the _
wildcard matches only one character.

The binary logging format of the source DB instance is important for replication because it
determines the record of data changes. The setting of the binlog_format parameter determines
whether the replication is row-based or statement-based. For more information, see Configuring
MariaDB binary logging.

MariaDB read replicas 2769

https://mariadb.com/kb/en/replication-filters/#replication-filters-for-replication-slaves

Amazon Relational Database Service User Guide

Note

All data definition language (DDL) statements are replicated as statements, regardless of
the binlog_format setting on the source DB instance.

Replication filtering limitations for RDS for MariaDB

The following limitations apply to replication filtering for RDS for MariaDB:

• Each replication filtering parameter has a 2,000-character limit.

• Commas aren't supported in replication filters.

• The MariaDB binlog_do_db and binlog_ignore_db options for binary log filtering aren't
supported.

• Replication filtering doesn't support XA transactions.

For more information, see Restrictions on XA Transactions in the MySQL documentation.

• Replication filtering isn't supported for RDS for MariaDB version 10.2.

Replication filtering examples for RDS for MariaDB

To configure replication filtering for a read replica, modify the replication filtering parameters in
the parameter group associated with the read replica.

Note

You can't modify a default parameter group. If the read replica is using a default parameter
group, create a new parameter group and associate it with the read replica. For more
information on DB parameter groups, see Parameter groups for Amazon RDS.

You can set parameters in a parameter group using the AWS Management Console, AWS CLI, or
RDS API. For information about setting parameters, see Modifying parameters in a DB parameter
group in Amazon RDS. When you set parameters in a parameter group, all of the DB instances
associated with the parameter group use the parameter settings. If you set the replication filtering
parameters in a parameter group, make sure that the parameter group is associated only with read
replicas. Leave the replication filtering parameters empty for source DB instances.

MariaDB read replicas 2770

https://dev.mysql.com/doc/refman/8.0/en/xa-restrictions.html

Amazon Relational Database Service User Guide

The following examples set the parameters using the AWS CLI. These examples set ApplyMethod
to immediate so that the parameter changes occur immediately after the CLI command
completes. If you want a pending change to be applied after the read replica is rebooted, set
ApplyMethod to pending-reboot.

The following examples set replication filters:

• Including databases in replication

• Including tables in replication

• Including tables in replication with wildcard characters

• Escaping wildcard characters in names

• Excluding databases from replication

• Excluding tables from replication

• Excluding tables from replication using wildcard characters

Example Including databases in replication

The following example includes the mydb1 and mydb2 databases in replication. When you set
replicate-do-db for a read replica, only the databases specified in the parameter are replicated.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "[{"ParameterName": "replicate-do-db", "ParameterValue": "mydb1,mydb2",
 "ApplyMethod":"immediate"}]"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "[{"ParameterName": "replicate-do-db", "ParameterValue": "mydb1,mydb2",
 "ApplyMethod":"immediate"}]"

Example Including tables in replication

The following example includes the table1 and table2 tables in database mydb1 in replication.

MariaDB read replicas 2771

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "[{"ParameterName": "replicate-do-table", "ParameterValue":
 "mydb1.table1,mydb1.table2", "ApplyMethod":"immediate"}]"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "[{"ParameterName": "replicate-do-table", "ParameterValue":
 "mydb1.table1,mydb1.table2", "ApplyMethod":"immediate"}]"

Example Including tables in replication using wildcard characters

The following example includes tables with names that begin with orders and returns in
database mydb in replication.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "[{"ParameterName": "replicate-wild-do-table", "ParameterValue":
 "mydb.orders%,mydb.returns%", "ApplyMethod":"immediate"}]"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "[{"ParameterName": "replicate-wild-do-table", "ParameterValue":
 "mydb.orders%,mydb.returns%", "ApplyMethod":"immediate"}]"

Example Escaping wildcard characters in names

The following example shows you how to use the escape character \ to escape a wildcard character
that is part of a name.

Assume that you have several table names in database mydb1 that start with my_table, and you
want to include these tables in replication. The table names include an underscore, which is also a
wildcard character, so the example escapes the underscore in the table names.

MariaDB read replicas 2772

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "[{"ParameterName": "replicate-wild-do-table", "ParameterValue": "my
_table%", "ApplyMethod":"immediate"}]"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "[{"ParameterName": "replicate-wild-do-table", "ParameterValue": "my
_table%", "ApplyMethod":"immediate"}]"

Example Excluding databases from replication

The following example excludes the mydb1 and mydb2 databases from replication.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "[{"ParameterName": "replicate-ignore-db", "ParameterValue":
 "mydb1,mydb2", "ApplyMethod":"immediate"}]"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "[{"ParameterName": "replicate-ignore-db", "ParameterValue":
 "mydb1,mydb2", "ApplyMethod":"immediate"}]"

Example Excluding tables from replication

The following example excludes tables table1 and table2 in database mydb1 from replication.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \

MariaDB read replicas 2773

Amazon Relational Database Service User Guide

 --parameters "[{"ParameterName": "replicate-ignore-table", "ParameterValue":
 "mydb1.table1,mydb1.table2", "ApplyMethod":"immediate"}]"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "[{"ParameterName": "replicate-ignore-table", "ParameterValue":
 "mydb1.table1,mydb1.table2", "ApplyMethod":"immediate"}]"

Example Excluding tables from replication using wildcard characters

The following example excludes tables with names that begin with orders and returns in
database mydb from replication.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "[{"ParameterName": "replicate-wild-ignore-table", "ParameterValue":
 "mydb.orders%,mydb.returns%", "ApplyMethod":"immediate"}]"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "[{"ParameterName": "replicate-wild-ignore-table", "ParameterValue":
 "mydb.orders%,mydb.returns%", "ApplyMethod":"immediate"}]"

Viewing the replication filters for a read replica

You can view the replication filters for a read replica in the following ways:

• Check the settings of the replication filtering parameters in the parameter group associated with
the read replica.

For instructions, see Viewing parameter values for a DB parameter group in Amazon RDS.

• In a MariaDB client, connect to the read replica and run the SHOW REPLICA STATUS statement.

In the output, the following fields show the replication filters for the read replica:

• Replicate_Do_DB

MariaDB read replicas 2774

Amazon Relational Database Service User Guide

• Replicate_Ignore_DB

• Replicate_Do_Table

• Replicate_Ignore_Table

• Replicate_Wild_Do_Table

• Replicate_Wild_Ignore_Table

For more information about these fields, see Checking Replication Status in the MySQL
documentation.

Note

Previous versions of MariaDB used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MariaDB version before 10.5, then use SHOW SLAVE STATUS.

Configuring delayed replication with MariaDB

You can use delayed replication as a strategy for disaster recovery. With delayed replication, you
specify the minimum amount of time, in seconds, to delay replication from the source to the
read replica. In the event of a disaster, such as a table deleted unintentionally, you complete the
following steps to recover from the disaster quickly:

• Stop replication to the read replica before the change that caused the disaster is sent to it.

To stop replication, use the mysql.rds_stop_replication stored procedure.

• Promote the read replica to be the new source DB instance by using the instructions in
Promoting a read replica to be a standalone DB instance.

Note

• Delayed replication is supported for MariaDB 10.6 and higher.

• Use stored procedures to configure delayed replication. You can't configure delayed
replication with the AWS Management Console, the AWS CLI, or the Amazon RDS API.

• You can use replication based on global transaction identifiers (GTIDs) in a delayed
replication configuration.

MariaDB read replicas 2775

https://dev.mysql.com/doc/refman/8.0/en/replication-administration-status.html

Amazon Relational Database Service User Guide

Topics

• Configuring delayed replication during read replica creation

• Modifying delayed replication for an existing read replica

• Promoting a read replica

Configuring delayed replication during read replica creation

To configure delayed replication for any future read replica created from a DB instance, run the
mysql.rds_set_configuration stored procedure with the target delay parameter.

To configure delayed replication during read replica creation

1. Using a MariaDB client, connect to the MariaDB DB instance to be the source for read replicas
as the master user.

2. Run the mysql.rds_set_configuration stored procedure with the target delay parameter.

For example, run the following stored procedure to specify that replication is delayed by at
least one hour (3,600 seconds) for any read replica created from the current DB instance.

call mysql.rds_set_configuration('target delay', 3600);

Note

After running this stored procedure, any read replica you create using the AWS CLI or
Amazon RDS API is configured with replication delayed by the specified number of
seconds.

Modifying delayed replication for an existing read replica

To modify delayed replication for an existing read replica, run the mysql.rds_set_source_delay
stored procedure.

To modify delayed replication for an existing read replica

1. Using a MariaDB client, connect to the read replica as the master user.

2. Use the mysql.rds_stop_replication stored procedure to stop replication.

3. Run the mysql.rds_set_source_delay stored procedure.

MariaDB read replicas 2776

Amazon Relational Database Service User Guide

For example, run the following stored procedure to specify that replication to the read replica
is delayed by at least one hour (3600 seconds).

call mysql.rds_set_source_delay(3600);

4. Use the mysql.rds_start_replication stored procedure to start replication.

Promoting a read replica

After replication is stopped, in a disaster recovery scenario, you can promote a read replica to be
the new source DB instance. For information about promoting a read replica, see Promoting a read
replica to be a standalone DB instance.

Updating read replicas with MariaDB

Read replicas are designed to support read queries, but you might need occasional updates. For
example, you might need to add an index to speed the specific types of queries accessing the
replica. You can enable updates by setting the read_only parameter to 0 in the DB parameter
group for the read replica.

Working with Multi-AZ read replica deployments with MariaDB

You can create a read replica from either single-AZ or Multi-AZ DB instance deployments. You
use Multi-AZ deployments to improve the durability and availability of critical data, but you can't
use the Multi-AZ secondary to serve read-only queries. Instead, you can create read replicas from
high-traffic Multi-AZ DB instances to offload read-only queries. If the source instance of a Multi-
AZ deployment fails over to the secondary, any associated read replicas automatically switch to use
the secondary (now primary) as their replication source. For more information, see Configuring and
managing a Multi-AZ deployment for Amazon RDS.

You can create a read replica as a Multi-AZ DB instance. Amazon RDS creates a standby of your
replica in another Availability Zone for failover support for the replica. Creating your read replica as
a Multi-AZ DB instance is independent of whether the source database is a Multi-AZ DB instance.

Using cascading read replicas with RDS for MariaDB

RDS for MariaDB supports cascading read replicas. With cascading read replicas, you can scale reads
without adding overhead to your source RDS for MariaDB DB instance.

MariaDB read replicas 2777

Amazon Relational Database Service User Guide

With cascading read replicas, your RDS for MariaDB DB instance sends data to the first read replica
in the chain. That read replica then sends data to the second replica in the chain, and so on. The
end result is that all read replicas in the chain have the changes from the RDS for MariaDB DB
instance, but without the overhead solely on the source DB instance.

You can create a series of up to three read replicas in a chain from a source RDS for MariaDB DB
instance. For example, suppose that you have an RDS for MariaDB DB instance, mariadb-main.
You can do the following:

• Starting with mariadb-main, create the first read replica in the chain, read-replica-1.

• Next, from read-replica-1, create the next read replica in the chain, read-replica-2.

• Finally, from read-replica-2, create the third read replica in the chain, read-replica-3.

You can't create another read replica beyond this third cascading read replica in the series for
mariadb-main. A complete series of instances from an RDS for MariaDB source DB instance
through to the end of a series of cascading read replicas can consist of at most four DB instances.

For cascading read replicas to work, each source RDS for MariaDB DB instance must have
automated backups turned on. To turn on automatic backups on a read replica, first create the read
replica, and then modify the read replica to turn on automatic backups. For more information, see
Creating a read replica.

As with any read replica, you can promote a read replica that's part of a cascade. Promoting a
read replica from within a chain of read replicas removes that replica from the chain. For example,
suppose that you want to move some of the workload from your mariadb-main DB instance to a
new instance for use by the accounting department only. Assuming the chain of three read replicas
from the example, you decide to promote read-replica-2. The chain is affected as follows:

• Promoting read-replica-2 removes it from the replication chain.

• It is now a full read/write DB instance.

• It continues replicating to read-replica-3, just as it was doing before promotion.

• Your mariadb-main continues replicating to read-replica-1.

For more information about promoting read replicas, see Promoting a read replica to be a
standalone DB instance.

MariaDB read replicas 2778

Amazon Relational Database Service User Guide

Monitoring MariaDB read replicas

For MariaDB read replicas, you can monitor replication lag in Amazon CloudWatch by viewing
the Amazon RDS ReplicaLag metric. The ReplicaLag metric reports the value of the
Seconds_Behind_Master field of the SHOW REPLICA STATUS command.

Note

Previous versions of MariaDB used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MariaDB version before 10.5, then use SHOW SLAVE STATUS.

Common causes for replication lag for MariaDB are the following:

• A network outage.

• Writing to tables with indexes on a read replica. If the read_only parameter is not set to 0 on
the read replica, it can break replication.

• Using a nontransactional storage engine such as MyISAM. Replication is only supported for the
InnoDB storage engine on MariaDB.

When the ReplicaLag metric reaches 0, the replica has caught up to the source DB instance. If
the ReplicaLag metric returns -1, then replication is currently not active. ReplicaLag = -1 is
equivalent to Seconds_Behind_Master = NULL.

Starting and stopping replication with MariaDB read replicas

You can stop and restart the replication process on an Amazon RDS DB instance by calling the
system stored procedures mysql.rds_stop_replication and mysql.rds_start_replication. You can do
this when replicating between two Amazon RDS instances for long-running operations such as
creating large indexes. You also need to stop and start replication when importing or exporting
databases. For more information, see Importing data to an Amazon RDS for MySQL database with
reduced downtime and Exporting data from a MySQL DB instance by using replication.

If replication is stopped for more than 30 consecutive days, either manually or due to a replication
error, Amazon RDS ends replication between the source DB instance and all read replicas. It does so
to prevent increased storage requirements on the source DB instance and long failover times. The
read replica DB instance is still available. However, replication can't be resumed because the binary

MariaDB read replicas 2779

Amazon Relational Database Service User Guide

logs required by the read replica are deleted from the source DB instance after replication is ended.
You can create a new read replica for the source DB instance to reestablish replication.

Troubleshooting a MariaDB read replica problem

The replication technologies for MariaDB are asynchronous. Because they are asynchronous,
occasional BinLogDiskUsage increases on the source DB instance and ReplicaLag on the
read replica are to be expected. For example, a high volume of write operations to the source DB
instance can occur in parallel. In contrast, write operations to the read replica are serialized using a
single I/O thread, which can lead to a lag between the source instance and read replica. For more
information about read-only replicas in the MariaDB documentation, go to Replication overview.

You can do several things to reduce the lag between updates to a source DB instance and the
subsequent updates to the read replica, such as the following:

• Sizing a read replica to have a storage size and DB instance class comparable to the source DB
instance.

• Ensuring that parameter settings in the DB parameter groups used by the source DB instance and
the read replica are compatible. For more information and an example, see the discussion of the
max_allowed_packet parameter later in this section.

Amazon RDS monitors the replication status of your read replicas and updates the Replication
State field of the read replica instance to Error if replication stops for any reason. An example
might be if DML queries run on your read replica conflict with the updates made on the source DB
instance.

You can review the details of the associated error thrown by the MariaDB engine by viewing the
Replication Error field. Events that indicate the status of the read replica are also generated,
including RDS-EVENT-0045, RDS-EVENT-0046, and RDS-EVENT-0047. For more information about
events and subscribing to events, see Working with Amazon RDS event notification. If a MariaDB
error message is returned, review the error in the MariaDB error message documentation.

One common issue that can cause replication errors is when the value for the
max_allowed_packet parameter for a read replica is less than the max_allowed_packet
parameter for the source DB instance. The max_allowed_packet parameter is a custom
parameter that you can set in a DB parameter group that is used to specify the maximum
size of DML code that can be run on the database. In some cases, the max_allowed_packet
parameter value in the DB parameter group associated with a source DB instance is smaller than

MariaDB read replicas 2780

http://mariadb.com/kb/en/mariadb/replication-overview/
http://mariadb.com/kb/en/mariadb/mariadb-error-codes/

Amazon Relational Database Service User Guide

the max_allowed_packet parameter value in the DB parameter group associated with the
source's read replica. In these cases, the replication process can throw an error (Packet bigger than
'max_allowed_packet' bytes) and stop replication. You can fix the error by having the source and
read replica use DB parameter groups with the same max_allowed_packet parameter values.

Other common situations that can cause replication errors include the following:

• Writing to tables on a read replica. If you are creating indexes on a read replica, you need to have
the read_only parameter set to 0 to create the indexes. If you are writing to tables on the read
replica, it might break replication.

• Using a non-transactional storage engine such as MyISAM. read replicas require a transactional
storage engine. Replication is only supported for the InnoDB storage engine on MariaDB.

• Using unsafe nondeterministic queries such as SYSDATE(). For more information, see
Determination of safe and unsafe statements in binary logging.

If you decide that you can safely skip an error, you can follow the steps described in Skipping
the current replication error for RDS for MySQL. Otherwise, you can delete the read replica and
create an instance using the same DB instance identifier so that the endpoint remains the same as
that of your old read replica. If a replication error is fixed, the Replication State changes to
replicating.

For MariaDB DB instances, in some cases read replicas can't be switched to the secondary if some
binary log (binlog) events aren't flushed during the failure. In these cases, manually delete and
recreate the read replicas. You can reduce the chance of this happening by setting the following
parameter values: sync_binlog=1 and innodb_flush_log_at_trx_commit=1. These settings
might reduce performance, so test their impact before implementing the changes in a production
environment.

Configuring GTID-based replication with an external source instance

You can set up replication based on global transaction identifiers (GTIDs) from an external MariaDB
instance of version 10.0.24 or higher into an RDS for MariaDB DB instance. Follow these guidelines
when you set up an external source instance and a replica on Amazon RDS:

• Monitor failover events for the RDS for MariaDB DB instance that is your replica. If a failover
occurs, then the DB instance that is your replica might be recreated on a new host with a
different network address. For information on how to monitor failover events, see Working with
Amazon RDS event notification.

Configuring GTID-based replication with an external source instance 2781

https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html

Amazon Relational Database Service User Guide

• Maintain the binary logs (binlogs) on your source instance until you have verified that they have
been applied to the replica. This maintenance ensures that you can restore your source instance
in the event of a failure.

• Turn on automated backups on your MariaDB DB instance on Amazon RDS. Turning on
automated backups ensures that you can restore your replica to a particular point in time if you
need to resynchronize your source instance and replica. For information on backups and Point-In-
Time Restore, see Backing up, restoring, and exporting data.

Note

The permissions required to start replication on a MariaDB DB instance are restricted and
not available to your Amazon RDS master user. Because of this, you must use the Amazon
RDS mysql.rds_set_external_master_gtid and mysql.rds_start_replication commands to set
up replication between your live database and your RDS for MariaDB database.

To start replication between an external source instance and a MariaDB DB instance on Amazon
RDS, use the following procedure.

To start replication

1. Make the source MariaDB instance read-only:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

2. Get the current GTID of the external MariaDB instance. You can do this by using mysql or the
query editor of your choice to run SELECT @@gtid_current_pos;.

The GTID is formatted as <domain-id>-<server-id>-<sequence-id>. A typical GTID
looks something like 0-1234510749-1728. For more information about GTIDs and their
component parts, see Global transaction ID in the MariaDB documentation.

3. Copy the database from the external MariaDB instance to the MariaDB DB instance using
mysqldump. For very large databases, you might want to use the procedure in Importing data
to an Amazon RDS for MySQL database with reduced downtime.

For Linux, macOS, or Unix:

Configuring GTID-based replication with an external source instance 2782

http://mariadb.com/kb/en/mariadb/global-transaction-id/

Amazon Relational Database Service User Guide

mysqldump \
 --databases database_name \
 --single-transaction \
 --compress \
 --order-by-primary \
 -u local_user \
 -plocal_password | mysql \
 --host=hostname \
 --port=3306 \
 -u RDS_user_name \
 -pRDS_password

For Windows:

mysqldump ^
 --databases database_name ^
 --single-transaction ^
 --compress ^
 --order-by-primary \
 -u local_user \
 -plocal_password | mysql ^
 --host=hostname ^
 --port=3306 ^
 -u RDS_user_name ^
 -pRDS_password

Note

Make sure that there isn't a space between the -p option and the entered password.
Specify a password other than the prompt shown here as a security best practice.

Use the --host, --user (-u), --port and -p options in the mysql command to specify
the host name, user name, port, and password to connect to your MariaDB DB instance.
The host name is the DNS name from the MariaDB DB instance endpoint, for example
myinstance.123456789012.us-east-1.rds.amazonaws.com. You can find the endpoint
value in the instance details in the Amazon RDS Management Console.

4. Make the source MariaDB instance writeable again.

Configuring GTID-based replication with an external source instance 2783

Amazon Relational Database Service User Guide

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

5. In the Amazon RDS Management Console, add the IP address of the server that hosts the
external MariaDB database to the VPC security group for the MariaDB DB instance. For more
information on modifying a VPC security group, go to Security groups for your VPC in the
Amazon Virtual Private Cloud User Guide.

The IP address can change when the following conditions are met:

• You are using a public IP address for communication between the external source instance
and the DB instance.

• The external source instance was stopped and restarted.

If these conditions are met, verify the IP address before adding it.

You might also need to configure your local network to permit connections from the IP
address of your MariaDB DB instance, so that it can communicate with your external MariaDB
instance. To find the IP address of the MariaDB DB instance, use the host command.

host db_instance_endpoint

The host name is the DNS name from the MariaDB DB instance endpoint.

6. Using the client of your choice, connect to the external MariaDB instance and create a
MariaDB user to be used for replication. This account is used solely for replication and must be
restricted to your domain to improve security. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

Note

Specify a password other than the prompt shown here as a security best practice.

7. For the external MariaDB instance, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. For example, to grant the REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain,
issue the following command.

Configuring GTID-based replication with an external source instance 2784

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Relational Database Service User Guide

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

8. Make the MariaDB DB instance the replica. Connect to the MariaDB DB instance as the master
user and identify the external MariaDB database as the replication source instance by using the
mysql.rds_set_external_master_gtid command. Use the GTID that you determined in Step 2.
The following is an example.

CALL mysql.rds_set_external_master_gtid ('mymasterserver.mydomain.com', 3306,
 'repl_user', 'password', 'GTID', 1);

Note

Specify a password other than the prompt shown here as a security best practice.

9. On the MariaDB DB instance, issue the mysql.rds_start_replication command to start
replication.

CALL mysql.rds_start_replication;

Configuring binary log file position replication with an external source
instance

You can set up replication between an RDS for MySQL or MariaDB DB instance and a MySQL or
MariaDB instance that is external to Amazon RDS using binary log file replication.

Topics

• Before you begin

• Configuring binary log file position replication with an external source instance

Before you begin

You can configure replication using the binary log file position of replicated transactions.

The permissions required to start replication on an Amazon RDS DB instance are restricted and not
available to your Amazon RDS master user. Because of this, make sure that you use the Amazon

Configuring binary log file position replication with an external source instance 2785

Amazon Relational Database Service User Guide

RDS mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0
and lower) or mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher), and
mysql.rds_start_replication commands to set up replication between your live database and your
Amazon RDS database.

To set the binary logging format for a MySQL or MariaDB database, update the binlog_format
parameter. If your DB instance uses the default DB instance parameter group, create a new DB
parameter group to modify the binlog_format parameter. In MariaDB and MySQL 8.0 and lower
versions, binlog_format defaults to MIXED. However, you can also set binlog_format to ROW
or STATEMENT if you need a specific binary log (binlog) format. Reboot your DB instance for the
change to take effect. In MySQL 8.4 and higher versions, binlog_format defaults to ROW.

For information about setting the binlog_format parameter, see Configuring RDS for MySQL
binary logging. For information about the implications of different MySQL replication types,
see Advantages and disadvantages of statement-based and row-based replication in the MySQL
documentation.

Configuring binary log file position replication with an external source instance

Follow these guidelines when you set up an external source instance and a replica on Amazon RDS:

• Monitor failover events for the Amazon RDS DB instance that is your replica. If a failover occurs,
then the DB instance that is your replica might be recreated on a new host with a different
network address. For information on how to monitor failover events, see Working with Amazon
RDS event notification.

• Maintain the binlogs on your source instance until you have verified that they have been applied
to the replica. This maintenance makes sure that you can restore your source instance in the
event of a failure.

• Turn on automated backups on your Amazon RDS DB instance. Turning on automated backups
makes sure that you can restore your replica to a particular point in time if you need to re-
synchronize your source instance and replica. For information on backups and point-in-time
restore, see Backing up, restoring, and exporting data.

To configure binary log file replication with an external source instance

1. Make the source MySQL or MariaDB instance read-only.

mysql> FLUSH TABLES WITH READ LOCK;

Configuring binary log file position replication with an external source instance 2786

https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html

Amazon Relational Database Service User Guide

mysql> SET GLOBAL read_only = ON;

2. Run the SHOW MASTER STATUS command on the source MySQL or MariaDB instance to
determine the binlog location.

You receive output similar to the following example.

File Position

 mysql-bin-changelog.000031 107

3. Copy the database from the external instance to the Amazon RDS DB instance using
mysqldump. For very large databases, you might want to use the procedure in Importing data
to an Amazon RDS for MySQL database with reduced downtime.

For Linux, macOS, or Unix:

mysqldump --databases database_name \
 --single-transaction \
 --compress \
 --order-by-primary \
 -u local_user \
 -plocal_password | mysql \
 --host=hostname \
 --port=3306 \
 -u RDS_user_name \
 -pRDS_password

For Windows:

mysqldump --databases database_name ^
 --single-transaction ^
 --compress ^
 --order-by-primary ^
 -u local_user ^
 -plocal_password | mysql ^
 --host=hostname ^
 --port=3306 ^
 -u RDS_user_name ^
 -pRDS_password

Configuring binary log file position replication with an external source instance 2787

Amazon Relational Database Service User Guide

Note

Make sure that there isn't a space between the -p option and the entered password.

To specify the host name, user name, port, and password to connect to your Amazon RDS DB
instance, use the --host, --user (-u), --port and -p options in the mysql command.
The host name is the Domain Name Service (DNS) name from the Amazon RDS DB instance
endpoint, for example myinstance.123456789012.us-east-1.rds.amazonaws.com.
You can find the endpoint value in the instance details in the AWS Management Console.

4. Make the source MySQL or MariaDB instance writeable again.

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

For more information on making backups for use with replication, see the MySQL
documentation.

5. In the AWS Management Console, add the IP address of the server that hosts the external
database to the virtual private cloud (VPC) security group for the Amazon RDS DB instance.
For more information on modifying a VPC security group, see Security groups for your VPC in
the Amazon Virtual Private Cloud User Guide.

The IP address can change when the following conditions are met:

• You are using a public IP address for communication between the external source instance
and the DB instance.

• The external source instance was stopped and restarted.

If these conditions are met, verify the IP address before adding it.

You might also need to configure your local network to permit connections from the
IP address of your Amazon RDS DB instance. You do this so that your local network can
communicate with your external MySQL or MariaDB instance. To find the IP address of the
Amazon RDS DB instance, use the host command.

host db_instance_endpoint

Configuring binary log file position replication with an external source instance 2788

https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Relational Database Service User Guide

The host name is the DNS name from the Amazon RDS DB instance endpoint.

6. Using the client of your choice, connect to the external instance and create a user to use for
replication. Use this account solely for replication and restrict it to your domain to improve
security. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

Note

Specify a password other than the prompt shown here as a security best practice.

7. For the external instance, grant REPLICATION CLIENT and REPLICATION SLAVE privileges
to your replication user. For example, to grant the REPLICATION CLIENT and REPLICATION
SLAVE privileges on all databases for the 'repl_user' user for your domain, issue the
following command.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

8. Make the Amazon RDS DB instance the replica. To do so, first connect to the Amazon RDS DB
instance as the master user. Then identify the external MySQL or MariaDB database as the
source instance by using the mysql.rds_set_external_source (RDS for MySQL major versions
8.4 and higher) or mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major
versions 8.0 and lower) command. Use the master log file name and master log position that
you determined in step 2. The following commands are examples.

MySQL 8.4

CALL mysql.rds_set_external_source ('mysourceserver.mydomain.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

MariaDB and MySQL 8.0 and 5.7

CALL mysql.rds_set_external_master ('mymasterserver.mydomain.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

Configuring binary log file position replication with an external source instance 2789

Amazon Relational Database Service User Guide

Note

On RDS for MySQL, you can choose to use delayed replication by running the
mysql.rds_set_external_source_with_delay (RDS for MySQL major versions 8.4
and higher) or mysql.rds_set_external_master_with_delay (RDS for MariaDB
and RDS for MySQL major versions 8.0 and lower) stored procedure instead.
On RDS for MySQL, one reason to use delayed replication is to turn on
disaster recovery with the mysql.rds_start_replication_until stored procedure.
Currently, RDS for MariaDB supports delayed replication but doesn't support the
mysql.rds_start_replication_until procedure.

9. On the Amazon RDS DB instance, issue the mysql.rds_start_replication command to start
replication.

CALL mysql.rds_start_replication;

Configuring binary log file position replication with an external source instance 2790

Amazon Relational Database Service User Guide

Options for MariaDB database engine

Following, you can find descriptions for options, or additional features, that are available for
Amazon RDS instances running the MariaDB DB engine. To turn on these options, you add them
to a custom option group, and then associate the option group with your DB instance. For more
information about working with option groups, see Working with option groups.

Amazon RDS supports the following options for MariaDB:

Option ID Engine versions

MARIADB_AUDIT_PLUGIN MariaDB 10.3 and higher

MariaDB Audit Plugin support

Amazon RDS supports using the MariaDB Audit Plugin on MariaDB database instances. The
MariaDB Audit Plugin records database activity such as users logging on to the database, queries
run against the database, and more. The record of database activity is stored in a log file.

Audit Plugin option settings

Amazon RDS supports the following settings for the MariaDB Audit Plugin option.

Note

If you don't configure an option setting in the RDS console, RDS uses the default setting.

Option
setting

Valid values Default
value

Description

SERVER_AU
DIT_FILE_
PATH

/rdsdbdat
a/log/aud
it/

/rdsdbdat
a/log/aud
it/

The location of the log file. The log file
contains the record of the activity specified
in SERVER_AUDIT_EVENTS . For more
information, see Viewing and listing database
log files and MariaDB database log files.

Options for MariaDB 2791

Amazon Relational Database Service User Guide

Option
setting

Valid values Default
value

Description

SERVER_AU
DIT_FILE_
ROTATE_SI
ZE

1–1000000
000

1000000 The size in bytes that when reached, causes
the file to rotate. For more information, see
Log rotation and retention for MariaDB.

SERVER_AU
DIT_FILE_
ROTATIONS

0–100 9 The number of log rotations to save when
server_audit_output_type=file .
If set to 0, then the log file never rotates.
For more information, see Log rotation and
retention for MariaDB and Downloading a
database log file.

MariaDB Audit Plugin support 2792

Amazon Relational Database Service User Guide

Option
setting

Valid values Default
value

Description

SERVER_AU
DIT_EVENT
S

CONNECT,
QUERY,
TABLE,
QUERY_DDL

,
QUERY_DML

,
QUERY_DML
_NO_SELEC
T ,
QUERY_DCL

CONNECT,
QUERY

The types of activity to record in the log.
Installing the MariaDB Audit Plugin is itself
logged.

• CONNECT: Log successful and unsuccessful
connections to the database, and disconnec
tions from the database.

• QUERY: Log the text of all queries run
against the database.

• TABLE: Log tables affected by queries when
the queries are run against the database.

• QUERY_DDL : Similar to the QUERY event,
but returns only data definition language
(DDL) queries (CREATE, ALTER, and so on).

• QUERY_DML : Similar to the QUERY
event, but returns only data manipulation
language (DML) queries (INSERT, UPDATE,
and so on, and also SELECT).

• QUERY_DML_NO_SELECT : Similar to the
QUERY_DML event, but doesn't log SELECT
queries.

• QUERY_DCL : Similar to the QUERY event,
but returns only data control language
(DCL) queries (GRANT, REVOKE, and so on).

SERVER_AU
DIT_INCL_
USERS

Multiple
comma-sep
arated values

None Include only activity from the specified
users. By default, activity is recorded for all
users. SERVER_AUDIT_INCL_USERS and
SERVER_AUDIT_EXCL_USERS are mutually
exclusive. If you add values to SERVER_AU
DIT_INCL_USERS , make sure no values are
added to SERVER_AUDIT_EXCL_USERS .

MariaDB Audit Plugin support 2793

Amazon Relational Database Service User Guide

Option
setting

Valid values Default
value

Description

SERVER_AU
DIT_EXCL_
USERS

Multiple
comma-sep
arated values

None Exclude activity from the specified users.
By default, activity is recorded for all users.
SERVER_AUDIT_INCL_USERS and
SERVER_AUDIT_EXCL_USERS are mutually
exclusive. If you add values to SERVER_AU
DIT_EXCL_USERS , make sure no values are
added to SERVER_AUDIT_INCL_USERS .

The rdsadmin user queries the database
every second to check the health of the
database. Depending on your other settings,
this activity can possibly cause the size of
your log file to grow very large, very quickly.
If you don't need to record this activity,
add the rdsadmin user to the SERVER_AU
DIT_EXCL_USERS list.

Note

CONNECT activity is always recorded
for all users, even if the user is
specified for this option setting.

SERVER_AU
DIT_LOGGI
NG

ON ON Logging is active. The only valid value is ON.
Amazon RDS does not support deactivating
logging. If you want to deactivate logging,
remove the MariaDB Audit Plugin. For more
information, see Removing the MariaDB Audit
Plugin.

SERVER_AU
DIT_QUERY
_LOG_LIMI
T

0–2147483
647

1024 The limit on the length of the query string in a
record.

MariaDB Audit Plugin support 2794

Amazon Relational Database Service User Guide

Adding the MariaDB Audit Plugin

The general process for adding the MariaDB Audit Plugin to a DB instance is the following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

After you add the MariaDB Audit Plugin, you don't need to restart your DB instance. As soon as the
option group is active, auditing begins immediately.

To add the MariaDB Audit Plugin

1. Determine the option group you want to use. You can create a new option group or use an
existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group. Choose mariadb for Engine, and choose 10.3 or
higher for Major engine version. For more information, see Creating an option group.

2. Add the MARIADB_AUDIT_PLUGIN option to the option group, and configure the option
settings. For more information about adding options, see Adding an option to an option group.
For more information about each setting, see Audit Plugin option settings.

3. Apply the option group to a new or existing DB instance.

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the DB instance and
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

Viewing and downloading the MariaDB Audit Plugin log

After you enable the MariaDB Audit Plugin, you access the results in the log files the same way you
access any other text-based log files. The audit log files are located at /rdsdbdata/log/audit/.
For information about viewing the log file in the console, see Viewing and listing database log files.
For information about downloading the log file, see Downloading a database log file.

MariaDB Audit Plugin support 2795

Amazon Relational Database Service User Guide

Modifying MariaDB Audit Plugin settings

After you enable the MariaDB Audit Plugin, you can modify settings for the plugin. For more
information about how to modify option settings, see Modifying an option setting. For more
information about each setting, see Audit Plugin option settings.

Removing the MariaDB Audit Plugin

Amazon RDS doesn't support turning off logging in the MariaDB Audit Plugin. However, you
can remove the plugin from a DB instance. When you remove the MariaDB Audit Plugin, the DB
instance is restarted automatically to stop auditing.

To remove the MariaDB Audit Plugin from a DB instance, do one of the following:

• Remove the MariaDB Audit Plugin option from the option group it belongs to. This change
affects all DB instances that use the option group. For more information, see Removing an option
from an option group

• Modify the DB instance and specify a different option group that doesn't include the plugin.
This change affects a single DB instance. You can specify the default (empty) option group,
or a different custom option group. For more information, see Modifying an Amazon RDS DB
instance.

MariaDB Audit Plugin support 2796

Amazon Relational Database Service User Guide

Parameters for MariaDB

By default, a MariaDB DB instance uses a DB parameter group that is specific to a MariaDB
database. This parameter group contains some but not all of the parameters contained in the
Amazon RDS DB parameter groups for the MySQL database engine. It also contains a number of
new, MariaDB-specific parameters. For information about working with parameter groups and
setting parameters, see Parameter groups for Amazon RDS.

Viewing MariaDB parameters

RDS for MariaDB parameters are set to the default values of the storage engine that you have
selected. For more information about MariaDB parameters, see the MariaDB documentation. For
more information about MariaDB storage engines, see Supported storage engines for MariaDB on
Amazon RDS.

You can view the parameters available for a specific RDS for MariaDB version using the RDS console
or the AWS CLI. For information about viewing the parameters in a MariaDB parameter group in
the RDS console, see Viewing parameter values for a DB parameter group in Amazon RDS.

Using the AWS CLI, you can view the parameters for an RDS for MariaDB version by running the
describe-engine-default-parameters command. Specify one of the following values for the
--db-parameter-group-family option:

• mariadb10.11

• mariadb10.6

• mariadb10.5

• mariadb10.4

• mariadb10.3

For example, to view the parameters for RDS for MariaDB version 10.6, run the following
command.

aws rds describe-engine-default-parameters --db-parameter-group-family mariadb10.6

Your output looks similar to the following.

{

Parameters for MariaDB 2797

http://mariadb.com/kb/en/mariadb/documentation/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-parameters.html

Amazon Relational Database Service User Guide

 "EngineDefaults": {
 "Parameters": [
 {
 "ParameterName": "alter_algorithm",
 "Description": "Specify the alter table algorithm.",
 "Source": "engine-default",
 "ApplyType": "dynamic",
 "DataType": "string",
 "AllowedValues": "DEFAULT,COPY,INPLACE,NOCOPY,INSTANT",
 "IsModifiable": true
 },
 {
 "ParameterName": "analyze_sample_percentage",
 "Description": "Percentage of rows from the table ANALYZE TABLE will
 sample to collect table statistics.",
 "Source": "engine-default",
 "ApplyType": "dynamic",
 "DataType": "float",
 "AllowedValues": "0-100",
 "IsModifiable": true
 },
 {
 "ParameterName": "aria_block_size",
 "Description": "Block size to be used for Aria index pages.",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "integer",
 "AllowedValues": "1024-32768",
 "IsModifiable": false
 },
 {
 "ParameterName": "aria_checkpoint_interval",
 "Description": "Interval in seconds between automatic checkpoints.",
 "Source": "engine-default",
 "ApplyType": "dynamic",
 "DataType": "integer",
 "AllowedValues": "0-4294967295",
 "IsModifiable": true
 },
 ...

To list only the modifiable parameters for RDS for MariaDB version 10.6, run the following
command.

Viewing MariaDB parameters 2798

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds describe-engine-default-parameters --db-parameter-group-family mariadb10.6 \
 --query 'EngineDefaults.Parameters[?IsModifiable==`true`]'

For Windows:

aws rds describe-engine-default-parameters --db-parameter-group-family mariadb10.6 ^
 --query "EngineDefaults.Parameters[?IsModifiable==`true`]"

MySQL parameters that aren't available

The following MySQL parameters are not available in MariaDB-specific DB parameter groups:

• bind_address

• binlog_error_action

• binlog_gtid_simple_recovery

• binlog_max_flush_queue_time

• binlog_order_commits

• binlog_row_image

• binlog_rows_query_log_events

• binlogging_impossible_mode

• block_encryption_mode

• core_file

• default_tmp_storage_engine

• div_precision_increment

• end_markers_in_json

• enforce_gtid_consistency

• eq_range_index_dive_limit

• explicit_defaults_for_timestamp

• gtid_executed

• gtid-mode

• gtid_next

• gtid_owned

MySQL parameters that aren't available 2799

Amazon Relational Database Service User Guide

• gtid_purged

• log_bin_basename

• log_bin_index

• log_bin_use_v1_row_events

• log_slow_admin_statements

• log_slow_slave_statements

• log_throttle_queries_not_using_indexes

• master-info-repository

• optimizer_trace

• optimizer_trace_features

• optimizer_trace_limit

• optimizer_trace_max_mem_size

• optimizer_trace_offset

• relay_log_info_repository

• rpl_stop_slave_timeout

• slave_parallel_workers

• slave_pending_jobs_size_max

• slave_rows_search_algorithms

• storage_engine

• table_open_cache_instances

• timed_mutexes

• transaction_allow_batching

• validate-password

• validate_password_dictionary_file

• validate_password_length

• validate_password_mixed_case_count

• validate_password_number_count

• validate_password_policy

• validate_password_special_char_count

For more information on MySQL parameters, see the MySQL documentation.

MySQL parameters that aren't available 2800

https://dev.mysql.com/doc/refman/8.0/en/

Amazon Relational Database Service User Guide

Migrating data from a MySQL DB snapshot to a MariaDB DB
instance

You can migrate an RDS for MySQL DB snapshot to a new DB instance running MariaDB using the
AWS Management Console, the AWS CLI, or Amazon RDS API. You must use a DB snapshot that was
created from an Amazon RDS DB instance running MySQL 5.6 or 5.7. To learn how to create an RDS
for MySQL DB snapshot, see Creating a DB snapshot for a Single-AZ DB instance for Amazon RDS.

Migrating the snapshot doesn't affect the original DB instance from which the snapshot was taken.
You can test and validate the new DB instance before diverting traffic to it as a replacement for the
original DB instance.

After you migrate from MySQL to MariaDB, the MariaDB DB instance is associated with the default
DB parameter group and option group. After you restore the DB snapshot, you can associate a
custom DB parameter group with the new DB instance. However, a MariaDB parameter group has
a different set of configurable system variables. For information about the differences between
MySQL and MariaDB system variables, see System Variable Differences between MariaDB and
MySQL. To learn about DB parameter groups, see Parameter groups for Amazon RDS. To learn
about option groups, see Working with option groups.

Performing the migration

You can migrate an RDS for MySQL DB snapshot to a new MariaDB DB instance using the AWS
Management Console, the AWS CLI, or the RDS API.

Console

To migrate a MySQL DB snapshot to a MariaDB DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots, and then select the MySQL DB snapshot you want
to migrate.

3. For Actions, choose Migrate snapshot. The Migrate database page appears.

4. For Migrate to DB Engine, choose mariadb.

Amazon RDS selects the DB engine version automatically. You can't change the DB engine
version.

Migrating data from a MySQL DB snapshot to a MariaDB DB instance 2801

https://mariadb.com/kb/en/system-variable-differences-between-mariadb-and-mysql/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-and-mysql/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. For the remaining sections, specify your DB instance settings. For information about each
setting, see Settings for DB instances.

6. Choose Migrate.

AWS CLI

To migrate data from a MySQL DB snapshot to a MariaDB DB instance, run the AWS CLI restore-
db-instance-from-db-snapshot command with the following options:

• --db-instance-identifier – Name of the DB instance to create from the DB snapshot.

• --db-snapshot-identifier – The identifier for the DB snapshot to restore from.

• --engine – The database engine to use for the new instance.

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-db-snapshot \
 --db-instance-identifier newmariadbinstance \

Performing the migration 2802

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html

Amazon Relational Database Service User Guide

 --db-snapshot-identifier mysqlsnapshot \
 --engine mariadb

For Windows:

aws rds restore-db-instance-from-db-snapshot ^
 --db-instance-identifier newmariadbinstance ^
 --db-snapshot-identifier mysqlsnapshot ^
 --engine mariadb

API

To migrate data from a MySQL DB snapshot to a MariaDB DB instance, call the Amazon RDS API
operation RestoreDBInstanceFromDBSnapshot.

Incompatibilities between MariaDB and MySQL

Incompatibilities between MySQL and MariaDB include the following:

• You can't migrate a DB snapshot created with MySQL 8.0 to MariaDB.

• If the source MySQL database uses a SHA256 password hash, make sure to reset user passwords
that are SHA256 hashed before you connect to the MariaDB database. The following code shows
how to reset a password that is SHA256 hashed.

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('new_password')
WHERE (User, Host) = ('master_user_name', %);
FLUSH PRIVILEGES;

• If your RDS master user account uses the SHA-256 password hash, make sure to reset the
password using the AWS Management Console, the modify-db-instance AWS CLI command,
or the ModifyDBInstance RDS API operation. For information about modifying a DB instance, see
Modifying an Amazon RDS DB instance.

• MariaDB doesn't support the Memcached plugin. However, the data used by the Memcached
plugin is stored as InnoDB tables. After you migrate a MySQL DB snapshot, you can access
the data used by the Memcached plugin using SQL. For more information about the
innodb_memcache database, see InnoDB memcached Plugin Internals.

Incompatibilities between MariaDB and MySQL 2803

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached-internals.html

Amazon Relational Database Service User Guide

Incompatibilities between MariaDB and MySQL 2804

Amazon Relational Database Service User Guide

MariaDB on Amazon RDS SQL reference

Following, you can find descriptions of system stored procedures that are available for Amazon
RDS instances running the MariaDB DB engine.

You can use the system stored procedures that are available for MySQL DB instances
and MariaDB DB instances. These stored procedures are documented at RDS
for MySQL stored procedure reference. MariaDB DB instances support all of the
stored procedures, except for mysql.rds_start_replication_until and
mysql.rds_start_replication_until_gtid.

Additionally, the following system stored procedures are supported only for Amazon RDS DB
instances running MariaDB:

• mysql.rds_replica_status

• mysql.rds_set_external_master_gtid

• mysql.rds_kill_query_id

mysql.rds_replica_status

Shows the replication status of a MariaDB read replica.

Call this procedure on the read replica to show status information on essential parameters of the
replica threads.

Syntax

CALL mysql.rds_replica_status;

Usage notes

This procedure is only supported for MariaDB DB instances running MariaDB version 10.5 and
higher.

This procedure is the equivalent of the SHOW REPLICA STATUS command. This command isn't
supported for MariaDB version 10.5 and higher DB instances.

In prior versions of MariaDB, the equivalent SHOW SLAVE STATUS command required the
REPLICATION SLAVE privilege. In MariaDB version 10.5 and higher, it requires the REPLICATION

MariaDB on Amazon RDS SQL reference 2805

Amazon Relational Database Service User Guide

REPLICA ADMIN privilege. To protect the RDS management of MariaDB 10.5 and higher DB
instances, this new privilege isn't granted to the RDS master user.

Examples

The following example shows the status of a MariaDB read replica:

call mysql.rds_replica_status;

The response is similar to the following:

*************************** 1. row ***************************
 Replica_IO_State: Waiting for master to send event
 Source_Host: XX.XX.XX.XXX
 Source_User: rdsrepladmin
 Source_Port: 3306
 Connect_Retry: 60
 Source_Log_File: mysql-bin-changelog.003988
 Read_Source_Log_Pos: 405
 Relay_Log_File: relaylog.011024
 Relay_Log_Pos: 657
 Relay_Source_Log_File: mysql-bin-changelog.003988
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 mysql.rds_sysinfo,mysql.rds_history,mysql.rds_replication_status
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 405
 Relay_Log_Space: 1016
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:

mysql.rds_replica_status 2806

Amazon Relational Database Service User Guide

 Source_SSL_Cipher:
 Source_SSL_Key:
 Seconds_Behind_Master: 0
 Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 807509301
 Source_SSL_Crl:
 Source_SSL_Crlpath:
 Using_Gtid: Slave_Pos
 Gtid_IO_Pos: 0-807509301-3980
 Replicate_Do_Domain_Ids:
 Replicate_Ignore_Domain_Ids:
 Parallel_Mode: optimistic
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Replica_SQL_Running_State: Reading event from the relay log
 Replica_DDL_Groups: 15
Replica_Non_Transactional_Groups: 0
 Replica_Transactional_Groups: 3658
1 row in set (0.000 sec)

Query OK, 0 rows affected (0.000 sec)

mysql.rds_set_external_master_gtid

Configures GTID-based replication from a MariaDB instance running external to Amazon RDS
to a MariaDB DB instance. This stored procedure is supported only where the external MariaDB
instance is version 10.0.24 or higher. When setting up replication where one or both instances do
not support MariaDB global transaction identifiers (GTIDs), use mysql.rds_set_external_master
(RDS for MariaDB and RDS for MySQL major versions 8.0 and lower).

Using GTIDs for replication provides crash-safety features not offered by binary log replication, so
we recommend it in cases where the replicating instances support it.

Syntax

CALL mysql.rds_set_external_master_gtid(

mysql.rds_set_external_master_gtid 2807

Amazon Relational Database Service User Guide

 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , gtid
 , ssl_encryption
);

Parameters

host_name

String. The host name or IP address of the MariaDB instance running external to Amazon RDS
that will become the source instance.

host_port

Integer. The port used by the MariaDB instance running external to Amazon RDS to be
configured as the source instance. If your network configuration includes SSH port replication
that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

String. The ID of a user with REPLICATION SLAVE permissions in the MariaDB DB instance to
be configured as the read replica.

replication_user_password

String. The password of the user ID specified in replication_user_name.

gtid

String. The global transaction ID on the source instance that replication should start from.

You can use @@gtid_current_pos to get the current GTID if the source instance has been
locked while you are configuring replication, so the binary log doesn't change between the
points when you get the GTID and when replication starts.

Otherwise, if you are using mysqldump version 10.0.13 or greater to populate the replica
instance prior to starting replication, you can get the GTID position in the output by using
the --master-data or --dump-slave options. If you are not using mysqldump version
10.0.13 or greater, you can run the SHOW MASTER STATUS or use those same mysqldump
options to get the binary log file name and position, then convert them to a GTID by running
BINLOG_GTID_POS on the external MariaDB instance:

mysql.rds_set_external_master_gtid 2808

Amazon Relational Database Service User Guide

SELECT BINLOG_GTID_POS('<binary log file name>', <binary log file position>);

For more information about the MariaDB implementation of GTIDs, go to Global transaction ID
in the MariaDB documentation.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The MASTER_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

Usage notes

The mysql.rds_set_external_master_gtid procedure must be run by the
master user. It must be run on the MariaDB DB instance that you are configuring as
the replica of a MariaDB instance running external to Amazon RDS. Before running
mysql.rds_set_external_master_gtid, you must have configured the instance of MariaDB
running external to Amazon RDS as a source instance. For more information, see Importing data
into an Amazon RDS for MariaDB DB instance.

Warning

Do not use mysql.rds_set_external_master_gtid to manage replication between
two Amazon RDS DB instances. Use it only when replicating with a MariaDB instance
running external to RDS. For information about managing replication between Amazon
RDS DB instances, see Working with DB instance read replicas.

After calling mysql.rds_set_external_master_gtid to configure an Amazon RDS DB
instance as a read replica, you can call mysql.rds_start_replication on the replica to start the
replication process. You can call mysql.rds_reset_external_master (RDS for MariaDB and RDS for
MySQL major versions 8.0 and lower) to remove the read replica configuration.

mysql.rds_set_external_master_gtid 2809

http://mariadb.com/kb/en/mariadb/global-transaction-id/

Amazon Relational Database Service User Guide

When mysql.rds_set_external_master_gtid is called, Amazon RDS records
the time, user, and an action of "set master" in the mysql.rds_history and
mysql.rds_replication_status tables.

Examples

When run on a MariaDB DB instance, the following example configures it as the replica of an
instance of MariaDB running external to Amazon RDS.

call mysql.rds_set_external_master_gtid
 ('Sourcedb.some.com',3306,'ReplicationUser','SomePassW0rd','0-123-456',0);

mysql.rds_kill_query_id

Ends a query running against the MariaDB server in order to terminate long-running or problematic
queries. You can identify the query ID and effectively stop a specific query to address performance
issues and maintain optimal database operation.

Syntax

CALL mysql.rds_kill_query_id(queryID);

Parameters

queryID

Integer. The identity of the query to be ended.

Usage notes

To stop a query running against the MariaDB server, use the mysql.rds_kill_query_id
procedure and pass in the ID of that query. To obtain the query ID, query the MariaDB Information
schema PROCESSLIST table, as shown following:

SELECT USER, HOST, COMMAND, TIME, STATE, INFO, QUERY_ID FROM
 INFORMATION_SCHEMA.PROCESSLIST WHERE USER = '<user name>';

The connection to the MariaDB server is retained.

mysql.rds_kill_query_id 2810

http://mariadb.com/kb/en/mariadb/information-schema-processlist-table/
http://mariadb.com/kb/en/mariadb/information-schema-processlist-table/

Amazon Relational Database Service User Guide

Examples

The following example ends a query with a query ID of 230040:

call mysql.rds_kill_query_id(230040);

mysql.rds_kill_query_id 2811

Amazon Relational Database Service User Guide

Local time zone for MariaDB DB instances

By default, the time zone for a MariaDB DB instance is Universal Time Coordinated (UTC). You can
set the time zone for your DB instance to the local time zone for your application instead.

To set the local time zone for a DB instance, set the time_zone parameter in the parameter group
for your DB instance to one of the supported values listed later in this section. When you set the
time_zone parameter for a parameter group, all DB instances and read replicas that are using that
parameter group change to use the new local time zone. For information on setting parameters in
a parameter group, see Parameter groups for Amazon RDS.

After you set the local time zone, all new connections to the database reflect the change. If you
have any open connections to your database when you change the local time zone, you won't see
the local time zone update until after you close the connection and open a new connection.

You can set a different local time zone for a DB instance and one or more of its read replicas. To
do this, use a different parameter group for the DB instance and the replica or replicas and set the
time_zone parameter in each parameter group to a different local time zone.

If you are replicating across AWS Regions, then the source DB instance and the read replica use
different parameter groups (parameter groups are unique to an AWS Region). To use the same local
time zone for each instance, you must set the time_zone parameter in the instance's and read
replica's parameter groups.

When you restore a DB instance from a DB snapshot, the local time zone is set to UTC. You can
update the time zone to your local time zone after the restore is complete. If you restore a DB
instance to a point in time, then the local time zone for the restored DB instance is the time zone
setting from the parameter group of the restored DB instance.

The Internet Assigned Numbers Authority (IANA) publishes new time zones at https://
www.iana.org/time-zones several times a year. Every time RDS releases a new minor maintenance
release of MariaDB, it ships with the latest time zone data at the time of the release. When you use
the latest RDS for MariaDB versions, you have recent time zone data from RDS. To ensure that your
DB instance has recent time zone data, we recommend upgrading to a higher DB engine version.
Alternatively, you can modify the time zone tables in MariaDB DB instances manually. To do so, you
can use SQL commands or run the mysql_tzinfo_to_sql tool in a SQL client. After updating the time
zone data manually, reboot your DB instance so that the changes take effect. RDS doesn't modify
or reset the time zone data of running DB instances. New time zone data is installed only when you
perform a database engine version upgrade.

Local time zone 2812

https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://mariadb.com/kb/en/mysql_tzinfo_to_sql/

Amazon Relational Database Service User Guide

You can set your local time zone to one of the following values.

Zone Time zone

Africa Africa/Cairo, Africa/Casablanca, Africa/Harare, Africa/Monrovia, Africa/Na
irobi, Africa/Tripoli, Africa/Windhoek

America America/Araguaina, America/Asuncion, America/Bogota, America/B
uenos_Aires, America/Caracas, America/Chihuahua, America/Cuiaba,
America/Denver, America/Fortaleza, America/Guatemala, America/Halifax,
America/Manaus, America/Matamoros, America/Monterrey, America/M
ontevideo, America/Phoenix, America/Santiago, America/Tijuana

Asia Asia/Amman, Asia/Ashgabat, Asia/Baghdad, Asia/Baku, Asia/Bangkok, Asia/
Beirut, Asia/Calcutta, Asia/Damascus, Asia/Dhaka, Asia/Irkutsk, Asia/Jeru
salem, Asia/Kabul, Asia/Karachi, Asia/Kathmandu, Asia/Krasnoyarsk, Asia/
Magadan, Asia/Muscat, Asia/Novosibirsk, Asia/Riyadh, Asia/Seoul, Asia/
Shanghai, Asia/Singapore, Asia/Taipei, Asia/Tehran, Asia/Tokyo, Asia/Ulaa
nbaatar, Asia/Vladivostok, Asia/Yakutsk, Asia/Yerevan

Atlantic Atlantic/Azores

Australia Australia/Adelaide, Australia/Brisbane, Australia/Darwin, Australia/Hobart,
Australia/Perth, Australia/Sydney

Brazil Brazil/DeNoronha, Brazil/East

Canada Canada/Newfoundland, Canada/Saskatchewan, Canada/Yukon

Europe Europe/Amsterdam, Europe/Athens, Europe/Dublin, Europe/Helsinki,
Europe/Istanbul, Europe/Kaliningrad Europe/Moscow, Europe/Paris,
Europe/Prague, Europe/Sarajevo

Pacific Pacific/Auckland, Pacific/Fiji, Pacific/Guam, Pacific/Honolulu, Pacific/Samoa

US US/Alaska, US/Central, US/East-Indiana, US/Eastern, US/Pacific

UTC UTC

Local time zone 2813

Amazon Relational Database Service User Guide

Known issues and limitations for RDS for MariaDB

The following items are known issues and limitations when using RDS for MariaDB.

Note

This list is not exhaustive.

Topics

• MariaDB file size limits in Amazon RDS

• InnoDB reserved word

• Custom ports

• Performance Insights

MariaDB file size limits in Amazon RDS

For MariaDB DB instances, the maximum size of a table is 16 TB when using InnoDB file-per-table
tablespaces. This limit also constrains the system tablespace to a maximum size of 16 TB. InnoDB
file-per-table tablespaces (with tables each in their own tablespace) are set by default for MariaDB
DB instances. This limit isn't related to the maximum storage limit for MariaDB DB instances. For
more information about the storage limit, see Amazon RDS DB instance storage.

There are advantages and disadvantages to using InnoDB file-per-table tablespaces, depending
on your application. To determine the best approach for your application, see File-per-table
tablespaces in the MySQL documentation.

We don't recommend allowing tables to grow to the maximum file size. In general, a better
practice is to partition data into smaller tables, which can improve performance and recovery
times.

One option that you can use for breaking up a large table into smaller tables is partitioning.
Partitioning distributes portions of your large table into separate files based on rules that you
specify. For example, if you store transactions by date, you can create partitioning rules that
distribute older transactions into separate files using partitioning. Then periodically, you can
archive the historical transaction data that doesn't need to be readily available to your application.
For more information, see Partitioning in the MySQL documentation.

Known issues and limitations for MariaDB 2814

https://dev.mysql.com/doc/refman/5.7/en/innodb-file-per-table-tablespaces.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-file-per-table-tablespaces.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning.html

Amazon Relational Database Service User Guide

To determine the size of all InnoDB tablespaces

• Use the following SQL command to determine if any of your tables are too large and are
candidates for partitioning.

Note

For MariaDB 10.6 and higher, this query also returns the size of the InnoDB system
tablespace.
For MariaDB versions earlier than 10.6, you can't determine the size of the InnoDB
system tablespace by querying the system tables. We recommend that you upgrade to
a later version.

SELECT SPACE,NAME,ROUND((ALLOCATED_SIZE/1024/1024/1024), 2)
as "Tablespace Size (GB)"
FROM information_schema.INNODB_SYS_TABLESPACES ORDER BY 3 DESC;

To determine the size of non-InnoDB user tables

• Use the following SQL command to determine if any of your non-InnoDB user tables are too
large.

SELECT TABLE_SCHEMA, TABLE_NAME, round(((DATA_LENGTH + INDEX_LENGTH+DATA_FREE)
/ 1024 / 1024/ 1024), 2) As "Approximate size (GB)" FROM information_schema.TABLES
WHERE TABLE_SCHEMA NOT IN ('mysql', 'information_schema', 'performance_schema')
and ENGINE<>'InnoDB';

To enable InnoDB file-per-table tablespaces

• Set the innodb_file_per_table parameter to 1 in the parameter group for the DB instance.

To disable InnoDB file-per-table tablespaces

• Set the innodb_file_per_table parameter to 0 in the parameter group for the DB instance.

For information on updating a parameter group, see Parameter groups for Amazon RDS.

File size limits 2815

Amazon Relational Database Service User Guide

When you have enabled or disabled InnoDB file-per-table tablespaces, you can issue an ALTER
TABLE command. You can use this command to move a table from the global tablespace to its own
tablespace. Or you can move a table from its own tablespace to the global tablespace. Following is
an example.

ALTER TABLE table_name ENGINE=InnoDB, ALGORITHM=COPY;

InnoDB reserved word

InnoDB is a reserved word for RDS for MariaDB. You can't use this name for a MariaDB database.

Custom ports

Amazon RDS blocks connections to custom port 33060 for the MariaDB engine. Choose a different
port for your MariaDB engine.

Performance Insights

InnoDB counters are not visible in Performance Insights for RDS for MariaDB version 10.11 because
the MariaDB community no longer supports them.

InnoDB reserved word 2816

Amazon Relational Database Service User Guide

Amazon RDS for Microsoft SQL Server

Amazon RDS supports several versions and editions of Microsoft SQL Server. The following table
shows the most recent supported minor version of each major version. For the full list of supported
versions, editions, and RDS engine versions, see Microsoft SQL Server versions on Amazon RDS.

Major
version

Service
Pack / GDR

Cumulative
Update

Minor
version

Knowledge
Base Article

Release Date

SQL Server
2022

Not applicabl
e

CU18 16.0.4185.3 KB5050771 March 13,
2025

SQL Server
2019

Not applicabl
e

CU32 15.0.4430.1 KB5054833 February 27,
2025

SQL Server
2017

Not applicabl
e

CU31 GDR 14.0.3485.1 KB5046858 November
12, 2024

SQL Server
2016

SP3 GDR CU14 13.0.6455.2 KB5046855 November
12, 2024

For information about licensing for SQL Server, see Licensing Microsoft SQL Server on Amazon
RDS. For information about SQL Server builds, see this Microsoft support article about Where to
find information about the latest SQL Server builds.

With Amazon RDS, you can create DB instances and DB snapshots, point-in-time restores, and
automated or manual backups. DB instances running SQL Server can be used inside a VPC. You
can also use Secure Sockets Layer (SSL) to connect to a DB instance running SQL Server, and you
can use transparent data encryption (TDE) to encrypt data at rest. Amazon RDS currently supports
Multi-AZ deployments for SQL Server using SQL Server Database Mirroring (DBM) or Always On
Availability Groups (AGs) as a high-availability, failover solution.

To deliver a managed service experience, Amazon RDS does not provide shell access to DB
instances, and it restricts access to certain system procedures and tables that require advanced
privileges. Amazon RDS supports access to databases on a DB instance using any standard SQL
client application such as Microsoft SQL Server Management Studio. Amazon RDS does not allow

2817

https://learn.microsoft.com/en-us/troubleshoot/sql/releases/sqlserver-2022/cumulativeupdate18
https://learn.microsoft.com/en-us/troubleshoot/sql/releases/sqlserver-2019/cumulativeupdate32
https://support.microsoft.com/en-us/topic/kb5046858-description-of-the-security-update-for-sql-server-2017-cu31-november-12-2024-2984d3a5-0683-4f9b-9e6a-3888e67bd859
https://support.microsoft.com/en-us/topic/kb5046855-description-of-the-security-update-for-sql-server-2016-sp3-gdr-november-12-2024-736b0a32-912d-4ea5-baf8-50d046cbfa1a
https://support.microsoft.com/en-us/topic/kb957826-where-to-find-information-about-the-latest-sql-server-builds-43994ba5-9aed-2323-ea7c-d29fe9c4fbe8
https://support.microsoft.com/en-us/topic/kb957826-where-to-find-information-about-the-latest-sql-server-builds-43994ba5-9aed-2323-ea7c-d29fe9c4fbe8

Amazon Relational Database Service User Guide

direct host access to a DB instance via Telnet, Secure Shell (SSH), or Windows Remote Desktop
Connection. When you create a DB instance, the master user is assigned to the db_owner role for all
user databases on that instance, and has all database-level permissions except for those that are
used for backups. Amazon RDS manages backups for you.

Before creating your first DB instance, you should complete the steps in the setting up section of
this guide. For more information, see Setting up your Amazon RDS environment.

Topics

• Common management tasks for Microsoft SQL Server on Amazon RDS

• Limitations for Microsoft SQL Server DB instances

• DB instance class support for Microsoft SQL Server

• Microsoft SQL Server security

• Compliance program support for Microsoft SQL Server DB instances

• Microsoft SQL Server versions on Amazon RDS

• Microsoft SQL Server features on Amazon RDS

• Multi-AZ deployments using Microsoft SQL Server Database Mirroring or Always On availability
groups

• Using Transparent Data Encryption to encrypt data at rest

• Functions and stored procedures for Amazon RDS for Microsoft SQL Server

• Local time zone for Microsoft SQL Server DB instances

• Licensing Microsoft SQL Server on Amazon RDS

• Connecting to your Microsoft SQL Server DB instance

• Working with Active Directory with RDS for SQL Server

• Upgrades of the Microsoft SQL Server DB engine

• Importing and exporting SQL Server databases using native backup and restore

• Working with read replicas for Microsoft SQL Server in Amazon RDS

• Multi-AZ deployments for Amazon RDS for Microsoft SQL Server

• Additional features for Microsoft SQL Server on Amazon RDS

• Options for the Microsoft SQL Server database engine

• Common DBA tasks for Amazon RDS for Microsoft SQL Server

2818

Amazon Relational Database Service User Guide

Common management tasks for Microsoft SQL Server on
Amazon RDS

The following are the common management tasks you perform with an Amazon RDS for SQL
Server DB instance, with links to relevant documentation for each task.

Task area Description Relevant documentation

Instance classes, storage,
and PIOPS

If you are creating a DB
instance for productio
n purposes, you should
understand how instance
classes, storage types, and
 Provisioned IOPS work in
Amazon RDS.

DB instance class support for
Microsoft SQL Server

Amazon RDS storage types

Multi-AZ deployments A production DB instance
should use Multi-AZ
deployments. Multi-AZ d
eployments provide increased
availability, data durabilit
y, and fault tolerance for
DB instances. Multi-AZ
deployments for SQL Server
are implemented using SQL
Server's native DBM or AGs
 technology.

Configuring and managing
a Multi-AZ deployment for
Amazon RDS

Multi-AZ deployments
using Microsoft SQL Server
Database Mirroring or Always
On availability groups

Amazon Virtual Private
Cloud (VPC)

If your AWS account has a
default VPC, then your DB
instance is automatically
created inside the default
VPC. If your account does
 not have a default VPC, and
you want the DB instance
in a VPC, you must create
the VPC and subnet groups

Working with a DB instance in
a VPC

Common management tasks 2819

Amazon Relational Database Service User Guide

Task area Description Relevant documentation

before you create the DB
 instance.

Security groups By default, DB instances are
created with a firewall that
prevents access to them.
You therefore must create
a security group with the
 correct IP addresses and
network configuration to
access the DB instance.

Controlling access with
security groups

Parameter groups If your DB instance is going
to require specific database p
arameters, you should create
a parameter group before you
create the DB instance.

Parameter groups for Amazon
RDS

Option groups If your DB instance is going
to require specific database
options, you should create
an option group before you
create the DB instance.

Options for the Microsoft SQL
Server database engine

Connecting to your DB
 instance

After creating a security
group and associating it to a
DB instance, you can connect
to the DB instance using any
standard SQL client applicati
on such as Microsoft SQL
Server Management Studio.

Connecting to your Microsoft
SQL Server DB instance

Common management tasks 2820

Amazon Relational Database Service User Guide

Task area Description Relevant documentation

Backup and restore When you create your DB
instance, you can configure it
to take automated backups.
You can also back up and
restore your databases
manually by using full backup
files (.bak files).

Introduction to backups

Importing and exporting SQL
Server databases using native
backup and restore

Monitoring You can monitor your SQL
Server DB instance by using
CloudWatch Amazon RDS
metrics, events, and enhanced
monitoring.

Viewing metrics in the
Amazon RDS console

Viewing Amazon RDS events

Log files You can access the log files
for your SQL Server DB
instance.

Monitoring Amazon RDS log
files

Amazon RDS for Microsoft
SQL Server database log files

There are also advanced administrative tasks for working with SQL Server DB instances. For more
information, see the following documentation:

• Common DBA tasks for Amazon RDS for Microsoft SQL Server.

• Working with AWS Managed Active Directory with RDS for SQL Server

• Accessing the tempdb database

Limitations for Microsoft SQL Server DB instances

The Amazon RDS implementation of Microsoft SQL Server on a DB instance has some limitations
that you should be aware of:

• The maximum number of databases supported on a DB instance depends on the instance class
type and the availability mode—Single-AZ, Multi-AZ Database Mirroring (DBM), or Multi-AZ

Limitations 2821

Amazon Relational Database Service User Guide

Availability Groups (AGs). The Microsoft SQL Server system databases don't count toward this
limit.

The following table shows the maximum number of supported databases for each instance class
type and availability mode. Use this table to help you decide if you can move from one instance
class type to another, or from one availability mode to another. If your source DB instance has
more databases than the target instance class type or availability mode can support, modifying
the DB instance fails. You can see the status of your request in the Events pane.

Instance class type Single-AZ Multi-AZ with DBM Multi-AZ with
Always On AGs

db.*.micro to
db.*.medium

30 N/A N/A

db.*.large 30 30 30

db.*.xlarge to
db.*.16xlarge

100 50 75

db.*.24xlarge to
db.*.32xlarge

100 50 100

* Represents the different instance class types.

For example, let's say that your DB instance runs on a db.*.16xlarge with Single-AZ and that it
has 76 databases. You modify the DB instance to upgrade to using Multi-AZ Always On AGs. This
upgrade fails, because your DB instance contains more databases than your target configuration
can support. If you upgrade your instance class type to db.*.24xlarge instead, the modification
succeeds.

If the upgrade fails, you see events and messages similar to the following:

• Unable to modify database instance class. The instance has 76 databases, but after conversion
it would only support 75.

• Unable to convert the DB instance to Multi-AZ: The instance has 76 databases, but after
conversion it would only support 75.

Limitations 2822

Amazon Relational Database Service User Guide

If the point-in-time restore or snapshot restore fails, you see events and messages similar to the
following:

• Database instance put into incompatible-restore. The instance has 76 databases, but after
conversion it would only support 75.

• The following ports are reserved for Amazon RDS, and you can't use them when you create a DB
instance: 1234, 1434, 3260, 3343, 3389, 47001, and 49152-49156.

• Client connections from IP addresses within the range 169.254.0.0/16 are not permitted. This is
the Automatic Private IP Addressing Range (APIPA), which is used for local-link addressing.

• SQL Server Standard Edition uses only a subset of the available processors if the DB instance has
more processors than the software limits (24 cores, 4 sockets, and 128GB RAM). Examples of this
are the db.m5.24xlarge and db.r5.24xlarge instance classes.

For more information, see the table of scale limits under Editions and supported features of SQL
Server 2019 (15.x) in the Microsoft documentation.

• Amazon RDS for SQL Server doesn't support importing data into the msdb database.

• You can't rename databases on a DB instance in a SQL Server Multi-AZ deployment.

• Make sure that you use these guidelines when setting the following DB parameters on RDS for
SQL Server:

• max server memory (mb) >= 256 MB

• max worker threads >= (number of logical CPUs * 7)

For more information on setting DB parameters, see Parameter groups for Amazon RDS.

• The maximum storage size for SQL Server DB instances is the following:

• General Purpose (SSD) storage – 16 TiB for all editions

• Provisioned IOPS storage – 64 TiB for all editions

• Magnetic storage – 1 TiB for all editions

If you have a scenario that requires a larger amount of storage, you can use sharding across
multiple DB instances to get around the limit. This approach requires data-dependent routing
logic in applications that connect to the sharded system. You can use an existing sharding
framework, or you can write custom code to enable sharding. If you use an existing framework,
the framework can't install any components on the same server as the DB instance.

• The minimum storage size for SQL Server DB instances is the following:

• General Purpose (SSD) storage – 20 GiB for Enterprise, Standard, Web, and Express Editions

Limitations 2823

https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-version-15
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-version-15

Amazon Relational Database Service User Guide

• Provisioned IOPS storage – 20 GiB for Enterprise, Standard, Web, and Express Editions

• Magnetic storage – 20 GiB for Enterprise, Standard, Web, and Express Editions

• Amazon RDS doesn't support running these services on the same server as your RDS DB instance:

• Data Quality Services

• Master Data Services

To use these features, we recommend that you install SQL Server on an Amazon EC2 instance,
or use an on-premises SQL Server instance. In these cases, the EC2 or SQL Server instance acts
as the Master Data Services server for your SQL Server DB instance on Amazon RDS. You can
install SQL Server on an Amazon EC2 instance with Amazon EBS storage, pursuant to Microsoft
licensing policies.

• Because of limitations in Microsoft SQL Server, restoring to a point in time before successfully
running DROP DATABASE might not reflect the state of that database at that point in time.
For example, the dropped database is typically restored to its state up to 5 minutes before
the DROP DATABASE command was issued. This type of restore means that you can't restore
the transactions made during those few minutes on your dropped database. To work around
this, you can reissue the DROP DATABASE command after the restore operation is completed.
Dropping a database removes the transaction logs for that database.

• For SQL Server, you create your databases after you create your DB instance. Database names
follow the usual SQL Server naming rules with the following differences:

• Database names can't start with rdsadmin.

• They can't start or end with a space or a tab.

• They can't contain any of the characters that create a new line.

• They can't contain a single quote (').

• SQL Server Web Edition only allows you to use the Dev/Test template when creating a new RDS
for SQL Server DB instance.

DB instance class support for Microsoft SQL Server

The computation and memory capacity of a DB instance is determined by its DB instance class.
The DB instance class you need depends on your processing power and memory requirements. For
more information, see DB instance classes.

DB instance class support 2824

Amazon Relational Database Service User Guide

The following list of DB instance classes supported for Microsoft SQL Server is provided here for
your convenience. For the most current list, see the RDS console: https://console.aws.amazon.com/
rds/.

Not all DB instance classes are available on all supported SQL Server minor versions. For example,
some newer DB instance classes such as db.r6i aren't available on older minor versions. You can
use the describe-orderable-db-instance-options AWS CLI command to find out which DB instance
classes are available for your SQL Server edition and version.

SQL
Server
edition

2022 support range 2019 support range 2017 and 2016 support
range

Enterpris
e
Edition

db.t3.xla
rge –db.t3.2xlarge

db.r5.xla
rge –db.r5.24xlarge

db.r5b.xl
arge –db.r5b.24
xlarge

db.r5d.xl
arge –db.r5d.24
xlarge

db.r6i.xl
arge –db.r6i.32
xlarge

db.m5.xla
rge –db.m5.24xlarge

db.m5d.xl
arge –db.m5d.24
xlarge

db.t3.xla
rge –db.t3.2xlarge

db.r5.xla
rge –db.r5.24xlarge

db.r5b.xl
arge –db.r5b.24
xlarge

db.r5d.xl
arge –db.r5d.24
xlarge

db.r6i.xl
arge –db.r6i.32
xlarge

db.m5.xla
rge –db.m5.24xlarge

db.m5d.xl
arge –db.m5d.24
xlarge

db.t3.xla
rge –db.t3.2xlarge

db.r5.xla
rge –db.r5.24xlarge

db.r5b.xl
arge –db.r5b.24
xlarge

db.r5d.xl
arge –db.r5d.24
xlarge

db.r6i.xl
arge –db.r6i.32
xlarge

db.m5.xla
rge –db.m5.24xlarge

db.m5d.xl
arge –db.m5d.24
xlarge

DB instance class support 2825

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-orderable-db-instance-options.html

Amazon Relational Database Service User Guide

SQL
Server
edition

2022 support range 2019 support range 2017 and 2016 support
range

db.m6i.xl
arge –db.m6i.32
xlarge

db.x2iedn
.xlarge –db.x2iedn
.32xlarge

db.z1d.xl
arge –db.z1d.12
xlarge

db.m6i.xl
arge –db.m6i.32
xlarge

db.x1.16x
large –db.x1.32x
large

db.x1e.xl
arge –db.x1e.32
xlarge

db.x2iedn
.xlarge –db.x2iedn
.32xlarge

db.z1d.xl
arge –db.z1d.12
xlarge

db.m6i.xl
arge –db.m6i.32
xlarge

db.x1.16x
large –db.x1.32x
large

db.x1e.xl
arge –db.x1e.32
xlarge

db.x2iedn
.xlarge –db.x2iedn
.32xlarge

db.z1d.xl
arge –db.z1d.12
xlarge

DB instance class support 2826

Amazon Relational Database Service User Guide

SQL
Server
edition

2022 support range 2019 support range 2017 and 2016 support
range

Standard
Edition

db.t3.xla
rge –db.t3.2xlarge

db.r5.lar
ge –db.r5.24xlarge

db.r5b.la
rge –db.r5b.8xlarge

db.r5d.la
rge –db.r5d.24
xlarge

db.r6i.la
rge –db.r6i.8xlarge

db.m5.lar
ge –db.m5.24xlarge

db.m5d.la
rge –db.m5d.24
xlarge

db.m6i.la
rge –db.m6i.8xlarge

db.x2iedn
.xlarge –db.x2iedn
.8xlarge

db.z1d.la
rge –db.z1d.12
xlarge

db.t3.xla
rge –db.t3.2xlarge

db.r5.lar
ge –db.r5.24xlarge

db.r5b.la
rge –db.r5b.24
xlarge

db.r5d.la
rge –db.r5d.24
xlarge

db.r6i.la
rge –db.r6i.8xlarge

db.m5.lar
ge –db.m5.24xlarge

db.m5d.la
rge –db.m5d.24
xlarge

db.m6i.la
rge –db.m6i.8xlarge

db.x1.16x
large –db.x1.32x
large

db.x1e.xl
arge –db.x1e.32
xlarge

db.t3.xla
rge –db.t3.2xlarge

db.r5.lar
ge –db.r5.24xlarge

db.r5b.la
rge –db.r5b.24
xlarge

db.r5d.la
rge –db.r5d.24
xlarge

db.r6i.la
rge –db.r6i.8xlarge

db.m5.lar
ge –db.m5.24xlarge

db.m5d.la
rge –db.m5d.24
xlarge

db.m6i.la
rge –db.m6i.8xlarge

db.x1.16x
large –db.x1.32x
large

db.x1e.xl
arge –db.x1e.32
xlarge

DB instance class support 2827

Amazon Relational Database Service User Guide

SQL
Server
edition

2022 support range 2019 support range 2017 and 2016 support
range

db.x2iedn
.xlarge –db.x2iedn
.32xlarge

db.z1d.la
rge –db.z1d.12
xlarge

db.x2iedn
.xlarge –db.x2iedn
.32xlarge

db.z1d.la
rge –db.z1d.12
xlarge

Web
Edition

db.t3.sma
ll –db.t3.xlarge

db.r5.lar
ge –db.r5.4xlarge

db.r5b.la
rge –db.r5b.4xlarge

db.r5d.la
rge –db.r5d.4xlarge
db.r6i.la
rge –db.r6i.4xlarge

db.m5.lar
ge –db.m5.4xlarge

db.m5d.la
rge –db.m5d.4xlarge

db.m6i.la
rge –db.m6i.4xlarge

db.z1d.la
rge –db.z1d.13
xlarge

db.t3.sma
ll –db.t3.2xlarge

db.r5.lar
ge –db.r5.4xlarge

db.r5b.la
rge –db.r5b.4xlarge

db.r5d.la
rge –db.r5d.4xlarge

db.r6i.la
rge –db.r6i.4xlarge

db.m5.lar
ge –db.m5.4xlarge

db.m5d.la
rge –db.m5d.4xlarge

db.m6i.la
rge –db.m6i.4xlarge

db.z1d.la
rge –db.z1d.3xlarge

db.t3.sma
ll –db.t3.2xlarge

db.r5.lar
ge –db.r5.4xlarge

db.r5b.la
rge –db.r5b.4xlarge

db.r5d.la
rge –db.r5d.4xlarge

db.r6i.la
rge –db.r6i.4xlarge

db.m5.lar
ge –db.m5.4xlarge

db.m5d.la
rge –db.m5d.4xlarge

db.m6i.la
rge –db.m6i.4xlarge

db.z1d.la
rge –db.z1d.3xlarge

DB instance class support 2828

Amazon Relational Database Service User Guide

SQL
Server
edition

2022 support range 2019 support range 2017 and 2016 support
range

Express
Edition

db.t3.mic
ro –db.t3.xlarge

db.t3.mic
ro –db.t3.xlarge

db.t3.mic
ro –db.t3.xlarge

Microsoft SQL Server security

The Microsoft SQL Server database engine uses role-based security. The master user name that you
specify when you create a DB instance is a SQL Server Authentication login that is a member of the
processadmin, public, and setupadmin fixed server roles.

Any user who creates a database is assigned to the db_owner role for that database and has all
database-level permissions except for those that are used for backups. Amazon RDS manages
backups for you.

The following server-level roles aren't available in Amazon RDS for SQL Server:

• bulkadmin

• dbcreator

• diskadmin

• securityadmin

• serveradmin

• sysadmin

The following server-level permissions aren't available on RDS for SQL Server DB instances:

• ALTER ANY DATABASE

• ALTER ANY EVENT NOTIFICATION

• ALTER RESOURCES

• ALTER SETTINGS (you can use the DB parameter group API operations to modify parameters; for
more information, see Parameter groups for Amazon RDS)

• AUTHENTICATE SERVER

• CONTROL_SERVER

Security 2829

Amazon Relational Database Service User Guide

• CREATE DDL EVENT NOTIFICATION

• CREATE ENDPOINT

• CREATE SERVER ROLE

• CREATE TRACE EVENT NOTIFICATION

• DROP ANY DATABASE

• EXTERNAL ACCESS ASSEMBLY

• SHUTDOWN (You can use the RDS reboot option instead)

• UNSAFE ASSEMBLY

• ALTER ANY AVAILABILITY GROUP

• CREATE ANY AVAILABILITY GROUP

SSL support for Microsoft SQL Server DB instances

You can use SSL to encrypt connections between your applications and your Amazon RDS DB
instances running Microsoft SQL Server. You can also force all connections to your DB instance to
use SSL. If you force connections to use SSL, it happens transparently to the client, and the client
doesn't have to do any work to use SSL.

SSL is supported in all AWS Regions and for all supported SQL Server editions. For more
information, see Using SSL with a Microsoft SQL Server DB instance.

SSL support 2830

Amazon Relational Database Service User Guide

Using SSL with a Microsoft SQL Server DB instance

You can use Secure Sockets Layer (SSL) to encrypt connections between your client applications
and your Amazon RDS DB instances running Microsoft SQL Server. SSL support is available in all
AWS regions for all supported SQL Server editions.

When you create a SQL Server DB instance, Amazon RDS creates an SSL certificate for it. The SSL
certificate includes the DB instance endpoint as the Common Name (CN) for the SSL certificate to
guard against spoofing attacks.

There are 2 ways to use SSL to connect to your SQL Server DB instance:

• Force SSL for all connections — this happens transparently to the client, and the client doesn't
have to do any work to use SSL.

Note

When you set rds.force_ssl to 1 and use SSMS version 19.3, 20.0, and 20.2, check for
the following:

• Enable Trust Server Certificate in SSMS.

• Import the certificate in your system.

• Encrypt specific connections — this sets up an SSL connection from a specific client computer,
and you must do work on the client to encrypt connections.

For information about Transport Layer Security (TLS) support for SQL Server, see TLS 1.2 support
for Microsoft SQL Server.

Forcing connections to your DB instance to use SSL

You can force all connections to your DB instance to use SSL. If you force connections to use SSL, it
happens transparently to the client, and the client doesn't have to do any work to use SSL.

If you want to force SSL, use the rds.force_ssl parameter. By default, the rds.force_ssl
parameter is set to 0 (off). Set the rds.force_ssl parameter to 1 (on) to force connections
to use SSL. The rds.force_ssl parameter is static, so after you change the value, you must
reboot your DB instance for the change to take effect.

Using SSL with a SQL Server DB instance 2831

https://support.microsoft.com/en-ca/help/3135244/tls-1-2-support-for-microsoft-sql-server
https://support.microsoft.com/en-ca/help/3135244/tls-1-2-support-for-microsoft-sql-server

Amazon Relational Database Service User Guide

To force all connections to your DB instance to use SSL

1. Determine the parameter group that is attached to your DB instance:

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the top right corner of the Amazon RDS console, choose the AWS Region of your DB
instance.

c. In the navigation pane, choose Databases, and then choose the name of your DB instance
to show its details.

d. Choose the Configuration tab. Find the Parameter group in the section.

2. If necessary, create a new parameter group. If your DB instance uses the default parameter
group, you must create a new parameter group. If your DB instance uses a nondefault
parameter group, you can choose to edit the existing parameter group or to create a new
parameter group. If you edit an existing parameter group, the change affects all DB instances
that use that parameter group.

To create a new parameter group, follow the instructions in Creating a DB parameter group in
Amazon RDS.

3. Edit your new or existing parameter group to set the rds.force_ssl parameter to true. To
edit the parameter group, follow the instructions in Modifying parameters in a DB parameter
group in Amazon RDS.

4. If you created a new parameter group, modify your DB instance to attach the new parameter
group. Modify the DB Parameter Group setting of the DB instance. For more information, see
Modifying an Amazon RDS DB instance.

5. Reboot your DB instance. For more information, see Rebooting a DB instance.

Encrypting specific connections

You can force all connections to your DB instance to use SSL, or you can encrypt connections from
specific client computers only. To use SSL from a specific client, you must obtain certificates for the
client computer, import certificates on the client computer, and then encrypt the connections from
the client computer.

Using SSL with a SQL Server DB instance 2832

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Note

All SQL Server instances created after August 5, 2014, use the DB instance endpoint in the
Common Name (CN) field of the SSL certificate. Prior to August 5, 2014, SSL certificate
verification was not available for VPC-based SQL Server instances. If you have a VPC-based
SQL Server DB instance that was created before August 5, 2014, and you want to use SSL
certificate verification and ensure that the instance endpoint is included as the CN for
the SSL certificate for that DB instance, then rename the instance. When you rename a
DB instance, a new certificate is deployed and the instance is rebooted to enable the new
certificate.

Obtaining certificates for client computers

To encrypt connections from a client computer to an Amazon RDS DB instance running Microsoft
SQL Server, you need a certificate on your client computer.

To obtain that certificate, download the certificate to your client computer. You can download a
root certificate that works for all regions. You can also download a certificate bundle that contains
both the old and new root certificate. In addition, you can download region-specific intermediate
certificates. For more information about downloading certificates, see Using SSL/TLS to encrypt a
connection to a DB instance or cluster.

After you have downloaded the appropriate certificate, import the certificate into your Microsoft
Windows operating system by following the procedure in the section following.

Importing certificates on client computers

You can use the following procedure to import your certificate into the Microsoft Windows
operating system on your client computer.

To import the certificate into your Windows operating system:

1. On the Start menu, type Run in the search box and press Enter.

2. In the Open box, type MMC and then choose OK.

3. In the MMC console, on the File menu, choose Add/Remove Snap-in.

4. In the Add or Remove Snap-ins dialog box, for Available snap-ins, select Certificates, and
then choose Add.

Using SSL with a SQL Server DB instance 2833

Amazon Relational Database Service User Guide

5. In the Certificates snap-in dialog box, choose Computer account, and then choose Next.

6. In the Select computer dialog box, choose Finish.

7. In the Add or Remove Snap-ins dialog box, choose OK.

8. In the MMC console, expand Certificates, open the context (right-click) menu for Trusted Root
Certification Authorities, choose All Tasks, and then choose Import.

9. On the first page of the Certificate Import Wizard, choose Next.

10. On the second page of the Certificate Import Wizard, choose Browse. In the browse window,
change the file type to All files (*.*) because .pem is not a standard certificate extension.
Locate the .pem file that you downloaded previously.

11. Choose Open to select the certificate file, and then choose Next.

12. On the third page of the Certificate Import Wizard, choose Next.

13. On the fourth page of the Certificate Import Wizard, choose Finish. A dialog box appears
indicating that the import was successful.

14. In the MMC console, expand Certificates, expand Trusted Root Certification Authorities, and
then choose Certificates. Locate the certificate to confirm it exists, as shown here.

Encrypting connections to an Amazon RDS DB instance running Microsoft SQL Server

After you have imported a certificate into your client computer, you can encrypt connections from
the client computer to an Amazon RDS DB instance running Microsoft SQL Server.

For SQL Server Management Studio, use the following procedure. For more information about SQL
Server Management Studio, see Use SQL Server management studio.

To encrypt connections from SQL Server Management Studio

1. Launch SQL Server Management Studio.

2. For Connect to server, type the server information, login user name, and password.

3. Choose Options.

Using SSL with a SQL Server DB instance 2834

http://msdn.microsoft.com/en-us/library/ms174173.aspx

Amazon Relational Database Service User Guide

4. Select Encrypt connection.

5. Choose Connect.

6. Confirm that your connection is encrypted by running the following query. Verify that the
query returns true for encrypt_option.

select ENCRYPT_OPTION from SYS.DM_EXEC_CONNECTIONS where SESSION_ID = @@SPID

For any other SQL client, use the following procedure.

To encrypt connections from other SQL clients

1. Append encrypt=true to your connection string. This string might be available as an option,
or as a property on the connection page in GUI tools.

Note

To enable SSL encryption for clients that connect using JDBC, you might need to add
the Amazon RDS SQL certificate to the Java CA certificate (cacerts) store. You can do
this by using the keytool utility.

2. Confirm that your connection is encrypted by running the following query. Verify that the
query returns true for encrypt_option.

select ENCRYPT_OPTION from SYS.DM_EXEC_CONNECTIONS where SESSION_ID = @@SPID

Using SSL with a SQL Server DB instance 2835

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

Amazon Relational Database Service User Guide

Configuring SQL Server security protocols and ciphers

You can turn certain security protocols and ciphers on and off using DB parameters. The security
parameters that you can configure (except for TLS version 1.2) are shown in the following table.

DB parameter Allowed values (default in
bold)

Description

rds.tls10 default, enabled, disabled TLS 1.0.

rds.tls11 default, enabled, disabled TLS 1.1.

rds.tls12 default TLS 1.2. You can't modify this
value.

rds.fips 0, 1 When you set the parameter
to 1, RDS forces the use of
modules that are compliant
with the Federal Information
Processing Standard (FIPS)
140-2 standard.

For more information, see
Use SQL Server 2016 in FIPS
140-2-compliant mode in the
Microsoft documentation.

rds.rc4 default, enabled, disabled RC4 stream cipher.

rds.diffie-hellman default, enabled, disabled Diffie-Hellman key-exchange
encryption.

rds.diffie-hellman-min-key-
bit-length

default, 1024, 2048, 3072,
4096

Minimum bit length for Diffie-
Hellman keys.

rds.curve25519 default, enabled, disabled Curve25519 elliptic-curve
encryption cipher. This
parameter isn't supported for
all engine versions.

Configuring SQL Server security protocols and ciphers 2836

https://docs.microsoft.com/en-us/troubleshoot/sql/security/sql-2016-fips-140-2-compliant-mode
https://docs.microsoft.com/en-us/troubleshoot/sql/security/sql-2016-fips-140-2-compliant-mode

Amazon Relational Database Service User Guide

DB parameter Allowed values (default in
bold)

Description

rds.3des168 default, enabled, disabled Triple Data Encryption
Standard (DES) encryption
cipher with a 168-bit key
 length.

Note

For minor engine versions after 16.00.4120.1, 15.00.4365.2, 14.00.3465.1, 13.00.6435.1,
and 12.00.6449.1, the default setting for the DB parameters rds.tls10, rds.tls11,
rds.rc4, rds.curve25519, and rds.3des168 is disabled. Otherwise the default setting
is enabled.
For minor engine versions after 16.00.4120.1, 15.00.4365.2, 14.00.3465.1, 13.00.6435.1,
and 12.00.6449.1, the default setting for rds.diffie-hellman-min-key-bit-
lengthis 3072. Otherwise the default setting is 2048.

Use the following process to configure the security protocols and ciphers:

1. Create a custom DB parameter group.

2. Modify the parameters in the parameter group.

3. Associate the DB parameter group with your DB instance.

For more information on DB parameter groups, see Parameter groups for Amazon RDS.

Creating the security-related parameter group

Create a parameter group for your security-related parameters that corresponds to the SQL Server
edition and version of your DB instance.

Console

The following procedure creates a parameter group for SQL Server Standard Edition 2016.

Configuring SQL Server security protocols and ciphers 2837

Amazon Relational Database Service User Guide

To create the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

4. In the Create parameter group pane, do the following:

a. For Parameter group family, choose sqlserver-se-13.0.

b. For Group name, enter an identifier for the parameter group, such as sqlserver-
ciphers-se-13.

c. For Description, enter Parameter group for security protocols and ciphers.

5. Choose Create.

CLI

The following procedure creates a parameter group for SQL Server Standard Edition 2016.

To create the parameter group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name sqlserver-ciphers-se-13 \
 --db-parameter-group-family "sqlserver-se-13.0" \
 --description "Parameter group for security protocols and ciphers"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name sqlserver-ciphers-se-13 ^
 --db-parameter-group-family "sqlserver-se-13.0" ^
 --description "Parameter group for security protocols and ciphers"

Configuring SQL Server security protocols and ciphers 2838

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Modifying security-related parameters

Modify the security-related parameters in the parameter group that corresponds to the SQL Server
edition and version of your DB instance.

Console

The following procedure modifies the parameter group that you created for SQL Server Standard
Edition 2016. This example turns off TLS version 1.0.

To modify the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose the parameter group, such as sqlserver-ciphers-se-13.

4. Under Parameters, filter the parameter list for rds.

5. Choose Edit parameters.

6. Choose rds.tls10.

7. For Values, choose disabled.

8. Choose Save changes.

CLI

The following procedure modifies the parameter group that you created for SQL Server Standard
Edition 2016. This example turns off TLS version 1.0.

To modify the parameter group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name sqlserver-ciphers-se-13 \
 --parameters
 "ParameterName='rds.tls10',ParameterValue='disabled',ApplyMethod=pending-reboot"

Configuring SQL Server security protocols and ciphers 2839

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name sqlserver-ciphers-se-13 ^
 --parameters
 "ParameterName='rds.tls10',ParameterValue='disabled',ApplyMethod=pending-reboot"

Associating the security-related parameter group with your DB instance

To associate the parameter group with your DB instance, use the AWS Management Console or the
AWS CLI.

Console

You can associate the parameter group with a new or existing DB instance:

• For a new DB instance, associate it when you launch the instance. For more information, see
Creating an Amazon RDS DB instance.

• For an existing DB instance, associate it by modifying the instance. For more information, see
Modifying an Amazon RDS DB instance.

CLI

You can associate the parameter group with a new or existing DB instance.

To create a DB instance with the parameter group

• Specify the same DB engine type and major version as you used when creating the parameter
group.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --db-instance-class db.m5.2xlarge \
 --engine sqlserver-se \
 --engine-version 13.00.5426.0.v1 \

Configuring SQL Server security protocols and ciphers 2840

Amazon Relational Database Service User Guide

 --allocated-storage 100 \
 --master-user-password secret123 \
 --master-username admin \
 --storage-type gp2 \
 --license-model li \
 --db-parameter-group-name sqlserver-ciphers-se-13

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 13.00.5426.0.v1 ^
 --allocated-storage 100 ^
 --master-user-password secret123 ^
 --master-username admin ^
 --storage-type gp2 ^
 --license-model li ^
 --db-parameter-group-name sqlserver-ciphers-se-13

Note

Specify a password other than the prompt shown here as a security best practice.

To modify a DB instance and associate the parameter group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --db-parameter-group-name sqlserver-ciphers-se-13 \
 --apply-immediately

For Windows:

Configuring SQL Server security protocols and ciphers 2841

Amazon Relational Database Service User Guide

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-parameter-group-name sqlserver-ciphers-se-13 ^
 --apply-immediately

Configuring SQL Server security protocols and ciphers 2842

Amazon Relational Database Service User Guide

Updating applications to connect to Microsoft SQL Server DB instances
using new SSL/TLS certificates

As of January 13, 2023, Amazon RDS has published new Certificate Authority (CA) certificates
for connecting to your RDS DB instances using Secure Socket Layer or Transport Layer Security
(SSL/TLS). Following, you can find information about updating your applications to use the new
certificates.

This topic can help you to determine whether any client applications use SSL/TLS to connect to
your DB instances. If they do, you can further check whether those applications require certificate
verification to connect.

Note

Some applications are configured to connect to SQL Server DB instances only if they can
successfully verify the certificate on the server.
For such applications, you must update your client application trust stores to include the
new CA certificates.

After you update your CA certificates in the client application trust stores, you can rotate
the certificates on your DB instances. We strongly recommend testing these procedures in a
development or staging environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate. For more
information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
instance or cluster. For information about using SSL/TLS with Microsoft SQL Server DB instances,
see Using SSL with a Microsoft SQL Server DB instance.

Topics

• Determining whether any applications are connecting to your Microsoft SQL Server DB instance
using SSL

• Determining whether a client requires certificate verification in order to connect

• Updating your application trust store

Updating applications for new SSL/TLS certificates 2843

Amazon Relational Database Service User Guide

Determining whether any applications are connecting to your Microsoft SQL
Server DB instance using SSL

Check the DB instance configuration for the value of the rds.force_ssl parameter. By default,
the rds.force_ssl parameter is set to 0 (off). If the rds.force_ssl parameter is set to 1 (on),
clients are required to use SSL/TLS for connections. For more information about parameter groups,
see Parameter groups for Amazon RDS.

Run the following query to get the current encryption option for all the open connections to a DB
instance. The column ENCRYPT_OPTION returns TRUE if the connection is encrypted.

select SESSION_ID,
 ENCRYPT_OPTION,
 NET_TRANSPORT,
 AUTH_SCHEME
 from SYS.DM_EXEC_CONNECTIONS

This query shows only the current connections. It doesn't show whether applications that have
connected and disconnected in the past have used SSL.

Determining whether a client requires certificate verification in order to connect

You can check whether different types of clients require certificate verification to connect.

Note

If you use connectors other than the ones listed, see the specific connector's
documentation for information about how it enforces encrypted connections. For more
information, see Connection modules for Microsoft SQL databases in the Microsoft SQL
Server documentation.

SQL Server Management Studio

Check whether encryption is enforced for SQL Server Management Studio connections:

1. Launch SQL Server Management Studio.

2. For Connect to server, enter the server information, login user name, and password.

Updating applications for new SSL/TLS certificates 2844

https://docs.microsoft.com/en-us/sql/connect/sql-connection-libraries?view=sql-server-ver15

Amazon Relational Database Service User Guide

3. Choose Options.

4. Check if Encrypt connection is selected in the connect page.

For more information about SQL Server Management Studio, see Use SQL Server Management
Studio.

Sqlcmd

The following example with the sqlcmd client shows how to check a script's SQL Server connection
to determine whether successful connections require a valid certificate. For more information, see
Connecting with sqlcmd in the Microsoft SQL Server documentation.

When using sqlcmd, an SSL connection requires verification against the server certificate if you use
the -N command argument to encrypt connections, as in the following example.

$ sqlcmd -N -S dbinstance.rds.amazon.com -d ExampleDB

Note

If sqlcmd is invoked with the -C option, it trusts the server certificate, even if that doesn't
match the client-side trust store.

ADO.NET

In the following example, the application connects using SSL, and the server certificate must be
verified.

using SQLC = Microsoft.Data.SqlClient;

...

 static public void Main()
 {
 using (var connection = new SQLC.SqlConnection(
 "Server=tcp:dbinstance.rds.amazon.com;" +
 "Database=ExampleDB;User ID=LOGIN_NAME;" +

Updating applications for new SSL/TLS certificates 2845

http://msdn.microsoft.com/en-us/library/ms174173.aspx
http://msdn.microsoft.com/en-us/library/ms174173.aspx
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/connecting-with-sqlcmd?view=sql-server-ver15

Amazon Relational Database Service User Guide

 "Password=YOUR_PASSWORD;" +
 "Encrypt=True;TrustServerCertificate=False;"
))
 {
 connection.Open();
 ...
 }

Java

In the following example, the application connects using SSL, and the server certificate must be
verified.

String connectionUrl =
 "jdbc:sqlserver://dbinstance.rds.amazon.com;" +
 "databaseName=ExampleDB;integratedSecurity=true;" +
 "encrypt=true;trustServerCertificate=false";

To enable SSL encryption for clients that connect using JDBC, you might need to add the Amazon
RDS certificate to the Java CA certificate store. For instructions, see Configuring the client for
encryption in the Microsoft SQL Server documentation. You can also provide the trusted CA
certificate file name directly by appending trustStore=path-to-certificate-trust-
store-file to the connection string.

Note

If you use TrustServerCertificate=true (or its equivalent) in the connection string,
the connection process skips the trust chain validation. In this case, the application
connects even if the certificate can't be verified. Using TrustServerCertificate=false
enforces certificate validation and is a best practice.

Updating your application trust store

You can update the trust store for applications that use Microsoft SQL Server. For instructions, see
Encrypting specific connections. Also, see Configuring the client for encryption in the Microsoft
SQL Server documentation.

Updating applications for new SSL/TLS certificates 2846

https://docs.microsoft.com/en-us/SQL/connect/jdbc/configuring-the-client-for-ssl-encryption?view=sql-server-2017
https://docs.microsoft.com/en-us/SQL/connect/jdbc/configuring-the-client-for-ssl-encryption?view=sql-server-2017
https://docs.microsoft.com/en-us/SQL/connect/jdbc/configuring-the-client-for-ssl-encryption?view=sql-server-2017

Amazon Relational Database Service User Guide

If you are using an operating system other than Microsoft Windows, see the software distribution
documentation for SSL/TLS implementation for information about adding a new root CA
certificate. For example, OpenSSL and GnuTLS are popular options. Use the implementation
method to add trust to the RDS root CA certificate. Microsoft provides instructions for configuring
certificates on some systems.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB instance or cluster.

For sample scripts that import certificates, see Sample script for importing certificates into your
trust store.

Note

When you update the trust store, you can retain older certificates in addition to adding the
new certificates.

Compliance program support for Microsoft SQL Server DB
instances

AWS Services in scope have been fully assessed by a third-party auditor and result in a certification,
attestation of compliance, or Authority to Operate (ATO). For more information, see AWS services
in scope by compliance program.

HIPAA support for Microsoft SQL Server DB instances

You can use Amazon RDS for Microsoft SQL Server databases to build HIPAA-compliant
applications. You can store healthcare-related information, including protected health information
(PHI), under a Business Associate Agreement (BAA) with AWS. For more information, see HIPAA
compliance.

Amazon RDS for SQL Server supports HIPAA for the following versions and editions:

• SQL Server 2022 Enterprise, Standard, and Web Editions

• SQL Server 2019 Enterprise, Standard, and Web Editions

• SQL Server 2017 Enterprise, Standard, and Web Editions

Compliance programs 2847

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/hipaa-compliance/

Amazon Relational Database Service User Guide

• SQL Server 2016 Enterprise, Standard, and Web Editions

To enable HIPAA support on your DB instance, set up the following three components.

Component Details

Auditing To set up auditing, set the parameter rds.sqlserver_audit to
the value fedramp_hipaa . If your DB instance is not already using a
custom DB parameter group, you must create a custom parameter group
and attach it to your DB instance before you can modify the rds.sqlse
rver_audit parameter. For more information, see Parameter groups
for Amazon RDS.

Transport
encryption

To set up transport encryption, force all connections to your DB instance
to use Secure Sockets Layer (SSL). For more information, see Forcing
connections to your DB instance to use SSL.

Encryption at rest To set up encryption at rest, you have two options:

1.
If you're running SQL Server 2016–2022 Enterprise Edition or 2022
 Standard Edition, you can use Transparent Data Encryption (TDE)
to achieve encryption at rest. For more information, see Support for
Transparent Data Encryption in SQL Server.

2.
You can set up encryption at rest by using AWS Key Management Service
(AWS KMS) encryption keys. For more information, see Encrypting
Amazon RDS resources.

Microsoft SQL Server versions on Amazon RDS

You can specify any currently supported Microsoft SQL Server version when creating a new DB
instance. You can specify the Microsoft SQL Server major version (such as Microsoft SQL Server
14.00), and any supported minor version for the specified major version. If no version is specified,
Amazon RDS defaults to a supported version, typically the most recent version. If a major version is

Version support 2848

Amazon Relational Database Service User Guide

specified but a minor version is not, Amazon RDS defaults to a recent release of the major version
you have specified.

The following table shows the supported versions for all editions and all AWS Regions, except
where noted. You can also use the describe-db-engine-versions AWS CLI command to see a
list of supported versions, as well as defaults for newly created DB instances. The following table
shows the SQL Server versions supported in RDS:

Major version Minor version RDS API EngineVersion and CLI
 engine-version

SQL Server 2022 16.00.4185.3 (CU18)

16.00.4175.1 (CU17)

16.00.4165.4 (CU16)

16.00.4150.1 (CU15)

16.00.4140.3 (CU14 GDR)

16.00.4135.4 (CU14)

16.00.4131.2 (CU13)

16.00.4125.3 (CU13)

16.00.4120.1 (CU12 GDR)

16.00.4115.5 (CU12)

16.00.4105.2 (CU11)

16.00.4095.4 (CU10)

16.00.4085.2 (CU9)

16.00.4185.3.v1

16.00.4175.1.v1

16.00.4165.4.v1

16.00.4150.1.v1

16.00.4140.3.v1

16.00.4135.4.v1

16.00.4131.2.v1

16.00.4125.3.v1

16.00.4120.1.v1

16.00.4115.5.v1

16.00.4105.2.v1

16.00.4095.4.v1

16.00.4085.2.v1

SQL Server 2019 15.00.4430.1 (CU32)

15.00.4420.2 (CU31)

15.00.4415.2 (CU30)

15.00.4430.1.v1

15.00.4420.2.v1

15.00.4415.2.v1

Version support 2849

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

Major version Minor version RDS API EngineVersion and CLI
 engine-version

15.00.4410.1 (CU29 GDR)

15.00.4395.2 (CU28)

15.00.4390.2 (CU28)

15.00.4385.2 (CU28)

15.00.4382.1 (CU27)

15.00.4375.4 (CU27)

15.00.4365.2 (CU26)

15.00.4355.3 (CU25)

15.00.4345.5 (CU24)

15.00.4335.1 (CU23)

15.00.4322.2 (CU22)

15.00.4316.3 (CU21)

15.00.4312.2 (CU20)

15.00.4236.7 (CU16)

15.00.4198.2 (CU15)

15.00.4153.1 (CU12)

15.00.4073.23 (CU8)

15.00.4043.16 (CU5)

15.00.4410.1.v1

15.00.4395.2.v1

15.00.4390.2.v1

15.00.4385.2.v1

15.00.4382.1.v1

15.00.4375.4.v1

15.00.4365.2.v1

15.00.4355.3.v1

15.00.4345.5.v1

15.00.4335.1.v1

15.00.4322.2.v1

15.00.4316.3.v1

15.00.4312.2.v1

15.00.4236.7.v1

15.00.4198.2.v1

15.00.4153.1.v1

15.00.4073.23.v1

15.00.4043.16.v1

Version support 2850

Amazon Relational Database Service User Guide

Major version Minor version RDS API EngineVersion and CLI
 engine-version

SQL Server 2017 14.00.3485.1 (CU31 GDR)

14.00.3480.1 (CU31)

14.00.3475.1 (CU31)

14.00.3471.2 (CU31)

14.00.3465.1 (CU31)

14.00.3460.9 (CU31)

14.00.3451.2 (CU30)

14.00.3421.10 (CU27)

14.00.3401.7 (CU25)

14.00.3381.3 (CU23)

14.00.3356.20 (CU22)

14.00.3294.2 (CU20)

14.00.3281.6 (CU19)

14.00.3485.1.v1

14.00.3480.1.v1

14.00.3475.1.v1

14.00.3471.2.v1

14.00.3465.1.v1

14.00.3460.9.v1

14.00.3451.2.v1

14.00.3421.10.v1

14.00.3401.7.v1

14.00.3381.3.v1

14.00.3356.20.v1

14.00.3294.2.v1

14.00.3281.6.v1

Version support 2851

Amazon Relational Database Service User Guide

Major version Minor version RDS API EngineVersion and CLI
 engine-version

SQL Server 2016 13.00.6455.2 (GDR)

13.00.6450.1 (GDR)

13.00.6445.1 (GDR)

13.00.6441.1 (GDR)

13.00.6435.1 (GDR)

13.00.6430.49 (GDR)

13.00.6419.1 (SP3 + Hotfix)

13.00.6300.2 (SP3)

13.00.6455.2.v1

13.00.6450.1.v1

13.00.6445.1.v1

13.00.6441.1.v1

13.00.6435.1.v1

13.00.6430.49.v1

13.00.6419.1.v1

13.00.6300.2.v1

Version management in Amazon RDS

Amazon RDS includes flexible version management that enables you to control when and how your
DB instance is patched or upgraded. This enables you to do the following for your DB engine:

• Maintain compatibility with database engine patch versions.

• Test new patch versions to verify that they work with your application before you deploy them in
production.

• Plan and perform version upgrades to meet your service level agreements and timing
requirements.

Microsoft SQL Server engine patching in Amazon RDS

Amazon RDS periodically aggregates official Microsoft SQL Server database patches into a DB
instance engine version that's specific to Amazon RDS. For more information about the Microsoft
SQL Server patches in each engine version, see Version and feature support on Amazon RDS.

Currently, you manually perform all engine upgrades on your DB instance. For more information,
see Upgrades of the Microsoft SQL Server DB engine.

Version management 2852

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport

Amazon Relational Database Service User Guide

Deprecation schedule for major engine versions of Microsoft SQL Server on
Amazon RDS

The following table displays the planned schedule of deprecations for major engine versions of
Microsoft SQL Server.

Date Information

July 9, 2024
Microsoft will stop critical patch updates for SQL Server 2014. For more information, see Microsoft SQL
 Server 2014 in the Microsoft documentation.

June 1, 2024
Amazon RDS plans to end support of Microsoft SQL Server 2014 on RDS for SQL Server. At that time, any
remaining instances will be scheduled to migrate to SQL Server 2016 (latest minor version available). For
more information, see Announcement: Amazon RDS for SQL Server ending support for SQL Server 2014
major versions.

To avoid an automatic upgrade from Microsoft SQL Server 2014, you can upgrade at a time that is conve
nient to you. For more information, see Upgrading a DB instance engine version.

July 12, 2022
Microsoft will stop critical patch updates for SQL Server 2012. For more information, see Microsoft SQL
 Server 2012 in the Microsoft documentation.

June 1, 2022
Amazon RDS plans to end support of Microsoft SQL Server 2012 on RDS for SQL Server. At that time, any
remaining instances will be scheduled to migrate to SQL Server 2014 (latest minor version available). For
more information, see Announcement: Amazon RDS for SQL Server ending support for SQL Server 2012
major versions.

To avoid an automatic upgrade from Microsoft SQL Server 2012, you can upgrade at a time that is conve
nient to you. For more information, see Upgrading a DB instance engine version.

September 1,
2021

Amazon RDS is starting to disable the creation of new RDS for SQL Server DB instances using Microsoft
SQL Server 2012. For more information, see Announcement: Amazon RDS for SQL Server ending support
for SQL Server 2012 major versions.

July 12, 2019

Version management 2853

https://learn.microsoft.com/en-us/lifecycle/products/sql-server-2014
https://learn.microsoft.com/en-us/lifecycle/products/sql-server-2014
https://repost.aws/articles/AR-eyAH1PSSuevuZRUE9FV3A
https://repost.aws/articles/AR-eyAH1PSSuevuZRUE9FV3A
https://docs.microsoft.com/en-us/lifecycle/products/microsoft-sql-server-2012
https://docs.microsoft.com/en-us/lifecycle/products/microsoft-sql-server-2012
https://repost.aws/questions/QUFNiETqrMQ_WT_AXSxOYNOA
https://repost.aws/questions/QUFNiETqrMQ_WT_AXSxOYNOA
https://repost.aws/questions/QUFNiETqrMQ_WT_AXSxOYNOA
https://repost.aws/questions/QUFNiETqrMQ_WT_AXSxOYNOA

Amazon Relational Database Service User Guide

Date Information

The Amazon RDS team deprecated support for Microsoft SQL Server 2008 R2 in June 2019. Remaining
instances of Microsoft SQL Server 2008 R2 are migrating to SQL Server 2012 (latest minor version
available).

To avoid an automatic upgrade from Microsoft SQL Server 2008 R2, you can upgrade at a time that is
 convenient to you. For more information, see Upgrading a DB instance engine version.

April 25, 2019 Before the end of April 2019, you will no longer be able to create new Amazon RDS for SQL Server
database instances using Microsoft SQL Server 2008R2.

Microsoft SQL Server features on Amazon RDS

The supported SQL Server versions on Amazon RDS include the following features. In general, a
version also includes features from the previous versions, unless otherwise noted in the Microsoft
documentation.

Topics

• Microsoft SQL Server 2022 features

• Microsoft SQL Server 2019 features

• Microsoft SQL Server 2017 features

• Microsoft SQL Server 2016 features

• Microsoft SQL Server 2014 end of support on Amazon RDS

• Microsoft SQL Server 2012 end of support on Amazon RDS

• Microsoft SQL Server 2008 R2 end of support on Amazon RDS

• Change data capture support for Microsoft SQL Server DB instances

• Features not supported and features with limited support

Microsoft SQL Server 2022 features

SQL Server 2022 includes many new features, such as the following:

• Parameter Sensitive Plan Optimization – allows multiple cached plans for a single parameterized
statement, potentially reducing issues with parameter sniffing.

Feature support 2854

Amazon Relational Database Service User Guide

• SQL Server Ledger – provides the ability to cryptographically prove that your data hasn't been
altered without authorization.

• Instant file initialization for transaction log file growth events – results in faster execution of log
growth events up to 64MB, including for databases with TDE enabled.

• System page latch concurrency enhancements – reduces page latch contention while allocating
and deallocating data pages and extents, providing significant performance enhancements to
tempdb heavy workloads.

For the full list of SQL Server 2022 features, see What's new in SQL Server 2022 (16.x) in the
Microsoft documentation.

For a list of unsupported features, see Features not supported and features with limited support.

Microsoft SQL Server 2019 features

SQL Server 2019 includes many new features, such as the following:

• Accelerated database recovery (ADR) – Reduces crash recovery time after a restart or a long-
running transaction rollback.

• Intelligent Query Processing (IQP):

• Row mode memory grant feedback – Corrects excessive grants automatically, that would
otherwise result in wasted memory and reduced concurrency.

• Batch mode on rowstore – Enables batch mode execution for analytic workloads without
requiring columnstore indexes.

• Table variable deferred compilation – Improves plan quality and overall performance for
queries that reference table variables.

• Intelligent performance:

• OPTIMIZE_FOR_SEQUENTIAL_KEY index option – Improves throughput for high-concurrency
inserts into indexes.

• Improved indirect checkpoint scalability – Helps databases with heavy DML workloads.

• Concurrent Page Free Space (PFS) updates – Enables handling as a shared latch rather than an
exclusive latch.

• Monitoring improvements:

• WAIT_ON_SYNC_STATISTICS_REFRESH wait type – Shows accumulated instance-level time
spent on synchronous statistics refresh operations.

SQL Server 2019 features 2855

https://learn.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2022?view=sql-server-ver16

Amazon Relational Database Service User Guide

• Database-scoped configurations – Include LIGHTWEIGHT_QUERY_PROFILING and
LAST_QUERY_PLAN_STATS.

• Dynamic management functions (DMFs) – Include sys.dm_exec_query_plan_stats and
sys.dm_db_page_info.

• Verbose truncation warnings – The data truncation error message defaults to include table and
column names and the truncated value.

• Resumable online index creation – In SQL Server 2017, only resumable online index rebuild is
supported.

For the full list of SQL Server 2019 features, see What's new in SQL Server 2019 (15.x) in the
Microsoft documentation.

For a list of unsupported features, see Features not supported and features with limited support.

Microsoft SQL Server 2017 features

SQL Server 2017 includes many new features, such as the following:

• Adaptive query processing

• Automatic plan correction (an automatic tuning feature)

• GraphDB

• Resumable index rebuilds

For the full list of SQL Server 2017 features, see What's new in SQL Server 2017 in the Microsoft
documentation.

For a list of unsupported features, see Features not supported and features with limited support.

Microsoft SQL Server 2016 features

Amazon RDS supports the following features of SQL Server 2016:

• Always Encrypted

• JSON Support

• Operational Analytics

SQL Server 2017 features 2856

https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2017

Amazon Relational Database Service User Guide

• Query Store

• Temporal Tables

For the full list of SQL Server 2016 features, see What's new in SQL Server 2016 in the Microsoft
documentation.

Microsoft SQL Server 2014 end of support on Amazon RDS

SQL Server 2014 has reached its end of support on Amazon RDS.

RDS is upgrading all existing DB instances that are still using SQL Server 2014 to the latest minor
version of SQL Server 2016. For more information, see Version management in Amazon RDS.

Microsoft SQL Server 2012 end of support on Amazon RDS

SQL Server 2012 has reached its end of support on Amazon RDS.

RDS is upgrading all existing DB instances that are still using SQL Server 2012 to the latest minor
version of SQL Server 2016. For more information, see Version management in Amazon RDS.

Microsoft SQL Server 2008 R2 end of support on Amazon RDS

SQL Server 2008 R2 has reached its end of support on Amazon RDS.

RDS is upgrading all existing DB instances that are still using SQL Server 2008 R2 to the latest
minor version of SQL Server 2012. For more information, see Version management in Amazon RDS.

Change data capture support for Microsoft SQL Server DB instances

Amazon RDS supports change data capture (CDC) for your DB instances running Microsoft SQL
Server. CDC captures changes that are made to the data in your tables, and stores metadata about
each change that you can access later. For more information, see Change data capture in the
Microsoft documentation.

Amazon RDS supports CDC for the following SQL Server editions and versions:

• Microsoft SQL Server Enterprise Edition (All versions)

• Microsoft SQL Server Standard Edition:

SQL Server 2014 features 2857

https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2016
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server#Capture

Amazon Relational Database Service User Guide

• 2022

• 2019

• 2017

• 2016 version 13.00.4422.0 SP1 CU2 and later

To use CDC with your Amazon RDS DB instances, first enable or disable CDC at the database level
by using RDS-provided stored procedures. After that, any user that has the db_owner role for that
database can use the native Microsoft stored procedures to control CDC on that database. For more
information, see Using change data capture for Amazon RDS for SQL Server.

You can use CDC and AWS Database Migration Service to enable ongoing replication from SQL
Server DB instances.

Features not supported and features with limited support

The following Microsoft SQL Server features aren't supported on Amazon RDS:

• Backing up to Microsoft Azure Blob Storage

• Buffer pool extension

• Custom password policies

• Data Quality Services

• Database Log Shipping

• Database snapshots (Amazon RDS supports only DB instance snapshots)

• Extended stored procedures, including xp_cmdshell

• FILESTREAM support

• File tables

• Machine Learning and R Services (requires OS access to install it)

• Maintenance plans

• Performance Data Collector

• Policy-Based Management

• PolyBase

• Replication

Unsupported and limited feature support 2858

Amazon Relational Database Service User Guide

• Resource Governor

In a multi-tenancy environment, we recommend understanding performance requirements and
considerations to minimize problems due to workload competition for resources.

• Server-level triggers

• Service Broker endpoints

• Stretch database

• TRUSTWORTHY database property (requires sysadmin role)

• T-SQL endpoints (all operations using CREATE ENDPOINT are unavailable)

• WCF Data Services

The following Microsoft SQL Server features have limited support on Amazon RDS:

• Distributed queries/linked servers. For more information, see Implement linked servers with
Amazon RDS for Microsoft SQL Server.

• Common Runtime Language (CLR). On RDS for SQL Server 2016 and lower versions, CLR is
supported in SAFE mode and using assembly bits only. CLR isn't supported on RDS for SQL
Server 2017 and higher versions. For more information, see Common Runtime Language
Integration in the Microsoft documentation.

• Link servers with Oracle OLEDB in Amazon RDS for SQL Server. For more information, see
Support for Linked Servers with Oracle OLEDB in Amazon RDS for SQL Server.

The following features aren't supported on Amazon RDS with SQL Server 2022:

• Suspend database for snapshot

• External Data Source

• Backup and restore to S3 compatible object storage

• Object store integration

• TLS 1.3 and MS-TDS 8.0

• Backup compression offloading with QAT

• SQL Server Analysis Services (SSAS)

• Database mirroring with Multi-AZ deployments. SQL Server Always On is the only supported
method with Multi-AZ deployments.

Unsupported and limited feature support 2859

https://aws.amazon.com/blogs/database/implement-linked-servers-with-amazon-rds-for-microsoft-sql-server/
https://aws.amazon.com/blogs/database/implement-linked-servers-with-amazon-rds-for-microsoft-sql-server/
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration/common-language-runtime-integration-overview
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration/common-language-runtime-integration-overview

Amazon Relational Database Service User Guide

Multi-AZ deployments using Microsoft SQL Server Database
Mirroring or Always On availability groups

Amazon RDS supports Multi-AZ deployments for DB instances running Microsoft SQL Server by
using SQL Server Database Mirroring (DBM) or Always On Availability Groups (AGs). Multi-AZ
deployments provide increased availability, data durability, and fault tolerance for DB instances.
In the event of planned database maintenance or unplanned service disruption, Amazon RDS
automatically fails over to the up-to-date secondary replica so database operations can resume
quickly without manual intervention. The primary and secondary instances use the same endpoint,
whose physical network address transitions to the passive secondary replica as part of the failover
process. You don't have to reconfigure your application when a failover occurs.

Amazon RDS manages failover by actively monitoring your Multi-AZ deployment and initiating
a failover when a problem with your primary occurs. Failover doesn't occur unless the standby
and primary are fully in sync. Amazon RDS actively maintains your Multi-AZ deployment by
automatically repairing unhealthy DB instances and re-establishing synchronous replication.
You don't have to manage anything. Amazon RDS handles the primary, the witness, and the
standby instance for you. When you set up SQL Server Multi-AZ, RDS configures passive secondary
instances for all of the databases on the instance.

For more information, see Multi-AZ deployments for Amazon RDS for Microsoft SQL Server.

Using Transparent Data Encryption to encrypt data at rest

Amazon RDS supports Microsoft SQL Server Transparent Data Encryption (TDE), which
transparently encrypts stored data. Amazon RDS uses option groups to enable and configure these
features. For more information about the TDE option, see Support for Transparent Data Encryption
in SQL Server.

Functions and stored procedures for Amazon RDS for Microsoft
SQL Server

Following, you can find a list of the Amazon RDS functions and stored procedures that help
automate SQL Server tasks.

Multi-AZ deployments 2860

Amazon Relational Database Service User Guide

Task type Procedure
or function

Where it's used

rds_drop_
database

Dropping a database in an Amazon RDS for Microsoft
SQL Server DB instance

rds_failo
ver_time

Determining the last failover time for Amazon RDS for
SQL Server

rds_manag
e_view_db
_permissi
on

Deny or allow viewing database names for Amazon
RDS for SQL Server

rds_modif
y_db_name

Renaming a Amazon RDS for Microsoft SQL Server
database in a Multi-AZ deployment

rds_read_
error_log

Viewing error and agent logs

rds_set_c
onfigurat
ion

This operation is used to set various DB instance c
onfigurations:

• Change data capture for Multi-AZ instances

• Setting the retention period for trace and dump files

• Compressing backup files

rds_set_d
atabase_o
nline

Transitioning a Amazon RDS for SQL Server database
from OFFLINE to ONLINE

Administrative tasks

rds_set_s
ystem_dat
abase_syn
c_objects

Turning on SQL Server Agent job replication

Functions and stored procedures 2861

Amazon Relational Database Service User Guide

Task type Procedure
or function

Where it's used

rds_fn_ge
t_system_
database_
sync_obje
cts

rds_fn_se
rver_obje
ct_last_s
ync_time

rds_show_
configura
tion

To see the values that are set using rds_set_c
onfiguration , see these topics:

• Change data capture for Multi-AZ instances

• Setting the retention period for trace and dump files

rds_shrin
k_tempdbf
ile

Shrinking the tempdb database

rds_cdc_d
isable_db

Disabling CDCChange data capture
(CDC)

rds_cdc_e
nable_db

Enabling CDC

rds_fn_sy
smail_all
items

Viewing messages, logs, and attachmentsDatabase Mail

rds_fn_sy
smail_eve
nt_log

Viewing messages, logs, and attachments

Functions and stored procedures 2862

Amazon Relational Database Service User Guide

Task type Procedure
or function

Where it's used

rds_fn_sy
smail_mai
lattachme
nts

Viewing messages, logs, and attachments

rds_sysma
il_contro
l

This operation is used in starting and stopping the
mail queue:

• Starting the mail queue

• Stopping the mail queue

rds_sysma
il_delete
_mailitem
s_sp

Deleting messages

rds_backu
p_databas
e

Backing up a database

rds_cance
l_task

Canceling a task

rds_finis
h_restore

Finishing a database restore

rds_resto
re_databa
se

Restoring a database

Native backup and
restore

rds_resto
re_log

Restoring a log

Functions and stored procedures 2863

Amazon Relational Database Service User Guide

Task type Procedure
or function

Where it's used

rds_delet
e_from_fi
lesystem

Deleting files on the RDS DB instance

rds_downl
oad_from_
s3

Downloading files from an Amazon S3 bucket to a
SQL Server DB instance

rds_gathe
r_file_de
tails

Listing files on the RDS DB instance

Amazon S3 file
transfer

rds_uploa
d_to_s3

Uploading files from a SQL Server DB instance to an
Amazon S3 bucket

Microsoft Distributed
Transaction Coordinat
or (MSDTC)

rds_msdtc
_transact
ion_traci
ng

Using transaction tracing

SQL Server Audit rds_fn_ge
t_audit_f
ile

Viewing audit logs

Functions and stored procedures 2864

Amazon Relational Database Service User Guide

Task type Procedure
or function

Where it's used

Transparent Data
Encryption

rds_backu
p_tde_cer
tificate

rds_drop_
tde_certi
ficate

rds_resto
re_tde_ce
rtificate

rds_fn_li
st_user_t
de_certif
icates

Support for Transparent Data Encryption in SQL
Server

Functions and stored procedures 2865

Amazon Relational Database Service User Guide

Task type Procedure
or function

Where it's used

rds_msbi_
task

This operation is used with SQL Server Analysis
Services (SSAS):

• Deploying SSAS projects on Amazon RDS

• Adding a domain user as a database administrator

• Backing up an SSAS database

• Restoring an SSAS database

This operation is also used with SQL Server Integration
Services (SSIS):

• Administrative permissions on SSISDB

• Deploying an SSIS project

This operation is also used with SQL Server Reporting
Services (SSRS):

• Granting access to domain users

• Revoking system-level permissions

Microsoft Business
Intelligence (MSBI)

rds_fn_ta
sk_status

This operation shows the status of MSBI tasks:

• SSAS: Monitoring the status of a deployment task

• SSIS: Monitoring the status of a deployment task

• SSRS: Monitoring the status of a task

rds_drop_
ssis_data
base

Dropping the SSISDB databaseSSIS

rds_sqlag
ent_proxy

Creating an SSIS proxy

Functions and stored procedures 2866

Amazon Relational Database Service User Guide

Task type Procedure
or function

Where it's used

SSRS rds_drop_
ssrs_data
bases

Deleting the SSRS databases

Local time zone for Microsoft SQL Server DB instances

The time zone of an Amazon RDS DB instance running Microsoft SQL Server is set by default. The
current default is Coordinated Universal Time (UTC). You can set the time zone of your DB instance
to a local time zone instead, to match the time zone of your applications.

You set the time zone when you first create your DB instance. You can create your DB instance by
using the AWS Management Console, the Amazon RDS API CreateDBInstance action, or the AWS
CLI create-db-instance command.

If your DB instance is part of a Multi-AZ deployment (using SQL Server DBM or AGs), then when
you fail over, your time zone remains the local time zone that you set. For more information, see
Multi-AZ deployments using Microsoft SQL Server Database Mirroring or Always On availability
groups.

When you request a point-in-time restore, you specify the time to restore to. The time is shown
in your local time zone. For more information, see Restoring a DB instance to a specified time for
Amazon RDS.

The following are limitations to setting the local time zone on your DB instance:

• You can't modify the time zone of an existing SQL Server DB instance.

• You can't restore a snapshot from a DB instance in one time zone to a DB instance in a different
time zone.

• We strongly recommend that you don't restore a backup file from one time zone to a different
time zone. If you restore a backup file from one time zone to a different time zone, you
must audit your queries and applications for the effects of the time zone change. For more
information, see Importing and exporting SQL Server databases using native backup and restore.

Local time zone 2867

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

Supported time zones

You can set your local time zone to one of the values listed in the following table.

Time zone Standard time
offset

Description Notes

Afghanistan Standard Time (UTC+04:30) Kabul This time zone
doesn't observe
daylight saving
time.

Alaskan Standard Time (UTC–09:00) Alaska

Aleutian Standard Time (UTC–10:00) Aleutian Islands

Altai Standard Time (UTC+07:00) Barnaul, Gorno-Alt
aysk

Arab Standard Time (UTC+03:00) Kuwait, Riyadh This time zone
doesn't observe
daylight saving
time.

Arabian Standard Time (UTC+04:00) Abu Dhabi, Muscat

Arabic Standard Time (UTC+03:00) Baghdad This time zone
doesn't observe
daylight saving
time.

Argentina Standard Time (UTC–03:00) City of Buenos Aires This time zone
doesn't observe
daylight saving
time.

Astrakhan Standard Time (UTC+04:00) Astrakhan,
Ulyanovsk

Supported time zones 2868

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Atlantic Standard Time (UTC–04:00) Atlantic Time
(Canada)

AUS Central Standard Time (UTC+09:30) Darwin This time zone
doesn't observe
daylight saving
time.

Aus Central W. Standard Time (UTC+08:45) Eucla

AUS Eastern Standard Time (UTC+10:00) Canberra,
Melbourne, Sydney

Azerbaijan Standard Time (UTC+04:00) Baku

Azores Standard Time (UTC–01:00) Azores

Bahia Standard Time (UTC–03:00) Salvador

Bangladesh Standard Time (UTC+06:00) Dhaka This time zone
doesn't observe
daylight saving
time.

Belarus Standard Time (UTC+03:00) Minsk This time zone
doesn't observe
daylight saving
time.

Bougainville Standard Time (UTC+11:00) Bougainville Island

Canada Central Standard
Time

(UTC–06:00) Saskatchewan This time zone
doesn't observe
daylight saving
time.

Supported time zones 2869

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Cape Verde Standard Time (UTC–01:00) Cabo Verde Is. This time zone
doesn't observe
daylight saving
time.

Caucasus Standard Time (UTC+04:00) Yerevan

Cen. Australia Standard Time (UTC+09:30) Adelaide

Central America Standard
Time

(UTC–06:00) Central America This time zone
doesn't observe
daylight saving
time.

Central Asia Standard Time (UTC+06:00) Astana This time zone
doesn't observe
daylight saving
time.

Central Brazilian Standard
Time

(UTC–04:00) Cuiaba

Central Europe Standard
Time

(UTC+01:00) Belgrade, Bratislav
a, Budapest,
Ljubljana, Prague

Central European Standard
Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb

Central Pacific Standard Time (UTC+11:00) Solomon Islands,
New Caledonia

This time zone
doesn't observe
daylight saving
time.

Central Standard Time (UTC–06:00) Central Time (US
and Canada)

Supported time zones 2870

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Central Standard Time
(Mexico)

(UTC–06:00) Guadalajara, Mexico
City, Monterrey

Chatham Islands Standard
Time

(UTC+12:45) Chatham Islands

China Standard Time (UTC+08:00) Beijing, Chongqing,
Hong Kong, Urumqi

This time zone
doesn't observe
daylight saving
time.

Cuba Standard Time (UTC–05:00) Havana

Dateline Standard Time (UTC–12:00) International Date
Line West

This time zone
doesn't observe
daylight saving
time.

E. Africa Standard Time (UTC+03:00) Nairobi This time zone
doesn't observe
daylight saving
time.

E. Australia Standard Time (UTC+10:00) Brisbane This time zone
doesn't observe
daylight saving
time.

E. Europe Standard Time (UTC+02:00) Chisinau

E. South America Standard
Time

(UTC–03:00) Brasilia

Easter Island Standard Time (UTC–06:00) Easter Island

Supported time zones 2871

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Eastern Standard Time (UTC–05:00) Eastern Time (US
and Canada)

Eastern Standard Time
(Mexico)

(UTC–05:00) Chetumal

Egypt Standard Time (UTC+02:00) Cairo

Ekaterinburg Standard Time (UTC+05:00) Ekaterinburg

Fiji Standard Time (UTC+12:00) Fiji

FLE Standard Time (UTC+02:00) Helsinki, Kyiv,
Riga, Sofia, Tallinn,
Vilnius

Georgian Standard Time (UTC+04:00) Tbilisi This time zone
doesn't observe
daylight saving
time.

GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

This time zone
isn't the same as
Greenwich Mean
Time. This time
zone does observe
daylight saving
time.

Greenland Standard Time (UTC–03:00) Greenland

Greenwich Standard Time (UTC) Monrovia, Reykjavik This time zone
doesn't observe
daylight saving
time.

Supported time zones 2872

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

GTB Standard Time (UTC+02:00) Athens, Bucharest

Haiti Standard Time (UTC–05:00) Haiti

Hawaiian Standard Time (UTC–10:00) Hawaii

India Standard Time (UTC+05:30) Chennai, Kolkata,
Mumbai, New Delhi

This time zone
doesn't observe
daylight saving
time.

Iran Standard Time (UTC+03:30) Tehran

Israel Standard Time (UTC+02:00) Jerusalem

Jordan Standard Time (UTC+02:00) Amman

Kaliningrad Standard Time (UTC+02:00) Kaliningrad

Kamchatka Standard Time (UTC+12:00) Petropavlovsk-
Kamchatsky – Old

Korea Standard Time (UTC+09:00) Seoul This time zone
doesn't observe
daylight saving
time.

Libya Standard Time (UTC+02:00) Tripoli

Line Islands Standard Time (UTC+14:00) Kiritimati Island

Lord Howe Standard Time (UTC+10:30) Lord Howe Island

Magadan Standard Time (UTC+11:00) Magadan This time zone
doesn't observe
daylight saving
time.

Supported time zones 2873

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Magallanes Standard Time (UTC–03:00) Punta Arenas

Marquesas Standard Time (UTC–09:30) Marquesas Islands

Mauritius Standard Time (UTC+04:00) Port Louis This time zone
doesn't observe
daylight saving
time.

Middle East Standard Time (UTC+02:00) Beirut

Montevideo Standard Time (UTC–03:00) Montevideo

Morocco Standard Time (UTC+01:00) Casablanca

Mountain Standard Time (UTC–07:00) Mountain Time (US
and Canada)

Mountain Standard Time
(Mexico)

(UTC–07:00) Chihuahua, La Paz,
Mazatlan

Myanmar Standard Time (UTC+06:30) Yangon (Rangoon) This time zone
doesn't observe
daylight saving
time.

N. Central Asia Standard
Time

(UTC+07:00) Novosibirsk

Namibia Standard Time (UTC+02:00) Windhoek

Nepal Standard Time (UTC+05:45) Kathmandu This time zone
doesn't observe
daylight saving
time.

Supported time zones 2874

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

New Zealand Standard Time (UTC+12:00) Auckland, Wellingto
n

Newfoundland Standard
Time

(UTC–03:30) Newfoundland

Norfolk Standard Time (UTC+11:00) Norfolk Island

North Asia East Standard
Time

(UTC+08:00) Irkutsk

North Asia Standard Time (UTC+07:00) Krasnoyarsk

North Korea Standard Time (UTC+09:00) Pyongyang

Omsk Standard Time (UTC+06:00) Omsk

Pacific SA Standard Time (UTC–03:00) Santiago

Pacific Standard Time (UTC–08:00) Pacific Time (US
and Canada)

Pacific Standard Time
(Mexico)

(UTC–08:00) Baja California

Pakistan Standard Time (UTC+05:00) Islamabad, Karachi This time zone
doesn't observe
daylight saving
time.

Paraguay Standard Time (UTC–04:00) Asuncion

Romance Standard Time (UTC+01:00) Brussels,
Copenhagen,
Madrid, Paris

Russia Time Zone 10 (UTC+11:00) Chokurdakh

Supported time zones 2875

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Russia Time Zone 11 (UTC+12:00) Anadyr, Petropavl
ovsk-Kamchatsky

Russia Time Zone 3 (UTC+04:00) Izhevsk, Samara

Russian Standard Time (UTC+03:00) Moscow, St.
Petersburg,
Volgograd

This time zone
doesn't observe
daylight saving
time.

SA Eastern Standard Time (UTC–03:00) Cayenne, Fortaleza This time zone
doesn't observe
daylight saving
time.

SA Pacific Standard Time (UTC–05:00) Bogota, Lima,
Quito, Rio Branco

This time zone
doesn't observe
daylight saving
time.

SA Western Standard Time (UTC–04:00) Georgetown, La
Paz, Manaus, San
Juan

This time zone
doesn't observe
daylight saving
time.

Saint Pierre Standard Time (UTC–03:00) Saint Pierre and
Miquelon

Sakhalin Standard Time (UTC+11:00) Sakhalin

Samoa Standard Time (UTC+13:00) Samoa

Sao Tome Standard Time (UTC+01:00) Sao Tome

Saratov Standard Time (UTC+04:00) Saratov

Supported time zones 2876

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta

This time zone
doesn't observe
daylight saving
time.

Singapore Standard Time (UTC+08:00) Kuala Lumpur,
Singapore

This time zone
doesn't observe
daylight saving
time.

South Africa Standard Time (UTC+02:00) Harare, Pretoria This time zone
doesn't observe
daylight saving
time.

Sri Lanka Standard Time (UTC+05:30) Sri Jayawarde
nepura

This time zone
doesn't observe
daylight saving
time.

Sudan Standard Time (UTC+02:00) Khartoum

Syria Standard Time (UTC+02:00) Damascus

Taipei Standard Time (UTC+08:00) Taipei This time zone
doesn't observe
daylight saving
time.

Tasmania Standard Time (UTC+10:00) Hobart

Tocantins Standard Time (UTC–03:00) Araguaina

Supported time zones 2877

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

Tokyo Standard Time (UTC+09:00) Osaka, Sapporo,
Tokyo

This time zone
doesn't observe
daylight saving
time.

Tomsk Standard Time (UTC+07:00) Tomsk

Tonga Standard Time (UTC+13:00) Nuku'alofa This time zone
doesn't observe
daylight saving
time.

Transbaikal Standard Time (UTC+09:00) Chita

Turkey Standard Time (UTC+03:00) Istanbul

Turks And Caicos Standard
Time

(UTC–05:00) Turks and Caicos

Ulaanbaatar Standard Time (UTC+08:00) Ulaanbaatar This time zone
doesn't observe
daylight saving
time.

US Eastern Standard Time (UTC–05:00) Indiana (East)

US Mountain Standard Time (UTC–07:00) Arizona This time zone
doesn't observe
daylight saving
time.

UTC UTC Coordinated
Universal Time

This time zone
doesn't observe
daylight saving
time.

Supported time zones 2878

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

UTC–02 (UTC–02:00) Coordinated
Universal Time–02

This time zone
doesn't observe
daylight saving
time.

UTC–08 (UTC–08:00) Coordinated
Universal Time–08

UTC–09 (UTC–09:00) Coordinated
Universal Time–09

UTC–11 (UTC–11:00) Coordinated
Universal Time–11

This time zone
doesn't observe
daylight saving
time.

UTC+12 (UTC+12:00) Coordinated
Universal Time+12

This time zone
doesn't observe
daylight saving
time.

UTC+13 (UTC+13:00) Coordinated
Universal Time+13

Venezuela Standard Time (UTC–04:00) Caracas This time zone
doesn't observe
daylight saving
time.

Vladivostok Standard Time (UTC+10:00) Vladivostok

Volgograd Standard Time (UTC+04:00) Volgograd

Supported time zones 2879

Amazon Relational Database Service User Guide

Time zone Standard time
offset

Description Notes

W. Australia Standard Time (UTC+08:00) Perth This time zone
doesn't observe
daylight saving
time.

W. Central Africa Standard
Time

(UTC+01:00) West Central Africa This time zone
doesn't observe
daylight saving
time.

W. Europe Standard Time (UTC+01:00) Amsterdam,
Berlin, Bern, Rome,
Stockholm, Vienna

W. Mongolia Standard Time (UTC+07:00) Hovd

West Asia Standard Time (UTC+05:00) Ashgabat, Tashkent This time zone
doesn't observe
daylight saving
time.

West Bank Standard Time (UTC+02:00) Gaza, Hebron

West Pacific Standard Time (UTC+10:00) Guam, Port
Moresby

This time zone
doesn't observe
daylight saving
time.

Yakutsk Standard Time (UTC+09:00) Yakutsk

Supported time zones 2880

Amazon Relational Database Service User Guide

Licensing Microsoft SQL Server on Amazon RDS

When you set up an Amazon RDS DB instance for Microsoft SQL Server, the software license is
included.

This means that you don't need to purchase SQL Server licenses separately. AWS holds the
license for the SQL Server database software. Amazon RDS pricing includes the software license,
underlying hardware resources, and Amazon RDS management capabilities.

Amazon RDS supports the following Microsoft SQL Server editions:

• Enterprise

• Standard

• Web

• Express

Note

Licensing for SQL Server Web Edition supports only public and internet-accessible
webpages, websites, web applications, and web services. This level of support is required
for compliance with Microsoft's usage rights. For more information, see AWS service terms.

Amazon RDS supports Multi-AZ deployments for DB instances running Microsoft SQL Server by
using SQL Server Database Mirroring (DBM) or Always On Availability Groups (AGs). There are no
additional licensing requirements for Multi-AZ deployments. For more information, see Multi-AZ
deployments for Amazon RDS for Microsoft SQL Server.

Restoring license-terminated DB instances

Amazon RDS takes snapshots of license-terminated DB instances. If your instance is terminated for
licensing issues, you can restore it from the snapshot to a new DB instance. New DB instances have
a license included.

For more information, see Restoring license-terminated DB instances for Amazon RDS for SQL
Server.

Licensing SQL Server on Amazon RDS 2881

http://aws.amazon.com/serviceterms

Amazon Relational Database Service User Guide

Development and test

Because of licensing requirements, we can't offer SQL Server Developer Edition on Amazon RDS.
You can use Express Edition for many development, testing, and other nonproduction needs.
However, if you need the full feature capabilities of an enterprise-level installation of SQL Server
for development, you can download and install SQL Server Developer Edition on RDS Custom
for SQL Server using a CEV with BYOM. For more information, see Preparing a CEV using Bring
Your Own Media (BYOM). Dedicated infrastructure isn't required for Developer Edition. By using
your own host, you also gain access to other programmability features that are not accessible on
Amazon RDS. For more information on the difference between SQL Server editions, see Editions
and supported features of SQL Server 2019 in the Microsoft documentation.

SQL Server Developer Edition 2882

https://learn.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2019?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2019?view=sql-server-ver15

Amazon Relational Database Service User Guide

Connecting to your Microsoft SQL Server DB instance

After Amazon RDS provisions your DB instance, you can use any standard SQL client application to
connect to the DB instance. In this topic, you connect to your DB instance by using either Microsoft
SQL Server Management Studio (SSMS) or SQL Workbench/J.

For an example that walks you through the process of creating and connecting to a sample DB
instance, see Creating and connecting to a Microsoft SQL Server DB instance.

Before you connect

Before you can connect to your DB instance, it has to be available and accessible.

1. Make sure that its status is available. You can check this on the details page for your instance
in the AWS Management Console or by using the describe-db-instances AWS CLI command.

Connecting to a DB instance running SQL Server 2883

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

2. Make sure that it is accessible to your source. Depending on your scenario, it may not need to be
publicly accessible. For more information, see Amazon VPC and Amazon RDS.

3. Make sure that the inbound rules of your VPC security group allow access to your DB instance.
For more information, see Can't connect to Amazon RDS DB instance.

Finding the DB instance endpoint and port number

You need both the endpoint and the port number to connect to the DB instance.

To find the endpoint and port

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region of your DB
instance.

3. Find the Domain Name System (DNS) name (endpoint) and port number for your DB instance:

a. Open the RDS console and choose Databases to display a list of your DB instances.

b. Choose the SQL Server DB instance name to display its details.

c. On the Connectivity & security tab, copy the endpoint.

Finding the DB instance endpoint and port number 2884

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

d. Note the port number.

Connecting to your DB instance with Microsoft SQL Server
Management Studio

In this procedure, you connect to your sample DB instance by using Microsoft SQL Server
Management Studio (SSMS). To download a standalone version of this utility, see Download SQL
Server Management Studio (SSMS) in the Microsoft documentation.

To connect to a DB instance using SSMS

1. Start SQL Server Management Studio.

The Connect to Server dialog box appears.

Connecting to your DB instance with SSMS 2885

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Amazon Relational Database Service User Guide

2. Provide the information for your DB instance:

a. For Server type, choose Database Engine.

b. For Server name, enter the DNS name (endpoint) and port number of your DB instance,
separated by a comma.

Important

Change the colon between the endpoint and port number to a comma.

Your server name should look like the following example.

database-2.cg034itsfake.us-east-1.rds.amazonaws.com,1433

c. For Authentication, choose SQL Server Authentication.

d. For Login, enter the master user name for your DB instance.

e. For Password, enter the password for your DB instance.

3. Choose Connect.

After a few moments, SSMS connects to your DB instance.

If you can't connect to your DB instance, see Security group considerations and
Troubleshooting connections to your SQL Server DB instance.

Connecting to your DB instance with SSMS 2886

Amazon Relational Database Service User Guide

4. Your SQL Server DB instance comes with SQL Server's standard built-in system databases
(master, model, msdb, and tempdb). To explore the system databases, do the following:

a. In SSMS, on the View menu, choose Object Explorer.

b. Expand your DB instance, expand Databases, and then expand System Databases.

5. Your SQL Server DB instance also comes with a database named rdsadmin. Amazon RDS
uses this database to store the objects that it uses to manage your database. The rdsadmin
database also includes stored procedures that you can run to perform advanced tasks. For
more information, see Common DBA tasks for Amazon RDS for Microsoft SQL Server.

6. You can now start creating your own databases and running queries against your DB instance
and databases as usual. To run a test query against your DB instance, do the following:

a. In SSMS, on the File menu point to New and then choose Query with Current
Connection.

b. Enter the following SQL query.

select @@VERSION

c. Run the query. SSMS returns the SQL Server version of your Amazon RDS DB instance.

Connecting to your DB instance with SSMS 2887

Amazon Relational Database Service User Guide

Connecting to your DB instance with SQL Workbench/J

This example shows how to connect to a DB instance running the Microsoft SQL Server database
engine by using the SQL Workbench/J database tool. To download SQL Workbench/J, see SQL
Workbench/J.

SQL Workbench/J uses JDBC to connect to your DB instance. You also need the JDBC driver for SQL
Server. To download this driver, see Download Microsoft JDBC Driver for SQL Server.

To connect to a DB instance using SQL Workbench/J

1. Open SQL Workbench/J. The Select Connection Profile dialog box appears, as shown
following.

Connecting to your DB instance with SQL Workbench/J 2888

http://www.sql-workbench.net/
http://www.sql-workbench.net/
https://learn.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-ver16

Amazon Relational Database Service User Guide

2. In the first box at the top of the dialog box, enter a name for the profile.

3. For Driver, choose SQL JDBC 4.0.

4. For URL, enter jdbc:sqlserver://, then enter the endpoint of your DB instance. For
example, the URL value might be the following.

jdbc:sqlserver://sqlsvr-pdz.abcd12340.us-west-2.rds.amazonaws.com:1433

5. For Username, enter the master user name for the DB instance.

6. For Password, enter the password for the master user.

7. Choose the save icon in the dialog toolbar, as shown following.

8. Choose OK. After a few moments, SQL Workbench/J connects to your DB instance. If you
can't connect to your DB instance, see Security group considerations and Troubleshooting
connections to your SQL Server DB instance.

9. In the query pane, enter the following SQL query.

select @@VERSION

Connecting to your DB instance with SQL Workbench/J 2889

Amazon Relational Database Service User Guide

10. Choose the Execute icon in the toolbar, as shown following.

The query returns the version information for your DB instance, similar to the following.

Microsoft SQL Server 2017 (RTM-CU22) (KB4577467) - 14.0.3356.20 (X64)

Security group considerations

To connect to your DB instance, your DB instance must be associated with a security group. This
security group contains the IP addresses and network configuration that you use to access the DB
instance. You might have associated your DB instance with an appropriate security group when you
created your DB instance. If you assigned a default, no-configured security group when you created
your DB instance, your DB instance firewall prevents connections.

In some cases, you might need to create a new security group to make access possible. For
instructions on creating a new security group, see Controlling access with security groups. For
a topic that walks you through the process of setting up rules for your VPC security group, see
Tutorial: Create a VPC for use with a DB instance (IPv4 only).

After you have created the new security group, modify your DB instance to associate it with the
security group. For more information, see Modifying an Amazon RDS DB instance.

You can enhance security by using SSL to encrypt connections to your DB instance. For more
information, see Using SSL with a Microsoft SQL Server DB instance.

Troubleshooting connections to your SQL Server DB instance

The following table shows error messages that you might encounter when you attempt to connect
to your SQL Server DB instance.

Security group considerations 2890

Amazon Relational Database Service User Guide

Issue Troubleshooting suggestions

Could not open a
connection to SQL Server
– Microsoft SQL Server,
Error: 53

Make sure that you specified the server name correctly. For Server
name, enter the DNS name and port number of your sample DB
instance, separated by a comma.

Important

If you have a colon between the DNS name and port
number, change the colon to a comma.

Your server name should look like the following example.

sample-instance.cg034itsfake.us-east-1.rds.am
azonaws.com,1433

No connection could be
made because the target
machine actively refused
it – Microsoft SQL Server,
Error: 10061

You were able to reach the DB instance but the connection was
refused. This issue is usually caused by specifying the user name
or password incorrectly. Verify the user name and password, then
retry.

The access rules enforced by your local firewall and the IP
addresses authorized to access your DB instance might not match.
The problem is most likely the inbound rules in your security
group. For more information, see Security in Amazon RDS.

A network-related or
instance-specific error
occurred while establish
ing a connection to SQL
Server. The server was not
found or was not accessibl
e... The wait operation
timed out – Microsoft SQL
Server, Error: 258

Your database instance must be publicly accessible. To connect
to it from outside of the VPC, the instance must have a public IP
address assigned.

Note

For more information on connection issues, see Can't connect to Amazon RDS DB instance.

Troubleshooting 2891

Amazon Relational Database Service User Guide

Troubleshooting 2892

Amazon Relational Database Service User Guide

Working with Active Directory with RDS for SQL Server

You can join an RDS for SQL Server DB instance to a Microsoft Active Directory (AD) domain. Your
AD domain can be hosted on AWS Managed AD within AWS, or on a Self Managed AD in a location
of your choice, including your corporate data centers, on AWS EC2, or with other cloud providers.

You can authenticate domain users using NTLM authentication with Self Managed Active Directory.
You can use Kerberos and NTLM authentication with AWS Managed Active Directory.

In the following sections, you can find information about working with Self Managed Active
Directory and AWS Managed Active Directory for Microsoft SQL Server on Amazon RDS.

Topics

• Working with Self Managed Active Directory with an Amazon RDS for SQL Server DB instance

• Working with AWS Managed Active Directory with RDS for SQL Server

Working with Active Directory with RDS for SQL Server 2893

Amazon Relational Database Service User Guide

Working with Self Managed Active Directory with an Amazon RDS for
SQL Server DB instance

You can join your RDS for SQL Server DB instances directly to your self-managed Active Directory
(AD) domain, regardless of where your AD is hosted: in corporate data centers, on AWS EC2, or
with other cloud providers. With self-managed AD, you use NTLM authentication to directly control
authentication of users and services on your RDS for SQL Server DB instances without using
intermediary domains and forest trusts. When users authenticate with an RDS for SQL Server DB
instance joined to your self-managed AD domain, authentication requests are forwarded to a self-
managed AD domain that you specify.

Topics

• Region and version availability

• Requirements

• Limitations

• Overview of setting up Self Managed Active Directory

• Setting up Self Managed Active Directory

• Managing a DB instance in a self-managed Active Directory Domain

• Understanding self-managed Active Directory Domain membership

• Troubleshooting self-managed Active Directory

• Restoring a SQL Server DB instance and then adding it to a self-managed Active Directory
domain

Region and version availability

Amazon RDS supports Self Managed AD for SQL Server using NTLM in all AWS Regions.

Requirements

Make sure you've met the following requirements before joining an RDS for SQL Server DB instance
to your self-managed AD domain.

Topics

• Configure your on-premises AD

• Configure your network connectivity

Working with Self Managed Active Directory with a SQL Server DB instance 2894

Amazon Relational Database Service User Guide

• Configure your AD domain service account

Configure your on-premises AD

Make sure that you have an on-premises or other self-managed Microsoft AD that you can join
the Amazon RDS for SQL Server instance to. Your on-premises AD should have the following
configuration:

• If you have Active Directory sites defined, make sure the subnets in the VPC associated with your
RDS for SQL Server DB instance are defined in your Active Directory site. Confirm there aren't
any conflicts between the subnets in your VPC and the subnets in your other AD sites.

• Your AD domain controller has a domain functional level of Windows Server 2008 R2 or higher.

• Your AD domain name can't be in Single Label Domain (SLD) format. RDS for SQL Server does
not support SLD domains.

• The fully qualified domain name (FQDN) for your AD can't exceed 47 characters.

Configure your network connectivity

Make sure that you have met the following network configurations:

• Connectivity configured between the Amazon VPC where you want to create the RDS for SQL
Server DB instance and your self-managed Active Directory. You can set up connectivity using
AWS Direct Connect, AWS VPN, VPC peering, or AWS Transit Gateway.

• For VPC security groups, the default security group for your default Amazon VPC is already
added to your RDS for SQL Server DB instance in the console. Ensure that the security group
and the VPC network ACLs for the subnet(s) where you're creating your RDS for SQL Server DB
instance allow traffic on the ports and in the directions shown in the following diagram.

Working with Self Managed Active Directory with a SQL Server DB instance 2895

Amazon Relational Database Service User Guide

The following table identifies the role of each port.

Protocol Ports Role

TCP/UDP 53 Domain Name System (DNS)

TCP/UDP 88 Kerberos authentication

TCP/UDP 464 Change/Set password

TCP/UDP 389 Lightweight Directory Access
Protocol (LDAP)

TCP 135 Distributed Computing
Environment / End Point
Mapper (DCE / EPMAP)

TCP 445 Directory Services SMB file
sharing

Working with Self Managed Active Directory with a SQL Server DB instance 2896

Amazon Relational Database Service User Guide

Protocol Ports Role

TCP 636 Lightweight Directory Access
Protocol over TLS/SSL
(LDAPS)

TCP 49152 - 65535 Ephemeral ports for RPC

• Generally, the domain DNS servers are located in the AD domain controllers. You do not need to
configure the VPC DHCP option set to use this feature. For more information, see DHCP option
sets in the Amazon VPC User Guide.

Important

If you're using VPC network ACLs, you must also allow outbound traffic on dynamic ports
(49152-65535) from your RDS for SQL Server DB instance. Ensure that these traffic rules
are also mirrored on the firewalls that apply to each of the AD domain controllers, DNS
servers, and RDS for SQL Server DB instances.
While VPC security groups require ports to be opened only in the direction that network
traffic is initiated, most Windows firewalls and VPC network ACLs require ports to be open
in both directions.

Configure your AD domain service account

Make sure that you have met the following requirements for an AD domain service account:

• Make sure that you have a service account in your self-managed AD domain with delegated
permissions to join computers to the domain. A domain service account is a user account in your
self-managed AD that has been delegated permission to perform certain tasks.

• The domain service account needs to be delegated the following permissions in the
Organizational Unit (OU) that you're joining your RDS for SQL Server DB instance to:

• Validated ability to write to the DNS host name

• Validated ability to write to the service principal name

• Create and delete computer objects

Working with Self Managed Active Directory with a SQL Server DB instance 2897

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html

Amazon Relational Database Service User Guide

These represent the minimum set of permissions that are required to join computer objects to
your self-managed Active Directory. For more information, see Errors when attempting to join
computers to a domain in the Microsoft Windows Server documentation.

Important

Do not move computer objects that RDS for SQL Server creates in the Organizational
Unit after your DB instance is created. Moving the associated objects will cause your RDS
for SQL Server DB instance to become misconfigured. If you need to move the computer
objects created by Amazon RDS, use the ModifyDBInstance RDS API operation to modify
the domain parameters with the desired location of the computer objects.

Limitations

The following limitations apply for Self Managed AD for SQL Server.

• NTLM is the only supported authentication type. Kerberos authentication is not supported. If you
need to use kerberos authentication, you can use AWS Managed AD instead of self-managed AD.

• The Microsoft Distributed Transaction Coordinator (MSDTC) service isn't supported, as it requires
Kerberos authentication.

• Your RDS for SQL Server DB instances do not use the Network Time Protocol (NTP) server of your
self-managed AD domain. They use an AWS NTP service instead.

• SQL Server linked servers must use SQL authentication to connect to other RDS for SQL Server
DB instances joined to your self-managed AD domain.

• Microsoft Group Policy Object (GPO) settings from your self-managed AD domain are not
applied to RDS for SQL Server DB instances.

Overview of setting up Self Managed Active Directory

To set up self-managed AD for an RDS for SQL Server DB instance, take the following steps,
explained in greater detail in Setting up Self Managed Active Directory:

In your AD domain:

• Create an Organizational Unit (OU).

Working with Self Managed Active Directory with a SQL Server DB instance 2898

https://learn.microsoft.com/en-US/troubleshoot/windows-server/identity/access-denied-when-joining-computers
https://learn.microsoft.com/en-US/troubleshoot/windows-server/identity/access-denied-when-joining-computers
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

• Create an AD domain user.

• Delegate control to the AD domain user.

From the AWS Management Console or API:

• Create a AWS KMS key.

• Create a secret using AWS Secrets Manager.

• Create or modify an RDS for SQL Server DB instance and join it to your self-managed AD domain.

Setting up Self Managed Active Directory

To set up Self Managed AD, take the following steps.

Topics

• Step 1: Create an Organizational Unit in your AD

• Step 2: Create an AD domain user in your AD

• Step 3: Delegate control to the AD user

• Step 4: Create an AWS KMS key

• Step 5: Create an AWS secret

• Step 6: Create or modify a SQL Server DB instance

• Step 7: Create Windows Authentication SQL Server logins

Step 1: Create an Organizational Unit in your AD

Important

We recommend creating a dedicated OU and service credential scoped to that OU for any
AWS account that owns an RDS for SQL Server DB instance joined your self-managed AD
domain. By dedicating an OU and service credential, you can avoid conflicting permissions
and follow the principal of least privilege.

To create an OU in your AD

1. Connect to your AD domain as a domain administrator.

Working with Self Managed Active Directory with a SQL Server DB instance 2899

Amazon Relational Database Service User Guide

2. Open Active Directory Users and Computers and select the domain where you want to create
your OU.

3. Right-click the domain and choose New, then Organizational Unit.

4. Enter a name for the OU.

5. Keep the box selected for Protect container from accidental deletion.

6. Click OK. Your new OU will appear under your domain.

Step 2: Create an AD domain user in your AD

The domain user credentials will be used for the secret in AWS Secrets Manager.

To create an AD domain user in your AD

1. Open Active Directory Users and Computers and select the domain and OU where you want
to create your user.

2. Right-click the Users object and choose New, then User.

3. Enter a first name, last name, and logon name for the user. Click Next.

4. Enter a password for the user. Don't select "User must change password at next login". Don't
select "Account is disabled". Click Next.

5. Click OK. Your new user will appear under your domain.

Step 3: Delegate control to the AD user

To delegate control to the AD domain user in your domain

1. Open Active Directory Users and Computers MMC snap-in and select the domain where you
want to create your user.

2. Right-click the OU that you created earlier and choose Delegate Control.

3. On the Delegation of Control Wizard, click Next.

4. On the Users or Groups section, click Add.

5. On the Select Users, Computers, or Groups section, enter the AD user you created and click
Check Names. If your AD user check is successful, click OK.

6. On the Users or Groups section, confirm your AD user was added and click Next.

7. On the Tasks to Delegate section, choose Create a custom task to delegate and click Next.

8. On the Active Directory Object Type section:

Working with Self Managed Active Directory with a SQL Server DB instance 2900

Amazon Relational Database Service User Guide

a. Choose Only the following objects in the folder.

b. Select Computer Objects.

c. Select Create selected objects in this folder.

d. Select Delete selected objects in this folder and click Next.

9. On the Permissions section:

a. Keep General selected.

b. Select Validated write to DNS host name.

c. Select Validated write to service principal name and click Next.

10. For Completing the Delegation of Control Wizard, review and confirm your settings and click
Finish.

Step 4: Create an AWS KMS key

The KMS key is used to encrypt your AWS secret.

To create an AWS KMS key

Note

For Encryption Key, don't use the AWS default KMS key. Be sure to create the AWS KMS
key in the same AWS account that contains the RDS for SQL Server DB instance that you
want to join to your self-managed AD.

1. In the AWS KMS console, choose Create key.

2. For Key Type, choose Symmetric.

3. For Key Usage, choose Encrypt and decrypt.

4. For Advanced options:

a. For Key material origin, choose KMS.

b. For Regionality, choose Single-Region key and click Next.

5. For Alias, provide a name for the KMS key.

6. (Optional) For Description, provide a description of the KMS key.

7. (Optional) For Tags, provide a tag the KMS key and click Next.

Working with Self Managed Active Directory with a SQL Server DB instance 2901

Amazon Relational Database Service User Guide

8. For Key administrators, provide the name of an IAM user and select it.

9. For Key deletion, keep the box selected for Allow key administrators to delete this key and
click Next.

10. For Key users, provide the same IAM user from the previous step and select it. Click Next.

11. Review the configuration.

12. For Key policy, include the following to the policy Statement:

{
 "Sid": "Allow use of the KMS key on behalf of RDS",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "rds.amazonaws.com"
]
 },
 "Action": "kms:Decrypt",
 "Resource": "*"
}

13. Click Finish.

Step 5: Create an AWS secret

To create a secret

Note

Be sure to create the secret in the same AWS account that contains the RDS for SQL Server
DB instance that you want to join to your self-managed AD.

1. In AWS Secrets Manager, choose Store a new secret.

2. For Secret type, choose Other type of secret.

3. For Key/value pairs, add your two keys:

a. For the first key, enter CUSTOMER_MANAGED_ACTIVE_DIRECTORY_USERNAME.

b. For the value of the first key, enter the name of the AD user that you created on your
domain in a previous step.

Working with Self Managed Active Directory with a SQL Server DB instance 2902

Amazon Relational Database Service User Guide

c. For the second key, enter CUSTOMER_MANAGED_ACTIVE_DIRECTORY_PASSWORD.

d. For the value of the second key, enter the password that you created for the AD user on
your domain.

4. For Encryption key, enter the KMS key that you created in a previous step and click Next.

5. For Secret name, enter a descriptive name that helps you find your secret later.

6. (Optional) For Description, enter a description for the secret name.

7. For Resource permission, click Edit.

8. Add the following policy to the permission policy:

Note

We recommend that you use the aws:sourceAccount and aws:sourceArn
conditions in the policy to avoid the confused deputy problem. Use your AWS
account for aws:sourceAccount and the RDS for SQL Server DB instance ARN for
aws:sourceArn. For more information, see Preventing cross-service confused deputy
problems.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Principal":
 {
 "Service": "rds.amazonaws.com"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*",
 "Condition":
 {
 "StringEquals":
 {
 "aws:sourceAccount": "123456789012"
 },
 "ArnLike":
 {

Working with Self Managed Active Directory with a SQL Server DB instance 2903

Amazon Relational Database Service User Guide

 "aws:sourceArn": "arn:aws:rds:us-west-2:123456789012:db:*"
 }
 }
 }
]
}

9. Click Save then click Next.

10. For Configure rotation settings, keep the default values and choose Next.

11. Review the settings for the secret and click Store.

12. Choose the secret you created and copy the value for the Secret ARN. This will be used in the
next step to set up self-managed Active Directory.

Step 6: Create or modify a SQL Server DB instance

You can use the console, CLI, or RDS API to associate an RDS for SQL Server DB instance with a self-
managed AD domain. You can do this in one of the following ways:

• Create a new SQL Server DB instance using the console, the create-db-instance CLI command, or
the CreateDBInstance RDS API operation.

For instructions, see Creating an Amazon RDS DB instance.

• Modify an existing SQL Server DB instance using the console, the modify-db-instance CLI
command, or the ModifyDBInstance RDS API operation.

For instructions, see Modifying an Amazon RDS DB instance.

• Restore a SQL Server DB instance from a DB snapshot using the console, the restore-db-instance-
from-db-snapshot CLI command, or the RestoreDBInstanceFromDBSnapshot RDS API operation.

For instructions, see Restoring to a DB instance.

• Restore a SQL Server DB instance to a point-in-time using the console, the restore-db-instance-
to-point-in-time CLI command, or the RestoreDBInstanceToPointInTime RDS API operation.

For instructions, see Restoring a DB instance to a specified time for Amazon RDS.

When you use the AWS CLI, the following parameters are required for the DB instance to be able to
use the self-managed Active Directory domain that you created:

Working with Self Managed Active Directory with a SQL Server DB instance 2904

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

• For the --domain-fqdn parameter, use the fully qualified domain name (FQDN) of your self-
managed Active Directory.

• For the --domain-ou parameter, use the OU that you created in your self-managed AD.

• For the --domain-auth-secret-arn parameter, use the value of the Secret ARN that you
created in a previous step.

• For the --domain-dns-ips parameter, use the primary and secondary IPv4 addresses of the
DNS servers for your self-managed AD. If you don't have a secondary DNS server IP address,
enter the primary IP address twice.

The following example CLI commands show how to create, modify, and remove an RDS for SQL
Server DB instance with a self-managed AD domain.

Important

If you modify a DB instance to join it to or remove it from a self-managed AD domain, a
reboot of the DB instance is required for the modification to take effect. You can choose to
apply the changes immediately or wait until the next maintenance window. Choosing the
Apply Immediately option will cause downtime for a single-AZ DB instance. A multi-AZ
DB instance will perform a failover before completing a reboot. For more information, see
Using the schedule modifications setting.

The following CLI command creates a new RDS for SQL Server DB instance and joins it to a self-
managed AD domain.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier my-DB-instance \
 --db-instance-class db.m5.xlarge \
 --allocated-storage 50 \
 --engine sqlserver-se \
 --engine-version 15.00.4043.16.v1 \
 --license-model license-included \
 --master-username my-master-username \
 --master-user-password my-master-password \
 --domain-fqdn my_AD_domain.my_AD.my_domain \
 --domain-ou OU=my-AD-test-OU,DC=my-AD-test,DC=my-AD,DC=my-domain \

Working with Self Managed Active Directory with a SQL Server DB instance 2905

Amazon Relational Database Service User Guide

 --domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:my-
AD-test-secret-123456" \
 --domain-dns-ips "10.11.12.13" "10.11.12.14"

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier my-DB-instance ^
 --db-instance-class db.m5.xlarge ^
 --allocated-storage 50 ^
 --engine sqlserver-se ^
 --engine-version 15.00.4043.16.v1 ^
 --license-model license-included ^
 --master-username my-master-username ^
 --master-user-password my-master-password ^
 --domain-fqdn my-AD-test.my-AD.mydomain ^
 --domain-ou OU=my-AD-test-OU,DC=my-AD-test,DC=my-AD,DC=my-domain ^
 --domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:my-
AD-test-secret-123456" \ ^
 --domain-dns-ips "10.11.12.13" "10.11.12.14"

The following CLI command modifies an existing RDS for SQL Server DB instance to use a self-
managed Active Directory domain.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-DB-instance \
 --domain-fqdn my_AD_domain.my_AD.my_domain \
 --domain-ou OU=my-AD-test-OU,DC=my-AD-test,DC=my-AD,DC=my-domain \
 --domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:my-
AD-test-secret-123456" \
 --domain-dns-ips "10.11.12.13" "10.11.12.14"

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-DBinstance ^
 --domain-fqdn my_AD_domain.my_AD.my_domain ^
 --domain-ou OU=my-AD-test-OU,DC=my-AD-test,DC=my-AD,DC=my-domain ^
 --domain-auth-secret-arn "arn:aws:secretsmanager:region:account-number:secret:my-
AD-test-secret-123456" ^

Working with Self Managed Active Directory with a SQL Server DB instance 2906

Amazon Relational Database Service User Guide

 --domain-dns-ips "10.11.12.13" "10.11.12.14"

The following CLI command removes an RDS for SQL Server DB instance from a self-managed
Active Directory domain.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-DB-instance \
 --disable-domain

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-DB-instance ^
 --disable-domain

Step 7: Create Windows Authentication SQL Server logins

Use the Amazon RDS master user credentials to connect to the SQL Server DB instance as you
do for any other DB instance. Because the DB instance is joined to the self-managed AD domain,
you can provision SQL Server logins and users. You do this from the AD users and groups utility in
your self-managed AD domain. Database permissions are managed through standard SQL Server
permissions granted and revoked to these Windows logins.

In order for a self-managed AD user to authenticate with SQL Server, a SQL Server Windows login
must exist for the self-managed AD user or a self-managed Active Directory group that the user is
a member of. Fine-grained access control is handled through granting and revoking permissions on
these SQL Server logins. A self-managed AD user that doesn't have a SQL Server login or belong to
a self-managed AD group with such a login can't access the SQL Server DB instance.

The ALTER ANY LOGIN permission is required to create a self-managed AD SQL Server login. If you
haven't created any logins with this permission, connect as the DB instance's master user using SQL
Server Authentication and create your self-managed AD SQL Server logins under the context of the
master user.

You can run a data definition language (DDL) command such as the following to create a SQL
Server login for an self-managed AD user or group.

Working with Self Managed Active Directory with a SQL Server DB instance 2907

Amazon Relational Database Service User Guide

Note

Specify users and groups using the pre-Windows 2000 login name in the format
my_AD_domain\my_AD_domain_user. You can't use a user principal name (UPN) in the
format my_AD_domain_user@my_AD_domain.

USE [master]
GO
CREATE LOGIN [my_AD_domain\my_AD_domain_user] FROM WINDOWS WITH DEFAULT_DATABASE =
 [master], DEFAULT_LANGUAGE = [us_english];
GO

For more information, see CREATE LOGIN (Transact-SQL) in the Microsoft Developer Network
documentation.

Users (both humans and applications) from your domain can now connect to the RDS for
SQL Server instance from a self-managed AD domain-joined client machine using Windows
authentication.

Managing a DB instance in a self-managed Active Directory Domain

You can use the console, AWS CLI, or the Amazon RDS API to manage your DB instance and its
relationship with your self-managed AD domain. For example, you can move the DB instance into,
out of, or between domains.

For example, using the Amazon RDS API, you can do the following:

• To reattempt a self-managed domain join for a failed membership, use the ModifyDBInstance
API operation and specify the same set of parameters:

• --domain-fqdn

• --domain-dns-ips

• --domain-ou

• --domain-auth-secret-arn

• To remove a DB instance from a self-managed domain, use the ModifyDBInstance API
operation and specify --disable-domain for the domain parameter.

• To move a DB instance from one self-managed domain to another, use the ModifyDBInstance
API operation and specify the domain parameters for the new domain:

Working with Self Managed Active Directory with a SQL Server DB instance 2908

https://msdn.microsoft.com/en-us/library/ms189751.aspx
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

• --domain-fqdn

• --domain-dns-ips

• --domain-ou

• --domain-auth-secret-arn

• To list self-managed AD domain membership for each DB instance, use the DescribeDBInstances
API operation.

Understanding self-managed Active Directory Domain membership

After you create or modify your DB instance, the instance becomes a member of the self-managed
AD domain. The AWS console indicates the status of the self-managed Active Directory domain
membership for the DB instance. The status of the DB instance can be one of the following:

• joined – The instance is a member of the AD domain.

• joining – The instance is in the process of becoming a member of the AD domain.

• pending-join – The instance membership is pending.

• pending-maintenance-join – AWS will attempt to make the instance a member of the AD
domain during the next scheduled maintenance window.

• pending-removal – The removal of the instance from the AD domain is pending.

• pending-maintenance-removal – AWS will attempt to remove the instance from the AD domain
during the next scheduled maintenance window.

• failed – A configuration problem has prevented the instance from joining the AD domain. Check
and fix your configuration before reissuing the instance modify command.

• removing – The instance is being removed from the self-managed AD domain.

A request to become a member of a self-managed AD domain can fail because of a network
connectivity issue. For example, you might create a DB instance or modify an existing instance and
have the attempt fail for the DB instance to become a member of a self-managed AD domain. In
this case, either reissue the command to create or modify the DB instance or modify the newly
created instance to join the self-managed AD domain.

Troubleshooting self-managed Active Directory

The following are issues you might encounter when you set up or modify self-managed AD.

Working with Self Managed Active Directory with a SQL Server DB instance 2909

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/DescribeDBInstances.html

Amazon Relational Database Service User Guide

Error Code Descripti
on

Common causes Troubleshooting
suggestions

Error 2 / 0x2 The
system
cannot
find
the file
specified.

The format or location for
the Organizational Unit
(OU) specified with the —
domain-ou parameter
is invalid. The domain
service account specified
via AWS Secrets Manager
lack the permissions
required to join the OU.

Review the —domain-
ou parameter. Ensure
the domain service
account has the correct
permissions to the OU.
For more information,
see Configure your AD
domain service account.

Error 5 / 0x5 Access is
denied.

Misconfigured permissio
ns for the domain service
account, or the computer
account already exists in
the domain.

Review the domain
service account permissio
ns in the domain, and
verify that the RDS
computer account is not
duplicated in the domain.
You can verify the name
of the RDS computer
account by running
SELECT @@SERVERN
AME on your RDS for
SQL Server DB instance.
If you are using Multi-
AZ, try rebooting with
failover and then verify
that the RDS computer
account again. For
more information, see
Rebooting a DB instance.

Error 87 / 0x57 The
parameter
is
incorrect.

The domain service
account specified via
AWS Secrets Manager
doesn't have the correct

Review the requireme
nts for the domain
service account. For
more information, see

Working with Self Managed Active Directory with a SQL Server DB instance 2910

Amazon Relational Database Service User Guide

Error Code Descripti
on

Common causes Troubleshooting
suggestions

permissions. The user
profile may also be
corrupted.

Configure your AD
domain service account.

Error 234 / 0xEA Specified
Organizat
ional
Unit (OU)
does not
exist.

The OU specified with the
—domain-ou parameter
doesn't exist in your self-
managed AD.

Review the —domain-o
u parameter and ensure
the specified OU exists in
your self-managed AD.

Error 1326 / 0x52E The user
name or
password
is
incorrect.

The domain service
account credentials
provided in AWS Secrets
Manager contains an
unknown username
or bad password. The
domain account may also
be disabled in your self-
managed AD.

Ensure the credentials
provided in AWS Secrets
Manager are correct and
the domain account is
enabled in your self-mana
ged Active Directory.

Error 1355 / 0x54B The
specified
domain
either
does not
exist or
could
not be
contacted
.

The domain is down,
the specified set of DNS
IPs are unreachable, or
the specified FQDN is
unreachable.

Review the —domain-d
ns-ips and —domain-
fqdn parameters to
ensure they're correct.
Review the networkin
g configuration of your
RDS for SQL Server DB
instance and ensure
your self-managed
AD is reachable. For
more information, see
Configure your network
connectivity.

Working with Self Managed Active Directory with a SQL Server DB instance 2911

Amazon Relational Database Service User Guide

Error Code Descripti
on

Common causes Troubleshooting
suggestions

Error 1722 / 0x6BA The RPC
server is
unavailab
le.

There was an issue
reaching the RPC service
of your AD domain. This
might be a service or
network issue.

Validate that the RPC
service is running on your
domain controllers and
that the TCP ports 135
and 49152-65535 are
reachable on your domain
from your RDS for SQL
Server DB instance.

Error 2224 / 0x8B0 The user
account
already
exists.

The computer account
that's attempting to be
added to your self-mana
ged AD already exists.

Identify the computer
account by running
SELECT @@SERVERN
AME on your RDS for
SQL Server DB instance
and then carefully
remove it from your self-
managed AD.

Error 2242 / 0x8c2 The
password
of this
user has
expired.

The password for the
domain service account
specified via AWS Secrets
Manager has expired.

Update the password
for the domain service
account used to join your
RDS for SQL Server DB
instance to your self-
managed AD.

Restoring a SQL Server DB instance and then adding it to a self-managed Active
Directory domain

You can restore a DB snapshot or do point-in-time recovery (PITR) for a SQL Server DB instance and
then add it to a self-managed Active Directory domain. Once the DB instance is restored, modify
the instance using the process explained in Step 6: Create or modify a SQL Server DB instance to
add the DB instance to a self-managed AD domain.

Working with Self Managed Active Directory with a SQL Server DB instance 2912

Amazon Relational Database Service User Guide

Working with AWS Managed Active Directory with RDS for SQL Server

You can use AWS Managed Microsoft AD to authenticate users with Windows Authentication when
they connect to your RDS for SQL Server DB instance. The DB instance works with AWS Directory
Service for Microsoft Active Directory, also called AWS Managed Microsoft AD, to enable Windows
Authentication. When users authenticate with a SQL Server DB instance joined to the trusting
domain, authentication requests are forwarded to the domain directory that you create with AWS
Directory Service.

Region and version availability

Amazon RDS supports using only AWS Managed Microsoft AD for Windows Authentication. RDS
doesn't support using AD Connector. For more information, see the following:

• Application compatibility policy for AWS Managed Microsoft AD

• Application compatibility policy for AD Connector

For information on version and Region availability, see Kerberos authentication with RDS for SQL
Server.

Overview of setting up Windows authentication

Amazon RDS uses mixed mode for Windows Authentication. This approach means that the master
user (the name and password used to create your SQL Server DB instance) uses SQL Authentication.
Because the master user account is a privileged credential, you should restrict access to this
account.

To get Windows Authentication using an on-premises or self-hosted Microsoft Active Directory,
create a forest trust. The trust can be one-way or two-way. For more information on setting up
forest trusts using AWS Directory Service, see When to create a trust relationship in the AWS
Directory Service Administration Guide.

To set up Windows authentication for a SQL Server DB instance, do the following steps, explained
in greater detail in Setting up Windows Authentication for SQL Server DB instances:

1. Use AWS Managed Microsoft AD, either from the AWS Management Console or AWS Directory
Service API, to create an AWS Managed Microsoft AD directory.

2. If you use the AWS CLI or Amazon RDS API to create your SQL Server DB instance, create
an AWS Identity and Access Management (IAM) role. This role uses the managed IAM policy

Working with AWS Managed Active Directory with RDS for SQL Server 2913

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_app_compatibility.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ad_connector_app_compatibility.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.KerberosAuthentication.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.KerberosAuthentication.sq
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.KerberosAuthentication.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.KerberosAuthentication.sq
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_setup_trust.html

Amazon Relational Database Service User Guide

AmazonRDSDirectoryServiceAccess and allows Amazon RDS to make calls to your
directory. If you use the console to create your SQL Server DB instance, AWS creates the IAM role
for you.

For the role to allow access, the AWS Security Token Service (AWS STS) endpoint must be
activated in the AWS Region for your AWS account. AWS STS endpoints are active by default in
all AWS Regions, and you can use them without any further actions. For more information, see
Managing AWS STS in an AWS Region in the IAM User Guide.

3. Create and configure users and groups in the AWS Managed Microsoft AD directory using the
Microsoft Active Directory tools. For more information about creating users and groups in
your Active Directory, see Manage users and groups in AWS Managed Microsoft AD in the AWS
Directory Service Administration Guide.

4. If you plan to locate the directory and the DB instance in different VPCs, enable cross-VPC
traffic.

5. Use Amazon RDS to create a new SQL Server DB instance either from the console, AWS CLI, or
Amazon RDS API. In the create request, you provide the domain identifier ("d-*" identifier) that
was generated when you created your directory and the name of the role you created. You can
also modify an existing SQL Server DB instance to use Windows Authentication by setting the
domain and IAM role parameters for the DB instance.

6. Use the Amazon RDS master user credentials to connect to the SQL Server DB instance as you
do any other DB instance. Because the DB instance is joined to the AWS Managed Microsoft
AD domain, you can provision SQL Server logins and users from the Active Directory users
and groups in their domain. (These are known as SQL Server "Windows" logins.) Database
permissions are managed through standard SQL Server permissions granted and revoked to
these Windows logins.

Creating the endpoint for Kerberos authentication

Kerberos-based authentication requires that the endpoint be the customer-specified host name, a
period, and then the fully qualified domain name (FQDN). For example, the following is an example
of an endpoint you might use with Kerberos-based authentication. In this example, the SQL Server
DB instance host name is ad-test and the domain name is corp-ad.company.com.

ad-test.corp-ad.company.com

If you want to make sure your connection is using Kerberos, run the following query:

Working with AWS Managed Active Directory with RDS for SQL Server 2914

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html

Amazon Relational Database Service User Guide

SELECT net_transport, auth_scheme
 FROM sys.dm_exec_connections
 WHERE session_id = @@SPID;

Setting up Windows Authentication for SQL Server DB instances

You use AWS Directory Service for Microsoft Active Directory, also called AWS Managed Microsoft
AD, to set up Windows Authentication for a SQL Server DB instance. To set up Windows
Authentication, take the following steps.

Step 1: Create a directory using the AWS Directory Service for Microsoft Active Directory

AWS Directory Service creates a fully managed, Microsoft Active Directory in the AWS Cloud. When
you create an AWS Managed Microsoft AD directory, AWS Directory Service creates two domain
controllers and Domain Name Service (DNS) servers on your behalf. The directory servers are
created in two subnets in two different Availability Zones within a VPC. This redundancy helps
ensure that your directory remains accessible even if a failure occurs.

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the
following tasks on your behalf:

• Sets up a Microsoft Active Directory within the VPC.

• Creates a directory administrator account with the user name Admin and the specified password.
You use this account to manage your directory.

• Creates a security group for the directory controllers.

When you launch an AWS Directory Service for Microsoft Active Directory, AWS creates an
Organizational Unit (OU) that contains all your directory's objects. This OU, which has the NetBIOS
name that you typed when you created your directory, is located in the domain root. The domain
root is owned and managed by AWS.

The admin account that was created with your AWS Managed Microsoft AD directory has
permissions for the most common administrative activities for your OU:

• Create, update, or delete users, groups, and computers.

• Add resources to your domain such as file or print servers, and then assign permissions for those
resources to users and groups in your OU.

Working with AWS Managed Active Directory with RDS for SQL Server 2915

Amazon Relational Database Service User Guide

• Create additional OUs and containers.

• Delegate authority.

• Create and link group policies.

• Restore deleted objects from the Active Directory Recycle Bin.

• Run AD and DNS Windows PowerShell modules on the Active Directory Web Service.

The admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders).

• View DNS event logs.

• View security event logs.

To create a directory with AWS Managed Microsoft AD

1. In the AWS Directory Service console navigation pane, choose Directories and choose Set up
directory.

2. Choose AWS Managed Microsoft AD. This is the only option currently supported for use with
Amazon RDS.

3. Choose Next.

4. On the Enter directory information page, provide the following information:

Edition

Choose the edition that meets your requirements.

Directory DNS name

The fully qualified name for the directory, such as corp.example.com. Names longer than
47 characters aren't supported by SQL Server.

Directory NetBIOS name

An optional short name for the directory, such as CORP.

Directory description

An optional description for the directory.

Working with AWS Managed Active Directory with RDS for SQL Server 2916

https://console.aws.amazon.com/directoryservicev2/

Amazon Relational Database Service User Guide

Admin password

The password for the directory administrator. The directory creation process creates an
administrator account with the user name Admin and this password.

The directory administrator password can't include the word admin. The password is case-
sensitive and must be 8–64 characters in length. It must also contain at least one character
from three of the following four categories:

• Lowercase letters (a-z)

• Uppercase letters (A-Z)

• Numbers (0-9)

• Non-alphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

Confirm password

Retype the administrator password.

5. Choose Next.

6. On the Choose VPC and subnets page, provide the following information:

VPC

Choose the VPC for the directory.

Note

You can locate the directory and the DB instance in different VPCs, but if you do
so, make sure to enable cross-VPC traffic. For more information, see Step 4: Enable
cross-VPC traffic between the directory and the DB instance.

Subnets

Choose the subnets for the directory servers. The two subnets must be in different
Availability Zones.

7. Choose Next.

8. Review the directory information. If changes are needed, choose Previous. When the
information is correct, choose Create directory.

Working with AWS Managed Active Directory with RDS for SQL Server 2917

Amazon Relational Database Service User Guide

It takes several minutes for the directory to be created. When it has been successfully created, the
Status value changes to Active.

To see information about your directory, choose the directory ID in the directory listing. Make
a note of the Directory ID. You need this value when you create or modify your SQL Server DB
instance.

Working with AWS Managed Active Directory with RDS for SQL Server 2918

Amazon Relational Database Service User Guide

Step 2: Create the IAM role for use by Amazon RDS

If you use the console to create your SQL Server DB instance, you can skip this step. If you use the
CLI or RDS API to create your SQL Server DB instance, you must create an IAM role that uses the
AmazonRDSDirectoryServiceAccess managed IAM policy. This role allows Amazon RDS to
make calls to the AWS Directory Service for you.

If you are using a custom policy for joining a domain, rather than using the AWS-
managed AmazonRDSDirectoryServiceAccess policy, make sure that you allow the

Working with AWS Managed Active Directory with RDS for SQL Server 2919

Amazon Relational Database Service User Guide

ds:GetAuthorizedApplicationDetails action. This requirement is effective starting July
2019, due to a change in the AWS Directory Service API.

The following IAM policy, AmazonRDSDirectoryServiceAccess, provides access to AWS
Directory Service.

Example IAM policy for providing access to AWS Directory Service

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",
 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource-based trust relationships to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

You might use both global condition context keys and have the aws:SourceArn value contain the
account ID. In this case, the aws:SourceAccount value and the account in the aws:SourceArn
value must use the same account ID when used in the same statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the trust relationship, make sure to use the aws:SourceArn global condition context key
with the full Amazon Resource Name (ARN) of the resources accessing the role. For Windows
Authentication, make sure to include the DB instances, as shown in the following example.

Working with AWS Managed Active Directory with RDS for SQL Server 2920

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

Example trust relationship with global condition context key for Windows Authentication

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn": [
 "arn:aws:rds:Region:my_account_ID:db:db_instance_identifier"
]
 }
 }
 }
]
}

Create an IAM role using this IAM policy and trust relationship. For more information about
creating IAM roles, see Creating customer managed policies in the IAM User Guide.

Step 3: Create and configure users and groups

You can create users and groups with the Active Directory Users and Computers tool. This tool is
one of the Active Directory Domain Services and Active Directory Lightweight Directory Services
tools. Users represent individual people or entities that have access to your directory. Groups are
very useful for giving or denying privileges to groups of users, rather than having to apply those
privileges to each individual user.

To create users and groups in an AWS Directory Service directory, you must be connected to a
Windows EC2 instance that is a member of the AWS Directory Service directory. You must also
be logged in as a user that has privileges to create users and groups. For more information, see
Add users and groups (Simple AD and AWS Managed Microsoft AD) in the AWS Directory Service
Administration Guide.

Working with AWS Managed Active Directory with RDS for SQL Server 2921

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#create-managed-policy-console
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/creating_ad_users_and_groups.html

Amazon Relational Database Service User Guide

Step 4: Enable cross-VPC traffic between the directory and the DB instance

If you plan to locate the directory and the DB instance in the same VPC, skip this step and move on
to Step 5: Create or modify a SQL Server DB instance.

If you plan to locate the directory and the DB instance in different VPCs, configure cross-VPC traffic
using VPC peering or AWS Transit Gateway.

The following procedure enables traffic between VPCs using VPC peering. Follow the instructions in
What is VPC peering? in the Amazon Virtual Private Cloud Peering Guide.

To enable cross-VPC traffic using VPC peering

1. Set up appropriate VPC routing rules to ensure that network traffic can flow both ways.

2. Ensure that the DB instance's security group can receive inbound traffic from the directory's
security group.

3. Ensure that there is no network access control list (ACL) rule to block traffic.

If a different AWS account owns the directory, you must share the directory.

To share the directory between AWS accounts

1. Start sharing the directory with the AWS account that the DB instance will be created in by
following the instructions in Tutorial: Sharing your AWS Managed Microsoft AD directory for
seamless EC2 domain-join in the AWS Directory Service Administration Guide.

2. Sign in to the AWS Directory Service console using the account for the DB instance, and ensure
that the domain has the SHARED status before proceeding.

3. While signed into the AWS Directory Service console using the account for the DB instance,
note the Directory ID value. You use this directory ID to join the DB instance to the domain.

Step 5: Create or modify a SQL Server DB instance

Create or modify a SQL Server DB instance for use with your directory. You can use the console,
CLI, or RDS API to associate a DB instance with a directory. You can do this in one of the following
ways:

• Create a new SQL Server DB instance using the console, the create-db-instance CLI command, or
the CreateDBInstance RDS API operation.

Working with AWS Managed Active Directory with RDS for SQL Server 2922

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

For instructions, see Creating an Amazon RDS DB instance.

• Modify an existing SQL Server DB instance using the console, the modify-db-instance CLI
command, or the ModifyDBInstance RDS API operation.

For instructions, see Modifying an Amazon RDS DB instance.

• Restore a SQL Server DB instance from a DB snapshot using the console, the restore-db-instance-
from-db-snapshot CLI command, or the RestoreDBInstanceFromDBSnapshot RDS API operation.

For instructions, see Restoring to a DB instance.

• Restore a SQL Server DB instance to a point-in-time using the console, the restore-db-instance-
to-point-in-time CLI command, or the RestoreDBInstanceToPointInTime RDS API operation.

For instructions, see Restoring a DB instance to a specified time for Amazon RDS.

Windows Authentication is only supported for SQL Server DB instances in a VPC.

For the DB instance to be able to use the domain directory that you created, the following is
required:

• For Directory, you must choose the domain identifier (d-ID) generated when you created the
directory.

• Make sure that the VPC security group has an outbound rule that lets the DB instance
communicate with the directory.

When you use the AWS CLI, the following parameters are required for the DB instance to be able to
use the directory that you created:

Working with AWS Managed Active Directory with RDS for SQL Server 2923

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

• For the --domain parameter, use the domain identifier (d-ID) generated when you created the
directory.

• For the --domain-iam-role-name parameter, use the role that you created that uses the
managed IAM policy AmazonRDSDirectoryServiceAccess.

For example, the following CLI command modifies a DB instance to use a directory.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --domain d-ID \
 --domain-iam-role-name role-name

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --domain d-ID ^
 --domain-iam-role-name role-name

Important

If you modify a DB instance to enable Kerberos authentication, reboot the DB instance after
making the change.

Step 6: Create Windows Authentication SQL Server logins

Use the Amazon RDS master user credentials to connect to the SQL Server DB instance as you
do any other DB instance. Because the DB instance is joined to the AWS Managed Microsoft AD
domain, you can provision SQL Server logins and users. You do this from the Active Directory users
and groups in your domain. Database permissions are managed through standard SQL Server
permissions granted and revoked to these Windows logins.

For an Active Directory user to authenticate with SQL Server, a SQL Server Windows login must
exist for the user or a group that the user is a member of. Fine-grained access control is handled

Working with AWS Managed Active Directory with RDS for SQL Server 2924

Amazon Relational Database Service User Guide

through granting and revoking permissions on these SQL Server logins. A user that doesn't have a
SQL Server login or belong to a group with such a login can't access the SQL Server DB instance.

The ALTER ANY LOGIN permission is required to create an Active Directory SQL Server login. If you
haven't created any logins with this permission, connect as the DB instance's master user using SQL
Server Authentication.

Run a data definition language (DDL) command such as the following example to create a SQL
Server login for an Active Directory user or group.

Note

Specify users and groups using the pre-Windows 2000 login name in the format
domainName\login_name. You can't use a user principal name (UPN) in the format
login_name@DomainName.
You can only create a Windows Authentication login on an RDS for SQL Server instance
by using T-SQL statements. You can't use the SQL Server Management studio to create a
Windows Authentication login.

USE [master]
GO
CREATE LOGIN [mydomain\myuser] FROM WINDOWS WITH DEFAULT_DATABASE = [master],
 DEFAULT_LANGUAGE = [us_english];
GO

For more information, see CREATE LOGIN (Transact-SQL) in the Microsoft Developer Network
documentation.

Users (both humans and applications) from your domain can now connect to the RDS for SQL
Server instance from a domain-joined client machine using Windows authentication.

Managing a DB instance in a Domain

You can use the console, AWS CLI, or the Amazon RDS API to manage your DB instance and its
relationship with your domain. For example, you can move the DB instance into, out of, or between
domains.

For example, using the Amazon RDS API, you can do the following:

Working with AWS Managed Active Directory with RDS for SQL Server 2925

https://msdn.microsoft.com/en-us/library/ms189751.aspx

Amazon Relational Database Service User Guide

• To reattempt a domain join for a failed membership, use the ModifyDBInstance API operation
and specify the current membership's directory ID.

• To update the IAM role name for membership, use the ModifyDBInstance API operation and
specify the current membership's directory ID and the new IAM role.

• To remove a DB instance from a domain, use the ModifyDBInstance API operation and specify
none as the domain parameter.

• To move a DB instance from one domain to another, use the ModifyDBInstance API operation
and specify the domain identifier of the new domain as the domain parameter.

• To list membership for each DB instance, use the DescribeDBInstances API operation.

Understanding Domain membership

After you create or modify your DB instance, the instance becomes a member of the domain. The
AWS console indicates the status of the domain membership for the DB instance. The status of the
DB instance can be one of the following:

• joined – The instance is a member of the domain.

• joining – The instance is in the process of becoming a member of the domain.

• pending-join – The instance membership is pending.

• pending-maintenance-join – AWS will attempt to make the instance a member of the domain
during the next scheduled maintenance window.

• pending-removal – The removal of the instance from the domain is pending.

• pending-maintenance-removal – AWS will attempt to remove the instance from the domain
during the next scheduled maintenance window.

• failed – A configuration problem has prevented the instance from joining the domain. Check and
fix your configuration before reissuing the instance modify command.

• removing – The instance is being removed from the domain.

A request to become a member of a domain can fail because of a network connectivity issue or
an incorrect IAM role. For example, you might create a DB instance or modify an existing instance
and have the attempt fail for the DB instance to become a member of a domain. In this case, either
reissue the command to create or modify the DB instance or modify the newly created instance to
join the domain.

Working with AWS Managed Active Directory with RDS for SQL Server 2926

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/DescribeDBInstances.html

Amazon Relational Database Service User Guide

Connecting to SQL Server with Windows authentication

To connect to SQL Server with Windows Authentication, you must be logged into a domain-joined
computer as a domain user. After launching SQL Server Management Studio, choose Windows
Authentication as the authentication type, as shown following.

Restoring a SQL Server DB instance and then adding it to a domain

You can restore a DB snapshot or do point-in-time recovery (PITR) for a SQL Server DB instance and
then add it to a domain. Once the DB instance is restored, modify the instance using the process
explained in Step 5: Create or modify a SQL Server DB instance to add the DB instance to a domain.

Working with AWS Managed Active Directory with RDS for SQL Server 2927

Amazon Relational Database Service User Guide

Upgrades of the Microsoft SQL Server DB engine

When Amazon RDS supports a new version of a database engine, you can upgrade your DB
instances to the new version. There are two kinds of upgrades for SQL Server DB instances: major
version upgrades and minor version upgrades.

Major version upgrades can contain database changes that are not backward-compatible with
existing applications. As a result, you must manually perform major version upgrades of your DB
instances. You can initiate a major version upgrade by modifying your DB instance. However, before
you perform a major version upgrade, we recommend that you test the upgrade by following the
steps described in Testing an RDS for SQL Server upgrade.

Minor version upgrades contain only changes that are backward-compatible with existing
applications. You can upgrade the minor version for your DB instance in two ways:

• Manually – Modify your DB instance to initiate the upgrade

• Automatically – Enable automatic minor version upgrades for your DB instance

When you enable automatic minor version upgrades, RDS for SQL Server automatically upgrades
your database instance during scheduled maintenance windows when critical security updates are
available in a newer minor version.

For minor engine versions after 16.00.4120.1, 15.00.4365.2, 14.00.3465.1, 13.00.6435.1,
the following security protocols are disabled by default:

• rds.tls10 (TLS 1.0 protocol)

• rds.tls11 (TLS 1.1 protocol)

• rds.rc4 (RC4 cipher)

• rds.curve25519 (Curve25519 encryption)

• rds.3des168 (Triple DES encryption)

For earlier engine versions, Amazon RDS enables these security protocols by default.

...

"ValidUpgradeTarget": [
 {

Upgrades of the SQL Server DB engine 2928

Amazon Relational Database Service User Guide

 "Engine": "sqlserver-se",
 "EngineVersion": "14.00.3281.6.v1",
 "Description": "SQL Server 2017 14.00.3281.6.v1",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": false
 }
...

For more information about performing upgrades, see Upgrading a SQL Server DB instance. For
information about what SQL Server versions are available on Amazon RDS, see Amazon RDS for
Microsoft SQL Server.

Topics

• Major version upgrades for RDS for SQL Server

• Considerations for SQL Server upgrades

• Testing an RDS for SQL Server upgrade

• Upgrading a SQL Server DB instance

• Upgrading deprecated DB instances before support ends

Major version upgrades for RDS for SQL Server

Amazon RDS currently supports the following major version upgrades to a Microsoft SQL Server DB
instance.

You can upgrade your existing DB instance to SQL Server 2017 or 2019 from any version except
SQL Server 2008. To upgrade from SQL Server 2008, first upgrade to one of the other versions.

Current version Supported upgrade versions

SQL Server 2019 SQL Server 2022

SQL Server 2017 SQL Server 2022

SQL Server 2019

SQL Server 2016 SQL Server 2022

SQL Server 2019

Major version upgrades 2929

Amazon Relational Database Service User Guide

Current version Supported upgrade versions

SQL Server 2017

You can use an AWS CLI query, such as the following example, to find the available upgrades for a
particular database engine version.

Example

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine sqlserver-se \
 --engine-version 14.00.3281.6.v1 \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" \
 --output table

For Windows:

aws rds describe-db-engine-versions ^
 --engine sqlserver-se ^
 --engine-version 14.00.3281.6.v1 ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" ^
 --output table

The output shows that you can upgrade version 14.00.3281.6 to the latest available SQL Server
2017 or 2019 versions.

|DescribeDBEngineVersions|
+------------------------+
| EngineVersion |
+------------------------+
| 14.00.3294.2.v1 |
| 14.00.3356.20.v1 |
| 14.00.3381.3.v1 |
| 14.00.3401.7.v1 |
| 14.00.3421.10.v1 |
| 14.00.3451.2.v1 |
| 15.00.4043.16.v1 |
| 15.00.4073.23.v1 |

Major version upgrades 2930

Amazon Relational Database Service User Guide

| 15.00.4153.1.v1 |
| 15.00.4198.2.v1 |
| 15.00.4236.7.v1 |
+------------------------+

Database compatibility level

You can use Microsoft SQL Server database compatibility levels to adjust some database behaviors
to mimic previous versions of SQL Server. For more information, see Compatibility level in the
Microsoft documentation. When you upgrade your DB instance, all existing databases remain at
their original compatibility level.

You can change the compatibility level of a database by using the ALTER DATABASE command. For
example, to change a database named customeracct to be compatible with SQL Server 2016,
issue the following command:

ALTER DATABASE customeracct SET COMPATIBILITY_LEVEL = 130

Considerations for SQL Server upgrades

Amazon RDS takes two DB snapshots during the upgrade process. The first DB snapshot is of the
DB instance before any upgrade changes have been made. The second DB snapshot is taken after
the upgrade finishes.

Note

Amazon RDS only takes DB snapshots if you have set the backup retention period for your
DB instance to a number greater than 0. To change your backup retention period, see
Modifying an Amazon RDS DB instance.

After an upgrade is completed, you can't revert to the previous version of the database engine. If
you want to return to the previous version, restore from the DB snapshot that was taken before the
upgrade to create a new DB instance.

During a minor or major version upgrade of SQL Server, the Free Storage Space and Disk Queue
Depth metrics will display -1. After the upgrade is completed, both metrics will return to normal.

Upgrade considerations 2931

https://msdn.microsoft.com/en-us/library/bb510680.aspx

Amazon Relational Database Service User Guide

Before you upgrade your SQL Server instance, review the following information.

Topics

• Best practices before initiating an upgrade

• Multi-AZ and in-memory optimization considerations

• Read replica considerations

• Option group considerations

• Parameter group considerations

Best practices before initiating an upgrade

Before starting the upgrade process, implement the following preparatory stpes to allow optimal
upgrade performance and minimize potential issues:

Timing and workload management

• Schedule upgrades during low transaction volume periods.

• Minimize write operstions during the upgrade window.

This allows Amazon RDS to complete upgrades faster by reducing the number of transaction
log backup files that RDS needs to restore during secondary-to-primary pairing.

Transaction management

• Identify and monitor long-running transactions.

• Ensure all critical transactions are commited before starting the upgrade.

• Prevent long-running transactions during the upgrade window.

Log file optimization

Review and optimize transaction log files:

• Shrink oversized log files.

• Reduce high log consumption patterns.

• Manage Virtual Log Files (VLFs).

• Maintain adequate free space for normal operations.

Upgrade considerations 2932

Amazon Relational Database Service User Guide

Multi-AZ and in-memory optimization considerations

Amazon RDS supports Multi-AZ deployments for DB instances running Microsoft SQL Server by
using SQL Server Database Mirroring (DBM) or Always On Availability Groups (AGs). For more
information, see Multi-AZ deployments for Amazon RDS for Microsoft SQL Server.

If your DB instance is in a Multi-AZ deployment, both the primary and standby instances are
upgraded. Amazon RDS does rolling upgrades. You have an outage only for the duration of a
failover.

SQL Server 2016 through 2019 Enterprise Edition support in-memory optimization.

Read replica considerations

During a database version upgrade, Amazon RDS upgrades all of your read replicas along with
the primary DB instance. Amazon RDS does not support database version upgrades on the read
replicas separately. For more information on read replicas, see Working with read replicas for
Microsoft SQL Server in Amazon RDS.

When you perform a database version upgrade of the primary DB instance, all its read-replicas
are also automatically upgraded. Amazon RDS will upgrade all of the read replicas simultaneously
before upgrading the primary DB instance. Read replicas may not be available until the database
version upgrade on the primary DB instance is complete.

Option group considerations

If your DB instance uses a custom DB option group, in some cases Amazon RDS can't automatically
assign your DB instance a new option group. For example, when you upgrade to a new major
version, you must specify a new option group. We recommend that you create a new option group,
and add the same options to it as your existing custom option group.

For more information, see Creating an option group or Copying an option group.

Parameter group considerations

If your DB instance uses a custom DB parameter group:

• Amazon RDS automatically reboots the DB instance after an upgrade.

• In some cases, RDS can't automatically assign a new parameter group to your DB instance.

Upgrade considerations 2933

Amazon Relational Database Service User Guide

For example, when you upgrade to a new major version, you must specify a new parameter
group. We recommend that you create a new parameter group, and configure the parameters as
in your existing custom parameter group.

For more information, see Creating a DB parameter group in Amazon RDS or Copying a DB
parameter group in Amazon RDS.

Testing an RDS for SQL Server upgrade

Before you perform a major version upgrade on your DB instance, you should thoroughly test your
database, and all applications that access the database, for compatibility with the new version. We
recommend that you use the following procedure.

To test a major version upgrade

1. Review Upgrade SQL Server in the Microsoft documentation for the new version of the
database engine to see if there are compatibility issues that might affect your database or
applications.

2. If your DB instance uses a custom option group, create a new option group compatible with
the new version you are upgrading to. For more information, see Option group considerations.

3. If your DB instance uses a custom parameter group, create a new parameter group compatible
with the new version you are upgrading to. For more information, see Parameter group
considerations.

4. Create a DB snapshot of the DB instance to be upgraded. For more information, see Creating a
DB snapshot for a Single-AZ DB instance for Amazon RDS.

5. Restore the DB snapshot to create a new test DB instance. For more information, see Restoring
to a DB instance.

6. Modify this new test DB instance to upgrade it to the new version, by using one of the
following methods:

• Console

• AWS CLI

• RDS API

7. Evaluate the storage used by the upgraded instance to determine if the upgrade requires
additional storage.

Testing an upgrade 2934

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-sql-server

Amazon Relational Database Service User Guide

8. Run as many of your quality assurance tests against the upgraded DB instance as needed to
ensure that your database and application work correctly with the new version. Implement
any new tests needed to evaluate the impact of any compatibility issues you identified in step
1. Test all stored procedures and functions. Direct test versions of your applications to the
upgraded DB instance.

9. If all tests pass, then perform the upgrade on your production DB instance. We recommend
that you do not allow write operations to the DB instance until you confirm that everything is
working correctly.

Upgrading a SQL Server DB instance

For information about manually or automatically upgrading a SQL Server DB instance, see the
following:

• Upgrading a DB instance engine version

• Best practices for upgrading SQL Server 2008 R2 to SQL Server 2016 on Amazon RDS for SQL
Server

Important

If you have any snapshots that are encrypted using AWS KMS, we recommend that you
initiate an upgrade before support ends.

Upgrading deprecated DB instances before support ends

After a major version is deprecated, you can't install it on new DB instances. RDS will try to
automatically upgrade all existing DB instances.

If you need to restore a deprecated DB instance, you can do point-in-time recovery (PITR) or restore
a snapshot. Doing this gives you temporary access a DB instance that uses the version that is being
deprecated. However, after a major version is fully deprecated, these DB instances will also be
automatically upgraded to a supported version.

Upgrading a SQL server DB instance 2935

https://aws.amazon.com/blogs/database/best-practices-for-upgrading-sql-server-2008-r2-to-sql-server-2016-on-amazon-rds-for-sql-server/
https://aws.amazon.com/blogs/database/best-practices-for-upgrading-sql-server-2008-r2-to-sql-server-2016-on-amazon-rds-for-sql-server/

Amazon Relational Database Service User Guide

Importing and exporting SQL Server databases using native
backup and restore

Amazon RDS supports native backup and restore for Microsoft SQL Server databases using full
backup files (.bak files). When you use RDS, you access files stored in Amazon S3 rather than using
the local file system on the database server.

For example, you can create a full backup from your local server, store it on S3, and then restore it
onto an existing Amazon RDS DB instance. You can also make backups from RDS, store them on S3,
and then restore them wherever you want.

Native backup and restore is available in all AWS Regions for Single-AZ and Multi-AZ DB instances,
including Multi-AZ DB instances with read replicas. Native backup and restore is available for all
editions of Microsoft SQL Server supported on Amazon RDS.

The following diagram shows the supported scenarios.

Using native .bak files to back up and restore databases is usually the fastest way to back up and
restore databases. There are many additional advantages to using native backup and restore. For
example, you can do the following:

• Migrate databases to or from Amazon RDS.

• Move databases between RDS for SQL Server DB instances.

Importing and exporting SQL Server databases 2936

Amazon Relational Database Service User Guide

• Migrate data, schemas, stored procedures, triggers, and other database code inside .bak files.

• Backup and restore single databases, instead of entire DB instances.

• Create copies of databases for development, testing, training, and demonstrations.

• Store and transfer backup files with Amazon S3, for an added layer of protection for disaster
recovery.

• Create native backups of databases that have Transparent Data Encryption (TDE) turned on,
and restore those backups to on-premises databases. For more information, see Support for
Transparent Data Encryption in SQL Server.

• Restore native backups of on-premises databases that have TDE turned on to RDS for SQL Server
DB instances. For more information, see Support for Transparent Data Encryption in SQL Server.

Contents

• Limitations and recommendations

• Setting up for native backup and restore

• Manually creating an IAM role for native backup and restore

• Using native backup and restore

• Backing up a database

• Usage

• Examples

• Restoring a database

• Usage

• Examples

• Restoring a log

• Usage

• Examples

• Finishing a database restore

• Usage

• Working with partially restored databases

• Dropping a partially restored database

• Snapshot restore and point-in-time recovery behavior for partially restored databases

• Canceling a taskImporting and exporting SQL Server databases 2937

Amazon Relational Database Service User Guide

• Usage

• Tracking the status of tasks

• Usage

• Examples

• Response

• Compressing backup files

• Troubleshooting

• Importing and exporting SQL Server data using other methods

• Importing data into RDS for SQL Server by using a snapshot

• Import the data

• Generate and Publish Scripts Wizard

• Import and Export Wizard

• Bulk copy

• Exporting data from RDS for SQL Server

• SQL Server Import and Export Wizard

• SQL Server Generate and Publish Scripts Wizard and bcp utility

Limitations and recommendations

The following are some limitations to using native backup and restore:

• You can't back up to, or restore from, an Amazon S3 bucket in a different AWS Region from your
Amazon RDS DB instance.

• You can't restore a database with the same name as an existing database. Database names are
unique.

• We strongly recommend that you don't restore backups from one time zone to a different time
zone. If you restore backups from one time zone to a different time zone, you must audit your
queries and applications for the effects of the time zone change.

• Amazon S3 has a size limit of 5 TB per file. For native backups of larger databases, you can use
multifile backup.

• The maximum database size that can be backed up to S3 depends on the available memory, CPU,
I/O, and network resources on the DB instance. The larger the database, the more memory the
backup agent consumes.

Limitations and recommendations 2938

Amazon Relational Database Service User Guide

• You can't back up to or restore from more than 10 backup files at the same time.

• A differential backup is based on the last full backup. For differential backups to work, you
can't take a snapshot between the last full backup and the differential backup. If you want a
differential backup, but a manual or automated snapshot exists, then do another full backup
before proceeding with the differential backup.

• Differential and log restores aren't supported for databases with files that have their file_guid
(unique identifier) set to NULL.

• You can run up to two backup or restore tasks at the same time.

• You can't perform native log backups from SQL Server on Amazon RDS.

• RDS supports native restores of databases up to 64 TiB. Native restores of databases on SQL
Server Express Edition are limited to 10 GB.

• You can't do a native backup during the maintenance window, or any time Amazon RDS is in the
process of taking a snapshot of the database. If a native backup task overlaps with the RDS daily
backup window, the native backup task is canceled.

• On Multi-AZ DB instances, you can only natively restore databases that are backed up in the full
recovery model.

• Restoring from differential backups on Multi-AZ instances isn't supported.

• Calling the RDS procedures for native backup and restore within a transaction isn't supported.

• Use a symmetric encryption AWS KMS key to encrypt your backups. Amazon RDS doesn't support
asymmetric KMS keys. For more information, see Creating symmetric encryption KMS keys in the
AWS Key Management Service Developer Guide.

• Native backup files are encrypted with the specified KMS key using the "Encryption-Only" crypto
mode. When you are restoring encrypted backup files, be aware that they were encrypted with
the "Encryption-Only" crypto mode.

• You can't restore a database that contains a FILESTREAM file group.

If your database can be offline while the backup file is created, copied, and restored, we
recommend that you use native backup and restore to migrate it to RDS. If your on-premises
database can't be offline, we recommend that you use the AWS Database Migration Service to
migrate your database to Amazon RDS. For more information, see What is AWS Database Migration
Service?

Native backup and restore isn't intended to replace the data recovery capabilities of the cross-
region snapshot copy feature. We recommend that you use snapshot copy to copy your database

Limitations and recommendations 2939

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Relational Database Service User Guide

snapshot to another AWS Region for cross-region disaster recovery in Amazon RDS. For more
information, see Copying a DB snapshot for Amazon RDS.

Setting up for native backup and restore

To set up for native backup and restore, you need three components:

1. An Amazon S3 bucket to store your backup files.

You must have an S3 bucket to use for your backup files and then upload backups you want to
migrate to RDS. If you already have an Amazon S3 bucket, you can use that. If you don't, you can
create a bucket. Alternatively, you can choose to have a new bucket created for you when you
add the SQLSERVER_BACKUP_RESTORE option by using the AWS Management Console.

For information on using S3, see the Amazon Simple Storage Service User Guide

2. An AWS Identity and Access Management (IAM) role to access the bucket.

If you already have an IAM role, you can use that. You can choose to have a new IAM role
created for you when you add the SQLSERVER_BACKUP_RESTORE option by using the AWS
Management Console. Alternatively, you can create a new one manually.

If you want to create a new IAM role manually, take the approach discussed in the next section.
Do the same if you want to attach trust relationships and permissions policies to an existing IAM
role.

3. The SQLSERVER_BACKUP_RESTORE option added to an option group on your DB instance.

To enable native backup and restore on your DB instance, you add the
SQLSERVER_BACKUP_RESTORE option to an option group on your DB instance. For more
information and instructions, see Support for native backup and restore in SQL Server.

Manually creating an IAM role for native backup and restore

If you want to manually create a new IAM role to use with native backup and restore, you can do
so. In this case, you create a role to delegate permissions from the Amazon RDS service to your
Amazon S3 bucket. When you create an IAM role, you attach a trust relationship and a permissions
policy. The trust relationship allows RDS to assume this role. The permissions policy defines the
actions this role can perform. For more information about creating the role, see Creating a role to
delegate permissions to an AWS service.

Setting up 2940

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

For the native backup and restore feature, use trust relationships and permissions policies similar
to the examples in this section. In the following example, we use the service principal name
rds.amazonaws.com as an alias for all service accounts. In the other examples, we specify an
Amazon Resource Name (ARN) to identify another account, user, or role that we're granting access
to in the trust policy.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource-based trust relationships to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

You might use both global condition context keys and have the aws:SourceArn value contain the
account ID. In this case, the aws:SourceAccount value and the account in the aws:SourceArn
value must use the same account ID when used in the same statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the trust relationship, make sure to use the aws:SourceArn global condition context key
with the full ARN of the resources accessing the role. For native backup and restore, make sure to
include both the DB option group and the DB instances, as shown in the following example.

Example of trust relationship with global condition context key for native backup and restore

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn": [
 "arn:aws:rds:Region:0123456789:db:db_instance_identifier",
 "arn:aws:rds:Region:0123456789:og:option_group_name",
 "arn:aws:s3:::amzn-s3-demo-bucket
]

Setting up 2941

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

 "aws:SourceAccount": "0123456789"
 }
 }
 }
]
}

The following example uses an ARN to specify a resource. For more information on using ARNs, see
Amazon resource names (ARNs).

Example of permissions policy for native backup and restore without encryption support

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action":
 [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 {
 "Effect": "Allow",
 "Action":
 [
 "s3:GetObjectAttributes",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
 }
]
}

Setting up 2942

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Relational Database Service User Guide

Example permissions policy for native backup and restore with encryption support

If you want to encrypt your backup files, include an encryption key in your permissions policy. For
more information about encryption keys, see Getting started in the AWS Key Management Service
Developer Guide.

Note

You must use a symmetric encryption KMS key to encrypt your backups. Amazon RDS
doesn't support asymmetric KMS keys. For more information, see Creating symmetric
encryption KMS keys in the AWS Key Management Service Developer Guide.
The IAM role must also be a key user and key administrator for the KMS key, that is, it must
be specified in the key policy. For more information, see Creating symmetric encryption
KMS keys in the AWS Key Management Service Developer Guide.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action":
 [
 "kms:DescribeKey",
 "kms:GenerateDataKey",
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:region:account-id:key/key-id"
 },
 {
 "Effect": "Allow",
 "Action":
 [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 {

Setting up 2943

https://docs.aws.amazon.com/kms/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Relational Database Service User Guide

 "Effect": "Allow",
 "Action":
 [
 "s3:GetObjectAttributes",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
 }
]
}

Setting up 2944

Amazon Relational Database Service User Guide

Using native backup and restore

After you have enabled and configured native backup and restore, you can start using it. First,
you connect to your Microsoft SQL Server database, and then you call an Amazon RDS stored
procedure to do the work. For instructions on connecting to your database, see Connecting to your
Microsoft SQL Server DB instance.

Some of the stored procedures require that you provide an Amazon Resource
Name (ARN) to your Amazon S3 bucket and file. The format for your ARN is
arn:aws:s3:::bucket_name/file_name.extension. Amazon S3 doesn't require an account
number or AWS Region in ARNs.

If you also provide an optional KMS key, the format for the ARN of the key is
arn:aws:kms:region:account-id:key/key-id. For more information, see Amazon resource
names (ARNs) and AWS service namespaces. You must use a symmetric encryption KMS key to
encrypt your backups. Amazon RDS doesn't support asymmetric KMS keys. For more information,
see Creating symmetric encryption KMS keys in the AWS Key Management Service Developer Guide.

Note

Whether or not you use a KMS key, the native backup and restore tasks enable server-side
Advanced Encryption Standard (AES) 256-bit encryption by default for files uploaded to S3.

For instructions on how to call each stored procedure, see the following topics:

• Backing up a database

• Restoring a database

• Restoring a log

• Finishing a database restore

• Working with partially restored databases

• Canceling a task

• Tracking the status of tasks

Backing up a database

To back up your database, use the rds_backup_database stored procedure.

Using native backup and restore 2945

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Relational Database Service User Guide

Note

You can't back up a database during the maintenance window, or while Amazon RDS is
taking a snapshot.

Usage

exec msdb.dbo.rds_backup_database
 @source_db_name='database_name',
 @s3_arn_to_backup_to='arn:aws:s3:::bucket_name/file_name.extension',
 [@kms_master_key_arn='arn:aws:kms:region:account-id:key/key-id'],
 [@overwrite_s3_backup_file=0|1],
 [@block_size=512|1024|2048|4096|8192|16384|32768|65536],
 [@max_transfer_size=n],
 [@buffer_count=n],
 [@type='DIFFERENTIAL|FULL'],
 [@number_of_files=n];

The following parameters are required:

• @source_db_name – The name of the database to back up.

• @s3_arn_to_backup_to – The ARN indicating the Amazon S3 bucket to use for the backup,
plus the name of the backup file.

The file can have any extension, but .bak is usually used.

The following parameters are optional:

• @kms_master_key_arn – The ARN for the symmetric encryption KMS key to use to encrypt the
item.

• You can't use the default encryption key. If you use the default key, the database won't be
backed up.

• If you don't specify a KMS key identifier, the backup file won't be encrypted. For more
information, see Encrypting Amazon RDS resources.

• When you specify a KMS key, client-side encryption is used.

• Amazon RDS doesn't support asymmetric KMS keys. For more information, see Creating
symmetric encryption KMS keys in the AWS Key Management Service Developer Guide.

Using native backup and restore 2946

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Relational Database Service User Guide

• @overwrite_s3_backup_file – A value that indicates whether to overwrite an existing
backup file.

• 0 – Doesn't overwrite an existing file. This value is the default.

Setting @overwrite_s3_backup_file to 0 returns an error if the file already exists.

• 1 – Overwrites an existing file that has the specified name, even if it isn't a backup file.

• @type – The type of backup.

• DIFFERENTIAL – Makes a differential backup.

• FULL – Makes a full backup. This value is the default.

A differential backup is based on the last full backup. For differential backups to work, you
can't take a snapshot between the last full backup and the differential backup. If you want a
differential backup, but a snapshot exists, then do another full backup before proceeding with
the differential backup.

You can look for the last full backup or snapshot using the following example SQL query:

select top 1
database_name
, backup_start_date
, backup_finish_date
from msdb.dbo.backupset
where database_name='mydatabase'
and type = 'D'
order by backup_start_date desc;

• @number_of_files – The number of files into which the backup will be divided (chunked). The
maximum number is 10.

• Multifile backup is supported for both full and differential backups.

• If you enter a value of 1 or omit the parameter, a single backup file is created.

Provide the prefix that the files have in common, then suffix that with an asterisk (*). The
asterisk can be anywhere in the file_name part of the S3 ARN. The asterisk is replaced by a
series of alphanumeric strings in the generated files, starting with 1-of-number_of_files.

For example, if the file names in the S3 ARN are backup*.bak and you set
@number_of_files=4, the backup files generated are backup1-of-4.bak, backup2-
of-4.bak, backup3-of-4.bak, and backup4-of-4.bak.

Using native backup and restore 2947

Amazon Relational Database Service User Guide

• If any of the file names already exists, and @overwrite_s3_backup_file is 0, an error is
returned.

• Multifile backups can only have one asterisk in the file_name part of the S3 ARN.

• Single-file backups can have any number of asterisks in the file_name part of the S3 ARN.
Asterisks aren't removed from the generated file name.

• @block_size – Block size (in bytes) specifying the physical block size for backup operations.
Valid values are 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536

• @max_transfer_size – Maximum transfer size denotes the upper limit of data volume (in
bytes) transmitted per I/O operation during the backup process. Valid values are multiples of
65536 bytes (64 KB) up to 4194304 bytes (4 MB).

• @buffer_count – Total number of I/O buffers to be use for the backup process.

Examples

Example of differential backup

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup1.bak',
@overwrite_s3_backup_file=1,
@type='DIFFERENTIAL';

Example of full backup with encryption

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup1.bak',
@kms_master_key_arn='arn:aws:kms:us-east-1:123456789012:key/AKIAIOSFODNN7EXAMPLE',
@overwrite_s3_backup_file=1,
@type='FULL';

Example of multifile backup

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup*.bak',
@number_of_files=4;

Using native backup and restore 2948

Amazon Relational Database Service User Guide

Example of multifile differential backup

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup*.bak',
@type='DIFFERENTIAL',
@number_of_files=4;

Example of multifile backup with encryption

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup*.bak',
@kms_master_key_arn='arn:aws:kms:us-east-1:123456789012:key/AKIAIOSFODNN7EXAMPLE',
@number_of_files=4;

Example of multifile backup with S3 overwrite

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup*.bak',
@overwrite_s3_backup_file=1,
@number_of_files=4;

Example of backup with block size

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup*.bak',
@block_size=512;

Example of multifile backup with @max_transfer_size and @buffer_count

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup*.bak',
@number_of_files=4,
@max_transfer_size=4194304,
@buffer_count=10;

Using native backup and restore 2949

Amazon Relational Database Service User Guide

Example of single-file backup with the @number_of_files parameter

This example generates a backup file named backup*.bak.

exec msdb.dbo.rds_backup_database
@source_db_name='mydatabase',
@s3_arn_to_backup_to='arn:aws:s3:::mybucket/backup*.bak',
@number_of_files=1;

Restoring a database

To restore your database, call the rds_restore_database stored procedure. Amazon RDS
creates an initial snapshot of the database after the restore task is complete and the database is
open.

Usage

exec msdb.dbo.rds_restore_database
 @restore_db_name='database_name',
 @s3_arn_to_restore_from='arn:aws:s3:::bucket_name/file_name.extension',
 @with_norecovery=0|1,
 [@kms_master_key_arn='arn:aws:kms:region:account-id:key/key-id'],
 [@block_size=512|1024|2048|4096|8192|16384|32768|65536],
 [@max_transfer_size=n],
 [@buffer_count=n],
 [@type='DIFFERENTIAL|FULL'];

The following parameters are required:

• @restore_db_name – The name of the database to restore. Database names are unique. You
can't restore a database with the same name as an existing database.

• @s3_arn_to_restore_from – The ARN indicating the Amazon S3 prefix and names of the
backup files used to restore the database.

• For a single-file backup, provide the entire file name.

• For a multifile backup, provide the prefix that the files have in common, then suffix that with
an asterisk (*).

• If @s3_arn_to_restore_from is empty, the following error message is returned: S3 ARN
prefix cannot be empty.

Using native backup and restore 2950

Amazon Relational Database Service User Guide

The following parameter is required for differential restores, but optional for full restores:

• @with_norecovery – The recovery clause to use for the restore operation.

• Set it to 0 to restore with RECOVERY. In this case, the database is online after the restore.

• Set it to 1 to restore with NORECOVERY. In this case, the database remains in the RESTORING
state after restore task completion. With this approach, you can do later differential restores.

• For DIFFERENTIAL restores, specify 0 or 1.

• For FULL restores, this value defaults to 0.

The following parameters are optional:

• @kms_master_key_arn – If you encrypted the backup file, the KMS key to use to decrypt the
file.

When you specify a KMS key, client-side encryption is used.

• @type – The type of restore. Valid types are DIFFERENTIAL and FULL. The default value is
FULL.

• @block_size – Block size (in bytes) specifying the physical block size for backup operations.
Valid values are 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536

• @max_transfer_size – Maximum transfer size denotes the upper limit of data volume (in
bytes) transmitted per I/O operation during the backup process. Valid values are multiples of
65536 bytes (64 KB) up to 4194304 bytes (4 MB).

• @buffer_count – Total number of I/O buffers to be use for the backup process.

Note

For differential restores, either the database must be in the RESTORING state or a task
must already exist that restores with NORECOVERY.
You can't restore later differential backups while the database is online.
You can't submit a restore task for a database that already has a pending restore task with
RECOVERY.
Full restores with NORECOVERY and differential restores aren't supported on Multi-AZ
instances.

Using native backup and restore 2951

Amazon Relational Database Service User Guide

Restoring a database on a Multi-AZ instance with read replicas is similar to restoring a
database on a Multi-AZ instance. You don't have to take any additional actions to restore a
database on a replica.

Examples

Example of single-file restore

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak';

Example of multifile restore

To avoid errors when restoring multiple files, make sure that all the backup files have the same
prefix, and that no other files use that prefix.

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup*';

Example of full database restore with RECOVERY

The following three examples perform the same task, full restore with RECOVERY.

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak';

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak',
[@type='DIFFERENTIAL|FULL'];

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak',
@type='FULL',

Using native backup and restore 2952

Amazon Relational Database Service User Guide

@with_norecovery=0;

Example of full database restore with encryption

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak',
@kms_master_key_arn='arn:aws:kms:us-east-1:123456789012:key/AKIAIOSFODNN7EXAMPLE';

Example of restore with block size

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak',
@block_size=512;

Example of multifile restore with @max_transfer_size and @buffer_count

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup*',
@max_transfer_size=4194304,
@buffer_count=10;

Example of full database restore with NORECOVERY

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak',
@type='FULL',
@with_norecovery=1;

Example of differential restore with NORECOVERY

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak',
@type='DIFFERENTIAL',
@with_norecovery=1;

Using native backup and restore 2953

Amazon Relational Database Service User Guide

Example of differential restore with RECOVERY

exec msdb.dbo.rds_restore_database
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/backup1.bak',
@type='DIFFERENTIAL',
@with_norecovery=0;

Restoring a log

To restore your log, call the rds_restore_log stored procedure.

Usage

exec msdb.dbo.rds_restore_log
 @restore_db_name='database_name',
 @s3_arn_to_restore_from='arn:aws:s3:::bucket_name/log_file_name.extension',
 [@kms_master_key_arn='arn:aws:kms:region:account-id:key/key-id'],
 [@with_norecovery=0|1],
 [@stopat='datetime'],
 [@block_size=512|1024|2048|4096|8192|16384|32768|65536],
 [@max_transfer_size=n],
 [@buffer_count=n];

The following parameters are required:

• @restore_db_name – The name of the database whose log to restore.

• @s3_arn_to_restore_from – The ARN indicating the Amazon S3 prefix and name of the log
file used to restore the log. The file can have any extension, but .trn is usually used.

If @s3_arn_to_restore_from is empty, the following error message is returned: S3 ARN prefix
cannot be empty.

The following parameters are optional:

• @kms_master_key_arn – If you encrypted the log, the KMS key to use to decrypt the log.

• @with_norecovery – The recovery clause to use for the restore operation. This value defaults
to 1.

• Set it to 0 to restore with RECOVERY. In this case, the database is online after the restore. You
can't restore further log backups while the database is online.

Using native backup and restore 2954

Amazon Relational Database Service User Guide

• Set it to 1 to restore with NORECOVERY. In this case, the database remains in the RESTORING
state after restore task completion. With this approach, you can do later log restores.

• @stopat – A value that specifies that the database is restored to its state at the date and time
specified (in datetime format). Only transaction log records written before the specified date and
time are applied to the database.

If this parameter isn't specified (it is NULL), the complete log is restored.

• @block_size – Block size (in bytes) specifying the physical block size for backup operations.
Valid values are 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536

• @max_transfer_size – Maximum transfer size denotes the upper limit of data volume (in
bytes) transmitted per I/O operation during the backup process. Valid values are multiples of
65536 bytes (64 KB) up to 4194304 bytes (4 MB).

• @buffer_count – Total number of I/O buffers to be use for the backup process.

Note

For log restores, either the database must be in a state of restoring or a task must already
exist that restores with NORECOVERY.
You can't restore log backups while the database is online.
You can't submit a log restore task on a database that already has a pending restore task
with RECOVERY.
Log restores aren't supported on Multi-AZ instances.

Examples

Example of log restore

exec msdb.dbo.rds_restore_log
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/mylog.trn';

Example of log restore with encryption

exec msdb.dbo.rds_restore_log
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/mylog.trn',

Using native backup and restore 2955

Amazon Relational Database Service User Guide

@kms_master_key_arn='arn:aws:kms:us-east-1:123456789012:key/AKIAIOSFODNN7EXAMPLE';

Example of log restore with NORECOVERY

The following two examples perform the same task, log restore with NORECOVERY.

exec msdb.dbo.rds_restore_log
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/mylog.trn',
@with_norecovery=1;

exec msdb.dbo.rds_restore_log
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/mylog.trn';

Example of restore with block size

exec msdb.dbo.rds_restore_log
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/mylog.trn',
@block_size=512;

Example of log restore with RECOVERY

exec msdb.dbo.rds_restore_log
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/mylog.trn',
@with_norecovery=0;

Example of log restore with STOPAT clause

exec msdb.dbo.rds_restore_log
@restore_db_name='mydatabase',
@s3_arn_to_restore_from='arn:aws:s3:::mybucket/mylog.trn',
@with_norecovery=0,
@stopat='2019-12-01 03:57:09';

Using native backup and restore 2956

Amazon Relational Database Service User Guide

Finishing a database restore

If the last restore task on the database was performed using @with_norecovery=1, the
database is now in the RESTORING state. Open this database for normal operation by using the
rds_finish_restore stored procedure.

Usage

exec msdb.dbo.rds_finish_restore @db_name='database_name';

Note

To use this approach, the database must be in the RESTORING state without any pending
restore tasks.
The rds_finish_restore procedure isn't supported on Multi-AZ instances.
To finish restoring the database, use the master login. Or use the user login that most
recently restored the database or log with NORECOVERY.

Working with partially restored databases

Dropping a partially restored database

To drop a partially restored database (left in the RESTORING state), use the rds_drop_database
stored procedure.

exec msdb.dbo.rds_drop_database @db_name='database_name';

Note

You can't submit a DROP database request for a database that already has a pending
restore or finish restore task.
To drop the database, use the master login. Or use the user login that most recently
restored the database or log with NORECOVERY.

Using native backup and restore 2957

Amazon Relational Database Service User Guide

Snapshot restore and point-in-time recovery behavior for partially restored databases

Partially restored databases in the source instance (left in the RESTORING state) are dropped from
the target instance during snapshot restore and point-in-time recovery.

Canceling a task

To cancel a backup or restore task, call the rds_cancel_task stored procedure.

Note

You can't cancel a FINISH_RESTORE task.

Usage

exec msdb.dbo.rds_cancel_task @task_id=ID_number;

The following parameter is required:

• @task_id – The ID of the task to cancel. You can get the task ID by calling rds_task_status.

Tracking the status of tasks

To track the status of your backup and restore tasks, call the rds_task_status stored procedure.
If you don't provide any parameters, the stored procedure returns the status of all tasks. The status
for tasks is updated approximately every two minutes. Task history is retained for 36 days.

Usage

exec msdb.dbo.rds_task_status
 [@db_name='database_name'],
 [@task_id=ID_number];

The following parameters are optional:

• @db_name – The name of the database to show the task status for.

• @task_id – The ID of the task to show the task status for.

Using native backup and restore 2958

Amazon Relational Database Service User Guide

Examples

Example of listing the status for a specific task

exec msdb.dbo.rds_task_status @task_id=5;

Example of listing the status for a specific database and task

exec msdb.dbo.rds_task_status
@db_name='my_database',
@task_id=5;

Example of listing all tasks and their statuses on a specific database

exec msdb.dbo.rds_task_status @db_name='my_database';

Example of listing all tasks and their statuses on the current instance

exec msdb.dbo.rds_task_status;

Response

The rds_task_status stored procedure returns the following columns.

Column Description

task_id The ID of the task.

task_type
Task type depending on the input parameters, as follows:

•
For backup tasks:

•
BACKUP_DB – Full database backup

•
BACKUP_DB_DIFFERENTIAL – Differential database backup

•
For restore tasks:

•

Using native backup and restore 2959

Amazon Relational Database Service User Guide

Column Description

RESTORE_DB – Full database restore with RECOVERY

•
RESTORE_DB_NORECOVERY – Full database restore with NORECOVERY

•
RESTORE_DB_DIFFERENTIAL – Differential database restore with R
ECOVERY

•
RESTORE_DB_DIFFERENTIAL_NORECOVERY – Differential database
restore with NORECOVERY

•
RESTORE_DB_LOG – Log restore with RECOVERY

•
RESTORE_DB_LOG_NORECOVERY – Log restore with NORECOVERY

•
For tasks that finish a restore:

•
FINISH_RESTORE – Finish restore and open database

Amazon RDS creates an initial snapshot of the database after it is open on
completion of the following restore tasks:

•
RESTORE_DB

•
RESTORE_DB_DIFFERENTIAL

•
RESTORE_DB_LOG

•
FINISH_RESTORE

database_
name

The name of the database that the task is associated with.

% complete The progress of the task as a percent value.

Using native backup and restore 2960

Amazon Relational Database Service User Guide

Column Description

duration
(mins)

The amount of time spent on the task, in minutes.

lifecycle The status of the task. The possible statuses are the following:

•
CREATED – As soon as you call rds_backup_database or
 rds_restore_database , a task is created and the status is set to
CREATED.

•
IN_PROGRESS – After a backup or restore task starts, the status is set
to IN_PROGRESS . It can take up to 5 minutes for the status to change
from CREATED to IN_PROGRESS .

•
SUCCESS – After a backup or restore task completes, the status is set to
SUCCESS.

•
ERROR – If a backup or restore task fails, the status is set to ERROR. For
more information about the error, see the task_info column.

•
CANCEL_REQUESTED – As soon as you call rds_cancel_task , the
status of the task is set to CANCEL_REQUESTED .

•
CANCELLED – After a task is successfully canceled, the status of the task
is set to CANCELLED .

task_info Additional information about the task.

If an error occurs while backing up or restoring a database, this column con
tains information about the error. For a list of possible errors, and mitigatio
n strategies, see Troubleshooting.

last_upda
ted

The date and time that the task status was last updated. The status is
updated after every 5 percent of progress.

created_at The date and time that the task was created.

Using native backup and restore 2961

Amazon Relational Database Service User Guide

Column Description

S3_object
_arn

The ARN indicating the Amazon S3 prefix and the name of the file that is
being backed up or restored.

overwrite
_s3_backu
p_file

The value of the @overwrite_s3_backup_file parameter specified
when calling a backup task. For more information, see Backing up a da
tabase.

KMS_maste
r_key_arn

The ARN for the KMS key used for encryption (for backup) and decryption
(for restore).

filepath Not applicable to native backup and restore tasks.

overwrite
_file

Not applicable to native backup and restore tasks.

Compressing backup files

To save space in your Amazon S3 bucket, you can compress your backup files. For more information
about compressing backup files, see Backup compression in the Microsoft documentation.

Compressing your backup files is supported for the following database editions:

• Microsoft SQL Server Enterprise Edition

• Microsoft SQL Server Standard Edition

To turn on compression for your backup files, run the following code:

exec rdsadmin.dbo.rds_set_configuration 'S3 backup compression', 'true';

To turn off compression for your backup files, run the following code:

exec rdsadmin.dbo.rds_set_configuration 'S3 backup compression', 'false';

Troubleshooting

The following are issues you might encounter when you use native backup and restore.

Compressing backup files 2962

https://msdn.microsoft.com/en-us/library/bb964719.aspx

Amazon Relational Database Service User Guide

Issue Troubleshooting suggestions

Database backup/restore
option is not enabled
yet or is in the process of
being enabled. Please try
again later.

Make sure that you have added the SQLSERVER_BACKUP_R
ESTORE option to the DB option group associated with your DB
instance. For more information, see Adding the native backup and
restore option.

The EXECUTE permission
was denied on the object
 'rds_backup_databas
e ', database 'msdb',
schema 'dbo'.

Make sure that you are using the master user when executing the
 stored procedure. If you encounter this error even after being
 logged in as the master user, it might be due to the admin user
 permissions being misaligned. To reset the master user, use the
AWS Management Console. See Resetting the db_owner role
membership for master user for Amazon RDS for SQL Server.

The EXECUTE permission
was denied on the object
 'rds_restore_databa
se ', database 'msdb',
schema 'dbo'.

Make sure that you are using the master user when executing the
 stored procedure. If you encounter this error even after being
 logged in as the master user, it might be due to the admin user
 permissions being misaligned. To reset the master user, use the
AWS Management Console. See Resetting the db_owner role
membership for master user for Amazon RDS for SQL Server.

Access Denied The backup or restore process can't access the backup file. This is
usually caused by issues like the following:

•
Referencing the incorrect bucket. Referencing the bucket using
an incorrect format. Referencing a file name without using the
ARN.

•
Incorrect permissions on the bucket file. For example, if it is
created by a different account that is trying to access it now,
add the correct permissions.

•
An IAM policy that is incorrect or incomplete. Your IAM role
must include all the necessary elements, including, for example,
the correct version. These are highlighted in Importing and

Troubleshooting 2963

Amazon Relational Database Service User Guide

Issue Troubleshooting suggestions

exporting SQL Server databases using native backup and
restore.

BACKUP DATABASE WITH
COMPRESSION isn't
supported on <edition_
name> Edition

Compressing your backup files is only supported for Microsoft SQL
Server Enterprise Edition and Standard Edition.

For more information, see Compressing backup files.

Key <ARN> does not exist You attempted to restore an encrypted backup, but didn't provide
a valid encryption key. Check your encryption key and retry.

For more information, see Restoring a database.

Please reissue task with
correct type and overwrite
property

If you attempt to back up your database and provide the name of
a file that already exists, but set the overwrite property to false,
 the save operation fails. To fix this error, either provide the name
of a file that doesn't already exist, or set the overwrite property to
true.

For more information, see Backing up a database.

It's also possible that you intended to restore your database, but
called the rds_backup_database stored procedure accidenta
lly. In that case, call the rds_restore_database stored
procedure instead.

For more information, see Restoring a database.

If you intended to restore your database and called the
 rds_restore_database stored procedure, make sure that
you provided the name of a valid backup file.

For more information, see Using native backup and restore.

Troubleshooting 2964

Amazon Relational Database Service User Guide

Issue Troubleshooting suggestions

Please specify a bucket
that is in the same region
as RDS instance

You can't back up to, or restore from, an Amazon S3 bucket in a
different AWS Region from your Amazon RDS DB instance. You can
use Amazon S3 replication to copy the backup file to the correct
AWS Region.

For more information, see Cross-Region replication in the Amazon
S3 documentation.

The specified bucket does
not exist

Verify that you have provided the correct ARN for your bucket and
file, in the correct format.

For more information, see Using native backup and restore.

User <ARN> is not
authorized to perform
<kms action> on resource
<ARN>

You requested an encrypted operation, but didn't provide correct
AWS KMS permissions. Verify that you have the correct permissio
ns, or add them.

For more information, see Setting up for native backup and
restore.

The Restore task is unable
to restore from more than
10 backup file(s). Please
reduce the number of files
matched and try again.

Reduce the number of files that you're trying to restore from. You
can make each individual file larger if necessary.

Database 'database_
name ' already exists.
Two databases that differ
 only by case or accent
are not allowed. Choose a
different database name.

You can't restore a database with the same name as an existing
database. Database names are unique.

Troubleshooting 2965

https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html

Amazon Relational Database Service User Guide

Importing and exporting SQL Server data using other methods

Following, you can find information about using snapshots to import your Microsoft SQL Server
data to Amazon RDS. You can also find information about using snapshots to export your data
from an RDS DB instance running SQL Server.

If your scenario supports it, it's easier to move data in and out of Amazon RDS by using the native
backup and restore functionality. For more information, see Importing and exporting SQL Server
databases using native backup and restore.

Note

Amazon RDS for Microsoft SQL Server doesn't support importing data into the msdb
database.

Importing data into RDS for SQL Server by using a snapshot

To import data into a SQL Server DB instance by using a snapshot

1. Create a DB instance. For more information, see Creating an Amazon RDS DB instance.

2. Stop applications from accessing the destination DB instance.

If you prevent access to your DB instance while you are importing data, data transfer is faster.
Additionally, you don't need to worry about conflicts while data is being loaded if other
applications cannot write to the DB instance at the same time. If something goes wrong and
you have to roll back to an earlier database snapshot, the only changes that you lose are the
imported data. You can import this data again after you resolve the issue.

For information about controlling access to your DB instance, see Controlling access with
security groups.

3. Create a snapshot of the target database.

If the target database is already populated with data, we recommend that you take a snapshot
of the database before you import the data. If something goes wrong with the data import or
you want to discard the changes, you can restore the database to its previous state by using
the snapshot. For information about database snapshots, see Creating a DB snapshot for a
Single-AZ DB instance for Amazon RDS.

Importing and exporting SQL Server data using other methods 2966

Amazon Relational Database Service User Guide

Note

When you take a database snapshot, I/O operations to the database are suspended for
a moment (milliseconds) while the backup is in progress.

4. Disable automated backups on the target database.

Disabling automated backups on the target DB instance improves performance while you are
importing your data because Amazon RDS doesn't log transactions when automatic backups
are disabled. However, there are some things to consider. Automated backups are required to
perform a point-in-time recovery. Thus, you can't restore the database to a specific point in
time while you are importing data. Additionally, any automated backups that were created on
the DB instance are erased unless you choose to retain them.

Choosing to retain the automated backups can help protect you against accidental deletion
of data. Amazon RDS also saves the database instance properties along with each automated
backup to make it easy to recover. Using this option lets you can restore a deleted database
instance to a specified point in time within the backup retention period even after deleting it.
Automated backups are automatically deleted at the end of the specified backup window, just
as they are for an active database instance.

You can also use previous snapshots to recover the database, and any snapshots that you
have taken remain available. For information about automated backups, see Introduction to
backups.

5. Disable foreign key constraints, if applicable.

If you need to disable foreign key constraints, you can do so with the following script.

--Disable foreign keys on all tables
 DECLARE @table_name SYSNAME;
 DECLARE @cmd NVARCHAR(MAX);
 DECLARE table_cursor CURSOR FOR SELECT name FROM sys.tables;

 OPEN table_cursor;
 FETCH NEXT FROM table_cursor INTO @table_name;

 WHILE @@FETCH_STATUS = 0 BEGIN
 SELECT @cmd = 'ALTER TABLE '+QUOTENAME(@table_name)+' NOCHECK CONSTRAINT
 ALL';

Importing and exporting SQL Server data using other methods 2967

Amazon Relational Database Service User Guide

 EXEC (@cmd);
 FETCH NEXT FROM table_cursor INTO @table_name;
 END

 CLOSE table_cursor;
 DEALLOCATE table_cursor;

 GO

6. Drop indexes, if applicable.

7. Disable triggers, if applicable.

If you need to disable triggers, you can do so with the following script.

--Disable triggers on all tables
 DECLARE @enable BIT = 0;
 DECLARE @trigger SYSNAME;
 DECLARE @table SYSNAME;
 DECLARE @cmd NVARCHAR(MAX);
 DECLARE trigger_cursor CURSOR FOR SELECT trigger_object.name trigger_name,
 table_object.name table_name
 FROM sysobjects trigger_object
 JOIN sysobjects table_object ON trigger_object.parent_obj = table_object.id
 WHERE trigger_object.type = 'TR';

 OPEN trigger_cursor;
 FETCH NEXT FROM trigger_cursor INTO @trigger, @table;

 WHILE @@FETCH_STATUS = 0 BEGIN
 IF @enable = 1
 SET @cmd = 'ENABLE ';
 ELSE
 SET @cmd = 'DISABLE ';

 SET @cmd = @cmd + ' TRIGGER dbo.'+QUOTENAME(@trigger)+' ON
 dbo.'+QUOTENAME(@table)+' ';
 EXEC (@cmd);
 FETCH NEXT FROM trigger_cursor INTO @trigger, @table;
 END

 CLOSE trigger_cursor;
 DEALLOCATE trigger_cursor;

Importing and exporting SQL Server data using other methods 2968

Amazon Relational Database Service User Guide

 GO

8. Query the source SQL Server instance for any logins that you want to import to the
destination DB instance.

SQL Server stores logins and passwords in the master database. Because Amazon RDS doesn't
grant access to the master database, you cannot directly import logins and passwords into
your destination DB instance. Instead, you must query the master database on the source SQL
Server instance to generate a data definition language (DDL) file. This file should include all
logins and passwords that you want to add to the destination DB instance. This file also should
include role memberships and permissions that you want to transfer.

For information about querying the master database, see Transfer logins and passwords
between instances of SQL Server in the Microsoft Knowledge Base.

The output of the script is another script that you can run on the destination DB instance. The
script in the Knowledge Base article has the following code:

p.type IN

Every place p.type appears, use the following code instead:

p.type = 'S'

9. Import the data using the method in Import the data.

10. Grant applications access to the target DB instance.

When your data import is complete, you can grant access to the DB instance to those
applications that you blocked during the import. For information about controlling access to
your DB instance, see Controlling access with security groups.

11. Enable automated backups on the target DB instance.

For information about automated backups, see Introduction to backups.

12. Enable foreign key constraints.

If you disabled foreign key constraints earlier, you can now enable them with the following
script.

--Enable foreign keys on all tables
Importing and exporting SQL Server data using other methods 2969

https://learn.microsoft.com/en-us/troubleshoot/sql/database-engine/security/transfer-logins-passwords-between-instances
https://learn.microsoft.com/en-us/troubleshoot/sql/database-engine/security/transfer-logins-passwords-between-instances

Amazon Relational Database Service User Guide

 DECLARE @table_name SYSNAME;
 DECLARE @cmd NVARCHAR(MAX);
 DECLARE table_cursor CURSOR FOR SELECT name FROM sys.tables;

 OPEN table_cursor;
 FETCH NEXT FROM table_cursor INTO @table_name;

 WHILE @@FETCH_STATUS = 0 BEGIN
 SELECT @cmd = 'ALTER TABLE '+QUOTENAME(@table_name)+' CHECK CONSTRAINT ALL';
 EXEC (@cmd);
 FETCH NEXT FROM table_cursor INTO @table_name;
 END

 CLOSE table_cursor;
 DEALLOCATE table_cursor;

13. Enable indexes, if applicable.

14. Enable triggers, if applicable.

If you disabled triggers earlier, you can now enable them with the following script.

--Enable triggers on all tables
 DECLARE @enable BIT = 1;
 DECLARE @trigger SYSNAME;
 DECLARE @table SYSNAME;
 DECLARE @cmd NVARCHAR(MAX);
 DECLARE trigger_cursor CURSOR FOR SELECT trigger_object.name trigger_name,
 table_object.name table_name
 FROM sysobjects trigger_object
 JOIN sysobjects table_object ON trigger_object.parent_obj = table_object.id
 WHERE trigger_object.type = 'TR';

 OPEN trigger_cursor;
 FETCH NEXT FROM trigger_cursor INTO @trigger, @table;

 WHILE @@FETCH_STATUS = 0 BEGIN
 IF @enable = 1
 SET @cmd = 'ENABLE ';
 ELSE
 SET @cmd = 'DISABLE ';

 SET @cmd = @cmd + ' TRIGGER dbo.'+QUOTENAME(@trigger)+' ON
 dbo.'+QUOTENAME(@table)+' ';

Importing and exporting SQL Server data using other methods 2970

Amazon Relational Database Service User Guide

 EXEC (@cmd);
 FETCH NEXT FROM trigger_cursor INTO @trigger, @table;
 END

 CLOSE trigger_cursor;
 DEALLOCATE trigger_cursor;

Import the data

Microsoft SQL Server Management Studio is a graphical SQL Server client that is included in all
Microsoft SQL Server editions except the Express Edition. SQL Server Management Studio Express
is available from Microsoft as a free download. To find this download, see the Microsoft website.

Note

SQL Server Management Studio is available only as a Windows-based application.

SQL Server Management Studio includes the following tools, which are useful in importing data to
a SQL Server DB instance:

• Generate and Publish Scripts Wizard

• Import and Export Wizard

• Bulk copy

Generate and Publish Scripts Wizard

The Generate and Publish Scripts Wizard creates a script that contains the schema of a database,
the data itself, or both. You can generate a script for a database in your local SQL Server
deployment. You can then run the script to transfer the information that it contains to an Amazon
RDS DB instance.

Note

For databases of 1 GiB or larger, it's more efficient to script only the database schema. You
then use the Import and Export Wizard or the bulk copy feature of SQL Server to transfer
the data.

Importing and exporting SQL Server data using other methods 2971

https://www.microsoft.com/en-us/download

Amazon Relational Database Service User Guide

For detailed information about the Generate and Publish Scripts Wizard, see the Microsoft SQL
Server documentation.

In the wizard, pay particular attention to the advanced options on the Set Scripting Options page
to ensure that everything you want your script to include is selected. For example, by default,
database triggers are not included in the script.

When the script is generated and saved, you can use SQL Server Management Studio to connect to
your DB instance and then run the script.

Import and Export Wizard

The Import and Export Wizard creates a special Integration Services package, which you can use to
copy data from your local SQL Server database to the destination DB instance. The wizard can filter
which tables and even which tuples within a table are copied to the destination DB instance.

Note

The Import and Export Wizard works well for large datasets, but it might not be the fastest
way to remotely export data from your local deployment. For an even faster way, consider
the SQL Server bulk copy feature.

For detailed information about the Import and Export Wizard, see the Microsoft SQL Server
documentation.

In the wizard, on the Choose a Destination page, do the following:

• For Server Name, type the name of the endpoint for your DB instance.

• For the server authentication mode, choose Use SQL Server Authentication.

• For User name and Password, type the credentials for the master user that you created for the
DB instance.

Bulk copy

The SQL Server bulk copy feature is an efficient means of copying data from a source database to
your DB instance. Bulk copy writes the data that you specify to a data file, such as an ASCII file. You
can then run bulk copy again to write the contents of the file to the destination DB instance.

Importing and exporting SQL Server data using other methods 2972

http://msdn.microsoft.com/en-us/library/ms178078%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms178078%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms140052%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms140052%28v=sql.105%29.aspx

Amazon Relational Database Service User Guide

This section uses the bcp utility, which is included with all editions of SQL Server. For
detailed information about bulk import and export operations, see the Microsoft SQL Server
documentation.

Note

Before you use bulk copy, you must first import your database schema to the destination
DB instance. The Generate and Publish Scripts Wizard, described earlier in this topic, is an
excellent tool for this purpose.

The following command connects to the local SQL Server instance. It generates a tab-delimited file
of a specified table in the C:\ root directory of your existing SQL Server deployment. The table is
specified by its fully qualified name, and the text file has the same name as the table that is being
copied.

bcp dbname.schema_name.table_name out C:\table_name.txt -n -S localhost -U username -
P password -b 10000

The preceding code includes the following options:

• -n specifies that the bulk copy uses the native data types of the data to be copied.

• -S specifies the SQL Server instance that the bcp utility connects to.

• -U specifies the user name of the account to log in to the SQL Server instance.

• -P specifies the password for the user specified by -U.

• -b specifies the number of rows per batch of imported data.

Note

There might be other parameters that are important to your import situation. For example,
you might need the -E parameter that pertains to identity values. For more information;
see the full description of the command line syntax for the bcp utility in the Microsoft SQL
Server documentation.

Importing and exporting SQL Server data using other methods 2973

http://msdn.microsoft.com/en-us/library/ms187042%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms187042%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms162802%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms162802%28v=sql.105%29.aspx

Amazon Relational Database Service User Guide

For example, suppose that a database named store that uses the default schema, dbo, contains
a table named customers. The user account admin, with the password insecure, copies 10,000
rows of the customers table to a file named customers.txt.

bcp store.dbo.customers out C:\customers.txt -n -S localhost -U admin -P insecure -b
 10000

After you generate the data file, you can upload the data to your DB instance by using a similar
command. Beforehand, create the database and schema on the target DB instance. Then use the
in argument to specify an input file instead of out to specify an output file. Instead of using
localhost to specify the local SQL Server instance, specify the endpoint of your DB instance. If you
use a port other than 1433, specify that too. The user name and password are the master user and
password for your DB instance. The syntax is as follows.

bcp dbname.schema_name.table_name
 in C:\table_name.txt -n -S endpoint,port -U master_user_name -
P master_user_password -b 10000

To continue the previous example, suppose that the master user name is admin, and the
password is insecure. The endpoint for the DB instance is rds.ckz2kqd4qsn1.us-
east-1.rds.amazonaws.com, and you use port 4080. The command is as follows.

bcp store.dbo.customers in C:\customers.txt -n -S rds.ckz2kqd4qsn1.us-
east-1.rds.amazonaws.com,4080 -U admin -P insecure -b 10000

Note

Specify a password other than the prompt shown here as a security best practice.

Exporting data from RDS for SQL Server

You can choose one of the following options to export data from an RDS for SQL Server DB
instance:

• Native database backup using a full backup file (.bak) – Using .bak files to backup databases
is heavily optimized, and is usually the fastest way to export data. For more information, see
Importing and exporting SQL Server databases using native backup and restore.

Importing and exporting SQL Server data using other methods 2974

Amazon Relational Database Service User Guide

• SQL Server Import and Export Wizard – For more information, see SQL Server Import and
Export Wizard.

• SQL Server Generate and Publish Scripts Wizard and bcp utility – For more information, see
SQL Server Generate and Publish Scripts Wizard and bcp utility.

SQL Server Import and Export Wizard

You can use the SQL Server Import and Export Wizard to copy one or more tables, views, or queries
from your RDS for SQL Server DB instance to another data store. This choice is best if the target
data store is not SQL Server. For more information, see SQL Server Import and Export Wizard in
the SQL Server documentation.

The SQL Server Import and Export Wizard is available as part of Microsoft SQL Server Management
Studio. This graphical SQL Server client is included in all Microsoft SQL Server editions except the
Express Edition. SQL Server Management Studio is available only as a Windows-based application.
SQL Server Management Studio Express is available from Microsoft as a free download. To find this
download, see the Microsoft website.

To use the SQL Server Import and Export Wizard to export data

1. In SQL Server Management Studio, connect to your RDS for SQL Server DB instance. For
details on how to do this, see Connecting to your Microsoft SQL Server DB instance.

2. In Object Explorer, expand Databases, open the context (right-click) menu for the source
database, choose Tasks, and then choose Export Data. The wizard appears.

3. On the Choose a Data Source page, do the following:

a. For Data source, choose SQL Server Native Client 11.0.

b. Verify that the Server name box shows the endpoint of your RDS for SQL Server DB
instance.

c. Select Use SQL Server Authentication. For User name and Password, type the master
user name and password of your DB instance.

d. Verify that the Database box shows the database from which you want to export data.

e. Choose Next.

4. On the Choose a Destination page, do the following:

a. For Destination, choose SQL Server Native Client 11.0.

Importing and exporting SQL Server data using other methods 2975

http://msdn.microsoft.com/en-us/library/ms141209%28v=sql.110%29.aspx
http://www.microsoft.com/en-us/search/Results.aspx?q=sql%20server%20management%20studio

Amazon Relational Database Service User Guide

Note

Other target data sources are available. These include .NET Framework data
providers, OLE DB providers, SQL Server Native Client providers, ADO.NET
providers, Microsoft Office Excel, Microsoft Office Access, and the Flat File source.
If you choose to target one of these data sources, skip the remainder of step 4. For
details on the connection information to provide next, see Choose a destination in
the SQL Server documentation.

b. For Server name, type the server name of the target SQL Server DB instance.

c. Choose the appropriate authentication type. Type a user name and password if necessary.

d. For Database, choose the name of the target database, or choose New to create a new
database to contain the exported data.

If you choose New, see Create database in the SQL Server documentation for details on
the database information to provide.

e. Choose Next.

5. On the Table Copy or Query page, choose Copy data from one or more tables or views or
Write a query to specify the data to transfer. Choose Next.

6. If you chose Write a query to specify the data to transfer, you see the Provide a Source
Query page. Type or paste in a SQL query, and then choose Parse to verify it. Once the query
validates, choose Next.

7. On the Select Source Tables and Views page, do the following:

a. Select the tables and views that you want to export, or verify that the query you provided
is selected.

b. Choose Edit Mappings and specify database and column mapping information. For more
information, see Column mappings in the SQL Server documentation.

c. (Optional) To see a preview of data to be exported, select the table, view, or query, and
then choose Preview.

d. Choose Next.

8. On the Run Package page, verify that Run immediately is selected. Choose Next.

9. On the Complete the Wizard page, verify that the data export details are as you expect.
Choose Finish.

Importing and exporting SQL Server data using other methods 2976

http://msdn.microsoft.com/en-us/library/ms178430%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms183323%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms189660%28v=sql.110%29.aspx

Amazon Relational Database Service User Guide

10. On the The execution was successful page, choose Close.

SQL Server Generate and Publish Scripts Wizard and bcp utility

You can use the SQL Server Generate and Publish Scripts Wizard to create scripts for an entire
database or just selected objects. You can run these scripts on a target SQL Server DB instance
to recreate the scripted objects. You can then use the bcp utility to bulk export the data for the
selected objects to the target DB instance. This choice is best if you want to move a whole database
(including objects other than tables) or large quantities of data between two SQL Server DB
instances. For a full description of the bcp command-line syntax, see bcp utility in the Microsoft
SQL Server documentation.

The SQL Server Generate and Publish Scripts Wizard is available as part of Microsoft SQL Server
Management Studio. This graphical SQL Server client is included in all Microsoft SQL Server
editions except the Express Edition. SQL Server Management Studio is available only as a Windows-
based application. SQL Server Management Studio Express is available from Microsoft as a free
download.

To use the SQL Server Generate and Publish Scripts Wizard and the bcp utility to export data

1. In SQL Server Management Studio, connect to your RDS for SQL Server DB instance. For
details on how to do this, see Connecting to your Microsoft SQL Server DB instance.

2. In Object Explorer, expand the Databases node and select the database you want to script.

3. Follow the instructions in Generate and publish scripts Wizard in the SQL Server
documentation to create a script file.

4. In SQL Server Management Studio, connect to your target SQL Server DB instance.

5. With the target SQL Server DB instance selected in Object Explorer, choose Open on the File
menu, choose File, and then open the script file.

6. If you have scripted the entire database, review the CREATE DATABASE statement in the script.
Make sure that the database is being created in the location and with the parameters that you
want. For more information, see CREATE DATABASE in the SQL Server documentation.

7. If you are creating database users in the script, check to see if server logins exist on the target
DB instance for those users. If not, create logins for those users; the scripted commands to
create the database users fail otherwise. For more information, see Create a login in the SQL
Server documentation.

Importing and exporting SQL Server data using other methods 2977

http://msdn.microsoft.com/en-us/library/ms162802%28v=sql.110%29.aspx
http://www.microsoft.com/en-us/search/Results.aspx?q=sql%20server%20management%20studio
http://www.microsoft.com/en-us/search/Results.aspx?q=sql%20server%20management%20studio
http://msdn.microsoft.com/en-us/library/bb895179%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms176061%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/aa337562%28v=sql.110%29.aspx

Amazon Relational Database Service User Guide

8. Choose !Execute on the SQL Editor menu to run the script file and create the database objects.
When the script finishes, verify that all database objects exist as expected.

9. Use the bcp utility to export data from the RDS for SQL Server DB instance into files. Open a
command prompt and type the following command.

bcp database_name.schema_name.table_name out data_file -n -S aws_rds_sql_endpoint -
U username -P password

The preceding code includes the following options:

• table_name is the name of one of the tables that you've recreated in the target database and
now want to populate with data.

• data_file is the full path and name of the data file to be created.

• -n specifies that the bulk copy uses the native data types of the data to be copied.

• -S specifies the SQL Server DB instance to export from.

• -U specifies the user name to use when connecting to the SQL Server DB instance.

• -P specifies the password for the user specified by -U.

The following shows an example command.

bcp world.dbo.city out C:\Users\JohnDoe\city.dat -n -S sql-jdoe.1234abcd.us-
west-2.rds.amazonaws.com,1433 -U JohnDoe -P ClearTextPassword

Repeat this step until you have data files for all of the tables you want to export.

10. Prepare your target DB instance for bulk import of data by following the instructions at Basic
guidelines for bulk importing data in the SQL Server documentation.

11. Decide on a bulk import method to use after considering performance and other concerns
discussed in About bulk import and bulk export operations in the SQL Server documentation.

12. Bulk import the data from the data files that you created using the bcp utility. To do so, follow
the instructions at either Import and export bulk data by using the bcp utility or Import bulk
data by using BULK INSERT or OPENROWSET(BULK...) in the SQL Server documentation,
depending on what you decided in step 11.

Importing and exporting SQL Server data using other methods 2978

http://msdn.microsoft.com/en-us/library/ms189989%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms189989%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms187042%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/aa337544%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms175915%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms175915%28v=sql.110%29.aspx

Amazon Relational Database Service User Guide

Working with read replicas for Microsoft SQL Server in Amazon
RDS

You usually use read replicas to configure replication between Amazon RDS DB instances. For
general information about read replicas, see Working with DB instance read replicas.

In this section, you can find specific information about working with read replicas on Amazon RDS
for SQL Server.

• Synchronizing database users and objects with a SQL Server read replica

• Troubleshooting a SQL Server read replica problem

Configuring read replicas for SQL Server

Before a DB instance can serve as a source instance for replication, you must enable automatic
backups on the source DB instance. To do so, you set the backup retention period to a value other
than 0. Setting this type of deployment also enforces that automatic backups are enabled.

Creating a SQL Server read replica doesn't require an outage for the primary DB instance. Amazon
RDS sets the necessary parameters and permissions for the source DB instance and the read replica
without any service interruption. A snapshot is taken of the source DB instance, and this snapshot
becomes the read replica. No outage occurs when you delete a read replica.

You can create up to 15 read replicas from one source DB instance. For replication to operate
effectively, we recommend that you configure each read replica with the same amount of compute
and storage resources as the source DB instance. If you scale the source DB instance, also scale the
read replicas.

The SQL Server DB engine version of the source DB instance and all of its read replicas must be the
same. Amazon RDS upgrades the primary immediately after upgrading the read replicas, regardless
of the maintenance window. For more information about upgrading the DB engine version, see
Upgrades of the Microsoft SQL Server DB engine.

For a read replica to receive and apply changes from the source, it should have sufficient compute
and storage resources. If a read replica reaches compute, network, or storage resource capacity, the
read replica stops receiving or applying changes from its source. You can modify the storage and
CPU resources of a read replica independently from its source and other read replicas.

SQL Server read replicas 2979

Amazon Relational Database Service User Guide

For more information about how to create a read replica, see Creating a read replica.

Read replica limitations with SQL Server

The following limitations apply to SQL Server read replicas on Amazon RDS:

• Read replicas are only available on the SQL Server Enterprise Edition (EE) engine.

• Read replicas are available for SQL Server versions 2016–2022.

• You can create up to 15 read replicas from one source DB instance. Replication might lag when
your source DB instance has more than 5 read replicas.

• Read replicas are only available for DB instances running on DB instance classes with four or
more vCPUs.

• A read replica supports up to 100 databases depending on the instance class type and
availability mode. You must create databases on the source DB instance to automatically
replicate them to the read replicas. You can't choose individual databases to replicate. For more
information, see Limitations for Microsoft SQL Server DB instances.

• You can't drop a database from a read replica. To drop a database, drop it from the source DB
instance with the rds_drop_database stored procedure. For more information, see Dropping a
database in an Amazon RDS for Microsoft SQL Server DB instance.

• If the source DB instance uses Transparent Data Encryption (TDE) to encrypt data, the read
replica also automatically configures TDE.

If the source DB instance uses a KMS key to encrypt data, read replicas in the same region use the
same KMS key. For cross-region read replicas, you must specify a KMS key from the read replica’s
region when creating the read replica. You can't change the KMS key for a read replica.

• Read replicas have the same time zone and collation as the source DB instance, regardless of
Availabilty Zone they're created in.

• The following aren't supported on Amazon RDS for SQL Server:

• Backup retention of read replicas

• Point-in-time recovery from read replicas

• Manual snapshots of read replicas

• Multi-AZ read replicas

• Creating read replicas of read replicas

• Synchronization of user logins to read replicas
Read replica limitations with SQL Server 2980

Amazon Relational Database Service User Guide

• Amazon RDS for SQL Server doesn't intervene to mitigate high replica lag between a source DB
instance and its read replicas. Make sure that the source DB instance and its read replicas are
sized properly, in terms of computing power and storage, to suit their operational load.

• You can replicate between the AWS GovCloud (US-East) and AWS GovCloud (US-West) Regions,
but not into or out of AWS GovCloud (US) Regions.

Option considerations for RDS for SQL Server replicas

Before you create an RDS for SQL Server replica, consider the following requirements, restrictions,
and recommendations:

• If your SQL Server replica is in the same Region as its source DB instance, make sure that it
belongs to the same option group as the source DB instance. Modifications to the source option
group or source option group membership propagate to replicas. These changes are applied
to the replicas immediately after they are applied to the source DB instance, regardless of the
replica's maintenance window.

For more information about option groups, see Working with option groups.

• When you create a SQL Server cross-Region replica, Amazon RDS creates a dedicated option
group for it.

You can't remove an SQL Server cross-Region replica from its dedicated option group. No other
DB instances can use the dedicated option group for a SQL Server cross-Region replica.

The following options are replicated options. To add replicated options to a SQL Server cross-
Region replica, add it to the source DB instance's option group. The option is also installed on all
of the source DB instance's replicas.

• TDE

The following options are non-replicated options. You can add or remove non-replicated options
from a dedicated option group.

• MSDTC

• SQLSERVER_AUDIT

• To enable the SQLSERVER_AUDIT option on cross-Region read replica, add the
SQLSERVER_AUDIT option on the dedicated option group on the cross-region read replica and
the source instance’s option group. By adding the SQLSERVER_AUDIT option on the source
instance of SQL Server cross-Region read replica, you can create Server Level Audit Object

Option considerations 2981

Amazon Relational Database Service User Guide

and Server Level Audit Specifications on each of the cross-Region read replicas of the source
instance. To allow the cross-Region read replicas access to upload the completed audit logs
to an Amazon S3 bucket, add the SQLSERVER_AUDIT option to the dedicated option group
and configure the option settings. The Amazon S3 bucket that you use as a target for audit
files must be in the same Region as the cross-Region read replica. You can modify the option
setting of the SQLSERVER_AUDIT option for each cross region read replica independently so
each can access an Amazon S3 bucket in their respective Region.

The following options are not supported for cross-Region read replicas.

• SSRS

• SSAS

• SSIS

The following options are partially supported for cross-Region read replicas.

• SQLSERVER_BACKUP_RESTORE

• The source DB instance of a SQL Server cross-Region replica can have the
SQLSERVER_BACKUP_RESTORE option, but you can not perform native restores on the
source DB instance until you delete all its cross-Region replicas. Any existing native restore
tasks will be cancelled during the creation of a cross-Region replica. You can't add the
SQLSERVER_BACKUP_RESTORE option to a dedicated option group.

For more information on native backup and restore, see Importing and exporting SQL Server
databases using native backup and restore

When you promote a SQL Server cross-Region read replica, the promoted replica behaves the
same as other SQL Server DB instances, including the management of its options. For more
information about option groups, see Working with option groups.

Synchronizing database users and objects with a SQL Server read
replica

Any logins, custom server roles, SQL agent jobs, or other server-level objects that exist in the
primary DB instance at the time of creating a read replica are expected to be present in the newly
created read replica. However, any server-level objects that are created in the primary DB instance
after the creation of the read replica will not be automatically replicated, and you must create
them manually in the read replica.
Synchronizing database users and objects 2982

Amazon Relational Database Service User Guide

The database users are automatically replicated from the primary DB instance to the read replica.
As the read replica database is in read-only mode, the security identifier (SID) of the database user
cannot be updated in the database. Therefore, when creating SQL logins in the read replica, it's
essential to ensure that the SID of that login matches the SID of the corresponding SQL login in
the primary DB instance. If you don't synchronize the SIDs of the SQL logins, they won't be able to
access the database in the read replica. Windows Active Directory (AD) Authenticated Logins do not
experience this issue because the SQL Server obtains the SID from the Active Directory.

To synchronize a SQL login from the primary DB instance to the read replica

1. Connect to the primary DB instance.

2. Create a new SQL login in the primary DB instance.

USE [master]
GO
CREATE LOGIN TestLogin1
WITH PASSWORD = 'REPLACE WITH PASSWORD';

Note

Specify a password other than the prompt shown here as a security best practice.

3. Create a new database user for the SQL login in the database.

USE [REPLACE WITH YOUR DB NAME]
GO
CREATE USER TestLogin1 FOR LOGIN TestLogin1;
GO

4. Check the SID of the newly created SQL login in primary DB instance.

SELECT name, sid FROM sys.server_principals WHERE name = TestLogin1;

5. Connect to the read replica. Create the new SQL login.

CREATE LOGIN TestLogin1 WITH PASSWORD = 'REPLACE WITH PASSWORD', SID=[REPLACE WITH
 sid FROM STEP #4];

Synchronizing database users and objects 2983

Amazon Relational Database Service User Guide

Alternately, if you have access to the read replica database, you can fix the orphaned user as
follows:

1. Connect to the read replica.

2. Identify the orphaned users in the database.

USE [REPLACE WITH YOUR DB NAME]
GO
EXEC sp_change_users_login 'Report';
GO

3. Create a new SQL login for the orphaned database user.

CREATE LOGIN TestLogin1 WITH PASSWORD = 'REPLACE WITH PASSWORD', SID=[REPLACE WITH
 sid FROM STEP #2];

Example:

CREATE LOGIN TestLogin1 WITH PASSWORD = 'TestPa$$word#1',
 SID=[0x1A2B3C4D5E6F7G8H9I0J1K2L3M4N5O6P];

Note

Specify a password other than the prompt shown here as a security best practice.

Troubleshooting a SQL Server read replica problem

You can monitor replication lag in Amazon CloudWatch by viewing the Amazon RDS ReplicaLag
metric. For information about replication lag time, see Monitoring read replication.

If replication lag is too long, you can use the following query to get information about the lag.

SELECT AR.replica_server_name
 , DB_NAME (ARS.database_id) 'database_name'
 , AR.availability_mode_desc
 , ARS.synchronization_health_desc
 , ARS.last_hardened_lsn
 , ARS.last_redone_lsn
 , ARS.secondary_lag_seconds

Troubleshooting 2984

Amazon Relational Database Service User Guide

FROM sys.dm_hadr_database_replica_states ARS
INNER JOIN sys.availability_replicas AR ON ARS.replica_id = AR.replica_id
--WHERE DB_NAME(ARS.database_id) = 'database_name'
ORDER BY AR.replica_server_name;

Troubleshooting 2985

Amazon Relational Database Service User Guide

Multi-AZ deployments for Amazon RDS for Microsoft SQL
Server

Multi-AZ deployments provide increased availability, data durability, and fault tolerance for
DB instances. In the event of planned database maintenance or unplanned service disruption,
Amazon RDS automatically fails over to the up-to-date secondary DB instance. This functionality
lets database operations resume quickly without manual intervention. The primary and standby
instances use the same endpoint, whose physical network address transitions to the secondary
replica as part of the failover process. You don't have to reconfigure your application when a
failover occurs.

Amazon RDS supports Multi-AZ deployments for Microsoft SQL Server by using either SQL Server
Database Mirroring (DBM) or Always On Availability Groups (AGs). Amazon RDS monitors and
maintains the health of your Multi-AZ deployment. If problems occur, RDS automatically repairs
unhealthy DB instances, reestablishes synchronization, and initiates failovers. Failover only occurs if
the standby and primary are fully in sync. You don't have to manage anything.

When you set up SQL Server Multi-AZ, RDS automatically configures all databases on the instance
to use DBM or AGs. Amazon RDS handles the primary, the witness, and the secondary DB instance
for you. Because configuration is automatic, RDS selects DBM or Always On AGs based on the
version of SQL Server that you deploy.

Amazon RDS supports Multi-AZ with Always On AGs for the following SQL Server versions and
editions:

• SQL Server 2022:

• Standard Edition

• Enterprise Edition

• SQL Server 2019:

• Standard Edition 15.00.4073.23 and higher

• Enterprise Edition

• SQL Server 2017:

• Standard Edition 14.00.3401.7 and higher

• Enterprise Edition 14.00.3049.1 and higher

• SQL Server 2016: Enterprise Edition 13.00.5216.0 and higher

Multi-AZ for RDS for SQL Server 2986

Amazon Relational Database Service User Guide

Amazon RDS supports Multi-AZ with DBM for the following SQL Server versions and editions,
except for the versions noted previously:

• SQL Server 2019: Standard Edition 15.00.4043.16

• SQL Server 2017: Standard and Enterprise Editions

• SQL Server 2016: Standard and Enterprise Editions

You can use the following SQL query to determine whether your SQL Server DB instance is Single-
AZ, Multi-AZ with DBM, or Multi-AZ with Always On AGs.

SELECT CASE WHEN dm.mirroring_state_desc IS NOT NULL THEN 'Multi-AZ (Mirroring)'
 WHEN dhdrs.group_database_id IS NOT NULL THEN 'Multi-AZ (AlwaysOn)'
 ELSE 'Single-AZ'
 END 'high_availability'
FROM sys.databases sd
LEFT JOIN sys.database_mirroring dm ON sd.database_id = dm.database_id
LEFT JOIN sys.dm_hadr_database_replica_states dhdrs ON sd.database_id =
 dhdrs.database_id AND dhdrs.is_local = 1
WHERE DB_NAME(sd.database_id) = 'rdsadmin';

The output resembles the following:

high_availability
Multi-AZ (AlwaysOn)

Adding Multi-AZ to a Microsoft SQL Server DB instance

When you create a new SQL Server DB instance using the AWS Management Console, you can add
Multi-AZ with Database Mirroring (DBM) or Always On AGs. You do so by choosing Yes (Mirroring /
Always On) from Multi-AZ deployment. For more information, see Creating an Amazon RDS DB
instance.

When you modify an existing SQL Server DB instance using the console, you can add Multi-AZ with
DBM or AGs by choosing Yes (Mirroring / Always On) from Multi-AZ deployment on the Modify
DB instance page. For more information, see Modifying an Amazon RDS DB instance.

Adding Multi-AZ to a SQL Server DB instance 2987

Amazon Relational Database Service User Guide

Note

If your DB instance is running Database Mirroring (DBM)—not Always On Availability
Groups (AGs)—you might need to disable in-memory optimization before you add Multi-
AZ. Disable in-memory optimization with DBM before you add Multi-AZ if your DB instance
runs SQL Server 2016 or 2017 Enterprise Edition and has in-memory optimization enabled.
If your DB instance is running AGs, it doesn't require this step.

Removing Multi-AZ from a Microsoft SQL Server DB instance

When you modify an existing SQL Server DB instance using the AWS Management Console, you can
remove Multi-AZ with DBM or AGs. You can do this by choosing No (Mirroring / Always On) from
Multi-AZ deployment on the Modify DB instance page. For more information, see Modifying an
Amazon RDS DB instance.

Microsoft SQL Server Multi-AZ deployment limitations, notes, and
recommendations

The following are some limitations when working with Multi-AZ deployments on RDS for SQL
Server DB instances:

• Cross-Region Multi-AZ isn't supported.

• Stopping an RDS for SQL Server DB instance in a multi-AZ deployment isn't supported.

• You can't configure the secondary DB instance to accept database read activity.

• Multi-AZ with Always On Availability Groups (AGs) supports in-memory optimization.

• Multi-AZ with Always On Availability Groups (AGs) doesn't support Kerberos authentication for
the availability group listener. This is because the listener has no Service Principal Name (SPN).

• You can't rename a database on a SQL Server DB instance that is in a SQL Server Multi-AZ
deployment. If you need to rename a database on such an instance, first turn off Multi-AZ for the
DB instance, then rename the database. Finally, turn Multi-AZ back on for the DB instance.

• You can only restore Multi-AZ DB instances that are backed up using the full recovery model.

• Multi-AZ deployments have a limit of 10,000 SQL Server Agent jobs.

Removing Multi-AZ from a SQL Server DB instance 2988

Amazon Relational Database Service User Guide

If you need a higher limit, request an increase by contacting Support. Open the AWS Support
Center page, sign in if necessary, and choose Create case. Choose Service limit increase.
Complete and submit the form.

• You can't have an offline database on a SQL Server DB instance that is in a SQL Server Multi-AZ
deployment.

The following are some notes about working with Multi-AZ deployments on RDS for SQL Server DB
instances:

• Amazon RDS exposes the Always On AGs availability group listener endpoint. The endpoint is
visible in the console, and is returned by the DescribeDBInstances API operation as an entry
in the endpoints field.

• Amazon RDS supports availability group multisubnet failovers.

• To use SQL Server Multi-AZ with a SQL Server DB instance in a virtual private cloud (VPC), first
create a DB subnet group that has subnets in at least two distinct Availability Zones. Then assign
the DB subnet group to the primary replica of the SQL Server DB instance.

• When a DB instance is modified to be a Multi-AZ deployment, during the modification it has a
status of modifying. Amazon RDS creates the standby, and makes a backup of the primary DB
instance. After the process is complete, the status of the primary DB instance becomes available.

• Multi-AZ deployments maintain all databases on the same node. If a database on the primary
host fails over, all your SQL Server databases fail over as one atomic unit to your standby host.
Amazon RDS provisions a new healthy host, and replaces the unhealthy host.

• Multi-AZ with DBM or AGs supports a single standby replica.

• Users, logins, and permissions are automatically replicated for you on the secondary. You don't
need to recreate them. User-defined server roles are only replicated in DB instances that use
Always On AGs for Multi-AZ deployments.

• In Multi-AZ deployments, RDS for SQL Server creates SQL Server logins to allow
Always On AGs or Database Mirroring. RDS creates logins with the following pattern,
db_<dbiResourceId>_node1_login, db_<dbiResourceId>_node2_login, and
db_<dbiResourceId>_witness_login.

• RDS for SQL Server creates a SQL Server login to allow access to read replicas. RDS creates a
login with the following pattern, db_<readreplica_dbiResourceId>_node_login.

Limitations, notes, and recommendations 2989

https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/listeners-client-connectivity-application-failover
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/listeners-client-connectivity-application-failover

Amazon Relational Database Service User Guide

• In Multi-AZ deployments, SQL Server Agent jobs are replicated from the primary host to the
secondary host when the job replication feature is turned on. For more information, see Turning
on SQL Server Agent job replication.

• You might observe elevated latencies compared to a standard DB instance deployment (in a
single Availability Zone) because of the synchronous data replication.

• Failover times are affected by the time it takes to complete the recovery process. Large
transactions increase the failover time.

• In SQL Server Multi-AZ deployments, reboot with failover reboots only the primary DB instance.
After the failover, the primary DB instance becomes the new secondary DB instance. Parameters
might not be updated for Multi-AZ instances. For reboot without failover, both the primary and
secondary DB instances reboot, and parameters are updated after the reboot. If the DB instance
is unresponsive, we recommend reboot without failover.

The following are some recommendations for working with Multi-AZ deployments on RDS for
Microsoft SQL Server DB instances:

• For databases used in production or preproduction, we recommend the following options:

• Multi-AZ deployments for high availability

• "Provisioned IOPS" for fast, consistent performance

• "Memory optimized" rather than "General purpose"

• You can't select the Availability Zone (AZ) for the secondary instance, so when you deploy
application hosts, take this into account. Your database might fail over to another AZ, and the
application hosts might not be in the same AZ as the database. For this reason, we recommend
that you balance your application hosts across all AZs in the given AWS Region.

• For best performance, don't enable Database Mirroring or Always On AGs during a large data
load operation. If you want your data load to be as fast as possible, finish loading data before
you convert your DB instance to a Multi-AZ deployment.

• Applications that access the SQL Server databases should have exception handling that
catches connection errors. The following code sample shows a try/catch block that catches
a communication error. In this example, the break statement exits the while loop if the
connection is successful, but retries up to 10 times if an exception is thrown.

int RetryMaxAttempts = 10;
int RetryIntervalPeriodInSeconds = 1;
int iRetryCount = 0;

Limitations, notes, and recommendations 2990

Amazon Relational Database Service User Guide

while (iRetryCount < RetryMaxAttempts)
{
 using (SqlConnection connection = new SqlConnection(DatabaseConnString))
 {
 using (SqlCommand command = connection.CreateCommand())
 {
 command.CommandText = "INSERT INTO SOME_TABLE VALUES ('SomeValue');";
 try
 {
 connection.Open();
 command.ExecuteNonQuery();
 break;
 }
 catch (Exception ex)
 {
 Logger(ex.Message);
 iRetryCount++;
 }
 finally {
 connection.Close();
 }
 }
 }
 Thread.Sleep(RetryIntervalPeriodInSeconds * 1000);
}

• Don't use the Set Partner Off command when working with Multi-AZ instances. For example,
don't do the following.

--Don't do this
ALTER DATABASE db1 SET PARTNER off

• Don't set the recovery mode to simple. For example, don't do the following.

--Don't do this
ALTER DATABASE db1 SET RECOVERY simple

• Don't use the DEFAULT_DATABASE parameter when creating new logins on Multi-AZ DB
instances, because these settings can't be applied to the standby mirror. For example, don't do
the following.

--Don't do this

Limitations, notes, and recommendations 2991

Amazon Relational Database Service User Guide

CREATE LOGIN [test_dba] WITH PASSWORD=foo, DEFAULT_DATABASE=[db2]

Also, don't do the following.

--Don't do this
ALTER LOGIN [test_dba] SET DEFAULT_DATABASE=[db3]

Determining the location of the secondary

You can determine the location of the secondary replica by using the AWS Management Console.
You need to know the location of the secondary if you are setting up your primary DB instance in a
VPC.

You can also view the Availability Zone of the secondary using the AWS CLI command describe-
db-instances or RDS API operation DescribeDBInstances. The output shows the secondary
AZ where the standby mirror is located.

Determining the location of the secondary 2992

Amazon Relational Database Service User Guide

Migrating from Database Mirroring to Always On Availability Groups

In version 14.00.3049.1 of Microsoft SQL Server Enterprise Edition, Always On Availability Groups
(AGs) are enabled by default.

To migrate from Database Mirroring (DBM) to AGs, first check your version. If you are using a DB
instance with a version prior to Enterprise Edition 13.00.5216.0, modify the instance to patch it
to 13.00.5216.0 or later. If you are using a DB instance with a version prior to Enterprise Edition
14.00.3049.1, modify the instance to patch it to 14.00.3049.1 or later.

If you want to upgrade a mirrored DB instance to use AGs, run the upgrade first, modify the
instance to remove Multi-AZ, and then modify it again to add Multi-AZ. This converts your instance
to use Always On AGs.

Migrating to Always On AGs 2993

Amazon Relational Database Service User Guide

Additional features for Microsoft SQL Server on Amazon RDS

In the following sections, you can find information about augmenting Amazon RDS instances
running the Microsoft SQL Server DB engine.

Topics

• Using Password Policy for SQL Server logins on RDS for SQL Server

• Integrating an Amazon RDS for SQL Server DB instance with Amazon S3

• Using Database Mail on Amazon RDS for SQL Server

• Instance store support for the tempdb database on Amazon RDS for SQL Server

• Using extended events with Amazon RDS for Microsoft SQL Server

• Access to transaction log backups with RDS for SQL Server

Additional features for SQL Server 2994

Amazon Relational Database Service User Guide

Using Password Policy for SQL Server logins on RDS for SQL Server

Amazon RDS allows you to set the password policy for your Amazon RDS DB instance running
Microsoft SQL Server. Use this to set complexity, length, and lockout requirements for logins that
use SQL Server Authentication to authenticate to your DB instance.

Key terms

Login

In SQL Server, a server-level principal that can authenticate to a database instance is referred to
as a login. Other database engines might refer to this principal as a user. In RDS for SQL Server,
a login can authenticate using SQL Server Authentication or Windows Authentication.

SQL Server login

A login that uses a username and password to authenticate using SQL Server Authentication is
a SQL Server login. The password policy you configure through DB parameters only applies to
SQL Server logins.

Windows login

A login that is based on a Windows principal and authenticates using Windows Authentication
is a Windows login. You can configure the password policy for your Windows logins in Active
Directory. For more information, see Working with Active Directory with RDS for SQL Server.

Enabling and disabling policy for each login

Each SQL Server login has flags for CHECK_POLICY and CHECK_EXPIRATION. By default, new
logins are created with CHECK_POLICY set to ON and CHECK_EXPIRATION set to OFF.

If CHECK_POLICY is enabled for a login, RDS for SQL Server validates the password against the
complexity and minimum length requirements. Lockout policies also apply. An example T-SQL
statement to enable CHECK_POLICY and CHECK_EXPIRATION:

ALTER LOGIN [master_user] WITH CHECK_POLICY = ON, CHECK_EXPIRATION = ON;

If CHECK_EXPIRATION is enabled, passwords are subject to password age policies. The T-SQL
statement to check if CHECK_POLICY and CHECK_EXPIRATION are set:

SELECT name, is_policy_checked, is_expiration_checked FROM sys.sql_logins;

Using password policy with a SQL Server DB instance 2995

Amazon Relational Database Service User Guide

Password policy parameters

All password policy parameters are dynamic and do not require DB reboot to take effect. The
following table lists the DB parameters you can set to modify the password policy for SQL Server
logins:

DB parameter Description Allowed Values Default Value

rds.passw
ord_compl
exity_enabled

Password
complexity
requirements
must be satisfied
when creating
or changing
passwords for
SQL Server
logins. The
following
constraints must
be met:

• The password
must include
characters
from three of
the following
categories:

• Latin
lowercase
letter (a
through z)

• Latin
uppercase
letter (A
through Z)

• Non-alpha
numeric

0,1 0

Using password policy with a SQL Server DB instance 2996

Amazon Relational Database Service User Guide

DB parameter Description Allowed Values Default Value

character
s such as:
exclamati
on point (!),
dollar sign
($), number
sign (#), or
percent (%).

• The password
doesn't
contain the
account name
of the user.

rds.passw
ord_min_length

The minimum
number of
characters
required in a
password for
a SQL Server
login.

0-14 0

rds.passw
ord_min_age

The minimum
number of days
a SQL Server
login password
must be used
before the user
can change it.
Passwords can
be changed
immediately
when set to 0.

0-998 0

Using password policy with a SQL Server DB instance 2997

Amazon Relational Database Service User Guide

DB parameter Description Allowed Values Default Value

rds.passw
ord_max_age

The maximum
number of days
a SQL Server
login password
can be used
after which the
user is required
to change it.
Passwords never
expire when set
to 0.

0-999 42

rds.passw
ord_locko
ut_threshold

The number
of consecuti
ve failed login
attempts that
cause a SQL
Server login to
become locked
out.

0-999 0

rds.passw
ord_locko
ut_duration

The number of
minutes a locked
out SQL Server
login must wait
before being
unlocked.

1-60 10

Using password policy with a SQL Server DB instance 2998

Amazon Relational Database Service User Guide

DB parameter Description Allowed Values Default Value

rds.passw
ord_locko
ut_reset_
counter_after

The number of
minutes that
must elapse
after a failed
login attempt
before the failed
login attempt
counter is reset
to 0.

1-60 10

Note

For more information about SQL Server password policy, see Password Policy.
The password complexity and minimum length policies also apply to DB users in contained
databases. For more information, see Contained Databases.

The following constraints apply to the password policy parameters:

• The rds.password_min_age parameter must be less than rds.password_max_age
parameter, unless rds.password_max_age is set to 0

• The rds.password_lockout_reset_counter_after parameter must be less than or equal
to the rds.password_lockout_duration parameter.

• If rds.password_lockout_threshold is set to 0, rds.password_lockout_duration and
rds.password_lockout_reset_counter_after do not apply.

Considerations for existing logins

After modifying the password policy on an instance, existing passwords for logins are not
retroactively evaluated against the new password complexity and length requirements. Only new
passwords are validated against the new policy.

SQL Server does evaluate existing passwords for age requirements.

Using password policy with a SQL Server DB instance 2999

https://learn.microsoft.com/en-us/sql/relational-databases/security/password-policy
https://learn.microsoft.com/en-us/sql/relational-databases/databases/contained-databases

Amazon Relational Database Service User Guide

It is possible for passwords to expire immediately once a password policy is modified. For example,
if a login has CHECK_EXPIRATION enabled and its password was last changed 100 days ago and
you set the rds.password_max_age parameter to 5 days, the password immediately expires and
the login needs to change their password at their next attempt to log in.

Note

RDS for SQL Server doesn't support password history policies. History policies prevent
logins from reusing previously used passwords.

Considerations for Multi-AZ deployments

The failed login attempt counter and lockout state for Multi-AZ instances does not replicate
between nodes. In the event of a login being locked out when a Multi-AZ instance fails over, it is
possible for the login to be already unlocked on the new node.

Password considerations for the master login

When you create an RDS for SQL Server DB instance, the master user password is not evaluated
against the password policy. A new master password is also not evaluated against the password
when performing operations to the master user, specifically when setting MasterUserPassword
in the ModifyDBInstance command. In both cases, you can set a password for the master user
that does not satisfy your password policy, and the operation still succeeds. If the policy is not
satisfied, RDS attempts to raise an RDS event, with the recommendation to set a strong password.
Take care to only use strong passwords for the master user.

RDS attempts to generate the following event messages when the master user password does not
meet the password policy requirements:

• The master user was created, but the password doesn't meet the minimum length requirement
of your password policy. Consider using a stronger password.

• The master user was created, but the password doesn't meet the complexity requirement of your
password policy. Consider using a stronger password.

• The master user password was reset, but the password doesn't meet the minimum length
requirement of your password policy. Consider using a stronger password.

• The master user password was reset, but the password doesn't meet the complexity requirement
of your password policy. Consider using a stronger password.

Using password policy with a SQL Server DB instance 3000

Amazon Relational Database Service User Guide

By default, the master user is created with CHECK_POLICY and CHECK_EXPIRATION set to OFF. To
apply the password policy to the master user, you must manually enable these flags for the master
user after DB instance creation. After you enable these flags, modify the master user password
directly in SQL Server (eg. via T-SQL statements or SSMS) to validate the new password against the
password policy.

Note

If the master user gets locked out, you can unlock the user by resetting the master user
password using the ModifyDBInstance command.

Modifying the master user password

You can modify the master user password by using the ModifyDBInstance command.

Note

When you reset the master user password, RDS resets various permissions for the master
user and the master user might lose certain permissions. Resetting the master user
password also unlocks the master user, if it was locked out.

RDS validates the new master user password and attempts to emit an RDS event if the password
does not satisfy the policy. RDS sets the password even if it does not satisfy the password policy.

Using password policy with a SQL Server DB instance 3001

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Integrating an Amazon RDS for SQL Server DB instance with Amazon
S3

You can transfer files between a DB instance running Amazon RDS for SQL Server and an Amazon
S3 bucket. By doing this, you can use Amazon S3 with SQL Server features such as BULK INSERT.
For example, you can download .csv, .xml, .txt, and other files from Amazon S3 to the DB instance
host and import the data from D:\S3\ into the database. All files are stored in D:\S3\ on the DB
instance.

The following limitations apply:

• Files in the D:\S3 folder are deleted on the standby replica after a failover on Multi-AZ
instances. For more information, see Multi-AZ limitations for S3 integration.

• The DB instance and the S3 bucket must be in the same AWS Region.

• If you run more than one S3 integration task at a time, the tasks run sequentially, not in parallel.

Note

S3 integration tasks share the same queue as native backup and restore tasks. At
maximum, you can have only two tasks in progress at any time in this queue. Therefore,
two running native backup and restore tasks will block any S3 integration tasks.

• You must re-enable the S3 integration feature on restored instances. S3 integration isn't
propagated from the source instance to the restored instance. Files in D:\S3 are deleted on a
restored instance.

• Downloading to the DB instance is limited to 100 files. In other words, there can't be more than
100 files in D:\S3\.

• Only files without file extensions or with the following file extensions are supported for
download: .abf, .asdatabase, .bcp, .configsettings, .csv, .dat, .deploymentoptions, .deploymenttargets, .fmt, .info, .ispac, .lst, .tbl, .txt, .xml,
and .xmla.

• The S3 bucket must have the same owner as the related AWS Identity and Access Management
(IAM) role. Therefore, cross-account S3 integration isn't supported.

• The S3 bucket can't be open to the public.

• The file size for uploads from RDS to S3 is limited to 50 GB per file.

• The file size for downloads from S3 to RDS is limited to the maximum supported by S3.

Amazon S3 integration 3002

Amazon Relational Database Service User Guide

Topics

• Prerequisites for integrating RDS for SQL Server with S3

• Enabling RDS for SQL Server integration with S3

• Transferring files between RDS for SQL Server and Amazon S3

• Listing files on the RDS DB instance

• Deleting files on the RDS DB instance

• Monitoring the status of a file transfer task

• Canceling a task

• Multi-AZ limitations for S3 integration

• Disabling RDS for SQL Server integration with S3

For more information on working with files in Amazon S3, see Getting started with Amazon Simple
Storage Service.

Prerequisites for integrating RDS for SQL Server with S3

Before you begin, find or create the S3 bucket that you want to use. Also, add permissions so that
the RDS DB instance can access the S3 bucket. To configure this access, you create both an IAM
policy and an IAM role.

Console

To create an IAM policy for access to Amazon S3

1. In the IAM Management Console, choose Policies in the navigation pane.

2. Create a new policy, and use the Visual editor tab for the following steps.

3. For Service, enter S3 and then choose the S3 service.

4. For Actions, choose the following to grant the access that your DB instance requires:

• ListAllMyBuckets – required

• ListBucket – required

• GetBucketACL – required

• GetBucketLocation – required

• GetObject – required for downloading files from S3 to D:\S3\

• PutObject – required for uploading files from D:\S3\ to S3

Amazon S3 integration 3003

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3
https://console.aws.amazon.com/iam/home?#home

Amazon Relational Database Service User Guide

• ListMultipartUploadParts – required for uploading files from D:\S3\ to S3

• AbortMultipartUpload – required for uploading files from D:\S3\ to S3

5. For Resources, the options that display depend on which actions you choose in the previous
step. You might see options for bucket, object, or both. For each of these, add the appropriate
Amazon Resource Name (ARN).

For bucket, add the ARN for the bucket that you want to use. For example, if your bucket is
named amzn-s3-demo-bucket, set the ARN to arn:aws:s3:::amzn-s3-demo-bucket.

For object, enter the ARN for the bucket and then choose one of the following:

• To grant access to all files in the specified bucket, choose Any for both Bucket name and
Object name.

• To grant access to specific files or folders in the bucket, provide ARNs for the specific buckets
and objects that you want SQL Server to access.

6. Follow the instructions in the console until you finish creating the policy.

The preceding is an abbreviated guide to setting up a policy. For more detailed instructions on
creating IAM policies, see Creating IAM policies in the IAM User Guide.

To create an IAM role that uses the IAM policy from the previous procedure

1. In the IAM Management Console, choose Roles in the navigation pane.

2. Create a new IAM role, and choose the following options as they appear in the console:

• AWS service

• RDS

• RDS – Add Role to Database

Then choose Next:Permissions at the bottom.

3. For Attach permissions policies, enter the name of the IAM policy that you previously created.
Then choose the policy from the list.

4. Follow the instructions in the console until you finish creating the role.

The preceding is an abbreviated guide to setting up a role. If you want more detailed
instructions on creating roles, see IAM roles in the IAM User Guide.

Amazon S3 integration 3004

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Relational Database Service User Guide

AWS CLI

To grant Amazon RDS access to an Amazon S3 bucket, use the following process:

1. Create an IAM policy that grants Amazon RDS access to an S3 bucket.

2. Create an IAM role that Amazon RDS can assume on your behalf to access your S3 buckets.

For more information, see Creating a role to delegate permissions to an IAM user in the IAM User
Guide.

3. Attach the IAM policy that you created to the IAM role that you created.

To create the IAM policy

Include the appropriate actions to grant the access your DB instance requires:

• ListAllMyBuckets – required

• ListBucket – required

• GetBucketACL – required

• GetBucketLocation – required

• GetObject – required for downloading files from S3 to D:\S3\

• PutObject – required for uploading files from D:\S3\ to S3

• ListMultipartUploadParts – required for uploading files from D:\S3\ to S3

• AbortMultipartUpload – required for uploading files from D:\S3\ to S3

1. The following AWS CLI command creates an IAM policy named rds-s3-integration-
policy with these options. It grants access to a bucket named amzn-s3-demo-bucket.

Example

For Linux, macOS, or Unix:

aws iam create-policy \
 --policy-name rds-s3-integration-policy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Amazon S3 integration 3005

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Relational Database Service User Guide

 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketACL",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/key_prefix/*"
 }
]
 }'

For Windows:

Make sure to change the line endings to the ones supported by your interface (^ instead of \).
Also, in Windows, you must escape all double quotes with a \. To avoid the need to escape the
quotes in the JSON, you can save it to a file instead and pass that in as a parameter.

First, create the policy.json file with the following permission policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Effect": "Allow",

Amazon S3 integration 3006

Amazon Relational Database Service User Guide

 "Action": [
 "s3:ListBucket",
 "s3:GetBucketACL",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/key_prefix/*"
 }
]
}

Then use the following command to create the policy:

aws iam create-policy ^
 --policy-name rds-s3-integration-policy ^
 --policy-document file://file_path/assume_role_policy.json

2. After the policy is created, note the Amazon Resource Name (ARN) of the policy. You need the
ARN for a later step.

To create the IAM role

• The following AWS CLI command creates the rds-s3-integration-role IAM role for this
purpose.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-integration-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",

Amazon S3 integration 3007

Amazon Relational Database Service User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

For Windows:

Make sure to change the line endings to the ones supported by your interface (^ instead of \).
Also, in Windows, you must escape all double quotes with a \. To avoid the need to escape the
quotes in the JSON, you can save it to a file instead and pass that in as a parameter.

First, create the assume_role_policy.json file with the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Then use the following command to create the IAM role:

aws iam create-role ^
 --role-name rds-s3-integration-role ^
 --assume-role-policy-document file://file_path/assume_role_policy.json

Amazon S3 integration 3008

Amazon Relational Database Service User Guide

Example of using the global condition context key to create the IAM role

We recommend using the aws:SourceArn and aws:SourceAccount global condition
context keys in resource-based policies to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

You might use both global condition context keys and have the aws:SourceArn value
contain the account ID. In this case, the aws:SourceAccount value and the account in
the aws:SourceArn value must use the same account ID when used in the same policy
statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the policy, make sure to use the aws:SourceArn global condition context key with the full
Amazon Resource Name (ARN) of the resources accessing the role. For S3 integration, make
sure to include the DB instance ARNs, as shown in the following example.

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-integration-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {

 "aws:SourceArn":"arn:aws:rds:Region:my_account_ID:db:db_instance_identifier"
 }
 }
 }
]

Amazon S3 integration 3009

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

 }'

For Windows:

Add the global condition context key to assume_role_policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {

 "aws:SourceArn":"arn:aws:rds:Region:my_account_ID:db:db_instance_identifier"
 }
 }
 }
]
}

To attach the IAM policy to the IAM role

• The following AWS CLI command attaches the policy to the role named rds-s3-
integration-role. Replace your-policy-arn with the policy ARN that you noted in a
previous step.

Example

For Linux, macOS, or Unix:

aws iam attach-role-policy \
 --policy-arn your-policy-arn \
 --role-name rds-s3-integration-role

Amazon S3 integration 3010

Amazon Relational Database Service User Guide

For Windows:

aws iam attach-role-policy ^
 --policy-arn your-policy-arn ^
 --role-name rds-s3-integration-role

Enabling RDS for SQL Server integration with S3

In the following section, you can find how to enable Amazon S3 integration with Amazon RDS for
SQL Server. To work with S3 integration, your DB instance must be associated with the IAM role
that you previously created before you use the S3_INTEGRATION feature-name parameter.

Note

To add an IAM role to a DB instance, the status of the DB instance must be available.

Console

To associate your IAM role with your DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the RDS for SQL Server DB instance name to display its details.

3. On the Connectivity & security tab, in the Manage IAM roles section, choose the IAM role to
add for Add IAM roles to this instance.

4. For Feature, choose S3_INTEGRATION.

Amazon S3 integration 3011

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Choose Add role.

AWS CLI

To add the IAM role to the RDS for SQL Server DB instance

• The following AWS CLI command adds your IAM role to an RDS for SQL Server DB instance
named mydbinstance.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-instance \
 --db-instance-identifier mydbinstance \
 --feature-name S3_INTEGRATION \
 --role-arn your-role-arn

For Windows:

aws rds add-role-to-db-instance ^
 --db-instance-identifier mydbinstance ^
 --feature-name S3_INTEGRATION ^
 --role-arn your-role-arn

Replace your-role-arn with the role ARN that you noted in a previous step.
S3_INTEGRATION must be specified for the --feature-name option.

Amazon S3 integration 3012

Amazon Relational Database Service User Guide

Transferring files between RDS for SQL Server and Amazon S3

You can use Amazon RDS stored procedures to download and upload files between Amazon S3 and
your RDS DB instance. You can also use Amazon RDS stored procedures to list and delete files on
the RDS instance.

The files that you download from and upload to S3 are stored in the D:\S3 folder. This is the only
folder that you can use to access your files. You can organize your files into subfolders, which are
created for you when you include the destination folder during download.

Some of the stored procedures require that you provide an Amazon Resource Name (ARN) to
your S3 bucket and file. The format for your ARN is arn:aws:s3:::amzn-s3-demo-bucket/
file_name. Amazon S3 doesn't require an account number or AWS Region in ARNs.

S3 integration tasks run sequentially and share the same queue as native backup and restore tasks.
At maximum, you can have only two tasks in progress at any time in this queue. It can take up to
five minutes for the task to begin processing.

Downloading files from an Amazon S3 bucket to a SQL Server DB instance

To download files from an S3 bucket to an RDS for SQL Server DB instance, use the Amazon RDS
stored procedure msdb.dbo.rds_download_from_s3 with the following parameters.

Parameter name Data type Default Required Description

@s3_arn_of_file NVARCHAR – Required The S3 ARN of the file to
download, for example:
arn:aws:s3::: amzn-
s3-demo-bucket /
mydata.csv

@rds_file_path NVARCHAR – Optional The file path for the
RDS instance. If not
specified, the file path
is D:\S3\<filename
in s3>. RDS suppo
rts absolute paths and
relative paths. If you

Amazon S3 integration 3013

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

want to create a subfold
er, include it in the file
path.

@overwrite_file INT 0 Optional Overwrite the existing
file:

0 = Don't overwrite

1 = Overwrite

You can download files without a file extension and files with the following file
extensions: .bcp, .csv, .dat, .fmt, .info, .lst, .tbl, .txt, and .xml.

Note

Files with the .ispac file extension are supported for download when SQL Server Integration
Services is enabled. For more information on enabling SSIS, see SQL Server Integration
Services.
Files with the following file extensions are supported for download when SQL Server
Analysis Services is
enabled: .abf, .asdatabase, .configsettings, .deploymentoptions, .deploymenttargets,
and .xmla. For more information on enabling SSAS, see SQL Server Analysis Services.

The following example shows the stored procedure to download files from S3.

exec msdb.dbo.rds_download_from_s3
 @s3_arn_of_file='arn:aws:s3:::amzn-s3-demo-bucket/bulk_data.csv',
 @rds_file_path='D:\S3\seed_data\data.csv',
 @overwrite_file=1;

The example rds_download_from_s3 operation creates a folder named seed_data in D:\S3\,
if the folder doesn't exist yet. Then the example downloads the source file bulk_data.csv from
S3 to a new file named data.csv on the DB instance. If the file previously existed, it's overwritten
because the @overwrite_file parameter is set to 1.

Amazon S3 integration 3014

Amazon Relational Database Service User Guide

Uploading files from a SQL Server DB instance to an Amazon S3 bucket

To upload files from an RDS for SQL Server DB instance to an S3 bucket, use the Amazon RDS
stored procedure msdb.dbo.rds_upload_to_s3 with the following parameters.

Parameter name Data type Default Required Description

@s3_arn_of_file NVARCHAR – Required The S3 ARN of the file
to be created in S3, for
example: arn:aws:s
3::: amzn-s3-demo-
bucket /mydata.csv

@rds_file_path NVARCHAR – Required The file path of the file
to upload to S3. Absolute
and relative paths are
 supported.

@overwrite_file INT – Optional
Overwrite the existing
file:

0 = Don't overwrite

1 = Overwrite

The following example uploads the file named data.csv from the specified location in D:
\S3\seed_data\ to a file new_data.csv in the S3 bucket specified by the ARN.

exec msdb.dbo.rds_upload_to_s3
 @rds_file_path='D:\S3\seed_data\data.csv',
 @s3_arn_of_file='arn:aws:s3:::amzn-s3-demo-bucket/new_data.csv',
 @overwrite_file=1;

If the file previously existed in S3, it's overwritten because the @overwrite_file parameter is set to
1.

Amazon S3 integration 3015

Amazon Relational Database Service User Guide

Listing files on the RDS DB instance

To list the files available on the DB instance, use both a stored procedure and a function. First, run
the following stored procedure to gather file details from the files in D:\S3\.

exec msdb.dbo.rds_gather_file_details;

The stored procedure returns the ID of the task. Like other tasks, this stored procedure runs
asynchronously. As soon as the status of the task is SUCCESS, you can use the task ID in the
rds_fn_list_file_details function to list the existing files and directories in D:\S3\, as
shown following.

SELECT * FROM msdb.dbo.rds_fn_list_file_details(TASK_ID);

The rds_fn_list_file_details function returns a table with the following columns.

Output parameter Description

filepath Absolute path of the file (for example, D:
\S3\mydata.csv)

size_in_bytes File size (in bytes)

last_modified_utc Last modification date and time in UTC format

is_directory Option that indicates whether the item is a
directory (true/false)

Deleting files on the RDS DB instance

To delete the files available on the DB instance, use the Amazon RDS stored procedure
msdb.dbo.rds_delete_from_filesystem with the following parameters.

Parameter name Data type Default Required Description

@rds_file_path NVARCHAR – Required The file path of the
file to delete. Absolute

Amazon S3 integration 3016

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

and relative paths are
supported.

@force_delete INT 0 Optional To delete a directory, this
flag must be included
and set to 1.

1 = delete a directory

This parameter is ignored
if you are deleting a file.

To delete a directory, the @rds_file_path must end with a backslash (\) and @force_delete
must be set to 1.

The following example deletes the file D:\S3\delete_me.txt.

exec msdb.dbo.rds_delete_from_filesystem
 @rds_file_path='D:\S3\delete_me.txt';

The following example deletes the directory D:\S3\example_folder\.

exec msdb.dbo.rds_delete_from_filesystem
 @rds_file_path='D:\S3\example_folder\',
 @force_delete=1;

Monitoring the status of a file transfer task

To track the status of your S3 integration task, call the rds_fn_task_status function. It
takes two parameters. The first parameter should always be NULL because it doesn't apply to S3
integration. The second parameter accepts a task ID.

To see a list of all tasks, set the first parameter to NULL and the second parameter to 0, as shown in
the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,0);

Amazon S3 integration 3017

Amazon Relational Database Service User Guide

To get a specific task, set the first parameter to NULL and the second parameter to the task ID, as
shown in the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,42);

The rds_fn_task_status function returns the following information.

Output parameter Description

task_id The ID of the task.

task_type For S3 integration, tasks can have the
following task types:

• DOWNLOAD_FROM_S3

• UPLOAD_TO_S3

• LIST_FILES_ON_DISK

• DELETE_FILES_ON_DISK

database_name Not applicable to S3 integration tasks.

% complete The progress of the task as a percentage.

duration(mins) The amount of time spent on the task, in
minutes.

lifecycle The status of the task. Possible statuses are
the following:

• CREATED – After you call one of the S3
integration stored procedures, a task is
created and the status is set to CREATED.

• IN_PROGRESS – After a task starts, the
status is set to IN_PROGRESS . It can take
up to five minutes for the status to change
from CREATED to IN_PROGRESS .

• SUCCESS – After a task completes, the
status is set to SUCCESS.

Amazon S3 integration 3018

Amazon Relational Database Service User Guide

Output parameter Description

• ERROR – If a task fails, the status is set to
ERROR. For more information about the
error, see the task_info column.

• CANCEL_REQUESTED – After you call
rds_cancel_task , the status of the task
is set to CANCEL_REQUESTED .

• CANCELLED – After a task is successfully
canceled, the status of the task is set to
CANCELLED .

task_info Additional information about the task. If an
error occurs during processing, this column
contains information about the error.

last_updated The date and time that the task status was last
updated.

created_at The date and time that the task was created.

S3_object_arn The ARN of the S3 object downloaded from or
uploaded to.

overwrite_S3_backup_file Not applicable to S3 integration tasks.

KMS_master_key_arn Not applicable to S3 integration tasks.

filepath The file path on the RDS DB instance.

overwrite_file An option that indicates if an existing file is
overwritten.

task_metadata Not applicable to S3 integration tasks.

Amazon S3 integration 3019

Amazon Relational Database Service User Guide

Canceling a task

To cancel S3 integration tasks, use the msdb.dbo.rds_cancel_task stored procedure with the
task_id parameter. Delete and list tasks that are in progress can't be cancelled. The following
example shows a request to cancel a task.

exec msdb.dbo.rds_cancel_task @task_id = 1234;

To get an overview of all tasks and their task IDs, use the rds_fn_task_status function as
described in Monitoring the status of a file transfer task.

Multi-AZ limitations for S3 integration

On Multi-AZ instances, files in the D:\S3 folder are deleted on the standby replica after a failover.
A failover can be planned, for example, during DB instance modifications such as changing the
instance class or upgrading the engine version. Or a failover can be unplanned, during an outage of
the primary.

Note

We don't recommend using the D:\S3 folder for file storage. The best practice is to upload
created files to Amazon S3 to make them durable, and download files when you need to
import data.

To determine the last failover time, you can use the msdb.dbo.rds_failover_time stored
procedure. For more information, see Determining the last failover time for Amazon RDS for SQL
Server.

Example of no recent failover

This example shows the output when there is no recent failover in the error logs. No failover has
happened since 2020-04-29 23:59:00.01.

Therefore, all files downloaded after that time that haven't been deleted using the
rds_delete_from_filesystem stored procedure are still accessible on the current host. Files
downloaded before that time might also be available.

errorlog_available_from recent_failover_time

Amazon S3 integration 3020

Amazon Relational Database Service User Guide

errorlog_available_from recent_failover_time

2020-04-29 23:59:00.0100000 null

Example of recent failover

This example shows the output when there is a failover in the error logs. The most recent failover
was at 2020-05-05 18:57:51.89.

All files downloaded after that time that haven't been deleted using the
rds_delete_from_filesystem stored procedure are still accessible on the current host.

errorlog_available_from recent_failover_time

2020-04-29 23:59:00.0100000 2020-05-05 18:57:51.8900000

Disabling RDS for SQL Server integration with S3

Following, you can find how to disable Amazon S3 integration with Amazon RDS for SQL Server.
Files in D:\S3\ aren't deleted when disabling S3 integration.

Note

To remove an IAM role from a DB instance, the status of the DB instance must be
available.

Console

To disassociate your IAM role from your DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the RDS for SQL Server DB instance name to display its details.

3. On the Connectivity & security tab, in the Manage IAM roles section, choose the IAM role to
remove.

Amazon S3 integration 3021

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. Choose Delete.

AWS CLI

To remove the IAM role from the RDS for SQL Server DB instance

• The following AWS CLI command removes the IAM role from a RDS for SQL Server DB instance
named mydbinstance.

Example

For Linux, macOS, or Unix:

aws rds remove-role-from-db-instance \
 --db-instance-identifier mydbinstance \
 --feature-name S3_INTEGRATION \
 --role-arn your-role-arn

For Windows:

aws rds remove-role-from-db-instance ^
 --db-instance-identifier mydbinstance ^
 --feature-name S3_INTEGRATION ^
 --role-arn your-role-arn

Replace your-role-arn with the appropriate IAM role ARN for the --feature-name option.

Amazon S3 integration 3022

Amazon Relational Database Service User Guide

Using Database Mail on Amazon RDS for SQL Server

You can use Database Mail to send email messages to users from your Amazon RDS on SQL Server
database instance. The messages can contain files and query results. Database Mail includes the
following components:

• Configuration and security objects – These objects create profiles and accounts, and are stored
in the msdb database.

• Messaging objects – These objects include the sp_send_dbmail stored procedure used to send
messages, and data structures that hold information about messages. They're stored in the msdb
database.

• Logging and auditing objects – Database Mail writes logging information to the msdb database
and the Microsoft Windows application event log.

• Database Mail executable – DatabaseMail.exe reads from a queue in the msdb database and
sends email messages.

RDS supports Database Mail for all SQL Server versions on the Web, Standard, and Enterprise
Editions.

Limitations

The following limitations apply to using Database Mail on your SQL Server DB instance:

• Database Mail isn't supported for SQL Server Express Edition.

• Modifying Database Mail configuration parameters isn't supported. To see the preset (default)
values, use the sysmail_help_configure_sp stored procedure.

• File attachments aren't fully supported. For more information, see Working with file
attachments.

• The maximum file attachment size is 1 MB.

• Database Mail requires additional configuration on Multi-AZ DB instances. For more information,
see Considerations for Multi-AZ deployments.

• Configuring SQL Server Agent to send email messages to predefined operators isn't supported.

Enabling Database Mail

Use the following process to enable Database Mail for your DB instance:

Using Database Mail 3023

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-send-dbmail-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sysmail-help-configure-sp-transact-sql

Amazon Relational Database Service User Guide

1. Create a new parameter group.

2. Modify the parameter group to set the database mail xps parameter to 1.

3. Associate the parameter group with the DB instance.

Creating the parameter group for Database Mail

Create a parameter group for the database mail xps parameter that corresponds to the SQL
Server edition and version of your DB instance.

Note

You can also modify an existing parameter group. Follow the procedure in Modifying the
parameter that enables Database Mail.

Console

The following example creates a parameter group for SQL Server Standard Edition 2016.

To create the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

4. In the Create parameter group pane, do the following:

a. For Parameter group family, choose sqlserver-se-13.0.

b. For Group name, enter an identifier for the parameter group, such as dbmail-
sqlserver-se-13.

c. For Description, enter Database Mail XPs.

5. Choose Create.

CLI

The following example creates a parameter group for SQL Server Standard Edition 2016.

Using Database Mail 3024

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To create the parameter group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name dbmail-sqlserver-se-13 \
 --db-parameter-group-family "sqlserver-se-13.0" \
 --description "Database Mail XPs"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name dbmail-sqlserver-se-13 ^
 --db-parameter-group-family "sqlserver-se-13.0" ^
 --description "Database Mail XPs"

Modifying the parameter that enables Database Mail

Modify the database mail xps parameter in the parameter group that corresponds to the SQL
Server edition and version of your DB instance.

To enable Database Mail, set the database mail xps parameter to 1.

Console

The following example modifies the parameter group that you created for SQL Server Standard
Edition 2016.

To modify the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose the parameter group, such as dbmail-sqlserver-se-13.

4. Under Parameters, filter the parameter list for mail.

5. Choose database mail xps.

Using Database Mail 3025

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. Choose Edit parameters.

7. Enter 1.

8. Choose Save changes.

CLI

The following example modifies the parameter group that you created for SQL Server Standard
Edition 2016.

To modify the parameter group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name dbmail-sqlserver-se-13 \
 --parameters "ParameterName='database mail
 xps',ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name dbmail-sqlserver-se-13 ^
 --parameters "ParameterName='database mail
 xps',ParameterValue=1,ApplyMethod=immediate"

Associating the parameter group with the DB instance

You can use the AWS Management Console or the AWS CLI to associate the Database Mail
parameter group with the DB instance.

Console

You can associate the Database Mail parameter group with a new or existing DB instance.

• For a new DB instance, associate it when you launch the instance. For more information, see
Creating an Amazon RDS DB instance.

Using Database Mail 3026

Amazon Relational Database Service User Guide

• For an existing DB instance, associate it by modifying the instance. For more information, see
Modifying an Amazon RDS DB instance.

CLI

You can associate the Database Mail parameter group with a new or existing DB instance.

To create a DB instance with the Database Mail parameter group

• Specify the same DB engine type and major version as you used when creating the parameter
group.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --db-instance-class db.m5.2xlarge \
 --engine sqlserver-se \
 --engine-version 13.00.5426.0.v1 \
 --allocated-storage 100 \
 --manage-master-user-password \
 --master-username admin \
 --storage-type gp2 \
 --license-model li
 --db-parameter-group-name dbmail-sqlserver-se-13

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 13.00.5426.0.v1 ^
 --allocated-storage 100 ^
 --manage-master-user-password ^
 --master-username admin ^
 --storage-type gp2 ^
 --license-model li ^
 --db-parameter-group-name dbmail-sqlserver-se-13

Using Database Mail 3027

Amazon Relational Database Service User Guide

To modify a DB instance and associate the Database Mail parameter group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --db-parameter-group-name dbmail-sqlserver-se-13 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-parameter-group-name dbmail-sqlserver-se-13 ^
 --apply-immediately

Configuring Database Mail

You perform the following tasks to configure Database Mail:

1. Create the Database Mail profile.

2. Create the Database Mail account.

3. Add the Database Mail account to the Database Mail profile.

4. Add users to the Database Mail profile.

Note

To configure Database Mail, make sure that you have execute permission on the stored
procedures in the msdb database.

Using Database Mail 3028

Amazon Relational Database Service User Guide

Creating the Database Mail profile

To create the Database Mail profile, you use the sysmail_add_profile_sp stored procedure. The
following example creates a profile named Notifications.

To create the profile

• Use the following SQL statement.

USE msdb
GO

EXECUTE msdb.dbo.sysmail_add_profile_sp
 @profile_name = 'Notifications',
 @description = 'Profile used for sending outgoing notifications using
 Amazon SES.';
GO

Creating the Database Mail account

To create the Database Mail account, you use the sysmail_add_account_sp stored procedure. The
following example creates an account named SES on an RDS for SQL Server DB instance in a
private VPC, using Amazon Simple Email Service.

Using Amazon SES requires the following parameters:

• @email_address – An Amazon SES verified identity. For more information, see Verified
identities in Amazon SES.

• @mailserver_name – An Amazon SES SMTP endpoint. For more information, see Connecting to
an Amazon SES SMTP endpoint.

• @username – An Amazon SES SMTP user name. For more information, see Obtaining Amazon
SES SMTP credentials.

Don't use an AWS Identity and Access Management user name.

• @password – An Amazon SES SMTP password. For more information, see Obtaining Amazon SES
SMTP credentials.

Using Database Mail 3029

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sysmail-add-profile-sp-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sysmail-add-account-sp-transact-sql
https://docs.aws.amazon.com/ses/latest/dg/verify-addresses-and-domains.html
https://docs.aws.amazon.com/ses/latest/dg/verify-addresses-and-domains.html
https://docs.aws.amazon.com/ses/latest/dg/smtp-connect.html
https://docs.aws.amazon.com/ses/latest/dg/smtp-connect.html
https://docs.aws.amazon.com/ses/latest/dg/smtp-credentials.html
https://docs.aws.amazon.com/ses/latest/dg/smtp-credentials.html
https://docs.aws.amazon.com/ses/latest/dg/smtp-credentials.html
https://docs.aws.amazon.com/ses/latest/dg/smtp-credentials.html

Amazon Relational Database Service User Guide

To create the account

• Use the following SQL statement.

USE msdb
GO

EXECUTE msdb.dbo.sysmail_add_account_sp
 @account_name = 'SES',
 @description = 'Mail account for sending outgoing notifications.',
 @email_address = 'nobody@example.com',
 @display_name = 'Automated Mailer',
 @mailserver_name = 'vpce-0a1b2c3d4e5f-01234567.email-smtp.us-
west-2.vpce.amazonaws.com',
 @port = 587,
 @enable_ssl = 1,
 @username = 'Smtp_Username',
 @password = 'Smtp_Password';
GO

Note

Specify credentials other than the prompts shown here as a security best practice.

Adding the Database Mail account to the Database Mail profile

To add the Database Mail account to the Database Mail profile, you use the
sysmail_add_profileaccount_sp stored procedure. The following example adds the SES account to
the Notifications profile.

To add the account to the profile

• Use the following SQL statement.

USE msdb
GO

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
 @profile_name = 'Notifications',
 @account_name = 'SES',

Using Database Mail 3030

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sysmail-add-profileaccount-sp-transact-sql

Amazon Relational Database Service User Guide

 @sequence_number = 1;
GO

Adding users to the Database Mail profile

To grant permission for an msdb database principal to use a Database Mail profile, you use the
sysmail_add_principalprofile_sp stored procedure. A principal is an entity that can request SQL
Server resources. The database principal must map to a SQL Server authentication user, a Windows
Authentication user, or a Windows Authentication group.

The following example grants public access to the Notifications profile.

To add a user to the profile

• Use the following SQL statement.

USE msdb
GO

EXECUTE msdb.dbo.sysmail_add_principalprofile_sp
 @profile_name = 'Notifications',
 @principal_name = 'public',
 @is_default = 1;
GO

Amazon RDS stored procedures and functions for Database Mail

Microsoft provides stored procedures for using Database Mail, such as creating, listing, updating,
and deleting accounts and profiles. In addition, RDS provides the stored procedures and functions
for Database Mail shown in the following table.

Procedure/Function Description

rds_fn_sysmail_allitems Shows sent messages, including those submitted by other
users.

rds_fn_sysmail_event_log Shows events, including those for messages submitted by
other users.

Using Database Mail 3031

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sysmail-add-principalprofile-sp-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/database-mail-stored-procedures-transact-sql

Amazon Relational Database Service User Guide

Procedure/Function Description

rds_fn_sysmail_mailattachme
nts

Shows attachments, including those to messages submitted by
other users.

rds_sysmail_control Starts and stops the mail queue (DatabaseMail.exe process).

rds_sysmail_delete_mailitem
s_sp

Deletes email messages sent by all users from the Database
Mail internal tables.

Sending email messages using Database Mail

You use the sp_send_dbmail stored procedure to send email messages using Database Mail.

Usage

EXEC msdb.dbo.sp_send_dbmail
@profile_name = 'profile_name',
@recipients = 'recipient1@example.com[; recipient2; ... recipientn]',
@subject = 'subject',
@body = 'message_body',
[@body_format = 'HTML'],
[@file_attachments = 'file_path1; file_path2; ... file_pathn'],
[@query = 'SQL_query'],
[@attach_query_result_as_file = 0|1]';

The following parameters are required:

• @profile_name – The name of the Database Mail profile from which to send the message.

• @recipients – The semicolon-delimited list of email addresses to which to send the message.

• @subject – The subject of the message.

• @body – The body of the message. You can also use a declared variable as the body.

The following parameters are optional:

• @body_format – This parameter is used with a declared variable to send email in HTML format.

• @file_attachments – The semicolon-delimited list of message attachments. File paths must
be absolute paths.

Using Database Mail 3032

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-send-dbmail-transact-sql

Amazon Relational Database Service User Guide

• @query – A SQL query to run. The query results can be attached as a file or included in the body
of the message.

• @attach_query_result_as_file – Whether to attach the query result as a file. Set to 0 for
no, 1 for yes. The default is 0.

Examples

The following examples demonstrate how to send email messages.

Example of sending a message to a single recipient

USE msdb
GO

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'Notifications',
 @recipients = 'nobody@example.com',
 @subject = 'Automated DBMail message - 1',
 @body = 'Database Mail configuration was successful.';
GO

Example of sending a message to multiple recipients

USE msdb
GO

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'Notifications',
 @recipients = 'recipient1@example.com;recipient2@example.com',
 @subject = 'Automated DBMail message - 2',
 @body = 'This is a message.';
GO

Example of sending a SQL query result as a file attachment

USE msdb
GO

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'Notifications',
 @recipients = 'nobody@example.com',

Using Database Mail 3033

Amazon Relational Database Service User Guide

 @subject = 'Test SQL query',
 @body = 'This is a SQL query test.',
 @query = 'SELECT * FROM abc.dbo.test',
 @attach_query_result_as_file = 1;
GO

Example of sending a message in HTML format

USE msdb
GO

DECLARE @HTML_Body as NVARCHAR(500) = 'Hi, <h4> Heading </h4> </br> See the report.
 Regards ';

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'Notifications',
 @recipients = 'nobody@example.com',
 @subject = 'Test HTML message',
 @body = @HTML_Body,
 @body_format = 'HTML';
GO

Example of sending a message using a trigger when a specific event occurs in the database

USE AdventureWorks2017
GO
IF OBJECT_ID ('Production.iProductNotification', 'TR') IS NOT NULL
DROP TRIGGER Purchasing.iProductNotification
GO

CREATE TRIGGER iProductNotification ON Production.Product
 FOR INSERT
 AS
 DECLARE @ProductInformation nvarchar(255);
 SELECT
 @ProductInformation = 'A new product, ' + Name + ', is now available for $' +
 CAST(StandardCost AS nvarchar(20)) + '!'
 FROM INSERTED i;

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'Notifications',
 @recipients = 'nobody@example.com',
 @subject = 'New product information',

Using Database Mail 3034

Amazon Relational Database Service User Guide

 @body = @ProductInformation;
GO

Viewing messages, logs, and attachments

You use RDS stored procedures to view messages, event logs, and attachments.

To view all email messages

• Use the following SQL query.

SELECT * FROM msdb.dbo.rds_fn_sysmail_allitems(); --WHERE sent_status='sent' or
 'failed' or 'unsent'

To view all email event logs

• Use the following SQL query.

SELECT * FROM msdb.dbo.rds_fn_sysmail_event_log();

To view all email attachments

• Use the following SQL query.

SELECT * FROM msdb.dbo.rds_fn_sysmail_mailattachments();

Deleting messages

You use the rds_sysmail_delete_mailitems_sp stored procedure to delete messages.

Note

RDS automatically deletes mail table items when DBMail history data reaches 1 GB in size,
with a retention period of at least 24 hours.
If you want to keep mail items for a longer period, you can archive them. For more
information, see Create a SQL Server Agent job to archive Database Mail messages and
event logs in the Microsoft documentation.

Using Database Mail 3035

https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/create-a-sql-server-agent-job-to-archive-database-mail-messages-and-event-logs
https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/create-a-sql-server-agent-job-to-archive-database-mail-messages-and-event-logs

Amazon Relational Database Service User Guide

To delete all email messages

• Use the following SQL statement.

DECLARE @GETDATE datetime
SET @GETDATE = GETDATE();
EXECUTE msdb.dbo.rds_sysmail_delete_mailitems_sp @sent_before = @GETDATE;
GO

To delete all email messages with a particular status

• Use the following SQL statement to delete all failed messages.

DECLARE @GETDATE datetime
SET @GETDATE = GETDATE();
EXECUTE msdb.dbo.rds_sysmail_delete_mailitems_sp @sent_status = 'failed';
GO

Starting and stopping mail queue

Use the following instructions to start and stop the DB mail queue:

Topics

• Starting the mail queue

• Stopping the mail queue

Starting the mail queue

You use the rds_sysmail_control stored procedure to start the Database Mail process.

Note

Enabling Database Mail automatically starts the mail queue.

To start the mail queue

• Use the following SQL statement.

Using Database Mail 3036

Amazon Relational Database Service User Guide

EXECUTE msdb.dbo.rds_sysmail_control start;
GO

Stopping the mail queue

You use the rds_sysmail_control stored procedure to stop the Database Mail process.

To stop the mail queue

• Use the following SQL statement.

EXECUTE msdb.dbo.rds_sysmail_control stop;
GO

Working with file attachments

The following file attachment extensions aren't supported in Database Mail messages from RDS on
SQL
Server: .ade, .adp, .apk, .appx, .appxbundle, .bat, .bak, .cab, .chm, .cmd, .com, .cpl, .dll, .dmg, .exe, .hta, .inf1, .ins, .isp, .iso, .jar, .job, .js, .jse, .ldf, .lib, .lnk, .mde, .mdf, .msc, .msi, .msix, .msixbundle, .msp, .mst, .nsh, .pif, .ps, .ps1, .psc1, .reg, .rgs, .scr, .sct, .shb, .shs, .svg, .sys, .u3p, .vb, .vbe, .vbs, .vbscript, .vxd, .ws, .wsc, .wsf,
and .wsh.

Database Mail uses the Microsoft Windows security context of the current user to control
access to files. Users who log in with SQL Server Authentication can't attach files using the
@file_attachments parameter with the sp_send_dbmail stored procedure. Windows doesn't
allow SQL Server to provide credentials from a remote computer to another remote computer.
Therefore, Database Mail can't attach files from a network share when the command is run from a
computer other than the computer running SQL Server.

However, you can use SQL Server Agent jobs to attach files. For more information on SQL Server
Agent, see Using SQL Server Agent for Amazon RDS and SQL Server Agent in the Microsoft
documentation.

Considerations for Multi-AZ deployments

When you configure Database Mail on a Multi-AZ DB instance, the configuration isn't automatically
propagated to the secondary. We recommend converting the Multi-AZ instance to a Single-AZ
instance, configuring Database Mail, and then converting the DB instance back to Multi-AZ. Then
both the primary and secondary nodes have the Database Mail configuration.

Using Database Mail 3037

https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent

Amazon Relational Database Service User Guide

If you create a read replica from your Multi-AZ instance that has Database Mail configured, the
replica inherits the configuration, but without the password to the SMTP server. Update the
Database Mail account with the password.

Removing the SMTP (port 25) restriction

By default, AWS blocks outbound traffic on SMTP (port 25) for RDS for SQL Server DB instances.
This is done to prevent spam based on the elastic network interface owner's policies. You can
remove this restriction if needed. For more information, see How do I remove the restriction on
port 25 from my Amazon EC2 instance or Lambda function?.

Using Database Mail 3038

https://repost.aws/knowledge-center/ec2-port-25-throttle
https://repost.aws/knowledge-center/ec2-port-25-throttle

Amazon Relational Database Service User Guide

Instance store support for the tempdb database on Amazon RDS for
SQL Server

An instance store provides temporary block-level storage for your DB instance. This storage
is located on disks that are physically attached to the host computer. These disks have Non-
Volatile Memory Express (NVMe) instance storage that is based on solid-state drives (SSDs). This
storage is optimized for low latency, very high random I/O performance, and high sequential read
throughput.

By placing tempdb data files and tempdb log files on the instance store, you can achieve lower
read and write latencies compared to standard storage based on Amazon EBS.

Note

SQL Server database files and database log files aren't placed on the instance store.

Enabling the instance store

When RDS provisions DB instances with one of the following instance classes, the tempdb database
is automatically placed onto the instance store:

• db.m5d

• db.r5d

• db.x2iedn

To enable the instance store, do one of the following:

• Create a SQL Server DB instance using one of these instance types. For more information, see
Creating an Amazon RDS DB instance.

• Modify an existing SQL Server DB instance to use one of them. For more information, see
Modifying an Amazon RDS DB instance.

The instance store is available in all AWS Regions where one or more of these instance types are
supported. For more information on the db.m5d and db.r5d instance classes, see DB instance
classes. For more information on the instance classes supported by Amazon RDS for SQL Server,
see DB instance class support for Microsoft SQL Server.

Instance store support for tempdb 3039

Amazon Relational Database Service User Guide

File location and size considerations

On instances without an instance store, RDS stores the tempdb data and log files in the D:
\rdsdbdata\DATA directory. Both files start at 8 MB by default.

On instances with an instance store, RDS stores the tempdb data and log files in the T:
\rdsdbdata\DATA directory.

When tempdb has only one data file (tempdb.mdf) and one log file (templog.ldf),
templog.ldf starts at 8 MB by default and tempdb.mdf starts at 80% or more of the instance's
storage capacity. Twenty percent of the storage capacity or 200 GB, whichever is less, is kept free
to start. Multiple tempdb data files split the 80% disk space evenly, while log files always have an
8-MB initial size.

For example, if you modify your DB instance class from db.m5.2xlarge to db.m5d.2xlarge, the
size of tempdb data files increases from 8 MB each to 234 GB in total.

Note

Besides the tempdb data and log files on the instance store (T:\rdsdbdata\DATA), you
can still create extra tempdb data and log files on the data volume (D:\rdsdbdata\DATA).
Those files always have an 8 MB initial size.

Backup considerations

You might need to retain backups for long periods, incurring costs over time. The tempdb data
and log blocks can change very often depending on the workload. This can greatly increase the DB
snapshot size.

When tempdb is on the instance store, snapshots don't include temporary files. This means that
snapshot sizes are smaller and consume less of the free backup allocation compared to EBS-only
storage.

Disk full errors

If you use all of the available space in the instance store, you might receive errors such as the
following:

• The transaction log for database 'tempdb' is full due to 'ACTIVE_TRANSACTION'.

Instance store support for tempdb 3040

Amazon Relational Database Service User Guide

• Could not allocate space for object 'dbo.SORT temporary run storage: 140738941419520'
in database 'tempdb' because the 'PRIMARY' filegroup is full. Create disk space by deleting
unneeded files, dropping objects in the filegroup, adding additional files to the filegroup, or
setting autogrowth on for existing files in the filegroup.

You can do one or more of the following when the instance store is full:

• Adjust your workload or the way you use tempdb.

• Scale up to use a DB instance class with more NVMe storage.

• Stop using the instance store, and use an instance class with only EBS storage.

• Use a mixed mode by adding secondary data or log files for tempdb on the EBS volume.

Removing the instance store

To remove the instance store, modify your SQL Server DB instance to use an instance type that
doesn't support instance store, such as db.m5, db.r5, or db.x1e.

Note

When you remove the instance store, the temporary files are moved to the D:\rdsdbdata
\DATA directory and reduced in size to 8 MB.

Instance store support for tempdb 3041

Amazon Relational Database Service User Guide

Using extended events with Amazon RDS for Microsoft SQL Server

You can use extended events in Microsoft SQL Server to capture debugging and troubleshooting
information for Amazon RDS for SQL Server. Extended events replace SQL Trace and Server
Profiler, which have been deprecated by Microsoft. Extended events are similar to profiler traces
but with more granular control on the events being traced. Extended events are supported for
SQL Server versions 2016 and later on Amazon RDS. For more information, see Extended events
overview in the Microsoft documentation.

Extended events are turned on automatically for users with master user privileges in Amazon RDS
for SQL Server.

Topics

• Limitations and recommendations

• Configuring extended events on RDS for SQL Server

• Considerations for Multi-AZ deployments

• Querying extended event files

Limitations and recommendations

When using extended events on RDS for SQL Server, the following limitations apply:

• Extended events are supported only for the Enterprise and Standard Editions.

• You can't alter default extended event sessions.

• Make sure to set the session memory partition mode to NONE.

• Session event retention mode can be either ALLOW_SINGLE_EVENT_LOSS or
ALLOW_MULTIPLE_EVENT_LOSS.

• Event Tracing for Windows (ETW) targets aren't supported.

• Make sure that file targets are in the D:\rdsdbdata\log directory.

• For pair matching targets, set the respond_to_memory_pressure property to 1.

• Ring buffer target memory can't be greater than 4 MB.

• The following actions aren't supported:

• debug_break

• create_dump_all_threads

Using extended events 3042

https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events
https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events

Amazon Relational Database Service User Guide

• create_dump_single_threads

• The rpc_completed event is supported on the following versions and later: 15.0.4083.2,
14.0.3370.1, 13.0.5865.1, 12.0.6433.1, 11.0.7507.2.

Configuring extended events on RDS for SQL Server

On RDS for SQL Server, you can configure the values of certain parameters of extended event
sessions. The following table describes the configurable parameters.

Parameter name Description RDS default value Minimum value Maximum value

xe_session_max_memory Specifies the maximum amount of memory to allocate to the session for event buffering. This value
corresponds to the max_memory setting of the event session.

4 MB 4 MB 8 MB

xe_session_max_event_size Specifies the maximum memory size allowed for large events. This value corresponds to the max_event
_size setting of the event session.

4 MB 4 MB 8 MB

xe_session_max_dispatch_latency Specifies the amount of time that events are buffered in memory before being dispatched to extended event
session targets. This value corresponds to the max_dispatch_latency setting of the event session.

30 seconds 1 second 30 seconds

xe_file_target_size Specifies the maximum size of the file target. This value corresponds to the max_file_size setting of the
file target.

100 MB 10 MB 1 GB

xe_file_retention Specifies the retention time in days for files generated by the file targets of event sessions. 7 days 0 days 7 days

Note

Setting xe_file_retention to zero causes .xel files to be removed automatically after
the lock on these files is released by SQL Server. The lock is released whenever an .xel file
reaches the size limit set in xe_file_target_size.

You can use the rdsadmin.dbo.rds_show_configuration stored procedure to show the
current values of these parameters. For example, use the following SQL statement to view the
current setting of xe_session_max_memory.

exec rdsadmin.dbo.rds_show_configuration 'xe_session_max_memory'

Using extended events 3043

Amazon Relational Database Service User Guide

You can use the rdsadmin.dbo.rds_set_configuration stored procedure to modify them.
For example, use the following SQL statement to set xe_session_max_memory to 4 MB.

exec rdsadmin.dbo.rds_set_configuration 'xe_session_max_memory', 4

Considerations for Multi-AZ deployments

When you create an extended event session on a primary DB instance, it doesn't propagate to
the standby replica. You can fail over and create the extended event session on the new primary
DB instance. Or you can remove and then re-add the Multi-AZ configuration to propagate the
extended event session to the standby replica. RDS stops all nondefault extended event sessions
on the standby replica, so that these sessions don't consume resources on the standby. Because
of this, after a standby replica becomes the primary DB instance, make sure to manually start the
extended event sessions on the new primary.

Note

This approach applies to both Always On Availability Groups and Database Mirroring.

You can also use a SQL Server Agent job to track the standby replica and start the sessions if the
standby becomes the primary. For example, use the following query in your SQL Server Agent job
step to restart event sessions on a primary DB instance.

BEGIN
 IF (DATABASEPROPERTYEX('rdsadmin','Updateability')='READ_WRITE'
 AND DATABASEPROPERTYEX('rdsadmin','status')='ONLINE'
 AND (DATABASEPROPERTYEX('rdsadmin','Collation') IS NOT NULL OR
 DATABASEPROPERTYEX('rdsadmin','IsAutoClose')=1)
)
 BEGIN
 IF NOT EXISTS (SELECT 1 FROM sys.dm_xe_sessions WHERE name='xe1')
 ALTER EVENT SESSION xe1 ON SERVER STATE=START
 IF NOT EXISTS (SELECT 1 FROM sys.dm_xe_sessions WHERE name='xe2')
 ALTER EVENT SESSION xe2 ON SERVER STATE=START
 END
END

This query restarts the event sessions xe1 and xe2 on a primary DB instance if these sessions are in
a stopped state. You can also add a schedule with a convenient interval to this query.

Using extended events 3044

Amazon Relational Database Service User Guide

Querying extended event files

You can either use SQL Server Management Studio or the sys.fn_xe_file_target_read_file
function to view data from extended events that use file targets. For more information on this
function, see sys.fn_xe_file_target_read_file (Transact-SQL) in the Microsoft documentation.

Extended event file targets can only write files to the D:\rdsdbdata\log directory on RDS for
SQL Server.

As an example, use the following SQL query to list the contents of all files of extended event
sessions whose names start with xe.

SELECT * FROM sys.fn_xe_file_target_read_file('d:\rdsdbdata\log\xe*', null,null,null);

Using extended events 3045

https://docs.microsoft.com/en-us/sql/relational-databases/system-functions/sys-fn-xe-file-target-read-file-transact-sql

Amazon Relational Database Service User Guide

Access to transaction log backups with RDS for SQL Server

With access to transaction log backups for RDS for SQL Server, you can list the transaction log
backup files for a database and copy them to a target Amazon S3 bucket. By copying transaction
log backups in an Amazon S3 bucket, you can use them in combination with full and differential
database backups to perform point in time database restores. You use RDS stored procedures to
set up access to transaction log backups, list available transaction log backups, and copy them to
your Amazon S3 bucket.

Access to transaction log backups provides the following capabilities and benefits:

• List and view the metadata of available transaction log backups for a database on an RDS for
SQL Server DB instance.

• Copy available transaction log backups from RDS for SQL Server to a target Amazon S3 bucket.

• Perform point-in-time restores of databases without the need to restore an entire DB instance.
For more information on restoring a DB instance to a point in time, see Restoring a DB instance
to a specified time for Amazon RDS.

Availability and support

Access to transaction log backups is supported in all AWS Regions. Access to transaction log
backups is available for all editions and versions of Microsoft SQL Server supported on Amazon
RDS.

Requirements

The following requirements must be met before enabling access to transaction log backups:

• Automated backups must be enabled on the DB instance and the backup retention must be
set to a value of one or more days. For more information on enabling automated backups and
configuring a retention policy, see Enabling automated backups.

• An Amazon S3 bucket must exist in the same account and Region as the source DB instance.
Before enabling access to transaction log backups, choose an existing Amazon S3 bucket or
create a new bucket to use for your transaction log backup files.

• An Amazon S3 bucket permissions policy must be configured as follows to allow Amazon RDS to
copy transaction log files into it:

1. Set the object account ownership property on the bucket to Bucket Owner Preferred.

Access to transaction log backups 3046

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html

Amazon Relational Database Service User Guide

2. Add the following policy. There will be no policy by default, so use the bucket Access Control
Lists (ACL) to edit the bucket policy and add it.

The following example uses an ARN to specify a resource. We recommend using the SourceArn
and SourceAccount global condition context keys in resource-based trust relationships to limit
the service's permissions to a specific resource. For more information on working with ARNs, see
Amazon resource names (ARNs) and Amazon Resource Names (ARNs) in Amazon RDS.

Example of an Amazon S3 permissions policy for access to transaction log backups

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Only allow writes to my bucket with bucket owner full control",
 "Effect": "Allow",
 "Principal": {
 "Service": "backups.rds.amazonaws.com"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/{customer_path}/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control",
 "aws:sourceAccount": "{customer_account}",
 "aws:sourceArn": "{db_instance_arn}"
 }
 }
 }
]
}

• An AWS Identity and Access Management (IAM) role to access the Amazon S3 bucket. If you
already have an IAM role, you can use that. You can choose to have a new IAM role created for
you when you add the SQLSERVER_BACKUP_RESTORE option by using the AWS Management
Console. Alternatively, you can create a new one manually. For more information on creating and
configuring an IAM role with SQLSERVER_BACKUP_RESTORE, see Manually creating an IAM role
for native backup and restore.

Access to transaction log backups 3047

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Relational Database Service User Guide

• The SQLSERVER_BACKUP_RESTORE option must be added to an option group on your DB
instance. For more information on adding the SQLSERVER_BACKUP_RESTORE option, see
Support for native backup and restore in SQL Server.

Note

If your DB instance has storage encryption enabled, the AWS KMS (KMS) actions and key
must be provided in the IAM role provided in the native backup and restore option group.

Optionally, if you intend to use the rds_restore_log stored procedure to perform point in
time database restores, we recommend using the same Amazon S3 path for the native backup
and restore option group and access to transaction log backups. This method ensures that when
Amazon RDS assumes the role from the option group to perform the restore log functions, it has
access to retrieve transaction log backups from the same Amazon S3 path.

• If the DB instance is encrypted, regardless of encryption type (AWS managed key or customer
managed key), you must provide a customer managed KMS key in the IAM role and in the
rds_tlog_backup_copy_to_S3 stored procedure.

Limitations and recommendations

Access to transaction log backups has the following limitations and recommendations:

• You can list and copy up to the last seven days of transaction log backups for any DB instance
that has backup retention configured between one to 35 days.

• The Amazon S3 bucket used for access to transaction log backups must exist in the same account
and Region as the source DB instance. Cross-account and cross-region copy is not supported.

• Only one Amazon S3 bucket can be configured as a target to copy transaction log backups
into. You can choose a new target Amazon S3 bucket with the rds_tlog_copy_setup stored
procedure. For more information on choosing a new target Amazon S3 bucket, see Setting up
access to transaction log backups.

• You cannot specify the KMS key when using the rds_tlog_backup_copy_to_S3 stored
procedure if your RDS instance is not enabled for storage encryption.

• Multi-account copying is not supported. The IAM role used for copying will only permit write
access to Amazon S3 buckets within the owner account of the DB instance.

• Only two concurrent tasks of any type may be run on an RDS for SQL Server DB instance.

Access to transaction log backups 3048

Amazon Relational Database Service User Guide

• Only one copy task can run for a single database at a given time. If you want to copy transaction
log backups for multiple databases on the DB instance, use a separate copy task for each
database.

• If you copy a transaction log backup that already exists with the same name in the Amazon S3
bucket, the existing transaction log backup will be overwritten.

• You can only run the stored procedures that are provided with access to transaction log backups
on the primary DB instance. You can’t run these stored procedures on an RDS for SQL Server
read replica or on a secondary instance of a Multi-AZ DB cluster.

• If the RDS for SQL Server DB instance is rebooted while the rds_tlog_backup_copy_to_S3
stored procedure is running, the task will automatically restart from the beginning when the
DB instance is back online. Any transaction log backups that had been copied to the Amazon S3
bucket while the task was running before the reboot will be overwritten.

• The Microsoft SQL Server system databases and the RDSAdmin database cannot be configured
for access to transaction log backups.

• Copying to buckets encrypted by SSE-KMS isn't supported.

Setting up access to transaction log backups

To set up access to transaction log backups, complete the list of requirements in the Requirements
section, and then run the rds_tlog_copy_setup stored procedure. The procedure will enable the
access to transaction log backups feature at the DB instance level. You don't need to run it for each
individual database on the DB instance.

Important

The database user must be granted the db_owner role within SQL Server on each database
to configure and use the access to transaction log backups feature.

Example usage:

exec msdb.dbo.rds_tlog_copy_setup
@target_s3_arn='arn:aws:s3:::amzn-s3-demo-bucket/myfolder';

The following parameter is required:

Access to transaction log backups 3049

Amazon Relational Database Service User Guide

• @target_s3_arn – The ARN of the target Amazon S3 bucket to copy transaction log backups
files to.

Example of setting an Amazon S3 target bucket:

exec msdb.dbo.rds_tlog_copy_setup @target_s3_arn='arn:aws:s3:::amzn-s3-demo-logging-
bucket/mytestdb1';

To validate the configuration, call the rds_show_configuration stored procedure.

Example of validating the configuration:

exec rdsadmin.dbo.rds_show_configuration @name='target_s3_arn_for_tlog_copy';

To modify access to transaction log backups to point to a different Amazon S3 bucket, you
can view the current Amazon S3 bucket value and re-run the rds_tlog_copy_setup stored
procedure using a new value for the @target_s3_arn.

Example of viewing the existing Amazon S3 bucket configured for access to transaction log
backups

exec rdsadmin.dbo.rds_show_configuration @name='target_s3_arn_for_tlog_copy';

Example of updating to a new target Amazon S3 bucket

exec msdb.dbo.rds_tlog_copy_setup @target_s3_arn='arn:aws:s3:::amzn-s3-demo-logging-
bucket1/mynewfolder';

Listing available transaction log backups

With RDS for SQL Server, databases configured to use the full recovery model and a DB instance
backup retention set to one or more days have transaction log backups automatically enabled. By
enabling access to transaction log backups, up to seven days of those transaction log backups are
made available for you to copy into your Amazon S3 bucket.

Access to transaction log backups 3050

Amazon Relational Database Service User Guide

After you have enabled access to transaction log backups, you can start using it to list and copy
available transaction log backup files.

Listing transaction log backups

To list all transaction log backups available for an individual database, call the
rds_fn_list_tlog_backup_metadata function. You can use an ORDER BY or a WHERE clause
when calling the function.

Example of listing and filtering available transaction log backup files

SELECT * from msdb.dbo.rds_fn_list_tlog_backup_metadata('mydatabasename');
SELECT * from msdb.dbo.rds_fn_list_tlog_backup_metadata('mydatabasename') WHERE
 rds_backup_seq_id = 3507;
SELECT * from msdb.dbo.rds_fn_list_tlog_backup_metadata('mydatabasename') WHERE
 backup_file_time_utc > '2022-09-15 20:44:01' ORDER BY backup_file_time_utc DESC;

The rds_fn_list_tlog_backup_metadata function returns the following output:

Column name Data type Description

db_name sysname The database name provided to list the transacti
on log backups for.

db_id int The internal database identifier for the input
parameter db_name.

Access to transaction log backups 3051

Amazon Relational Database Service User Guide

Column name Data type Description

family_guid uniqueidentifier The unique ID of the original database at creation.
This value remains the same when the database is
restored, even to a different database name.

rds_backu
p_seq_id

int The ID that RDS uses internally to maintain a
sequence number for each transaction log backup
file.

backup_fi
le_epoch

bigint The epoch time that a transaction backup file was
generated.

backup_fi
le_time_utc

datetime The UTC time-converted value for the backup_fi
le_epoch value.

starting_lsn numeric(25,0) The log sequence number of the first or oldest log
record of a transaction log backup file.

ending_lsn numeric(25,0) The log sequence number of the last or next log
record of a transaction log backup file.

is_log_ch
ain_broken

bit A boolean value indicating if the log chain is
broken between the current transaction log
backup file and the previous transaction log
backup file.

file_size
_bytes

bigint The size of the transactional backup set in bytes.

Error varchar(4000) Error message if the rds_fn_list_tlog_b
ackup_metadata function throws an
exception. NULL if no exceptions.

Copying transaction log backups

To copy a set of available transaction log backups for an individual database to your
Amazon S3 bucket, call the rds_tlog_backup_copy_to_S3 stored procedure. The

Access to transaction log backups 3052

Amazon Relational Database Service User Guide

rds_tlog_backup_copy_to_S3 stored procedure will initiate a new task to copy transaction log
backups.

Note

The rds_tlog_backup_copy_to_S3 stored procedure will copy the transaction
log backups without validating against is_log_chain_broken attribute. For this
reason, you should manually confirm an unbroken log chain before running the
rds_tlog_backup_copy_to_S3 stored procedure. For further explanation, see Validating
the transaction log backup log chain.

Example usage of the rds_tlog_backup_copy_to_S3 stored procedure

exec msdb.dbo.rds_tlog_backup_copy_to_S3
 @db_name='mydatabasename',
 [@kms_key_arn='arn:aws:kms:region:account-id:key/key-id'],
 [@backup_file_start_time='2022-09-01 01:00:15'],
 [@backup_file_end_time='2022-09-01 21:30:45'],
 [@starting_lsn=149000000112100001],
 [@ending_lsn=149000000120400001],
 [@rds_backup_starting_seq_id=5],
 [@rds_backup_ending_seq_id=10];

The following input parameters are available:

Parameter Description

@db_name The name of the database to copy transaction log backups for

@kms_key_arn A customer managed KMS key. If you encrypt your DB instance
with an AWS managed KMS key, you must create a customer
managed key. If you encrypt your DB instance with a customer
managed key, you can use the same KMS key ARN.

@backup_file_start
_time

The UTC timestamp as provided from the [backup_f
ile_time_utc] column of the rds_fn_list_tlog_b
ackup_metadata function.

Access to transaction log backups 3053

Amazon Relational Database Service User Guide

Parameter Description

@backup_file_end_t
ime

The UTC timestamp as provided from the [backup_f
ile_time_utc] column of the rds_fn_list_tlog_b
ackup_metadata function.

@starting_lsn The log sequence number (LSN) as provided from the [starting
_lsn] column of the rds_fn_list_tlog_backup_met
adata function

@ending_lsn The log sequence number (LSN) as provided from the [ending_l
sn] column of the rds_fn_list_tlog_backup_met
adata function.

@rds_backup_starti
ng_seq_id

The sequence ID as provided from the [rds_backup_seq_id
] column of the rds_fn_list_tlog_backup_metadata
function.

@rds_backup_ending
_seq_id

The sequence ID as provided from the [rds_backup_seq_id
] column of the rds_fn_list_tlog_backup_metadata
function.

You can specify a set of either the time, LSN, or sequence ID parameters. Only one set of
parameters are required.

You can also specify just a single parameter in any of the sets. For example, by providing a value
for only the backup_file_end_time parameter, all available transaction log backup files prior to
that time within the seven-day limit will be copied to your Amazon S3 bucket.

Following are the valid input parameter combinations for the rds_tlog_backup_copy_to_S3
stored procedure.

Parameters
provided

Expected result

exec msdb.dbo.
rds_tlog_

Copies transaction
log backups from
the last seven days

Access to transaction log backups 3054

Amazon Relational Database Service User Guide

Parameters
provided

Expected result

backup_co
py_to_S3
 @db_name =
 'testdb1',

 @backup_f
ile_start
_time='20
22-08-23
 00:00:00',

 @backup_f
ile_end_t
ime='2022
-08-30
 00:00:00';

and exist between
the provided range
of backup_fi
le_start_time
and backup_fi
le_end_time .
In this example, the
stored procedure
will copy transactio
n log backups that
were generated
between '2022-08-
23 00:00:00' and
'2022-08-30
00:00:00'.

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3

 @db_name =
 'testdb1',

 @backup_f
ile_start
_time='20
22-08-23
 00:00:00';

Copies transacti
on log backups
from the last seven
days and starting
from the provided
backup_fi
le_start_
time . In this
example, the stored
procedure will
copy transaction
log backups fro
m '2022-08-23
00:00:00' up to the
latest transaction
log backup.

Access to transaction log backups 3055

Amazon Relational Database Service User Guide

Parameters
provided

Expected result

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3

 @db_name =
 'testdb1',

 @backup_f
ile_end_t
ime='2022
-08-30
 00:00:00';

Copies transaction
log backups from
the last seven days
up to the provided
backup_fi
le_end_time .
In this example, the
stored procedure
will copy transacti
on log backups
from '2022-08-
23 00:00:00 up
to '2022-08-30
00:00:00'.

Access to transaction log backups 3056

Amazon Relational Database Service User Guide

Parameters
provided

Expected result

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3

 @db_name=
'testdb1',

 @starting
_lsn =14900000
00040007,

 @ending_lsn
 = 149000000
0050009;

Copies transaction
log backups that
are available from
the last seven days
and are between
 the provided
range of the
starting_lsn
and ending_lsn .
In this example, the
stored procedure
will copy transacti
on log backups
from the last seven
days with an LSN
range between
149000000
0040007 and
149000000
0050009.

Access to transaction log backups 3057

Amazon Relational Database Service User Guide

Parameters
provided

Expected result

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3

 @db_name=
'testdb1',

 @starting
_lsn =14900000
00040007;

Copies transacti
on log backups
that are available
from the last seven
days, beginning
from the provided
starting_
lsn . In this
example, the stored
procedure will
copy transaction
log backups from
LSN 149000000
0040007 up to the
latest transaction
log backup.

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3

 @db_name=
'testdb1',

 @ending_lsn
 =14900000
00050009;

Copies transaction
log backups that
are available from
the last seven days,
up to the provided
ending_lsn . In
this example, the
stored procedure
will copy transacti
on log backups
beginning from the
last seven days up
to lsn 149000000
0050009.

Access to transaction log backups 3058

Amazon Relational Database Service User Guide

Parameters
provided

Expected result

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3

 @db_name=
'testdb1',

 @rds_back
up_starti
ng_seq_id=
 2000,

 @rds_back
up_ending
_seq_id= 5000;

Copies transaction
log backups that
are available from
the last seven days,
and exist between
the provided range
of rds_backu
p_startin
g_seq_id
and rds_backu
p_ending_
seq_id . In this
example, the stored
procedure will copy
transaction log
backups beginning
from the last seven
days and within
the provided rds
backup sequence
id range, starting
from seq_id 2000
up to seq_id 5000.

Access to transaction log backups 3059

Amazon Relational Database Service User Guide

Parameters
provided

Expected result

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3

 @db_name=
'testdb1',

 @rds_back
up_starti
ng_seq_id=
 2000;

Copies transacti
on log backups
that are available
from the last seven
days, beginning
from the provided
rds_backu
p_startin
g_seq_id . In
this example, the
stored procedure
will copy transacti
on log backups
beginning from
seq_id 2000, up to
the latest transacti
on log backup.

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3
 @db_name=
'testdb1',
 @rds_back
up_ending
_seq_id= 5000;

Copies transaction
log backups that
are available from
the last seven days,
up to the provided
 rds_backu
p_ending_
seq_id . In this
example, the stored
procedure will copy
transaction log
backups beginning
from the last seven
days, up to seq_id
5000.

Access to transaction log backups 3060

Amazon Relational Database Service User Guide

Parameters
provided

Expected result

exec msdb.dbo.
rds_tlog_
backup_co
py_to_S3
 @db_name=
'testdb1',
 @rds_back
up_starti
ng_seq_id=
 2000;
 @rds_back
up_ending
_seq_id= 2000;

Copies a single
transaction log
backup with
the provided
rds_backu
p_startin
g_seq_id , if
available within the
last seven days. In
this example, the
stored procedure
will copy a single
transaction log
backup that has a
seq_id of 2000, if
it exists within the
last seven days.

Validating the transaction log backup log chain

Databases configured for access to transaction log backups must have automated backup retention
enabled. Automated backup retention sets the databases on the DB instance to the FULL recovery
model. To support point in time restore for a database, avoid changing the database recovery
model, which can result in a broken log chain. We recommend keeping the database set to the
FULL recovery model.

To manually validate the log chain before copying transaction log backups, call the
rds_fn_list_tlog_backup_metadata function and review the values in the
is_log_chain_broken column. A value of "1" indicates the log chain was broken between the
current log backup and the previous log backup.

The following example shows a broken log chain in the output from the
rds_fn_list_tlog_backup_metadata stored procedure.

Access to transaction log backups 3061

Amazon Relational Database Service User Guide

In a normal log chain, the log sequence number (LSN) value for first_lsn for given rds_sequence_id
should match the value of last_lsn in the preceding rds_sequence_id. In the image, the
rds_sequence_id of 45 has a first_lsn value 90987, which does not match the last_lsn value of
90985 for preceeding rds_sequence_id 44.

For more information about SQL Server transaction log architecture and log sequence numbers,
see Transaction Log Logical Architecture in the Microsoft SQL Server documentation.

Amazon S3 bucket folder and file structure

Transaction log backups have the following standard structure and naming convention within an
Amazon S3 bucket:

• A new folder is created under the target_s3_arn path for each database with the naming
structure as {db_id}.{family_guid}.

• Within the folder, transaction log backups have a filename structure as {db_id}.
{family_guid}.{rds_backup_seq_id}.{backup_file_epoch}.

• You can view the details of family_guid,db_id,rds_backup_seq_id and
backup_file_epoch with the rds_fn_list_tlog_backup_metadatafunction.

The following example shows the folder and file structure of a set of transaction log backups
within an Amazon S3 bucket.

Access to transaction log backups 3062

https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide?view=sql-server-ver15#Logical_Arch

Amazon Relational Database Service User Guide

Tracking the status of tasks

To track the status of your copy tasks, call the rds_task_status stored procedure. If you don't
provide any parameters, the stored procedure returns the status of all tasks.

Example usage:

exec msdb.dbo.rds_task_status
 @db_name='database_name',
 @task_id=ID_number;

The following parameters are optional:

• @db_name – The name of the database to show the task status for.

• @task_id – The ID of the task to show the task status for.

Example of listing the status for a specific task ID:

exec msdb.dbo.rds_task_status @task_id=5;

Access to transaction log backups 3063

Amazon Relational Database Service User Guide

Example of listing the status for a specific database and task:

exec msdb.dbo.rds_task_status@db_name='my_database',@task_id=5;

Example of listing all tasks and their status for a specific database:

exec msdb.dbo.rds_task_status @db_name='my_database';

Example of listing all tasks and their status on the current DB instance:

exec msdb.dbo.rds_task_status;

Canceling a task

To cancel a running task, call the rds_cancel_task stored procedure.

Example usage:

exec msdb.dbo.rds_cancel_task @task_id=ID_number;

The following parameter is required:

• @task_id – The ID of the task to cancel. You can view the task ID by calling the
rds_task_status stored procedure.

For more information on viewing and canceling running tasks, see Importing and exporting SQL
Server databases using native backup and restore.

Troubleshooting access to transaction log backups

The following are issues you might encounter when you use the stored procedures for access to
transaction log backups.

Access to transaction log backups 3064

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
copy_setup

Backups are
disabled
on this DB
instance.
Enable DB
instance
backups
with a
retention
of at least
"1" and try
again.

Automated backups are not
enabled for the DB instance.

DB instance backup retention
must be enabled with a
retention of at least one day.
For more information on
enabling automated backups
and configuring backup
retention, see Backup retention
period.

rds_tlog_
copy_setup

Error
running the
rds_tlog_
copy_setu
p stored
procedure.
Reconnect
to the RDS
endpoint
and try
again.

An internal error occurred. Reconnect to the RDS endpoint
and run the rds_tlog_
copy_setup stored
procedure again.

rds_tlog_
copy_setup

Running
the
rds_tlog_
backup_co
py_setup
stored
procedure
inside a
transacti

The stored procedure was
attempted within a transaction
using BEGIN and END.

Avoid using BEGIN and END
when running the rds_tlog_
copy_setup stored
procedure.

Access to transaction log backups 3065

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

on is not
supported
. Verify
that the
session has
no open
transacti
ons and try
again.

rds_tlog_
copy_setup

The S3
bucket
name for
the input
parameter
@target_s
3_arn
should
contain at
least one
character
other than
a space.

An incorrect value was provided
for the input parameter
@target_s3_arn .

Ensure the input parameter
@target_s3_arn specifies
the complete Amazon S3
bucket ARN.

Access to transaction log backups 3066

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
copy_setup

The
SQLSERVER
_BACKUP_R
ESTORE
option isn't
enabled
or is in the
process
of being
enabled.
Enable the
option or
try again
later.

The SQLSERVER_BACKUP_R
ESTORE option is not enabled
on the DB instance or was just
enabled and pending internal
activation.

Enable the SQLSERVER
_BACKUP_RESTORE option
as specified in the Requireme
nts section. Wait a few minutes
and run the rds_tlog_
copy_setup stored
procedure again.

rds_tlog_
copy_setup

The target
S3 arn for
the input
parameter
@target_s
3_arn
can't be
empty or
null.

An NULL value was provided
for the input parameter
@target_s3_arn , or the
value wasn't provided.

Ensure the input parameter
@target_s3_arn specifies
the complete Amazon S3
bucket ARN.

rds_tlog_
copy_setup

The target
S3 arn for
the input
parameter
@target_s
3_arn
must
begin with
arn:aws.

The input parameter
@target_s3_arn was
provide without arn:aws on
the front.

Ensure the input parameter
@target_s3_arn specifies
the complete Amazon S3
bucket ARN.

Access to transaction log backups 3067

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
copy_setup

The target
S3 ARN
is already
set to the
provided
value.

The rds_tlog_copy_setu
p stored procedure previously
ran and was configured with an
Amazon S3 bucket ARN.

To modify the Amazon S3
bucket value for access to
transaction log backups,
provide a different target S3
ARN.

rds_tlog_
copy_setup

Unable to
generate
credentia
ls for
enabling
Access to
Transacti
on Log
Backups.
Confirm
the S3
path ARN
provided
with
rds_tlog_
copy_setu
p , and try
again later.

There was an unspecified error
while generating credentials to
enable access to transaction log
backups.

Review your setup configura
tion and try again.

Access to transaction log backups 3068

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
copy_setup

You cannot
run the
rds_tlog_
copy_setu
p stored
procedure
while there
are pending
tasks. Wait
for the
pending
tasks to
complete
and try
again.

Only two tasks may run at any
time. There are pending tasks
awaiting completion.

View pending tasks and wait
for them to complete. For more
information on monitoring task
status, see Tracking the status
of tasks.

rds_tlog_
backup_co
py_to_S3

A T-log
backup file
copy task
has already
been
issued for
database:
%s with
task Id: %d,
please try
again later.

Only one copy task may run at
any time for a given database.
There is a pending copy task
awaiting completion.

View pending tasks and wait
for them to complete. For more
information on monitoring task
status, see Tracking the status
of tasks.

Access to transaction log backups 3069

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

At least
one of
these three
parameter
sets
must be
provided.
SET-1:(@b
ackup_fil
e_start_t
ime,
@backup_f
ile_end_t
ime) |
SET-2:(@s
tarting_lsn,
@ending_l
sn) |
SET-3:(@r
ds_backup
_starting
_seq_id,
@rds_back
up_ending
_seq_id)

None of the three parameter
sets were provided, or a
provided parameter set is
missing a required parameter.

You can specify either the time,
lsn, or sequence ID parameter
s. One set from these three sets
of parameters are required. For
more information on required
parameters, see Copying
transaction log backups.

Access to transaction log backups 3070

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

Backups are
disabled
on your
instance.
Please
enable
backups
and try
again in
some time.

Automated backups are not
enabled for the DB instance.

For more information on
enabling automated backups
and configuring backup
retention, see Backup
retention period.

rds_tlog_
backup_co
py_to_S3

Cannot find
the given
database
%s.

The value provided for input
parameter @db_name does not
match a database name on the
DB instance.

Use the correct database
name. To list all databases by
name, run SELECT * from
sys.databases

rds_tlog_
backup_co
py_to_S3

Cannot
run the
rds_tlog_
backup_co
py_to_S3
stored
procedure
for SQL
Server
system
databases
or the
rdsadmin
database.

The value provided for input
parameter @db_name matches
a SQL Server system database
name or the RDSAdmin
database.

The following databases are
not allowed to be used with
access to transaction log
backups: master, model,
msdb, tempdb, RDSAdmin.

Access to transaction log backups 3071

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

Database
name for
the input
parameter
@db_name
can't be
empty or
null.

The value provided for input
parameter @db_name was
empty or NULL.

Use the correct database
name. To list all databases by
name, run SELECT * from
sys.databases

rds_tlog_
backup_co
py_to_S3

DB instance
backup
retention
period
must be set
to at least
1 to run the
rds_tlog_
backup_co
py_setup
stored
procedure.

Automated backups are not
enabled for the DB instance.

For more information on
enabling automated backups
and configuring backup
retention, see Backup
retention period.

rds_tlog_
backup_co
py_to_S3

Error
running
the stored
procedure
rds_tlog_
backup_co
py_to_S3.
Reconnect
to the RDS
endpoint
and try
again.

An internal error occurred. Reconnect to the RDS endpoint
and run the rds_tlog_
backup_copy_to_S3
stored procedure again.

Access to transaction log backups 3072

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

Only one of
these three
parameter
sets can be
provided.
SET-1:(@b
ackup_fil
e_start_t
ime,
@backup_f
ile_end_t
ime) |
SET-2:(@s
tarting_lsn,
@ending_l
sn) |
SET-3:(@r
ds_backup
_starting
_seq_id,
@rds_back
up_ending
_seq_id)

Multiple parameter sets were
provided.

You can specify either the time,
lsn, or sequence ID parameter
s. One set from these three sets
of parameters are required. For
more information on required
parameters, see Copying
transaction log backups.

Access to transaction log backups 3073

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

Running
the
rds_tlog_
backup_co
py_to_S3
stored
procedure
inside a
transacti
on is not
supported
. Verify
that the
session has
no open
transacti
ons and try
again.

The stored procedure was
attempted within a transaction
using BEGIN and END.

Avoid using BEGIN and END
when running the rds_tlog_
backup_copy_to_S3
stored procedure.

Access to transaction log backups 3074

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

The
provided
parameters
fall outside
of the
transaction
backup log
retention
period.
To list of
available
transaction
log backup
files,
run the
rds_fn_li
st_tlog_b
ackup_met
adata
function.

There are no available transacti
onal log backups for the
provided input parameters
that fit in the copy retention
window.

Try again with a valid set of
parameters. For more informati
on on required parameters,
see Copying transaction log
backups.

Access to transaction log backups 3075

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

There was
a permissio
ns error in
processing
the request.
Ensure the
bucket is in
the same
Account
and Region
as the DB
Instance,
and
confirm the
S3 bucket
policy
permissions
against the
template in
the public
documenta
tion.

There was an issue detected
with the provided S3 bucket or
its policy permissions.

Confirm your setup for access
to transaction log backups is
correct. For more information
on setup requirements for your
S3 bucket, see Requirements.

Access to transaction log backups 3076

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

Running
the
rds_tlog_
backup_co
py_to_S3
stored
procedure
on an RDS
read replica
instance
isn't
permitted.

The stored procedure was
attempted on a RDS read
replica instance.

Connect to the RDS primary DB
instance to run the rds_tlog_
backup_copy_to_S3
stored procedure.

rds_tlog_
backup_co
py_to_S3

The LSN for
the input
parameter
@starting
_lsn
must be
less than
@ending_l
sn .

The value provided for input
parameter @starting_lsn
was greater than the value
provided for input parameter
@ending_lsn .

Ensure the value provided for
input parameter @starting
_lsn is less than the value
provided for input parameter
@ending_lsn .

Access to transaction log backups 3077

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

The
rds_tlog_
backup_co
py_to_S3
stored
procedure
can only be
performed
by the
members of
db_owner
role in
the source
database.

The db_owner role has
not been granted for the
account attempting to run
the rds_tlog_backup_co
py_to_S3 stored procedure
on the provided db_name.

Ensure the account running the
stored procedure is permissio
ned with the db_owner role for
the provided db_name.

rds_tlog_
backup_co
py_to_S3

The
sequence
ID for
the input
parameter
@rds_back
up_starti
ng_seq_id

 must be
less than
or equal to
@rds_back
up_ending
_seq_id .

The value provided for input
parameter @rds_back
up_starting_seq_id
was greater than the value
provided for input parameter
@rds_backup_ending
_seq_id .

Ensure the value provided for
input parameter @rds_back
up_starting_seq_id is
less than the value provided for
input parameter @rds_back
up_ending_seq_id .

Access to transaction log backups 3078

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

The
SQLSERVER
_BACKUP_R
ESTORE
option isn't
enabled
or is in the
process
of being
enabled.
Enable the
option or
try again
later.

The SQLSERVER_BACKUP_R
ESTORE option is not enabled
on the DB instance or was just
enabled and pending internal
activation.

Enable the SQLSERVER
_BACKUP_RESTORE option
as specified in the Requireme
nts section. Wait a few minutes
and run the rds_tlog_
backup_copy_to_S3
stored procedure again.

rds_tlog_
backup_co
py_to_S3

The start
time for
the input
parameter
@backup_f
ile_start
_time
must be
less than
@backup_f
ile_end_t
ime .

The value provided for input
parameter @backup_f
ile_start_time was
greater than the value
provided for input parameter
@backup_file_end_time .

Ensure the value provided for
input parameter @backup_f
ile_start_time is less
than the value provided for
input parameter @backup_f
ile_end_time .

Access to transaction log backups 3079

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

We were
unable to
process the
request due
to a lack
of access.
Please
check your
setup and
permissio
ns for the
feature.

There may be an issue with the
Amazon S3 bucket permissio
ns, or the Amazon S3 bucket
provided is in another account
or Region.

Ensure the Amazon S3
bucket policy permissions are
permissioned to allow RDS
access. Ensure the Amazon S3
bucket is in the same account
and Region as the DB instance.

rds_tlog_
backup_co
py_to_S3

You cannot
provide
a KMS
Key ARN
as input
parameter
to the
stored
procedure
for
instances
that are not
storage-e
ncrypted.

When storage encryption is not
enabled on the DB instance, the
input parameter @kms_key_
arn should not be provided.

Do not provide an input
parameter for @kms_key_
arn .

Access to transaction log backups 3080

Amazon Relational Database Service User Guide

Stored
Procedure

Error
Message

Issue Troubleshooting suggestions

rds_tlog_
backup_co
py_to_S3

You must
provide
a KMS
Key ARN
as input
parameter
to the
stored
procedure
for storage
encrypted
instances.

When storage encryption is
enabled on the DB instance, the
input parameter @kms_key_
arn must be provided.

Provide an input parameter for
@kms_key_arn with a value
that matches the ARN of the
Amazon S3 bucket to use for
transaction log backups.

rds_tlog_
backup_co
py_to_S3

You must
run the
rds_tlog_
copy_setu
p stored
procedure
and set the
@target_s
3_arn ,
before
running the
rds_tlog_
backup_co
py_to_S3
stored
procedure.

The access to transaction
log backups setup procedure
was not completed before
attempting to run the
rds_tlog_backup_co
py_to_S3 stored procedure.

Run the rds_tlog_
copy_setup stored
procedure before running
the rds_tlog_backup_co
py_to_S3 stored procedure
. For more information on
running the setup procedure
for access to transaction log
backups, see Setting up access
to transaction log backups.

Access to transaction log backups 3081

Amazon Relational Database Service User Guide

Options for the Microsoft SQL Server database engine

In this section, you can find descriptions for options that are available for Amazon RDS instances
running the Microsoft SQL Server DB engine. To enable these options, you add them to an option
group, and then associate the option group with your DB instance. For more information, see
Working with option groups.

If you're looking for optional features that aren't added through RDS option groups (such as
SSL, Microsoft Windows Authentication, and Amazon S3 integration), see Additional features for
Microsoft SQL Server on Amazon RDS.

Amazon RDS supports the following options for Microsoft SQL Server DB instances.

Option Option ID Engine editions

Linked Servers with Oracle OLEDB OLEDB_ORACLE SQL Server Enterprise
Edition

SQL Server Standard
Edition

Native backup and restore SQLSERVER
_BACKUP_R
ESTORE

SQL Server Enterprise
Edition

SQL Server Standard
Edition

SQL Server Web
Edition

SQL Server Express
Edition

Transparent Data Encryption TRANSPARE
NT_DATA_E
NCRYPTION (RDS
console)

SQL Server 2016–
2022 Enterprise
Edition

SQL Server 2022
Standard Edition

Options for SQL Server 3082

Amazon Relational Database Service User Guide

Option Option ID Engine editions

TDE (AWS CLI and
RDS API)

SQL Server Audit SQLSERVER_AUDIT In RDS, starting
with SQL Server
2016, all editions of
SQL Server support
server-level audits,
and Enterprise
Edition also supports
database-level audit
s.

Starting with SQL
Server SQL Server
2016 (13.x) SP1, all
editions support
both server-level and
database-level audits.

For more informati
on, see SQL Server
Audit (database
engine) in the SQL
Server documenta
tion.

SQL Server Analysis Services SSAS SQL Server Enterprise
Edition

SQL Server Standard
Edition

Options for SQL Server 3083

https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine?view=sql-server-2017

Amazon Relational Database Service User Guide

Option Option ID Engine editions

SQL Server Integration Services SSIS SQL Server Enterprise
Edition

SQL Server Standard
Edition

SQL Server Reporting Services SSRS SQL Server Enterprise
Edition

SQL Server Standard
Edition

Microsoft Distributed Transaction Coordinator MSDTC In RDS, starting
with SQL Server
2016, all editions of
SQL Server support
distributed transact
ions.

Listing the available options for SQL Server versions and editions

You can use the describe-option-group-options AWS CLI command to list the available
options for SQL Server versions and editions, and the settings for those options.

The following example shows the options and option settings for SQL Server 2019 Enterprise
Edition. The --engine-name option is required.

aws rds describe-option-group-options --engine-name sqlserver-ee --major-engine-version
 15.00

The output resembles the following:

{
 "OptionGroupOptions": [
 {
 "Name": "MSDTC",
 "Description": "Microsoft Distributed Transaction Coordinator",

Listing the available options for SQL Server versions and editions 3084

Amazon Relational Database Service User Guide

 "EngineName": "sqlserver-ee",
 "MajorEngineVersion": "15.00",
 "MinimumRequiredMinorEngineVersion": "4043.16.v1",
 "PortRequired": true,
 "DefaultPort": 5000,
 "OptionsDependedOn": [],
 "OptionsConflictsWith": [],
 "Persistent": false,
 "Permanent": false,
 "RequiresAutoMinorEngineVersionUpgrade": false,
 "VpcOnly": false,
 "OptionGroupOptionSettings": [
 {
 "SettingName": "ENABLE_SNA_LU",
 "SettingDescription": "Enable support for SNA LU protocol",
 "DefaultValue": "true",
 "ApplyType": "DYNAMIC",
 "AllowedValues": "true,false",
 "IsModifiable": true,
 "IsRequired": false,
 "MinimumEngineVersionPerAllowedValue": []
 },
 ...

 {
 "Name": "TDE",
 "Description": "SQL Server - Transparent Data Encryption",
 "EngineName": "sqlserver-ee",
 "MajorEngineVersion": "15.00",
 "MinimumRequiredMinorEngineVersion": "4043.16.v1",
 "PortRequired": false,
 "OptionsDependedOn": [],
 "OptionsConflictsWith": [],
 "Persistent": true,
 "Permanent": false,
 "RequiresAutoMinorEngineVersionUpgrade": false,
 "VpcOnly": false,
 "OptionGroupOptionSettings": []
 }
]
}

Listing the available options for SQL Server versions and editions 3085

Amazon Relational Database Service User Guide

Support for Linked Servers with Oracle OLEDB in Amazon RDS for SQL
Server

Linked servers with the Oracle Provider for OLEDB on RDS for SQL Server lets you access external
data sources on an Oracle database. You can read data from remote Oracle data sources and
run commands against remote Oracle database servers outside of your RDS for SQL Server DB
instance. Using linked servers with Oracle OLEDB, you can:

• Directly access data sources other than SQL Server

• Query against diverse Oracle data sources with the same query without moving the data

• Issue distributed queries, updates, commands, and transactions on data sources across an
enterprise ecosystem

• Integrate connections to an Oracle database from within the Microsoft Business Intelligence
suite (SSIS, SSRS, SSAS)

• Migrate from an Oracle database to RDS for SQL Server

You can activate one or more linked servers for Oracle on either an existing or new RDS for SQL
Server DB instance. Then you can integrate external Oracle data sources with your DB instance.

Contents

• Supported versions and Regions

• Limitations and recommendations

• Activating linked servers with Oracle

• Creating the option group for OLEDB_ORACLE

• Adding the OLEDB_ORACLE option to the option group

• Associating the option group with your DB instance

• Modifying OLEDB provider properties

• Modifying OLEDB driver properties

• Deactivating linked servers with Oracle

Supported versions and Regions

RDS for SQL Server supports linked servers with Oracle OLEDB in all Regions for SQL Server
Standard and Enterprise Editions on the following versions:

Linked Servers with Oracle OLEDB 3086

Amazon Relational Database Service User Guide

• SQL Server 2022, all versions

• SQL Server 2019, all versions

• SQL Server 2017, all versions

Linked servers with Oracle OLEDB is supported for the following Oracle Database versions:

• Oracle Database 21c, all versions

• Oracle Database 19c, all versions

• Oracle Database 18c, all versions

Limitations and recommendations

Keep in mind the following limitations and recommendations that apply to linked servers with
Oracle OLEDB:

• Allow network traffic by adding the applicable TCP port in the security group for each RDS for
SQL Server DB instance. For example, if you’re configuring a linked server between an EC2 Oracle
DB instance and an RDS for SQL Server DB instance, then you must allow traffic from the IP
address of the EC2 Oracle DB instance. You also must allow traffic on the port that SQL Server
is using to listen for database communication. For more information on security groups, see
Controlling access with security groups.

• Perform a reboot of the RDS for SQL Server DB instance after turning on, turning off, or
modifying the OLEDB_ORACLE option in your option group. The option group status displays
pending_reboot for these events and is required.

• Only simple authentication is supported with a user name and password for the Oracle data
source.

• Open Database Connectivity (ODBC) drivers are not supported. Only the latest version of the
OLEDB driver is supported.

• Distributed transactions (XA) are supported. To activate distributed transactions, turn on the
MSDTC option in the Option Group for your DB instance and make sure XA transactions are
turned on. For more information, see Support for Microsoft Distributed Transaction Coordinator
in RDS for SQL Server.

• Creating data source names (DSNs) to use as a shortcut for a connection string is not supported.

• OLEDB driver tracing is not supported. You can use SQL Server Extended Events to trace OLEDB
events. For more information, see Set up Extended Events in RDS for SQL Server.

Linked Servers with Oracle OLEDB 3087

https://aws.amazon.com/blogs/database/set-up-extended-events-in-amazon-rds-for-sql-server/

Amazon Relational Database Service User Guide

• Access to the catalogs folder for an Oracle linked server is not supported using SQL Server
Management Studio (SSMS).

Activating linked servers with Oracle

Activate linked servers with Oracle by adding the OLEDB_ORACLE option to your RDS for SQL
Server DB instance. Use the following process:

1. Create a new option group, or choose an existing option group.

2. Add the OLEDB_ORACLE option to the option group.

3. Choose a version of the OLEDB driver to use.

4. Associate the option group with the DB instance.

5. Reboot the DB instance.

Creating the option group for OLEDB_ORACLE

To work with linked servers with Oracle, create an option group or modify an option group that
corresponds to the SQL Server edition and version of the DB instance that you plan to use. To
complete this procedure, use the AWS Management Console or the AWS CLI.

Console

The following procedure creates an option group for SQL Server Standard Edition 2019.

To create the option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group window, do the following:

a. For Name, enter a name for the option group that is unique within your AWS account,
such as oracle-oledb-se-2019. The name can contain only letters, digits, and hyphens.

b. For Description, enter a brief description of the option group, such as OLEDB_ORACLE
option group for SQL Server SE 2019. The description is used for display
purposes.

Linked Servers with Oracle OLEDB 3088

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

c. For Engine, choose sqlserver-se.

d. For Major engine version, choose 15.00.

5. Choose Create.

CLI

The following procedure creates an option group for SQL Server Standard Edition 2019.

To create the option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds create-option-group \
 --option-group-name oracle-oledb-se-2019 \
 --engine-name sqlserver-se \
 --major-engine-version 15.00 \
 --option-group-description "OLEDB_ORACLE option group for SQL Server SE 2019"

For Windows:

aws rds create-option-group ^
 --option-group-name oracle-oledb-se-2019 ^
 --engine-name sqlserver-se ^
 --major-engine-version 15.00 ^
 --option-group-description "OLEDB_ORACLE option group for SQL Server SE 2019"

Adding the OLEDB_ORACLE option to the option group

Next, use the AWS Management Console or the AWS CLI to add the OLEDB_ORACLE option to your
option group.

Linked Servers with Oracle OLEDB 3089

Amazon Relational Database Service User Guide

Console

To add the OLEDB_ORACLE option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group that you just created, which is oracle-oledb-se-2019 in this example.

4. Choose Add option.

5. Under Option details, choose OLEDB_ORACLE for Option name.

6. Under Scheduling, choose whether to add the option immediately or at the next maintenance
window.

7. Choose Add option.

CLI

To add the OLEDB_ORACLE option

• Add the OLEDB_ORACLE option to the option group.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name oracle-oledb-se-2019 \
 --options OptionName=OLEDB_ORACLE \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name oracle-oledb-se-2019 ^
 --options OptionName=OLEDB_ORACLE ^
 --apply-immediately

Linked Servers with Oracle OLEDB 3090

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Associating the option group with your DB instance

To associate the OLEDB_ORACLE option group and parameter group with your DB instance, use the
AWS Management Console or the AWS CLI

Console

To finish activating linked servers for Oracle, associate your OLEDB_ORACLE option group with a
new or existing DB instance:

• For a new DB instance, associate them when you launch the instance. For more information, see
Creating an Amazon RDS DB instance.

• For an existing DB instance, associate them by modifying the instance. For more information, see
Modifying an Amazon RDS DB instance.

CLI

You can associate the OLEDB_ORACLE option group and parameter group with a new or existing DB
instance.

To create an instance with the OLEDB_ORACLE option group and parameter group

• Specify the same DB engine type and major version that you used when creating the option
group.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mytestsqlserveroracleoledbinstance \
 --db-instance-class db.m5.2xlarge \
 --engine sqlserver-se \
 --engine-version 15.0.4236.7.v1 \
 --allocated-storage 100 \
 --manage-master-user-password \
 --master-username admin \
 --storage-type gp2 \
 --license-model li \
 --domain-iam-role-name my-directory-iam-role \
 --domain my-domain-id \
 --option-group-name oracle-oledb-se-2019 \

Linked Servers with Oracle OLEDB 3091

Amazon Relational Database Service User Guide

 --db-parameter-group-name my-parameter-group-name

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mytestsqlserveroracleoledbinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 15.0.4236.7.v1 ^
 --allocated-storage 100 ^
 --manage-master-user-password ^
 --master-username admin ^
 --storage-type gp2 ^
 --license-model li ^
 --domain-iam-role-name my-directory-iam-role ^
 --domain my-domain-id ^
 --option-group-name oracle-oledb-se-2019 ^
 --db-parameter-group-name my-parameter-group-name

To modify an instance and associate the OLEDB_ORACLE option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mytestsqlserveroracleoledbinstance \
 --option-group-name oracle-oledb-se-2019 \
 --db-parameter-group-name my-parameter-group-name \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mytestsqlserveroracleoledbinstance ^
 --option-group-name oracle-oledb-se-2019 ^
 --db-parameter-group-name my-parameter-group-name ^
 --apply-immediately

Linked Servers with Oracle OLEDB 3092

Amazon Relational Database Service User Guide

Modifying OLEDB provider properties

You can view and change the properties of the OLEDB provider. Only the master user can
perform this task. All linked servers for Oracle that are created on the DB instance use the same
properties of that OLEDB provider. Call the sp_MSset_oledb_prop stored procedure to change
the properties of the OLEDB provider.

To change the OLEDB provider properties

USE [master]
GO
EXEC sp_MSset_oledb_prop N'OraOLEDB.Oracle', N'AllowInProcess', 1
EXEC sp_MSset_oledb_prop N'OraOLEDB.Oracle', N'DynamicParameters', 0
GO

The following properties can be modified:

Property name Recommended
Value (1 = On, 0 =
Off)

Description

Dynamic
parameter

1 Allows SQL placeholders (represented by '?') in
parameterized queries.

Nested queries 1 Allows nested SELECT statements in the FROM
clause, such as sub-queries.

Level zero only 0 Only base-level OLEDB interfaces are called
against the provider.

Allow inprocess 1 If turned on, Microsoft SQL Server allows the
provider to be instantiated as an in-process
 server. Set this property to 1 to use Oracle linked
servers.

Non transacted
updates

0 If non-zero, SQL Server allows updates.

Linked Servers with Oracle OLEDB 3093

Amazon Relational Database Service User Guide

Property name Recommended
Value (1 = On, 0 =
Off)

Description

Index as access
path

False If non-zero, SQL Server attempts to use indexes of
the provider to fetch data.

Disallow adhoc
access

False If set, SQL Server does not allow running pass-
through queries against the OLEDB provider.
While this option can be checked, it is sometimes
appropriate to run pass-through queries.

Supports LIKE
operator

1 Indicates that the provider supports queries using
the LIKE keyword.

Modifying OLEDB driver properties

You can view and change the properties of the OLEDB driver when creating a linked server for
Oracle. Only the master user can perform this task. Driver properties define how the OLEDB driver
handles data when working with a remote Oracle data source. Driver properties are specific to each
Oracle linked server created on the DB instance. Call the master.dbo.sp_addlinkedserver
stored procedure to change the properties of the OLEDB driver.

Example: To create a linked server and change the OLEDB driver FetchSize property

EXEC master.dbo.sp_addlinkedserver
@server = N'Oracle_link2',
@srvproduct=N'Oracle',
@provider=N'OraOLEDB.Oracle',
@datasrc=N'my-oracle-test.cnetsipka.us-west-2.rds.amazonaws.com:1521/ORCL,
@provstr='FetchSize=200'
GO

EXEC master.dbo.sp_addlinkedsrvlogin
@rmtsrvname=N'Oracle_link2',
@useself=N'False',
@locallogin=NULL,

Linked Servers with Oracle OLEDB 3094

Amazon Relational Database Service User Guide

@rmtuser=N'master',
@rmtpassword='Test#1234'
GO

Note

Specify a password other than the prompt shown here as a security best practice.

Deactivating linked servers with Oracle

To deactivate linked servers with Oracle, remove the OLEDB_ORACLE option from its option group.

Important

Removing the option doesn't delete the existing linked server configurations on the DB
instance. You must manually drop them to remove them from the DB instance.
You can reactivate the OLEDB_ORACLE option after removal to reuse the linked server
configurations that were previously configured on the DB instance.

Console

The following procedure removes the OLEDB_ORACLE option.

To remove the OLEDB_ORACLE option from its option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group with the OLEDB_ORACLE option (oracle-oledb-se-2019 in the
previous examples).

4. Choose Delete option.

5. Under Deletion options, choose OLEDB_ORACLE for Options to delete.

6. Under Apply immediately, choose Yes to delete the option immediately, or No to delete it
during the next maintenance window.

7. Choose Delete.

Linked Servers with Oracle OLEDB 3095

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

CLI

The following procedure removes the OLEDB_ORACLE option.

To remove the OLEDB_ORACLE option from its option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds remove-option-from-option-group \
 --option-group-name oracle-oledb-se-2019 \
 --options OLEDB_ORACLE \
 --apply-immediately

For Windows:

aws rds remove-option-from-option-group ^
 --option-group-name oracle-oledb-se-2019 ^
 --options OLEDB_ORACLE ^
 --apply-immediately

Linked Servers with Oracle OLEDB 3096

Amazon Relational Database Service User Guide

Linked Servers with Teradata ODBC in RDS for SQL Server

Support for linked servers with the Teradata ODBC driver on RDS for SQL Server lets you access
external data sources on a Teradata database. You can read data and run commands from remote
Teradata database servers outside of your RDS for SQL Server instance. Use linked-servers with
Teradata ODBC to enable the following capabilities:

• Directly access data sources other than SQL Server.

• Query against diverse Teradata data sources with the same query without moving the data.

• Issue distributed queries, updates, commands, and transactions on data sources across an
enterprise ecosystem.

• Integrate connections to a Teradata database from within the Microsoft Business Intelligence
Suite (SSIS, SSRS, SSAS).

• Migrate from a Teradata database to RDS for SQL Server.

You can choose to activate one or more linked servers for Teradata on either an existing or new
RDS for SQL Server DB instance. You can then integrate external Teradata data sources with your
DB instance.

Topics

• Supported versions and Regions

• Limitations and recommendations

• Considerations for Multi-AZ deployment

• Activating linked servers with Teradata

• Creating linked servers with Teradata

• Deactivating servers linked to Teradata

Supported versions and Regions

RDS for SQL Server supports linked servers with Teradata ODBC in all AWS Regions for SQL Server
Standard and Enterprise Edition for the following versions:

• SQL Server 2022, all versions

• SQL Server 2019, all versions

• SQL Server 2017, all versions

Linked Servers with Teradata ODBC 3097

Amazon Relational Database Service User Guide

The following Teradata database versions support linking with RDS for SQL Server

• Teradata 17.20, all versions

Limitations and recommendations

The following limitations apply to linked servers with Teradata ODBC:

• RDS for SQL Server support only simple authentication with a username and password for the
Teradata source.

• RDS for SQL Server supports only Teradata ODBC driver version 17.20.0.33.

• RDS for SQL Server does not support creating data source names (DSNs) to use as shortcuts for a
connection string.

• RDS for SQL Server does not support ODBC driver tracing. Use SQL Server Extended Events to
trace ODBC events. For more information, see Set up Extended Events in RDS for SQL Server.

• RDS for SQL Server does not support access to the catalogs folder for a Teradata linked server
when using SQL Server Management Studio (SSMS).

Consider the following recommendations when using linked servers with Teradata ODBC:

• Allow network traffic by adding the applicable TCP port in the security group for each RDS
for SQL Server DB instance. If you're configuring a linked server between an EC2 Teradata DB
instance and an RDS for SQL Server DB instance, then you must allow traffic from the IP address
of the EC2 Teradata DB instance. You also must allow traffic on the port that the RDS for SQL
Server DB instance is using to listen for database communication. For more information on
security groups, see Controlling access with security groups.

• Distributed transactions (XA) are supported. To activate distributed transactions, turn on the
MSDTC option in the option group for your DB instance and make sure XA transactions are turned
on. For more information, see Support for Microsoft Distributed Transaction Coordinator in RDS
for SQL Server.

• Linked Teradata ODBC support SSL/TLS as long as configured on the Teradata Server. For more
information, see Enable TLS Connectivity on Teradata Vantage.

Linked Servers with Teradata ODBC 3098

https://aws.amazon.com/blogs/database/set-up-extended-events-in-amazon-rds-for-sql-server/
https://docs.teradata.com/r/Enterprise_IntelliFlex_Lake_VMware/Teradata-Call-Level-Interface-Version-2-Reference-for-Workstation-Attached-Systems-20.00/Mainframe-TLS-Connectivity-Supplement/Enable-TLS-Connectivity-on-Teradata-Vantage

Amazon Relational Database Service User Guide

Considerations for Multi-AZ deployment

RDS for SQL Server currently doesn't replicate linked servers to the mirrored database server (or
Always-On availability group secondary server) in a Multi-AZ deployment. If the linked servers are
added before the configuration is changed to add mirroring or Always-On, then the linked servers
are copied for the existing linked servers.

Alternatively, you can create the linked servers on the primary instance, fail over to the high
availability server instance and then create the linked servers again so that they are on both RDS
for SQL Server instances.

Activating linked servers with Teradata

Activate linked servers with Teradata by adding the ODBC_TERADATA option to your RDS for SQL
Server DB instance. Use the following process:

Topics

• Creating the option group for ODBC_TERADATA

• Adding the ODBC_TERADATA option to the option group

• Associating the ODBC_TERADATA option with your DB instance

Creating the option group for ODBC_TERADATA

To work with linked servers with Teradata, create an option group or modify an option group that
corresponds to the SQL Server eddition and version of the DB instance that you plan to use. To
complete this procedure, use the AWS Management Console or the AWS CLI.

Console

Use the following procedure to create an option group for SQL Server Standard Edition 2019.

To create the option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group window, do the following:

Linked Servers with Teradata ODBC 3099

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

a. For Name, enter a name for the option group that is unique within your AWS account,
such as teradata-odbc-se-2019. The name can contain only letters, digits, and
hyphens.

b. For Description, enter a brief description of the option group.

c. For Engine, choose sqlserver-se.

d. For Major engine version, choose 15.00.

5. Choose Create.

AWS CLI

The following procedure creates an option group for SQL Server Standard Edition 2019.

Example

For Linux, macOS, or Unix:

aws rds create-option-group \
 --option-group-name teradata-odbc-se-2019 \
 --engine-name sqlserver-se \
 --major-engine-version 15.00 \
 --option-group-description "ODBC_TERADATA option group for SQL Server SE 2019"

Example

For Windows:

aws rds create-option-group ^
 --option-group-name teradata-odbc-se-2019 ^
 --engine-name sqlserver-se ^
 --major-engine-version 15.00 ^
 --option-group-description "ODBC_TERADATA option group for SQL Server SE 2019"

Adding the ODBC_TERADATA option to the option group

Next, use the AWS Management Console or the AWS CLI to add the ODBC_Teradata option to
your option group.

Console

Use the following procedure creates an option group for SQL Server Standard Edition 2019.

Linked Servers with Teradata ODBC 3100

Amazon Relational Database Service User Guide

To add the ODBC_TERADATA option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose your new option group.

4. Choose Add option.

5. Under Option details:

a. Choose ODBC_TERADATA for Option name.

b. For 17.20.33.00 for Option version.

6. Under scheduling, choose whether to add the option immediately or at the next maintenance
window.

7. Choose Add option.

AWS CLI

The following procedure adds the ODBC_TERADATA option to your option group.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name teradata-odbc-se-2019 \
 --options "OptionName=ODBC_TERADATA,OptionVersion=17.20.33.00" \
 --apply-immediately

Example

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name teradata-odbc-se-2019 ^
 --options "OptionName=ODBC_TERADATA,OptionVersion=17.20.33.00" ^
 --apply-immediately

Linked Servers with Teradata ODBC 3101

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Associating the ODBC_TERADATA option with your DB instance

To associate the ODBC_TERADATA option group with your DB instance, use the AWS Management
Console or AWS CLI.

Console

To finish activating linked servers for Teradata, associate your option group with a new or existing
DB instance:

• For a new DB instance, associate it when you launch the instance. For more information, see
Creating an Amazon RDS DB instance.

• For an existing DB instance, associate it by modifying the instance. For more information, see
Modifying an Amazon RDS DB instance.

AWS CLI

Specify the same DB engine type and major version that you used when creating the option group.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mytestsqlserverteradataodbcinstance \
 --db-instance-class db.m5.2xlarge \
 --engine sqlserver-se \
 --engine-version 15.00 \
 --license-model license-included \
 --allocated-storage 100 \
 --master-username admin \
 --master-user-password password \
 --storage-type gp2 \
 --option-group-name teradata-odbc-se-2019

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mytestsqlserverteradataodbcinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 15.00 ^

Linked Servers with Teradata ODBC 3102

Amazon Relational Database Service User Guide

 --license-model license-included ^
 --allocated-storage 100 ^
 --master-username admin ^
 --master-user-password password ^
 --storage-type gp2 ^
 --option-group-name teradata-odbc-se-2019

To modify an instance and associate the new option group:

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mytestsqlserverteradataodbcinstance \
 --option-group-name teradata-odbc-se-2019 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mytestsqlserverteradataodbcinstance ^
 --option-group-name teradata-odbc-se-2019 ^
 --apply-immediately

Creating linked servers with Teradata

To create a linked server with Teradata, run the following commands:

EXECUTE master.dbo.sp_addlinkedserver
 @server = N'LinkedServer_NAME',
 @srvproduct=N'',
 @provider=N'MSDASQL',
 @provstr=N'"PROVIDER=MSDASQL;DRIVER={Teradata Database ODBC Driver 17.20};
 DBCName=Server;UID=user_name;PWD=user_password;
 UseDataEncryption=YES/NO;SSLMODE=PREFER/ALLOW/DISABLE>;"',
 @catalog='database'

EXECUTE master.dbo.sp_addlinkedsrvlogin
 @rmtsrvname = N'LinkedServer_NAME',
 @locallogin = NULL ,
 @useself = N'False',
 @rmtuser = N'user_name',

Linked Servers with Teradata ODBC 3103

Amazon Relational Database Service User Guide

 @rmtpassword = N'user_password'

An example of the the commands above are shown here:

EXECUTE master.dbo.sp_addlinkedserver
 @server = N'LinkedServerToTeradata',
 @srvproduct=N'',
 @provider=N'MSDASQL',
 @provstr=N'"PROVIDER=MSDASQL;DRIVER={Teradata Database ODBC Driver 17.20};
 DBCName=my-teradata-test.cnetsipka.us-west-2.rds.amazonaws.com;
 UID=master;
 PWD=Test#1234;
 UseDataEncryption=YES;
 SSLMODE=PREFER;"',
 @catalog='MyTestTeradataDB'

EXECUTE master.dbo.sp_addlinkedsrvlogin
 @rmtsrvname = N'LinkedServerToTeradata',
 @locallogin = NULL ,
 @useself = N'False',
 @rmtuser = N'master',
 @rmtpassword = N'Test#1234'

Note

Specify a password other than the prompt shown here as a security best practice.

Deactivating servers linked to Teradata

To deactivate linked servers to Teradata, remove the ODBC_TERADATA option from its option
group.

Important

Deleting the option doesn't delete the linked server configurations on the DB instance. You
must manually drop them to remove them from the DB instance.
You can reactivate the ODBC_TERADATA after removal to reuse the linked server
configurations that were previously configured on the DB instance.

Linked Servers with Teradata ODBC 3104

Amazon Relational Database Service User Guide

Console

To remove the ODBC_TERADATA option from the option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group with the ODBC_TERADATA option.

4. Choose Delete.

5. Under Deletion options, choose ODBC_TERADATA under Options to delete.

6. Under Apply immediately, choose Yes to delete the option immediately, or No to delete it
during the next maintenance window.

7. Choose Delete.

AWS CLI

The following commands removes the ODBC_TERADATA option.

For Linux, macOS, or Unix:

aws rds remove-option-from-option-group \
 --option-group-name teradata-odbc-se-2019 \
 --options ODBC_TERADATA \
 --apply-immediately

For Windows:

aws rds remove-option-from-option-group ^
 --option-group-name teradata-odbc-se-2019 ^
 --options ODBC_TERADATA ^
 --apply-immediately

Linked Servers with Teradata ODBC 3105

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Support for native backup and restore in SQL Server

By using native backup and restore for SQL Server databases, you can create a differential or full
backup of your on-premises database and store the backup files on Amazon S3. You can then
restore to an existing Amazon RDS DB instance running SQL Server. You can also back up an RDS
for SQL Server database, store it on Amazon S3, and restore it in other locations. In addition, you
can restore the backup to an on-premises server, or a different Amazon RDS DB instance running
SQL Server. For more information, see Importing and exporting SQL Server databases using native
backup and restore.

Amazon RDS supports native backup and restore for Microsoft SQL Server databases by using
differential and full backup files (.bak files).

Adding the native backup and restore option

The general process for adding the native backup and restore option to a DB instance is the
following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the SQLSERVER_BACKUP_RESTORE option to the option group.

3. Associate an AWS Identity and Access Management (IAM) role with the option. The IAM role
must have access to an S3 bucket to store the database backups.

That is, the option must have as its option setting a valid Amazon Resource Name (ARN) in the
format arn:aws:iam::account-id:role/role-name. For more information, see Amazon
Resource Names (ARNs) in the AWS General Reference.

The IAM role must also have a trust relationship and a permissions policy attached. The trust
relationship allows RDS to assume the role, and the permissions policy defines the actions that
the role can perform. For more information, see Manually creating an IAM role for native backup
and restore.

4. Associate the option group with the DB instance.

After you add the native backup and restore option, you don't need to restart your DB instance. As
soon as the option group is active, you can begin backing up and restoring immediately.

Native backup and restore 3106

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-iam
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-iam

Amazon Relational Database Service User Guide

Console

To add the native backup and restore option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Create a new option group or use an existing option group. For information on how to create a
custom DB option group, see Creating an option group.

To use an existing option group, skip to the next step.

4. Add the SQLSERVER_BACKUP_RESTORE option to the option group. For more information
about adding options, see Adding an option to an option group.

5. Do one of the following:

• To use an existing IAM role and Amazon S3 settings, choose an existing IAM role for IAM
Role. If you use an existing IAM role, RDS uses the Amazon S3 settings configured for this
role.

• To create a new role and configure Amazon S3 settings, do the following:

1. For IAM role, choose Create a new role.

2. For S3 bucket, choose an S3 bucket from the list.

3. For S3 prefix (optional), specify a prefix to use for the files stored in your Amazon S3
bucket.

This prefix can include a file path but doesn't have to. If you provide a prefix, RDS attaches
that prefix to all backup files. RDS then uses the prefix during a restore to identify related
files and ignore irrelevant files. For example, you might use the S3 bucket for purposes
besides holding backup files. In this case, you can use the prefix to have RDS perform
native backup and restore only on a particular folder and its subfolders.

If you leave the prefix blank, then RDS doesn't use a prefix to identify backup files or files
to restore. As a result, during a multiple-file restore, RDS attempts to restore every file in
every folder of the S3 bucket.

4. Choose the Enable encryption check box to encrypt the backup file. Leave the check box
cleared (the default) to have the backup file unencrypted.

Native backup and restore 3107

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

If you chose Enable encryption, choose an encryption key for AWS KMS key. For more
information about encryption keys, see Getting started in the AWS Key Management
Service Developer Guide.

6. Choose Add option.

7. Apply the option group to a new or existing DB instance:

• For a new DB instance, apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, apply the option group by modifying the instance and attaching
the new option group. For more information, see Modifying an Amazon RDS DB instance.

CLI

This procedure makes the following assumptions:

• You're adding the SQLSERVER_BACKUP_RESTORE option to an option group that already exists.
For more information about adding options, see Adding an option to an option group.

• You're associating the option with an IAM role that already exists and has access to an S3 bucket
to store the backups.

• You're applying the option group to a DB instance that already exists. For more information, see
Modifying an Amazon RDS DB instance.

To add the native backup and restore option

1. Add the SQLSERVER_BACKUP_RESTORE option to the option group.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --apply-immediately \
 --option-group-name mybackupgroup \
 --options "OptionName=SQLSERVER_BACKUP_RESTORE, \
 OptionSettings=[{Name=IAM_ROLE_ARN,Value=arn:aws:iam::account-id:role/role-
name}]"

Native backup and restore 3108

https://docs.aws.amazon.com/kms/latest/developerguide/getting-started.html

Amazon Relational Database Service User Guide

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name mybackupgroup ^
 --options "[{\"OptionName\": \"SQLSERVER_BACKUP_RESTORE\", ^
 \"OptionSettings\": [{\"Name\": \"IAM_ROLE_ARN\", ^
 \"Value\": \"arn:aws:iam::account-id:role/role-name"}]}]" ^
 --apply-immediately

Note

When using the Windows command prompt, you must escape double quotes (") in
JSON code by prefixing them with a backslash (\).

2. Apply the option group to the DB instance.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --option-group-name mybackupgroup \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --option-group-name mybackupgroup ^
 --apply-immediately

Modifying native backup and restore option settings

After you enable the native backup and restore option, you can modify the settings for the option.
For more information about how to modify option settings, see Modifying an option setting.

Native backup and restore 3109

Amazon Relational Database Service User Guide

Removing the native backup and restore option

You can turn off native backup and restore by removing the option from your DB instance. After
you remove the native backup and restore option, you don't need to restart your DB instance.

To remove the native backup and restore option from a DB instance, do one of the following:

• Remove the option from the option group it belongs to. This change affects all DB instances that
use the option group. For more information, see Removing an option from an option group.

• Modify the DB instance and specify a different option group that doesn't include the native
backup and restore option. This change affects a single DB instance. You can specify the default
(empty) option group, or a different custom option group. For more information, see Modifying
an Amazon RDS DB instance.

Native backup and restore 3110

Amazon Relational Database Service User Guide

Support for Transparent Data Encryption in SQL Server

Amazon RDS supports using Transparent Data Encryption (TDE) to encrypt stored data on your
DB instances running Microsoft SQL Server. TDE automatically encrypts data before it is written to
storage, and automatically decrypts data when the data is read from storage.

Amazon RDS supports TDE for the following SQL Server versions and editions:

• SQL Server 2022 Standard and Enterprise Editions

• SQL Server 2019 Standard and Enterprise Editions

• SQL Server 2017 Enterprise Edition

• SQL Server 2016 Enterprise Edition

Transparent Data Encryption for SQL Server provides encryption key management by using a two-
tier key architecture. A certificate, which is generated from the database master key, is used to
protect the data encryption keys. The database encryption key performs the actual encryption and
decryption of data on the user database. Amazon RDS backs up and manages the database master
key and the TDE certificate.

Transparent Data Encryption is used in scenarios where you need to encrypt sensitive data. For
example, you might want to provide data files and backups to a third party, or address security-
related regulatory compliance issues. You can't encrypt the system databases for SQL Server, such
as the model or master databases.

A detailed discussion of Transparent Data Encryption is beyond the scope of this guide, but make
sure that you understand the security strengths and weaknesses of each encryption algorithm
and key. For information about Transparent Data Encryption for SQL Server, see Transparent Data
Encryption (TDE) in the Microsoft documentation.

Topics

• Turning on TDE for RDS for SQL Server

• Encrypting data on RDS for SQL Server

• Backing up and restoring TDE certificates on RDS for SQL Server

• Backing up and restoring TDE certificates for on-premises databases

• Turning off TDE for RDS for SQL Server

Transparent Data Encryption 3111

http://msdn.microsoft.com/en-us/library/bb934049.aspx
http://msdn.microsoft.com/en-us/library/bb934049.aspx

Amazon Relational Database Service User Guide

Turning on TDE for RDS for SQL Server

To turn on Transparent Data Encryption for an RDS for SQL Server DB instance, specify the TDE
option in an RDS option group that's associated with that DB instance:

1. Determine whether your DB instance is already associated with an option group that has the TDE
option. To view the option group that a DB instance is associated with, use the RDS console, the
describe-db-instance AWS CLI command, or the API operation DescribeDBInstances.

2. If the DB instance isn't associated with an option group that has TDE turned on, you have
two choices. You can create an option group and add the TDE option, or you can modify the
associated option group to add it.

Note

In the RDS console, the option is named TRANSPARENT_DATA_ENCRYPTION. In the AWS
CLI and RDS API, it's named TDE.

For information about creating or modifying an option group, see Working with option groups.
For information about adding an option to an option group, see Adding an option to an option
group.

3. Associate the DB instance with the option group that has the TDE option. For information about
associating a DB instance with an option group, see Modifying an Amazon RDS DB instance.

Option group considerations

The TDE option is a persistent option. You can't remove it from an option group unless all DB
instances and backups are no longer associated with the option group. After you add the TDE
option to an option group, the option group can be associated only with DB instances that use TDE.
For more information about persistent options in an option group, see Option groups overview.

Because the TDE option is a persistent option, you can have a conflict between the option group
and an associated DB instance. You can have a conflict in the following situations:

• The current option group has the TDE option, and you replace it with an option group that
doesn't have the TDE option.

Transparent Data Encryption 3112

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

• You restore from a DB snapshot to a new DB instance that doesn't have an option group that
contains the TDE option. For more information about this scenario, see Considerations for option
groups.

SQL Server performance considerations

Using Transparent Data Encryption can affect the performance of a SQL Server DB instance.

Performance for unencrypted databases can also be degraded if the databases are on a DB
instance that has at least one encrypted database. As a result, we recommend that you keep
encrypted and unencrypted databases on separate DB instances.

Encrypting data on RDS for SQL Server

When the TDE option is added to an option group, Amazon RDS generates a certificate that's used
in the encryption process. You can then use the certificate to run SQL statements that encrypt data
in a database on the DB instance.

The following example uses the RDS-created certificate called RDSTDECertificateName to
encrypt a database called myDatabase.

---------- Turning on TDE -------------

-- Find an RDS TDE certificate to use
USE [master]
GO
SELECT name FROM sys.certificates WHERE name LIKE 'RDSTDECertificate%'
GO

USE [myDatabase]
GO
-- Create a database encryption key (DEK) using one of the certificates from the
 previous step
CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER CERTIFICATE [RDSTDECertificateName]
GO

-- Turn on encryption for the database
ALTER DATABASE [myDatabase] SET ENCRYPTION ON
GO

Transparent Data Encryption 3113

Amazon Relational Database Service User Guide

-- Verify that the database is encrypted
USE [master]
GO
SELECT name FROM sys.databases WHERE is_encrypted = 1
GO
SELECT db_name(database_id) as DatabaseName, * FROM sys.dm_database_encryption_keys
GO

The time that it takes to encrypt a SQL Server database using TDE depends on several factors.
These include the size of the DB instance, whether the instance uses Provisioned IOPS storage, the
amount of data, and other factors.

Backing up and restoring TDE certificates on RDS for SQL Server

RDS for SQL Server provides stored procedures for backing up, restoring, and dropping TDE
certificates. RDS for SQL Server also provides a function for viewing restored user TDE certificates.

User TDE certificates are used to restore databases to RDS for SQL Server that are on-premises
and have TDE turned on. These certificates have the prefix UserTDECertificate_. After
restoring databases, and before making them available to use, RDS modifies the databases that
have TDE turned on to use RDS-generated TDE certificates. These certificates have the prefix
RDSTDECertificate.

User TDE certificates remain on the RDS for SQL Server DB instance, unless you drop them using
the rds_drop_tde_certificate stored procedure. For more information, see Dropping restored
TDE certificates.

You can use a user TDE certificate to restore other databases from the source DB instance. The
databases to restore must use the same TDE certificate and have TDE turned on. You don't have to
import (restore) the same certificate again.

Topics

• Prerequisites

• Limitations

• Backing up a TDE certificate

• Restoring a TDE certificate

• Viewing restored TDE certificates

• Dropping restored TDE certificates

Transparent Data Encryption 3114

Amazon Relational Database Service User Guide

Prerequisites

Before you can back up or restore TDE certificates on RDS for SQL Server, make sure to perform
the following tasks. The first three are described in Setting up for native backup and restore.

1. Create Amazon S3 buckets for storing files to back up and restore.

We recommend that you use separate buckets for database backups and for TDE certificate
backups.

2. Create an IAM role for backing up and restoring files.

The IAM role must be both a user and an administrator for the AWS KMS key.

In addition to the permissions required for SQL Server native backup and restore, the IAM role
also requires the following permissions:

• s3:GetBucketACL, s3:GetBucketLocation, and s3:ListBucket on the S3 bucket
resource

• s3:ListAllMyBuckets on the * resource

3. Add the SQLSERVER_BACKUP_RESTORE option to an option group on your DB instance.

This is in addition to the TRANSPARENT_DATA_ENCRYPTION (TDE) option.

4. Make sure that you have a symmetric encryption KMS key. You have the following options:

• If you have an existing KMS key in your account, you can use it. No further action is necessary.

• If you don't have an existing symmetric encryption KMS key in your account, create a KMS key
by following the instructions in Creating keys in the AWS Key Management Service Developer
Guide.

5. Enable Amazon S3 integration to transfer files between the DB instance and Amazon S3.

For more information on enabling Amazon S3 integration, see Integrating an Amazon RDS for
SQL Server DB instance with Amazon S3.

Limitations

Using stored procedures to back up and restore TDE certificates has the following limitations:

• Both the SQLSERVER_BACKUP_RESTORE and TRANSPARENT_DATA_ENCRYPTION (TDE) options
must be added to the option group that you associated with your DB instance.

• TDE certificate backup and restore aren't supported on Multi-AZ DB instances.

Transparent Data Encryption 3115

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Relational Database Service User Guide

• Canceling TDE certificate backup and restore tasks isn't supported.

• You can't use a user TDE certificate for TDE encryption of any other database on your RDS for
SQL Server DB instance. You can use it to restore only other databases from the source DB
instance that have TDE turned on and that use the same TDE certificate.

• You can drop only user TDE certificates.

• The maximum number of user TDE certificates supported on RDS is 10. If the number exceeds
10, drop unused TDE certificates and try again.

• The certificate name can't be empty or null.

• When restoring a certificate, the certificate name can't include the keyword
RDSTDECERTIFICATE, and must start with the UserTDECertificate_ prefix.

• The @certificate_name parameter can include only the following characters: a-z, 0-9, @, $, #,
and underscore (_).

• The file extension for @certificate_file_s3_arn must be .cer (case-insensitive).

• The file extension for @private_key_file_s3_arn must be .pvk (case-insensitive).

• The S3 metadata for the private key file must include the x-amz-meta-rds-tde-pwd tag. For
more information, see Backing up and restoring TDE certificates for on-premises databases.

Backing up a TDE certificate

To back up TDE certificates, use the rds_backup_tde_certificate stored procedure. It has the
following syntax.

EXECUTE msdb.dbo.rds_backup_tde_certificate
 @certificate_name='UserTDECertificate_certificate_name |
 RDSTDECertificatetimestamp',
 @certificate_file_s3_arn='arn:aws:s3:::bucket_name/certificate_file_name.cer',
 @private_key_file_s3_arn='arn:aws:s3:::bucket_name/key_file_name.pvk',
 @kms_password_key_arn='arn:aws:kms:region:account-id:key/key-id',
 [@overwrite_s3_files=0|1];

The following parameters are required:

• @certificate_name – The name of the TDE certificate to back up.

• @certificate_file_s3_arn – The destination Amazon Resource Name (ARN) for the
certificate backup file in Amazon S3.

Transparent Data Encryption 3116

Amazon Relational Database Service User Guide

• @private_key_file_s3_arn – The destination S3 ARN of the private key file that secures the
TDE certificate.

• @kms_password_key_arn – The ARN of the symmetric KMS key used to encrypt the private key
password.

The following parameter is optional:

• @overwrite_s3_files – Indicates whether to overwrite the existing certificate and private key
files in S3:

• 0 – Doesn't overwrite the existing files. This value is the default.

Setting @overwrite_s3_files to 0 returns an error if a file already exists.

• 1 – Overwrites an existing file that has the specified name, even if it isn't a backup file.

Example of backing up a TDE certificate

EXECUTE msdb.dbo.rds_backup_tde_certificate
 @certificate_name='RDSTDECertificate20211115T185333',
 @certificate_file_s3_arn='arn:aws:s3:::TDE_certs/mycertfile.cer',
 @private_key_file_s3_arn='arn:aws:s3:::TDE_certs/mykeyfile.pvk',
 @kms_password_key_arn='arn:aws:kms:us-
west-2:123456789012:key/AKIAIOSFODNN7EXAMPLE',
 @overwrite_s3_files=1;

Restoring a TDE certificate

You use the rds_restore_tde_certificate stored procedure to restore (import) user TDE
certificates. It has the following syntax.

EXECUTE msdb.dbo.rds_restore_tde_certificate
 @certificate_name='UserTDECertificate_certificate_name',
 @certificate_file_s3_arn='arn:aws:s3:::bucket_name/certificate_file_name.cer',
 @private_key_file_s3_arn='arn:aws:s3:::bucket_name/key_file_name.pvk',
 @kms_password_key_arn='arn:aws:kms:region:account-id:key/key-id';

The following parameters are required:

• @certificate_name – The name of the TDE certificate to restore. The name must start with
the UserTDECertificate_ prefix.

Transparent Data Encryption 3117

Amazon Relational Database Service User Guide

• @certificate_file_s3_arn – The S3 ARN of the backup file used to restore the TDE
certificate.

• @private_key_file_s3_arn – The S3 ARN of the private key backup file of the TDE
certificate to be restored.

• @kms_password_key_arn – The ARN of the symmetric KMS key used to encrypt the private key
password.

Example of restoring a TDE certificate

EXECUTE msdb.dbo.rds_restore_tde_certificate
 @certificate_name='UserTDECertificate_myTDEcertificate',
 @certificate_file_s3_arn='arn:aws:s3:::TDE_certs/mycertfile.cer',
 @private_key_file_s3_arn='arn:aws:s3:::TDE_certs/mykeyfile.pvk',
 @kms_password_key_arn='arn:aws:kms:us-
west-2:123456789012:key/AKIAIOSFODNN7EXAMPLE';

Viewing restored TDE certificates

You use the rds_fn_list_user_tde_certificates function to view restored (imported) user
TDE certificates. It has the following syntax.

SELECT * FROM msdb.dbo.rds_fn_list_user_tde_certificates();

The output resembles the following. Not all columns are shown here.

name certifica
te_id

principal
_id

pvt_key_e
ncryption
_type_des
c

issuer_na
me

cert_seri
al_number

thumbprin
t

subjectstart_dat
e

expiry_da
te

pvt_key_l
ast_backu
p_date

UserTDECe
rtificate
_tde_cert

343 1 ENCRYPTED
_BY_MASTE
R_KEY

AnyCompan
y
Shipping

79
3e
57
a3
69
fd
1d

0x6BB218B
341103886
80B
FE1BA2D86
C69509648
5B5

AnyCompan
y
Shipping

2022-04-0
5
19:49:45.
0000000

2023-04-0
5
19:49:45.
0000000

NULL

Transparent Data Encryption 3118

Amazon Relational Database Service User Guide

9e
47
2c
32
67
1d
9c
ca
af

Dropping restored TDE certificates

To drop restored (imported) user TDE certificates that you aren't using, use the
rds_drop_tde_certificate stored procedure. It has the following syntax.

EXECUTE msdb.dbo.rds_drop_tde_certificate
 @certificate_name='UserTDECertificate_certificate_name';

The following parameter is required:

• @certificate_name – The name of the TDE certificate to drop.

You can drop only restored (imported) TDE certificates. You can't drop RDS-created certificates.

Example of dropping a TDE certificate

EXECUTE msdb.dbo.rds_drop_tde_certificate
 @certificate_name='UserTDECertificate_myTDEcertificate';

Backing up and restoring TDE certificates for on-premises databases

You can back up TDE certificates for on-premises databases, then later restore them to RDS for
SQL Server. You can also restore an RDS for SQL Server TDE certificate to an on-premises DB
instance.

The following procedure backs up a TDE certificate and private key. The private key is encrypted
using a data key generated from your symmetric encryption KMS key.

Transparent Data Encryption 3119

Amazon Relational Database Service User Guide

To back up an on-premises TDE certificate

1. Generate the data key using the AWS CLI generate-data-key command.

aws kms generate-data-key \
 --key-id my_KMS_key_ID \
 --key-spec AES_256

The output resembles the following.

{
"CiphertextBlob": "AQIDAHimL2NEoAlOY6Bn7LJfnxi/OZe9kTQo/
XQXduug1rmerwGiL7g5ux4av9GfZLxYTDATAAAAfjB8BgkqhkiG9w0B
BwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMyCxLMi7GRZgKqD65AgEQgDtjvZLJo2cQ31Vetngzm2ybHDc3d2vI74SRUzZ
2RezQy3sAS6ZHrCjfnfn0c65bFdhsXxjSMnudIY7AKw==",
"Plaintext": "U/fpGtmzGCYBi8A2+0/9qcRQRK2zmG/aOn939ZnKi/0=",
"KeyId": "arn:aws:kms:us-west-2:123456789012:key/1234abcd-00ee-99ff-88dd-
aa11bb22cc33"
}

You use the plain text output in the next step as the private key password.

2. Back up your TDE certificate as shown in the following example.

BACKUP CERTIFICATE myOnPremTDEcertificate TO FILE = 'D:\tde-cert-backup.cer'
WITH PRIVATE KEY (
FILE = 'C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\MSSQL\DATA\cert-
backup-key.pvk',
ENCRYPTION BY PASSWORD = 'U/fpGtmzGCYBi8A2+0/9qcRQRK2zmG/aOn939ZnKi/0=');

3. Save the certificate backup file to your Amazon S3 certificate bucket.

4. Save the private key backup file to your S3 certificate bucket, with the following tag in the
file's metadata:

• Key – x-amz-meta-rds-tde-pwd

• Value – The CiphertextBlob value from generating the data key, as in the following
example.

AQIDAHimL2NEoAlOY6Bn7LJfnxi/OZe9kTQo/
XQXduug1rmerwGiL7g5ux4av9GfZLxYTDATAAAAfjB8BgkqhkiG9w0B
BwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMyCxLMi7GRZgKqD65AgEQgDtjvZLJo2cQ31Vetngzm2ybHDc3d2vI74SRUzZ

Transparent Data Encryption 3120

https://docs.aws.amazon.com/cli/latest/reference/kms/generate-data-key.html

Amazon Relational Database Service User Guide

2RezQy3sAS6ZHrCjfnfn0c65bFdhsXxjSMnudIY7AKw==

The following procedure restores an RDS for SQL Server TDE certificate to an on-premises
DB instance. You copy and restore the TDE certificate on your destination DB instance using
the certificate backup, corresponding private key file, and data key. The restored certificate is
encrypted by the database master key of the new server.

To restore a TDE certificate

1. Copy the TDE certificate backup file and private key file from Amazon S3 to the destination
instance. For more information on copying files from Amazon S3, see Transferring files
between RDS for SQL Server and Amazon S3.

2. Use your KMS key to decrypt the output cipher text to retrieve the plain text of the data key.
The cipher text is located in the S3 metadata of the private key backup file.

aws kms decrypt \
 --key-id my_KMS_key_ID \
 --ciphertext-blob fileb://exampleCiphertextFile | base64 -d \
 --output text \
 --query Plaintext

You use the plain text output in the next step as the private key password.

3. Use the following SQL command to restore your TDE certificate.

CREATE CERTIFICATE myOnPremTDEcertificate FROM FILE='D:\tde-cert-backup.cer'
WITH PRIVATE KEY (FILE = N'D:\tde-cert-key.pvk',
DECRYPTION BY PASSWORD = 'plain_text_output');

For more information on KMS decryption, see decrypt in the KMS section of the AWS CLI Command
Reference.

After the TDE certificate is restored on the destination DB instance, you can restore encrypted
databases with that certificate.

Transparent Data Encryption 3121

https://docs.aws.amazon.com/cli/latest/reference/kms/decrypt.html

Amazon Relational Database Service User Guide

Note

You can use the same TDE certificate to encrypt multiple SQL Server databases on the
source DB instance. To migrate multiple databases to a destination instance, copy the TDE
certificate associated with them to the destination instance only once.

Turning off TDE for RDS for SQL Server

To turn off TDE for an RDS for SQL Server DB instance, first make sure that there are no encrypted
objects left on the DB instance. To do so, either decrypt the objects or drop them. If any encrypted
objects exist on the DB instance, you can't turn off TDE for the DB instance. When you use the
console to remove the TDE option from an option group, the console indicates that it's processing.
In addition, an error event is created if the option group is associated with an encrypted DB
instance or DB snapshot.

The following example removes the TDE encryption from a database called customerDatabase.

------------- Removing TDE ----------------

USE [customerDatabase]
GO

-- Turn off encryption of the database
ALTER DATABASE [customerDatabase]
SET ENCRYPTION OFF
GO

-- Wait until the encryption state of the database becomes 1. The state is 5
 (Decryption in progress) for a while
SELECT db_name(database_id) as DatabaseName, * FROM sys.dm_database_encryption_keys
GO

-- Drop the DEK used for encryption
DROP DATABASE ENCRYPTION KEY
GO

-- Alter to SIMPLE Recovery mode so that your encrypted log gets truncated
USE [master]
GO
ALTER DATABASE [customerDatabase] SET RECOVERY SIMPLE

Transparent Data Encryption 3122

Amazon Relational Database Service User Guide

GO

When all objects are decrypted, you have two options:

1. You can modify the DB instance to be associated with an option group without the TDE option.

2. You can remove the TDE option from the option group.

Transparent Data Encryption 3123

Amazon Relational Database Service User Guide

SQL Server Audit

In Amazon RDS, you can audit Microsoft SQL Server databases by using the built-in SQL Server
auditing mechanism. You can create audits and audit specifications in the same way that you create
them for on-premises database servers.

RDS uploads the completed audit logs to your S3 bucket, using the IAM role that you provide. If
you enable retention, RDS keeps your audit logs on your DB instance for the configured period of
time.

For more information, see SQL Server Audit (database engine) in the Microsoft SQL Server
documentation.

SQL Server Audit with Database Activity Streams

You can use Database Activity Streams for RDS to integrate SQL Server Audit events with database
activity monitoring tools from Imperva, McAfee, and IBM. For more information about auditing
with Database Activity Streams for RDS SQL Server, see Auditing in Microsoft SQL Server

Topics

• Support for SQL Server Audit

• Adding SQL Server Audit to the DB instance options

• Using SQL Server Audit

• Viewing audit logs

• Using SQL Server Audit with Multi-AZ instances

• Configuring an S3 bucket

• Manually creating an IAM role for SQL Server Audit

Support for SQL Server Audit

In Amazon RDS, starting with SQL Server 2016, all editions of SQL Server support server-level
audits, and the Enterprise edition also supports database-level audits. Starting with SQL Server
2016 (13.x) SP1, all editions support both server-level and database-level audits. For more
information, see SQL Server Audit (database engine) in the SQL Server documentation.

RDS supports configuring the following option settings for SQL Server Audit.

SQL Server Audit 3124

https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine

Amazon Relational Database Service User Guide

Option setting Valid values Description

IAM_ROLE_ARN A valid Amazon Resource
Name (ARN) in the format
 arn:aws:iam:: account-
id :role/role-name .

The ARN of the IAM role that
grants access to the S3 bucket
where you want to store your
audit logs. For more informati
on, see Amazon Resource
Names (ARNs) in the AWS
General Reference.

S3_BUCKET_ARN A valid ARN in the format
arn:aws:s3::: amzn-
s3-demo-bucket or
 arn:aws:s3::: amzn-s3-
demo-bucket /key-pref
ix

The ARN for the S3 bucket
where you want to store your
audit logs.

ENABLE_COMPRESSION true or false Controls audit log compressi
on. By default, compression is
enabled (set to true).

RETENTION_TIME 0 to 840 The retention time (in
hours) that SQL Server audit
records are kept on your RDS
instance. By default, retention
is disabled.

Adding SQL Server Audit to the DB instance options

Enabling SQL Server Audit requires two steps: enabling the option on the DB instance, and
enabling the feature inside SQL Server. The process for adding the SQL Server Audit option to a DB
instance is as follows:

1. Create a new option group, or copy or modify an existing option group.

2. Add and configure all required options.

3. Associate the option group with the DB instance.

SQL Server Audit 3125

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-iam
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-iam

Amazon Relational Database Service User Guide

After you add the SQL Server Audit option, you don't need to restart your DB instance. As soon as
the option group is active, you can create audits and store audit logs in your S3 bucket.

To add and configure SQL Server Audit on a DB instance's option group

1. Choose one of the following:

• Use an existing option group.

• Create a custom DB option group and use that option group. For more information, see
Creating an option group.

2. Add the SQLSERVER_AUDIT option to the option group, and configure the option settings. For
more information about adding options, see Adding an option to an option group.

• For IAM role, if you already have an IAM role with the required policies, you can choose
that role. To create a new IAM role, choose Create a New Role. For information about the
required policies, see Manually creating an IAM role for SQL Server Audit.

• For Select S3 destination, if you already have an S3 bucket that you want to use, choose it.
To create an S3 bucket, choose Create a New S3 Bucket.

• For Enable Compression, leave this option chosen to compress audit files. Compression is
enabled by default. To disable compression, clear Enable Compression.

• For Audit log retention, to keep audit records on the DB instance, choose this option.
Specify a retention time in hours. The maximum retention time is 35 days.

3. Apply the option group to a new or existing DB instance. Choose one of the following:

• If you are creating a new DB instance, apply the option group when you launch the instance.

• On an existing DB instance, apply the option group by modifying the instance and then
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

Modifying the SQL Server Audit option

After you enable the SQL Server Audit option, you can modify the settings. For information about
how to modify option settings, see Modifying an option setting.

Removing SQL Server Audit from the DB instance options

You can turn off the SQL Server Audit feature by disabling audits and then deleting the option.

SQL Server Audit 3126

Amazon Relational Database Service User Guide

To remove auditing

1. Disable all of the audit settings inside SQL Server. To learn where audits are running, query
the SQL Server security catalog views. For more information, see Security catalog views in the
Microsoft SQL Server documentation.

2. Delete the SQL Server Audit option from the DB instance. Choose one of the following:

• Delete the SQL Server Audit option from the option group that the DB instance uses. This
change affects all DB instances that use the same option group. For more information, see
Removing an option from an option group.

• Modify the DB instance, and then choose an option group without the SQL Server Audit
option. This change affects only the DB instance that you modify. You can specify the
default (empty) option group, or a different custom option group. For more information, see
Modifying an Amazon RDS DB instance.

3. After you delete the SQL Server Audit option from the DB instance, you don't need to restart
the instance. Remove unneeded audit files from your S3 bucket.

Using SQL Server Audit

You can control server audits, server audit specifications, and database audit specifications the
same way that you control them for on-premises database servers.

Creating audits

You create server audits in the same way that you create them for on-premises database servers.
For information about how to create server audits, see CREATE SERVER AUDIT in the Microsoft SQL
Server documentation.

To avoid errors, adhere to the following limitations:

• Don't exceed the maximum number of supported server audits per instance of 50.

• Instruct SQL Server to write data to a binary file.

• Don't use RDS_ as a prefix in the server audit name.

• For FILEPATH, specify D:\rdsdbdata\SQLAudit.

• For MAXSIZE, specify a size between 2 MB and 50 MB.

• Don't configure MAX_ROLLOVER_FILES or MAX_FILES.

SQL Server Audit 3127

https://docs.microsoft.com/sql/relational-databases/system-catalog-views/security-catalog-views-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-server-audit-transact-sql

Amazon Relational Database Service User Guide

• Don't configure SQL Server to shut down the DB instance if it fails to write the audit record.

Creating audit specifications

You create server audit specifications and database audit specifications the same way that you
create them for on-premises database servers. For information about creating audit specifications,
see CREATE SERVER AUDIT SPECIFICATION and CREATE DATABASE AUDIT SPECIFICATION in the
Microsoft SQL Server documentation.

To avoid errors, don't use RDS_ as a prefix in the name of the database audit specification or server
audit specification.

Viewing audit logs

Your audit logs are stored in D:\rdsdbdata\SQLAudit.

After SQL Server finishes writing to an audit log file—when the file reaches its size limit—Amazon
RDS uploads the file to your S3 bucket. If retention is enabled, Amazon RDS moves the file into the
retention folder: D:\rdsdbdata\SQLAudit\transmitted.

For information about configuring retention, see Adding SQL Server Audit to the DB instance
options.

Audit records are kept on the DB instance until the audit log file is uploaded. You can view the
audit records by running the following command.

SELECT *
 FROM msdb.dbo.rds_fn_get_audit_file
 ('D:\rdsdbdata\SQLAudit*.sqlaudit'
 , default
 , default)

You can use the same command to view audit records in your retention folder by changing the
filter to D:\rdsdbdata\SQLAudit\transmitted*.sqlaudit.

SELECT *
 FROM msdb.dbo.rds_fn_get_audit_file
 ('D:\rdsdbdata\SQLAudit\transmitted*.sqlaudit'
 , default

SQL Server Audit 3128

https://docs.microsoft.com/sql/t-sql/statements/create-server-audit-specification-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-database-audit-specification-transact-sql

Amazon Relational Database Service User Guide

 , default)

Using SQL Server Audit with Multi-AZ instances

For Multi-AZ instances, the process for sending audit log files to Amazon S3 is similar to the
process for Single-AZ instances. However, there are some important differences:

• Database audit specification objects are replicated to all nodes.

• Server audits and server audit specifications aren't replicated to secondary nodes. Instead, you
have to create or modify them manually.

To capture server audits or a server audit specification from both nodes:

1. Create a server audit or a server audit specification on the primary node.

2. Fail over to the secondary node and create a server audit or a server audit specification with the
same name and GUID on the secondary node. Use the AUDIT_GUID parameter to specify the
GUID.

Configuring an S3 bucket

The audit log files are automatically uploaded from the DB instance to your S3 bucket. The
following restrictions apply to the S3 bucket that you use as a target for audit files:

• It must be in the same AWS Region as the DB instance.

• It must not be open to the public.

• The bucket owner must also be the IAM role owner.

• Your IAM role must have permissions for the customer-managed KMS key associated with the S3
bucket server-side encryption.

The target key that is used to store the data follows this naming schema: amzn-s3-demo-
bucket/key-prefix/instance-name/audit-name/node_file-name.ext

Note

You set both the bucket name and the key prefix values with the (S3_BUCKET_ARN) option
setting.

SQL Server Audit 3129

Amazon Relational Database Service User Guide

The schema is composed of the following elements:

• amzn-s3-demo-bucket – The name of your S3 bucket.

• key-prefix – The custom key prefix you want to use for audit logs.

• instance-name – The name of your Amazon RDS instance.

• audit-name – The name of the audit.

• node – The identifier of the node that is the source of the audit logs (node1 or node2). There is
one node for a Single-AZ instance and two replication nodes for a Multi-AZ instance. These are
not primary and secondary nodes, because the roles of primary and secondary change over time.
Instead, the node identifier is a simple label.

• node1 – The first replication node (Single-AZ has one node only).

• node2 – The second replication node (Multi-AZ has two nodes).

• file-name – The target file name. The file name is taken as-is from SQL Server.

• ext – The extension of the file (zip or sqlaudit):

• zip – If compression is enabled (default).

• sqlaudit – If compression is disabled.

Manually creating an IAM role for SQL Server Audit

Typically, when you create a new option, the AWS Management Console creates the IAM role and
the IAM trust policy for you. However, you can manually create a new IAM role to use with SQL
Server Audits, so that you can customize it with any additional requirements you might have. To
do this, you create an IAM role and delegate permissions so that the Amazon RDS service can use
your Amazon S3 bucket. When you create this IAM role, you attach trust and permissions policies.
The trust policy allows Amazon RDS to assume this role. The permission policy defines the actions
that this role can do. For more information, see Creating a role to delegate permissions to an AWS
service in the AWS Identity and Access Management User Guide.

You can use the examples in this section to create the trust relationships and permissions policies
you need.

The following example shows a trust relationship for SQL Server Audit. It uses the service principal
rds.amazonaws.com to allow RDS to write to the S3 bucket. A service principal is an identifier
that is used to grant permissions to a service. Anytime you allow access to rds.amazonaws.com
in this way, you are allowing RDS to perform an action on your behalf. For more information about
service principals, see AWS JSON policy elements: Principal.

SQL Server Audit 3130

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Relational Database Service User Guide

Example trust relationship for SQL Server Audit

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource-based trust relationships to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

You might use both global condition context keys and have the aws:SourceArn value contain the
account ID. In this case, the aws:SourceAccount value and the account in the aws:SourceArn
value must use the same account ID when used in the same statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the trust relationship, make sure to use the aws:SourceArn global condition context key with
the full Amazon Resource Name (ARN) of the resources accessing the role. For SQL Server Audit,
make sure to include both the DB option group and the DB instances, as shown in the following
example.

Example trust relationship with global condition context key for SQL Server Audit

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

SQL Server Audit 3131

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn": [
 "arn:aws:rds:Region:my_account_ID:db:db_instance_identifier",
 "arn:aws:rds:Region:my_account_ID:og:option_group_name"
]
 }
 }
 }
]
}

In the following example of a permissions policy for SQL Server Audit, we specify an ARN for the
Amazon S3 bucket. You can use ARNs to identify a specific account, user, or role that you want
grant access to. For more information about using ARNs, see Amazon resource names (ARNs).

Example permissions policy for SQL Server Audit

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketACL",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:ListMultipartUploadParts",

SQL Server Audit 3132

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Relational Database Service User Guide

 "s3:AbortMultipartUpload"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/key_prefix/*"
 }
]
 }

Note

The s3:ListAllMyBuckets action is required for verifying that the same AWS account
owns both the S3 bucket and the SQL Server DB instance. The action lists the names of the
buckets in the account.
S3 bucket namespaces are global. If you accidentally delete your bucket, another user can
create a bucket with the same name in a different account. Then the SQL Server Audit data
is written to the new bucket.

SQL Server Audit 3133

Amazon Relational Database Service User Guide

Support for SQL Server Analysis Services in Amazon RDS for SQL
Server

Microsoft SQL Server Analysis Services (SSAS) is part of the Microsoft Business Intelligence (MSBI)
suite. SSAS is an online analytical processing (OLAP) and data mining tool that is installed within
SQL Server. You use SSAS to analyze data to help make business decisions. SSAS differs from the
SQL Server relational database because SSAS is optimized for queries and calculations common in
a business intelligence environment.

You can turn on SSAS for existing or new DB instances. It's installed on the same DB instance
as your database engine. For more information on SSAS, see the Microsoft Analysis services
documentation.

Amazon RDS supports SSAS for SQL Server Standard and Enterprise Editions on the following
versions:

• Tabular mode:

• SQL Server 2019, version 15.00.4043.16.v1 and higher

• SQL Server 2017, version 14.00.3223.3.v1 and higher

• SQL Server 2016, version 13.00.5426.0.v1 and higher

• Multidimensional mode:

• SQL Server 2019, version 15.00.4153.1.v1 and higher

• SQL Server 2017, version 14.00.3381.3.v1 and higher

• SQL Server 2016, version 13.00.5882.1.v1 and higher

Contents

• Limitations

• Turning on SSAS

• Creating an option group for SSAS

• Adding the SSAS option to the option group

• Associating the option group with your DB instance

• Allowing inbound access to your VPC security group

• Enabling Amazon S3 integration

• Deploying SSAS projects on Amazon RDS

SQL Server Analysis Services 3134

https://docs.microsoft.com/en-us/analysis-services
https://docs.microsoft.com/en-us/analysis-services

Amazon Relational Database Service User Guide

• Monitoring the status of a deployment task

• Using SSAS on Amazon RDS

• Setting up a Windows-authenticated user for SSAS

• Adding a domain user as a database administrator

• Creating an SSAS proxy

• Scheduling SSAS database processing using SQL Server Agent

• Revoking SSAS access from the proxy

• Backing up an SSAS database

• Restoring an SSAS database

• Restoring a DB instance to a specified time

• Changing the SSAS mode

• Turning off SSAS

• Troubleshooting SSAS issues

Limitations

The following limitations apply to using SSAS on RDS for SQL Server:

• RDS for SQL Server supports running SSAS in Tabular or Multidimensional mode. For
more information, see Comparing tabular and multidimensional solutions in the Microsoft
documentation.

• You can only use one SSAS mode at a time. Before changing modes, make sure to delete all of
the SSAS databases.

For more information, see Changing the SSAS mode.

• Multi-AZ instances aren't supported.

• Instances must use self-managed Active Directory or AWS Directory Service for Microsoft Active
Directory for SSAS authentication. For more information, see Working with Active Directory with
RDS for SQL Server.

• Users aren't given SSAS server administrator access, but they can be granted database-level
administrator access.

• The only supported port for accessing SSAS is 2383.

• You can't deploy projects directly. We provide an RDS stored procedure to do this. For more
information, see Deploying SSAS projects on Amazon RDS.

SQL Server Analysis Services 3135

https://docs.microsoft.com/en-us/analysis-services/comparing-tabular-and-multidimensional-solutions-ssas

Amazon Relational Database Service User Guide

• Processing during deployment isn't supported.

• Using .xmla files for deployment isn't supported.

• SSAS project input files and database backup output files can only be in the D:\S3 folder on the
DB instance.

Turning on SSAS

Use the following process to turn on SSAS for your DB instance:

1. Create a new option group, or choose an existing option group.

2. Add the SSAS option to the option group.

3. Associate the option group with the DB instance.

4. Allow inbound access to the virtual private cloud (VPC) security group for the SSAS listener port.

5. Turn on Amazon S3 integration.

Creating an option group for SSAS

Use the AWS Management Console or the AWS CLI to create an option group that corresponds to
the SQL Server engine and version of the DB instance that you plan to use.

Note

You can also use an existing option group if it's for the correct SQL Server engine and
version.

Console

The following console procedure creates an option group for SQL Server Standard Edition 2017.

To create the option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group pane, do the following:

SQL Server Analysis Services 3136

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

a. For Name, enter a name for the option group that is unique within your AWS account,
such as ssas-se-2017. The name can contain only letters, digits, and hyphens.

b. For Description, enter a brief description of the option group, such as SSAS option
group for SQL Server SE 2017. The description is used for display purposes.

c. For Engine, choose sqlserver-se.

d. For Major engine version, choose 14.00.

5. Choose Create.

CLI

The following CLI example creates an option group for SQL Server Standard Edition 2017.

To create the option group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds create-option-group \
 --option-group-name ssas-se-2017 \
 --engine-name sqlserver-se \
 --major-engine-version 14.00 \
 --option-group-description "SSAS option group for SQL Server SE 2017"

For Windows:

aws rds create-option-group ^
 --option-group-name ssas-se-2017 ^
 --engine-name sqlserver-se ^
 --major-engine-version 14.00 ^
 --option-group-description "SSAS option group for SQL Server SE 2017"

Adding the SSAS option to the option group

Next, use the AWS Management Console or the AWS CLI to add the SSAS option to the option
group.

SQL Server Analysis Services 3137

Amazon Relational Database Service User Guide

Console

To add the SSAS option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group that you just created.

4. Choose Add option.

5. Under Option details, choose SSAS for Option name.

6. Under Option settings, do the following:

a. For Max memory, enter a value in the range 10–80.

Max memory specifies the upper threshold above which SSAS begins releasing memory
more aggressively to make room for requests that are running, and also new high-priority
requests. The number is a percentage of the total memory of the DB instance. The allowed
values are 10–80, and the default is 45.

b. For Mode, choose the SSAS server mode, Tabular or Multidimensional.

If you don't see the Mode option setting, it means that Multidimensional mode isn't
supported in your AWS Region. For more information, see Limitations.

Tabular is the default.

c. For Security groups, choose the VPC security group to associate with the option.

Note

The port for accessing SSAS, 2383, is prepopulated.

7. Under Scheduling, choose whether to add the option immediately or at the next maintenance
window.

8. Choose Add option.

SQL Server Analysis Services 3138

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

CLI

To add the SSAS option

1. Create a JSON file, for example ssas-option.json, with the following parameters:

• OptionGroupName – The name of option group that you created or chose previously
(ssas-se-2017 in the following example).

• Port – The port that you use to access SSAS. The only supported port is 2383.

• VpcSecurityGroupMemberships – Memberships for VPC security groups for your RDS DB
instance.

• MAX_MEMORY – The upper threshold above which SSAS should begin releasing memory
more aggressively to make room for requests that are running, and also new high-priority
requests. The number is a percentage of the total memory of the DB instance. The allowed
values are 10–80, and the default is 45.

• MODE – The SSAS server mode, either Tabular or Multidimensional. Tabular is the
default.

If you receive an error that the MODE option setting isn't valid, it means that
Multidimensional mode isn't supported in your AWS Region. For more information, see
Limitations.

The following is an example of a JSON file with SSAS option settings.

{
"OptionGroupName": "ssas-se-2017",
"OptionsToInclude": [
 {
 "OptionName": "SSAS",
 "Port": 2383,
 "VpcSecurityGroupMemberships": ["sg-0abcdef123"],
 "OptionSettings": [{"Name":"MAX_MEMORY","Value":"60"},
{"Name":"MODE","Value":"Multidimensional"}]
 }],
"ApplyImmediately": true
}

2. Add the SSAS option to the option group.

SQL Server Analysis Services 3139

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --cli-input-json file://ssas-option.json \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --cli-input-json file://ssas-option.json ^
 --apply-immediately

Associating the option group with your DB instance

You can use the console or the CLI to associate the option group with your DB instance.

Console

Associate your option group with a new or existing DB instance:

• For a new DB instance, associate the option group with the DB instance when you launch the
instance. For more information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, modify the instance and associate the new option group with it. For
more information, see Modifying an Amazon RDS DB instance.

Note

If you use an existing instance, it must already have an Active Directory domain and
AWS Identity and Access Management (IAM) role associated with it. If you create a new
instance, specify an existing Active Directory domain and IAM role. For more information,
see Working with Active Directory with RDS for SQL Server.

CLI

You can associate your option group with a new or existing DB instance.

SQL Server Analysis Services 3140

Amazon Relational Database Service User Guide

Note

If you use an existing instance, it must already have an Active Directory domain and IAM
role associated with it. If you create a new instance, specify an existing Active Directory
domain and IAM role. For more information, see Working with Active Directory with RDS for
SQL Server.

To create a DB instance that uses the option group

• Specify the same DB engine type and major version that you used when creating the option
group.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier myssasinstance \
 --db-instance-class db.m5.2xlarge \
 --engine sqlserver-se \
 --engine-version 14.00.3223.3.v1 \
 --allocated-storage 100 \
 --manage-master-user-password \
 --master-username admin \
 --storage-type gp2 \
 --license-model li \
 --domain-iam-role-name my-directory-iam-role \
 --domain my-domain-id \
 --option-group-name ssas-se-2017

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier myssasinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 14.00.3223.3.v1 ^
 --allocated-storage 100 ^
 --manage-master-user-password ^
 --master-username admin ^

SQL Server Analysis Services 3141

Amazon Relational Database Service User Guide

 --storage-type gp2 ^
 --license-model li ^
 --domain-iam-role-name my-directory-iam-role ^
 --domain my-domain-id ^
 --option-group-name ssas-se-2017

To modify a DB instance to associate the option group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier myssasinstance \
 --option-group-name ssas-se-2017 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier myssasinstance ^
 --option-group-name ssas-se-2017 ^
 --apply-immediately

Allowing inbound access to your VPC security group

Create an inbound rule for the specified SSAS listener port in the VPC security group associated
with your DB instance. For more information about setting up security groups, see Provide access
to your DB instance in your VPC by creating a security group.

Enabling Amazon S3 integration

To download model configuration files to your host for deployment, use Amazon S3 integration.
For more information, see Integrating an Amazon RDS for SQL Server DB instance with Amazon S3.

SQL Server Analysis Services 3142

Amazon Relational Database Service User Guide

Deploying SSAS projects on Amazon RDS

On RDS, you can't deploy SSAS projects directly by using SQL Server Management Studio (SSMS).
To deploy projects, use an RDS stored procedure.

Note

Using .xmla files for deployment isn't supported.

Before you deploy projects, make sure of the following:

• Amazon S3 integration is turned on. For more information, see Integrating an Amazon RDS for
SQL Server DB instance with Amazon S3.

• The Processing Option configuration setting is set to Do Not Process. This setting means
that no processing happens after deployment.

• You have both the myssasproject.asdatabase and myssasproject.deploymentoptions
files. They're automatically generated when you build the SSAS project.

To deploy an SSAS project on RDS

1. Download the .asdatabase (SSAS model) file from your S3 bucket to your DB instance,
as shown in the following example. For more information on the download parameters, see
Downloading files from an Amazon S3 bucket to a SQL Server DB instance.

exec msdb.dbo.rds_download_from_s3
@s3_arn_of_file='arn:aws:s3:::bucket_name/myssasproject.asdatabase',
[@rds_file_path='D:\S3\myssasproject.asdatabase'],
[@overwrite_file=1];

2. Download the .deploymentoptions file from your S3 bucket to your DB instance.

exec msdb.dbo.rds_download_from_s3
@s3_arn_of_file='arn:aws:s3:::bucket_name/myssasproject.deploymentoptions',
[@rds_file_path='D:\S3\myssasproject.deploymentoptions'],
[@overwrite_file=1];

3. Deploy the project.

SQL Server Analysis Services 3143

Amazon Relational Database Service User Guide

exec msdb.dbo.rds_msbi_task
@task_type='SSAS_DEPLOY_PROJECT',
@file_path='D:\S3\myssasproject.asdatabase';

Monitoring the status of a deployment task

To track the status of your deployment (or download) task, call the rds_fn_task_status
function. It takes two parameters. The first parameter should always be NULL because it doesn't
apply to SSAS. The second parameter accepts a task ID.

To see a list of all tasks, set the first parameter to NULL and the second parameter to 0, as shown in
the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,0);

To get a specific task, set the first parameter to NULL and the second parameter to the task ID, as
shown in the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,42);

The rds_fn_task_status function returns the following information.

Output parameter Description

task_id The ID of the task.

task_type For SSAS, tasks can have the following task
types:

• SSAS_DEPLOY_PROJECT

• SSAS_ADD_DB_ADMIN_MEMBER

• SSAS_BACKUP_DB

• SSAS_RESTORE_DB

database_name Not applicable to SSAS tasks.

% complete The progress of the task as a percentage.

SQL Server Analysis Services 3144

Amazon Relational Database Service User Guide

Output parameter Description

duration (mins) The amount of time spent on the task, in
minutes.

lifecycle
The status of the task. Possible statuses are
the following:

•
CREATED – After you call one of the SSAS
stored procedures, a task is created and the
status is set to CREATED.

•
IN_PROGRESS – After a task starts, the
status is set to IN_PROGRESS . It can take
up to five minutes for the status to change
from CREATED to IN_PROGRESS .

•
SUCCESS – After a task completes, the
status is set to SUCCESS.

•
ERROR – If a task fails, the status is set to
 ERROR. For more information about the
error, see the task_info column.

•
CANCEL_REQUESTED – After you call
rds_cancel_task , the status of the task
is set to CANCEL_REQUESTED .

•
CANCELLED – After a task is successfully
canceled, the status of the task is set to
CANCELLED .

SQL Server Analysis Services 3145

Amazon Relational Database Service User Guide

Output parameter Description

task_info Additional information about the task. If an
error occurs during processing, this column
contains information about the error.

For more information, see Troubleshooting
SSAS issues.

last_updated The date and time that the task status was last
updated.

created_at The date and time that the task was created.

S3_object_arn
Not applicable to SSAS tasks.

overwrite_S3_backup_file Not applicable to SSAS tasks.

KMS_master_key_arn
Not applicable to SSAS tasks.

filepath
Not applicable to SSAS tasks.

overwrite_file
Not applicable to SSAS tasks.

task_metadata Metadata associated with the SSAS task.

Using SSAS on Amazon RDS

After deploying the SSAS project, you can directly process the OLAP database on SSMS.

To use SSAS on RDS

1. In SSMS, connect to SSAS using the user name and password for the Active Directory domain.

2. Expand Databases. The newly deployed SSAS database appears.

3. Locate the connection string, and update the user name and password to give access to the
source SQL database. Doing this is required for processing SSAS objects.

SQL Server Analysis Services 3146

Amazon Relational Database Service User Guide

a. For Tabular mode, do the following:

1. Expand the Connections tab.

2. Open the context (right-click) menu for the connection object, and then choose
Properties.

3. Update the user name and password in the connection string.

b. For Multidimensional mode, do the following:

1. Expand the Data Sources tab.

2. Open the context (right-click) menu for the data source object, and then choose
Properties.

3. Update the user name and password in the connection string.

4. Open the context (right-click) menu for the SSAS database that you created and choose
Process Database.

Depending on the size of the input data, the processing operation might take several minutes
to complete.

Topics

• Setting up a Windows-authenticated user for SSAS

• Adding a domain user as a database administrator

• Creating an SSAS proxy

• Scheduling SSAS database processing using SQL Server Agent

• Revoking SSAS access from the proxy

Setting up a Windows-authenticated user for SSAS

The main administrator user (sometimes called the master user) can use the following code
example to set up a Windows-authenticated login and grant the required procedure permissions.
Doing this grants permissions to the domain user to run SSAS customer tasks, use S3 file
transfer procedures, create credentials, and work with the SQL Server Agent proxy. For more
information, see Credentials (database engine) and Create a SQL Server Agent proxy in the
Microsoft documentation.

You can grant some or all of the following permissions as needed to Windows-authenticated users.

SQL Server Analysis Services 3147

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/credentials-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/agent/create-a-sql-server-agent-proxy?view=sql-server-ver15

Amazon Relational Database Service User Guide

Example

-- Create a server-level domain user login, if it doesn't already exist
USE [master]
GO
CREATE LOGIN [mydomain\user_name] FROM WINDOWS
GO

-- Create domain user, if it doesn't already exist
USE [msdb]
GO
CREATE USER [mydomain\user_name] FOR LOGIN [mydomain\user_name]
GO

-- Grant necessary privileges to the domain user
USE [master]
GO
GRANT ALTER ANY CREDENTIAL TO [mydomain\user_name]
GO

USE [msdb]
GO
GRANT EXEC ON msdb.dbo.rds_msbi_task TO [mydomain\user_name] with grant option
GRANT SELECT ON msdb.dbo.rds_fn_task_status TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_task_status TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_cancel_task TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_download_from_s3 TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_upload_to_s3 TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_delete_from_filesystem TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.rds_gather_file_details TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_add_proxy TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.sp_update_proxy TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.sp_grant_login_to_proxy TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_revoke_login_from_proxy TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_delete_proxy TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.sp_enum_login_for_proxy to [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_enum_proxy_for_subsystem TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.rds_sqlagent_proxy TO [mydomain\user_name] with grant option

SQL Server Analysis Services 3148

Amazon Relational Database Service User Guide

ALTER ROLE [SQLAgentUserRole] ADD MEMBER [mydomain\user_name]
GO

Adding a domain user as a database administrator

You can add a domain user as an SSAS database administrator in the following ways:

• A database administrator can use SSMS to create a role with admin privileges, then add users to
that role.

• You can use the following stored procedure.

exec msdb.dbo.rds_msbi_task
@task_type='SSAS_ADD_DB_ADMIN_MEMBER',
@database_name='myssasdb',
@ssas_role_name='exampleRole',
@ssas_role_member='domain_name\domain_user_name';

The following parameters are required:

• @task_type – The type of the MSBI task, in this case SSAS_ADD_DB_ADMIN_MEMBER.

• @database_name – The name of the SSAS database to which you're granting administrator
privileges.

• @ssas_role_name – The SSAS database administrator role name. If the role doesn't already
exist, it's created.

• @ssas_role_member – The SSAS database user that you're adding to the administrator role.

Creating an SSAS proxy

To be able to schedule SSAS database processing using SQL Server Agent, create an SSAS
credential and an SSAS proxy. Run these procedures as a Windows-authenticated user.

To create the SSAS credential

• Create the credential for the proxy. To do this, you can use SSMS or the following SQL
statement.

USE [master]
GO
CREATE CREDENTIAL [SSAS_Credential] WITH IDENTITY = N'mydomain\user_name', SECRET =
 N'mysecret'

SQL Server Analysis Services 3149

Amazon Relational Database Service User Guide

GO

Note

IDENTITY must be a domain-authenticated login. Replace mysecret with the
password for the domain-authenticated login.

To create the SSAS proxy

1. Use the following SQL statement to create the proxy.

USE [msdb]
GO
EXEC msdb.dbo.sp_add_proxy
 @proxy_name=N'SSAS_Proxy',@credential_name=N'SSAS_Credential',@description=N''
GO

2. Use the following SQL statement to grant access to the proxy to other users.

USE [msdb]
GO
EXEC msdb.dbo.sp_grant_login_to_proxy
 @proxy_name=N'SSAS_Proxy',@login_name=N'mydomain\user_name'
GO

3. Use the following SQL statement to give the SSAS subsystem access to the proxy.

USE [msdb]
GO
EXEC msdb.dbo.rds_sqlagent_proxy
 @task_type='GRANT_SUBSYSTEM_ACCESS',@proxy_name='SSAS_Proxy',@proxy_subsystem='SSAS'
GO

To view the proxy and grants on the proxy

1. Use the following SQL statement to view the grantees of the proxy.

USE [msdb]
GO

SQL Server Analysis Services 3150

Amazon Relational Database Service User Guide

EXEC sp_help_proxy
GO

2. Use the following SQL statement to view the subsystem grants.

USE [msdb]
GO
EXEC msdb.dbo.sp_enum_proxy_for_subsystem
GO

Scheduling SSAS database processing using SQL Server Agent

After you create the credential and proxy and grant SSAS access to the proxy, you can create a SQL
Server Agent job to schedule SSAS database processing.

To schedule SSAS database processing

• Use SSMS or T-SQL for creating the SQL Server Agent job. The following example uses T-SQL.
You can further configure its job schedule through SSMS or T-SQL.

• The @command parameter outlines the XML for Analysis (XMLA) command to be run by the
SQL Server Agent job. This example configures SSAS Multidimensional database processing.

• The @server parameter outlines the target SSAS server name of the SQL Server Agent job.

To call the SSAS service within the same RDS DB instance where the SQL Server Agent job
resides, use localhost:2383.

To call the SSAS service from outside the RDS DB instance, use the RDS endpoint. You can
also use the Kerberos Active Directory (AD) endpoint (your-DB-instance-name.your-
AD-domain-name) if the RDS DB instances are joined by the same domain. For external DB
instances, make sure to properly configure the VPC security group associated with the RDS
DB instance for a secure connection.

You can further edit the query to support various XMLA operations. Make edits either by
directly modifying the T-SQL query or by using the SSMS UI following SQL Server Agent job
creation.

USE [msdb]
GO

SQL Server Analysis Services 3151

Amazon Relational Database Service User Guide

DECLARE @jobId BINARY(16)
EXEC msdb.dbo.sp_add_job @job_name=N'SSAS_Job',
 @enabled=1,
 @notify_level_eventlog=0,
 @notify_level_email=0,
 @notify_level_netsend=0,
 @notify_level_page=0,
 @delete_level=0,
 @category_name=N'[Uncategorized (Local)]',
 @job_id = @jobId OUTPUT
GO
EXEC msdb.dbo.sp_add_jobserver
 @job_name=N'SSAS_Job',
 @server_name = N'(local)'
GO
EXEC msdb.dbo.sp_add_jobstep @job_name=N'SSAS_Job',
 @step_name=N'Process_SSAS_Object',
 @step_id=1,
 @cmdexec_success_code=0,
 @on_success_action=1,
 @on_success_step_id=0,
 @on_fail_action=2,
 @on_fail_step_id=0,
 @retry_attempts=0,
 @retry_interval=0,
 @os_run_priority=0, @subsystem=N'ANALYSISCOMMAND',
 @command=N'<Batch xmlns="http://schemas.microsoft.com/analysisservices/2003/
engine">
 <Parallel>
 <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ddl2="http://schemas.microsoft.com/analysisservices/2003/
engine/2" xmlns:ddl2_2="http://schemas.microsoft.com/analysisservices/2003/
engine/2/2"
 xmlns:ddl100_100="http://schemas.microsoft.com/
analysisservices/2008/engine/100/100" xmlns:ddl200="http://schemas.microsoft.com/
analysisservices/2010/engine/200"
 xmlns:ddl200_200="http://schemas.microsoft.com/
analysisservices/2010/engine/200/200" xmlns:ddl300="http://schemas.microsoft.com/
analysisservices/2011/engine/300"
 xmlns:ddl300_300="http://schemas.microsoft.com/
analysisservices/2011/engine/300/300" xmlns:ddl400="http://schemas.microsoft.com/
analysisservices/2012/engine/400"

SQL Server Analysis Services 3152

Amazon Relational Database Service User Guide

 xmlns:ddl400_400="http://schemas.microsoft.com/
analysisservices/2012/engine/400/400" xmlns:ddl500="http://schemas.microsoft.com/
analysisservices/2013/engine/500"
 xmlns:ddl500_500="http://schemas.microsoft.com/
analysisservices/2013/engine/500/500">
 <Object>
 <DatabaseID>Your_SSAS_Database_ID</DatabaseID>
 </Object>
 <Type>ProcessFull</Type>
 <WriteBackTableCreation>UseExisting</WriteBackTableCreation>
 </Process>
 </Parallel>
 </Batch>',
 @server=N'localhost:2383',
 @database_name=N'master',
 @flags=0,
 @proxy_name=N'SSAS_Proxy'
GO

Revoking SSAS access from the proxy

You can revoke access to the SSAS subsystem and delete the SSAS proxy using the following stored
procedures.

To revoke access and delete the proxy

1. Revoke subsystem access.

USE [msdb]
GO
EXEC msdb.dbo.rds_sqlagent_proxy
 @task_type='REVOKE_SUBSYSTEM_ACCESS',@proxy_name='SSAS_Proxy',@proxy_subsystem='SSAS'
GO

2. Revoke the grants on the proxy.

USE [msdb]
GO
EXEC msdb.dbo.sp_revoke_login_from_proxy
 @proxy_name=N'SSAS_Proxy',@name=N'mydomain\user_name'
GO

SQL Server Analysis Services 3153

Amazon Relational Database Service User Guide

3. Delete the proxy.

USE [msdb]
GO
EXEC dbo.sp_delete_proxy @proxy_name = N'SSAS_Proxy'
GO

Backing up an SSAS database

You can create SSAS database backup files only in the D:\S3 folder on the DB instance. To move
the backup files to your S3 bucket, use Amazon S3.

You can back up an SSAS database as follows:

• A domain user with the admin role for a particular database can use SSMS to back up the
database to the D:\S3 folder.

For more information, see Adding a domain user as a database administrator.

• You can use the following stored procedure. This stored procedure doesn't support encryption.

exec msdb.dbo.rds_msbi_task
@task_type='SSAS_BACKUP_DB',
@database_name='myssasdb',
@file_path='D:\S3\ssas_db_backup.abf',
[@ssas_apply_compression=1],
[@ssas_overwrite_file=1];

The following parameters are required:

• @task_type – The type of the MSBI task, in this case SSAS_BACKUP_DB.

• @database_name – The name of the SSAS database that you're backing up.

• @file_path – The path for the SSAS backup file. The .abf extension is required.

The following parameters are optional:

• @ssas_apply_compression – Whether to apply SSAS backup compression. Valid values are
1 (Yes) and 0 (No).

• @ssas_overwrite_file – Whether to overwrite the SSAS backup file. Valid values are 1
(Yes) and 0 (No).

SQL Server Analysis Services 3154

Amazon Relational Database Service User Guide

Restoring an SSAS database

Use the following stored procedure to restore an SSAS database from a backup.

You can't restore a database if there is an existing SSAS database with the same name. The stored
procedure for restoring doesn't support encrypted backup files.

exec msdb.dbo.rds_msbi_task
@task_type='SSAS_RESTORE_DB',
@database_name='mynewssasdb',
@file_path='D:\S3\ssas_db_backup.abf';

The following parameters are required:

• @task_type – The type of the MSBI task, in this case SSAS_RESTORE_DB.

• @database_name – The name of the new SSAS database that you're restoring to.

• @file_path – The path to the SSAS backup file.

Restoring a DB instance to a specified time

Point-in-time recovery (PITR) doesn't apply to SSAS databases. If you do PITR, only the SSAS data
in the last snapshot before the requested time is available on the restored instance.

To have up-to-date SSAS databases on a restored DB instance

1. Back up your SSAS databases to the D:\S3 folder on the source instance.

2. Transfer the backup files to the S3 bucket.

3. Transfer the backup files from the S3 bucket to the D:\S3 folder on the restored instance.

4. Run the stored procedure to restore the SSAS databases onto the restored instance.

You can also reprocess the SSAS project to restore the databases.

Changing the SSAS mode

You can change the mode in which SSAS runs, either Tabular or Multidimensional. To change the
mode, use the AWS Management Console or the AWS CLI to modify the options settings in the
SSAS option.

SQL Server Analysis Services 3155

Amazon Relational Database Service User Guide

Important

You can only use one SSAS mode at a time. Make sure to delete all of the SSAS databases
before changing the mode, or you receive an error.

Console

The following Amazon RDS console procedure changes the SSAS mode to Tabular and sets the
MAX_MEMORY parameter to 70 percent.

To modify the SSAS option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group with the SSAS option that you want to modify (ssas-se-2017 in
the previous examples).

4. Choose Modify option.

5. Change the option settings:

a. For Max memory, enter 70.

b. For Mode, choose Tabular.

6. Choose Modify option.

AWS CLI

The following AWS CLI example changes the SSAS mode to Tabular and sets the MAX_MEMORY
parameter to 70 percent.

For the CLI command to work, make sure to include all of the required parameters, even if you're
not modifying them.

To modify the SSAS option

• Use one of the following commands.

SQL Server Analysis Services 3156

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name ssas-se-2017 \
 --options
 "OptionName=SSAS,VpcSecurityGroupMemberships=sg-12345e67,OptionSettings=[{Name=MAX_MEMORY,Value=70},
{Name=MODE,Value=Tabular}]" \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name ssas-se-2017 ^
 --options
 OptionName=SSAS,VpcSecurityGroupMemberships=sg-12345e67,OptionSettings=[{Name=MAX_MEMORY,Value=70},
{Name=MODE,Value=Tabular}] ^
 --apply-immediately

Turning off SSAS

To turn off SSAS, remove the SSAS option from its option group.

Important

Before you remove the SSAS option, delete your SSAS databases.
We highly recommend that you back up your SSAS databases before deleting them and
removing the SSAS option.

Console

To remove the SSAS option from its option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

SQL Server Analysis Services 3157

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. Choose the option group with the SSAS option that you want to remove (ssas-se-2017 in
the previous examples).

4. Choose Delete option.

5. Under Deletion options, choose SSAS for Options to delete.

6. Under Apply immediately, choose Yes to delete the option immediately, or No to delete it at
the next maintenance window.

7. Choose Delete.

AWS CLI

To remove the SSAS option from its option group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds remove-option-from-option-group \
 --option-group-name ssas-se-2017 \
 --options SSAS \
 --apply-immediately

For Windows:

aws rds remove-option-from-option-group ^
 --option-group-name ssas-se-2017 ^
 --options SSAS ^
 --apply-immediately

Troubleshooting SSAS issues

You might encounter the following issues when using SSAS.

Issue Type Troubleshooting suggestions

Unable to configure the SSAS
option. The requested SSAS mode

RDS
event

You can't change the SSAS mode if you still
have SSAS databases that use the current

SQL Server Analysis Services 3158

Amazon Relational Database Service User Guide

Issue Type Troubleshooting suggestions

is new_mode, but the current DB
instance has number current_m
ode databases. Delete the existing
databases before switching to
new_mode mode. To regain access to
current_mode mode for database
deletion, either update the current
DB option group, or attach a new
option group with %s as the MODE
option setting value for the SSAS
option.

mode. Delete the SSAS databases, then try
again.

Unable to remove the SSAS option
because there are number existing
mode databases. The SSAS option
can't be removed until all SSAS
databases are deleted. Add the
SSAS option again, delete all SSAS
databases, and try again.

RDS
event

You can't turn off SSAS if you still have
SSAS databases. Delete the SSAS databases
, then try again.

The SSAS option isn't enabled or is
in the process of being enabled. Try
again later.

RDS
stored
procedure

You can't run SSAS stored procedures when
the option is turned off, or when it's being
turned on.

SQL Server Analysis Services 3159

Amazon Relational Database Service User Guide

Issue Type Troubleshooting suggestions

The SSAS option is configured
incorrectly. Make sure that the option
group membership status is "in-sync"
, and review the RDS event logs for
relevant SSAS configuration error
messages. Following these investiga
tions, try again. If errors continue to
occur, contact AWS Support.

RDS
stored
procedure

You can't run SSAS stored procedures when
your option group membership isn't in the
in-sync status. This puts the SSAS option
in an incorrect configuration state.

If your option group membership status
changes to failed due to SSAS option
modification, there are two possible
reasons:

1. The SSAS option was removed without
the SSAS databases being deleted.

2. The SSAS mode was updated from
Tabular to Multidimensional, or from
Multidimenisonal to Tabular, without
the existing SSAS databases being
deleted.

Reconfigure the SSAS option, because RDS
allows only one SSAS mode at a time, and
doesn't support SSAS option removal with
SSAS databases present.

Check the RDS event logs for configuration
errors for your SSAS instance, and resolve
the issues accordingly.

Deployment failed. The change can
only be deployed on a server running
in deployment_file_mode
mode. The current server mode is
current_mode .

RDS
stored
procedure

You can't deploy a Tabular database to a
 Multidimensional server, or a Multidime
nsional database to a Tabular server.

Make sure that you're using files with the
correct mode, and verify that the MODE
option setting is set to the appropriate
value.

SQL Server Analysis Services 3160

Amazon Relational Database Service User Guide

Issue Type Troubleshooting suggestions

The restore failed. The backup file
can only be restored on a server
running in restore_file_mode
mode. The current server mode is
current_mode .

RDS
stored
procedure

You can't restore a Tabular database to a
 Multidimensional server, or a Multidime
nsional database to a Tabular server.

Make sure that you're using files with the
correct mode, and verify that the MODE
option setting is set to the appropriate
value.

The restore failed. The backup file
and the RDS DB instance versions are
incompatible.

RDS
stored
procedure

You can't restore an SSAS database with
a version incompatible to the SQL Server
instance version.

For more information, see Compatibility
levels for tabular models and Compatibility
level of a multidimensional database in the
Microsoft documentation.

The restore failed. The backup file
specified in the restore operation is
damaged or is not an SSAS backup
file. Make sure that @rds_file_path is
correctly formatted.

RDS
stored
procedure

You can't restore an SSAS database with a
damaged file.

Make sure that the file isn't damaged or
corrupted.

This error can also be raised when
@rds_file_path isn't correctly
formatted (for example, it has double
backslashes as in D:\S3\\incorrect_f
ormat.abf).

SQL Server Analysis Services 3161

https://docs.microsoft.com/en-us/analysis-services/tabular-models/compatibility-level-for-tabular-models-in-analysis-services
https://docs.microsoft.com/en-us/analysis-services/tabular-models/compatibility-level-for-tabular-models-in-analysis-services
https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/compatibility-level-of-a-multidimensional-database-analysis-services
https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/compatibility-level-of-a-multidimensional-database-analysis-services

Amazon Relational Database Service User Guide

Issue Type Troubleshooting suggestions

The restore failed. The restored
database name can't contain any
reserved words or invalid character
s: . , ; ' ` : / \\ * | ? \" & % $! + = ()
[] { } < >, or be longer than 100
characters.

RDS
stored
procedure

The restored database name can't contain
any reserved words or characters that
aren't valid, or be longer than 100 charac
ters.

For SSAS object naming conventions,
see Object naming rules in the Microsoft
documentation.

An invalid role name was provided.
The role name can't contain any
reserved strings.

RDS
stored
procedure

The role name can't contain any reserved
strings.

For SSAS object naming conventions,
see Object naming rules in the Microsoft
documentation.

An invalid role name was provided.
The role name can't contain any of
the following reserved characters: . , ;
' ` : / \\ * | ? \" & % $! + = () [] { } <
>

RDS
stored
procedure

The role name can't contain any reserved
characters.

For SSAS object naming conventions,
see Object naming rules in the Microsoft
documentation.

SQL Server Analysis Services 3162

https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/olap-physical/object-naming-rules-analysis-services
https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/olap-physical/object-naming-rules-analysis-services
https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/olap-physical/object-naming-rules-analysis-services

Amazon Relational Database Service User Guide

Support for SQL Server Integration Services in Amazon RDS for SQL
Server

Microsoft SQL Server Integration Services (SSIS) is a component that you can use to perform
a broad range of data migration tasks. SSIS is a platform for data integration and workflow
applications. It features a data warehousing tool used for data extraction, transformation, and
loading (ETL). You can also use this tool to automate maintenance of SQL Server databases and
updates to multidimensional cube data.

SSIS projects are organized into packages saved as XML-based .dtsx files. Packages can contain
control flows and data flows. You use data flows to represent ETL operations. After deployment,
packages are stored in SQL Server in the SSISDB database. SSISDB is an online transaction
processing (OLTP) database in the full recovery mode.

Amazon RDS for SQL Server supports running SSIS directly on an RDS DB instance. You can enable
SSIS on an existing or new DB instance. SSIS is installed on the same DB instance as your database
engine.

RDS supports SSIS for SQL Server Standard and Enterprise Editions on the following versions:

• SQL Server 2022, all versions

• SQL Server 2019, version 15.00.4043.16.v1 and higher

• SQL Server 2017, version 14.00.3223.3.v1 and higher

• SQL Server 2016, version 13.00.5426.0.v1 and higher

Contents

• Limitations and recommendations

• Enabling SSIS

• Creating the option group for SSIS

• Adding the SSIS option to the option group

• Creating the parameter group for SSIS

• Modifying the parameter for SSIS

• Associating the option group and parameter group with your DB instance

• Enabling S3 integration

• Administrative permissions on SSISDB

SQL Server Integration Services 3163

Amazon Relational Database Service User Guide

• Setting up a Windows-authenticated user for SSIS

• Deploying an SSIS project

• Monitoring the status of a deployment task

• Using SSIS

• Setting database connection managers for SSIS projects

• Creating an SSIS proxy

• Scheduling an SSIS package using SQL Server Agent

• Revoking SSIS access from the proxy

• Disable and drop SSIS database

• Disabling SSIS

• Dropping the SSISDB database

Limitations and recommendations

The following limitations and recommendations apply to running SSIS on RDS for SQL Server:

• The DB instance must have an associated parameter group with the clr enabled parameter set
to 1. For more information, see Modifying the parameter for SSIS.

Note

If you enable the clr enabled parameter on SQL Server 2017 or 2019, you can't use
the common language runtime (CLR) on your DB instance. For more information, see
Features not supported and features with limited support.

• The following control flow tasks are supported:

• Analysis Services Execute DDL Task

• Analysis Services Processing Task

• Bulk Insert Task

• Check Database Integrity Task

• Data Flow Task

• Data Mining Query Task

• Data Profiling Task
SQL Server Integration Services 3164

Amazon Relational Database Service User Guide

• Execute Package Task

• Execute SQL Server Agent Job Task

• Execute SQL Task

• Execute T-SQL Statement Task

• Notify Operator Task

• Rebuild Index Task

• Reorganize Index Task

• Shrink Database Task

• Transfer Database Task

• Transfer Jobs Task

• Transfer Logins Task

• Transfer SQL Server Objects Task

• Update Statistics Task

• Only project deployment is supported.

• Running SSIS packages by using SQL Server Agent is supported.

• SSIS log records can be inserted only into user-created databases.

• Use only the D:\S3 folder for working with files. Files placed in any other directory are deleted.
Be aware of a few other file location details:

• Place SSIS project input and output files in the D:\S3 folder.

• For the Data Flow Task, change the location for BLOBTempStoragePath and
BufferTempStoragePath to a file inside the D:\S3 folder. The file path must start with D:
\S3\.

• Ensure that all parameters, variables, and expressions used for file connections point to the D:
\S3 folder.

• On Multi-AZ instances, files created by SSIS in the D:\S3 folder are deleted after a failover. For
more information, see Multi-AZ limitations for S3 integration.

• Upload the files created by SSIS in the D:\S3 folder to your Amazon S3 bucket to make them
durable.

• Import Column and Export Column transformations and the Script component on the Data Flow
Task aren't supported.

• You can't enable dump on running SSIS packages, and you can't add data taps on SSIS packages.SQL Server Integration Services 3165

Amazon Relational Database Service User Guide

• The SSIS Scale Out feature isn't supported.

• You can't deploy projects directly. We provide RDS stored procedures to do this. For more
information, see Deploying an SSIS project.

• Build SSIS project (.ispac) files with the DoNotSavePasswords protection mode for deploying
on RDS.

• SSIS isn't supported on Always On instances with read replicas.

• You can't back up the SSISDB database that is associated with the SSIS option.

• Importing and restoring the SSISDB database from other instances of SSIS isn't supported.

• You can connect to other SQL Server DB instances or to an Oracle data source. Connecting to
other database engines, such as MySQL or PostgreSQL, isn't supported for SSIS on RDS for SQL
Server. For more information on connecting to an Oracle data source, see Linked Servers with
Oracle OLEDB.

Enabling SSIS

You enable SSIS by adding the SSIS option to your DB instance. Use the following process:

1. Create a new option group, or choose an existing option group.

2. Add the SSIS option to the option group.

3. Create a new parameter group, or choose an existing parameter group.

4. Modify the parameter group to set the clr enabled parameter to 1.

5. Associate the option group and parameter group with the DB instance.

6. Enable Amazon S3 integration.

Note

If a database with the name SSISDB or a reserved SSIS login already exists on the DB
instance, you can't enable SSIS on the instance.

Creating the option group for SSIS

To work with SSIS, create an option group or modify an option group that corresponds to the
SQL Server edition and version of the DB instance that you plan to use. To do this, use the AWS
Management Console or the AWS CLI.

SQL Server Integration Services 3166

Amazon Relational Database Service User Guide

Console

The following procedure creates an option group for SQL Server Standard Edition 2016.

To create the option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group window, do the following:

a. For Name, enter a name for the option group that is unique within your AWS account,
such as ssis-se-2016. The name can contain only letters, digits, and hyphens.

b. For Description, enter a brief description of the option group, such as SSIS option
group for SQL Server SE 2016. The description is used for display purposes.

c. For Engine, choose sqlserver-se.

d. For Major engine version, choose 13.00.

5. Choose Create.

CLI

The following procedure creates an option group for SQL Server Standard Edition 2016.

To create the option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds create-option-group \
 --option-group-name ssis-se-2016 \
 --engine-name sqlserver-se \
 --major-engine-version 13.00 \
 --option-group-description "SSIS option group for SQL Server SE 2016"

For Windows:

SQL Server Integration Services 3167

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

aws rds create-option-group ^
 --option-group-name ssis-se-2016 ^
 --engine-name sqlserver-se ^
 --major-engine-version 13.00 ^
 --option-group-description "SSIS option group for SQL Server SE 2016"

Adding the SSIS option to the option group

Next, use the AWS Management Console or the AWS CLI to add the SSIS option to your option
group.

Console

To add the SSIS option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group that you just created, ssis-se-2016 in this example.

4. Choose Add option.

5. Under Option details, choose SSIS for Option name.

6. Under Scheduling, choose whether to add the option immediately or at the next maintenance
window.

7. Choose Add option.

CLI

To add the SSIS option

• Add the SSIS option to the option group.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name ssis-se-2016 \

SQL Server Integration Services 3168

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

 --options OptionName=SSIS \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name ssis-se-2016 ^
 --options OptionName=SSIS ^
 --apply-immediately

Creating the parameter group for SSIS

Create or modify a parameter group for the clr enabled parameter that corresponds to the SQL
Server edition and version of the DB instance that you plan to use for SSIS.

Console

The following procedure creates a parameter group for SQL Server Standard Edition 2016.

To create the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

4. In the Create parameter group pane, do the following:

a. For Parameter group family, choose sqlserver-se-13.0.

b. For Group name, enter an identifier for the parameter group, such as ssis-sqlserver-
se-13.

c. For Description, enter clr enabled parameter group.

5. Choose Create.

CLI

The following procedure creates a parameter group for SQL Server Standard Edition 2016.

SQL Server Integration Services 3169

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To create the parameter group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name ssis-sqlserver-se-13 \
 --db-parameter-group-family "sqlserver-se-13.0" \
 --description "clr enabled parameter group"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name ssis-sqlserver-se-13 ^
 --db-parameter-group-family "sqlserver-se-13.0" ^
 --description "clr enabled parameter group"

Modifying the parameter for SSIS

Modify the clr enabled parameter in the parameter group that corresponds to the SQL Server
edition and version of your DB instance. For SSIS, set the clr enabled parameter to 1.

Console

The following procedure modifies the parameter group that you created for SQL Server Standard
Edition 2016.

To modify the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose the parameter group, such as ssis-sqlserver-se-13.

4. Under Parameters, filter the parameter list for clr.

5. Choose clr enabled.

6. Choose Edit parameters.

SQL Server Integration Services 3170

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. From Values, choose 1.

8. Choose Save changes.

CLI

The following procedure modifies the parameter group that you created for SQL Server Standard
Edition 2016.

To modify the parameter group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name ssis-sqlserver-se-13 \
 --parameters "ParameterName='clr
 enabled',ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name ssis-sqlserver-se-13 ^
 --parameters "ParameterName='clr
 enabled',ParameterValue=1,ApplyMethod=immediate"

Associating the option group and parameter group with your DB instance

To associate the SSIS option group and parameter group with your DB instance, use the AWS
Management Console or the AWS CLI

Note

If you use an existing instance, it must already have an Active Directory domain and AWS
Identity and Access Management (IAM) role associated with it. If you create a new instance,

SQL Server Integration Services 3171

Amazon Relational Database Service User Guide

specify an existing Active Directory domain and IAM role. For more information, see
Working with Active Directory with RDS for SQL Server.

Console

To finish enabling SSIS, associate your SSIS option group and parameter group with a new or
existing DB instance:

• For a new DB instance, associate them when you launch the instance. For more information, see
Creating an Amazon RDS DB instance.

• For an existing DB instance, associate them by modifying the instance. For more information, see
Modifying an Amazon RDS DB instance.

CLI

You can associate the SSIS option group and parameter group with a new or existing DB instance.

To create an instance with the SSIS option group and parameter group

• Specify the same DB engine type and major version as you used when creating the option
group.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier myssisinstance \
 --db-instance-class db.m5.2xlarge \
 --engine sqlserver-se \
 --engine-version 13.00.5426.0.v1 \
 --allocated-storage 100 \
 --manage-master-user-password \
 --master-username admin \
 --storage-type gp2 \
 --license-model li \
 --domain-iam-role-name my-directory-iam-role \
 --domain my-domain-id \
 --option-group-name ssis-se-2016 \

SQL Server Integration Services 3172

Amazon Relational Database Service User Guide

 --db-parameter-group-name ssis-sqlserver-se-13

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier myssisinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 13.00.5426.0.v1 ^
 --allocated-storage 100 ^
 --manage-master-user-password ^
 --master-username admin ^
 --storage-type gp2 ^
 --license-model li ^
 --domain-iam-role-name my-directory-iam-role ^
 --domain my-domain-id ^
 --option-group-name ssis-se-2016 ^
 --db-parameter-group-name ssis-sqlserver-se-13

To modify an instance and associate the SSIS option group and parameter group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier myssisinstance \
 --option-group-name ssis-se-2016 \
 --db-parameter-group-name ssis-sqlserver-se-13 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier myssisinstance ^
 --option-group-name ssis-se-2016 ^
 --db-parameter-group-name ssis-sqlserver-se-13 ^
 --apply-immediately

SQL Server Integration Services 3173

Amazon Relational Database Service User Guide

Enabling S3 integration

To download SSIS project (.ispac) files to your host for deployment, use S3 file integration. For
more information, see Integrating an Amazon RDS for SQL Server DB instance with Amazon S3.

Administrative permissions on SSISDB

When the instance is created or modified with the SSIS option, the result is an SSISDB database
with the ssis_admin and ssis_logreader roles granted to the master user. The master user has the
following privileges in SSISDB:

• alter on ssis_admin role

• alter on ssis_logreader role

• alter any user

Because the master user is a SQL-authenticated user, you can't use the master user for executing
SSIS packages. The master user can use these privileges to create new SSISDB users and add them
to the ssis_admin and ssis_logreader roles. Doing this is useful for giving access to your domain
users for using SSIS.

Setting up a Windows-authenticated user for SSIS

The master user can use the following code example to set up a Windows-authenticated login in
SSISDB and grant the required procedure permissions. Doing this grants permissions to the domain
user to deploy and run SSIS packages, use S3 file transfer procedures, create credentials, and work
with the SQL Server Agent proxy. For more information, see Credentials (database engine) and
Create a SQL Server Agent proxy in the Microsoft documentation.

Note

You can grant some or all of the following permissions as needed to Windows-
authenticated users.

Example

-- Create a server-level SQL login for the domain user, if it doesn't already exist
USE [master]
GO
CREATE LOGIN [mydomain\user_name] FROM WINDOWS

SQL Server Integration Services 3174

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/credentials-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/agent/create-a-sql-server-agent-proxy?view=sql-server-ver15

Amazon Relational Database Service User Guide

GO

-- Create a database-level account for the domain user, if it doesn't already exist

USE [SSISDB]
GO
CREATE USER [mydomain\user_name] FOR LOGIN [mydomain\user_name]

-- Add SSIS role membership to the domain user
ALTER ROLE [ssis_admin] ADD MEMBER [mydomain\user_name]
ALTER ROLE [ssis_logreader] ADD MEMBER [mydomain\user_name]
GO

-- Add MSDB role membership to the domain user
USE [msdb]
GO
CREATE USER [mydomain\user_name] FOR LOGIN [mydomain\user_name]

-- Grant MSDB stored procedure privileges to the domain user
GRANT EXEC ON msdb.dbo.rds_msbi_task TO [mydomain\user_name] with grant option
GRANT SELECT ON msdb.dbo.rds_fn_task_status TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_task_status TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_cancel_task TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_download_from_s3 TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_upload_to_s3 TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.rds_delete_from_filesystem TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.rds_gather_file_details TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_add_proxy TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.sp_update_proxy TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.sp_grant_login_to_proxy TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_revoke_login_from_proxy TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_delete_proxy TO [mydomain\user_name] with grant option
GRANT EXEC ON msdb.dbo.sp_enum_login_for_proxy to [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.sp_enum_proxy_for_subsystem TO [mydomain\user_name] with grant
 option
GRANT EXEC ON msdb.dbo.rds_sqlagent_proxy TO [mydomain\user_name] WITH GRANT OPTION

-- Add the SQLAgentUserRole privilege to the domain user

SQL Server Integration Services 3175

Amazon Relational Database Service User Guide

USE [msdb]
GO
ALTER ROLE [SQLAgentUserRole] ADD MEMBER [mydomain\user_name]
GO

-- Grant the ALTER ANY CREDENTIAL privilege to the domain user
USE [master]
GO
GRANT ALTER ANY CREDENTIAL TO [mydomain\user_name]
GO

Deploying an SSIS project

On RDS, you can't deploy SSIS projects directly by using SQL Server Management Studio (SSMS) or
SSIS procedures. To download project files from Amazon S3 and then deploy them, use RDS stored
procedures.

To run the stored procedures, log in as any user that you granted permissions for running the
stored procedures. For more information, see Setting up a Windows-authenticated user for SSIS.

To deploy the SSIS project

1. Download the project (.ispac) file.

exec msdb.dbo.rds_download_from_s3
@s3_arn_of_file='arn:aws:s3:::bucket_name/ssisproject.ispac',
[@rds_file_path='D:\S3\ssisproject.ispac'],
[@overwrite_file=1];

2. Submit the deployment task, making sure of the following:

• The folder is present in the SSIS catalog.

• The project name matches the project name that you used while developing the SSIS
project.

exec msdb.dbo.rds_msbi_task
@task_type='SSIS_DEPLOY_PROJECT',
@folder_name='DEMO',
@project_name='ssisproject',
@file_path='D:\S3\ssisproject.ispac';

SQL Server Integration Services 3176

Amazon Relational Database Service User Guide

Monitoring the status of a deployment task

To track the status of your deployment task, call the rds_fn_task_status function. It takes
two parameters. The first parameter should always be NULL because it doesn't apply to SSIS. The
second parameter accepts a task ID.

To see a list of all tasks, set the first parameter to NULL and the second parameter to 0, as shown in
the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,0);

To get a specific task, set the first parameter to NULL and the second parameter to the task ID, as
shown in the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,42);

The rds_fn_task_status function returns the following information.

Output parameter Description

task_id The ID of the task.

task_type SSIS_DEPLOY_PROJECT

database_name Not applicable to SSIS tasks.

% complete The progress of the task as a percentage.

duration (mins) The amount of time spent on the task, in
minutes.

lifecycle
The status of the task. Possible statuses are
the following:

•
CREATED – After you call the msdb.dbo.
rds_msbi_task stored procedure,
a task is created and the status is set to
CREATED.

SQL Server Integration Services 3177

Amazon Relational Database Service User Guide

Output parameter Description

•
IN_PROGRESS – After a task starts, the
status is set to IN_PROGRESS . It can take
up to five minutes for the status to change
from CREATED to IN_PROGRESS .

•
SUCCESS – After a task completes, the
status is set to SUCCESS.

•
ERROR – If a task fails, the status is set to
ERROR. For more information about the
error, see the task_info column.

•
CANCEL_REQUESTED – After you call
rds_cancel_task , the status of the task
is set to CANCEL_REQUESTED .

•
CANCELLED – After a task is successfully
canceled, the status of the task is set to
CANCELLED .

task_info Additional information about the task. If an
error occurs during processing, this column
contains information about the error.

last_updated The date and time that the task status was last
updated.

created_at The date and time that the task was created.

S3_object_arn
Not applicable to SSIS tasks.

overwrite_S3_backup_file Not applicable to SSIS tasks.

KMS_master_key_arn
Not applicable to SSIS tasks.

SQL Server Integration Services 3178

Amazon Relational Database Service User Guide

Output parameter Description

filepath
Not applicable to SSIS tasks.

overwrite_file
Not applicable to SSIS tasks.

task_metadata Metadata associated with the SSIS task.

Using SSIS

After deploying the SSIS project into the SSIS catalog, you can run packages directly from SSMS
or schedule them by using SQL Server Agent. You must use a Windows-authenticated login for
executing SSIS packages. For more information, see Setting up a Windows-authenticated user for
SSIS.

Topics

• Setting database connection managers for SSIS projects

• Creating an SSIS proxy

• Scheduling an SSIS package using SQL Server Agent

• Revoking SSIS access from the proxy

Setting database connection managers for SSIS projects

When you use a connection manager, you can use these types of authentication:

• For local database connections using AWS Managed Active Directory, you can use
SQL authentication or Windows authentication. For Windows authentication, use
DB_instance_name.fully_qualified_domain_name as the server name of the connection
string.

An example is myssisinstance.corp-ad.example.com, where myssisinstance is the DB
instance name and corp-ad.example.com is the fully qualified domain name.

• For remote connections, always use SQL authentication.

SQL Server Integration Services 3179

Amazon Relational Database Service User Guide

• For local database connections using self-managed Active Directory, you can use SQL
authentication or Windows authentication. For Windows authentication, use . or LocalHost as
the server name of the connection string.

Creating an SSIS proxy

To be able to schedule SSIS packages using SQL Server Agent, create an SSIS credential and an
SSIS proxy. Run these procedures as a Windows-authenticated user.

To create the SSIS credential

• Create the credential for the proxy. To do this, you can use SSMS or the following SQL
statement.

USE [master]
GO
CREATE CREDENTIAL [SSIS_Credential] WITH IDENTITY = N'mydomain\user_name', SECRET =
 N'mysecret'
GO

Note

IDENTITY must be a domain-authenticated login. Replace mysecret with the
password for the domain-authenticated login.
Whenever the SSISDB primary host is changed, alter the SSIS proxy credentials to
allow the new host to access them.

To create the SSIS proxy

1. Use the following SQL statement to create the proxy.

USE [msdb]
GO
EXEC msdb.dbo.sp_add_proxy
 @proxy_name=N'SSIS_Proxy',@credential_name=N'SSIS_Credential',@description=N''
GO

2. Use the following SQL statement to grant access to the proxy to other users.

SQL Server Integration Services 3180

Amazon Relational Database Service User Guide

USE [msdb]
GO
EXEC msdb.dbo.sp_grant_login_to_proxy
 @proxy_name=N'SSIS_Proxy',@login_name=N'mydomain\user_name'
GO

3. Use the following SQL statement to give the SSIS subsystem access to the proxy.

USE [msdb]
GO
EXEC msdb.dbo.rds_sqlagent_proxy
 @task_type='GRANT_SUBSYSTEM_ACCESS',@proxy_name='SSIS_Proxy',@proxy_subsystem='SSIS'
GO

To view the proxy and grants on the proxy

1. Use the following SQL statement to view the grantees of the proxy.

USE [msdb]
GO
EXEC sp_help_proxy
GO

2. Use the following SQL statement to view the subsystem grants.

USE [msdb]
GO
EXEC msdb.dbo.sp_enum_proxy_for_subsystem
GO

Scheduling an SSIS package using SQL Server Agent

After you create the credential and proxy and grant SSIS access to the proxy, you can create a SQL
Server Agent job to schedule the SSIS package.

To schedule the SSIS package

• You can use SSMS or T-SQL for creating the SQL Server Agent job. The following example uses
T-SQL.

SQL Server Integration Services 3181

Amazon Relational Database Service User Guide

USE [msdb]
GO
DECLARE @jobId BINARY(16)
EXEC msdb.dbo.sp_add_job @job_name=N'MYSSISJob',
@enabled=1,
@notify_level_eventlog=0,
@notify_level_email=2,
@notify_level_page=2,
@delete_level=0,
@category_name=N'[Uncategorized (Local)]',
@job_id = @jobId OUTPUT
GO
EXEC msdb.dbo.sp_add_jobserver @job_name=N'MYSSISJob',@server_name=N'(local)'
GO
EXEC msdb.dbo.sp_add_jobstep
 @job_name=N'MYSSISJob',@step_name=N'ExecuteSSISPackage',
@step_id=1,
@cmdexec_success_code=0,
@on_success_action=1,
@on_fail_action=2,
@retry_attempts=0,
@retry_interval=0,
@os_run_priority=0,
@subsystem=N'SSIS',
@command=N'/ISSERVER "\"\SSISDB\MySSISFolder\MySSISProject\MySSISPackage.dtsx\"" /
SERVER "\"my-rds-ssis-instance.corp-ad.company.com/\""
/Par "\"$ServerOption::LOGGING_LEVEL(Int16)\"";1 /Par
 "\"$ServerOption::SYNCHRONIZED(Boolean)\"";True /CALLERINFO SQLAGENT /REPORTING
 E',
@database_name=N'master',
@flags=0,
@proxy_name=N'SSIS_Proxy'
GO

Revoking SSIS access from the proxy

You can revoke access to the SSIS subsystem and delete the SSIS proxy using the following stored
procedures.

SQL Server Integration Services 3182

Amazon Relational Database Service User Guide

To revoke access and delete the proxy

1. Revoke subsystem access.

USE [msdb]
GO
EXEC msdb.dbo.rds_sqlagent_proxy
 @task_type='REVOKE_SUBSYSTEM_ACCESS',@proxy_name='SSIS_Proxy',@proxy_subsystem='SSIS'
GO

2. Revoke the grants on the proxy.

USE [msdb]
GO
EXEC msdb.dbo.sp_revoke_login_from_proxy
 @proxy_name=N'SSIS_Proxy',@name=N'mydomain\user_name'
GO

3. Delete the proxy.

USE [msdb]
GO
EXEC dbo.sp_delete_proxy @proxy_name = N'SSIS_Proxy'
GO

Disable and drop SSIS database

Use the following steps to disable or drop SSIS databases:

Topics

• Disabling SSIS

• Dropping the SSISDB database

Disabling SSIS

To disable SSIS, remove the SSIS option from its option group.

SQL Server Integration Services 3183

Amazon Relational Database Service User Guide

Important

Removing the option doesn't delete the SSISDB database, so you can safely remove the
option without losing the SSIS projects.
You can re-enable the SSIS option after removal to reuse the SSIS projects that were
previously deployed to the SSIS catalog.

Console

The following procedure removes the SSIS option.

To remove the SSIS option from its option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group with the SSIS option (ssis-se-2016 in the previous examples).

4. Choose Delete option.

5. Under Deletion options, choose SSIS for Options to delete.

6. Under Apply immediately, choose Yes to delete the option immediately, or No to delete it at
the next maintenance window.

7. Choose Delete.

CLI

The following procedure removes the SSIS option.

To remove the SSIS option from its option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds remove-option-from-option-group \
 --option-group-name ssis-se-2016 \

SQL Server Integration Services 3184

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

 --options SSIS \
 --apply-immediately

For Windows:

aws rds remove-option-from-option-group ^
 --option-group-name ssis-se-2016 ^
 --options SSIS ^
 --apply-immediately

Dropping the SSISDB database

After removing the SSIS option, the SSISDB database isn't deleted. To drop the SSISDB database,
use the rds_drop_ssis_database stored procedure after removing the SSIS option.

To drop the SSIS database

• Use the following stored procedure.

USE [msdb]
GO
EXEC dbo.rds_drop_ssis_database
GO

After dropping the SSISDB database, if you re-enable the SSIS option you get a fresh SSISDB
catalog.

SQL Server Integration Services 3185

Amazon Relational Database Service User Guide

Support for SQL Server Reporting Services in Amazon RDS for SQL
Server

Microsoft SQL Server Reporting Services (SSRS) is a server-based application used for report
generation and distribution. It's part of a suite of SQL Server services that also includes SQL Server
Analysis Services (SSAS) and SQL Server Integration Services (SSIS). SSRS is a service built on top
of SQL Server. You can use it to collect data from various data sources and present it in a way that's
easily understandable and ready for analysis.

Amazon RDS for SQL Server supports running SSRS directly on RDS DB instances. You can use SSRS
with existing or new DB instances.

RDS supports SSRS for SQL Server Standard and Enterprise Editions on the following versions:

• SQL Server 2022, all versions

• SQL Server 2019, version 15.00.4043.16.v1 and higher

• SQL Server 2017, version 14.00.3223.3.v1 and higher

• SQL Server 2016, version 13.00.5820.21.v1 and higher

Contents

• Limitations and recommendations

• Turning on SSRS

• Creating an option group for SSRS

• Adding the SSRS option to your option group

• Associating your option group with your DB instance

• Allowing inbound access to your VPC security group

• Report server databases

• SSRS log files

• Accessing the SSRS web portal

• Using SSL on RDS

• Granting access to domain users

• Accessing the web portal

• Deploying reports and configuring report data sources

SQL Server Reporting Services 3186

Amazon Relational Database Service User Guide

• Deploying reports to SSRS

• Configuring the report data source

• Using SSRS Email to send reports

• Revoking system-level permissions

• Monitoring the status of a task

• Disabling and deleting SSRS databases

• Turning off SSRS

• Deleting the SSRS databases

Limitations and recommendations

The following limitations and recommendations apply to running SSRS on RDS for SQL Server:

• You can't use SSRS on DB instances that have read replicas.

• Instances must use self-managed Active Directory or AWS Directory Service for Microsoft Active
Directory for SSRS web portal and web server authentication. For more information, see Working
with Active Directory with RDS for SQL Server.

• You can't back up the reporting server databases that are created with the SSRS option.

• Importing and restoring report server databases from other instances of SSRS isn't supported.
For more information, see Report server databases.

• You can't configure SSRS to listen on the default SSL port (443). The allowed values are 1150–
49511, except 1234, 1434, 3260, 3343, 3389, and 47001.

• Subscriptions through a Microsoft Windows file share aren't supported.

• Using Reporting Services Configuration Manager isn't supported.

• Creating and modifying roles isn't supported.

• Modifying report server properties isn't supported.

• System administrator and system user roles aren't granted.

• You can't edit system-level role assignments through the web portal.

Turning on SSRS

Use the following process to turn on SSRS for your DB instance:

SQL Server Reporting Services 3187

Amazon Relational Database Service User Guide

1. Create a new option group, or choose an existing option group.

2. Add the SSRS option to the option group.

3. Associate the option group with the DB instance.

4. Allow inbound access to the virtual private cloud (VPC) security group for the SSRS listener port.

Creating an option group for SSRS

To work with SSRS, create an option group that corresponds to the SQL Server engine and version
of the DB instance that you plan to use. To do this, use the AWS Management Console or the AWS
CLI.

Note

You can also use an existing option group if it's for the correct SQL Server engine and
version.

Console

The following procedure creates an option group for SQL Server Standard Edition 2017.

To create the option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group pane, do the following:

a. For Name, enter a name for the option group that is unique within your AWS account,
such as ssrs-se-2017. The name can contain only letters, digits, and hyphens.

b. For Description, enter a brief description of the option group, such as SSRS option
group for SQL Server SE 2017. The description is used for display purposes.

c. For Engine, choose sqlserver-se.

d. For Major engine version, choose 14.00.

5. Choose Create.

SQL Server Reporting Services 3188

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

CLI

The following procedure creates an option group for SQL Server Standard Edition 2017.

To create the option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds create-option-group \
 --option-group-name ssrs-se-2017 \
 --engine-name sqlserver-se \
 --major-engine-version 14.00 \
 --option-group-description "SSRS option group for SQL Server SE 2017"

For Windows:

aws rds create-option-group ^
 --option-group-name ssrs-se-2017 ^
 --engine-name sqlserver-se ^
 --major-engine-version 14.00 ^
 --option-group-description "SSRS option group for SQL Server SE 2017"

Adding the SSRS option to your option group

Next, use the AWS Management Console or the AWS CLI to add the SSRS option to your option
group.

Console

To add the SSRS option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group that you just created, then choose Add option.

4. Under Option details, choose SSRS for Option name.

SQL Server Reporting Services 3189

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Under Option settings, do the following:

a. Enter the port for the SSRS service to listen on. The default is 8443. For a list of allowed
values, see Limitations and recommendations.

b. Enter a value for Max memory.

Max memory specifies the upper threshold above which no new memory allocation
requests are granted to report server applications. The number is a percentage of the total
memory of the DB instance. The allowed values are 10–80.

c. For Security groups, choose the VPC security group to associate with the option. Use the
same security group that is associated with your DB instance.

6. To use SSRS Email to send reports, choose the Configure email delivery options check box
under Email delivery in reporting services, and then do the following:

a. For Sender email address, enter the email address to use in the From field of messages
sent by SSRS Email.

Specify a user account that has permission to send mail from the SMTP server.

b. For SMTP server, specify the SMTP server or gateway to use.

It can be an IP address, the NetBIOS name of a computer on your corporate intranet, or a
fully qualified domain name.

c. For SMTP port, enter the port to use to connect to the mail server. The default is 25.

d. To use authentication:

i. Select the Use authentication check box.

ii. For Secret Amazon Resource Name (ARN) enter the AWS Secrets Manager ARN for
the user credentials.

Use the following format:

arn:aws:secretsmanager:Region:AccountId:secret:SecretName-6RandomCharacters

For example:

arn:aws:secretsmanager:us-west-2:123456789012:secret:MySecret-
a1b2c3

For more information on creating the secret, see Using SSRS Email to send reports.SQL Server Reporting Services 3190

Amazon Relational Database Service User Guide

e. Select the Use Secure Sockets Layer (SSL) check box to encrypt email messages using
SSL.

7. Under Scheduling, choose whether to add the option immediately or at the next maintenance
window.

8. Choose Add option.

CLI

To add the SSRS option

1. Create a JSON file, for example ssrs-option.json.

a. Set the following required parameters:

• OptionGroupName – The name of option group that you created or chose previously
(ssrs-se-2017 in the following example).

• Port – The port for the SSRS service to listen on. The default is 8443. For a list of
allowed values, see Limitations and recommendations.

• VpcSecurityGroupMemberships – VPC security group memberships for your RDS DB
instance.

• MAX_MEMORY – The upper threshold above which no new memory allocation requests
are granted to report server applications. The number is a percentage of the total
memory of the DB instance. The allowed values are 10–80.

b. (Optional) Set the following parameters to use SSRS Email:

• SMTP_ENABLE_EMAIL – Set to true to use SSRS Email. The default is false.

• SMTP_SENDER_EMAIL_ADDRESS – The email address to use in the From field of
messages sent by SSRS Email. Specify a user account that has permission to send mail
from the SMTP server.

• SMTP_SERVER – The SMTP server or gateway to use. It can be an IP address, the
NetBIOS name of a computer on your corporate intranet, or a fully qualified domain
name.

• SMTP_PORT – The port to use to connect to the mail server. The default is 25.

• SMTP_USE_SSL – Set to true to encrypt email messages using SSL. The default is
true.

SQL Server Reporting Services 3191

Amazon Relational Database Service User Guide

• SMTP_EMAIL_CREDENTIALS_SECRET_ARN – The Secrets Manager ARN that holds the
user credentials. Use the following format:

arn:aws:secretsmanager:Region:AccountId:secret:SecretName-6RandomCharacters

For more information on creating the secret, see Using SSRS Email to send reports.

• SMTP_USE_ANONYMOUS_AUTHENTICATION – Set to true and don't include
SMTP_EMAIL_CREDENTIALS_SECRET_ARN if you don't want to use authentication.

The default is false when SMTP_ENABLE_EMAIL is true.

The following example includes the SSRS Email parameters, using the secret ARN.

{
"OptionGroupName": "ssrs-se-2017",
"OptionsToInclude": [
 {
 "OptionName": "SSRS",
 "Port": 8443,
 "VpcSecurityGroupMemberships": ["sg-0abcdef123"],
 "OptionSettings": [
 {"Name": "MAX_MEMORY","Value": "60"},
 {"Name": "SMTP_ENABLE_EMAIL","Value": "true"}
 {"Name": "SMTP_SENDER_EMAIL_ADDRESS","Value": "nobody@example.com"},
 {"Name": "SMTP_SERVER","Value": "email-smtp.us-west-2.amazonaws.com"},
 {"Name": "SMTP_PORT","Value": "25"},
 {"Name": "SMTP_USE_SSL","Value": "true"},
 {"Name": "SMTP_EMAIL_CREDENTIALS_SECRET_ARN","Value":
 "arn:aws:secretsmanager:us-west-2:123456789012:secret:MySecret-a1b2c3"}
]
 }],
"ApplyImmediately": true
}

2. Add the SSRS option to the option group.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \

SQL Server Reporting Services 3192

Amazon Relational Database Service User Guide

 --cli-input-json file://ssrs-option.json \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --cli-input-json file://ssrs-option.json ^
 --apply-immediately

Associating your option group with your DB instance

Use the AWS Management Console or the AWS CLI to associate your option group with your DB
instance.

If you use an existing DB instance, it must already have an Active Directory domain and AWS
Identity and Access Management (IAM) role associated with it. If you create a new instance, specify
an existing Active Directory domain and IAM role. For more information, see Working with Active
Directory with RDS for SQL Server.

Console

You can associate your option group with a new or existing DB instance:

• For a new DB instance, associate the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, modify the instance and associate the new option group. For more
information, see Modifying an Amazon RDS DB instance.

CLI

You can associate your option group with a new or existing DB instance.

To create a DB instance that uses your option group

• Specify the same DB engine type and major version as you used when creating the option
group.

Example

For Linux, macOS, or Unix:

SQL Server Reporting Services 3193

Amazon Relational Database Service User Guide

aws rds create-db-instance \
 --db-instance-identifier myssrsinstance \
 --db-instance-class db.m5.2xlarge \
 --engine sqlserver-se \
 --engine-version 14.00.3223.3.v1 \
 --allocated-storage 100 \
 --manage-master-user-password \
 --master-username admin \
 --storage-type gp2 \
 --license-model li \
 --domain-iam-role-name my-directory-iam-role \
 --domain my-domain-id \
 --option-group-name ssrs-se-2017

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier myssrsinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 14.00.3223.3.v1 ^
 --allocated-storage 100 ^
 --manage-master-user-password ^
 --master-username admin ^
 --storage-type gp2 ^
 --license-model li ^
 --domain-iam-role-name my-directory-iam-role ^
 --domain my-domain-id ^
 --option-group-name ssrs-se-2017

To modify a DB instance to use your option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier myssrsinstance \

SQL Server Reporting Services 3194

Amazon Relational Database Service User Guide

 --option-group-name ssrs-se-2017 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier myssrsinstance ^
 --option-group-name ssrs-se-2017 ^
 --apply-immediately

Allowing inbound access to your VPC security group

To allow inbound access to the VPC security group associated with your DB instance, create an
inbound rule for the specified SSRS listener port. For more information about setting up security
groups, see Provide access to your DB instance in your VPC by creating a security group.

Report server databases

When your DB instance is associated with the SSRS option, two new databases are created on your
DB instance:

• rdsadmin_ReportServer

• rdsadmin_ReportServerTempDB

These databases act as the ReportServer and ReportServerTempDB databases. SSRS stores its data
in the ReportServer database and caches its data in the ReportServerTempDB database. For more
information, see Report Server Database in the Microsoft documentation.

RDS owns and manages these databases, so database operations on them such as ALTER and DROP
aren't permitted. Access isn't permitted on the rdsadmin_ReportServerTempDB database.
However, you can perform read operations on the rdsadmin_ReportServerdatabase.

SSRS log files

You can list, view, and download SSRS log files. SSRS log files follow a naming convention of
ReportServerService_timestamp.log. These report server logs are located in the D:\rdsdbdata
\Log\SSRS directory. (The D:\rdsdbdata\Log directory is also the parent directory for error
logs and SQL Server Agent logs.). For more information, see Viewing and listing database log files.

SQL Server Reporting Services 3195

https://learn.microsoft.com/en-us/sql/reporting-services/report-server/report-server-database-ssrs-native-mode?view=sql-server-ver15

Amazon Relational Database Service User Guide

For existing SSRS instances, restarting the SSRS service might be necessary to access report server
logs. You can restart the service by updating the SSRS option.

For more information, see Working with Amazon RDS for Microsoft SQL Server logs.

Accessing the SSRS web portal

Use the following process to access the SSRS web portal:

1. Turn on Secure Sockets Layer (SSL).

2. Grant access to domain users.

3. Access the web portal using a browser and the domain user credentials.

Using SSL on RDS

SSRS uses the HTTPS SSL protocol for its connections. To work with this protocol, import an SSL
certificate into the Microsoft Windows operating system on your client computer.

For more information on SSL certificates, see Using SSL/TLS to encrypt a connection to a DB
instance or cluster. For more information about using SSL with SQL Server, see Using SSL with a
Microsoft SQL Server DB instance.

Granting access to domain users

In a new SSRS activation, there are no role assignments in SSRS. To give a domain user or user
group access to the web portal, RDS provides a stored procedure.

To grant access to a domain user on the web portal

• Use the following stored procedure.

exec msdb.dbo.rds_msbi_task
@task_type='SSRS_GRANT_PORTAL_PERMISSION',
@ssrs_group_or_username=N'AD_domain\user';

The domain user or user group is granted the RDS_SSRS_ROLE system role. This role has the
following system-level tasks granted to it:

• Run reports

SQL Server Reporting Services 3196

Amazon Relational Database Service User Guide

• Manage jobs

• Manage shared schedules

• View shared schedules

The item-level role of Content Manager on the root folder is also granted.

Accessing the web portal

After the SSRS_GRANT_PORTAL_PERMISSION task finishes successfully, you have access to the
portal using a web browser. The web portal URL has the following format.

https://rds_endpoint:port/Reports

In this format, the following applies:

• rds_endpoint – The endpoint for the RDS DB instance that you're using with SSRS.

You can find the endpoint on the Connectivity & security tab for your DB instance. For more
information, see Connecting to your Microsoft SQL Server DB instance.

• port – The listener port for SSRS that you set in the SSRS option.

To access the web portal

1. Enter the web portal URL in your browser.

https://myssrsinstance.cg034itsfake.us-east-1.rds.amazonaws.com:8443/Reports

2. Log in with the credentials for a domain user that you granted access with the
SSRS_GRANT_PORTAL_PERMISSION task.

Deploying reports and configuring report data sources

Use the following procedures to deploy reports to SSRS and configure the reporting data sources:

Topics

• Deploying reports to SSRS

• Configuring the report data source

SQL Server Reporting Services 3197

Amazon Relational Database Service User Guide

Deploying reports to SSRS

After you have access to the web portal, you can deploy reports to it. You can use the Upload tool
in the web portal to upload reports, or deploy directly from SQL Server data tools (SSDT). When
deploying from SSDT, ensure the following:

• The user who launched SSDT has access to the SSRS web portal.

• The TargetServerURL value in the SSRS project properties is set to the HTTPS endpoint of the
RDS DB instance suffixed with ReportServer, for example:

https://myssrsinstance.cg034itsfake.us-east-1.rds.amazonaws.com:8443/ReportServer

Configuring the report data source

After you deploy a report to SSRS, you should configure the report data source. When configuring
the report data source, ensure the following:

• For RDS for SQL Server DB instances joined to AWS Directory Service for Microsoft Active
Directory, use the fully qualified domain name (FQDN) as the data source name of the
connection string. An example is myssrsinstance.corp-ad.example.com, where
myssrsinstance is the DB instance name and corp-ad.example.com is the fully qualified
domain name.

• For RDS for SQL Server DB instances joined to self-managed Active Directory, use ., or
LocalHost as the data source name of the connection string.

Using SSRS Email to send reports

SSRS includes the SSRS Email extension, which you can use to send reports to users.

To configure SSRS Email, use the SSRS option settings. For more information, see Adding the SSRS
option to your option group.

After configuring SSRS Email, you can subscribe to reports on the report server. For more
information, see Email delivery in Reporting Services in the Microsoft documentation.

Integration with AWS Secrets Manager is required for SSRS Email to function on RDS. To integrate
with Secrets Manager, you create a secret.

SQL Server Reporting Services 3198

https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt
https://docs.microsoft.com/en-us/sql/reporting-services/subscriptions/e-mail-delivery-in-reporting-services

Amazon Relational Database Service User Guide

Note

If you change the secret later, you also have to update the SSRS option in the option group.

To create a secret for SSRS Email

1. Follow the steps in Create a secret in the AWS Secrets Manager User Guide.

a. For Select secret type, choose Other type of secrets.

b. For Key/value pairs, enter the following:

• SMTP_USERNAME – Enter a user with permission to send mail from the SMTP server.

• SMTP_PASSWORD – Enter a password for the SMTP user.

c. For Encryption key, don't use the default AWS KMS key. Use your own existing key, or
create a new one.

The KMS key policy must allow the kms:Decrypt action, for example:

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "rds.amazonaws.com"
]
 },
 "Action": [
 "kms:Decrypt"
],
 "Resource": "*"
}

2. Follow the steps in Attach a permissions policy to a secret in the AWS Secrets Manager User
Guide. The permissions policy gives the secretsmanager:GetSecretValue action to the
rds.amazonaws.com service principal.

We recommend that you use the aws:sourceAccount and aws:sourceArn
conditions in the policy to avoid the confused deputy problem. Use your AWS account for

SQL Server Reporting Services 3199

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_resource-policies.html

Amazon Relational Database Service User Guide

aws:sourceAccount and the option group ARN for aws:sourceArn. For more information,
see Preventing cross-service confused deputy problems.

The following example shows a permissions policy.

{
 "Version" : "2012-10-17",
 "Statement" : [{
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "rds.amazonaws.com"
 },
 "Action" : "secretsmanager:GetSecretValue",
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "aws:sourceAccount" : "123456789012"
 },
 "ArnLike" : {
 "aws:sourceArn" : "arn:aws:rds:us-west-2:123456789012:og:ssrs-se-2017"
 }
 }
 }]
}

For more examples, see Permissions policy examples for AWS Secrets Manager in the AWS
Secrets Manager User Guide.

Revoking system-level permissions

The RDS_SSRS_ROLE system role doesn't have sufficient permissions to delete system-level
role assignments. To remove a user or user group from RDS_SSRS_ROLE, use the same stored
procedure that you used to grant the role but use the SSRS_REVOKE_PORTAL_PERMISSION task
type.

To revoke access from a domain user for the web portal

• Use the following stored procedure.

exec msdb.dbo.rds_msbi_task
@task_type='SSRS_REVOKE_PORTAL_PERMISSION',

SQL Server Reporting Services 3200

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html

Amazon Relational Database Service User Guide

@ssrs_group_or_username=N'AD_domain\user';

Doing this deletes the user from the RDS_SSRS_ROLE system role. It also deletes the user from the
Content Manager item-level role if the user has it.

Monitoring the status of a task

To track the status of your granting or revoking task, call the rds_fn_task_status function. It
takes two parameters. The first parameter should always be NULL because it doesn't apply to SSRS.
The second parameter accepts a task ID.

To see a list of all tasks, set the first parameter to NULL and the second parameter to 0, as shown in
the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,0);

To get a specific task, set the first parameter to NULL and the second parameter to the task ID, as
shown in the following example.

SELECT * FROM msdb.dbo.rds_fn_task_status(NULL,42);

The rds_fn_task_status function returns the following information.

Output parameter Description

task_id The ID of the task.

task_type For SSRS, tasks can have the following task
types:

• SSRS_GRANT_PORTAL_PERMISSION

• SSRS_REVOKE_PORTAL_PERMISSION

database_name Not applicable to SSRS tasks.

% complete The progress of the task as a percentage.

duration (mins) The amount of time spent on the task, in
minutes.

SQL Server Reporting Services 3201

Amazon Relational Database Service User Guide

Output parameter Description

lifecycle The status of the task. Possible statuses are
the following:

•
CREATED – After you call one of the SSRS
stored procedures, a task is created and the
status is set to CREATED.

•
IN_PROGRESS – After a task starts, the
status is set to IN_PROGRESS . It can take
up to five minutes for the status to change
from CREATED to IN_PROGRESS .

•
SUCCESS – After a task completes, the
status is set to SUCCESS.

•
ERROR – If a task fails, the status is set to
 ERROR. For more information about the
error, see the task_info column.

•
CANCEL_REQUESTED – After you call the
 rds_cancel_task stored procedure,
the status of the task is set to CANCEL_RE
QUESTED .

•
CANCELLED – After a task is successfully
canceled, the status of the task is set to
CANCELLED .

task_info Additional information about the task. If an
error occurs during processing, this column
 contains information about the error.

last_updated The date and time that the task status was last
updated.

SQL Server Reporting Services 3202

Amazon Relational Database Service User Guide

Output parameter Description

created_at The date and time that the task was created.

S3_object_arn Not applicable to SSRS tasks.

overwrite_S3_backup_file Not applicable to SSRS tasks.

KMS_master_key_arn Not applicable to SSRS tasks.

filepath Not applicable to SSRS tasks.

overwrite_file Not applicable to SSRS tasks.

task_metadata Metadata associated with the SSRS task.

Disabling and deleting SSRS databases

Use the following procedures to disable SSRS and delete SSRS databases:

Topics

• Turning off SSRS

• Deleting the SSRS databases

Turning off SSRS

To turn off SSRS, remove the SSRS option from its option group. Removing the option doesn't
delete the SSRS databases. For more information, see Deleting the SSRS databases.

You can turn SSRS on again by adding back the SSRS option. If you have also deleted the SSRS
databases, readding the option on the same DB instance creates new report server databases.

Console

To remove the SSRS option from its option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

SQL Server Reporting Services 3203

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. Choose the option group with the SSRS option (ssrs-se-2017 in the previous examples).

4. Choose Delete option.

5. Under Deletion options, choose SSRS for Options to delete.

6. Under Apply immediately, choose Yes to delete the option immediately, or No to delete it at
the next maintenance window.

7. Choose Delete.

CLI

To remove the SSRS option from its option group

• Run one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds remove-option-from-option-group \
 --option-group-name ssrs-se-2017 \
 --options SSRS \
 --apply-immediately

For Windows:

aws rds remove-option-from-option-group ^
 --option-group-name ssrs-se-2017 ^
 --options SSRS ^
 --apply-immediately

Deleting the SSRS databases

Removing the SSRS option doesn't delete the report server databases. To delete them, use the
following stored procedure.

To delete the report server databases, be sure to remove the SSRS option first.

To delete the SSRS databases

• Use the following stored procedure.

SQL Server Reporting Services 3204

Amazon Relational Database Service User Guide

exec msdb.dbo.rds_drop_ssrs_databases

SQL Server Reporting Services 3205

Amazon Relational Database Service User Guide

Support for Microsoft Distributed Transaction Coordinator in RDS for
SQL Server

A distributed transaction is a database transaction in which two or more network hosts are
involved. RDS for SQL Server supports distributed transactions among hosts, where a single host
can be one of the following:

• RDS for SQL Server DB instance

• On-premises SQL Server host

• Amazon EC2 host with SQL Server installed

• Any other EC2 host or RDS DB instance with a database engine that supports distributed
transactions

In RDS, starting with SQL Server 2012 (version 11.00.5058.0.v1 and later), all editions of RDS for
SQL Server support distributed transactions. The support is provided using Microsoft Distributed
Transaction Coordinator (MSDTC). For in-depth information about MSDTC, see Distributed
Transaction Coordinator in the Microsoft documentation.

Contents

• Limitations

• Enabling MSDTC

• Creating the option group for MSDTC

• Adding the MSDTC option to the option group

• Creating the parameter group for MSDTC

• Modifying the parameter for MSDTC

• Associating the option group and parameter group with the DB instance

• Modifying the MSDTC option

• Using transactions

• Using distributed transactions

• Using XA transactions

• Using transaction tracing

• Disabling MSDTC

• Troubleshooting MSDTC for RDS for SQL Server

Microsoft Distributed Transaction Coordinator 3206

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms684146(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms684146(v=vs.85)

Amazon Relational Database Service User Guide

Limitations

The following limitations apply to using MSDTC on RDS for SQL Server:

• MSDTC isn't supported on instances using SQL Server Database Mirroring. For more information,
see Transactions - availability groups and database mirroring.

• The in-doubt xact resolution parameter must be set to 1 or 2. For more information, see
Modifying the parameter for MSDTC.

• MSDTC requires all hosts participating in distributed transactions to be resolvable using their
host names. RDS automatically maintains this functionality for domain-joined instances.
However, for standalone instances make sure to configure the DNS server manually.

• Java Database Connectivity (JDBC) XA transactions are supported for SQL Server 2017 version
14.00.3223.3 and higher, and SQL Server 2019.

• Distributed transactions that depend on client dynamic link libraries (DLLs) on RDS instances
aren't supported.

• Using custom XA dynamic link libraries isn't supported.

Enabling MSDTC

Use the following process to enable MSDTC for your DB instance:

1. Create a new option group, or choose an existing option group.

2. Add the MSDTC option to the option group.

3. Create a new parameter group, or choose an existing parameter group.

4. Modify the parameter group to set the in-doubt xact resolution parameter to 1 or 2.

5. Associate the option group and parameter group with the DB instance.

Creating the option group for MSDTC

Use the AWS Management Console or the AWS CLI to create an option group that corresponds to
the SQL Server engine and version of your DB instance.

Microsoft Distributed Transaction Coordinator 3207

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/transactions-always-on-availability-and-database-mirroring?view=sql-server-ver15#non-support-for-distributed-transactions

Amazon Relational Database Service User Guide

Note

You can also use an existing option group if it's for the correct SQL Server engine and
version.

Console

The following procedure creates an option group for SQL Server Standard Edition 2016.

To create the option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose Create group.

4. In the Create option group pane, do the following:

a. For Name, enter a name for the option group that is unique within your AWS account,
such as msdtc-se-2016. The name can contain only letters, digits, and hyphens.

b. For Description, enter a brief description of the option group, such as MSDTC option
group for SQL Server SE 2016. The description is used for display purposes.

c. For Engine, choose sqlserver-se.

d. For Major engine version, choose 13.00.

5. Choose Create.

CLI

The following example creates an option group for SQL Server Standard Edition 2016.

To create the option group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

Microsoft Distributed Transaction Coordinator 3208

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

aws rds create-option-group \
 --option-group-name msdtc-se-2016 \
 --engine-name sqlserver-se \
 --major-engine-version 13.00 \
 --option-group-description "MSDTC option group for SQL Server SE 2016"

For Windows:

aws rds create-option-group ^
 --option-group-name msdtc-se-2016 ^
 --engine-name sqlserver-se ^
 --major-engine-version 13.00 ^
 --option-group-description "MSDTC option group for SQL Server SE 2016"

Adding the MSDTC option to the option group

Next, use the AWS Management Console or the AWS CLI to add the MSDTC option to the option
group.

The following option settings are required:

• Port – The port that you use to access MSDTC. Allowed values are 1150–49151 except for 1234,
1434, 3260, 3343, 3389, and 47001. The default value is 5000.

Make sure that the port you want to use is enabled in your firewall rules. Also, make sure as
needed that this port is enabled in the inbound and outbound rules for the security group
associated with your DB instance. For more information, see Can't connect to Amazon RDS DB
instance.

• Security groups – The VPC security group memberships for your RDS DB instance.

• Authentication type – The authentication mode between hosts. The following authentication
types are supported:

• Mutual – The RDS instances are mutually authenticated to each other using integrated
authentication. If this option is selected, all instances associated with this option group must
be domain-joined.

• None – No authentication is performed between hosts. We don't recommend using this mode
in production environments.

Microsoft Distributed Transaction Coordinator 3209

Amazon Relational Database Service User Guide

• Transaction log size – The size of the MSDTC transaction log. Allowed values are 4–1024 MB.
The default size is 4 MB.

The following option settings are optional:

• Enable inbound connections – Whether to allow inbound MSDTC connections to instances
associated with this option group.

• Enable outbound connections – Whether to allow outbound MSDTC connections from instances
associated with this option group.

• Enable XA – Whether to allow XA transactions. For more information on the XA protocol, see XA
specification.

• Enable SNA LU – Whether to allow the SNA LU protocol to be used for distributed transactions.
For more information on SNA LU protocol support, see Managing IBM CICS LU 6.2 transactions in
the Microsoft documentation.

Console

To add the MSDTC option

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group that you just created.

4. Choose Add option.

5. Under Option details, choose MSDTC for Option name.

6. Under Option settings:

a. For Port, enter the port number for accessing MSDTC. The default is 5000.

b. For Security groups, choose the VPC security group to associate with the option.

c. For Authentication type, choose Mutual or None.

d. For Transaction log size, enter a value from 4–1024. The default is 4.

7. Under Additional configuration, do the following:

a. For Connections, as needed choose Enable inbound connections and Enable outbound
connections.

Microsoft Distributed Transaction Coordinator 3210

https://publications.opengroup.org/c193
https://publications.opengroup.org/c193
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms685136(v=vs.85)
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

b. For Allowed protocols, as needed choose Enable XA and Enable SNA LU.

8. Under Scheduling, choose whether to add the option immediately or at the next maintenance
window.

9. Choose Add option.

To add this option, no reboot is required.

CLI

To add the MSDTC option

1. Create a JSON file, for example msdtc-option.json, with the following required
parameters.

{
"OptionGroupName":"msdtc-se-2016",
"OptionsToInclude": [
 {
 "OptionName":"MSDTC",
 "Port":5000,
 "VpcSecurityGroupMemberships":["sg-0abcdef123"],
 "OptionSettings":[{"Name":"AUTHENTICATION","Value":"MUTUAL"},
{"Name":"TRANSACTION_LOG_SIZE","Value":"4"}]
 }],
"ApplyImmediately": true
}

2. Add the MSDTC option to the option group.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --cli-input-json file://msdtc-option.json \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^

Microsoft Distributed Transaction Coordinator 3211

Amazon Relational Database Service User Guide

 --cli-input-json file://msdtc-option.json ^
 --apply-immediately

No reboot is required.

Creating the parameter group for MSDTC

Create or modify a parameter group for the in-doubt xact resolution parameter that
corresponds to the SQL Server edition and version of your DB instance.

Console

The following example creates a parameter group for SQL Server Standard Edition 2016.

To create the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

4. In the Create parameter group pane, do the following:

a. For Parameter group family, choose sqlserver-se-13.0.

b. For Group name, enter an identifier for the parameter group, such as msdtc-
sqlserver-se-13.

c. For Description, enter in-doubt xact resolution.

5. Choose Create.

CLI

The following example creates a parameter group for SQL Server Standard Edition 2016.

To create the parameter group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

Microsoft Distributed Transaction Coordinator 3212

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

aws rds create-db-parameter-group \
 --db-parameter-group-name msdtc-sqlserver-se-13 \
 --db-parameter-group-family "sqlserver-se-13.0" \
 --description "in-doubt xact resolution"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name msdtc-sqlserver-se-13 ^
 --db-parameter-group-family "sqlserver-se-13.0" ^
 --description "in-doubt xact resolution"

Modifying the parameter for MSDTC

Modify the in-doubt xact resolution parameter in the parameter group that corresponds to
the SQL Server edition and version of your DB instance.

For MSDTC, set the in-doubt xact resolution parameter to one of the following:

• 1 – Presume commit. Any MSDTC in-doubt transactions are presumed to have committed.

• 2 – Presume abort. Any MSDTC in-doubt transactions are presumed to have stopped.

For more information, see in-doubt xact resolution server configuration option in the Microsoft
documentation.

Console

The following example modifies the parameter group that you created for SQL Server Standard
Edition 2016.

To modify the parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose the parameter group, such as msdtc-sqlserver-se-13.

4. Under Parameters, filter the parameter list for xact.

Microsoft Distributed Transaction Coordinator 3213

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/in-doubt-xact-resolution-server-configuration-option
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Choose in-doubt xact resolution.

6. Choose Edit parameters.

7. Enter 1 or 2.

8. Choose Save changes.

CLI

The following example modifies the parameter group that you created for SQL Server Standard
Edition 2016.

To modify the parameter group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name msdtc-sqlserver-se-13 \
 --parameters "ParameterName='in-doubt xact
 resolution',ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name msdtc-sqlserver-se-13 ^
 --parameters "ParameterName='in-doubt xact
 resolution',ParameterValue=1,ApplyMethod=immediate"

Associating the option group and parameter group with the DB instance

You can use the AWS Management Console or the AWS CLI to associate the MSDTC option group
and parameter group with the DB instance.

Console

You can associate the MSDTC option group and parameter group with a new or existing DB
instance.

Microsoft Distributed Transaction Coordinator 3214

Amazon Relational Database Service User Guide

• For a new DB instance, associate them when you launch the instance. For more information, see
Creating an Amazon RDS DB instance.

• For an existing DB instance, associate them by modifying the instance. For more information, see
Modifying an Amazon RDS DB instance.

Note

If you use an domain-joined existing DB instance, it must already have an Active Directory
domain and AWS Identity and Access Management (IAM) role associated with it. If you
create a new domain-joined instance, specify an existing Active Directory domain and
IAM role. For more information, see Working with AWS Managed Active Directory with
RDS for SQL Server.

CLI

You can associate the MSDTC option group and parameter group with a new or existing DB
instance.

Note

If you use an existing domain-joined DB instance, it must already have an Active Directory
domain and IAM role associated with it. If you create a new domain-joined instance, specify
an existing Active Directory domain and IAM role. For more information, see Working with
AWS Managed Active Directory with RDS for SQL Server.

To create a DB instance with the MSDTC option group and parameter group

• Specify the same DB engine type and major version as you used when creating the option
group.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --db-instance-class db.m5.2xlarge \

Microsoft Distributed Transaction Coordinator 3215

Amazon Relational Database Service User Guide

 --engine sqlserver-se \
 --engine-version 13.00.5426.0.v1 \
 --allocated-storage 100 \
 --manage-master-user-password \
 --master-username admin \
 --storage-type gp2 \
 --license-model li \
 --domain-iam-role-name my-directory-iam-role \
 --domain my-domain-id \
 --option-group-name msdtc-se-2016 \
 --db-parameter-group-name msdtc-sqlserver-se-13

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-instance-class db.m5.2xlarge ^
 --engine sqlserver-se ^
 --engine-version 13.00.5426.0.v1 ^
 --allocated-storage 100 ^
 --manage-master-user-password ^
 --master-username admin ^
 --storage-type gp2 ^
 --license-model li ^
 --domain-iam-role-name my-directory-iam-role ^
 --domain my-domain-id ^
 --option-group-name msdtc-se-2016 ^
 --db-parameter-group-name msdtc-sqlserver-se-13

To modify a DB instance and associate the MSDTC option group and parameter group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --option-group-name msdtc-se-2016 \
 --db-parameter-group-name msdtc-sqlserver-se-13 \

Microsoft Distributed Transaction Coordinator 3216

Amazon Relational Database Service User Guide

 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --option-group-name msdtc-se-2016 ^
 --db-parameter-group-name msdtc-sqlserver-se-13 ^
 --apply-immediately

Modifying the MSDTC option

After you enable the MSDTC option, you can modify its settings. For information about how to
modify option settings, see Modifying an option setting.

Note

Some changes to MSDTC option settings require the MSDTC service to be restarted. This
requirement can affect running distributed transactions.

Using transactions

Using distributed transactions

In Amazon RDS for SQL Server, you run distributed transactions in the same way as distributed
transactions running on-premises:

• Using .NET framework System.Transactions promotable transactions, which optimizes
distributed transactions by deferring their creation until they're needed.

In this case, promotion is automatic and doesn't require you to make any intervention. If there's
only one resource manager within the transaction, no promotion is performed. For more
information about implicit transaction scopes, see Implementing an implicit transaction using
transaction scope in the Microsoft documentation.

Promotable transactions are supported with these .NET implementations:

Microsoft Distributed Transaction Coordinator 3217

https://docs.microsoft.com/en-us/dotnet/framework/data/transactions/implementing-an-implicit-transaction-using-transaction-scope
https://docs.microsoft.com/en-us/dotnet/framework/data/transactions/implementing-an-implicit-transaction-using-transaction-scope

Amazon Relational Database Service User Guide

• Starting with ADO.NET 2.0, System.Data.SqlClient supports promotable transactions
with SQL Server. For more information, see System.Transactions integration with SQL Server in
the Microsoft documentation.

• ODP.NET supports System.Transactions. A local transaction is created for the first
connection opened in the TransactionsScope scope to Oracle Database 11g release 1
(version 11.1) and later. When a second connection is opened, this transaction is automatically
promoted to a distributed transaction. For more information about distributed transaction
support in ODP.NET, see Microsoft Distributed Transaction Coordinator integration in the
Microsoft documentation.

• Using the BEGIN DISTRIBUTED TRANSACTION statement. For more information, see BEGIN
DISTRIBUTED TRANSACTION (Transact-SQL) in the Microsoft documentation.

Using XA transactions

Starting from RDS for SQL Server 2017 version14.00.3223.3, you can control distributed
transactions using JDBC. When you set the Enable XA option setting to true in the MSDTC
option, RDS automatically enables JDBC transactions and grants the SqlJDBCXAUser role to the
guest user. This allows executing distributed transactions through JDBC. For more information,
including a code example, see Understanding XA transactions in the Microsoft documentation.

Using transaction tracing

RDS supports controlling MSDTC transaction traces and downloading them from the RDS DB
instance for troubleshooting. You can control transaction tracing sessions by running the following
RDS stored procedure.

exec msdb.dbo.rds_msdtc_transaction_tracing 'trace_action',
[@traceall='0|1'],
[@traceaborted='0|1'],
[@tracelong='0|1'];

The following parameter is required:

• trace_action – The tracing action. It can be START, STOP, or STATUS.

The following parameters are optional:

• @traceall – Set to 1 to trace all distributed transactions. The default is 0.

Microsoft Distributed Transaction Coordinator 3218

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/system-transactions-integration-with-sql-server
https://docs.oracle.com/en/database/oracle/oracle-data-access-components/18.3/ntmts/using-mts-with-oracledb.html
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/begin-distributed-transaction-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/begin-distributed-transaction-transact-sql
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-xa-transactions

Amazon Relational Database Service User Guide

• @traceaborted – Set to 1 to trace canceled distributed transactions. The default is 0.

• @tracelong – Set to 1 to trace long-running distributed transactions. The default is 0.

Example of START tracing action

To start a new transaction tracing session, run the following example statement.

exec msdb.dbo.rds_msdtc_transaction_tracing 'START',
@traceall='0',
@traceaborted='1',
@tracelong='1';

Note

Only one transaction tracing session can be active at one time. If a new tracing session
START command is issued while a tracing session is active, an error is returned and the
active tracing session remains unchanged.

Example of STOP tracing action

To stop a transaction tracing session, run the following statement.

exec msdb.dbo.rds_msdtc_transaction_tracing 'STOP'

This statement stops the active transaction tracing session and saves the transaction trace data
into the log directory on the RDS DB instance. The first row of the output contains the overall
result, and the following lines indicate details of the operation.

The following is an example of a successful tracing session stop.

OK: Trace session has been successfully stopped.
Setting log file to: D:\rdsdbdata\MSDTC\Trace\dtctrace.log
Examining D:\rdsdbdata\MSDTC\Trace\msdtctr.mof for message formats, 8 found.
Searching for TMF files on path: (null)
Logfile D:\rdsdbdata\MSDTC\Trace\dtctrace.log:
 OS version 10.0.14393 (Currently running on 6.2.9200)
 Start Time <timestamp>
 End Time <timestamp>

Microsoft Distributed Transaction Coordinator 3219

Amazon Relational Database Service User Guide

 Timezone is @tzres.dll,-932 (Bias is 0mins)
 BufferSize 16384 B
 Maximum File Size 10 MB
 Buffers Written Not set (Logger may not have been stopped).
 Logger Mode Settings (11000002) (circular paged
 ProcessorCount 1
Processing completed Buffers: 1, Events: 3, EventsLost: 0 :: Format Errors: 0,
 Unknowns: 3
Event traces dumped to d:\rdsdbdata\Log\msdtc_<timestamp>.log

You can use the detailed information to query the name of the generated log file. For more
information about downloading log files from the RDS DB instance, see Monitoring Amazon RDS
log files.

The trace session logs remain on the instance for 35 days. Any older trace session logs are
automatically deleted.

Example of STATUS tracing action

To trace the status of a transaction tracing session, run the following statement.

exec msdb.dbo.rds_msdtc_transaction_tracing 'STATUS'

This statement outputs the following as separate rows of the result set.

OK
SessionStatus: <Started|Stopped>
TraceAll: <True|False>
TraceAborted: <True|False>
TraceLongLived: <True|False>

The first line indicates the overall result of the operation: OK or ERROR with details, if applicable.
The subsequent lines indicate details about the tracing session status:

• SessionStatus can be one of the following:

• Started if a tracing session is running.

• Stopped if no tracing session is running.

• The tracing session flags can be True or False depending on how they were set in the START
command.

Microsoft Distributed Transaction Coordinator 3220

Amazon Relational Database Service User Guide

Disabling MSDTC

To disable MSDTC, remove the MSDTC option from its option group.

Console

To remove the MSDTC option from its option group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Choose the option group with the MSDTC option (msdtc-se-2016 in the previous examples).

4. Choose Delete option.

5. Under Deletion options, choose MSDTC for Options to delete.

6. Under Apply immediately, choose Yes to delete the option immediately, or No to delete it at
the next maintenance window.

7. Choose Delete.

CLI

To remove the MSDTC option from its option group

• Use one of the following commands.

Example

For Linux, macOS, or Unix:

aws rds remove-option-from-option-group \
 --option-group-name msdtc-se-2016 \
 --options MSDTC \
 --apply-immediately

For Windows:

aws rds remove-option-from-option-group ^
 --option-group-name msdtc-se-2016 ^
 --options MSDTC ^

Microsoft Distributed Transaction Coordinator 3221

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

 --apply-immediately

Troubleshooting MSDTC for RDS for SQL Server

In some cases, you might have trouble establishing a connection between MSDTC running on a
client computer and the MSDTC service running on an RDS for SQL Server DB instance. If so, make
sure of the following:

• The inbound rules for the security group associated with the DB instance are configured
correctly. For more information, see Can't connect to Amazon RDS DB instance.

• Your client computer is configured correctly.

• The MSDTC firewall rules on your client computer are enabled.

To configure the client computer

1. Open Component Services.

Or, in Server Manager, choose Tools, and then choose Component Services.

2. Expand Component Services, expand Computers, expand My Computer, and then expand
Distributed Transaction Coordinator.

3. Open the context (right-click) menu for Local DTC and choose Properties.

4. Choose the Security tab.

5. Choose all of the following:

• Network DTC Access

• Allow Inbound

• Allow Outbound

6. Make sure that the correct authentication mode is chosen:

• Mutual Authentication Required – The client machine is joined to the same domain as other
nodes participating in distributed transaction, or there is a trust relationship configured
between domains.

• No Authentication Required – All other cases.

7. Choose OK to save your changes.

8. If prompted to restart the service, choose Yes.

Microsoft Distributed Transaction Coordinator 3222

Amazon Relational Database Service User Guide

To enable MSDTC firewall rules

1. Open Windows Firewall, then choose Advanced settings.

Or, in Server Manager, choose Tools, and then choose Windows Firewall with Advanced
Security.

Note

Depending on your operating system, Windows Firewall might be called Windows
Defender Firewall.

2. Choose Inbound Rules in the left pane.

3. Enable the following firewall rules, if they are not already enabled:

• Distributed Transaction Coordinator (RPC)

• Distributed Transaction Coordinator (RPC)-EPMAP

• Distributed Transaction Coordinator (TCP-In)

4. Close Windows Firewall.

Microsoft Distributed Transaction Coordinator 3223

Amazon Relational Database Service User Guide

Common DBA tasks for Amazon RDS for Microsoft SQL Server

This section describes the Amazon RDS-specific implementations of some common DBA tasks
for DB instances that are running the Microsoft SQL Server database engine. In order to deliver
a managed service experience, Amazon RDS does not provide shell access to DB instances, and it
restricts access to certain system procedures and tables that require advanced privileges.

Note

When working with a SQL Server DB instance, you can run scripts to modify a newly
created database, but you cannot modify the [model] database, the database used as the
model for new databases.

Topics

• Accessing the tempdb database on Microsoft SQL Server DB instances on Amazon RDS

• Analyzing your database workload on an Amazon RDS for SQL Server DB instance with Database
Engine Tuning Advisor

• Changing the db_owner to the rdsa account for your Amazon RDS for SQL Server database

• Managing collations and character sets for Amazon RDS for Microsoft SQL Server

• Creating a database user for Amazon RDS for SQL Server

• Determining a recovery model for your Amazon RDS for SQL Server database

• Determining the last failover time for Amazon RDS for SQL Server

• Troubleshooting point-in-time-recovery failures due to a log sequence number gap

• Deny or allow viewing database names for Amazon RDS for SQL Server

• Disabling fast inserts during bulk loading for Amazon RDS for SQL Server

• Dropping a database in an Amazon RDS for Microsoft SQL Server DB instance

• Renaming a Amazon RDS for Microsoft SQL Server database in a Multi-AZ deployment

• Resetting the db_owner role membership for master user for Amazon RDS for SQL Server

• Restoring license-terminated DB instances for Amazon RDS for SQL Server

• Transitioning a Amazon RDS for SQL Server database from OFFLINE to ONLINE

• Using change data capture for Amazon RDS for SQL Server

• Using SQL Server Agent for Amazon RDS

Common DBA tasks 3224

Amazon Relational Database Service User Guide

• Working with Amazon RDS for Microsoft SQL Server logs

• Working with trace and dump files for Amazon RDS for SQL Server

Common DBA tasks 3225

Amazon Relational Database Service User Guide

Accessing the tempdb database on Microsoft SQL Server DB instances
on Amazon RDS

You can access the tempdb database on your Microsoft SQL Server DB instances on Amazon RDS.
You can run code on tempdb by using Transact-SQL through Microsoft SQL Server Management
Studio (SSMS), or any other standard SQL client application. For more information about
connecting to your DB instance, see Connecting to your Microsoft SQL Server DB instance.

The master user for your DB instance is granted CONTROL access to tempdb so that this user can
modify the tempdb database options. The master user isn't the database owner of the tempdb
database. If necessary, the master user can grant CONTROL access to other users so that they can
also modify the tempdb database options.

Note

You can't run Database Console Commands (DBCC) on the tempdb database.

Modifying tempdb database options

You can modify the database options on the tempdb database on your Amazon RDS DB instances.
For more information about which options can be modified, see tempdb database in the Microsoft
documentation.

Database options such as the maximum file size options are persistent after you restart your DB
instance. You can modify the database options to optimize performance when importing data, and
to prevent running out of storage.

Optimizing performance when importing data

To optimize performance when importing large amounts of data into your DB instance, set
the SIZE and FILEGROWTH properties of the tempdb database to large numbers. For more
information about how to optimize tempdb, see Optimizing tempdb performance in the Microsoft
documentation.

The following example demonstrates setting the size to 100 GB and file growth to 10 percent.

alter database[tempdb] modify file (NAME = N'templog', SIZE=100GB, FILEGROWTH = 10%)

Accessing the tempdb database 3226

https://msdn.microsoft.com/en-us/library/ms190768%28v=sql.120%29.aspx
https://technet.microsoft.com/en-us/library/ms175527%28v=sql.120%29.aspx

Amazon Relational Database Service User Guide

Preventing storage problems

To prevent the tempdb database from using all available disk space, set the MAXSIZE property. The
following example demonstrates setting the property to 2048 MB.

alter database [tempdb] modify file (NAME = N'templog', MAXSIZE = 2048MB)

Shrinking the tempdb database

There are two ways to shrink the tempdb database on your Amazon RDS DB instance. You can use
the rds_shrink_tempdbfile procedure, or you can set the SIZE property,

Using the rds_shrink_tempdbfile procedure

You can use the Amazon RDS procedure msdb.dbo.rds_shrink_tempdbfile to shrink the
tempdb database. You can only call rds_shrink_tempdbfile if you have CONTROL access to
tempdb. When you call rds_shrink_tempdbfile, there is no downtime for your DB instance.

The rds_shrink_tempdbfile procedure has the following parameters.

Parameter name Data type Default Required Description

@temp_filename SYSNAME — required The logical name of the
file to shrink.

@target_size int null optional The new size for the file,
in megabytes.

The following example gets the names of the files for the tempdb database.

use tempdb;
GO

select name, * from sys.sysfiles;
GO

The following example shrinks a tempdb database file named test_file, and requests a new size
of 10 megabytes:

Accessing the tempdb database 3227

Amazon Relational Database Service User Guide

exec msdb.dbo.rds_shrink_tempdbfile @temp_filename = N'test_file', @target_size = 10;

Setting the SIZE property

You can also shrink the tempdb database by setting the SIZE property and then restarting your DB
instance. For more information about restarting your DB instance, see Rebooting a DB instance.

The following example demonstrates setting the SIZE property to 1024 MB.

alter database [tempdb] modify file (NAME = N'templog', SIZE = 1024MB)

TempDB configuration for Multi-AZ deployments

If your RDS for SQL Server DB instance is in a Multi-AZ Deployment using Database Mirroring
(DBM) or Always On Availability Groups (AGs), keep in mind the following considerations for using
the tempdb database.

You can't replicate tempdb data from your primary DB instance to your secondary DB instance.
When you fail over to a secondary DB instance, tempdb on that secondary DB instance will be
empty.

You can synchronize the configuration of the tempdb database options, including its file sizing and
autogrowth settings, from your primary DB instance to your secondary DB instance. Synchronizing
the tempDB configuration is supported on all RDS for SQL Server versions. You can turn on
automatic synchronization of the tempdb configuration by using the following stored procedure:

EXECUTE msdb.dbo.rds_set_system_database_sync_objects @object_types = 'TempDbFile';

Important

Before using the rds_set_system_database_sync_objects stored procedure, ensure
you've set your preferred tempdb configuration on your primary DB instance, rather than
on your secondary DB instance. If you made the configuration change on your secondary
DB instance, your preferred tempdb configuration could be deleted when you turn on
automatic synchronization.

You can use the following function to confirm whether automatic synchronization of the tempdb
configuration is turned on:

Accessing the tempdb database 3228

Amazon Relational Database Service User Guide

SELECT * from msdb.dbo.rds_fn_get_system_database_sync_objects();

When automatic synchronization of the tempdb configuration is turned on, there will be a return
value for the object_class field. When it's turned off, no value is returned.

You can use the following function to find the last time objects were synchronized, in UTC time:

SELECT * from msdb.dbo.rds_fn_server_object_last_sync_time();

For example, if you modified the tempdb configuration at 01:00 and then run the
rds_fn_server_object_last_sync_time function, the value returned for last_sync_time
should be after 01:00, indicating that an automatic synchronization occurred.

If you are also using SQL Server Agent job replication, you can enable replication for both SQL
Agent jobs and the tempdb configuration by providing them in the @object_type parameter:

EXECUTE msdb.dbo.rds_set_system_database_sync_objects @object_types =
 'SQLAgentJob,TempDbFile';

For more information on SQL Server Agent job replication, see Turning on SQL Server Agent job
replication.

As an alternative to using the rds_set_system_database_sync_objects stored procedure to
ensure that tempdb configuration changes are automatically synchronized, you can use one of the
following manual methods:

Note

We recommend turning on automatic synchronization of the tempdb configuration
by using the rds_set_system_database_sync_objects stored procedure. Using
automatic synchronization prevents the need to perform these manual tasks each time you
change your tempdb configuration.

• First modify your DB instance and turn Multi-AZ off, then modify tempdb, and finally turn Multi-
AZ back on. This method doesn't involve any downtime.

For more information, see Modifying an Amazon RDS DB instance.

Accessing the tempdb database 3229

Amazon Relational Database Service User Guide

• First modify tempdb in the original primary instance, then fail over manually, and finally modify
tempdb in the new primary instance. This method involves downtime.

For more information, see Rebooting a DB instance.

Analyzing your database workload on an Amazon RDS for SQL Server
DB instance with Database Engine Tuning Advisor

Database Engine Tuning Advisor is a client application provided by Microsoft that analyzes
database workload and recommends an optimal set of indexes for your Microsoft SQL Server
databases based on the kinds of queries you run. Like SQL Server Management Studio, you run
Tuning Advisor from a client computer that connects to your Amazon RDS DB instance that is
running SQL Server. The client computer can be a local computer that you run on premises within
your own network or it can be an Amazon EC2 Windows instance that is running in the same region
as your Amazon RDS DB instance.

This section shows how to capture a workload for Tuning Advisor to analyze. This is the
preferred process for capturing a workload because Amazon RDS restricts host access to the
SQL Server instance. For more information, see Database Engine Tuning Advisor in the Microsoft
documentation.

To use Tuning Advisor, you must provide what is called a workload to the advisor. A workload is a
set of Transact-SQL statements that run against a database or databases that you want to tune.
Database Engine Tuning Advisor uses trace files, trace tables, Transact-SQL scripts, or XML files as
workload input when tuning databases. When working with Amazon RDS, a workload can be a file
on a client computer or a database table on an Amazon RDS for SQL Server DB accessible to your
client computer. The file or the table must contain queries against the databases you want to tune
in a format suitable for replay.

For Tuning Advisor to be most effective, a workload should be as realistic as possible. You can
generate a workload file or table by performing a trace against your DB instance. While a trace is
running, you can either simulate a load on your DB instance or run your applications with a normal
load.

There are two types of traces: client-side and server-side. A client-side trace is easier to set up and
you can watch trace events being captured in real-time in SQL Server Profiler. A server-side trace
is more complex to set up and requires some Transact-SQL scripting. In addition, because the trace
is written to a file on the Amazon RDS DB instance, storage space is consumed by the trace. It is

Analyzing database workload with Database Engine Tuning Advisor 3230

https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor

Amazon Relational Database Service User Guide

important to track of how much storage space a running server-side trace uses because the DB
instance could enter a storage-full state and would no longer be available if it runs out of storage
space.

For a client-side trace, when a sufficient amount of trace data has been captured in the SQL Server
Profiler, you can then generate the workload file by saving the trace to either a file on your local
computer or in a database table on a DB instance that is available to your client computer. The
main disadvantage of using a client-side trace is that the trace may not capture all queries when
under heavy loads. This could weaken the effectiveness of the analysis performed by the Database
Engine Tuning Advisor. If you need to run a trace under heavy loads and you want to ensure that it
captures every query during a trace session, you should use a server-side trace.

For a server-side trace, you must get the trace files on the DB instance into a suitable workload file
or you can save the trace to a table on the DB instance after the trace completes. You can use the
SQL Server Profiler to save the trace to a file on your local computer or have the Tuning Advisor
read from the trace table on the DB instance.

Running a client-side trace on a SQL Server DB instance

To run a client-side trace on a SQL Server DB instance

1. Start SQL Server Profiler. It is installed in the Performance Tools folder of your SQL Server
instance folder. You must load or define a trace definition template to start a client-side trace.

2. In the SQL Server Profiler File menu, choose New Trace. In the Connect to Server dialog box,
enter the DB instance endpoint, port, master user name, and password of the database you
would like to run a trace on.

3. In the Trace Properties dialog box, enter a trace name and choose a trace definition template.
A default template, TSQL_Replay, ships with the application. You can edit this template to
define your trace. Edit events and event information under the Events Selection tab of the
Trace Properties dialog box.

For more information about trace definition templates and using the SQL Server Profiler
to specify a client-side trace, see Database Engine Tuning Advisor in the Microsoft
documentation.

4. Start the client-side trace and watch SQL queries in real-time as they run against your DB
instance.

5. Select Stop Trace from the File menu when you have completed the trace. Save the results as
a file or as a trace table on you DB instance.

Analyzing database workload with Database Engine Tuning Advisor 3231

https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor

Amazon Relational Database Service User Guide

Running a server-side trace on a SQL Server DB instance

Writing scripts to create a server-side trace can be complex and is beyond the scope of this
document. This section contains sample scripts that you can use as examples. As with a client-
side trace, the goal is to create a workload file or trace table that you can open using the Database
Engine Tuning Advisor.

The following is an abridged example script that starts a server-side trace and captures details to a
workload file. The trace initially saves to the file RDSTrace.trc in the D:\RDSDBDATA\Log directory
and rolls-over every 100 MB so subsequent trace files are named RDSTrace_1.trc, RDSTrace_2.trc,
etc.

DECLARE @file_name NVARCHAR(245) = 'D:\RDSDBDATA\Log\RDSTrace';
DECLARE @max_file_size BIGINT = 100;
DECLARE @on BIT = 1
DECLARE @rc INT
DECLARE @traceid INT

EXEC @rc = sp_trace_create @traceid OUTPUT, 2, @file_name, @max_file_size
IF (@rc = 0) BEGIN
 EXEC sp_trace_setevent @traceid, 10, 1, @on
 EXEC sp_trace_setevent @traceid, 10, 2, @on
 EXEC sp_trace_setevent @traceid, 10, 3, @on
 . . .
 EXEC sp_trace_setfilter @traceid, 10, 0, 7, N'SQL Profiler'
 EXEC sp_trace_setstatus @traceid, 1
 END

The following example is a script that stops a trace. Note that a trace created by the previous script
continues to run until you explicitly stop the trace or the process runs out of disk space.

DECLARE @traceid INT
SELECT @traceid = traceid FROM ::fn_trace_getinfo(default)
WHERE property = 5 AND value = 1 AND traceid <> 1

IF @traceid IS NOT NULL BEGIN
 EXEC sp_trace_setstatus @traceid, 0
 EXEC sp_trace_setstatus @traceid, 2
END

Analyzing database workload with Database Engine Tuning Advisor 3232

Amazon Relational Database Service User Guide

You can save server-side trace results to a database table and use the database table as the
workload for the Tuning Advisor by using the fn_trace_gettable function. The following commands
load the results of all files named RDSTrace.trc in the D:\rdsdbdata\Log directory, including all
rollover files like RDSTrace_1.trc, into a table named RDSTrace in the current database.

SELECT * INTO RDSTrace
FROM fn_trace_gettable('D:\rdsdbdata\Log\RDSTrace.trc', default);

To save a specific rollover file to a table, for example the RDSTrace_1.trc file, specify the name of
the rollover file and substitute 1 instead of default as the last parameter to fn_trace_gettable.

SELECT * INTO RDSTrace_1
FROM fn_trace_gettable('D:\rdsdbdata\Log\RDSTrace_1.trc', 1);

Running Tuning Advisor with a trace

Once you create a trace, either as a local file or as a database table, you can then run Tuning
Advisor against your DB instance. Using Tuning Advisor with Amazon RDS is the same process
as when working with a standalone, remote SQL Server instance. You can either use the Tuning
Advisor UI on your client machine or use the dta.exe utility from the command line. In both cases,
you must connect to the Amazon RDS DB instance using the endpoint for the DB instance and
provide your master user name and master user password when using Tuning Advisor.

The following code example demonstrates using the dta.exe command line utility
against an Amazon RDS DB instance with an endpoint of dta.cnazcmklsdei.us-
east-1.rds.amazonaws.com. The example includes the master user name admin and
the master user password test, the example database to tune is named machine named
C:\RDSTrace.trc. The example command line code also specifies a trace session named
RDSTrace1 and specifies output files to the local machine named RDSTrace.sql for the SQL
output script, RDSTrace.txt for a result file, and RDSTrace.xml for an XML file of the analysis.
There is also an error table specified on the RDSDTA database named RDSTraceErrors.

dta -S dta.cnazcmklsdei.us-east-1.rds.amazonaws.com -U admin -P test -D RDSDTA -
if C:\RDSTrace.trc -s RDSTrace1 -of C:\ RDSTrace.sql -or C:\ RDSTrace.txt -ox C:\
 RDSTrace.xml -e RDSDTA.dbo.RDSTraceErrors

Here is the same example command line code except the input workload is a table on the remote
Amazon RDS instance named RDSTrace which is on the RDSDTA database.

Analyzing database workload with Database Engine Tuning Advisor 3233

Amazon Relational Database Service User Guide

dta -S dta.cnazcmklsdei.us-east-1.rds.amazonaws.com -U admin -P test -D RDSDTA -it
 RDSDTA.dbo.RDSTrace -s RDSTrace1 -of C:\ RDSTrace.sql -or C:\ RDSTrace.txt -ox C:\
 RDSTrace.xml -e RDSDTA.dbo.RDSTraceErrors

For a full list of dta utility command-line parameters, see dta Utility in the Microsoft
documentation.

Changing the db_owner to the rdsa account for your Amazon RDS for
SQL Server database

When you create or restore a database in an RDS for SQL Server DB instance, Amazon RDS sets
the owner of the database to rdsa. If you have a Multi-AZ deployment using SQL Server Database
Mirroring (DBM) or Always On Availability Groups (AGs), Amazon RDS sets the owner of the
database on the secondary DB instance to NT AUTHORITY\SYSTEM. The owner of the secondary
database can't be changed until the secondary DB instance is promoted to the primary role. In
most cases, setting the owner of the database to NT AUTHORITY\SYSTEM isn't problematic when
executing queries, however, can throw errors when executing system stored procedures such as
sys.sp_updatestats that require elevated permissions to execute.

You can use the following query to identify the owner of the databases owned by NT AUTHORITY
\SYSTEM:

SELECT name FROM sys.databases WHERE SUSER_SNAME(owner_sid) = 'NT AUTHORITY\SYSTEM';

You can use the Amazon RDS stored procedure rds_changedbowner_to_rdsa to
change the owner of the database to rdsa. The following databases are not allowed to
be used with rds_changedbowner_to_rdsa: master, model, msdb, rdsadmin,
rdsadmin_ReportServer, rdsadmin_ReportServerTempDB, SSISDB.

To change the owner of the database to rdsa, call the rds_changedbowner_to_rdsa stored
procedure and provide the name of the database.

Example usage:

exec msdb.dbo.rds_changedbowner_to_rdsa 'TestDB1';

The following parameter is required:

• @db_name – The name of the database to change the owner of the database to rdsa.

Changing the db_owner to the rdsa account for your database 3234

https://docs.microsoft.com/en-us/sql/tools/dta/dta-utility

Amazon Relational Database Service User Guide

Important

You can't use rds_changedbowner_to_rdsa to change ownership of a database to a
login other than rdsa. For example, you can't change the ownership to the login with
which you created the database. To restore lost membership in the db_owner role for your
master user when no other database user can be used to grant the membership, reset the
master user password to obtain membership in the db_owner role. For more information,
see Resetting the db_owner role membership for master user for Amazon RDS for SQL
Server.

Managing collations and character sets for Amazon RDS for Microsoft
SQL Server

This topic provide guidance on how to manage collations and character sets for Microsoft SQL
Server in Amazon RDS. It explains how to configure collations during database creation and modify
them later, ensuring proper handling of text data based on language and locale requirements.
Additionally, it covers best practices for maintaining compatibility and performance in SQL Server
environments in Amazon RDS.

SQL Server supports collations at multiple levels. You set the default server collation when you
create the DB instance. You can override the collation in the database, table, or column level.

Topics

• Server-level collation for Microsoft SQL Server

• Database-level collation for Microsoft SQL Server

Server-level collation for Microsoft SQL Server

When you create a Microsoft SQL Server DB instance, you can set the server collation that
you want to use. If you don't choose a different collation, the server-level collation defaults to
SQL_Latin1_General_CP1_CI_AS. The server collation is applied by default to all databases and
database objects.

Note

You can't change the collation when you restore from a DB snapshot.

Managing collations and character sets 3235

Amazon Relational Database Service User Guide

Currently, Amazon RDS supports the following server collations:

Collation Description

Arabic_CI_AS Arabic, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Chinese_PRC_BIN2 Chinese-PRC, binary code point sort order

Chinese_PRC_CI_AS Chinese-PRC, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Chinese_Taiwan_Stroke_CI_AS Chinese-Taiwan-Stroke, case-insensitive,
accent-sensitive, kanatype-insensitive, width-
insensitive

Danish_Norwegian_CI_AS Danish-Norwegian, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Finnish_Swedish_CI_AS Finnish, Swedish, and Swedish (Finland),
case-insensitive, accent-sensitive, kanatype-
insensitive, width-insensitive

French_CI_AS French, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Hebrew_BIN Hebrew, binary sort

Hebrew_CI_AS Hebrew, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Japanese_BIN Japanese, binary sort

Japanese_CI_AS Japanese, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Japanese_CS_AS Japanese, case-sensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Managing collations and character sets 3236

Amazon Relational Database Service User Guide

Collation Description

Japanese_XJIS_140_CI_AS Japanese, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters, variation selector
insensitive

Japanese_XJIS_140_CI_AS_KS_VSS Japanese, case-insensitive, accent-sensitive,
kanatype-sensitive, width-insensitive,
supplementary characters, variation selector
sensitive

Japanese_XJIS_140_CI_AS_VSS Japanese, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive,
supplementary characters, variation selector
sensitive

Japanese_XJIS_140_CS_AS_KS_WS Japanese, case-sensitive, accent-sensitive,
kanatype-sensitive, width-sensitive,
supplementary characters, variation selector
insensitive

Korean_Wansung_CI_AS Korean-Wansung, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Latin1_General_100_BIN Latin1-General-100, binary sort

Latin1_General_100_BIN2 Latin1-General-100, binary code point sort
order

Latin1_General_100_BIN2_UTF8 Latin1-General-100, binary code point sort
order, UTF-8 encoded

Latin1_General_100_CI_AS Latin1-General-100, case-insensitive, accent-
sensitive, kanatype-insensitive, width-ins
ensitive

Managing collations and character sets 3237

Amazon Relational Database Service User Guide

Collation Description

Latin1_General_100_CI_AS_SC_UTF8 Latin1-General-100, case-insensitive, accent-
sensitive, supplementary characters, UTF-8
encoded

Latin1_General_BIN Latin1-General, binary sort

Latin1_General_BIN2 Latin1-General, binary code point sort order

Latin1_General_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive

Latin1_General_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Latin1_General_CI_AS_KS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-sensitive, width-insensitive

Latin1_General_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Modern_Spanish_CI_AS Modern-Spanish, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive

Polish_CI_AS Polish, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

SQL_1xCompat_CP850_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 49 on
Code Page 850 for non-Unicode Data

SQL_Latin1_General_CP1_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive for Unicode Data, SQL Server Sort
Order 54 on Code Page 1252 for non-Unicode
Data

Managing collations and character sets 3238

Amazon Relational Database Service User Guide

Collation Description

SQL_Latin1_General_CP1_CI_AS (default) Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 52 on
Code Page 1252 for non-Unicode Data

SQL_Latin1_General_CP1_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 51 on
Code Page 1252 for non-Unicode Data

SQL_Latin1_General_CP437_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive for Unicode Data, SQL Server Sort
Order 34 on Code Page 437 for non-Unicode
Data

SQL_Latin1_General_CP850_BIN Latin1-General, binary sort order for Unicode
Data, SQL Server Sort Order 40 on Code Page
850 for non-Unicode Data

SQL_Latin1_General_CP850_BIN2 Latin1-General, binary code point sort order
for Unicode Data, SQL Server Sort Order 40 on
Code Page 850 for non-Unicode Data

SQL_Latin1_General_CP850_CI_AI Latin1-General, case-insensitive, accent-in
sensitive, kanatype-insensitive, width-ins
ensitive for Unicode Data, SQL Server Sort
Order 44 on Code Page 850 for non-Unicode
Data

SQL_Latin1_General_CP850_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 42 on
Code Page 850 for non-Unicode Data

Managing collations and character sets 3239

Amazon Relational Database Service User Guide

Collation Description

SQL_Latin1_General_CP1256_CI_AS Latin1-General, case-insensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 146
on Code Page 1256 for non-Unicode Data

SQL_Latin1_General_CP1255_CS_AS Latin1-General, case-sensitive, accent-se
nsitive, kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order 137
on Code Page 1255 for non-Unicode Data

Thai_CI_AS Thai, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

Turkish_CI_AS Turkish, case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive

To choose the collation:

• If you're using the Amazon RDS console, when creating a new DB instance choose Additional
configuration, then enter the collation in the Collation field. For more information, see Creating
an Amazon RDS DB instance.

• If you're using the AWS CLI, use the --character-set-name option with the create-db-
instance command. For more information, see create-db-instance.

• If you're using the Amazon RDS API, use the CharacterSetName parameter with the
CreateDBInstance operation. For more information, see CreateDBInstance.

Database-level collation for Microsoft SQL Server

You can change the default collation at the database, table, or column level by overriding the
collation when creating a new database or database object. For example, if your default server
collation is SQL_Latin1_General_CP1_CI_AS, you can change it to Mohawk_100_CI_AS for Mohawk
collation support. Even arguments in a query can be type-cast to use a different collation if
necessary.

Managing collations and character sets 3240

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

For example, the following query would change the default collation for the AccountName column
to Mohawk_100_CI_AS

CREATE TABLE [dbo].[Account]
 (
 [AccountID] [nvarchar](10) NOT NULL,
 [AccountName] [nvarchar](100) COLLATE Mohawk_100_CI_AS NOT NULL
) ON [PRIMARY];

The Microsoft SQL Server DB engine supports Unicode by the built-in NCHAR, NVARCHAR,
and NTEXT data types. For example, if you need CJK support, use these Unicode data types for
character storage and override the default server collation when creating your databases and
tables. Here are several links from Microsoft covering collation and Unicode support for SQL
Server:

• Working with collations

• Collation and international terminology

• Using SQL Server collations

• International considerations for databases and database engine applications

Creating a database user for Amazon RDS for SQL Server

You can create a database user for your Amazon RDS for Microsoft SQL Server DB instance
by running a T-SQL script like the following example. Use an application such as SQL Server
Management Suite (SSMS). You log into the DB instance as the master user that was created when
you created the DB instance.

--Initially set context to master database
USE [master];
GO
--Create a server-level login named theirname with password theirpassword
CREATE LOGIN [theirname] WITH PASSWORD = 'theirpassword';
GO
--Set context to msdb database
USE [msdb];
GO
--Create a database user named theirname and link it to server-level login theirname
CREATE USER [theirname] FOR LOGIN [theirname];

Creating a database user 3241

http://msdn.microsoft.com/en-us/library/ms187582%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms143726%28v=sql.105%29
http://msdn.microsoft.com/en-us/library/ms144260%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms190245%28v=sql.105%29.aspx

Amazon Relational Database Service User Guide

GO

For an example of adding a database user to a role, see Adding a user to the SQLAgentUser role.

Note

If you get permission errors when adding a user, you can restore privileges by modifying
the DB instance master user password. For more information, see Resetting the db_owner
role membership for master user for Amazon RDS for SQL Server.
It is not a best practice to clone master user permissions in your applications. For more
information, see How to clone master user permissions in Amazon RDS for SQL Server.

Determining a recovery model for your Amazon RDS for SQL Server
database

In Amazon RDS, the recovery model, retention period, and database status are linked.

It's important to understand the consequences before making a change to one of these settings.
Each setting can affect the others. For example:

• If you change a database's recovery model to SIMPLE or BULK_LOGGED while backup retention is
enabled, Amazon RDS resets the recovery model to FULL within five minutes. This also results in
RDS taking a snapshot of the DB instance.

• If you set backup retention to 0 days, RDS sets the recovery mode to SIMPLE.

• If you change a database's recovery model from SIMPLE to any other option while backup
retention is set to 0 days, RDS resets the recovery model to SIMPLE.

Important

Never change the recovery model on Multi-AZ instances, even if it seems you can do so—
for example, by using ALTER DATABASE. Backup retention, and therefore FULL recovery
mode, is required for Multi-AZ. If you alter the recovery model, RDS immediately changes it
back to FULL.
This automatic reset forces RDS to completely rebuild the mirror. During this rebuild, the
availability of the database is degraded for about 30-90 minutes until the mirror is ready
for failover. The DB instance also experiences performance degradation in the same way it

Determining a recovery model 3242

https://aws.amazon.com/blogs/database/how-to-clone-master-user-permissions-in-amazon-rds-for-sql-server/

Amazon Relational Database Service User Guide

does during a conversion from Single-AZ to Multi-AZ. How long performance is degraded
depends on the database storage size—the bigger the stored database, the longer the
degradation.

For more information on SQL Server recovery models, see Recovery models (SQL Server) in the
Microsoft documentation.

Determining the last failover time for Amazon RDS for SQL Server

To determine the last failover time, use the following stored procedure:

execute msdb.dbo.rds_failover_time;

This procedure returns the following information.

Output parameter Description

errorlog_available_from Shows the time from when error logs are
available in the log directory.

recent_failover_time Shows the last failover time if it's available
from the error logs. Otherwise it shows null.

Note

The stored procedure searches all of the available SQL Server error logs in the log directory
to retrieve the most recent failover time. If the failover messages have been overwritten by
SQL Server, then the procedure doesn't retrieve the failover time.

Example of no recent failover

This example shows the output when there is no recent failover in the error logs. No failover has
happened since 2020-04-29 23:59:00.01.

errorlog_available_from recent_failover_time

Determining the last failover time 3243

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server

Amazon Relational Database Service User Guide

errorlog_available_from recent_failover_time

2020-04-29 23:59:00.0100000 null

Example of recent failover

This example shows the output when there is a failover in the error logs. The most recent failover
was at 2020-05-05 18:57:51.89.

errorlog_available_from recent_failover_time

2020-04-29 23:59:00.0100000 2020-05-05 18:57:51.8900000

Troubleshooting point-in-time-recovery failures due to a log sequence
number gap

When attempting point-in-time-recovery (PITR) in RDS for SQL Server, you might encounter
failures due to gaps in log sequence numbers (LSNs). These gaps prevent RDS from restoring
your database to the requested time and RDS places your restoring instance in incompatible-
restore state.

Common causes for this issue are:

• Manual changes to the database recovery model.

• Automatic recovery model changes by RDS due to insufficient resources for completing
transaction log backups.

To identify LSN gaps in your database, run this query:

SELECT * FROM msdb.dbo.rds_fn_list_tlog_backup_metadata(database_name)
ORDER BY backup_file_time_utc desc;

If you discover an LSN gap, you can:

• Choose a restore point before the LSN gap.

• Wait and restore to a point after the next instance backup completes.

Troubleshoot PITR failures due to LSN gaps 3244

Amazon Relational Database Service User Guide

To prevent this issue, we recommend you don't manually change the recovery model of your RDS
for SQL Server databases, as it interrupts instance durability. We also recommend you choose an
instance type with sufficient resources for your workload to ensure regular transaction log backups.

For more information about transaction log management, see SQL Server transaction log
architecture and management guide in the Microsoft SQL Server documentation.

Deny or allow viewing database names for Amazon RDS for SQL Server

The master user cannot set DENY VIEW ANY DATABASE TO LOGIN
to hide databases from a user.
To change this permission, use the following stored procedure instead:

• Denying database view access to LOGIN:

EXEC msdb.dbo.rds_manage_view_db_permission @permission=‘DENY’,
 @server_principal=‘LOGIN’

go

• Allowing database view access to LOGIN:

EXEC msdb.dbo.rds_manage_view_db_permission @permission='GRANT',
 @server_principal='LOGIN'

go

Consider the following when using this stored procedure:

• Database names are hidden from the SSMS and internal DMV (dynamic management views).
However, database names are still visible from audit, logs and metadata tables. These are
secured VIEW ANY DATABASE server permissions. For more information, see
DENY Server Permissions.

• Once the permission is reverted to GRANT (allowed), the LOGIN can view all databases.

• If you delete and recreate LOGIN, the view permission related to the LOGIN is reset to ALLOW.

• For Multi-AZ instances, set the DENY or GRANT permission only for the LOGIN on the primary
host. The changes are propagated to the secondary host automatically.

Deny or allow viewing database names 3245

https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/deny-server-permissions-transact-sql?view=sql-server-ver16#permissions

Amazon Relational Database Service User Guide

• This permission only changes whether a login can view the database names. However, access to
databases and objects within are managed separately.

Disabling fast inserts during bulk loading for Amazon RDS for SQL
Server

Starting with SQL Server 2016, fast inserts are enabled by default. Fast inserts leverage the
minimal logging that occurs while the database is in the simple or bulk logged recovery model
to optimize insert performance. With fast inserts, each bulk load batch acquires new extents,
bypassing the allocation lookup for existing extents with available free space to optimize insert
performance.

However, with fast inserts bulk loads with small batch sizes can lead to increased unused space
consumed by objects. If increasing batch size isn't feasible, enabling trace flag 692 can help reduce
unused reserved space, but at the expense of performance. Enabling this trace flag disables fast
inserts while bulk loading data into heap or clustered indexes.

You enable trace flag 692 as a startup parameter using DB parameter groups. For more
information, see Parameter groups for Amazon RDS.

Trace flag 692 is supported for Amazon RDS on SQL Server 2016 and later. For more information
on trace flags, see DBCC TRACEON - trace flags in the Microsoft documentation.

Dropping a database in an Amazon RDS for Microsoft SQL Server DB
instance

You can drop a database on an Amazon RDS DB instance running Microsoft SQL Server in a Single-
AZ or Multi-AZ deployment. To drop the database, use the following command:

--replace your-database-name with the name of the database you want to drop
EXECUTE msdb.dbo.rds_drop_database N'your-database-name'

Note

Use straight single quotes in the command. Smart quotes will cause an error.

Disabling fast inserts 3246

https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql

Amazon Relational Database Service User Guide

After you use this procedure to drop the database, Amazon RDS drops all existing connections to
the database and removes the database's backup history.

To grant backup and restore allowance to other users, follow this procedure:

USE master
GO
CREATE LOGIN user1 WITH PASSWORD=N'changeThis', DEFAULT_DATABASE=master,
 CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF
GO
USE msdb
GO
CREATE USER user1 FOR LOGIN user1
GO
use msdb
GO
GRANT EXECUTE ON msdb.dbo.rds_backup_database TO user1
GO
GRANT EXECUTE ON msdb.dbo.rds_restore_database TO user1
GO

Renaming a Amazon RDS for Microsoft SQL Server database in a Multi-
AZ deployment

To rename a Microsoft SQL Server database instance that uses Multi-AZ, use the following
procedure:

1. First, turn off Multi-AZ for the DB instance.

2. Rename the database by running rdsadmin.dbo.rds_modify_db_name.

3. Then, turn on Multi-AZ Mirroring or Always On Availability Groups for the DB instance, to
return it to its original state.

For more information, see Adding Multi-AZ to a Microsoft SQL Server DB instance.

Note

If your instance doesn't use Multi-AZ, you don't need to change any settings before or after
running rdsadmin.dbo.rds_modify_db_name.

Renaming a Multi-AZ database 3247

Amazon Relational Database Service User Guide

Example: In the following example, the rdsadmin.dbo.rds_modify_db_name stored procedure
renames a database from MOO to ZAR. This is similar to running the statement DDL ALTER
DATABASE [MOO] MODIFY NAME = [ZAR].

EXEC rdsadmin.dbo.rds_modify_db_name N'MOO', N'ZAR'
GO

Resetting the db_owner role membership for master user for Amazon
RDS for SQL Server

If you lock your master user out of the db_owner role membership on your RDS for SQL Server
database and no other database user can grant the membership, you can restore lost membership
by modifying the DB instance master user password.

By changing the DB instance master user password, RDS grants the db_owner membership to the
databases in the DB instance that might have been accidentally revoked. You can change the DB
instance password by using the Amazon RDS console, the AWS CLI command modify-db-instance,
or by using the ModifyDBInstance API operation. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

Restoring license-terminated DB instances for Amazon RDS for SQL
Server

Microsoft has requested that some Amazon RDS customers who did not report their Microsoft
License Mobility information terminate their DB instance. Amazon RDS takes snapshots of these
DB instances, and you can restore from the snapshot to a new DB instance that has the License
Included model.

You can restore from a snapshot of Standard Edition to either Standard Edition or Enterprise
Edition.

You can restore from a snapshot of Enterprise Edition to either Standard Edition or Enterprise
Edition.

Resetting the db_owner role membership for master user 3248

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

To restore from a SQL Server snapshot after Amazon RDS has created a final snapshot of your
instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the snapshot of your SQL Server DB instance. Amazon RDS creates a final
snapshot of your DB instance. The name of the terminated instance snapshot is in the
format instance_name-final-snapshot. For example, if your DB instance name is
mytest.cdxgahslksma.us-east-1.rds.com, the final snapshot is called mytest-
final-snapshot and is located in the same AWS Region as the original DB instance.

4. For Actions, choose Restore Snapshot.

The Restore DB Instance window appears.

5. For License Model, choose license-included.

6. Choose the SQL Server DB engine that you want to use.

7. For DB Instance Identifier, enter the name for the restored DB instance.

8. Choose Restore DB Instance.

For more information about restoring from a snapshot, see Restoring to a DB instance.

Transitioning a Amazon RDS for SQL Server database from OFFLINE to
ONLINE

You can transition your Microsoft SQL Server database on an Amazon RDS DB instance from
OFFLINE to ONLINE.

SQL Server method Amazon RDS method

ALTER DATABASE db_name SET ONLINE; EXEC rdsadmin.dbo.rds_set_database_online
db_name

Transitioning a database from OFFLINE to ONLINE 3249

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Using change data capture for Amazon RDS for SQL Server

Amazon RDS supports change data capture (CDC) for your DB instances running Microsoft SQL
Server. CDC captures changes that are made to the data in your tables. It stores metadata about
each change, which you can access later. For more information about how CDC works, see Change
data capture in the Microsoft documentation. Before you use CDC with your Amazon RDS DB
instances, enable it in the database by running msdb.dbo.rds_cdc_enable_db. After CDC is
enabled, any user who is db_owner of that database can enable or disable CDC on tables in that
database.

Important

During restores, CDC will be disabled. All of the related metadata is automatically removed
from the database. This applies to snapshot restores, point-in-time restores, and SQL
Server Native restores from S3. After performing one of these types of restores, you can re-
enable CDC and re-specify tables to track.

To enable CDC for a DB instance, run the msdb.dbo.rds_cdc_enable_db stored procedure.

exec msdb.dbo.rds_cdc_enable_db 'database_name'

To disable CDC for a DB instance, run the msdb.dbo.rds_cdc_disable_db stored procedure.

exec msdb.dbo.rds_cdc_disable_db 'database_name'

To grant CDC permissions to a user, use the following procedure:

go
 GRANT EXECUTE ON msdb.dbo.rds_cdc_enable_db TO User1
 GRANT EXECUTE ON msdb.dbo.rds_cdc_disable_db TO User1

Topics

• Tracking tables with change data capture

• Change data capture jobs

• Change data capture for Multi-AZ instances

Using CDC 3250

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server#Capture
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server#Capture

Amazon Relational Database Service User Guide

Tracking tables with change data capture

After CDC is enabled on the database, you can start tracking specific tables. You can choose the
tables to track by running sys.sp_cdc_enable_table.

--Begin tracking a table
exec sys.sp_cdc_enable_table
 @source_schema = N'source_schema'
, @source_name = N'source_name'
, @role_name = N'role_name'

--The following parameters are optional:

--, @capture_instance = 'capture_instance'
--, @supports_net_changes = supports_net_changes
--, @index_name = 'index_name'
--, @captured_column_list = 'captured_column_list'
--, @filegroup_name = 'filegroup_name'
--, @allow_partition_switch = 'allow_partition_switch'
;

To view the CDC configuration for your tables, run sys.sp_cdc_help_change_data_capture.

--View CDC configuration
exec sys.sp_cdc_help_change_data_capture

--The following parameters are optional and must be used together.
-- 'schema_name', 'table_name'
;

For more information on CDC tables, functions, and stored procedures in SQL Server
documentation, see the following:

• Change data capture stored procedures (Transact-SQL)

• Change data capture functions (Transact-SQL)

• Change data capture tables (Transact-SQL)

Using CDC 3251

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-enable-table-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-help-change-data-capture-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/change-data-capture-stored-procedures-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-functions/change-data-capture-functions-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/change-data-capture-tables-transact-sql

Amazon Relational Database Service User Guide

Change data capture jobs

When you enable CDC, SQL Server creates the CDC jobs. Database owners (db_owner) can view,
create, modify, and delete the CDC jobs. However, the RDS system account owns them. Therefore,
the jobs aren't visible from native views, procedures, or in SQL Server Management Studio.

To control behavior of CDC in a database, use native SQL Server procedures such as
sp_cdc_enable_table and sp_cdc_start_job. To change CDC job parameters, like maxtrans and
maxscans, you can use sp_cdc_change_job..

To get more information regarding the CDC jobs, you can query the following dynamic
management views:

• sys.dm_cdc_errors

• sys.dm_cdc_log_scan_sessions

• sysjobs

• sysjobhistory

Change data capture for Multi-AZ instances

If you use CDC on a Multi-AZ instance, make sure the mirror's CDC job configuration matches
the one on the principal. CDC jobs are mapped to the database_id. If the database IDs on the
secondary are different from the principal, then the jobs won't be associated with the correct
database. To try to prevent errors after failover, RDS drops and recreates the jobs on the new
principal. The recreated jobs use the parameters that the principal recorded before failover.

Although this process runs quickly, it's still possible that the CDC jobs might run before RDS can
correct them. Here are three ways to force parameters to be consistent between primary and
secondary replicas:

• Use the same job parameters for all the databases that have CDC enabled.

• Before you change the CDC job configuration, convert the Multi-AZ instance to Single-AZ.

• Manually transfer the parameters whenever you change them on the principal.

To view and define the CDC parameters that are used to recreate the CDC jobs after a failover, use
rds_show_configuration and rds_set_configuration.

Using CDC 3252

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-enable-table-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-start-job-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-change-job-transact-sql

Amazon Relational Database Service User Guide

The following example returns the value set for cdc_capture_maxtrans. For any parameter that
is set to RDS_DEFAULT, RDS automatically configures the value.

-- Show configuration for each parameter on either primary and secondary replicas.
exec rdsadmin.dbo.rds_show_configuration 'cdc_capture_maxtrans';

To set the configuration on the secondary, run rdsadmin.dbo.rds_set_configuration.
This procedure sets the parameter values for all of the databases on the secondary server. These
settings are used only after a failover. The following example sets the maxtrans for all CDC
capture jobs to 1000:

--To set values on secondary. These are used after failover.
exec rdsadmin.dbo.rds_set_configuration 'cdc_capture_maxtrans', 1000;

To set the CDC job parameters on the principal, use sys.sp_cdc_change_job instead.

Using SQL Server Agent for Amazon RDS

With Amazon RDS, you can use SQL Server Agent on a DB instance running Microsoft SQL Server
Enterprise Edition, Standard Edition, or Web Edition. SQL Server Agent is a Microsoft Windows
service that runs scheduled administrative tasks that are called jobs. You can use SQL Server Agent
to run T-SQL jobs to rebuild indexes, run corruption checks, and aggregate data in a SQL Server DB
instance.

When you create a SQL Server DB instance, the master user is enrolled in the SQLAgentUserRole
role.

SQL Server Agent can run a job on a schedule, in response to a specific event, or on demand. For
more information, see SQL Server Agent in the Microsoft documentation.

Note

Avoid scheduling jobs to run during the maintenance and backup windows for your DB
instance. The maintenance and backup processes that are launched by AWS could interrupt
a job or cause it to be canceled.
In Multi-AZ deployments, SQL Server Agent jobs are replicated from the primary host to
the secondary host when the job replication feature is turned on. For more information, see
Turning on SQL Server Agent job replication.

Using SQL Server Agent 3253

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-change-job-transact-sql
http://msdn.microsoft.com/en-us/library/ms189237

Amazon Relational Database Service User Guide

Multi-AZ deployments have a limit of 10,000 SQL Server Agent jobs. If you need a higher
limit, request an increase by contacting Support. Open the AWS Support Center page,
sign in if necessary, and choose Create case. Choose Service limit increase. Complete and
submit the form.

To view the history of an individual SQL Server Agent job in SQL Server Management Studio
(SSMS), open Object Explorer, right-click the job, and then choose View History.

Because SQL Server Agent is running on a managed host in a DB instance, some actions aren't
supported:

• Running replication jobs and running command-line scripts by using ActiveX, Windows command
shell, or Windows PowerShell aren't supported.

• You can't manually start, stop, or restart SQL Server Agent.

• Email notifications through SQL Server Agent aren't available from a DB instance.

• SQL Server Agent alerts and operators aren't supported.

• Using SQL Server Agent to create backups isn't supported. Use Amazon RDS to back up your DB
instance.

• Currently, RDS for SQL Server does not support the use SQL Server Agent tokens.

Turning on SQL Server Agent job replication

You can turn on SQL Server Agent job replication by using the following stored procedure:

EXECUTE msdb.dbo.rds_set_system_database_sync_objects @object_types = 'SQLAgentJob';

You can run the stored procedure on all SQL Server versions supported by Amazon RDS for SQL
Server. Jobs in the following categories are replicated:

• [Uncategorized (Local)]

• [Uncategorized (Multi-Server)]

• [Uncategorized]

• Data Collector

• Database Engine Tuning Advisor

Using SQL Server Agent 3254

https://console.aws.amazon.com/support/home#/

Amazon Relational Database Service User Guide

• Database Maintenance

• Full-Text

Only jobs that use T-SQL job steps are replicated. Jobs with step types such as SQL Server
Integration Services (SSIS), SQL Server Reporting Services (SSRS), Replication, and PowerShell
aren't replicated. Jobs that use Database Mail and server-level objects aren't replicated.

Important

The primary host is the source of truth for replication. Before turning on job replication,
make sure that your SQL Server Agent jobs are on the primary. If you don't do this, it could
lead to the deletion of your SQL Server Agent jobs if you turn on the feature when newer
jobs are on the secondary host.

You can use the following function to confirm whether replication is turned on.

SELECT * from msdb.dbo.rds_fn_get_system_database_sync_objects();

The T-SQL query returns the following if SQL Server Agent jobs are replicating. If they're not
replicating, it returns nothing for object_class.

You can use the following function to find the last time objects were synchronized in UTC time.

SELECT * from msdb.dbo.rds_fn_server_object_last_sync_time();

For example, suppose that you modify a SQL Server Agent job at 01:00. You expect the most recent
synchronization time to be after 01:00, indicating that synchronization has taken place.

After synchronization, the values returned for date_created and date_modified on the
secondary node are expected to match.

Using SQL Server Agent 3255

Amazon Relational Database Service User Guide

If you are also using tempdb replication, you can enable replication for both SQL Agent jobs and
the tempdb configuration by providing them in the @object_type parameter:

EXECUTE msdb.dbo.rds_set_system_database_sync_objects @object_types =
 'SQLAgentJob,TempDbFile';

For more information on tempdb replication, see TempDB configuration for Multi-AZ deployments.

Adding a user to the SQLAgentUser role

To allow an additional login or user to use SQL Server Agent, log in as the master user and do the
following:

1. Create another server-level login by using the CREATE LOGIN command.

2. Create a user in msdb using CREATE USER command, and then link this user to the login that
you created in the previous step.

3. Add the user to the SQLAgentUserRole using the sp_addrolemember system stored
procedure.

For example, suppose that your master user name is admin and you want to give access to SQL
Server Agent to a user named theirname with a password theirpassword. In that case, you can
use the following procedure.

To add a user to the SQLAgentUser role

1. Log in as the master user.

2. Run the following commands:

--Initially set context to master database
USE [master];
GO
--Create a server-level login named theirname with password theirpassword

Using SQL Server Agent 3256

Amazon Relational Database Service User Guide

CREATE LOGIN [theirname] WITH PASSWORD = 'theirpassword';
GO
--Set context to msdb database
USE [msdb];
GO
--Create a database user named theirname and link it to server-level login
 theirname
CREATE USER [theirname] FOR LOGIN [theirname];
GO
--Added database user theirname in msdb to SQLAgentUserRole in msdb
EXEC sp_addrolemember [SQLAgentUserRole], [theirname];

Deleting a SQL Server Agent job

You use the sp_delete_job stored procedure to delete SQL Server Agent jobs on Amazon RDS
for Microsoft SQL Server.

You can't use SSMS to delete SQL Server Agent jobs. If you try to do so, you get an error message
similar to the following:

The EXECUTE permission was denied on the object 'xp_regread', database
 'mssqlsystemresource', schema 'sys'.

As a managed service, RDS is restricted from running procedures that access the Windows registry.
When you use SSMS, it tries to run a process (xp_regread) for which RDS isn't authorized.

Note

On RDS for SQL Server, only members of the sysadmin role are allowed to update
or delete jobs owned by a different login. For more information, see Leveraging
SQLAgentOperatorRole in RDS SQL Server.

To delete a SQL Server Agent job

• Run the following T-SQL statement:

EXEC msdb..sp_delete_job @job_name = 'job_name';

Using SQL Server Agent 3257

https://aws.amazon.com/blogs/database/leveraging-sqlagentoperatorrole-in-rds-sql-server/
https://aws.amazon.com/blogs/database/leveraging-sqlagentoperatorrole-in-rds-sql-server/

Amazon Relational Database Service User Guide

Working with Amazon RDS for Microsoft SQL Server logs

You can use the Amazon RDS console to view, watch, and download SQL Server Agent logs,
Microsoft SQL Server error logs, and SQL Server Reporting Services (SSRS) logs.

Watching log files

If you view a log in the Amazon RDS console, you can see its contents as they exist at that moment.
Watching a log in the console opens it in a dynamic state so that you can see updates to it in near-
real time.

Only the latest log is active for watching. For example, suppose you have the following logs shown:

Only log/ERROR, as the most recent log, is being actively updated. You can choose to watch others,
but they are static and will not update.

Archiving log files

The Amazon RDS console shows logs for the past week through the current day. You can download
and archive logs to keep them for reference past that time. One way to archive logs is to load them
into an Amazon S3 bucket. For instructions on how to set up an Amazon S3 bucket and upload a
file, see Amazon S3 basics in the Amazon Simple Storage Service Getting Started Guide and click Get
Started.

Viewing error and agent logs

To view Microsoft SQL Server error and agent logs, use the Amazon RDS stored procedure
rds_read_error_log with the following parameters:

• @index – the version of the log to retrieve. The default value is 0, which retrieves the current
error log. Specify 1 to retrieve the previous log, specify 2 to retrieve the one before that, and so
on.

Working with SQL Server logs 3258

https://docs.aws.amazon.com/AmazonS3/latest/gsg/AmazonS3Basics.html

Amazon Relational Database Service User Guide

• @type – the type of log to retrieve. Specify 1 to retrieve an error log. Specify 2 to retrieve an
agent log.

Example

The following example requests the current error log.

EXEC rdsadmin.dbo.rds_read_error_log @index = 0, @type = 1;

For more information on SQL Server errors, see Database engine errors in the Microsoft
documentation.

Working with trace and dump files for Amazon RDS for SQL Server

This section describes working with trace files and dump files for your Amazon RDS DB instances
running Microsoft SQL Server.

Generating a trace SQL query

declare @rc int
declare @TraceID int
declare @maxfilesize bigint

set @maxfilesize = 5

exec @rc = sp_trace_create @TraceID output, 0, N'D:\rdsdbdata\log\rdstest',
 @maxfilesize, NULL

Viewing an open trace

select * from ::fn_trace_getinfo(default)

Viewing trace contents

select * from ::fn_trace_gettable('D:\rdsdbdata\log\rdstest.trc', default)

Setting the retention period for trace and dump files

Trace and dump files can accumulate and consume disk space. By default, Amazon RDS purges
trace and dump files that are older than seven days.

Working with trace and dump files 3259

https://docs.microsoft.com/en-us/sql/relational-databases/errors-events/database-engine-events-and-errors

Amazon Relational Database Service User Guide

To view the current trace and dump file retention period, use the rds_show_configuration
procedure, as shown in the following example.

exec rdsadmin..rds_show_configuration;

To modify the retention period for trace files, use the rds_set_configuration procedure and
set the tracefile retention in minutes. The following example sets the trace file retention
period to 24 hours.

exec rdsadmin..rds_set_configuration 'tracefile retention', 1440;

To modify the retention period for dump files, use the rds_set_configuration procedure and
set the dumpfile retention in minutes. The following example sets the dump file retention
period to 3 days.

exec rdsadmin..rds_set_configuration 'dumpfile retention', 4320;

For security reasons, you cannot delete a specific trace or dump file on a SQL Server DB instance.
To delete all unused trace or dump files, set the retention period for the files to 0.

Working with trace and dump files 3260

Amazon Relational Database Service User Guide

Amazon RDS for MySQL

Amazon RDS supports several versions of MySQL for DB instances. For complete information about
the supported versions, see MySQL on Amazon RDS versions.

To create an Amazon RDS for MySQL DB instance, use the Amazon RDS management tools or
interfaces. You can then do the following:

• Resize your DB instance

• Authorize connections to your DB instance

• Create and restore from backups or snapshots

• Create Multi-AZ secondaries

• Create read replicas

• Monitor the performance of your DB instance

To store and access the data in your DB instance, you use standard MySQL utilities and applications.

Amazon RDS for MySQL is compliant with many industry standards. For example, you can use RDS
for MySQL databases to build HIPAA-compliant applications. You can use RDS for MySQL databases
to store healthcare related information, including protected health information (PHI) under a
Business Associate Agreement (BAA) with AWS. Amazon RDS for MySQL also meets Federal Risk
and Authorization Management Program (FedRAMP) security requirements. In addition, Amazon
RDS for MySQL has received a FedRAMP Joint Authorization Board (JAB) Provisional Authority to
Operate (P-ATO) at the FedRAMP HIGH Baseline within the AWS GovCloud (US) Regions. For more
information on supported compliance standards, see AWS cloud compliance.

For information about the features in each version of MySQL, see The main features of MySQL in
the MySQL documentation.

Before creating a DB instance, complete the steps in Setting up your Amazon RDS environment.
When you create a DB instance, the RDS master user gets DBA privileges, with some limitations.
Use this account for administrative tasks such as creating additional database accounts.

You can create the following:

• DB instances

• DB snapshots

3261

https://aws.amazon.com/compliance/
https://dev.mysql.com/doc/refman/8.0/en/features.html

Amazon Relational Database Service User Guide

• Point-in-time restores

• Automated backups

• Manual backups

You can use DB instances running MySQL inside a virtual private cloud (VPC) based on Amazon
VPC. You can also add features to your MySQL DB instance by turning on various options. Amazon
RDS supports Multi-AZ deployments for MySQL as a high-availability, failover solution.

Important

To deliver a managed service experience, Amazon RDS doesn't provide shell access to
DB instances. It also restricts access to certain system procedures and tables that need
advanced privileges. You can access your database using standard SQL clients such as the
mysql client. However, you can't access the host directly by using Telnet or Secure Shell
(SSH).

Topics

• MySQL feature support on Amazon RDS

• MySQL on Amazon RDS versions

• Connecting to your MySQL DB instance

• Securing MySQL DB instance connections

• Improving query performance for RDS for MySQL with Amazon RDS Optimized Reads

• Improving write performance with RDS Optimized Writes for MySQL

• Upgrades of the RDS for MySQL DB engine

• Upgrading a MySQL DB snapshot engine version

• Importing data into an Amazon RDS for MySQL DB instance

• Working with MySQL replication in Amazon RDS

• Configuring active-active clusters for RDS for MySQL

• Exporting data from a MySQL DB instance by using replication

• Options for MySQL DB instances

• Parameters for MySQL

• Common DBA tasks for MySQL DB instances

3262

Amazon Relational Database Service User Guide

• Local time zone for MySQL DB instances

• Known issues and limitations for Amazon RDS for MySQL

• RDS for MySQL stored procedure reference

3263

Amazon Relational Database Service User Guide

MySQL feature support on Amazon RDS

RDS for MySQL supports most of the features and capabilities of MySQL. Some features might
have limited support or restricted privileges.

You can filter new Amazon RDS features on the What's New with Database? page. For Products,
choose Amazon RDS. Then search using keywords such as MySQL 2022.

Note

The following lists are not exhaustive.

Topics

• MySQL feature support on Amazon RDS for MySQL major versions

• Supported storage engines for RDS for MySQL

• Using memcached and other options with MySQL on Amazon RDS

• InnoDB cache warming for MySQL on Amazon RDS

• Inclusive language changes for RDS for MySQL 8.4

• MySQL features not supported by Amazon RDS

MySQL feature support on Amazon RDS for MySQL major versions

In the following sections, find information about MySQL feature support on Amazon RDS for
MySQL major versions:

Topics

• MySQL 8.4 support on Amazon RDS

For information about supported minor versions of Amazon RDS for MySQL, see Supported MySQL
minor versions on Amazon RDS.

MySQL 8.4 support on Amazon RDS

Amazon RDS supports the following new features for your DB instances running MySQL version 8.4
or higher.

MySQL feature support 3264

https://aws.amazon.com/about-aws/whats-new/database/

Amazon Relational Database Service User Guide

• Cryptographic library – RDS for MySQL replaced OpenSSL with AWS Libcrypto (AWS-LC), which
is FIPS 140-3 certified. For more information, see the AWS-LC GitHub repository at https://
github.com/aws/aws-lc.

• TLS changes – RDS for MySQL only supports TLS 1.2 and TLS 1.3. For more information, see the
section called “SSL/TLS support with MySQL”.

• memcached support – The memcached interface is no longer available on MySQL 8.4. For more
information, see MySQL memcached support.

• Default authentication plugin – The default authentication plugin is
caching_sha2_password. For more information, see the section called “MySQL default
authentication plugin”.

• mysqlpump client utility – The mysqlpump client utility is no longer available in MySQL 8.4.
For more information, see Role-based privilege model for RDS for MySQL and mysqldump and
mysqlpump in the AWS Prescriptive Guidance.

• Managed replication stored procedures – When using stored procedures to manage replication
with a replication user configured with caching_sha2_password, you must configure TLS by
specifying SOURCE_SSL=1. caching_sha2_password is the default authentication plugin for
RDS for MySQL 8.4.

• Parameter behavior changes – The following parameters changed for MySQL 8.4.

• innodb_dedicated_server – This parameter is now enabled by default. For more
information, see Configuring buffer pool size and redo log capacity in MySQL 8.4.

• innodb_buffer_pool – The database engine now calculates this parameter, but you can
override this setting. For more information, see Configuring buffer pool size and redo log
capacity in MySQL 8.4.

• innodb_redo_log_capacity – This parameter now controls the size of the redo log files.
The database engine now calculates this parameter, but you can override this setting. For more
information, see Configuring buffer pool size and redo log capacity in MySQL 8.4.

• Deprecated or removed parameters – RDS for MySQL removed the following parameters from
parameter groups for MySQL 8.4 DB instances. The innodb_redo_log_capacity parameter
now controls the size of the redo log files.

• innodb_log_file_size

• innodb_log_files_in_group

• New default values for parameters – The following parameters have new default values for
MySQL 8.4 DB instances:

MySQL major versions 3265

https://github.com/aws/aws-lc
https://github.com/aws/aws-lc
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-large-mysql-mariadb-databases/mysqldump-and-mysqlpump.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-large-mysql-mariadb-databases/mysqldump-and-mysqlpump.html

Amazon Relational Database Service User Guide

• Various MySQL community parameters related to performance changed. For more
information, see What is New in MySQL 8.4 since MySQL 8.0.

We recommend that you test your application's performance on RDS for MySQL 8.4 before
migrating a production instance.

• innodb_purge_threads – The default value is set to the formula
LEAST({DBInstanceVCPU/2},4) to prevent the InnoDB history list length from growing
too large.

• group_replication_exit_state_action – The default value is OFFLINE_MODE, which
aligns with the default in MySQL Community. For more information, see Considerations and
best practices for RDS for MySQL active-active clusters.

• binlog_format – The default value is ROW, which aligns with the default in MySQL
Community. You can modify the parameter for Single-AZ DB instances or Multi-AZ DB
instances, but not for Multi-AZ DB clusters. Multi-AZ DB clusters use semisynchronous
replication, and when binlog_format is set to MIXED or STATEMENT, replication fails.

• Inclusive language changes – RDS for MySQL 8.4 includes changes from RDS for MySQL 8.0
related to keywords and system schemas for inclusive language. For more information, see
Inclusive language changes for RDS for MySQL 8.4.

For a list of all MySQL 8.4 features and changes, see What Is New in MySQL 8.4 since MySQL 8.0 in
the MySQL documentation.

For a list of unsupported features, see the section called “Features not supported”.

Supported storage engines for RDS for MySQL

While MySQL supports multiple storage engines with varying capabilities, not all of them are
optimized for recovery and data durability. Amazon RDS fully supports the InnoDB storage engine
for MySQL DB instances. Amazon RDS features such as Point-In-Time restore and snapshot restore
require a recoverable storage engine and are supported for the InnoDB storage engine only. For
more information, see MySQL memcached support.

The Federated Storage Engine is currently not supported by Amazon RDS for MySQL.

For user-created schemas, the MyISAM storage engine does not support reliable recovery and can
result in lost or corrupt data when MySQL is restarted after a recovery, preventing Point-In-Time

Supported storage engines 3266

https://dev.mysql.com/doc/refman/8.4/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-nutshell.html

Amazon Relational Database Service User Guide

restore or snapshot restore from working as intended. However, if you still choose to use MyISAM
with Amazon RDS, snapshots can be helpful under some conditions.

Note

System tables in the mysql schema can be in MyISAM storage.

If you want to convert existing MyISAM tables to InnoDB tables, you can use the ALTER TABLE
command (for example, alter table TABLE_NAME engine=innodb;). Bear in mind that
MyISAM and InnoDB have different strengths and weaknesses, so you should fully evaluate the
impact of making this switch on your applications before doing so.

MySQL 5.1, 5.5, and 5.6 are no longer supported in Amazon RDS. However, you can restore existing
MySQL 5.1, 5.5, and 5.6 snapshots. When you restore a MySQL 5.1, 5.5, or 5.6 snapshot, the DB
instance is automatically upgraded to MySQL 5.7.

Using memcached and other options with MySQL on Amazon RDS

Most Amazon RDS DB engines support option groups that allow you to select additional features
for your DB instance. RDS for MySQL DB instances support the memcached option, a simple, key-
based cache. For more information about memcached and other options, see Options for MySQL
DB instances. For more information about working with option groups, see Working with option
groups.

InnoDB cache warming for MySQL on Amazon RDS

InnoDB cache warming can provide performance gains for your MySQL DB instance by saving
the current state of the buffer pool when the DB instance is shut down, and then reloading the
buffer pool from the saved information when the DB instance starts up. This bypasses the need
for the buffer pool to "warm up" from normal database use and instead preloads the buffer pool
with the pages for known common queries. The file that stores the saved buffer pool information
only stores metadata for the pages that are in the buffer pool, and not the pages themselves.
As a result, the file does not require much storage space. The file size is about 0.2 percent of
the cache size. For example, for a 64 GiB cache, the cache warming file size is 128 MiB. For more
information on InnoDB cache warming, see Saving and restoring the buffer pool state in the
MySQL documentation.

Using memcached and other options 3267

https://dev.mysql.com/doc/refman/8.0/en/innodb-preload-buffer-pool.html

Amazon Relational Database Service User Guide

RDS for MySQL DB instances support InnoDB cache warming. To enable InnoDB
cache warming, set the innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup parameters to 1 in the parameter group for your
DB instance. Changing these parameter values in a parameter group will affect all MySQL DB
instances that use that parameter group. To enable InnoDB cache warming for specific MySQL DB
instances, you might need to create a new parameter group for those instances. For information on
parameter groups, see Parameter groups for Amazon RDS.

InnoDB cache warming primarily provides a performance benefit for DB instances that use
standard storage. If you use PIOPS storage, you do not commonly see a significant performance
benefit.

Important

If your MySQL DB instance does not shut down normally, such as during a failover, then
the buffer pool state will not be saved to disk. In this case, MySQL loads whatever buffer
pool file is available when the DB instance is restarted. No harm is done, but the restored
buffer pool might not reflect the most recent state of the buffer pool prior to the restart.
To ensure that you have a recent state of the buffer pool available to warm the InnoDB
cache on startup, we recommend that you periodically dump the buffer pool "on demand."
You can create an event to dump the buffer pool automatically and on a
regular interval. For example, the following statement creates an event named
periodic_buffer_pool_dump that dumps the buffer pool every hour.

CREATE EVENT periodic_buffer_pool_dump
ON SCHEDULE EVERY 1 HOUR
DO CALL mysql.rds_innodb_buffer_pool_dump_now();

For more information on MySQL events, see Event syntax in the MySQL documentation.

Dumping and loading the buffer pool on demand

You can save and load the InnoDB cache "on demand."

• To dump the current state of the buffer pool to disk, call the
mysql.rds_innodb_buffer_pool_dump_now stored procedure.

InnoDB cache warming 3268

https://dev.mysql.com/doc/refman/8.0/en/events-syntax.html

Amazon Relational Database Service User Guide

• To load the saved state of the buffer pool from disk, call the
mysql.rds_innodb_buffer_pool_load_now stored procedure.

• To cancel a load operation in progress, call the mysql.rds_innodb_buffer_pool_load_abort stored
procedure.

Inclusive language changes for RDS for MySQL 8.4

RDS for MySQL 8.4 includes changes from the MySQL 8.4 community edition related to keywords
and system schemas for inclusive language. For example, the SHOW REPLICA STATUS command
replaces SHOW SLAVE STATUS.

Topics

• Configuration parameter name changes

• Stored procedure name changes

Configuration parameter name changes

The following configuration parameters have new names in RDS for MySQL 8.4.

For compatibility, you can check the parameter names in the mysql client by using either name.
You can only use the new names when modifying values in a custom MySQL 8.4 parameter group.
For more information, see Default and custom parameter groups.

Name to be removed New or preferred name

init_slave init_replica

log_slave_updates log_replica_updates

log_slow_slave_sta
tements

log_slow_replica_s
tatements

rpl_stop_slave_tim
eout

rpl_stop_replica_t
imeout

skip_slave_start skip_replica_start

Inclusive language changes for MySQL 8.4 3269

Amazon Relational Database Service User Guide

Name to be removed New or preferred name

slave_checkpoint_g
roup

replica_checkpoint
_group

slave_checkpoint_p
eriod

replica_checkpoint
_period

slave_compressed_p
rotocol

replica_compressed
_protocol

slave_exec_mode replica_exec_mode

slave_load_tmpdir replica_load_tmpdir

slave_max_allowed_
packet

replica_max_allowe
d_packet

slave_net_timeout replica_net_timeout

slave_parallel_type replica_parallel_t
ype

slave_parallel_wor
kers

replica_parallel_w
orkers

slave_pending_jobs
_size_max

replica_pending_jo
bs_size_max

slave_preserve_com
mit_order

replica_preserve_c
ommit_order

slave_skip_errors replica_skip_errors

slave_sql_verify_c
hecksum

replica_sql_verify
_checksum

slave_transaction_
retries

replica_transactio
n_retries

Inclusive language changes for MySQL 8.4 3270

Amazon Relational Database Service User Guide

Name to be removed New or preferred name

slave_type_convers
ions

replica_type_conve
rsions

sql_slave_skip_cou
nter

sql_replica_skip_c
ounter

Note

The parameter replica_allow_batching isn't available because Amazon RDS doesn't
support NDB clusters.

Stored procedure name changes

The following stored procedures have new names in RDS for MySQL 8.4.

For compatibility, you can use either name in the initial RDS for MySQL 8.4 release. The old
procedure names are to be removed in a future release. For more information, see Configuring,
starting, and stopping binary log (binlog) replication.

Name to be removed New or preferred name

mysql.rds_next_mas
ter_log

mysql.rds_next_sou
rce_log

mysql.rds_reset_ex
ternal_master

mysql.rds_reset_ex
ternal_source

mysql.rds_set_exte
rnal_master

mysql.rds_set_exte
rnal_source

mysql.rds_set_exte
rnal_master_with_a
uto_position

mysql.rds_set_exte
rnal_source_with_a
uto_position

Inclusive language changes for MySQL 8.4 3271

Amazon Relational Database Service User Guide

Name to be removed New or preferred name

mysql.rds_set_exte
rnal_master_with_d
elay

mysql.rds_set_exte
rnal_source_with_d
elay

mysql.rds_set_mast
er_auto_position

mysql.rds_set_sour
ce_auto_position

MySQL features not supported by Amazon RDS

Amazon RDS doesn't currently support the following MySQL features:

• Authentication Plugin

• Error Logging to the System Log

• InnoDB Tablespace Encryption

• NDB clusters

• Password Strength Plugin

• Persisted system variables

• Rewriter Query Rewrite Plugin

• Semisynchronous replication, except for Multi-AZ DB clusters

• Transportable tablespace

• X Plugin

To deliver a managed service experience, Amazon RDS doesn't provide shell access to DB instances.
It also restricts access to certain system procedures and tables that require advanced privileges.
Amazon RDS supports access to databases on a DB instance using any standard SQL client
application. Amazon RDS doesn't allow direct host access to a DB instance by using Telnet,
Secure Shell (SSH), or Windows Remote Desktop Connection. When you create a DB instance,
you are assigned as db_owner for all databases on that instance, and you have all database-level
permissions except for those used for backups. Amazon RDS manages backups for you.

Features not supported 3272

Amazon Relational Database Service User Guide

MySQL on Amazon RDS versions

For MySQL, version numbers are organized as version = X.Y.Z. In Amazon RDS terminology, X.Y
denotes the major version, and Z is the minor version number. For Amazon RDS implementations, a
version change is considered major if the major version number changes—for example, going from
version 5.7 to 8.0. A version change is considered minor if only the minor version number changes
—for example, going from version 8.0.32 to 8.0.34.

Topics

• Supported MySQL minor versions on Amazon RDS

• Supported MySQL major versions on Amazon RDS

• Amazon RDS Extended Support versions for RDS for MySQL

• Working with the Database Preview environment

• MySQL version 9.2 in the Database Preview environment

• MySQL version 9.1 in the Database Preview environment

• Deprecated versions for Amazon RDS for MySQL

Supported MySQL minor versions on Amazon RDS

Amazon RDS currently supports the following minor versions of MySQL.

Note

Dates with only a month and a year are approximate and are updated with an exact date
when it's known.
Amazon RDS Extended Support isn't available for minor versions.

The following table shows the minor versions of MySQL 8.4 that Amazon RDS currently supports.

MySQL engine
version

Community release
date

RDS release date RDS end of standard
support date

8.4.5 15 April 2025 29 April 2025 September 2026

MySQL versions 3273

Amazon Relational Database Service User Guide

MySQL engine
version

Community release
date

RDS release date RDS end of standard
support date

8.4.4 21 January 2025 19 February 2025 March 2026

8.4.3 7 July 2024 21 November 2024 March 2026

The following table shows the minor versions of MySQL 8.0 that Amazon RDS currently supports.

Note

Minor versions can reach end of standard support before major versions do. For example,
minor version 8.0.28 reached its end of standard support date on March 28, 2024 while
major version 8.0 reaches this date on July 31, 2026. RDS will support additional 8.0.*
minor versions that the MySQL community releases between these dates. We recommend
that you upgrade to the latest available minor version as often as possible for all major
versions.

MySQL engine
version

Community release
date

RDS release date RDS end of standard
support date

8.0.41 21 January 2025 19 February 2025 March 2026

8.0.40 15 October 2024 13 November 2024 March 2026

8.0.39 23 July 2024 12 August 2024 September 2025

8.0.37 30 April 2024 18 June 2024 September 2025

The following table shows the minor versions of MySQL 5.7 that are available under Amazon RDS
Extended Support.

Note

Minor versions can reach end of Extended Support before major versions do. For example,
minor version 5.7.44-RDS.20240529 reaches its end of Extended Support date in

Minor versions 3274

Amazon Relational Database Service User Guide

September 2025 while major version 5.7 reaches this date on February 28, 2027. RDS will
generate and release additional 5.7.44-RDS.xxyyzz minor versions between these dates. We
recommend that you upgrade to the latest available minor version as often as possible for
all major versions.

MySQL engine
version

Community release
date

RDS release date RDS end of Extended
Support date

5.7.44-RDS.2025021
3*

Not applicable 12 March 2025 September 2026

5.7.44-RDS.2025010
3*

Not applicable 13 February 2025 March 2026

5.7.44-RDS.2024080
8*

Not applicable 28 August 2024 September 2025

5.7.44-RDS.2024052
9*

Not applicable 25 June 2024 September 2025

5.7.44-RDS.2024040
8*

Not applicable 17 May 2024 September 2025

* MySQL Community retired major version 5.7 and won't be releasing new minor versions. This is a
minor version that Amazon RDS released with critical security patches and bug fixes for MySQL 5.7
databases that are covered under RDS Extended Support. For more information about these minor
versions, see the section called “RDS Extended Support versions”. For more information about RDS
Extended Support, see Amazon RDS Extended Support with Amazon RDS.

You can specify any currently supported MySQL version when creating a new DB instance. You can
specify the major version (such as MySQL 5.7), and any supported minor version for the specified
major version. If no version is specified, Amazon RDS defaults to a supported version, typically the
most recent version. If a major version is specified but a minor version is not, Amazon RDS defaults
to a recent release of the major version you have specified. To see a list of supported versions, as
well as defaults for newly created DB instances, run the describe-db-engine-versions AWS
CLI command.

Minor versions 3275

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

For example, to list the supported engine versions for RDS for MySQL, run the following CLI
command:

aws rds describe-db-engine-versions --engine mysql --query "*[].
{Engine:Engine,EngineVersion:EngineVersion}" --output text

The default MySQL version might vary by AWS Region. To create a DB instance with a specific
minor version, specify the minor version during DB instance creation. You can determine the
default minor version for an AWS Region by running the following AWS CLI command:

aws rds describe-db-engine-versions --default-only --engine mysql
 --engine-version major_engine_version --region region --query "*[].
{Engine:Engine,EngineVersion:EngineVersion}" --output text

Replace major_engine_version with the major engine version, and replace region with the
AWS Region. For example, the following AWS CLI command returns the default MySQL minor
engine version for the 5.7 major version and the US West (Oregon) AWS Region (us-west-2):

aws rds describe-db-engine-versions --default-only --engine mysql --engine-version 5.7
 --region us-west-2 --query "*[].{Engine:Engine,EngineVersion:EngineVersion}" --output
 text

With Amazon RDS, you control when to upgrade your MySQL instance to a new major version
supported by Amazon RDS. You can maintain compatibility with specific MySQL versions, test new
versions with your application before deploying in production, and perform major version upgrades
at times that best fit your schedule.

When automatic minor version upgrade is enabled, your DB instance will be upgraded
automatically to new MySQL minor versions as they are supported by Amazon RDS. This patching
occurs during your scheduled maintenance window. You can modify a DB instance to enable or
disable automatic minor version upgrades.

If you opt out of automatically scheduled upgrades, you can manually upgrade to a supported
minor version release by following the same procedure as you would for a major version update.
For information, see Upgrading a DB instance engine version.

Amazon RDS currently supports the following upgrades for major versions of the MySQL database
engine:

Minor versions 3276

Amazon Relational Database Service User Guide

• MySQL 5.7 to MySQL 8.0

• MySQL 8.0 to MySQL 8.4

Because major version upgrades involve some compatibility risk, they do not occur automatically;
you must make a request to modify the DB instance. You should thoroughly test any upgrade
before upgrading your production instances. For information about upgrading a MySQL DB
instance, see Upgrades of the RDS for MySQL DB engine.

You can test a DB instance against a new version before upgrading by creating a DB snapshot
of your existing DB instance, restoring from the DB snapshot to create a new DB instance, and
then initiating a version upgrade for the new DB instance. You can then experiment safely on the
upgraded clone of your DB instance before deciding whether or not to upgrade your original DB
instance.

MySQL minor versions on Amazon RDS

For the changes that the MySQL community made to the minor versions, see Critical Patch
Updates, Security Alerts and Bulletins on the Oracle website. Under Critical Patch Update, choose
the month when Oracle released the minor version. And then choose the MySQL minor version
under Affected Products and Versions.

Minor versions

• MySQL version 8.4.5

• MySQL version 8.4.4

• MySQL version 8.0.41

• MySQL version 8.0.40

• MySQL version 8.0.39

• MySQL version 8.0.37

MySQL version 8.4.5

MySQL version 8.4.5 is now available on Amazon RDS. This release contains fixes and
improvements added by the MySQL community and Amazon RDS.

New features and enhancements

• Updated the time zone information to base it on tzdata2025b.

Minor versions 3277

https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/

Amazon Relational Database Service User Guide

MySQL version 8.4.4

MySQL version 8.4.4 is now available on Amazon RDS. This release contains fixes and
improvements added by the MySQL community and Amazon RDS.

New features and enhancements

• Updated the time zone information to base it on tzdata2025a.

• Fixed a bug that caused a collation error while executing the Amazon RDS stored procedures
mysql.rds_set_configuration and mysql.rds_kill.

MySQL version 8.0.41

MySQL version 8.0.41 is now available on Amazon RDS. This release contains fixes and
improvements added by the MySQL community and Amazon RDS.

New features and enhancements

• Updated the time zone information to base it on tzdata2025a.

• Fixed a bug that caused a collation error while executing the Amazon RDS stored procedures
mysql.rds_set_configuration and mysql.rds_kill.

MySQL version 8.0.40

MySQL version 8.0.40 is now available on Amazon RDS. This release contains fixes and
improvements added by the MySQL community and Amazon RDS.

New features and enhancements

• Fixed a bug that caused character set mismatch failures during database upgrades.

MySQL version 8.0.39

MySQL version 8.0.39 is now available on Amazon RDS. This release contains fixes and
improvements added by the MySQL community and Amazon RDS.

New features and enhancements

• Fixed a bug that prevented sql_log_off from working properly with the
SESSION_VARIABLES_ADMIN privilege.

Minor versions 3278

Amazon Relational Database Service User Guide

• Fixed a bug that prevented the master user from being able to grant the
SESSION_VARIABLE_ADMIN privilege other database users.

• Fixed a bug that caused an illegal mix of collation while executing RDS-provided stored
procedures.

MySQL version 8.0.37

MySQL version 8.0.37 is now available on Amazon RDS. This release contains fixes and
improvements added by the MySQL community and Amazon RDS.

New features and enhancements

• Fixed a bug with executing an instant DDL statement followed by an UPDATE that lead to an
assertion failure.

Supported MySQL major versions on Amazon RDS

RDS for MySQL major versions are available under standard support at least until community end
of life for the corresponding community version. You can continue running a major version past
its RDS end of standard support date for a fee. For more information, see Amazon RDS Extended
Support with Amazon RDS and Amazon RDS for MySQL pricing.

You can use the following dates to plan your testing and upgrade cycles.

Note

Dates with only a month and a year are approximate and are updated with an exact date
when it’s known.

Major versions 3279

https://aws.amazon.com/rds/mysql/pricing/

Amazon Relational Database Service User Guide

MySQL
major
version

Community
release
date

RDS
release
date

Community
end of
life date

RDS
end of
standard
support
date

RDS
start of
Extended
Support
year 1
pricing
date

RDS
start of
Extended
Support
year 3
pricing
date

RDS
end of
Extended
Support
date

MySQL
8.4

30 April
2024

21
November
2024

April
2029

31 July
2029

1 August,
2029

1 August
2031

31 July
2032

MySQL
8.0

19 April
2018

23
October
2018

April
2026

31 July
2026

1 August
2026

1 August
2028

31 July
2029

MySQL
5.7*

21
October
2015

22
February
2016

October
2023

29
February
2024

1 March
2024

1 March
2026

28
February
2027

* MySQL 5.7 is now only available under RDS Extended Support. For more information, see Amazon
RDS Extended Support with Amazon RDS.

Amazon RDS Extended Support versions for RDS for MySQL

The following content lists all releases of RDS Extended Support for RDS for MySQL versions.

Releases

• RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250213

• RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250103

• RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240808

• RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240529

• RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240408

RDS Extended Support versions 3280

Amazon Relational Database Service User Guide

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250213

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250213 is available.

Bugs fixed:

• Fixed InnoDB failing assertion result != FTS_INVALID.

• Fixed crashing and widespread corruption of spatial indexes after ALTER TABLE operation
rebuilds InnoDB table using the INPLACE algorithm.

• Fixed ON DELETE CASCADE with generated column crashes in
innobase_get_computed_value.

• Fixed assertion failure in row_MySQL_pad_col.

• Fixed an issue where online DDL causes the following error: ERROR 1712 (HY000): Index
PRIMARY is corrupted.

• Fixed crashes at Item_rollup_sum_switcher::current_arg.

• Fixed an issue where the database cache is not flushed on DROP USER.

• Fixed buffer overrun in my_print_help.

• Fixed an InnoDB issue where FULLTEXT index limits FTS_DOC_ID to max unsigned 32-bit value.

CVEs fixed:

• CVE-2025-21497

• CVE-2025-21555

• CVE-2025-21559

• CVE-2025-21490

• CVE-2025-21491

• CVE-2025-21500

• CVE-2025-21501

• CVE-2025-21540

• CVE-2025-21543

• CVE-2025-21520

RDS Extended Support versions 3281

https://nvd.nist.gov/vuln/detail/CVE-2025-21497
https://nvd.nist.gov/vuln/detail/CVE-2025-21555
https://nvd.nist.gov/vuln/detail/CVE-2025-21559
https://nvd.nist.gov/vuln/detail/CVE-2025-21490
https://nvd.nist.gov/vuln/detail/CVE-2025-21491
https://nvd.nist.gov/vuln/detail/CVE-2025-21500
https://nvd.nist.gov/vuln/detail/CVE-2025-21501
https://nvd.nist.gov/vuln/detail/CVE-2025-21540
https://nvd.nist.gov/vuln/detail/CVE-2025-21543
https://nvd.nist.gov/vuln/detail/CVE-2025-21520

Amazon Relational Database Service User Guide

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250103

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250103 is available.

Bugs fixed:

• Fixed FTS clean-up issue when dropping and adding a FULLTEXT index in the same transaction.

• Optimized the memory allocation timing in the MySQL client to prevent any potential leaks.

• Fixed the truncation of results at 34 bytes when using the UNION operator.

• Fixed potential out-of-bounds access due to ulong bitmask in the authorization code.

CVEs fixed:

• CVE-2024-21230

• CVE-2024-21201

• CVE-2024-21241

• CVE-2024-21203

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240808

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240808 is available.

Bugs fixed:

• Fixed assertion failure related to dictionary column index.

• Fixed issue with the is_binlog_cache_empty() function.

• Fixed heap-use-after-free errors in sql/item.cc files.

• Fixed several spatial index issues by disabling them for index-only reads.

• Fixed instrumentation issue with the LOCK_ORDER: CONNECTION_CONTROL plugin.

• Fixed threads getting stuck with the CONNECTION_CONTROL plugin.

• Fixed PSI_THREAD_INFO not updating for PREPARED STATEMENTS.

• Fixed double processing of FTS index words with innodb_optimize_fulltext_only.

CVEs fixed:

• CVE-2024-21177

RDS Extended Support versions 3282

https://nvd.nist.gov/vuln/detail/CVE-2024-21230
https://nvd.nist.gov/vuln/detail/CVE-2024-21201
https://nvd.nist.gov/vuln/detail/CVE-2024-21241
https://nvd.nist.gov/vuln/detail/CVE-2024-21203
https://nvd.nist.gov/vuln/detail/CVE-2024-21177

Amazon Relational Database Service User Guide

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240529

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240529 is available.

Bugs fixed:

• Fixed field.cc assertion failure by implementing fix_after_pullout.

• Fixed a null pointer failure when returning metadata to the client for certain SQL queries. These
queries contained dynamic parameters and subqueries in SELECT clauses.

• Fixed incorrect results when using GROUP BY for loose index scans, or scans of noncontiguous
ranges of an index.

• Fixed loss of GTID information on MySQL crash during persistence.

• Fixed a race condition that could cause an InnoDB transaction to hang indefinitely.

• Fixed a race condition in Group Replication's certification information cleanup.

• Fixed backward index scan issue with concurrent page operations.

• Fixed an inconsistent full-text search (FTS) state issue in concurrent scenarios.

• Fixed assertion issue with change buffer on deleting tables.

• Unified behavior for calling deinit function across all plugin types.

CVEs fixed:

• CVE-2024-20963

• CVE-2024-20993

• CVE-2024-20998

• CVE-2024-21009

• CVE-2024-21054

• CVE-2024-21055

• CVE-2024-21057

• CVE-2024-21062

• CVE-2024-21008

• CVE-2024-21013

• CVE-2024-21047

• CVE-2024-21087

RDS Extended Support versions 3283

https://nvd.nist.gov/vuln/detail/CVE-2024-20963
https://nvd.nist.gov/vuln/detail/CVE-2024-20993
https://nvd.nist.gov/vuln/detail/CVE-2024-20998
https://nvd.nist.gov/vuln/detail/CVE-2024-21009
https://nvd.nist.gov/vuln/detail/CVE-2024-21054
https://nvd.nist.gov/vuln/detail/CVE-2024-21055
https://nvd.nist.gov/vuln/detail/CVE-2024-21057
https://nvd.nist.gov/vuln/detail/CVE-2024-21062
https://nvd.nist.gov/vuln/detail/CVE-2024-21008
https://nvd.nist.gov/vuln/detail/CVE-2024-21013
https://nvd.nist.gov/vuln/detail/CVE-2024-21047
https://nvd.nist.gov/vuln/detail/CVE-2024-21087

Amazon Relational Database Service User Guide

• CVE-2024-21096

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240408

RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240408 is available.

This release contains patches for the following CVEs:

• CVE-2024-20963

Working with the Database Preview environment

In July 2023, Oracle announced a new release model for MySQL. This model includes two types
of releases: Innovation Releases and LTS releases. Amazon RDS makes MySQL Innovation Releases
available in the RDS Preview environment. To learn more about the MySQL Innovation releases, see
Introducing MySQL Innovation and Long-Term Support (LTS) versions.

RDS for MySQL DB instances in the Database Preview environment are functionally similar to
other RDS for MySQL DB instances. However, you can't use the Database Preview environment for
production workloads.

Preview environments have the following limitations:

• Amazon RDS deletes all DB instances 60 days after you create them, along with any backups and
snapshots.

• You can only use General Purpose SSD and Provisioned IOPS SSD storage.

• You can't get help from Support with DB instances. Instead, you can post your questions to the
AWS‐managed Q&A community, AWS re:Post.

• You can't copy a snapshot of a DB instance to a production environment.

The following options are supported by the preview.

• You can create DB instances using db.m6i, db.r6i, db.m6g, db.m5, db.t3, db.r6g, and db.r5 DB
instance classes. For more information about RDS instance classes, see DB instance classes.

• You can use both single-AZ and multi-AZ deployments.

• You can use standard MySQL dump and load functions to export databases from or import
databases to the Database Preview environment.

Database Preview environment 3284

https://nvd.nist.gov/vuln/detail/CVE-2024-21096
https://nvd.nist.gov/vuln/detail/CVE-2024-20963
https://blogs.oracle.com/mysql/post/introducing-mysql-innovation-and-longterm-support-lts-versions
https://repost.aws/tags/TAsibBK6ZeQYihN9as4S_psg/amazon-relational-database-service

Amazon Relational Database Service User Guide

Features not supported in the Database Preview environment

The following features aren't available in the Database Preview environment:

• Cross-Region snapshot copy

• Cross-Region read replicas

• RDS Proxy

Creating a new DB instance in the Database Preview environment

You can create a DB instance in the Database Preview environment using the AWS Management
Console, AWS CLI, or RDS API.

Console

To create a DB instance in the Database Preview environment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Dashboard from the navigation pane.

3. In the Dashboard page, locate the Database Preview Environment section, as shown in the
following image.

Database Preview environment 3285

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

You can navigate directly to the Database Preview environment. Before you can proceed, you
must acknowledge and accept the limitations.

Database Preview environment 3286

https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#

Amazon Relational Database Service User Guide

4. To create the RDS for MySQL DB instance, follow the same process that you would for creating
any Amazon RDS DB instance. For more information, see the Console procedure in Creating a
DB instance.

AWS CLI

To create a DB instance in the Database Preview environment using the AWS CLI, use the following
endpoint.

rds-preview.us-east-2.amazonaws.com

To create the RDS for MySQL DB instance, follow the same process that you would for creating
any Amazon RDS DB instance. For more information, see the AWS CLI procedure in Creating a DB
instance.

RDS API

To create a DB instance in the Database Preview environment using the RDS API, use the following
endpoint.

Database Preview environment 3287

Amazon Relational Database Service User Guide

rds-preview.us-east-2.amazonaws.com

To create the RDS for MySQL DB instance, follow the same process that you would for creating
any Amazon RDS DB instance. For more information, see the RDS API procedure in Creating a DB
instance.

MySQL version 9.2 in the Database Preview environment

MySQL version 9.2 is now available in the Amazon RDS Database Preview environment. MySQL
version 9.2 contains several improvements that are described in Changes in MySQL 9.2.0.

For information on the Database Preview environment, see the section called “Database
Preview environment”. To access the Preview Environment from the console, select https://
console.aws.amazon.com/rds-preview/.

MySQL version 9.1 in the Database Preview environment

MySQL version 9.1 is now available in the Amazon RDS Database Preview environment. MySQL
version 9.1 contains several improvements that are described in Changes in MySQL 9.1.0.

For information on the Database Preview environment, see the section called “Database
Preview environment”. To access the Preview Environment from the console, select https://
console.aws.amazon.com/rds-preview/.

Deprecated versions for Amazon RDS for MySQL

Amazon RDS for MySQL version 5.1, 5.5, and 5.6 are deprecated.

For information about the Amazon RDS deprecation policy for MySQL, see Amazon RDS FAQs.

9.2 (preview) 3288

https://dev.mysql.com/doc/relnotes/mysql/9.2/en/news-9-2-0.html
https://console.aws.amazon.com/rds-preview/
https://console.aws.amazon.com/rds-preview/
https://dev.mysql.com/doc/relnotes/mysql/9.1/en/news-9-1-0.html
https://console.aws.amazon.com/rds-preview/
https://console.aws.amazon.com/rds-preview/
https://aws.amazon.com/rds/faqs/

Amazon Relational Database Service User Guide

Connecting to your MySQL DB instance

Before you can connect to a DB instance running the MySQL database engine, you must create
a DB instance. For information, see Creating an Amazon RDS DB instance. After Amazon RDS
provisions your DB instance, you can use any standard MySQL client application or utility to
connect to the instance. In the connection string, you specify the DNS address from the DB
instance endpoint as the host parameter, and specify the port number from the DB instance
endpoint as the port parameter.

To authenticate to your RDS DB instance, you can use one of the authentication methods for
MySQL and AWS Identity and Access Management (IAM) database authentication:

• To learn how to authenticate to MySQL using one of the authentication methods for MySQL, see
Authentication method in the MySQL documentation.

• To learn how to authenticate to MySQL using IAM database authentication, see IAM database
authentication for MariaDB, MySQL, and PostgreSQL.

You can connect to a MySQL DB instance by using tools like the MySQL command-line client. For
more information on using the MySQL command-line client, see mysql - the MySQL command-line
client in the MySQL documentation. One GUI-based application you can use to connect is MySQL
Workbench. For more information, see the Download MySQL Workbench page. For information
about installing MySQL (including the MySQL command-line client), see Installing and upgrading
MySQL.

To connect to a DB instance from outside of its Amazon VPC, the DB instance must be publicly
accessible, access must be granted using the inbound rules of the DB instance's security group,
and other requirements must be met. For more information, see Can't connect to Amazon RDS DB
instance.

You can use Secure Sockets Layer (SSL) or Transport Layer Security (TLS) encryption on connections
to a MySQL DB instance. For information, see SSL/TLS support for MySQL DB instances on Amazon
RDS. If you are using AWS Identity and Access Management (IAM) database authentication, make
sure to use an SSL/TLS connection. For information, see IAM database authentication for MariaDB,
MySQL, and PostgreSQL.

You can also connect to a DB instance from a web server. For more information, see Tutorial: Create
a web server and an Amazon RDS DB instance.

Connecting to a DB instance running MySQL 3289

https://dev.mysql.com/doc/internals/en/authentication-method.html
https://dev.mysql.com/doc/internals/en/authentication-method.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
http://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html

Amazon Relational Database Service User Guide

Note

For information on connecting to a MariaDB DB instance, see Connecting to your MariaDB
DB instance.

To find and connect to a RDS for MySQL DB instance, see the following topics.

Topics

• Finding the connection information for an RDS for MySQL DB instance

• Installing the MySQL command-line client

• Connecting from the MySQL command-line client (unencrypted)

• Connecting from MySQL Workbench

• Connecting to RDS for MySQL with the AWS JDBC Driver, AWS Python Driver, and AWS ODBC
Driver for MySQL

• Troubleshooting connections to your MySQL DB instance

Finding the connection information for an RDS for MySQL DB instance

The connection information for a DB instance includes its endpoint, port, and a valid
database user, such as the master user. For example, suppose that an endpoint value is
mydb.123456789012.us-east-1.rds.amazonaws.com. In this case, the port value is 3306,
and the database user is admin. Given this information, you specify the following values in a
connection string:

• For host or host name or DNS name, specify mydb.123456789012.us-
east-1.rds.amazonaws.com.

• For port, specify 3306.

• For user, specify admin.

To connect to a DB instance, use any client for the MySQL DB engine. For example, you might use
the MySQL command-line client or MySQL Workbench.

To find the connection information for a DB instance, you can use the AWS Management Console,
the AWS CLI describe-db-instances command, or the Amazon RDS API DescribeDBInstances
operation to list its details.

Finding the connection information 3290

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

Console

To find the connection information for a DB instance in the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases to display a list of your DB instances.

3. Choose the name of the MySQL DB instance to display its details.

4. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You need
both the endpoint and the port number to connect to the DB instance.

Finding the connection information 3291

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. If you need to find the master user name, choose the Configuration tab and view the Master
username value.

Finding the connection information 3292

Amazon Relational Database Service User Guide

AWS CLI

To find the connection information for a MySQL DB instance by using the AWS CLI, run the
describe-db-instances command. In the call, query for the DB instance ID, endpoint, port, and
master user name.

For Linux, macOS, or Unix:

aws rds describe-db-instances \
 --filters "Name=engine,Values=mysql" \
 --query "*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

For Windows:

aws rds describe-db-instances ^
 --filters "Name=engine,Values=mysql" ^
 --query "*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

Your output should be similar to the following.

[
 [
 "mydb1",
 "mydb1.123456789012.us-east-1.rds.amazonaws.com",
 3306,
 "admin"
],
 [
 "mydb2",
 "mydb2.123456789012.us-east-1.rds.amazonaws.com",
 3306,
 "admin"
]
]

RDS API

To find the connection information for a DB instance by using the Amazon RDS API, call the
DescribeDBInstances operation. In the output, find the values for the endpoint address, endpoint
port, and master user name.

Finding the connection information 3293

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

Installing the MySQL command-line client

Most Linux distributions include the MariaDB client instead of the Oracle MySQL client. To install
the MySQL command-line client on Amazon Linux 2023, run the following command:

sudo dnf install mariadb105

To install the MySQL command-line client on Amazon Linux 2, run the following command:

sudo yum install mariadb

To install the MySQL command-line client on most DEB-based Linux distributions, run the
following command:

apt-get install mariadb-client

To check the version of your MySQL command-line client, run the following command:

mysql --version

To read the MySQL documentation for your current client version, run the following command:

man mysql

Connecting from the MySQL command-line client (unencrypted)

Important

Only use an unencrypted MySQL connection when the client and server are in the same
VPC and the network is trusted. For information about using encrypted connections, see
Connecting to your MySQL DB instance on Amazon RDS with SSL/TLS from the MySQL
command-line client (encrypted).

To connect to a DB instance using the MySQL command-line client, enter the following command
at the command prompt. For the -h parameter, substitute the DNS name (endpoint) for your DB
instance. For the -P parameter, substitute the port for your DB instance. For the -u parameter,

Installing the command-line client 3294

Amazon Relational Database Service User Guide

substitute the user name of a valid database user, such as the master user. Enter the master user
password when prompted.

mysql -h mysql–instance1.123456789012.us-east-1.rds.amazonaws.com -P 3306 -
u mymasteruser -p

After you enter the password for the user, you should see output similar to the following.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 9738
Server version: 8.0.28 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Connecting from MySQL Workbench

To connect from MySQL Workbench

1. Download and install MySQL Workbench at Download MySQL Workbench.

2. Open MySQL Workbench.

3. From Database, choose Manage Connections.

4. In the Manage Server Connections window, choose New.

5. In the Connect to Database window, enter the following information:

Connecting from MySQL Workbench 3295

http://dev.mysql.com/downloads/workbench/

Amazon Relational Database Service User Guide

• Stored Connection – Enter a name for the connection, such as MyDB.

• Hostname – Enter the DB instance endpoint.

• Port – Enter the port used by the DB instance.

• Username – Enter the user name of a valid database user, such as the master user.

• Password – Optionally, choose Store in Vault and then enter and save the password for the
user.

The window looks similar to the following:

You can use the features of MySQL Workbench to customize connections. For example, you
can use the SSL tab to configure SSL/TLS connections. For information about using MySQL
Workbench, see the MySQL Workbench documentation. Encrypting client connections to
MySQL DB instances with SSL/TLS, see Encrypting client connections with SSL/TLS to MySQL
DB instances on Amazon RDS.

Connecting from MySQL Workbench 3296

https://dev.mysql.com/doc/workbench/en/

Amazon Relational Database Service User Guide

6. Optionally, choose Test Connection to confirm that the connection to the DB instance is
successful.

7. Choose Close.

8. From Database, choose Connect to Database.

9. From Stored Connection, choose your connection.

10. Choose OK.

Connecting to RDS for MySQL with the AWS JDBC Driver, AWS Python
Driver, and AWS ODBC Driver for MySQL

Connect to RDS for MySQL DB instances with the AWS JDBC Driver, the AWS Python Driver, and the
AWS ODBC Driver for MySQL. For more information, see the following topics.

Topics

• Connecting to RDS for MySQL with the Amazon Web Services (AWS) JDBC Driver

• Connecting to RDS for MySQL with the Amazon Web Services (AWS) Python Driver

• Connecting to RDS for MySQL with the Amazon Web Services (AWS) ODBC Driver for MySQL

Connecting to RDS for MySQL with the Amazon Web Services (AWS) JDBC Driver

The Amazon Web Services (AWS) JDBC Driver is designed as an advanced JDBC wrapper. This
wrapper is complementary to and extends the functionality of an existing JDBC driver. The driver
is drop-in compatible with the community MySQL Connector/J driver and the community MariaDB
Connector/J driver.

To install the AWS JDBC Driver, append the AWS JDBC Driver .jar file (located in the application
CLASSPATH), and keep references to the respective community driver. Update the respective
connection URL prefix as follows:

• jdbc:mysql:// to jdbc:aws-wrapper:mysql://

• jdbc:mariadb:// to jdbc:aws-wrapper:mariadb://

For more information about the AWS JDBC Driver and complete instructions for using it, see the
Amazon Web Services (AWS) JDBC Driver GitHub repository.

Connecting with the AWS drivers 3297

https://github.com/awslabs/aws-advanced-jdbc-wrapper

Amazon Relational Database Service User Guide

Connecting to RDS for MySQL with the Amazon Web Services (AWS) Python
Driver

The Amazon Web Services (AWS) Python Driver is designed as an advanced Python wrapper.
This wrapper is complementary to and extends the functionality of the open-source Psycopg
driver. The AWS Python Driver supports Python versions 3.8 and higher. You can install the aws-
advanced-python-wrapper package using the pip command, along with the psycopg open-
source packages.

For more information about the AWS Python Driver and complete instructions for using it, see the
Amazon Web Services (AWS) Python Driver GitHub repository.

Connecting to RDS for MySQL with the Amazon Web Services (AWS) ODBC Driver
for MySQL

The AWS ODBC Driver for MySQL is a client driver designed for the high availability of RDS for
MySQL. The driver can exist alongside the MySQL Connector/ODBC driver and is compatible with
the same workflows.

For more information about the AWS ODBC Driver for MySQL and complete instructions for
installing and using it, see the Amazon Web Services (AWS) ODBC Driver for MySQL GitHub
repository.

Troubleshooting connections to your MySQL DB instance

Two common causes of connection failures to a new DB instance are:

• The DB instance was created using a security group that doesn't authorize connections from
the device or Amazon EC2 instance where the MySQL application or utility is running. The DB
instance must have a VPC security group that authorizes the connections. For more information,
see Amazon VPC and Amazon RDS.

You can add or edit an inbound rule in the security group. For Source, choose My IP. This allows
access to the DB instance from the IP address detected in your browser.

• The DB instance was created using the default port of 3306, and your company has firewall rules
blocking connections to that port from devices in your company network. To fix this failure,
recreate the instance with a different port.

For more information on connection issues, see Can't connect to Amazon RDS DB instance.

Troubleshooting 3298

https://github.com/awslabs/aws-advanced-python-wrapper
https://github.com/aws/aws-mysql-odbc

Amazon Relational Database Service User Guide

Securing MySQL DB instance connections

You can implement robust security measures to protect MySQL DB instances from unauthorized
access and potential threats. Security groups, SSL/TLS encryption, and IAM database
authentication work together to create multiple layers of connection security for your MySQL DB
instances. These security controls help you meet compliance requirements, prevent data breaches,
and maintain secure communication channels between applications and databases. You can secure
your MySQL DB instances by encrypting data in transit, restricting access to specific IP ranges, and
managing user authentication through IAM roles rather than database passwords.

Security for MySQL DB instances is managed at three levels:

• AWS Identity and Access Management controls who can perform Amazon RDS management
actions on DB instances. When you connect to AWS using IAM credentials, your IAM account must
have IAM policies that grant the permissions required to perform Amazon RDS management
operations. For more information, see Identity and access management for Amazon RDS.

• When you create a DB instance, you use a VPC security group to control which devices and
Amazon EC2 instances can open connections to the endpoint and port of the DB instance. These
connections can be made using Secure Sockets Layer (SSL) and Transport Layer Security (TLS).
In addition, firewall rules at your company can control whether devices running at your company
can open connections to the DB instance.

• To authenticate login and permissions for a MySQL DB instance, you can take either of the
following approaches, or a combination of them:

• You can take the same approach as with a stand-alone instance of MySQL. Commands such
as CREATE USER, RENAME USER, GRANT, REVOKE, and SET PASSWORD work just as they
do in on-premises databases, as does directly modifying database schema tables. However,
directly modifying the database schema tables isn't a best practice, and starting from RDS
for MySQL version 8.0.36, it isn't supported. For information, see Access control and account
management in the MySQL documentation.

• You can also use IAM database authentication. With IAM database authentication, you
authenticate to your DB instance by using an IAM user or IAM role and an authentication
token. An authentication token is a unique value that is generated using the Signature Version
4 signing process. By using IAM database authentication, you can use the same credentials
to control access to your AWS resources and your databases. For more information, see IAM
database authentication for MariaDB, MySQL, and PostgreSQL.

Securing MySQL connections 3299

https://dev.mysql.com/doc/refman/8.0/en/access-control.html
https://dev.mysql.com/doc/refman/8.0/en/access-control.html

Amazon Relational Database Service User Guide

• Another option is Kerberos authentication for RDS for MySQL. The DB instance works with
AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) to enable
Kerberos authentication. When users authenticate with a MySQL DB instance joined to the
trusting domain, authentication requests are forwarded. Forwarded requests go to the
domain directory that you create with AWS Directory Service. For more information, see Using
Kerberos authentication for Amazon RDS for MySQL.

When you create an Amazon RDS DB instance, the master user has the following default privileges:

Engine
version

System privilege Database role

RDS for
MySQL
version
8.4.3
and
higher

GRANT SELECT, INSERT, UPDATE, DELETE,
CREATE, DROP, RELOAD, PROCESS, REFERENCE
S ,INDEX, ALTER, SHOW DATABASES , CREATE
TEMPORARY TABLES, LOCK TABLES, EXECUTE,
REPLICATION SLAVE , REPLICATION CLIENT ,
CREATE VIEW, SHOW VIEW, CREATE ROUTINE,
ALTER ROUTINE, CREATE USER, EVENT,
TRIGGER, CREATE ROLE, DROP ROLE, APPLICATI
ON_PASSWORD_ADMIN , FLUSH_OPTIMIZER_CO
STS , FLUSH_PRIVILEGES , FLUSH_STATUS ,
FLUSH_TABLES , FLUSH_USER_RESOURC
ES , ROLE_ADMIN , SENSITIVE_VARIABLE
S_OBSERVER , SESSION_VARIABLES_
ADMIN , SET_ANY_DEFINER , SHOW_ROUTINE ,
XA_RECOVER_ADMIN

rds_superuser_role

For more information about
rds_superuser_role

, see Role-based privilege
model for RDS for MySQL.

RDS for
MySQL
version
8.0.36
and
higher

SELECT, INSERT, UPDATE, DELETE, CREATE,
DROP, RELOAD, PROCESS, REFERENCES , INDEX,
ALTER, SHOW DATABASES , CREATE TEMPORARY
TABLES, LOCK TABLES, EXECUTE, REPLICATION
SLAVE, REPLICATION CLIENT , CREATE VIEW,
SHOW VIEW, CREATE ROUTINE, ALTER ROUTINE,
CREATE USER, EVENT, TRIGGER, CREATE ROLE,
DROP ROLE, APPLICATION_PASSWORD_ADMIN ,

rds_superuser_role

For more information about
rds_superuser_role

, see Role-based privilege
model for RDS for MySQL.

Securing MySQL connections 3300

Amazon Relational Database Service User Guide

Engine
version

System privilege Database role

ROLE_ADMIN , SET_USER_ID , XA_RECOVE
R_ADMIN

RDS for
MySQL
versions
lower
than
8.0.36

SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
RELOAD, PROCESS, REFERENCES , INDEX, ALTER,
SHOW DATABASES , CREATE TEMPORARY TABLES,
LOCK TABLES, EXECUTE, REPLICATION CLIENT ,
CREATE VIEW, SHOW VIEW, CREATE ROUTINE,
ALTER ROUTINE, CREATE USER, EVENT, TRIGGER,
REPLICATION SLAVE

None

Note

Although it is possible to delete the master user on the DB instance, it is not recommended.
To recreate the master user, use the ModifyDBInstance RDS API operation or run the
modify-db-instance AWS CLI command and specify a new master user password with the
appropriate parameter. If the master user does not exist in the instance, the master user is
created with the specified password.

To provide management services for each DB instance, the rdsadmin user is created when the DB
instance is created. Attempting to drop, rename, change the password, or change privileges for the
rdsadmin account will result in an error.

To allow management of the DB instance, the standard kill and kill_query commands have
been restricted. The Amazon RDS commands rds_kill and rds_kill_query are provided to
allow you to end user sessions or queries on DB instances.

Password validation for RDS for MySQL

MySQL provides the validate_password plugin for improved security. The plugin enforces
password policies using parameters in the DB parameter group for your MySQL DB instance.
The plugin is supported for DB instances running MySQL version 5.7, 8.0, and 8.4. For more

Password validation 3301

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

information about the validate_password plugin, see The Password Validation Plugin in the
MySQL documentation.

To enable the validate_password plugin for a MySQL DB instance

1. Connect to your MySQL DB instance and run the following command.

INSTALL PLUGIN validate_password SONAME 'validate_password.so';

2. Configure the parameters for the plugin in the DB parameter group used by the DB instance.

For more information about the parameters, see Password Validation Plugin Options and
Variables in the MySQL documentation.

For more information about modifying DB instance parameters, see Modifying parameters in a
DB parameter group in Amazon RDS.

3. Restart the DB instance.

After enabling the validate_password plugin, reset existing passwords to comply with your new
validation policies.

Amazon RDS doesn't validate passwords. The MySQL DB instance performs password validation.
If you set a user password with the AWS Management Console, the modify-db-instance AWS
CLI command, or the ModifyDBInstance RDS API operation, the change can succeed even if the
new password doesn't satisfy your password policies. However, a new password is set in the MySQL
DB instance only if it satisfies the password policies. In this case, Amazon RDS records the following
event.

 "RDS-EVENT-0067" - An attempt to reset the master password for the DB instance has
 failed.

For more information about Amazon RDS events, see Working with Amazon RDS event notification.

Password validation 3302

https://dev.mysql.com/doc/refman/5.7/en/validate-password.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-options-variables.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password-options-variables.html

Amazon Relational Database Service User Guide

Encrypting client connections with SSL/TLS to MySQL DB instances on
Amazon RDS

Secure Sockets Layer (SSL) is an industry-standard protocol for securing network connections
between client and server. After SSL version 3.0, the name was changed to Transport Layer
Security (TLS). Amazon RDS supports SSL/TLS encryption for MySQL DB instances. Using SSL/TLS,
you can encrypt a connection between your application client and your MySQL DB instance. SSL/
TLS support is available in all AWS Regions for MySQL.

With Amazon RDS, you can secure data in transit by encrypting client connections to MySQL
DB instances with SSL/TLS, requiring SSL/TLS for all connections to a MySQL DB instance, and
connecting from the MySQL command-line client with SSL/TLS (encrypted). The following sections
provide guidance on configuring and utilizing SSL/TLS encryption for MySQL DB instances on
Amazon RDS.

Topics

• SSL/TLS support for MySQL DB instances on Amazon RDS

• Requiring SSL/TLS for specific user accounts to a MySQL DB instance on Amazon RDS

• Requiring SSL/TLS for all connections to a MySQL DB instance on Amazon RDS

• Connecting to your MySQL DB instance on Amazon RDS with SSL/TLS from the MySQL
command-line client (encrypted)

SSL/TLS support for MySQL DB instances on Amazon RDS

Amazon RDS creates an SSL/TLS certificate and installs the certificate on the DB instance when
Amazon RDS provisions the instance. These certificates are signed by a certificate authority. The
SSL/TLS certificate includes the DB instance endpoint as the Common Name (CN) for the SSL/TLS
certificate to guard against spoofing attacks.

An SSL/TLS certificate created by Amazon RDS is the trusted root entity and should work in most
cases, but might fail if your application doesn't accept certificate chains. If your application doesn't
accept certificate chains, try using an intermediate certificate to connect to your AWS Region. For
example, you must use an intermediate certificate to connect to the AWS GovCloud (US) Regions
with SSL/TLS.

Encrypting with SSL/TLS 3303

Amazon Relational Database Service User Guide

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster. For more information about using SSL/TLS with MySQL, see Updating
applications to connect to MySQL DB instances using new SSL/TLS certificates.

For MySQL version 8.0 and lower, Amazon RDS for MySQL uses OpenSSL for secure connections.
For MySQL version 8.4 and higher, Amazon RDS for MySQL uses AWS-LC. TLS support depends on
the MySQL version. The following table shows the TLS support for MySQL versions.

MySQL version TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3

MySQL 8.4 Not supported Not supported Supported Supported

MySQL 8.0 Not supported Not supported Supported Supported

MySQL 5.7 Supported Supported Supported Not supported

Requiring SSL/TLS for specific user accounts to a MySQL DB instance on Amazon
RDS

You can require SSL/TLS encryption for specified user account connections to your MySQL
DB instances on Amazon RDS. Protecting sensitive information from unauthorized access or
interception is crucial to enforce security policies where data confidentiality is a concern.

To require SSL/TLS connections for specific users' accounts, use one of the following statements,
depending on your MySQL version, to require SSL/TLS connections on the user account
encrypted_user.

To do so, use the following statement.

ALTER USER 'encrypted_user'@'%' REQUIRE SSL;

For more information on SSL/TLS connections with MySQL, see the Using encrypted connections
in the MySQL documentation.

Requiring SSL/TLS for all connections to a MySQL DB instance on Amazon RDS

Use the require_secure_transport parameter to require that all user connections to your
MySQL DB instance use SSL/TLS. By default, the require_secure_transport parameter is set

Encrypting with SSL/TLS 3304

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html

Amazon Relational Database Service User Guide

to OFF. You can set the require_secure_transport parameter to ON to require SSL/TLS for
connections to your DB instance.

You can set the require_secure_transport parameter value by updating the DB parameter
group for your DB instance. You don't need to reboot your DB instance for the change to take
effect.

When the require_secure_transport parameter is set to ON for a DB instance, a database
client can connect to it if it can establish an encrypted connection. Otherwise, an error message
similar to the following is returned to the client:

MySQL Error 3159 (HY000): Connections using insecure transport are prohibited while --
require_secure_transport=ON.

For information about setting parameters, see Modifying parameters in a DB parameter group in
Amazon RDS.

For more information about the require_secure_transport parameter, see the MySQL
documentation.

Connecting to your MySQL DB instance on Amazon RDS with SSL/TLS from the
MySQL command-line client (encrypted)

The mysql client program parameters are slightly different depending on which version of MySQL
or MariaDB you are using.

To find out which version you have, run the mysql command with the --version option. In the
following example, the output shows that the client program is from MariaDB.

$ mysql --version
mysql Ver 15.1 Distrib 10.5.15-MariaDB, for osx10.15 (x86_64) using readline 5.1

Most Linux distributions, such as Amazon Linux, CentOS, SUSE, and Debian have replaced MySQL
with MariaDB, and the mysql version in them is from MariaDB.

To connect to your DB instance using SSL/TLS, follow these steps:

To connect to a DB instance with SSL/TLS using the MySQL command-line client

1. Download a root certificate that works for all AWS Regions.

Encrypting with SSL/TLS 3305

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport

Amazon Relational Database Service User Guide

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster.

2. Use a MySQL command-line client to connect to a DB instance with SSL/TLS encryption. For
the -h parameter, substitute the DNS name (endpoint) for your DB instance. For the --ssl-ca
parameter, substitute the SSL/TLS certificate file name. For the -P parameter, substitute the
port for your DB instance. For the -u parameter, substitute the user name of a valid database
user, such as the master user. Enter the master user password when prompted.

The following example shows how to launch the client using the --ssl-ca parameter using
the MySQL 5.7 client or later:

mysql -h mysql–instance1.123456789012.us-east-1.rds.amazonaws.com --ssl-ca=global-
bundle.pem --ssl-mode=REQUIRED -P 3306 -u myadmin -p

To require that the SSL/TLS connection verifies the DB instance endpoint against the endpoint
in the SSL/TLS certificate, enter the following command:

mysql -h mysql–instance1.123456789012.us-east-1.rds.amazonaws.com --ssl-ca=global-
bundle.pem --ssl-mode=VERIFY_IDENTITY -P 3306 -u myadmin -p

The following example shows how to launch the client using the --ssl-ca parameter using
the MariaDB client:

mysql -h mysql–instance1.123456789012.us-east-1.rds.amazonaws.com --ssl-ca=global-
bundle.pem --ssl -P 3306 -u myadmin -p

3. Enter the master user password when prompted.

You will see output similar to the following.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 9738
Server version: 8.0.28 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Encrypting with SSL/TLS 3306

Amazon Relational Database Service User Guide

Updating applications to connect to MySQL DB instances using new
SSL/TLS certificates

As of January 13, 2023, Amazon RDS has published new Certificate Authority (CA) certificates
for connecting to your RDS DB instances using Secure Socket Layer or Transport Layer Security
(SSL/TLS). Following, you can find information about updating your applications to use the new
certificates.

This topic can help you to determine whether any client applications use SSL/TLS to connect to
your DB instances. If they do, you can further check whether those applications require certificate
verification to connect.

Note

Some applications are configured to connect to MySQL DB instances only if they can
successfully verify the certificate on the server. For such applications, you must update your
client application trust stores to include the new CA certificates.
You can specify the following SSL modes: disabled, preferred, and required. When
you use the preferred SSL mode and the CA certificate doesn't exist or isn't up to date,
the connection falls back to not using SSL and connects without encryption.
We recommend avoiding preferred mode. In preferred mode, if the connection
encounters an invalid certificate, it stops using encryption and proceeds unencrypted.

After you update your CA certificates in the client application trust stores, you can rotate
the certificates on your DB instances. We strongly recommend testing these procedures in a
development or staging environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate. For more
information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
instance or cluster. For information about using SSL/TLS with MySQL DB instances, see SSL/TLS
support for MySQL DB instances on Amazon RDS.

Topics

• Determining whether any applications are connecting to your MySQL DB instance using SSL

• Determining whether a client requires certificate verification to connect

• Updating your application trust store

Using new SSL/TLS certificates 3307

Amazon Relational Database Service User Guide

• Example Java code for establishing SSL connections

Determining whether any applications are connecting to your MySQL DB instance
using SSL

If you are using Amazon RDS for MySQL version 5.7, 8.0, or 8.4 and the Performance Schema
is enabled, run the following query to check if connections are using SSL/TLS. For information
about enabling the Performance Schema, see Performance Schema quick start in the MySQL
documentation.

mysql> SELECT id, user, host, connection_type
 FROM performance_schema.threads pst
 INNER JOIN information_schema.processlist isp
 ON pst.processlist_id = isp.id;

In this sample output, you can see both your own session (admin) and an application logged in as
webapp1 are using SSL.

+----+-----------------+------------------+-----------------+
| id | user | host | connection_type |
+----+-----------------+------------------+-----------------+
8	admin	10.0.4.249:42590	SSL/TLS
4	event_scheduler	localhost	NULL
10	webapp1	159.28.1.1:42189	SSL/TLS
+----+-----------------+------------------+-----------------+
3 rows in set (0.00 sec)

Determining whether a client requires certificate verification to connect

You can check whether JDBC clients and MySQL clients require certificate verification to connect.

JDBC

The following example with MySQL Connector/J 8.0 shows one way to check an application's JDBC
connection properties to determine whether successful connections require a valid certificate. For

Using new SSL/TLS certificates 3308

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-quick-start.html

Amazon Relational Database Service User Guide

more information on all of the JDBC connection options for MySQL, see Configuration properties
in the MySQL documentation.

When using the MySQL Connector/J 8.0, an SSL connection requires verification against
the DB server certificate if your connection properties have sslMode set to VERIFY_CA or
VERIFY_IDENTITY, as in the following example.

Properties properties = new Properties();
properties.setProperty("sslMode", "VERIFY_IDENTITY");
properties.put("user", DB_USER);
properties.put("password", DB_PASSWORD);

Note

If you use either the MySQL Java Connector v5.1.38 or later, or the MySQL Java Connector
v8.0.9 or later to connect to your databases, even if you haven't explicitly configured
your applications to use SSL/TLS when connecting to your databases, these client drivers
default to using SSL/TLS. In addition, when using SSL/TLS, they perform partial certificate
verification and fail to connect if the database server certificate is expired.

MySQL

The following examples with the MySQL Client show two ways to check a script's MySQL
connection to determine whether successful connections require a valid certificate. For more
information on all of the connection options with the MySQL Client, see Client-side configuration
for encrypted connections in the MySQL documentation.

When using the MySQL Client version 5.7 and higher, an SSL connection requires verification
against the server CA certificate if for the --ssl-mode option you specify VERIFY_CA or
VERIFY_IDENTITY, as in the following example.

mysql -h mysql-database.rds.amazonaws.com -uadmin -ppassword --ssl-ca=/tmp/ssl-cert.pem
 --ssl-mode=VERIFY_CA

Using new SSL/TLS certificates 3309

https://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-client-side-configuration
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-client-side-configuration

Amazon Relational Database Service User Guide

Updating your application trust store

For information about updating the trust store for MySQL applications, see Installing SSL
certificates in the MySQL documentation.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB instance or cluster.

For sample scripts that import certificates, see Sample script for importing certificates into your
trust store.

Note

When you update the trust store, you can retain older certificates in addition to adding the
new certificates.

If you are using the mysql JDBC driver in an application, set the following properties in the
application.

System.setProperty("javax.net.ssl.trustStore", certs);
System.setProperty("javax.net.ssl.trustStorePassword", "password");

When you start the application, set the following properties.

java -Djavax.net.ssl.trustStore=/path_to_trust_store/MyTruststore.jks -
Djavax.net.ssl.trustStorePassword=my_trust_store_password com.companyName.MyApplication

Note

Specify a password other than the prompt shown here as a security best practice.

Using new SSL/TLS certificates 3310

https://dev.mysql.com/doc/mysql-monitor/8.0/en/mem-ssl-installation.html
https://dev.mysql.com/doc/mysql-monitor/8.0/en/mem-ssl-installation.html

Amazon Relational Database Service User Guide

Example Java code for establishing SSL connections

The following code example shows how to set up the SSL connection that validates the server
certificate using JDBC.

public class MySQLSSLTest {

 private static final String DB_USER = "username";
 private static final String DB_PASSWORD = "password";
 // This trust store has only the prod root ca.
 private static final String TRUST_STORE_FILE_PATH = "file-path-to-trust-store";
 private static final String TRUST_STORE_PASS = "trust-store-password";

 public static void test(String[] args) throws Exception {
 Class.forName("com.mysql.jdbc.Driver");

 System.setProperty("javax.net.ssl.trustStore", TRUST_STORE_FILE_PATH);
 System.setProperty("javax.net.ssl.trustStorePassword", TRUST_STORE_PASS);

 Properties properties = new Properties();
 properties.setProperty("sslMode", "VERIFY_IDENTITY");
 properties.put("user", DB_USER);
 properties.put("password", DB_PASSWORD);

 Connection connection = null;
 Statement stmt = null;
 ResultSet rs = null;
 try {
 connection =
 DriverManager.getConnection("jdbc:mysql://mydatabase.123456789012.us-
east-1.rds.amazonaws.com:3306",properties);
 stmt = connection.createStatement();
 rs=stmt.executeQuery("SELECT 1 from dual");
 } finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException e) {
 }
 }
 if (stmt != null) {

Using new SSL/TLS certificates 3311

Amazon Relational Database Service User Guide

 try {
 stmt.close();
 } catch (SQLException e) {
 }
 }
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 }
 return;
 }
 }

Important

After you have determined that your database connections use SSL/TLS and have updated
your application trust store, you can update your database to use the rds-ca-rsa2048-g1
certificates. For instructions, see step 3 in Updating your CA certificate by modifying your
DB instance or cluster.
Specify a password other than the prompt shown here as a security best practice.

Using Kerberos authentication for Amazon RDS for MySQL

You can use Kerberos authentication to authenticate users when they connect to your MySQL DB
instance. The DB instance works with AWS Directory Service for Microsoft Active Directory (AWS
Managed Microsoft AD) to enable Kerberos authentication. When users authenticate with a MySQL
DB instance joined to the trusting domain, authentication requests are forwarded. Forwarded
requests go to the domain directory that you create with AWS Directory Service.

Keeping all of your credentials in the same directory can save you time and effort. With this
approach, you have a centralized place for storing and managing credentials for multiple DB
instances. Using a directory can also improve your overall security profile.

Using Kerberos authentication for MySQL 3312

Amazon Relational Database Service User Guide

Region and version availability

Feature availability and support varies across specific versions of each database engine, and
across AWS Regions. For more information on version and Region availability of Amazon RDS with
Kerberos authentication, see Supported Regions and DB engines for Kerberos authentication in
Amazon RDS.

Overview of Setting up Kerberos authentication for MySQL DB instances

To set up Kerberos authentication for a MySQL DB instance, complete the following general steps,
described in more detail later:

1. Use AWS Managed Microsoft AD to create an AWS Managed Microsoft AD directory. You can
use the AWS Management Console, the AWS CLI, or the AWS Directory Service to create the
directory. For details about doing so, see Create your AWS Managed Microsoft AD directory in
the AWS Directory Service Administration Guide.

2. Create an AWS Identity and Access Management (IAM) role that uses the managed IAM policy
AmazonRDSDirectoryServiceAccess. The role allows Amazon RDS to make calls to your
directory.

For the role to allow access, the AWS Security Token Service (AWS STS) endpoint must be
activated in the AWS Region for your AWS account. AWS STS endpoints are active by default in
all AWS Regions, and you can use them without any further actions. For more information, see
Activating and deactivating AWS STS in an AWS Region in the IAM User Guide.

3. Create and configure users in the AWS Managed Microsoft AD directory using the Microsoft
Active Directory tools. For more information about creating users in your Active Directory,
see Manage users and groups in AWS managed Microsoft AD in the AWS Directory Service
Administration Guide.

4. Create or modify a MySQL DB instance. If you use either the CLI or RDS API in the create
request, specify a domain identifier with the Domain parameter. Use the d-* identifier that was
generated when you created your directory and the name of the role that you created.

If you modify an existing MySQL DB instance to use Kerberos authentication, set the domain and
IAM role parameters for the DB instance. Locate the DB instance in the same VPC as the domain
directory.

5. Use the Amazon RDS master user credentials to connect to the MySQL DB instance. Create the
user in MySQL using the CREATE USER clause IDENTIFIED WITH 'auth_pam'. Users that you
create this way can log in to the MySQL DB instance using Kerberos authentication.

Using Kerberos authentication for MySQL 3313

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_create_directory.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html

Amazon Relational Database Service User Guide

Setting up Kerberos authentication for MySQL DB instances

You use AWS Managed Microsoft AD to set up Kerberos authentication for a MySQL DB instance. To
set up Kerberos authentication, you take the following steps.

Step 1: Create a directory using AWS Managed Microsoft AD

AWS Directory Service creates a fully managed Active Directory in the AWS Cloud. When you create
an AWS Managed Microsoft AD directory, AWS Directory Service creates two domain controllers
and Domain Name System (DNS) servers on your behalf. The directory servers are created in
different subnets in a VPC. This redundancy helps make sure that your directory remains accessible
even if a failure occurs.

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the
following tasks on your behalf:

• Sets up an Active Directory within the VPC.

• Creates a directory administrator account with the user name Admin and the specified password.
You use this account to manage your directory.

Note

Be sure to save this password. AWS Directory Service doesn't store it. You can reset it, but
you can't retrieve it.

• Creates a security group for the directory controllers.

When you launch an AWS Managed Microsoft AD, AWS creates an Organizational Unit (OU) that
contains all of your directory's objects. This OU has the NetBIOS name that you typed when you
created your directory and is located in the domain root. The domain root is owned and managed
by AWS.

The Admin account that was created with your AWS Managed Microsoft AD directory has
permissions for the most common administrative activities for your OU:

• Create, update, or delete users

• Add resources to your domain such as file or print servers, and then assign permissions for those
resources to users in your OU

• Create additional OUs and containers

Using Kerberos authentication for MySQL 3314

Amazon Relational Database Service User Guide

• Delegate authority

• Restore deleted objects from the Active Directory Recycle Bin

• Run AD and DNS Windows PowerShell modules on the Active Directory Web Service

The Admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders)

• View DNS event logs

• View security event logs

To create a directory with AWS Managed Microsoft AD

1. Sign in to the AWS Management Console and open the AWS Directory Service console at
https://console.aws.amazon.com/directoryservicev2/.

2. In the navigation pane, choose Directories and choose Set up Directory.

3. Choose AWS Managed Microsoft AD. AWS Managed Microsoft AD is the only option that you
can currently use with Amazon RDS.

4. Enter the following information:

Directory DNS name

The fully qualified name for the directory, such as corp.example.com.

Directory NetBIOS name

The short name for the directory, such as CORP.

Directory description

(Optional) A description for the directory.

Admin password

The password for the directory administrator. The directory creation process creates an
administrator account with the user name Admin and this password.

The directory administrator password and can't include the word "admin." The password
is case-sensitive and must be 8–64 characters in length. It must also contain at least one
character from three of the following four categories:

Using Kerberos authentication for MySQL 3315

https://console.aws.amazon.com/directoryservicev2/

Amazon Relational Database Service User Guide

• Lowercase letters (a–z)

• Uppercase letters (A–Z)

• Numbers (0–9)

• Non-alphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

Confirm password

The administrator password retyped.

5. Choose Next.

6. Enter the following information in the Networking section and then choose Next:

VPC

The VPC for the directory. Create the MySQL DB instance in this same VPC.

Subnets

Subnets for the directory servers. The two subnets must be in different Availability Zones.

7. Review the directory information and make any necessary changes. When the information is
correct, choose Create directory.

Using Kerberos authentication for MySQL 3316

Amazon Relational Database Service User Guide

It takes several minutes for the directory to be created. When it has been successfully created, the
Status value changes to Active.

To see information about your directory, choose the directory name in the directory listing. Note
the Directory ID value because you need this value when you create or modify your MySQL DB
instance.

Using Kerberos authentication for MySQL 3317

Amazon Relational Database Service User Guide

Step 2: Create the IAM role for use by Amazon RDS

For Amazon RDS to call AWS Directory Service for you, an IAM role that uses the managed IAM
policy AmazonRDSDirectoryServiceAccess is required. This role allows Amazon RDS to make
calls to the AWS Directory Service.

When a DB instance is created using the AWS Management Console and the console user has the
iam:CreateRole permission, the console creates this role automatically. In this case, the role
name is rds-directoryservice-kerberos-access-role. Otherwise, you must create the

Using Kerberos authentication for MySQL 3318

Amazon Relational Database Service User Guide

IAM role manually. When you create this IAM role, choose Directory Service, and attach the
AWS managed policy AmazonRDSDirectoryServiceAccess to it.

For more information about creating IAM roles for a service, see Creating a role to delegate
permissions to an AWS service in the IAM User Guide.

Note

The IAM role used for Windows Authentication for RDS for SQL Server can't be used for
RDS for MySQL.

Optionally, you can create policies with the required permissions instead of using the managed IAM
policy AmazonRDSDirectoryServiceAccess. In this case, the IAM role must have the following
IAM trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role must also have the following IAM role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",

Using Kerberos authentication for MySQL 3319

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Step 3: Create and configure users

You can create users with the Active Directory Users and Computers tool. This tool is part of the
Active Directory Domain Services and Active Directory Lightweight Directory Services tools. Users
represent individual people or entities that have access to your directory.

To create users in an AWS Directory Service directory, you must be connected to an Amazon EC2
instance based on Microsoft Windows. This instance must be a member of the AWS Directory
Service directory and be logged in as a user that has privileges to create users. For more
information, see Manage users and groups in AWS Managed Microsoft AD in the AWS Directory
Service Administration Guide.

Step 4: Create or modify a MySQL DB instance

Create or modify a MySQL DB instance for use with your directory. You can use the console, CLI, or
RDS API to associate a DB instance with a directory. You can do this in one of the following ways:

• Create a new MySQL DB instance using the console, the create-db-instance CLI command, or the
CreateDBInstance RDS API operation.

For instructions, see Creating an Amazon RDS DB instance.

• Modify an existing MySQL DB instance using the console, the modify-db-instance CLI command,
or the ModifyDBInstance RDS API operation.

For instructions, see Modifying an Amazon RDS DB instance.

• Restore a MySQL DB instance from a DB snapshot using the console, the restore-db-instance-
from-db-snapshot CLI command, or the RestoreDBInstanceFromDBSnapshot RDS API operation.

For instructions, see Restoring to a DB instance.

• Restore a MySQL DB instance to a point-in-time using the console, the restore-db-instance-to-
point-in-time CLI command, or the RestoreDBInstanceToPointInTime RDS API operation.

Using Kerberos authentication for MySQL 3320

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/creating_ad_users_and_groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

For instructions, see Restoring a DB instance to a specified time for Amazon RDS.

Kerberos authentication is only supported for MySQL DB instances in a VPC. The DB instance can
be in the same VPC as the directory, or in a different VPC. The DB instance must use a security
group that allows egress within the directory's VPC so the DB instance can communicate with the
directory.

When you use the console to create, modify, or restore a DB instance, choose Password and
Kerberos authentication in the Database authentication section. Choose Browse Directory and
then select the directory, or choose Create a new directory.

When you use the AWS CLI or RDS API, associate a DB instance with a directory. The following
parameters are required for the DB instance to use the domain directory you created:

• For the --domain parameter, use the domain identifier ("d-*" identifier) generated when you
created the directory.

• For the --domain-iam-role-name parameter, use the role you created that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess.

For example, the following CLI command modifies a DB instance to use a directory.

For Linux, macOS, or Unix:

Using Kerberos authentication for MySQL 3321

Amazon Relational Database Service User Guide

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --domain d-ID \
 --domain-iam-role-name role-name

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --domain d-ID ^
 --domain-iam-role-name role-name

Important

If you modify a DB instance to enable Kerberos authentication, reboot the DB instance after
making the change.

Step 5: Create Kerberos authentication MySQL logins

Use the Amazon RDS master user credentials to connect to the MySQL DB instance as you do any
other DB instance. The DB instance is joined to the AWS Managed Microsoft AD domain. Thus, you
can provision MySQL logins and users from the Active Directory users in your domain. Database
permissions are managed through standard MySQL permissions that are granted to and revoked
from these logins.

You can allow an Active Directory user to authenticate with MySQL. To do this, first use the
Amazon RDS master user credentials to connect to the MySQL DB instance as with any other DB
instance. After you're logged in, create an externally authenticated user with PAM (Pluggable
Authentication Modules) in MySQL by running the following command. Replace testuser with
the user name.

CREATE USER 'testuser'@'%' IDENTIFIED WITH 'auth_pam';

Users (both humans and applications) from your domain can now connect to the DB instance from
a domain joined client machine using Kerberos authentication.

Using Kerberos authentication for MySQL 3322

Amazon Relational Database Service User Guide

Important

We strongly recommended that clients use SSL/TLS connections when using PAM
authentication. If they don't use SSL/TLS connections, the password might be sent as clear
text in some cases. To require an SSL/TLS encrypted connection for your AD user, run the
following command and replace testuser with the user name:

ALTER USER 'testuser'@'%' REQUIRE SSL;

For more information, see SSL/TLS support for MySQL DB instances on Amazon RDS.

Managing a DB instance in a domain

You can use the CLI or the RDS API to manage your DB instance and its relationship with your
managed Active Directory. For example, you can associate an Active Directory for Kerberos
authentication and disassociate an Active Directory to disable Kerberos authentication. You can
also move a DB instance to be externally authenticated by one Active Directory to another.

For example, using the Amazon RDS API, you can do the following:

• To reattempt enabling Kerberos authentication for a failed membership, use the
ModifyDBInstance API operation and specify the current membership's directory ID.

• To update the IAM role name for membership, use the ModifyDBInstance API operation and
specify the current membership's directory ID and the new IAM role.

• To disable Kerberos authentication on a DB instance, use the ModifyDBInstance API operation
and specify none as the domain parameter.

• To move a DB instance from one domain to another, use the ModifyDBInstance API operation
and specify the domain identifier of the new domain as the domain parameter.

• To list membership for each DB instance, use the DescribeDBInstances API operation.

Understanding domain membership

After you create or modify your DB instance, it becomes a member of the domain. You can view
the status of the domain membership for the DB instance by running the describe-db-instances CLI
command. The status of the DB instance can be one of the following:

Using Kerberos authentication for MySQL 3323

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• kerberos-enabled – The DB instance has Kerberos authentication enabled.

• enabling-kerberos – AWS is in the process of enabling Kerberos authentication on this DB
instance.

• pending-enable-kerberos – The enabling of Kerberos authentication is pending on this DB
instance.

• pending-maintenance-enable-kerberos – AWS will attempt to enable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• pending-disable-kerberos – The disabling of Kerberos authentication is pending on this DB
instance.

• pending-maintenance-disable-kerberos – AWS will attempt to disable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• enable-kerberos-failed – A configuration problem has prevented AWS from enabling
Kerberos authentication on the DB instance. Check and fix your configuration before reissuing
the DB instance modify command.

• disabling-kerberos – AWS is in the process of disabling Kerberos authentication on this DB
instance.

A request to enable Kerberos authentication can fail because of a network connectivity issue or
an incorrect IAM role. For example, suppose that you create a DB instance or modify an existing
DB instance and the attempt to enable Kerberos authentication fails. If this happens, re-issue the
modify command or modify the newly created DB instance to join the domain.

Connecting to MySQL with Kerberos authentication

To connect to MySQL with Kerberos authentication, you must log in using the Kerberos
authentication type.

To create a database user that you can connect to using Kerberos authentication, use an
IDENTIFIED WITH clause on the CREATE USER statement. For instructions, see Step 5: Create
Kerberos authentication MySQL logins.

To avoid errors, use the MariaDB mysql client. You can download MariaDB software at https://
downloads.mariadb.org/.

At a command prompt, connect to one of the endpoints associated with your MySQL DB instance.
Follow the general procedures in Connecting to your MySQL DB instance. When you're prompted
for the password, enter the Kerberos password associated with that user name.

Using Kerberos authentication for MySQL 3324

https://downloads.mariadb.org/
https://downloads.mariadb.org/

Amazon Relational Database Service User Guide

Restoring a MySQL DB instance and adding it to a domain

You can restore a DB snapshot or complete a point-in-time restore for a MySQL DB instance and
then add it to a domain. After the DB instance is restored, modify the DB instance using the process
explained in Step 4: Create or modify a MySQL DB instance to add the DB instance to a domain.

Kerberos authentication MySQL limitations

The following limitations apply to Kerberos authentication for MySQL:

• Only an AWS Managed Microsoft AD is supported. However, you can join RDS for MySQL DB
instances to shared Managed Microsoft AD domains owned by different accounts in the same
AWS Region.

• You must reboot the DB instance after enabling the feature.

• The domain name length can't be longer than 61 characters.

• You can't enable Kerberos authentication and IAM authentication at the same time. Choose one
authentication method or the other for your MySQL DB instance.

• Don't modify the DB instance port after enabling the feature.

• Don't use Kerberos authentication with read replicas.

• If you have auto minor version upgrade turned on for a MySQL DB instance that is using Kerberos
authentication, you must turn off Kerberos authentication and then turn it back on after an
automatic upgrade. For more information about auto minor version upgrades, see Automatic
minor version upgrades for RDS for MySQL.

• To delete a DB instance with this feature enabled, first disable the feature. To do so, run the
modify-db-instance CLI command for the DB instance and specify none for the --domain
parameter.

If you use the CLI or RDS API to delete a DB instance with this feature enabled, expect a delay.

• RDS for MySQL doesn't support Kerberos authentication across a forest trust between your on-
premise or self-hosted AD and the AWS Managed Microsoft AD.

Using Kerberos authentication for MySQL 3325

Amazon Relational Database Service User Guide

Improving query performance for RDS for MySQL with Amazon
RDS Optimized Reads

You can achieve faster query processing for RDS for MySQL with Amazon RDS Optimized Reads. An
RDS for MySQL DB instance or Multi-AZ DB cluster that uses RDS Optimized Reads can achieve up
to 2x faster query processing compared to a DB instance or cluster that doesn't use it.

Topics

• Overview of RDS Optimized Reads

• Use cases for RDS Optimized Reads

• Best practices for RDS Optimized Reads

• Using RDS Optimized Reads

• Monitoring DB instances that use RDS Optimized Reads

• Limitations for RDS Optimized Reads

Overview of RDS Optimized Reads

When you use an RDS for MySQL DB instance or Multi-AZ DB cluster that has RDS Optimized
Reads turned on, it achieves faster query performance through the use of an instance store. An
instance store provides temporary block-level storage for your DB instance or Multi-AZ DB cluster.
The storage is located on Non-Volatile Memory Express (NVMe) solid state drives (SSDs) that are
physically attached to the host server. This storage is optimized for low latency, high random I/O
performance, and high sequential read throughput.

RDS Optimized Reads is turned on by default when a DB instance or Multi-AZ DB cluster uses a
DB instance class with an instance store, such as db.m5d or db.m6gd. With RDS Optimized Reads,
some temporary objects are stored on the instance store. These temporary objects include internal
temporary files, internal on-disk temp tables, memory map files, and binary log (binlog) cache
files. For more information about the instance store, see Amazon EC2 instance store in the Amazon
Elastic Compute Cloud User Guide for Linux Instances.

The workloads that generate temporary objects in MySQL for query processing can take advantage
of the instance store for faster query processing. This type of workload includes queries involving
sorts, hash aggregations, high-load joins, Common Table Expressions (CTEs), and queries on
unindexed columns. These instance store volumes provide higher IOPS and performance,

Improving query performance with RDS Optimized Reads 3326

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Amazon Relational Database Service User Guide

regardless of the storage configurations used for persistent Amazon EBS storage. Because RDS
Optimized Reads offloads operations on temporary objects to the instance store, the input/output
operations per second (IOPS) or throughput of the persistent storage (Amazon EBS) can now be
used for operations on persistent objects. These operations include regular data file reads and
writes, and background engine operations, such as flushing and insert buffer merges.

Note

Both manual and automated RDS snapshots only contain engine files for persistent objects.
The temporary objects created in the instance store aren't included in RDS snapshots.

Use cases for RDS Optimized Reads

If you have workloads that rely heavily on temporary objects, such as internal tables or files, for
their query execution, then you can benefit from turning on RDS Optimized Reads. The following
use cases are candidates for RDS Optimized Reads:

• Applications that run analytical queries with complex common table expressions (CTEs), derived
tables, and grouping operations

• Read replicas that serve heavy read traffic with unoptimized queries

• Applications that run on-demand or dynamic reporting queries that involve complex operations,
such as queries with GROUP BY and ORDER BY clauses

• Workloads that use internal temporary tables for query processing

You can monitor the engine status variable created_tmp_disk_tables to determine the
number of disk-based temporary tables created on your DB instance.

• Applications that create large temporary tables, either directly or in procedures, to store
intermediate results

• Database queries that perform grouping or ordering on non-indexed columns

Best practices for RDS Optimized Reads

Use the following best practices for RDS Optimized Reads:

• Add retry logic for read-only queries in case they fail because the instance store is full during the
execution.

Use cases 3327

Amazon Relational Database Service User Guide

• Monitor the storage space available on the instance store with the CloudWatch metric
FreeLocalStorage. If the instance store is reaching its limit because of workload on the DB
instance, modify the DB instance to use a larger DB instance class.

• When your DB instance or Multi-AZ DB cluster has sufficient memory but is still reaching the
storage limit on the instance store, increase the binlog_cache_size value to maintain the
session-specific binlog entries in memory. This configuration prevents writing the binlog entries
to temporary binlog cache files on disk.

The binlog_cache_size parameter is session-specific. You can change the value for each
new session. The setting for this parameter can increase the memory utilization on the DB
instance during peak workload. Therefore, consider increasing the parameter value based on the
workload pattern of your application and available memory on the DB instance.

• For MySQL 8.0 versions and lower, use the default value of MIXED for the binlog_format
parameter. Depending on the size of the transactions, setting binlog_format to ROW can result
in large binlog cache files on the instance store. For MySQL 8.4 and higher, use the default value
of ROW for the binlog_format parameter.

• Set the internal_tmp_mem_storage_engine parameter to TempTable, and set the
temptable_max_mmap parameter to match the size of the available storage on the instance
store.

• Avoid performing bulk changes in a single transaction. These types of transactions can generate
large binlog cache files on the instance store and can cause issues when the instance store is
full. Consider splitting writes into multiple small transactions to minimize storage use for binlog
cache files.

• Use the default value of ABORT_SERVER for the binlog_error_action parameter. Doing so
avoids issues with the binary logging on DB instances with backups enabled.

Using RDS Optimized Reads

When you provision an RDS for MySQL DB instance with one of the following DB instance classes
in a Single-AZ DB instance deployment, Multi-AZ DB instance deployment, or Multi-AZ DB cluster
deployment, the DB instance automatically uses RDS Optimized Reads.

To turn on RDS Optimized Reads, do one of the following:

• Create an RDS for MySQL DB instance or Multi-AZ DB cluster using one of these DB instance
classes. For more information, see Creating an Amazon RDS DB instance.

Using 3328

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_internal_tmp_mem_storage_engine
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_temptable_max_mmap

Amazon Relational Database Service User Guide

• Modify an existing RDS for MySQL DB instance or Multi-AZ DB cluster to use one of these DB
instance classes. For more information, see Modifying an Amazon RDS DB instance.

RDS Optimized Reads is available in all AWS Regions RDS where one or more of the DB instance
classes with local NVMe SSD storage are supported. For information about DB instance classes, see
the section called “DB instance classes”.

DB instance class availability differs for AWS Regions. To determine whether a DB instance class is
supported in a specific AWS Region, see the section called “Determining DB instance class support
in AWS Regions”.

If you don't want to use RDS Optimized Reads, modify your DB instance or Multi-AZ DB cluster so
that it doesn't use a DB instance class that supports the feature.

Monitoring DB instances that use RDS Optimized Reads

You can monitor DB instances that use RDS Optimized Reads with the following CloudWatch
metrics:

• FreeLocalStorage

• ReadIOPSLocalStorage

• ReadLatencyLocalStorage

• ReadThroughputLocalStorage

• WriteIOPSLocalStorage

• WriteLatencyLocalStorage

• WriteThroughputLocalStorage

These metrics provide data about available instance store storage, IOPS, and throughput. For more
information about these metrics, see Amazon CloudWatch instance-level metrics for Amazon RDS.

Limitations for RDS Optimized Reads

The following limitations apply to RDS Optimized Reads:

• RDS Optimized Reads is supported for the following versions:

• RDS for MySQL version 8.0.28 and higher major and minor versions

Monitoring 3329

Amazon Relational Database Service User Guide

For information about RDS for MySQL versions, see MySQL on Amazon RDS versions.

• You can't change the location of temporary objects to persistent storage (Amazon EBS) on the
DB instance classes that support RDS Optimized Reads.

• When binary logging is enabled on a DB instance, the maximum transaction size is limited by
the size of the instance store. In MySQL, any session that requires more storage than the value
of binlog_cache_size writes transaction changes to temporary binlog cache files, which are
created on the instance store.

• Transactions can fail when the instance store is full.

Limitations 3330

Amazon Relational Database Service User Guide

Improving write performance with RDS Optimized Writes for
MySQL

You can improve the performance of write transactions with RDS Optimized Writes for MySQL.
When your RDS for MySQL database uses RDS Optimized Writes, it can achieve up to two times
higher write transaction throughput.

Topics

• Overview of RDS Optimized Writes

• Using RDS Optimized Writes

• Enabling RDS Optimized Writes on an existing database

• Limitations for RDS Optimized Writes

Overview of RDS Optimized Writes

When you turn on RDS Optimized Writes, your RDS for MySQL databases write only once when
flushing data to durable storage without the need for the doublewrite buffer. The databases
continue to provide ACID property protections for reliable database transactions, along with
improved performance.

Relational databases, like MySQL, provide the ACID properties of atomicity, consistency, isolation,
and durability for reliable database transactions. To help provide these properties, MySQL uses
a data storage area called the doublewrite buffer that prevents partial page write errors. These
errors occur when there is a hardware failure while the database is updating a page, such as in the
case of a power outage. A MySQL database can detect partial page writes and recover with a copy
of the page in the doublewrite buffer. While this technique provides protection, it also results in
extra write operations. For more information about the MySQL doublewrite buffer, see Doublewrite
Buffer in the MySQL documentation.

With RDS Optimized Writes turned on, RDS for MySQL databases write only once when flushing
data to durable storage without using the doublewrite buffer. RDS Optimized Writes is useful if
you run write-heavy workloads on your RDS for MySQL databases. Examples of databases with
write-heavy workloads include ones that support digital payments, financial trading, and gaming
applications.

Improving write performance with RDS Optimized Writes for MySQL 3331

https://dev.mysql.com/doc/refman/8.0/en/innodb-doublewrite-buffer.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-doublewrite-buffer.html

Amazon Relational Database Service User Guide

These databases run on DB instance classes that use the AWS Nitro System. Because of the
hardware configuration in these systems, the database can write 16-KiB pages directly to data files
reliably and durably in one step. The AWS Nitro System makes RDS Optimized Writes possible.

You can set the new database parameter rds.optimized_writes to control the RDS Optimized
Writes feature for RDS for MySQL databases. Access this parameter in the DB parameter groups of
RDS for MySQL version 8.0 and RDS for MySQL version 8.4. Set the parameter using the following
values:

• AUTO – Turn on RDS Optimized Writes if the database supports it. Turn off RDS Optimized Writes
if the database doesn't support it. This setting is the default.

• OFF – Turn off RDS Optimized Writes even if the database supports it.

If you have an existing database with an engine version, DB instance class, and/or file system
format that doesn't support RDS Optimized Writes, you can enable the feature by creating a
blue/green deployment. For more information, see the section called “Enabling on an existing
database”.

If you migrate an RDS for MySQL database that is configured to use RDS Optimized Writes to a DB
instance class that doesn't support the feature, RDS automatically turns off RDS Optimized Writes
for the database.

When RDS Optimized Writes is turned off, the database uses the MySQL doublewrite buffer.

To determine whether an RDS for MySQL database is using RDS Optimized Writes, view the current
value of the innodb_doublewrite parameter for the database. If the database is using RDS
Optimized Writes, this parameter is set to FALSE (0).

Using RDS Optimized Writes

You can turn on RDS Optimized Writes when you create an RDS for MySQL database with the RDS
console, the AWS CLI, or the RDS API. RDS Optimized Writes is turned on automatically when both
of the following conditions apply during database creation:

• You specify a DB engine version and DB instance class that support RDS Optimized Writes.

• RDS Optimized Writes is supported for RDS for MySQL version 8.0.30 and higher. For
information about RDS for MySQL versions, see MySQL on Amazon RDS versions.

• RDS Optimized Writes is supported for RDS for MySQL databases that use the following DB
instance classes:

Using with a new database 3332

Amazon Relational Database Service User Guide

• db.m7i

• db.m7g

• db.m6g

• db.m6gd

• db.m6i

• db.m5

• db.m5d

• db.r7i

• db.r7g

• db.r6g

• db.r6gd

• db.r6i

• db.r5

• db.r5b

• db.r5d

• db.x2idn

• db.x2iedn

For information about DB instance classes, see the section called “DB instance classes”.

DB instance class availability differs for AWS Regions. To determine whether a DB instance
class is supported in a specific AWS Region, see the section called “Determining DB instance
class support in AWS Regions”.

To upgrade your database to a DB instance class that supports RDS Optimized Writes, you can
create a blue/green deployment. For more information, see the section called “Enabling on an
existing database”.

• In the parameter group associated with the database, the rds.optimized_writes parameter
is set to AUTO. In default parameter groups, this parameter is always set to AUTO.

If you want to use a DB engine version and DB instance class that support RDS Optimized Writes,
but you don't want to use this feature, then specify a custom parameter group when you create
the database. In this parameter group, set the rds.optimized_writes parameter to OFF. If
Using with a new database 3333

Amazon Relational Database Service User Guide

you want the database to use RDS Optimized Writes later, you can set the parameter to AUTO to
turn it on. For information about creating custom parameter groups and setting parameters, see
Parameter groups for Amazon RDS.

For information about creating a DB instance, see Creating an Amazon RDS DB instance.

Console

When you use the RDS console to create an RDS for MySQL database, you can filter for the DB
engine versions and DB instance classes that support RDS Optimized Writes. After you turn on the
filters, you can choose from the available DB engine versions and DB instance classes.

To choose a DB engine version that supports RDS Optimized Writes, filter for the RDS for MySQL
DB engine versions that support it in Engine version, and then choose a version.

Using with a new database 3334

Amazon Relational Database Service User Guide

In the Instance configuration section, filter for the DB instance classes that support RDS
Optimized Writes, and then choose a DB instance class.

Using with a new database 3335

Amazon Relational Database Service User Guide

After you make these selections, you can choose other settings that meet your requirements and
finish creating the RDS for MySQL database with the console.

AWS CLI

To create a DB instance by using the AWS CLI, run the create-db-instance command. Make
sure the --engine-version and --db-instance-class values support RDS Optimized
Writes. In addition, make sure the parameter group associated with the DB instance has the
rds.optimized_writes parameter set to AUTO. This example associates the default parameter
group with the DB instance.

Example Creating a DB instance that uses RDS Optimized Writes

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --engine mysql \
 --engine-version 8.0.30 \
 --db-instance-class db.r5b.large \
 --manage-master-user-password \
 --master-username admin \
 --allocated-storage 200

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --engine mysql ^

Using with a new database 3336

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

 --engine-version 8.0.30 ^
 --db-instance-class db.r5b.large ^
 --manage-master-user-password ^
 --master-username admin ^
 --allocated-storage 200

RDS API

You can create a DB instance using the CreateDBInstance operation. When you use this operation,
make sure the EngineVersion and DBInstanceClass values support RDS Optimized
Writes. In addition, make sure the parameter group associated with the DB instance has the
rds.optimized_writes parameter set to AUTO.

Enabling RDS Optimized Writes on an existing database

In order to modify an existing RDS for MySQL database to turn on RDS Optimized Writes, the
database must have been created with a supported DB engine version and DB instance class.
In addition, the database must have been created after RDS Optimized Writes was released on
November 27, 2022, as the required underlying file system configuration is incompatible with
that of databases created before it was released. If these conditions are met, you can turn on RDS
Optimized Writes by setting the rds.optimized_writes parameter to AUTO.

If your database was not created with a supported engine version, instance class, or file system
configuration, you can use RDS Blue/Green Deployments to migrate to a supported configuration.
While creating the blue/green deployment, do the following:

• Select Enable Optimized Writes on green database, then specify an engine version and DB
instance class that supports RDS Optimized Writes. For a list of supported engine versions and
instance classes, see Using RDS Optimized Writes.

• Under Storage, choose Upgrade storage file system configuration. This option upgrades the
database to a compatible underlying file system configuration.

When you create the blue/green deployment, if the rds.optimized_writes parameter is set
to AUTO, RDS Optimized Writes will be automatically enabled on the green environment. You can
then switch over the blue/green deployment, which promotes the green environment to be the
new production environment.

For more information, see the section called “Creating a blue/green deployment”.

Enabling on an existing database 3337

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

Limitations for RDS Optimized Writes

When you're restoring an RDS for MySQL database from a snapshot, you can only turn on RDS
Optimized Writes for the database if all of the following conditions apply:

• The snapshot was created from a database that supports RDS Optimized Writes.

• The snapshot was created from a database that was created after RDS Optimized Writes was
released.

• The snapshot is restored to a database that supports RDS Optimized Writes.

• The restored database is associated with a parameter group that has the
rds.optimized_writes parameter set to AUTO.

Limitations 3338

Amazon Relational Database Service User Guide

Upgrades of the RDS for MySQL DB engine

When Amazon RDS supports a new version of a database engine, you can upgrade your DB
instances to the new version. There are two kinds of upgrades for MySQL databases: major version
upgrades and minor version upgrades.

Major version upgrades

Major version upgrades can contain database changes that are not backward-compatible with
existing applications. As a result, you must manually perform major version upgrades of your
DB instances. You can initiate a major version upgrade by modifying your DB instance. Before
you perform a major version upgrade, we recommend that you follow the instructions in Major
version upgrades for RDS for MySQL.

For major version upgrades of Multi-AZ DB instance deployments, Amazon RDS simultaneously
upgrades the primary and standby replicas. Your DB instance won't be available until the
upgrade completes. For major version upgrades of Multi-AZ DB cluster deployments, Amazon
RDS upgrades the cluster member instances one at a time.

Tip

You can minimize the downtime required for a major version upgrade by using a
blue/green deployment. For more information, see Using Amazon RDS Blue/Green
Deployments for database updates.

Minor version upgrades

Minor version upgrades include only changes that are backward-compatible with existing
applications. You can initiate a minor version upgrade manually by modifying your DB instance.
Or, you can enable the Auto minor version upgrade option when creating or modifying a DB
instance. Doing so means that Amazon RDS automatically upgrades your DB instance after
testing and approving the new version. For information about performing an upgrade, see
Upgrading a DB instance engine version.

When you perform a minor version upgrade of a Multi-AZ DB cluster, Amazon RDS upgrades the
reader DB instances one at a time. Then, one of the reader DB instances switches to be the new
writer DB instance. Amazon RDS then upgrades the old writer instance (which is now a reader
instance).

Upgrades of the MySQL DB engine 3339

Amazon Relational Database Service User Guide

Note

The downtime for a minor version upgrade of a Multi-AZ DB instance deployment
can last for several minutes. Multi-AZ DB clusters typically reduce the downtime of
minor version upgrades to approximately 35 seconds. When used with RDS Proxy,
you can further reduce downtime to one second or less. For more information, see
Amazon RDS Proxy. Alternately, you can use an open source database proxy such as
ProxySQL,PgBouncer, or the AWS Advanced JDBC Wrapper Driver.

If your MySQL DB instance uses read replicas, then you must upgrade all of the read replicas before
upgrading the source instance.

Topics

• Considerations for MySQL upgrades

• Finding valid upgrade targets

• MySQL version numbers

• RDS version numbers in RDS for MySQL

• Major version upgrades for RDS for MySQL

• Testing an RDS for MySQL upgrade

• Upgrading a MySQL DB instance

• Automatic minor version upgrades for RDS for MySQL

• Using a read replica to reduce downtime when upgrading an RDS for MySQL database

Considerations for MySQL upgrades

Amazon RDS takes two or more DB snapshots during the upgrade process. Amazon RDS takes up to
two snapshots of the DB instance before making any upgrade changes. If the upgrade doesn't work
for your databases, you can restore one of these snapshots to create a DB instance running the
old version. Amazon RDS takes another snapshot of the DB instance when the upgrade completes.
Amazon RDS takes these snapshots regardless of whether AWS Backup manages the backups for
the DB instance.

Considerations 3340

https://aws.amazon.com/blogs/database/achieve-one-second-or-less-of-downtime-with-proxysql-when-upgrading-amazon-rds-multi-az-deployments-with-two-readable-standbys/
https://aws.amazon.com/blogs/database/fast-switchovers-with-pgbouncer-on-amazon-rds-multi-az-deployments-with-two-readable-standbys-for-postgresql/
https://aws.amazon.com/blogs/database/achieve-one-second-or-less-downtime-with-the-advanced-jdbc-wrapper-driver-when-upgrading-amazon-rds-multi-az-db-clusters/

Amazon Relational Database Service User Guide

Note

Amazon RDS only takes DB snapshots if you have set the backup retention period for your
DB instance to a number greater than 0. To change your backup retention period, see
Modifying an Amazon RDS DB instance.

After the upgrade is complete, you can't revert to the previous version of the database engine. If
you want to return to the previous version, restore the first DB snapshot taken to create a new DB
instance.

You control when to upgrade your DB instance to a new version supported by Amazon RDS. This
level of control helps you maintain compatibility with specific database versions and test new
versions with your application before deploying in production. When you are ready, you can
perform version upgrades at the times that best fit your schedule.

If your DB instance uses read replication, then you must upgrade all of the read replicas before
upgrading the source instance.

Finding valid upgrade targets

When you use the AWS Management Console to upgrade a DB instance, it shows the valid upgrade
targets for the DB instance. You can also run the following AWS CLI command to identify the valid
upgrade targets for a DB instance:

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine mysql \
 --engine-version version_number \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For Windows:

aws rds describe-db-engine-versions ^
 --engine mysql ^
 --engine-version version_number ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

Finding valid upgrade targets 3341

Amazon Relational Database Service User Guide

For example, to identify the valid upgrade targets for a MySQL version 8.0.28 DB instance, run the
following AWS CLI command:

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine mysql \
 --engine-version 8.0.28 \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For Windows:

aws rds describe-db-engine-versions ^
 --engine mysql ^
 --engine-version 8.0.28 ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

MySQL version numbers

The version numbering sequence for the RDS for MySQL database engine is either in the form of
major.minor.patch.YYYYMMDD or major.minor.patch, for example, 8.0.33.R2.20231201 or 5.7.44.
The format used depends on the MySQL engine version. For information about RDS Extended
Support version numbering, see Amazon RDS Extended Support version naming.

major

The major version number is both the integer and the first fractional part of the version
number, for example, 8.0. A major version upgrade increases the major part of the version
number. For example, an upgrade from 5.7.44 to 8.0.33 is a major version upgrade, where 5.7
and 8.0 are the major version numbers.

minor

The minor version number is the third part of the version number, for example, the 33 in 8.0.33.

patch

The patch is the fourth part of the version number, for example, the R2 in 8.0.33.R2. An RDS
patch version includes important bug fixes added to a minor version after its release.

MySQL version numbers 3342

Amazon Relational Database Service User Guide

YYYYMMDD

The date is the fifth part of the version number, for example, the 20231201 in
8.0.33.R2.20231201. An RDS date version is a security patch that includes important security
fixes added to a minor version after its release. It doesn't include any fixes that might change an
engine's behavior.

The following table explains the naming scheme for RDS for MySQL version 8.4.

8.4 minor version Naming scheme

≥ 3 New DB instances use major.minor.patch.YYMMDD, for
example, 8.4.3.R2.20241201.

Existing DB instances might use major.minor.patch, for
example, 8.4.3.R2, until your next major or minor version
upgrade.

The following table explains the naming scheme for RDS for MySQL version 8.0.

8.0 minor version Naming scheme

≥ 33 New DB instances use major.minor.patch.YYMMDD, for
example, 8.0.33.R2.20231201.

Existing DB instances might use major.minor.patch, for
example, 8.0.33.R2, until your next major or minor version
upgrade.

< 33 Existing DB instances use major.minor.patch, for example,
8.0.32.R2.

The following table explains the naming scheme for RDS for MySQL version 5.7.

MySQL version numbers 3343

Amazon Relational Database Service User Guide

5.7 minor version Naming scheme

≥ 42 New DB instances use major.minor.patch.YYMMDD, for
example, 5.7.42.R2.20231201.

Existing DB instances might use major.minor.patch, for
example, 5.7.42.R2, until your next major or minor version
upgrade.

RDS version numbers in RDS for MySQL

RDS version numbers use either the major.minor.patch or the
major.minor.patch.YYYYMMDD naming scheme. Amazon RDS Extended Support versions use
the minor-RDS.YYYYMMDD minor version naming scheme.

An RDS patch version includes important bug fixes added to a minor version after its release.
An RDS date version (YYYYMMDD) is a security patch. A security patch doesn't include any fixes
that might change the engine's behavior. For information about RDS Extended Support version
numbering, see Amazon RDS Extended Support version naming.

You can find out the RDS version number of your RDS for MySQL database with the following SQL
query:

mysql> select mysql.rds_version();

For example, querying an RDS for MySQL 8.0.34 database returns the following output:

+---------------------+
| mysql.rds_version() |
+---------------------+
| 8.0.34.R2.20231201 |
+---------------------+
1 row in set (0.01 sec)

Major version upgrades for RDS for MySQL

Amazon RDS supports the following in-place upgrades for major versions of the MySQL database
engine:

RDS version numbers 3344

Amazon Relational Database Service User Guide

• MySQL 5.7 to MySQL 8.0

• MySQL 8.0 to MySQL 8.4

Note

You can only create MySQL version 5.7, 8.0, and 8.4 DB instances with latest-generation
and current-generation DB instance classes.
In some cases, you want to upgrade a DB instance running on a previous-generation DB
instance class to a DB instance with a higher MySQL engine version. In these cases, first
modify the DB instance to use a latest-generation or current-generation DB instance class.
After you do this, you can then modify the DB instance to use the higher MySQL database
engine version. For information on Amazon RDS DB instance classes, see DB instance
classes.

Topics

• Overview of MySQL major version upgrades

• Prechecks for upgrades

• Rollback after failure to upgrade

Overview of MySQL major version upgrades

Major version upgrades can contain database changes that are not backward-compatible with
existing applications. As a result, Amazon RDS doesn't apply major version upgrades automatically;
you must manually modify your DB instance. We recommend that you thoroughly test any upgrade
before applying it to your production instances.

To perform a major version upgrade, first perform any available OS updates. After OS updates
are complete, upgrade to each major version, for example, 5.7 to 8.0 and then 8.0 to 8.4. For
information about upgrading an RDS for MySQL Multi-AZ DB cluster, see Upgrading the engine
version of a Multi-AZ DB cluster for Amazon RDS. MySQL DB instances created before April 24,
2014, show an available OS update until the update has been applied. For more information on OS
updates, see Applying updates to a DB instance.

During a major version upgrade of MySQL, Amazon RDS runs the MySQL binary mysql_upgrade
to upgrade tables, if necessary. Also, Amazon RDS empties the slow_log and general_log

Major version upgrades 3345

Amazon Relational Database Service User Guide

tables during a major version upgrade. To preserve log information, save the log contents before
the major version upgrade.

MySQL major version upgrades typically complete in about 10 minutes. Some upgrades might
take longer because of the DB instance class size or because the instance doesn't follow certain
operational guidelines in Best practices for Amazon RDS. If you upgrade a DB instance from the
Amazon RDS console, the status of the DB instance indicates when the upgrade is complete. If
you upgrade using the AWS Command Line Interface (AWS CLI), use the describe-db-instances
command and check the Status value.

Prechecks for upgrades

Amazon RDS runs prechecks before upgrading to check for incompatibilities. These
incompatibilities vary based on the MySQL version being upgraded to.

The prechecks include some that are included with MySQL and some that were created specifically
by the Amazon RDS team. For information about the prechecks provided by MySQL, see Upgrade
checker utility.

The prechecks run before the DB instance is stopped for the upgrade, meaning that they don't
cause any downtime when they run. If the prechecks find an incompatibility, Amazon RDS
automatically cancels the upgrade before the DB instance is stopped. Amazon RDS also generates
an event for the incompatibility. For more information about Amazon RDS events, see Working
with Amazon RDS event notification.

Amazon RDS records detailed information about each incompatibility in the log file
PrePatchCompatibility.log. In most cases, the log entry includes a link to the MySQL
documentation for correcting the incompatibility. For more information about viewing log files, see
Viewing and listing database log files.

Because of the nature of the prechecks, they analyze the objects in your database. This analysis
results in resource consumption and increases the time for the upgrade to complete.

Topics

• Prechecks for upgrades from MySQL 8.0 to 8.4

• Prechecks for upgrades from MySQL 5.7 to 8.0

Major version upgrades 3346

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://dev.mysql.com/doc/mysql-shell/8.4/en/mysql-shell-utilities-upgrade.html
https://dev.mysql.com/doc/mysql-shell/8.4/en/mysql-shell-utilities-upgrade.html

Amazon Relational Database Service User Guide

Prechecks for upgrades from MySQL 8.0 to 8.4

MySQL 8.4 includes a number of incompatibilities with MySQL 8.0. These incompatibilities can
cause problems during an upgrade from MySQL 8.0 to MySQL 8.4. So, some preparation might be
required on your database for the upgrade to be successful. The following is a general list of these
incompatibilities:

• There must be no tables that use obsolete data types or functions.

• Triggers must not have a missing or empty definer or an invalid creation context.

• There must be no keyword or reserved word violations. Some keywords might be reserved in
MySQL 8.4 that were not reserved previously.

For more information, see Keywords and reserved words in the MySQL documentation.

• There must be no tables in the MySQL 8.0 mysql system database that have the same name as a
table used by the MySQL 8.4 data dictionary.

• There must be no obsolete SQL modes defined in your sql_mode system variable setting.

• There must be no tables or stored procedures with individual ENUM or SET column elements that
exceed 255 characters or 1020 bytes in length.

• Your MySQL 8.0 installation must not use features that are not supported in MySQL 8.4.

For more information, see Features removed in MySQL 8.4 in the MySQL documentation.

• There must be no foreign key constraint names longer than 64 characters.

• For improved Unicode support, review the following information:

• Consider converting objects that use the utf8mb3 charset to use the utf8mb4 charset. The
utf8mb3 character set is deprecated.

• Consider using utf8mb4 for character set references instead of utf8, because currently
utf8 is an alias for the utf8mb3 charset. If possible, change utf8 to utf8mb4 first, and then
upgrade your database.

• Because older clients can receive an unknown character set error for utf8mb3, upgrade your
database clients before upgrading your database.

For more information, see The utf8mb3 character set (3-byte UTF-8 unicode encoding) in the
MySQL documentation.

Major version upgrades 3347

https://dev.mysql.com/doc/refman/8.4/en/keywords.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-nutshell.html#mysql-nutshell-removals
https://dev.mysql.com/doc/refman/8.4/en/charset-unicode-utf8mb3.html

Amazon Relational Database Service User Guide

To change the character sets, you can manually perform a backup, restore, and replication of
your database. Or you can use Amazon RDS Blue/Green Deployments. For more information, see
Using Amazon RDS Blue/Green Deployments for database updates.

When you start an upgrade from MySQL 8.0 to 8.4, Amazon RDS runs prechecks automatically
to detect these incompatibilities. For information about upgrading to MySQL 8.4, see Upgrading
MySQL in the MySQL documentation.

These prechecks are mandatory. You can't choose to skip them. The prechecks provide the
following benefits:

• They enable you to avoid unplanned downtime during the upgrade.

• If there are incompatibilities, Amazon RDS prevents the upgrade and provides a log for you to
learn about them. You can then use the log to prepare your database for the upgrade to MySQL
8.4 by reducing the incompatibilities. For detailed information about removing incompatibilities,
see Preparing your installation for upgrade in the MySQL documentation.

Prechecks for upgrades from MySQL 5.7 to 8.0

MySQL 8.0 includes a number of incompatibilities with MySQL 5.7. These incompatibilities can
cause problems during an upgrade from MySQL 5.7 to MySQL 8.0. So, some preparation might be
required on your database for the upgrade to be successful. The following is a general list of these
incompatibilities:

• There must be no tables that use obsolete data types or functions.

• There must be no orphan *.frm files.

• Triggers must not have a missing or empty definer or an invalid creation context.

• There must be no partitioned table that uses a storage engine that does not have native
partitioning support.

• There must be no keyword or reserved word violations. Some keywords might be reserved in
MySQL 8.0 that were not reserved previously.

For more information, see Keywords and reserved words in the MySQL documentation.

• There must be no tables in the MySQL 5.7 mysql system database that have the same name as a
table used by the MySQL 8.0 data dictionary.

• There must be no obsolete SQL modes defined in your sql_mode system variable setting.

Major version upgrades 3348

https://dev.mysql.com/doc/refman/8.4/en/upgrading.html
https://dev.mysql.com/doc/refman/8.4/en/upgrading.html
https://dev.mysql.com/doc/refman/8.4/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html

Amazon Relational Database Service User Guide

• There must be no tables or stored procedures with individual ENUM or SET column elements that
exceed 255 characters or 1020 bytes in length.

• Before upgrading to MySQL 8.0.13 or higher, there must be no table partitions that reside in
shared InnoDB tablespaces.

• There must be no queries and stored program definitions from MySQL 8.0.12 or lower that use
ASC or DESC qualifiers for GROUP BY clauses.

• Your MySQL 5.7 installation must not use features that are not supported in MySQL 8.0.

For more information, see Features removed in MySQL 8.0 in the MySQL documentation.

• There must be no foreign key constraint names longer than 64 characters.

• For improved Unicode support, review the following information:

• Consider converting objects that use the utf8mb3 charset to use the utf8mb4 charset. The
utf8mb3 character set is deprecated.

• Consider using utf8mb4 for character set references instead of utf8, because currently
utf8 is an alias for the utf8mb3 charset. If possible, change utf8 to utf8mb4 first, and then
upgrade your database.

• Because older clients can receive an unknown character set error for utf8mb3, upgrade your
database clients before upgrading your database.

For more information, see The utf8mb3 character set (3-byte UTF-8 unicode encoding) in the
MySQL documentation.

To change the character sets, you can manually perform a backup, restore, and replication of
your database. Or you can use Amazon RDS Blue/Green Deployments. For more information, see
Using Amazon RDS Blue/Green Deployments for database updates.

When you start an upgrade from MySQL 5.7 to 8.0, Amazon RDS runs prechecks automatically
to detect these incompatibilities. For information about upgrading to MySQL 8.0, see Upgrading
MySQL in the MySQL documentation.

These prechecks are mandatory. You can't choose to skip them. The prechecks provide the
following benefits:

• They enable you to avoid unplanned downtime during the upgrade.

• If there are incompatibilities, Amazon RDS prevents the upgrade and provides a log for you to
learn about them. You can then use the log to prepare your database for the upgrade to MySQL

Major version upgrades 3349

https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html#mysql-nutshell-removals
https://dev.mysql.com/doc/refman/8.4/en/charset-unicode-utf8mb3.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Amazon Relational Database Service User Guide

8.0 by reducing the incompatibilities. For detailed information about removing incompatibilities,
see Preparing your installation for upgrade in the MySQL documentation and Upgrading to
MySQL 8.0? Here is what you need to know... on the MySQL Server Blog.

Rollback after failure to upgrade

When you upgrade a DB instance from MySQL version 5.7 to MySQL version 8.0 or from MySQL
version 8.0 to 8.4, the upgrade can fail. In particular, it can fail if the data dictionary contains
incompatibilities that weren't captured by the prechecks. In this case, the database fails to start up
successfully in the new MySQL 8.0 or 8.4 version. At this point, Amazon RDS rolls back the changes
performed for the upgrade. After the rollback, the MySQL DB instance is running the original
version:

• MySQL version 8.0 (for a rollback from MySQL 8.4)

• MySQL version 5.7 (for a rollback from MySQL 8.0)

When an upgrade fails and is rolled back, Amazon RDS generates an event with the event ID RDS-
EVENT-0188.

Typically, an upgrade fails because there are incompatibilities in the metadata between the
databases in your DB instance and the target MySQL version. When an upgrade fails, you can
view the details about these incompatibilities in the upgradeFailure.log file. Resolve the
incompatibilities before attempting to upgrade again.

During an unsuccessful upgrade attempt and rollback, your DB instance is restarted. Any pending
parameter changes are applied during the restart and persist after the rollback.

For more information about upgrading to MySQL 8.0, see the following topics in the MySQL
documentation:

• Preparing Your Installation for Upgrade

• Upgrading to MySQL 8.0? Here is what you need to know…

For more information about upgrading to MySQL 8.4, see Preparing Your Installation for Upgrade
in the MySQL documentation.

Major version upgrades 3350

https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/blog-archive/upgrading-to-mysql-8-0-here-is-what-you-need-to-know/
https://dev.mysql.com/blog-archive/upgrading-to-mysql-8-0-here-is-what-you-need-to-know/
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/blog-archive/upgrading-to-mysql-8-0-here-is-what-you-need-to-know/
https://dev.mysql.com/doc/refman/8.4/en/upgrade-prerequisites.html

Amazon Relational Database Service User Guide

Testing an RDS for MySQL upgrade

Before you perform a major version upgrade on your DB instance, thoroughly test your database
for compatibility with the new version. In addition, thoroughly test all applications that access
the database for compatibility with the new version. We recommend that you use the following
procedure.

To test a major version upgrade

1. Review the upgrade documentation for the new version of the database engine to see if there
are compatibility issues that might affect your database or applications:

• Changes in MySQL 5.7

• Changes in MySQL 8.0

• Changes in MySQL 8.4

2. If your DB instance is a member of a custom DB parameter group, create a new DB parameter
group with your existing settings that is compatible with the new major version. Specify
the new DB parameter group when you upgrade your test instance, so your upgrade testing
ensures that it works correctly. For more information about creating a DB parameter group, see
Parameter groups for Amazon RDS.

3. Create a DB snapshot of the DB instance to be upgraded. For more information, see Creating a
DB snapshot for a Single-AZ DB instance for Amazon RDS.

4. Restore the DB snapshot to create a new test DB instance. For more information, see Restoring
to a DB instance.

5. Modify this new test DB instance to upgrade it to the new version, using one of the methods
detailed following. If you created a new parameter group in step 2, specify that parameter
group.

6. Evaluate the storage used by the upgraded instance to determine if the upgrade requires
additional storage.

7. Run as many of your quality assurance tests against the upgraded DB instance as needed to
ensure that your database and application work correctly with the new version. Implement
any new tests needed to evaluate the impact of any compatibility issues that you identified in
step 1. Test all stored procedures and functions. Direct test versions of your applications to the
upgraded DB instance.

Testing an upgrade 3351

http://dev.mysql.com/doc/refman/5.7/en/upgrading-from-previous-series.html
http://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html
http://dev.mysql.com/doc/refman/8.4/en/upgrading-from-previous-series.html

Amazon Relational Database Service User Guide

8. If all tests pass, then perform the upgrade on your production DB instance. We recommend
that you don't allow write operations to the DB instance until you confirm that everything is
working correctly.

Upgrading a MySQL DB instance

For information about manually or automatically upgrading a MySQL DB instance, see Upgrading a
DB instance engine version.

Automatic minor version upgrades for RDS for MySQL

If you specify the following settings when creating or modifying a DB instance, you can have your
DB instance automatically upgraded.

• The Auto minor version upgrade setting is enabled.

• The Backup retention period setting is greater than 0.

In the AWS Management Console, these settings are under Additional configuration. The
following image shows the Auto minor version upgrade setting.

For more information about these settings, see Settings for DB instances.

For some RDS for MySQL major versions in some AWS Regions, one minor version is designated
by RDS as the automatic upgrade version. After a minor version has been tested and approved by

Upgrading a MySQL DB instance 3352

Amazon Relational Database Service User Guide

Amazon RDS, the minor version upgrade occurs automatically during your maintenance window.
RDS doesn't automatically set newer released minor versions as the automatic upgrade version.
Before RDS designates a newer automatic upgrade version, several criteria are considered, such as
the following:

• Known security issues

• Bugs in the MySQL community version

• Overall fleet stability since the minor version was released

You can run the following AWS CLI command to determine the current automatic minor upgrade
target version for a specified MySQL minor version in a specific AWS Region.

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine mysql \
--engine-version minor_version \
--region region \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output text

For Windows:

aws rds describe-db-engine-versions ^
--engine mysql ^
--engine-version minor_version ^
--region region ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output text

For example, the following AWS CLI command determines the automatic minor upgrade target for
MySQL minor version 8.0.11 in the US East (Ohio) AWS Region (us-east-2).

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine mysql \

Automatic minor version upgrades 3353

Amazon Relational Database Service User Guide

--engine-version 8.0.11 \
--region us-east-2 \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output table

For Windows:

aws rds describe-db-engine-versions ^
--engine mysql ^
--engine-version 8.0.11 ^
--region us-east-2 ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output table

Your output is similar to the following.

| DescribeDBEngineVersions |
+--------------+-----------------+
| AutoUpgrade | EngineVersion |
+--------------+-----------------+
False	8.0.15
False	8.0.16
False	8.0.17
False	8.0.19
False	8.0.20
False	8.0.21
True	8.0.23
False	8.0.25
+--------------+-----------------+

In this example, the AutoUpgrade value is True for MySQL version 8.0.23. So, the automatic
minor upgrade target is MySQL version 8.0.23, which is highlighted in the output.

A MySQL DB instance is automatically upgraded during your maintenance window if the following
criteria are met:

• The Auto minor version upgrade setting is enabled.

• The Backup retention period setting is greater than 0.

Automatic minor version upgrades 3354

Amazon Relational Database Service User Guide

• The DB instance is running a minor DB engine version that is less than the current automatic
upgrade minor version.

For more information, see Automatically upgrading the minor engine version.

Using a read replica to reduce downtime when upgrading an RDS for
MySQL database

In most cases, a blue/green deployment is the best option to reduce downtime when upgrading
a MySQL DB instance. For more information, see Using Amazon RDS Blue/Green Deployments for
database updates.

If you can't use a blue/green deployment and your MySQL DB instance is currently in use with a
production application, you can use the following procedure to upgrade the database version for
your DB instance. This procedure can reduce the amount of downtime for your application.

By using a read replica, you can perform most of the maintenance steps ahead of time and
minimize the necessary changes during the actual outage. With this technique, you can test and
prepare the new DB instance without making any changes to your existing DB instance.

The following procedure shows an example of upgrading from MySQL version 5.7 to MySQL
version 8.0. You can use the same general steps for upgrades to other major versions. You can use
the same general steps for upgrades to other major versions.

Note

When you are upgrading from MySQL version 5.7 to MySQL version 8.0, or from MySQL
version 8.0 to MySQL version 8.4, complete the prechecks before performing the upgrade.
For more information, see Prechecks for upgrades from MySQL 5.7 to 8.0 and Prechecks for
upgrades from MySQL 8.0 to 8.4.

To upgrade a MySQL database while a DB instance is in use

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Create a read replica of your MySQL 5.7 DB instance. This process creates an upgradable copy
of your database. Other read replicas of the DB instance might also exist.

Upgrading with reduced downtime 3355

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

a. In the console, choose Databases, and then choose the DB instance that you want to
upgrade.

b. For Actions, choose Create read replica.

c. Provide a value for DB instance identifier for your read replica and ensure that the DB
instance class and other settings match your MySQL 5.7 DB instance.

d. Choose Create read replica.

3. (Optional) When the read replica has been created and Status shows Available, convert the
read replica into a Multi-AZ deployment and enable backups.

By default, a read replica is created with backups disabled. Because the read replica ultimately
becomes the production DB instance, it is a best practice to configure a Multi-AZ deployment
and enable backups.

a. In the console, choose Databases, and then choose the read replica that you just created.

b. Choose Modify.

c. For Multi-AZ deployment, choose Create a standby instance.

d. For Backup Retention Period, choose a positive nonzero value, such as 3 days, and then
choose Continue.

e. For Scheduling of modifications, choose Apply immediately.

f. Choose Modify DB instance.

4. When the read replica Status shows Available, upgrade the read replica to MySQL 8.0:

a. In the console, choose Databases, and then choose the read replica that you just created.

b. Choose Modify.

c. For DB engine version, choose the MySQL 8.0 version to upgrade to, and then choose
Continue.

d. For Scheduling of modifications, choose Apply immediately.

e. Choose Modify DB instance to start the upgrade.

5. When the upgrade is complete and Status shows Available, verify that the upgraded read
replica is up-to-date with the source MySQL 5.7 DB instance. To verify, connect to the read
replica and run the SHOW REPLICA STATUS command. If the Seconds_Behind_Master
field is 0, then replication is up-to-date.

Upgrading with reduced downtime 3356

Amazon Relational Database Service User Guide

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE
STATUS.

6. (Optional) Create a read replica of your read replica.

If you want the DB instance to have a read replica after it is promoted to a standalone DB
instance, you can create the read replica now.

a. In the console, choose Databases, and then choose the read replica that you just
upgraded.

b. For Actions, choose Create read replica.

c. Provide a value for DB instance identifier for your read replica and ensure that the DB
instance class and other settings match your MySQL 5.7 DB instance.

d. Choose Create read replica.

7. (Optional) Configure a custom DB parameter group for the read replica.

If you want the DB instance to use a custom parameter group after it is promoted to a
standalone DB instance, you can create the DB parameter group now and associate it with the
read replica.

a. Create a custom DB parameter group for MySQL 8.0. For instructions, see Creating a DB
parameter group in Amazon RDS.

b. Modify the parameters that you want to change in the DB parameter group you just
created. For instructions, see Modifying parameters in a DB parameter group in Amazon
RDS.

c. In the console, choose Databases, and then choose the read replica.

d. Choose Modify.

e. For DB parameter group, choose the MySQL 8.0 DB parameter group you just created,
and then choose Continue.

f. For Scheduling of modifications, choose Apply immediately.

g. Choose Modify DB instance to start the upgrade.

8. Make your MySQL 8.0 read replica a standalone DB instance.

Upgrading with reduced downtime 3357

Amazon Relational Database Service User Guide

Important

When you promote your MySQL 8.0 read replica to a standalone DB instance, it is no
longer a replica of your MySQL 5.7 DB instance. We recommend that you promote your
MySQL 8.0 read replica during a maintenance window when your source MySQL 5.7
DB instance is in read-only mode and all write operations are suspended. When the
promotion is completed, you can direct your write operations to the upgraded MySQL
8.0 DB instance to ensure that no write operations are lost.
In addition, we recommend that, before promoting your MySQL 8.0 read replica, you
perform all necessary data definition language (DDL) operations on your MySQL 8.0
read replica. An example is creating indexes. This approach avoids negative effects
on the performance of the MySQL 8.0 read replica after it has been promoted. To
promote a read replica, use the following procedure.

a. In the console, choose Databases, and then choose the read replica that you just
upgraded.

b. For Actions, choose Promote.

c. Choose Yes to enable automated backups for the read replica instance. For more
information, see Introduction to backups.

d. Choose Continue.

e. Choose Promote Read Replica.

9. You now have an upgraded version of your MySQL database. At this point, you can direct your
applications to the new MySQL 8.0 DB instance.

Upgrading with reduced downtime 3358

Amazon Relational Database Service User Guide

Upgrading a MySQL DB snapshot engine version

With Amazon RDS, you can create a storage volume DB snapshot of your MySQL DB instance.
When you create a DB snapshot, the snapshot is based on the engine version used by your DB
instance. You can upgrade the engine version for your DB snapshots.

For RDS for MySQL, you can upgrade a version 5.7 snapshot to version 8.0, or a version 8.0
snapshot to version 8.4. You can upgrade encrypted or unencrypted DB snapshots.

To view the available engine versions for your RDS for MySQL DB snapshot, use the following AWS
CLI example.

aws rds describe-db-engine-versions --engine mysql --include-all --engine-
version example-engine-version --query "DBEngineVersions[*].ValidUpgradeTarget[*].
{EngineVersion:EngineVersion}" --output text

If you don't see results for your snapshot, your engine version might be deprecated. If your engine
version is deprecated, we recommend that you upgrade to the newest major version upgrade
target or to one of the other available upgrade targets for that version. For more information, see
Upgrade options for DB snapshots with unsupported engine versions for RDS for MySQL.

After restoring a DB snapshot upgraded to a new engine version, make sure to test that the
upgrade was successful. For more information about a major version upgrade, see the section
called “Upgrades of the MySQL DB engine”. To learn how to restore a DB snapshot, see the section
called “Restoring to a DB instance”.

Note

You can't upgrade automated DB snapshots that were created during the automated
backup process.

You can upgrade a DB snapshot using the AWS Management Console, AWS CLI, or RDS API.

Console

To upgrade a DB snapshot engine version using the AWS Management Console, use the
following procedure.

Upgrading a MySQL DB snapshot engine version 3359

Amazon Relational Database Service User Guide

To upgrade a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the snapshot that you want to upgrade.

4. For Actions, choose Upgrade snapshot. The Upgrade snapshot page appears.

5. Choose the New engine version to upgrade to.

6. Choose Save changes to upgrade the snapshot.

During the upgrade process, all snapshot actions are disabled for this DB snapshot. Also,
the DB snapshot status changes from Available to Upgrading, and then changes to Active
upon completion. If the DB snapshot can't be upgraded because of snapshot corruption
issues, the status changes to Unavailable. You can't recover the snapshot from this state.

Note

If the DB snapshot upgrade fails, the snapshot is rolled back to the original state
with the original version.

AWS CLI

To upgrade a DB snapshot to a new database engine version, run the AWS CLI modify-db-
snapshot command.

Options

• --db-snapshot-identifier – The identifier of the DB snapshot to upgrade. The identifier
must be a unique Amazon Resource Name (ARN). For more information, see Amazon Resource
Names (ARNs) in Amazon RDS.

• --engine-version – The engine version to upgrade the DB snapshot to.

Example

For Linux, macOS, or Unix:

aws rds modify-db-snapshot \

Upgrading a MySQL DB snapshot engine version 3360

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-snapshot.html

Amazon Relational Database Service User Guide

 --db-snapshot-identifier my_db_snapshot \
 --engine-version new_version

For Windows:

aws rds modify-db-snapshot ^
 --db-snapshot-identifier my_db_snapshot ^
 --engine-version new_version

Amazon RDS API

To upgrade a DB snapshot to a new database engine version, call the RDS API
ModifyDBSnapshot operation.

Parameters

• DBSnapshotIdentifier – The identifier of the DB snapshot to upgrade. The identifier must
be a unique Amazon Resource Name (ARN). For more information, see Amazon Resource
Names (ARNs) in Amazon RDS.

• EngineVersion – The engine version to upgrade the DB snapshot to.

Upgrade options for DB snapshots with unsupported engine versions
for RDS for MySQL

The following table shows which engine versions you can upgrade to from an unsupported engine
version for RDS for MySQL DB snapshots.

Note

You might have to upgrade your DB snapshot more than once to upgrade to your chosen
engine version.

DB snapshot engine version Engine versions available for upgrade

5.5.8 5.5.62, 5.6.51

5.5.12 5.5.62, 5.6.51

Upgrade options for unsupported engine versions 3361

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBSnapshot.html

Amazon Relational Database Service User Guide

DB snapshot engine version Engine versions available for upgrade

5.5.20 5.5.62, 5.6.51

5.5.23 5.5.62, 5.6.51

5.5.25a 5.5.62, 5.6.51

5.5.27 5.5.62, 5.6.51

5.5.31 5.5.62, 5.6.51

5.5.33 5.5.62, 5.6.51

5.5.37 5.5.62, 5.6.51

5.5.38 5.5.62, 5.6.51

5.5.40 5.5.62, 5.6.51

5.5.40a 5.5.62, 5.6.51

5.5.40b 5.5.62, 5.6.51

5.5.41 5.5.62, 5.6.51

5.5.42 5.5.62, 5.6.51

5.5.59 5.5.62, 5.6.51

5.6.12 5.6.51, 5.7.44

5.6.13 5.6.51, 5.7.44

5.6.17 5.6.51, 5.7.44

5.6.19 5.6.51, 5.7.44

5.6.19a 5.6.51, 5.7.44

5.6.19b 5.6.51, 5.7.44

Upgrade options for unsupported engine versions 3362

Amazon Relational Database Service User Guide

DB snapshot engine version Engine versions available for upgrade

5.6.21 5.6.51, 5.7.44

5.6.21b 5.6.51, 5.7.44

5.6.22 5.6.51, 5.7.44

5.6.23 5.6.51, 5.7.44

5.6.27 5.6.51, 5.7.44

5.6.27a 5.6.51, 5.7.44

5.7.10 5.7.44, 5.7.44-rds.20240408, 5.7.44-rds.20240529, 5.7.44-
rds.20250103, 5.7.44-rds.20250213, 8.0.32, 8.0.33, 8.0.34,
8.0.35, 8.0.36, 8.0.37, 8.0.39, 8.0.40, 8.0.41

5.7.11 5.7.44, 5.7.44-rds.20240408, 5.7.44-rds.20240529, 5.7.44-
rds.20250103, 5.7.44-rds.20250213, 8.0.32, 8.0.33, 8.0.34,
8.0.35, 8.0.36, 8.0.37, 8.0.39, 8.0.40, 8.0.41

5.7.12 5.7.44, 5.7.44-rds.20240408, 5.7.44-rds.20240529, 5.7.44-
rds.20250103, 5.7.44-rds.20250213, 8.0.32, 8.0.33, 8.0.34,
8.0.35, 8.0.36, 8.0.37, 8.0.39, 8.0.40, 8.0.41

Upgrade options for unsupported engine versions 3363

Amazon Relational Database Service User Guide

Importing data into an Amazon RDS for MySQL DB instance

You can use several different techniques to import data into an RDS for MySQL DB instance. The
best approach depends on a number of factors:

• Source of the data

• Amount of data

• One-time import or ongoing

• Amount of downtime

If you are also migrating an application with the data, the amount of downtime is important to
consider.

The following table lists techniques to importing data into an RDS for MySQL DB instance:

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

Existing
MySQL
database
on
premises
or on
Amazon
EC2

Any One
time

Some Create a backup of your on-premis
es database, store it on Amazon S3,
and then restore the backup file to a
new Amazon RDS DB instance running
MySQL.

Restoring
a
backup
into an
Amazon
RDS for
MySQL
DB
instance

Existing
MySQL
database
on
premises
or on
Amazon
EC2

Any Ongoing Minimal Configure replication with an existing
MySQL database as the replication
source.

Configuri
ng
binary
log file
position
replicati
on
with an

Importing data into an RDS for MySQL DB instance 3364

Amazon Relational Database Service User Guide

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

external
source
instance

Importing
data
to an
Amazon
RDS for
MySQL
database
with
reduced
downtime

Importing data into an RDS for MySQL DB instance 3365

Amazon Relational Database Service User Guide

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

Any
existing
database

Any One
time or
ongoing

Minimal Use AWS Database Migration Service
to migrate the database with minimal
downtime and, for many database DB
engines, continue ongoing replication.

What
is AWS
Database
Migration
Service
and
Using a
MySQL-
com
patible
database
as a
target
for AWS
DMS
in the
AWS
Database
Migration
Service
User
Guide

Existing
MySQL
DB
instance

Any One
time or
ongoing

Minimal Create a read replica for ongoing
replication. Promote the read replica for
one-time creation of a new DB instance.

Working
with DB
instance
read
replicas

Importing data into an RDS for MySQL DB instance 3366

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html

Amazon Relational Database Service User Guide

Source Amount
of data

One
time or
ongoing

Applicati
on
downtime

Technique More
informati
on

Existing
MySQL
database

Small One
time

Some Copy the data directly to your MySQL DB
instance using a command-line utility.

Importing
data
from an
external
MySQL
database
to an
Amazon
RDS for
MySQL
DB
instance

Data
not
stored
in an
existing
database

Medium One
time

Some Create flat files and import them using
MySQL LOAD DATA LOCAL INFILE
statements.

Importing
data
from
any
source
to an
Amazon
RDS for
MySQL
DB
instance

Note

The mysql system database contains authentication and authorization information
required to log in to your DB instance and access your data. Dropping, altering, renaming,
or truncating tables, data, or other contents of the mysql database in your DB instance can
result in error and might render the DB instance and your data inaccessible. If this occurs,
you can restore the DB instance from a snapshot using the AWS CLI restore-db-instance-

Importing data into an RDS for MySQL DB instance 3367

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html

Amazon Relational Database Service User Guide

from-db-snapshot command. You can recover the DB instance using the AWS CLI restore-
db-instance-to-point-in-time command.

Importing data considerations for MySQL

The following content contains technical information related to loading data into MySQL. This
content is aimed at users who are familiar with the MySQL server architecture.

Binary logging

Enabling binary logging reduces data load performance and requires up to four times additional
disk space compared to disabled logging. The transaction size used to load the data directly affects
system performance and disk space needs—larger transactions require more resources.

Transaction size

Transaction size influences the following aspects of MySQL data loads:

• Resource consumption

• Disk space utilization

• Resume process

• Time to recover

• Input format (flat files or SQL)

This section describes how transaction size affects binary logging and makes the case for disabling
binary logging during large data loads. You can enable and disable binary logging by setting the
Amazon RDS automated backup retention period. Non-zero values enable binary logging, and zero
disables it. For more information, see Backup retention period.

This section also describes the impact of large transactions on InnoDB and why it's important to
keep transaction sizes small.

Small transactions

For small transactions, binary logging doubles the number of disk writes required to load the data.
This effect can severely degrade performance for other database sessions and increase the time
required to load the data. The degradation experienced depends in part on the following factors:

Importing data considerations 3368

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

• Upload rate

• Other database activity taking place during the load

• Capacity of your Amazon RDS DB instance

The binary logs also consume disk space roughly equal to the amount of data loaded until the logs
are backed up and removed. Amazon RDS minimizes this by frequently backing up and removing
binary logs.

Large transactions

For large transactions, binary logging triples IOPS and disk usage for the following reasons:

• The binary log cache stores transaction data temporarily on disk.

• This cache grows with the transaction size, which consumes disk space.

• When the transaction (commit or rollback) completes, the system copies the cache to the binary
log.

This process creates three copies of the data:

• The original data

• The cache on disk

• The final binary log entry

Each write operation incurs additional IO, further impacting performance.

Because of this, binary logging requires triple the disk space compared to disabled logging. For
example, loading 10 GiB of data as a single transaction creates three copies:

• 10 GiB for the table data

• 10 GiB for the binary log cache

• 10 GiB for the binary log file

The total temporary disk space required is 30 GiB.

Important disk space considerations:

Importing data considerations 3369

Amazon Relational Database Service User Guide

• The cache file persists until either the session ends or a new transaction creates another cache.

• The binary log remains until it's backed up, potentially holding 20 GiB (cache and log) for an
extended period.

If you use LOAD DATA LOCAL INFILE to load the data, data recovery creates a fourth copy in
case the database has to be recovered from a backup made before the load. During recovery,
MySQL extracts the data from the binary log into a flat file. MySQL then runs LOAD DATA LOCAL
INFILE. Building on the preceding example, this recovery requires a total temporary disk space
of 40 GiB, or 10 GiB each for table, cache, log, and local file. Without at least 40 GiB of free disk
space, recovery fails.

Optimizing large data loads

For large data loads, disable binary logging to reduce overhead and disk space requirements. You
can disable binary logging by setting the backup retention period to 0. After loading completes,
restore the backup retention period to the appropriate non-zero value. For more information, see
Modifying an Amazon RDS DB instance and Backup retention period in the settings table.

Note

If the DB instance is a source DB instance for read replicas, then you can't set the backup
retention period to 0.

Before loading the data, we recommend that you create a DB snapshot. For more information, see
Managing manual backups.

InnoDB

The following information about undo logging and recovery options supports keeping InnoDB
transactions small to optimize database performance.

Understanding InnoDB undo logging

Undo is a logging mechanism that enables transaction rollback and supports multi-version
concurrency control (MVCC).

For MySQL 5.7 and lower versions, undo logs are stored in the InnoDB system tablespace (usually
ibdata1) and are retained until the purge thread removes them. As a result, large data load

Importing data considerations 3370

Amazon Relational Database Service User Guide

transactions can cause the system tablespace to become quite large and consume disk space that
you can't reclaim unless you recreate the database.

For all MySQL versions, the purge thread must wait to remove any undo logs until the oldest active
transaction either commits or rolls back. If the database is processing other transactions during the
load, their undo logs also accumulate and can't be removed, even if the transactions commit and
no other transaction needs the undo logs for MVCC. In this situation, all transactions—including
read-only transactions—slow down. This slowdown occurs because all transactions access all rows
that any transaction—not just the load transaction—changes. In effect, transactions must scan
through undo logs that long-running load transactions prevented from being purged during an
undo log cleanup. This affects performance for any operation accessing modified rows.

InnoDB transaction recovery options

Although InnoDB optimizes commit operations, large transaction rollbacks are slow. For faster
recovery, perform a point-in-time recovery or restore a DB snapshot. For more information, see
Point-in-time recovery and Restoring to a DB instance.

Data import formats

MySQL supports two data import formats: flat files and SQL. Review the information about each
format to determine the best option for your needs.

Flat files

For small transactions, load flat files with LOAD DATA LOCAL INFILE. This data import format
can provide the following benefits over using SQL:

• Less network traffic

• Lower data transmission costs

• Decreased database processing overhead

• Faster processing

LOAD DATA LOCAL INFILE loads the entire flat file as one transaction. Keep the size of the
individual files small for the following advantages:

• Resume capability – You can keep track of which files have been loaded. If a problem arises
during the load, you can pick up where you left off. You might need to retransmit some data to
Amazon RDS, but with small files, the amount retransmitted is minimal.

Importing data considerations 3371

Amazon Relational Database Service User Guide

• Parallel data loading – If you have sufficient IOPS and network bandwidth for a single file load,
loading in parallel could save time.

• Load rate control – If your data load has a negative impact on other processes, you can control
the load rate by increasing the interval between files.

Large transactions reduce the benefits of using LOAD DATA LOCAL INFILE to import data. When
you can't break a large amount of data into smaller files, consider using SQL.

SQL

SQL has one main advantage over flat files: you can easily keep transaction sizes small. However,
SQL can take significantly longer to load than flat files. Also, after a failure, it can be difficult to
determine where to resume—you can't restart mysqldump files. If a failure occurs while loading a
mysqldump file, you must modify or replace the file before the load can resume. Or, alternatively,
after you correct the cause of the failure, you can restore to the point in time before the load and
resend the file. For more information, see Point-in-time recovery.

Using Amazon RDS DB snapshots for database checkpoints

If you load data over long durations—such as hours or days—without binary logging, use DB
snapshots to provide periodic checkpoints for data safety. Each DB snapshot creates a consistent
copy of your database instance that serves as a recovery point during system failures or data
corruption events. Because DB snapshots are fast, frequent checkpointing has minimal impact on
load performance. You can delete previous DB snapshots without impacting database durability or
recovery capabilities. For more information about DB snapshots, see Managing manual backups.

Reducing database load times

The following items are additional tips to reduce load times:

• Create all secondary indexes before loading data into MySQL databases. Unlike other database
systems, MySQL rebuilds the entire table when adding or modifying secondary indexes. This
process creates a new table with index changes, copies all data, and drops the original table.

• Load data in primary key order. For InnoDB tables, this can reduce load times by 75%–80% and
reduce data file size by 50%.

• Disable foreign key constraints by setting foreign_key_checks to 0. This is often required
for flat files loaded with LOAD DATA LOCAL INFILE. For any load, disabling foreign key

Importing data considerations 3372

Amazon Relational Database Service User Guide

checks accelerates data loading. After loading completes, re-enable constraints by setting
foreign_key_checks to 1 and verify the data.

• Load data in parallel unless approaching a resource limit. To enable concurrent loading across
multiple table segments, use partitioned tables when appropriate.

• To reduce SQL execution overhead, combine multiple INSERT statements into single multi-value
INSERT operations. mysqldump implements this optimization automatically.

• Reduce InnoDB log IO operations by setting innodb_flush_log_at_trx_commit to 0. After
loading completes, restore innodb_flush_log_at_trx_commit to 1.

Warning

Setting innodb_flush_log_at_trx_commit to 0 causes InnoDB to flush its logs
every second instead of at each commit. This setting increases performance but can risk
transaction loss during system failures.

• If you are loading data into a DB instance that doesn't have read replicas, set sync_binlog to 0.
After loading completes, restore sync_binlog parameterto 1.

• Load data into a Single-AZ DB instance before converting the DB instance to a Multi-AZ
deployment. If the DB instance already uses a Multi-AZ deployment, we don't recommend
switching to a Single-AZ deployment for data loading. Doing so only provides marginal
improvements.

Restoring a backup into an Amazon RDS for MySQL DB instance

Amazon RDS supports importing MySQL databases with backup files. You can create a backup
of your database, store the backup file on Amazon S3, and then restore the backup file to a new
Amazon RDS DB instance running MySQL. Amazon RDS supports importing backup files from
Amazon S3 in all AWS Regions.

The scenario described in this section restores a backup of an on-premises database. As long as the
database is accessible, you can use this technique for databases in other locations, such as Amazon
EC2 or other cloud services.

The following diagram shows the supported scenario.

Restoring a backup into a MySQL DB instance 3373

Amazon Relational Database Service User Guide

If your on-premises database can be offline while you create, copy, and restore backup files, then
we recommend that you use backup files to import your database to Amazon RDS. If your database
can't be offline, then you can use one of the following methods:

• Binary logs — First, import backup files from Amazon S3 and to Amazon RDS, as explained
in this topic. Then use binary log (binlog) replication to update your database. For more
information, see Configuring binary log file position replication with an external source instance.

• AWS Database Migration Service — Use AWS Database Migration Service to migrate your
database to Amazon RDS. For more information, see What is AWS Database Migration Service?

Overview of setup to import backup files from Amazon S3 to Amazon RDS

To import backup files from Amazon S3 to Amazon RDS, you need the following components:

• An Amazon S3 bucket to store your backup files.

If you already have an Amazon S3 bucket, you can use that bucket. If you don't have an Amazon
S3 bucket, create a new one. For more information, see Creating a bucket.

• A backup of your on-premises database created by Percona XtraBackup.

For more information, see Creating your database backup.

• An AWS Identity and Access Management (IAM) role to allow Amazon RDS to access the S3
bucket.

Restoring a backup into a MySQL DB instance 3374

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html

Amazon Relational Database Service User Guide

If you already have an IAM role, you can use that role and attach trust and permissions policies to
it. For more information, see Creating an IAM role manually.

If you don't have an IAM role, you have two options:

• You can manually create a new IAM role. For more information, see Creating an IAM role
manually.

• You can choose for Amazon RDS to create a new IAM role for you. If you want Amazon RDS to
create a new IAM role for you, follow the procedure that uses the AWS Management Console in
Importing data from Amazon S3 to a new MySQL DB instance section.

Creating your database backup

Use the Percona XtraBackup software to create your backup. We recommend that you use
the latest version of Percona XtraBackup. You can install Percona XtraBackup from Software
Downloads on the Percona website.

Warning

When creating a database backup, XtraBackup might save credentials in the
xtrabackup_info file. Make sure to confirm that the tool_command setting in the
xtrabackup_info file doesn't contain any sensitive information.

The Percona XtraBackup version that you use depends on the MySQL version that you are backing
up.

• MySQL 8.4 — Use Percona XtraBackup version 8.4.

• MySQL 8.0 — Use Percona XtraBackup version 8.0.

Note

Percona XtraBackup 8.0.12 and higher versions support migration of all versions of
MySQL 8.0. If you are migrating to RDS for MySQL 8.0.32 or higher, you must use
Percona XtraBackup 8.0.12 or higher.

• MySQL 5.7 — Use Percona XtraBackup version 2.4.

Restoring a backup into a MySQL DB instance 3375

https://www.percona.com/downloads/
https://www.percona.com/downloads/

Amazon Relational Database Service User Guide

You can use Percona XtraBackup to create a full backup of your MySQL database files.
Alternatively, if you already use Percona XtraBackup to back up your MySQL database files, you can
upload your existing full and incremental backup directories and files.

For more information about backing up your database with Percona XtraBackup, see Percona
XtraBackup - Documentation on the Percona website.

Creating a full backup with Percona XtraBackup

To create a full backup of your MySQL database files that Amazon RDS can restore from Amazon
S3, use the Percona XtraBackup utility (xtrabackup).

For example, the following command creates a backup of a MySQL database and stores the files in
the folder /on-premises/s3-restore/backup folder.

xtrabackup --backup --user=myuser --password=password --target-dir=/on-premises/s3-
restore/backup

If you want to compress your backup into a single file—which you can split into multiple files
later, if needed—you can save your backup in one of the following formats based on your MySQL
version:

• Gzip (.gz) – For MySQL 5.7 and lower versions

• tar (.tar) – For MySQL 5.7 and lower versions

• Percona xbstream (.xbstream) – For all MySQL versions

Note

Percona XtraBackup 8.0 and higher only supports Percona xbstream for compression.

MySQL 5.7 and lower versions

The following command creates a backup of your MySQL database split into multiple Gzip files.
Replace values with your own information.

xtrabackup --backup --user=my_user --password=password --stream=tar \
 --target-dir=/on-premises/s3-restore/backup | gzip - | split -d --bytes=500MB \

Restoring a backup into a MySQL DB instance 3376

https://www.percona.com/doc/percona-xtrabackup/LATEST/index.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/index.html

Amazon Relational Database Service User Guide

 - /on-premises/s3-restore/backup/backup.tar.gz

MySQL 5.7 and lower versions

The following command creates a backup of your MySQL database split into multiple tar files.
Replace values with your own information.

xtrabackup --backup --user=my_user --password=password --stream=tar \
 --target-dir=/on-premises/s3-restore/backup | split -d --bytes=500MB \
 - /on-premises/s3-restore/backup/backup.tar

All MySQL versions

The following command creates a backup of your MySQL database split into multiple xbstream
files. Replace values with your own information.

xtrabackup --backup --user=myuser --password=password --stream=xbstream \
 --target-dir=/on-premises/s3-restore/backup | split -d --bytes=500MB \
 - /on-premises/s3-restore/backup/backup.xbstream

Note

If you see the following error, it might be because you mixed file formats in your command:

ERROR:/bin/tar: This does not look like a tar archive

Using incremental backups with Percona XtraBackup

If you already use Percona XtraBackup to perform full and incremental backups of your MySQL
database files, you don't need to create a full backup and upload the backup files to Amazon S3.
Instead, to save time, copy your existing backup directories and files to your Amazon S3 bucket.
For more information about creating incremental backups using Percona XtraBackup, see Create an
incremental backup on the Percona website.

When copying your existing full and incremental backup files to an Amazon S3 bucket, you must
recursively copy the contents of the base directory. Those contents include both the full backup
and all incremental backup directories and files. This copy must preserve the directory structure

Restoring a backup into a MySQL DB instance 3377

https://docs.percona.com/percona-xtrabackup/LATEST/create-incremental-backup.html
https://docs.percona.com/percona-xtrabackup/LATEST/create-incremental-backup.html

Amazon Relational Database Service User Guide

in the Amazon S3 bucket. Amazon RDS iterates through all files and directories. Amazon RDS uses
the xtrabackup-checkpoints file that is included with each incremental backup to identify the
base directory and to order incremental backups by log sequence number (LSN) range.

Backup considerations for Percona XtraBackup

Amazon RDS consumes your backup files based on the file name. Name your backup files with the
appropriate file extension based on the file format. For example, use .xbstream for files stored
using the Percona xbstream format.

Amazon RDS consumes your backup files in alphabetical order and also in natural number order.
To ensure that your backup files are written and named in the proper order, use the split option
when you issue the xtrabackup command.

Amazon RDS doesn't support partial backups created using Percona XtraBackup. You can't use the
following options to create a partial backup when you back up the source files for your database:

• --tables

• --tables-exclude

• --tables-file

• --databases

• --databases-exclude

• --databases-file

Creating an IAM role manually

If you don't have an IAM role, you can create a new one manually. However, if you restore the
database by using the AWS Management Console, we recommend that you choose to have Amazon
RDS create this new IAM role for you. For Amazon RDS to create this role for you, follow the
procedure in the Importing data from Amazon S3 to a new MySQL DB instance section.

To create a new IAM role manually for importing your database from Amazon S3, create a role to
delegate permissions from Amazon RDS to your Amazon S3 bucket. When you create an IAM role,
you attach trust and permissions policies. To import your backup files from Amazon S3, use trust
and permissions policies similar to the following examples. For more information about creating
the role, see Creating a role to delegate permissions to an AWS service.

Restoring a backup into a MySQL DB instance 3378

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

The trust and permissions policies require that you provide an Amazon Resource Name (ARN). For
more information about ARN formatting, see Amazon Resource Names (ARNs) and AWS service
namespaces.

Example trust policy for importing from Amazon S3

{
 "Version": "2012-10-17",
 "Statement":
 [{
 "Effect": "Allow",
 "Principal": {"Service": "rds.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }]
}

Example permissions policy for importing from Amazon S3 — IAM user permissions

In the following example, replace iam_user_id with your own value.

{
 "Version":"2012-10-17",
 "Statement":
 [
 {
 "Sid":"AllowS3AccessRole",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::iam_user_id:role/S3Access"
 }
]
}

Example permissions policy for importing from Amazon S3 — role permissions

In the following example, replace amzn-s3-demo-bucket and prefix with your own values.

{
 "Version": "2012-10-17",
 "Statement":
 [

Restoring a backup into a MySQL DB instance 3379

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Relational Database Service User Guide

 {
 "Effect": "Allow",
 "Action":
 [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 {
 "Effect": "Allow",
 "Action":
 [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/prefix*"
 },
 { // If your bucket is encrypted, include the following permission. This
 permission allows decryption of your AWS KMS key.
 "Effect": "Allow",
 "Action":
 [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:region:customer_id:key/key_id*"
]
 }
]
}

Note

If you include a file name prefix, include the asterisk (*) after the prefix. If you don't want to
specify a prefix, specify only an asterisk.

Importing data from Amazon S3 to a new MySQL DB instance

You can import data from Amazon S3 to a new MySQL DB instance using the AWS Management
Console, AWS CLI, or RDS API.

Restoring a backup into a MySQL DB instance 3380

Amazon Relational Database Service User Guide

Console

To import data from Amazon S3 to a new MySQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region where you
want to create your DB instance. Choose the same AWS Region as the Amazon S3 bucket that
contains your database backup.

3. In the navigation pane, choose Databases.

4. Choose Restore from S3.

The Create database by restoring from S3 page appears.

5. Under S3 source:

Restoring a backup into a MySQL DB instance 3381

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

a. Choose the S3 bucket that contains the backup.

b. (Optional) For S3 prefix, enter the file path prefix for the files stored in your Amazon S3
bucket.

If you don't specify a prefix, then Amazon RDS creates your DB instance using all of
the files and folders in the root folder of the S3 bucket. If you do specify a prefix, then
Amazon RDS creates your DB instance using the files and folders in the S3 bucket where
the path for the file begins with the specified prefix.

For example, you store your backup files on S3 in a subfolder named backups, and you
have multiple sets of backup files, each in its own directory (gzip_backup1, gzip_backup2,
and so on). In this case, to restore from the files in the gzip_backup1 folder, you specify
the prefix backups/gzip_backup1.

6. Under Engine options:

a. For Engine type, choose MySQL.

b. For Source engine version, choose the MySQL major version of your source database.

c. For Engine Version, choose the default minor version of your MySQL major version in your
AWS Region.

In the AWS Management Console, only the default minor version is available. After you
complete the import, you can upgrade your DB instance.

7. For IAM role, create or choose IAM role with the required trust policy and permissions policy
that allows Amazon RDS to access your Amazon S3 bucket. Perform one of the following
actions:

• (Recommended) Choose Create a new role, and enter the IAM role name. With this option,
Amazon RDS automatically creates the role with the trust policy and permissions policy for
you.

• Choose an existing IAM role. Make sure that this role meets all of the criteria in the section
called “Creating an IAM role manually”.

8. Specify your DB instance information. For information about each setting, see Settings for DB
instances.

Restoring a backup into a MySQL DB instance 3382

Amazon Relational Database Service User Guide

Note

Be sure to allocate enough storage for your new DB instance so that the restore
operation can succeed.
To allow for future growth automatically, under Additional storage configuration,
choose Enable storage autoscaling.

9. Choose additional settings as needed.

10. Choose Create database.

AWS CLI

To import data from Amazon S3 to a new MySQL DB instance by using the AWS CLI, run the
restore-db-instance-from-s3 command with the following options. For information about each
setting, see Settings for DB instances.

Note

Be sure to allocate enough storage for your new DB instance so that the restore operation
can succeed.
To enable storage autoscaling and allow for future growth automatically, use the --max-
allocated-storage option.

• --allocated-storage

• --db-instance-identifier

• --db-instance-class

• --engine

• --master-username

• --manage-master-user-password

• --s3-bucket-name

• --s3-ingestion-role-arn

• --s3-prefix

• --source-engine

Restoring a backup into a MySQL DB instance 3383

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html

Amazon Relational Database Service User Guide

• --source-engine-version

Example

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-s3 \
 --allocated-storage 250 \
 --db-instance-identifier my_identifier \
 --db-instance-class db.m5.large \
 --engine mysql \
 --master-username admin \
 --manage-master-user-password \
 --s3-bucket-name amzn-s3-demo-bucket \
 --s3-ingestion-role-arn arn:aws:iam::account-number:role/rolename \
 --s3-prefix bucket_prefix \
 --source-engine my_sql \
 --source-engine-version 8.0.32 \
 --max-allocated-storage 1000

For Windows:

aws rds restore-db-instance-from-s3 ^
 --allocated-storage 250 ^
 --db-instance-identifier my_identifier ^
 --db-instance-class db.m5.large ^
 --engine mysql ^
 --master-username admin ^
 --manage-master-user-password ^
 --s3-bucket-name amzn-s3-demo-bucket ^
 --s3-ingestion-role-arn arn:aws:iam::account-number:role/rolename ^
 --s3-prefix bucket_prefix ^
 --source-engine mysql ^
 --source-engine-version 8.0.32 ^
 --max-allocated-storage 1000

RDS API

To import data from Amazon S3 to a new MySQL DB instance by using the Amazon RDS API, call
the RestoreDBInstanceFromS3 operation.

Restoring a backup into a MySQL DB instance 3384

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html

Amazon Relational Database Service User Guide

Limitations and considerations for importing backup files from Amazon S3 to
Amazon RDS

The following limitations and considerations apply to importing backup files from Amazon S3 to
an RDS for MySQL DB instance:

• You can only migrate your data to a new DB instance, not to an existing DB instance.

• You must use Percona XtraBackup to back up your data to Amazon S3. For more information, see
Creating your database backup.

• The Amazon S3 bucket and the RDS for MySQL DB instance must be in the same AWS Region.

• You can't restore from the following sources:

• A DB instance snapshot export to Amazon S3. You also can't migrate data from a DB instance
snapshot export to your Amazon S3 bucket.

• An encrypted source database. However, you can encrypt the data being migrated. You can
also leave the data unencrypted during the migration process.

• A MySQL 5.5 or 5.6 database.

• RDS for MySQL doesn't support Percona Server for MySQL as a source database because it can
contain compression_dictionary* tables in the mysql schema.

• RDS for MySQL doesn't support backward migration for either major versions or minor versions.
For example, you can't migrate from MySQL version 8.0 to RDS for MySQL 5.7, and you can't
migrate from MySQL version 8.0.32 to RDS for MySQL version 8.0.26.

• Amazon RDS doesn't support importing on the db.t2.micro DB instance class from Amazon S3.
However, you can restore to a different DB instance class, and then change the DB instance class
later. For more information about instance classes, see Hardware specifications for DB instance
classes.

• Amazon S3 limits the size of a file uploaded to an Amazon S3 bucket to 5 TB. If a backup file
exceeds 5 TB, then you must split the backup file into smaller files.

• Amazon RDS limits the number of files uploaded to an Amazon S3 bucket to 1 million. If the
backup data for your database, including all full and incremental backups, exceeds 1 million files,
use a Gzip (.gz), tar (.tar.gz), or Percona xbstream (.xbstream) file to store full and incremental
backup files in the Amazon S3 bucket. Percona XtraBackup 8.0 only supports Percona xbstream
for compression.

Restoring a backup into a MySQL DB instance 3385

Amazon Relational Database Service User Guide

• To provide management services for each DB instance, Amazon RDS creates the rdsadmin
user when it creates the DB instance. Because rdsamin is a reserved user in Amazon RDS, the
following limitations apply:

• Amazon RDS doesn't import functions, procedures, views, events, and triggers with the
'rdsadmin'@'localhost' definer. For more information, see Stored objects with
'rdsamin'@'localhost' as the definer and Master user account privileges.

• When creating the DB instance, Amazon RDS creates a master user with the maximum
supported privileges. When restoring from backup, Amazon RDS automatically removes any
unsupported privileges assigned to users being imported.

To identify users that might be affected by this, see User accounts with unsupported privileges.
For more information on supported privileges in RDS for MySQL, see Role-based privilege
model for RDS for MySQL.

• Amazon RDS doesn't migrate user-created tables in the mysql schema.

• You must configure the innodb_data_file_path parameter with only one data file that uses
the default data file name ibdata1:12M:autoextend. You can migrate databases with two
data files, or with a data file with a different name, using this method.

The following examples are file names that Amazon RDS doesn't allow:

• innodb_data_file_path=ibdata1:50M

• ibdata2:50M:autoextend

• innodb_data_file_path=ibdata01:50M:autoextend

• You can't migrate from a source database that has tables defined outside of the default MySQL
data directory.

• The maximum supported size for uncompressed backups using this method is limited to 64 TiB.
For compressed backups, this limit is lower to account for uncompression space requirements. In
such cases, the maximum supported backup size is 64 TiB - compressed backup size.

For information about the maximum supported database size that RDS for MySQL supports, see
General Purpose SSD storage and Provisioned IOPS SSD storage.

• Amazon RDS doesn't support the importing of MySQL and other external components and
plugins.

• Amazon RDS doesn't restore everything from your database. We recommend that you save the
database schema and values for the following items from your source MySQL system database,
and then add them to your restored RDS for MySQL DB instance after it has been created:

Restoring a backup into a MySQL DB instance 3386

Amazon Relational Database Service User Guide

• User accounts

• Functions

• Stored procedures

• Time zone information. Time zone information is loaded from the local operating system of
your RDS for MySQL DB instance. For more information, see Local time zone for MySQL DB
instances.

Stored objects with 'rdsamin'@'localhost' as the definer

Amazon RDS doesn't import functions, procedures, views, events, and triggers with
'rdsadmin'@'localhost' as the definer.

You can use the following SQL script on your source MySQL database to list the stored objects that
have the unsupported definer.

-- This SQL query lists routines with `rdsadmin`@`localhost` as the definer.

SELECT
 ROUTINE_SCHEMA,
 ROUTINE_NAME
FROM
 information_schema.routines
WHERE
 definer = 'rdsadmin@localhost';

-- This SQL query lists triggers with `rdsadmin`@`localhost` as the definer.

SELECT
 TRIGGER_SCHEMA,
 TRIGGER_NAME,
 DEFINER
FROM
 information_schema.triggers
WHERE
 DEFINER = 'rdsadmin@localhost';

-- This SQL query lists events with `rdsadmin`@`localhost` as the definer.

SELECT
 EVENT_SCHEMA,
 EVENT_NAME

Restoring a backup into a MySQL DB instance 3387

Amazon Relational Database Service User Guide

FROM
 information_schema.events
WHERE
 DEFINER = 'rdsadmin@localhost';

-- This SQL query lists views with `rdsadmin`@`localhost` as the definer.
SELECT
 TABLE_SCHEMA,
 TABLE_NAME
FROM
 information_schema.views
WHERE
 DEFINER = 'rdsadmin@localhost';

User accounts with unsupported privileges

User accounts with privileges that RDS for MySQL doesn't supported are imported without the
unsupported privileges. For the list of supported privileges, see Role-based privilege model for RDS
for MySQL.

You can run the following SQL query on your source database to list the user accounts that have
unsupported privileges.

SELECT
 user,
 host
FROM
 mysql.user
WHERE
 Shutdown_priv = 'y'
 OR File_priv = 'y'
 OR Super_priv = 'y'
 OR Create_tablespace_priv = 'y';

Importing data from an external MySQL database to an Amazon RDS
for MySQL DB instance

You can import data from an existing MariaDB or MySQL database to an RDS for MariaDB or RDS
for MySQL DB instance. You do so by copying the database with mysqldump and piping it directly
into the RDS for MariaDB or RDS for MySQL DB instance. The mysqldump command line utility is

Importing data from an external database 3388

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html

Amazon Relational Database Service User Guide

commonly used to make backups and transfer data from one MariaDB or MySQL server to another.
It's included with MySQL and MariaDB client software.

In MariaDB 10.5, the client is called mariadb-dump. Starting with MariaDB 11.0.1, you must use
mariadb-dump instead of mysqldump.

Note

If you are importing or exporting large amounts of data with a MySQL DB instance, it's
more reliable and faster to move data in and out of Amazon RDS by using xtrabackup
backup files and Amazon S3. For more information, see Restoring a backup into an Amazon
RDS for MySQL DB instance.
Amazon RDS doesn't support xtrabackup for MariaDB or mariabackup. Amazon RDS
only supports importing from Amazon S3 for MySQL.

A typical mysqldump command to move data from an external database to an Amazon RDS DB
instance looks similar to the following example. Replace values with your own information. For
MariaDB 11.0.1 and higher versions, replace mysqldump with mariadb-dump and mysql with
mariadb.

mysqldump -u local_user \
 --databases database_name \
 --single-transaction \
 --compress \
 --order-by-primary \
 --routines=0 \
 --triggers=0 \
 --events=0 \
 -plocal_password | mysql -u RDS_user \
 --port=port_number \
 --host=host_name \
 -pRDS_password

Important

Make sure not to leave a space between the -p option and the entered password.
As a security best practice, specify credentials other than the prompts shown in this
example.

Importing data from an external database 3389

https://mariadb.com/kb/en/mariadb-dump/

Amazon Relational Database Service User Guide

Make sure that you're aware of the following recommendations and considerations:

• Exclude the following schemas from the dump file:

• sys

• performance_schema

• information_schema

The mysqldump and mariadb-dump utility excludes these schemas by default.

• If you need to migrate users and privileges, consider using a tool that generates the data control
language (DCL) for recreating them, such as the pt-show-grants utility.

• To perform the import, make sure the user doing so has access to the DB instance. For more
information, see Controlling access with security groups.

The parameters used are as follows:

• -u local_user – Use to specify a user name. In the first usage of this parameter, specify the
name of a user account on the local MariaDB or MySQL database that you identify with the --
databases parameter.

• --databases database_name – Use to specify the name of the database on the local MariaDB
or MySQL instance that you want to import into Amazon RDS.

• --single-transaction – Use to ensure that all of the data loaded from the local database
is consistent with a single point in time. If there are other processes changing the data while
mysqldump is reading it, using this parameter helps maintain data integrity.

• --compress – Use to reduce network bandwidth consumption by compressing the data from
the local database before sending it to Amazon RDS.

• --order-by-primary – Use to reduce load time by sorting each table's data by its primary key.

• --routines – Use if routines such as stored procedures or functions exist in the database that
you are copying. Set the parameter to 0, which excludes the routines during the import process.
Then later manually recreate the routines in the Amazon RDS database.

• --triggers – Use if triggers exist in the database that you are copying. Set the parameter to 0,
which excludes the triggers during the import process. Then later manually recreate the triggers
in the Amazon RDS database.

• --events – Use if events exist in the database that you are copying. Set the parameter to 0,
which excludes the events during the import process. Then later manually recreate the events in
the Amazon RDS database.

Importing data from an external database 3390

https://www.percona.com/doc/percona-toolkit/LATEST/pt-show-grants.html

Amazon Relational Database Service User Guide

• -plocal_password – Use to specify a password. In the first usage of this parameter, specify the
password for the user account that you identify with the first -u parameter.

• -u RDS_user – Use to specify a user name. In the second usage of this parameter, specify the
name of a user account on the default database for the MariaDB or MySQL DB instance that you
identify with the --host parameter.

• --port port_number – Use to specify the port for your MariaDB or MySQL DB instance. By
default, this is 3306 unless you changed the value when creating the DB instance.

• --host host_name – Use to specify the Domain Name System (DNS) name from the
Amazon RDS DB instance endpoint, for example, myinstance.123456789012.us-
east-1.rds.amazonaws.com. You can find the endpoint value in the DB instance details in the
Amazon RDS console.

• -pRDS_password – Use to specify a password. In the second usage of this parameter, you
specify the password for the user account identified by the second -u parameter.

Make sure to create any stored procedures, triggers, functions, or events manually in your Amazon
RDS database. If you have any of these objects in the database that you are copying, then exclude
them when you run mysqldump or mariadb-dump. To do so, include the following parameters
with your mysqldump or mariadb-dump command:

• --routines=0

• --triggers=0

• --events=0

Example

The following example copies the world sample database on the local host to an RDS for MySQL
DB instance. Replace values with your own information. To copy the sample database to an RDS for
MariaDB DB instance, replace mysqldump with mariadb-dump and mysql with mariadb.

For Linux, macOS, or Unix:

sudo mysqldump -u local_user \
 --databases world \
 --single-transaction \
 --compress \
 --order-by-primary \
 --routines=0 \

Importing data from an external database 3391

Amazon Relational Database Service User Guide

 --triggers=0 \
 --events=0 \
 -plocal_password | mysql -u rds_user \
 --port=3306 \
 --host=my_instance.123456789012.us-east-1.rds.amazonaws.com \
 -pRDS_password

For Windows:

Run the following command in a command prompt that has been opened by right-clicking
Command Prompt on the Windows programs menu and choosing Run as administrator. Replace
values with your own information. To copy the sample database to an RDS for MariaDB DB
instance, replace mysqldump with mariadb-dump and mysql with mariadb.

mysqldump -u local_user ^
 --databases world ^
 --single-transaction ^
 --compress ^
 --order-by-primary ^
 --routines=0 ^
 --triggers=0 ^
 --events=0 ^
 -plocal_password | mysql -u RDS_user ^
 --port=3306 ^
 --host=my_instance.123456789012.us-east-1.rds.amazonaws.com ^
 -pRDS_password

Note

As a security best practice, specify credentials other than the prompts shown in the
example.

Importing data to an Amazon RDS for MySQL database with reduced
downtime

In some cases, you might need to import data from an external MariaDB or MySQL database that
supports a live application to an RDS for MariaDB DB instance, an RDS for MySQL DB instance,
or an RDS for MySQL Multi-AZ DB cluster. Use the following procedure to minimize the impact
on availability of applications. This procedure can also help if you are working with a very large

Importing data with reduced downtime 3392

Amazon Relational Database Service User Guide

database. Using this procedure, you can reduce the cost of the import by reducing the amount of
data that is passed across the network to AWS.

In this procedure, you transfer a copy of your database data to an Amazon EC2 instance and import
the data into a new Amazon RDS database. You then use replication to bring the Amazon RDS
database up-to-date with your live external instance, before redirecting your application to the
Amazon RDS database. If the external instance is MariaDB 10.0.24 or higher and the target instance
is RDS for MariaDB, configure MariaDB replication based on global transaction identifiers (GTIDs).
Otherwise, configure replication based on binary log coordinates. We recommend GTID-based
replication if your external database supports it because GTID-based replication is a more reliable
method. For more information, see Global transaction ID in the MariaDB documentation.

Note

If you want to import data into an RDS for MySQL DB instance and your scenario supports
it, we recommend moving data in and out of Amazon RDS by using backup files and
Amazon S3. For more information, see Restoring a backup into an Amazon RDS for MySQL
DB instance.

The following diagram shows importing an external MySQL database into a MySQL database on
Amazon RDS.

Importing data with reduced downtime 3393

http://mariadb.com/kb/en/mariadb/global-transaction-id/

Amazon Relational Database Service User Guide

Task 1: Create a copy of your existing database

The first step in the process of migrating a large amount of data to an RDS for MariaDB or RDS for
MySQL database with minimal downtime is to create a copy of the source data.

The following diagram shows creating a backup of the MySQL database.

You can use the mysqldump utility to create a database backup in either SQL or delimited-text
format. In MariaDB 10.5, the client is called mariadb-dump. Starting with MariaDB 11.0.1, you
must use mariadb-dump instead of mysqldump. We recommend that you do a test run with each
format in a non-production environment to see which method minimizes the amount of time that
mysqldump runs.

We also recommend that you weigh mysqldump performance against the benefit offered by
using the delimited-text format for loading. A backup using delimited-text format creates a
tab-separated text file for each table being dumped. To reduce the amount of time required to
import your database, you can load these files in parallel using the LOAD DATA LOCAL INFILE
command. For more information, see Load the data for MariaDB or Load the data for MySQL.

Before you start the backup operation, make sure to set the replication options on the MariaDB
or MySQL database that you are copying to Amazon RDS. The replication options include turning
on binary logging and setting a unique server ID. Setting these options causes your server to

Importing data with reduced downtime 3394

https://mariadb.com/kb/en/mariadb-dump/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.AnySourceMariaDB.html#MySQL.Procedural.Importing.AnySource.Step5
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.AnySource.html#MySQL.Procedural.Importing.AnySource.Step5

Amazon Relational Database Service User Guide

start logging database transactions and prepares it to be a source replication instance later in this
process.

Make sure that you're aware of the following recommendations and considerations:

• Use the --single-transaction option with mysqldump because it dumps a consistent state
of the database. To ensure a valid dump file, don't run data definition language (DDL) statements
while mysqldump is running. You can schedule a maintenance window for these operations.

• Exclude the following schemas from the dump file:

• sys

• performance_schema

• information_schema

The mysqldump and mariadb-dump utility excludes these schemas by default.

• If you need to migrate users and privileges, consider using a tool that generates the data control
language (DCL) for recreating them, such as the pt-show-grants utility.

To set replication options

1. Edit the my.cnf file. This file is usually located under /etc.

sudo vi /etc/my.cnf

Add the log_bin and server_id options to the [mysqld] section. The log_bin option
provides a file name identifier for binary log files. The server_id option provides a unique
identifier for the server in source-replica relationships.

The following example shows the updated [mysqld] section of a my.cnf file:

[mysqld]
log-bin=mysql-bin
server-id=1

For more information, see Setting the Replication Source Configuration in the MySQL
documentation.

2. For replication with a Multi-AZ DB cluster set the ENFORCE_GTID_CONSISTENCY and the
GTID_MODE parameter to ON.

Importing data with reduced downtime 3395

https://www.percona.com/doc/percona-toolkit/LATEST/pt-show-grants.html
https://dev.mysql.com/doc/refman/8.4/en/replication-howto-masterbaseconfig.html

Amazon Relational Database Service User Guide

mysql> SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = ON;

mysql> SET @@GLOBAL.GTID_MODE = ON;

These settings aren't required for replication with a DB instance.

3. Restart the mysql service.

sudo service mysqld restart

To create a backup copy of your existing database

1. Create a backup of your data using the mysqldump utility or the mariadb-dump utility,
specifying either SQL or delimited-text format.

For MySQL 8.0.25 and lower versions, specify --master-data=2 to create a backup file
that can be used to start replication between servers. For MySQL 8.0.26 and higher versions,
specify --source-data=2 to create a backup file that can be used to start replication between
servers. For more information, see the mysqldump — A Database Backup Program in the MySQL
documentation.

To improve performance and ensure data integrity, use the --order-by-primary and --
single-transaction options for mysqldump.

To avoid including the MySQL system database in the backup, don't use the --all-databases
option with mysqldump. For more information, see Creating a Data Snapshot Using mysqldump
in the MySQL documentation.

Use chmod, if necessary, to make sure that the directory where the backup file is being created is
writeable.

Important

On Windows, run the command window as an administrator.

• To produce SQL output, use the following command:

Importing data with reduced downtime 3396

https://dev.mysql.com/doc/refman/8.4/en/mysqldump.html
https://dev.mysql.com/doc/mysql-replication-excerpt/8.0/en/replication-howto-mysqldump.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

sudo mysqldump \
 --databases database_name \
 --master-data=2 \
 --single-transaction \
 --order-by-primary \
 -r backup.sql \
 -u local_user \
 -ppassword

Note

As a security best practice, specify credentials other than the prompts shown in the
example.

For Windows:

mysqldump ^
 --databases database_name ^
 --master-data=2 ^
 --single-transaction ^
 --order-by-primary ^
 -r backup.sql ^
 -u local_user ^
 -ppassword

Note

As a security best practice, specify credentials other than the prompts shown in the
example.

• To produce delimited-text output, use the following command:

For Linux, macOS, or Unix:

sudo mysqldump \
 --tab=target_directory \

Importing data with reduced downtime 3397

Amazon Relational Database Service User Guide

 --fields-terminated-by ',' \
 --fields-enclosed-by '"' \
 --lines-terminated-by 0x0d0a \
 database_name \
 --master-data=2 \
 --single-transaction \
 --order-by-primary \
 -ppassword

For Windows:

mysqldump ^
 --tab=target_directory ^
 --fields-terminated-by "," ^
 --fields-enclosed-by """ ^
 --lines-terminated-by 0x0d0a ^
 database_name ^
 --master-data=2 ^
 --single-transaction ^
 --order-by-primary ^
 -ppassword

Note

As a security best practice, specify credentials other than the prompts shown in the
example.
Make sure to create any stored procedures, triggers, functions, or events manually
in your Amazon RDS database. If you have any of these objects in the database that
you are copying, then exclude them when you run mysqldump. To do so, include the
following arguments with your mysqldump command:

• --routines=0

• --triggers=0

• --events=0

For MySQL 8.0.22 and lower versions and MariaDB versions, when you run mysqldump and
specify the delimited-text format, a CHANGE MASTER TO comment is returned. This comment
contains the master log file name and position. For MySQL 8.0.23 and higher versions, when
you run mysqldump using the delimited-text format, a CHANGE REPLICATION SOURCE

Importing data with reduced downtime 3398

Amazon Relational Database Service User Guide

TO comment is returned. This comment contains the source log file name and position. If
the external instance is anything other than MariaDB 10.0.24 and higher versions, or MySQL
8.0.23 and higher versions, note the values for MASTER_LOG_FILE and MASTER_LOG_POS.
You need these values when setting up replication.

The following output is returned for MariaDB versions and for MySQL 8.0.22 and lower
versions:

-- Position to start replication or point-in-time recovery from
--
-- CHANGE MASTER TO MASTER_LOG_FILE='mysql-bin-changelog.000031',
 MASTER_LOG_POS=107;

The following output is returned for MySQL 8.0.23 and higher versions:

-- Position to start replication or point-in-time recovery from
--
-- CHANGE SOURCE TO SOURCE_LOG_FILE='mysql-bin-changelog.000031',
 SOURCE_LOG_POS=107;

For MySQL 8.0.22 and lower versions, if you are using SQL format, you can get the master log
file name and position in the CHANGE MASTER TO comment in the backup file. For MySQL
8.0.23 and higher versions, if you are using SQL format, you can get the source log file name
and position in the CHANGE REPLICATION SOURCE TO comment in the backup file. If the
external instance is MariaDB version 10.0.24 or higher, you can get the GTID in the next step.

2. If the external instance you are using is MariaDB version 10.0.24 or higher, use GTID-based
replication. Run SHOW MASTER STATUS on the external MariaDB instance to get the binary log
file name and position, and then convert them to a GTID by running BINLOG_GTID_POS on the
external MariaDB instance.

SELECT BINLOG_GTID_POS('binary_log_file_name', binary_log_file_position);

Note the GTID returned. You need the GTID to configure replication.

3. Compress the copied data to reduce the amount of network resources needed to copy your data
to the Amazon RDS database. Note the size of the backup file. You need this information when
determining how large an Amazon EC2 instance to create. When you are done, compress the
backup file using GZIP or your preferred compression utility.

Importing data with reduced downtime 3399

Amazon Relational Database Service User Guide

• To compress SQL output, use the following command:

gzip backup.sql

• To compress delimited-text output, use the following command:

tar -zcvf backup.tar.gz target_directory

Task 2: Create an Amazon EC2 instance and copy the compressed database

Copying your compressed database backup file to an Amazon EC2 instance takes fewer network
resources than doing a direct copy of uncompressed data between database instances. After your
data is in Amazon EC2, you can copy it from there directly to your MariaDB or MySQL database. For
you to save on the cost of network resources, your Amazon EC2 instance must be in the same AWS
Region as your Amazon RDS DB instance. Having the Amazon EC2 instance in the same AWS Region
as your Amazon RDS database also reduces network latency during the import.

The following diagram shows copying the database backup to an Amazon EC2 instance.

Importing data with reduced downtime 3400

Amazon Relational Database Service User Guide

To create an Amazon EC2 instance and copy your data

1. In the AWS Region where you plan to create the Amazon RDS database, create a virtual private
cloud (VPC), a VPC security group, and a VPC subnet. Ensure that the inbound rules for your
VPC security group allow the IP addresses required for your application to connect to AWS. You
can specify a range of IP addresses—for example, 203.0.113.0/24—or another VPC security
group. You can use the Amazon VPC console to create and manage VPCs, subnets, and security
groups. For more information, see Getting started with Amazon VPC in the Amazon Virtual
Private Cloud User Guide.

2. Open the Amazon EC2 console and choose the AWS Region to contain both your Amazon EC2
instance and your Amazon RDS database. Launch an Amazon EC2 instance using the VPC,
subnet, and security group that you created in Step 1. Ensure that you select an instance type
with enough storage for your database backup file when it is uncompressed. For details on
Amazon EC2 instances, see Getting started with Amazon EC2 in the Amazon Elastic Compute
Cloud User Guide.

3. To connect to your Amazon RDS database from your Amazon EC2 instance, edit your VPC
security group. Add an inbound rule specifying the private IP address of your EC2 instance.
You can find the private IP address on the Details tab of the Instance pane in the EC2 console
window. To edit the VPC security group and add an inbound rule, choose Security Groups in
the EC2 console navigation pane, choose your security group, and then add an inbound rule for
MySQL or Aurora specifying the private IP address of your EC2 instance. To learn how to add
an inbound rule to a VPC security group, see Security group rules in the Amazon Virtual Private
Cloud User Guide.

4. Copy your compressed database backup file from your local system to your Amazon EC2
instance. Use chmod, if necessary, to make sure that you have write permission for the target
directory of the Amazon EC2 instance. You can use scp or a Secure Shell (SSH) client to copy the
file. The following command is an example scp command:

scp -r -i key pair.pem backup.sql.gz ec2-user@EC2 DNS:/target_directory/backup.sql.gz

Important

When copying sensitive data, be sure to use a secure network transfer protocol.

5. Connect to your Amazon EC2 instance and install the latest updates and the MySQL client tools
using the following commands:

Importing data with reduced downtime 3401

https://console.aws.amazon.com/vpc
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html#getting-started
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html

Amazon Relational Database Service User Guide

sudo yum update -y
sudo yum install mysql -y

For more information, see Connect to your instance for Linux instances in the Amazon Elastic
Compute Cloud User Guide.

Important

This example installs the MySQL client on an Amazon Machine Image (AMI) for an
Amazon Linux distribution. This example doesn't install the MySQL client on a different
distribution, such as Ubuntu or Red Hat Enterprise Linux. For information about
installing MySQL, see Installing MySQL in the MySQL documentation.

6. While connected to your Amazon EC2 instance, decompress your database backup file. The
following commands are examples.

• To decompress SQL output, use the following command:

gzip backup.sql.gz -d

• To decompress delimited-text output, use the following command:

tar xzvf backup.tar.gz

Task 3: Create a MySQL or MariaDB database and import data from your Amazon
EC2 instance

By creating an RDS for MariaDB DB instance, an RDS for MySQL DB instance, or an RDS for MySQL
Multi-AZ DB cluster in the same AWS Region as your Amazon EC2 instance, you can import the
database backup file from Amazon EC2 faster than over the internet.

The following diagram shows importing the backup from an Amazon EC2 instance into a MySQL
database.

Importing data with reduced downtime 3402

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux
https://dev.mysql.com/doc/refman/8.4/en/installing.html

Amazon Relational Database Service User Guide

To create a MariaDB or MySQL database and import your data

1. Determine which DB instance class and what amount of storage space is required to support
the expected workload for this Amazon RDS database. As part of this process, decide what
is sufficient space and processing capacity for your data load procedures. Also, decide what
is required to handle the production workload. You can estimate this based on the size and
resources of the source MariaDB or MySQL database. For more information, see DB instance
classes.

2. Create a DB instance or Multi-AZ DB cluster in the AWS Region that contains your Amazon EC2
instance.

To create an RDS for MySQL Multi-AZ DB cluster, follow the instructions in Creating a Multi-AZ
DB cluster for Amazon RDS.

To create an RDS for MariaDB or RDS for MySQL DB instance, follow the instructions in
Creating an Amazon RDS DB instance and use the following guidelines:

• Specify a DB engine version that is compatible with your source DB instance.

• If your source instance is MySQL 5.5.x, the Amazon RDS DB instance must be MySQL.

• If your source instance is MySQL 5.6.x or 5.7.x, the Amazon RDS DB instance must be
MySQL or MariaDB.

Importing data with reduced downtime 3403

Amazon Relational Database Service User Guide

• If your source instance is MySQL 8.0.x, the Amazon RDS DB instance must be MySQL 8.0.x.

• If your source instance is MySQL 8.4.x, the Amazon RDS DB instance must be MySQL 8.4.x.

• If your source instance is MariaDB 5.5 or higher, the Amazon RDS DB instance must be
MariaDB.

• Specify the same virtual private cloud (VPC) and VPC security group as for your Amazon
EC2 instance. This approach ensures that your Amazon EC2 instance and your Amazon RDS
instance are visible to each other over the network. Make sure your DB instance is publicly
accessible. To set up replication with your source database as described in a following
section, your DB instance must be publicly accessible.

• Don't configure multiple Availability Zones, backup retention, or read replicas until after
you have imported the database backup. When that import is completed, you can configure
Multi-AZ and backup retention for the production instance.

3. Review the default configuration options for the Amazon RDS database. If the default
parameter group for the database doesn't have the configuration options that you want, find a
different one that does or create a new parameter group. For more information about creating
a parameter group, see Parameter groups for Amazon RDS.

4. Connect to the new Amazon RDS database as the master user. Create the users required
to support the administrators, applications, and services that need to access the DB
instance. The hostname for the Amazon RDS database is the Endpoint value for this
DB instance without the port number, for example, mysampledb.123456789012.us-
west-2.rds.amazonaws.com. You can find the endpoint value in the database details in the
Amazon RDS console.

5. Connect to your Amazon EC2 instance. For more information, see Connect to your instance for
Linux instances in the Amazon Elastic Compute Cloud User Guide.

6. Connect to your Amazon RDS database as a remote host from your Amazon EC2 instance using
the mysql command. The following command is an example:

mysql -h host_name -P 3306 -u db_master_user -p

The host_name is the Amazon RDS database endpoint.

7. At the mysql prompt, run the source command and pass it the name of your database dump
file. This command loads the data into the Amazon RDS DB instance.

• For SQL format, use the following command:

Importing data with reduced downtime 3404

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

Amazon Relational Database Service User Guide

mysql> source backup.sql;

• For delimited-text format, first create the database, if it isn't the default database that you
created when setting up the Amazon RDS database.

mysql> create database database_name;
mysql> use database_name;

Then create the tables.

mysql> source table1.sql
mysql> source table2.sql
etc...

Then import the data.

mysql> LOAD DATA LOCAL INFILE 'table1.txt' INTO TABLE table1 FIELDS TERMINATED BY
 ',' ENCLOSED BY '"' LINES TERMINATED BY '0x0d0a';
mysql> LOAD DATA LOCAL INFILE 'table2.txt' INTO TABLE table2 FIELDS TERMINATED BY
 ',' ENCLOSED BY '"' LINES TERMINATED BY '0x0d0a';
etc...

To improve performance, you can perform these operations in parallel from multiple
connections so that all of your tables are created and then loaded at the same time.

Note

If you used any data-formatting options with mysqldump when you initially dumped
the table, make sure to use the same options with LOAD DATA LOCAL INFILE to
ensure proper interpretation of the data file contents.

8. Run a simple SELECT query against one or two of the tables in the imported database to
verify that the import was successful.

If you no longer need the Amazon EC2 instance used in this procedure, terminate the EC2 instance
to reduce your AWS resource usage. To terminate an EC2 instance, see Terminate an instance in the
Amazon Elastic Compute Cloud User Guide.

Importing data with reduced downtime 3405

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html#terminating-instances-console

Amazon Relational Database Service User Guide

Task 4: Replicate data from your external database to your new Amazon RDS
database

Your source database was likely updated during the time that it took to copy and transfer the data
to the MariaDB or MySQL database. Thus, you can use replication to bring the copied database up-
to-date with the source database.

The permissions required to start replication on an Amazon RDS database are restricted and aren't
available to your Amazon RDS master user. Because of this, use the appropriate Amazon RDS
stored procedure for your major engine version:

• mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_set_external_master_gtid to configure replication and mysql.rds_start_replication to
start replication

Importing data with reduced downtime 3406

Amazon Relational Database Service User Guide

To start replication

In Task 1 when you set replication options, you turned on binary logging and set a unique server ID
for your source database. Now you can set up your Amazon RDS database as a replica with your live
database as the source replication instance.

1. In the Amazon RDS console, add the IP address of the server that hosts the source database to
the VPC security group for the Amazon RDS database. For more information on configuring a
VPC security group, see Configure security group rules in the Amazon Virtual Private Cloud User
Guide.

You might also need to configure your local network to permit connections from the IP address
of your Amazon RDS database so that it can communicate with your source instance. To find the
IP address of the Amazon RDS database, use the host command:

host host_name

The host_name is the DNS name from the Amazon RDS database endpoint, for example
myinstance.123456789012.us-east-1.rds.amazonaws.com. You can find the endpoint
value in the DB instance details in the Amazon RDS console.

2. Using the client of your choice, connect to the source instance and create a user to be used for
replication. This account is used solely for replication and must be restricted to your domain to
improve security. The following command is an example:

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

Note

Specify credentials other than the prompts shown here as a security best practice.

3. For the source instance, grant REPLICATION CLIENT and REPLICATION SLAVE privileges
to your replication user. For example, to grant the REPLICATION CLIENT and REPLICATION
SLAVE privileges on all databases for the 'repl_user' user for your domain, issue the following
command:

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

Importing data with reduced downtime 3407

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-security-group-rules.html

Amazon Relational Database Service User Guide

4. If you used SQL format to create your backup file and the external instance isn't MariaDB
10.0.24 or higher, look at the contents of that file by running the following command:

cat backup.sql

The file includes a CHANGE MASTER TO comment that contains the master log file name and
position. This comment is included in the backup file when you use the --master-data option
with mysqldump. Note the values for MASTER_LOG_FILE and MASTER_LOG_POS.

--
-- Position to start replication or point-in-time recovery from
--

-- CHANGE MASTER TO MASTER_LOG_FILE='mysql-bin-changelog.000031', MASTER_LOG_POS=107;

If you used delimited text format to create your backup file and the external instance isn't
MariaDB 10.0.24 or higher, you should already have binary log coordinates from Step 1 of the To
create a backup copy of your existing database procedure under Task 1.

If the external instance is MariaDB 10.0.24 or higher, you should already have the GTID from
which to start replication from Step 2 of the To create a backup copy of your existing database
procedure under Task 1.

5. Make the Amazon RDS database the replica. If the external instance isn't MariaDB 10.0.24
or higher, connect to the Amazon RDS database as the master user and identify the source
database as the source replication instance by using the appropriate Amazon RDS stored
procedure:

• mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher)

If you have a SQL format backup file, use the master log file name and master log position that
you determined in Step 4. If you used delimited-text format, use the name and position that you
determined when creating the backup files. The following commands are examples:

MySQL 8.4 and higher versions

CALL mysql.rds_set_external_source ('myserver.mydomain.com', 3306,

Importing data with reduced downtime 3408

Amazon Relational Database Service User Guide

 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

MariaDB and MySQL 8.0 and lower versions

CALL mysql.rds_set_external_master ('myserver.mydomain.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

Note

Specify credentials other than the prompts shown here as a security best practice.

If the external instance is MariaDB 10.0.24 or higher, connect to the Amazon RDS database as
the master user and identify the source database as the source replication instance by using the
mysql.rds_set_external_master_gtid command. Use the GTID that you determined in Step 2 of
the To create a backup copy of your existing database procedure under Task 1. The following
command is an example:

CALL mysql.rds_set_external_master_gtid ('source_server_ip_address', 3306,
 'ReplicationUser', 'password', 'GTID', 1);

The source_server_ip_address is the IP address of source replication instance. An EC2
private DNS address isn't currently supported.

Note

Specify credentials other than the prompts shown here as a security best practice.

6. On the Amazon RDS database, to start replication, run the following mysql.rds_start_replication
command:

CALL mysql.rds_start_replication;

7. On the Amazon RDS database, to determine when the replica is up to date with the source
replication instance, run the SHOW REPLICA STATUS command. The results of the SHOW
REPLICA STATUS command include the Seconds_Behind_Master field. When the

Importing data with reduced downtime 3409

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

Seconds_Behind_Master field returns 0, then the replica is up to date with the source
replication instance.

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE STATUS.

For a MariaDB 10.5, 10.6, or 10.11 DB instance, run the mysql.rds_replica_status stored
procedure instead of the MySQL command.

8. After the Amazon RDS database is up to date, turn on automated backups so you can restore
that database if needed. You can turn on or modify automated backups for your Amazon RDS
database by using the Amazon RDS console. For more information, see Introduction to backups.

Task 5: Redirect your live application to your Amazon RDS instance

After the MariaDB or MySQL database is up to date with the source replication instance, you can
now update your live application to use the Amazon RDS instance.

Importing data with reduced downtime 3410

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

To redirect your live application to your MariaDB or MySQL database and stop replication

1. To add the VPC security group for the Amazon RDS database, add the IP address of the server
that hosts the application. For more information on modifying a VPC security group, see
Configure security group rules in the Amazon Virtual Private Cloud User Guide.

2. Verify that the Seconds_Behind_Master field in the SHOW REPLICA STATUS command results
is 0, which indicates that the replica is up to date with the source replication instance.

SHOW REPLICA STATUS;

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE STATUS.

For a MariaDB 10.5, 10.6, or 10.11 DB instance, run the mysql.rds_replica_status procedure
instead of the MySQL command.

3. Close all connections to the source when their transactions complete.

4. Update your application to use the Amazon RDS database. This update typically involves
changing the connection settings to identify the hostname and port of the Amazon RDS
database, the user account and password to connect with, and the database to use.

5. Connect to the DB instance.

For a Multi-AZ DB cluster, connect to the writer DB instance.

6. Stop replication for the Amazon RDS instance by using the following mysql.rds_stop_replication
command:

CALL mysql.rds_stop_replication;

7. Run the appropriate Amazon RDS stored procedure on your Amazon RDS database to reset the
replication configuration so this instance is no longer identified as a replica.

• mysql.rds_reset_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_reset_external_source (RDS for MySQL major versions 8.4 and higher)

MySQL 8.4 and higher versions

Importing data with reduced downtime 3411

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-security-group-rules.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

CALL mysql.rds_reset_external_source;

MariaDB and MySQL 8.0 and lower versions

CALL mysql.rds_reset_external_master;

8. Turn on additional Amazon RDS features such as Multi-AZ support and read replicas. For more
information, see Configuring and managing a Multi-AZ deployment for Amazon RDS and
Working with DB instance read replicas.

Importing data from any source to an Amazon RDS for MySQL DB
instance

The following steps walk you through importing data to an Amazon RDS DB instance:

Step 1: Create flat files containing the data to be loaded

Use a common format, such as comma-separated values (CSV), to store the data to be loaded. Each
table must have its own file—you can't combine data for multiple tables in the same file. Give each
file the same name as the table it corresponds to. The file extension can be anything you like. For
example, if the table name is sales, the file name could be sales.csv or sales.txt.

If possible, order the data by the primary key of the table being loaded. Doing this drastically
improves load times and minimizes disk storage requirements.

The speed and efficiency of this procedure depends on keeping the size of the files small. If the
uncompressed size of any individual file is larger than 1 GiB, split it into multiple files and load
each one separately.

On Unix-like systems (including Linux), use the split command. For example, the following
command splits the sales.csv file into multiple files of less than 1 GiB, splitting only at line
breaks (-C 1024m). The names of the new files include ascending numerical suffixes. The following
command produces files with names such as sales.part_00 and sales.part_01.

split -C 1024m -d sales.csv sales.part_

Similar utilities are available for other operating systems.

Importing data from any source 3412

Amazon Relational Database Service User Guide

You can store the flat files anywhere. However, when you load the data in Step 5, you must invoke
the mysql shell from the same location where the files exist, or use the absolute path for the files
when you run LOAD DATA LOCAL INFILE.

Step 2: Stop any applications from accessing the target DB instance

Before starting a large load, stop all application activity from accessing the target DB instance that
you plan to load to. We recommend this particularly if other sessions will be modifying the tables
being loaded or tables that they reference. Doing this reduces the risk of constraint violations
occurring during the load and improves load performance. It also makes it possible to restore
the DB instance to the point just before the load without losing changes made by processes not
involved in the load.

Of course, this might not be possible or practical. If you can't stop applications from accessing the
DB instance before the load, take steps to ensure the availability and integrity of your data. The
specific steps required vary greatly depending upon specific use cases and site requirements.

Step 3: Create a DB snapshot

If you plan to load data into a new DB instance that contains no data, you can skip this step.
Otherwise, we recommend that you create DB snapshots of the target Amazon RDS DB instance
both before and after the data load. Amazon RDS DB snapshots are complete backups of your DB
instance that you can use to restore your DB instance to a known state. When you initiate a DB
snapshot, I/O operations to your DB instance are momentarily suspended while your database is
backed up.

Creating a DB snapshot immediately before the load makes it possible for you to restore the
database to its state before the load, if you need to. A DB snapshot taken immediately after the
load protects you from having to load the data again in case of a mishap. You can also use DB
snapshots after the load to import data into new database instances.

The following example runs the AWS CLI create-db-snapshot command to create a DB snapshot of
the AcmeRDS instance and give the DB snapshot the identifier "preload".

For Linux, macOS, or Unix:

aws rds create-db-snapshot \
 --db-instance-identifier AcmeRDS \
 --db-snapshot-identifier preload

Importing data from any source 3413

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html

Amazon Relational Database Service User Guide

For Windows:

aws rds create-db-snapshot ^
 --db-instance-identifier AcmeRDS ^
 --db-snapshot-identifier preload

You can also use the restore from DB snapshot functionality to create test DB instances for dry runs
or to undo changes made during the load.

Keep in mind that restoring a database from a DB snapshot creates a new DB instance that, like all
DB instances, has a unique identifier and endpoint. To restore the DB instance without changing
the endpoint, first delete the DB instance so that you can reuse the endpoint.

For example, to create a DB instance for dry runs or other testing, you give the DB instance its own
identifier. In the example, AcmeRDS-2" is the identifier. The example connects to the DB instance
using the endpoint associated with AcmeRDS-2. For more information, see restore-db-instance-
from-db-snapshot.

For Linux, macOS, or Unix:

aws rds restore-db-instance-from-db-snapshot \
 --db-instance-identifier AcmeRDS-2 \
 --db-snapshot-identifier preload

For Windows:

aws rds restore-db-instance-from-db-snapshot ^
 --db-instance-identifier AcmeRDS-2 ^
 --db-snapshot-identifier preload

To reuse the existing endpoint, first delete the DB instance and then give the restored database the
same identifier. For more information, see delete-db-instance.

The following example also takes a final DB snapshot of the DB instance before deleting it. This is
optional but recommended.

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier AcmeRDS \

Importing data from any source 3414

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html

Amazon Relational Database Service User Guide

 --final-db-snapshot-identifier AcmeRDS-Final

aws rds restore-db-instance-from-db-snapshot \
 --db-instance-identifier AcmeRDS \
 --db-snapshot-identifier preload

For Windows:

aws rds delete-db-instance ^
 --db-instance-identifier AcmeRDS ^
 --final-db-snapshot-identifier AcmeRDS-Final

aws rds restore-db-instance-from-db-snapshot ^
 --db-instance-identifier AcmeRDS ^
 --db-snapshot-identifier preload

Step 4 (Optional): Turn off Amazon RDS automated backups

Warning

Don't turn off automated backups if you need to perform point-in-time recovery.

Turning off automated backups is a performance optimization and isn't required for data
loads. Turning off automated backups erases all existing backups. As a result, after you turn off
automated backups, point-in-time recovery isn't possible. Manual DB snapshots aren't affected by
turning off automated backups. All existing manual DB snapshots are still available for restore.

Turning off automated backups reduces load time by about 25 percent and reduces the amount
of storage space required during the load. If you plan to load data into a new DB instance that
contains no data, turning off backups is an easy way to speed up the load and avoid using the
additional storage needed for backups. However, in some cases you might plan to load into a DB
instance that already contains data. If so, weigh the benefits of turning off backups against the
impact of losing the ability to perform point-in-time-recovery.

DB instances have automated backups turned on by default (with a one day retention period). To
turn off automated backups, set the backup retention period to zero. After the load, you can turn
backups back on by setting the backup retention period to a nonzero value. To turn on or turn off
backups, Amazon RDS shuts the DB instance down and then restarts it to turn MariaDB or MySQL
logging on or off.

Importing data from any source 3415

Amazon Relational Database Service User Guide

Run the AWS CLI modify-db-instance command to set the backup retention to zero and apply
the change immediately. Setting the retention period to zero requires a DB instance restart, so wait
until the restart has completed before proceeding. For more information, see modify-db-instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier AcmeRDS \
 --apply-immediately \
 --backup-retention-period 0

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier AcmeRDS ^
 --apply-immediately ^
 --backup-retention-period 0

You can check the status of your DB instance with the AWS CLI describe-db-instances command.
The following example displays the DB instance status of the AcmeRDS DB instance:

aws rds describe-db-instances --db-instance-identifier AcmeRDS --query "*[].
{DBInstanceStatus:DBInstanceStatus}"

When the DB instance status is available, you're ready to proceed to the next step.

Step 5: Load the data

To read rows from your flat files into the database tables, use the MySQL LOAD DATA LOCAL
INFILE statement.

Note

You must invoke the mysql shell from the same location where your flat files exist, or use
the absolute path for the files when you run LOAD DATA LOCAL INFILE.

The following example shows how to load data from a file named sales.txt into a table named
Sales in the database:

Importing data from any source 3416

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

mysql> LOAD DATA LOCAL INFILE 'sales.txt' INTO TABLE Sales FIELDS TERMINATED BY ' '
 ENCLOSED BY '' ESCAPED BY '\\';
Query OK, 1 row affected (0.01 sec)
Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

For more information about the LOAD DATA statement, see LOAD DATA Statement in the MySQL
documentation.

Step 6: Turn back on Amazon RDS automated backups

If you turned off Amazon RDS automated backups in Step 4, after the load is finished, turn
automated backups on by setting the backup retention period back to its preload value. As noted
in Step 4, Amazon RDS restarts the DB instance, so be prepared for a brief outage.

The following example runs the AWS CLI modify-db-instance command to turn on automated
backups for the AcmeRDS DB instance and set the retention period to one day:

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier AcmeRDS \
 --backup-retention-period 1 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier AcmeRDS ^
 --backup-retention-period 1 ^
 --apply-immediately

Importing data from any source 3417

https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

Working with MySQL replication in Amazon RDS

You usually use read replicas to configure replication between Amazon RDS DB instances. For
general information about read replicas, see Working with DB instance read replicas. For specific
information about working with read replicas on Amazon RDS for MySQL, see Working with MySQL
read replicas.

You can use global transaction identifiers (GTIDs) for replication with RDS for MySQL. For more
information, see Using GTID-based replication.

You can also set up replication between an RDS for MySQL DB instance and a MariaDB or MySQL
instance that is external to Amazon RDS. For information about configuring replication with
an external source, see Configuring binary log file position replication with an external source
instance.

For any of these replication options, you can use either row-based replication, statement-based,
or mixed replication. Row-based replication only replicates the changed rows that result from a
SQL statement. Statement-based replication replicates the entire SQL statement. Mixed replication
uses statement-based replication when possible, but switches to row-based replication when
SQL statements that are unsafe for statement-based replication are run. In most cases, mixed
replication is recommended. The binary log format of the DB instance determines whether
replication is row-based, statement-based, or mixed. For information about setting the binary log
format, see Configuring RDS for MySQL binary logging.

Note

You can configure replication to import databases from a MariaDB or MySQL instance that
is external to Amazon RDS, or to export databases to such instances. For more information,
see Importing data to an Amazon RDS for MySQL database with reduced downtime and
Exporting data from a MySQL DB instance by using replication.

After you restore your DB instance from a snapshot or perform a point-in-time recovery, you can
view the last recovered binlog position from the source database in the RDS console. Under Logs &
events, enter binlog. The binlog position appears under System notes.

Topics

• Working with MySQL read replicas

MySQL replication 3418

Amazon Relational Database Service User Guide

• Using GTID-based replication

• Configuring binary log file position replication with an external source instance

• Configuring multi-source-replication for Amazon RDS for MySQL

Working with MySQL read replicas

Following, you can find specific information about working with read replicas on RDS for MySQL.
For general information about read replicas and instructions for using them, see Working with DB
instance read replicas.

For more information about MySQL read replicas, see the following topics.

• Configuring replication filters with MySQL

• Configuring delayed replication with MySQL

• Updating read replicas with MySQL

• Working with Multi-AZ read replica deployments with MySQL

• Using cascading read replicas with RDS for MySQL

• Monitoring replication lag for MySQL read replicas

• Starting and stopping replication with MySQL read replicas

• Troubleshooting a MySQL read replica problem

Configuring read replicas with MySQL

Before a MySQL DB instance can serve as a replication source, make sure to enable automatic
backups on the source DB instance. To do this, set the backup retention period to a value other
than 0. This requirement also applies to a read replica that is the source DB instance for another
read replica. Automatic backups are supported for read replicas running any version of MySQL. You
can configure replication based on binary log coordinates for a MySQL DB instance.

You can configure replication using global transaction identifiers (GTIDS) on the following versions:

• RDS for MySQL version 5.7.44 and higher 5.7 versions

• RDS for MySQL version 8.0.28 and higher 8.0 versions

• RDS for MySQL version 8.4.3 and higher 8.4 versions

MySQL read replicas 3419

Amazon Relational Database Service User Guide

For more information, see Using GTID-based replication.

You can create up to 15 read replicas from one DB instance within the same Region. For replication
to operate effectively, each read replica should have the same amount of compute and storage
resources as the source DB instance. If you scale the source DB instance, also scale the read replicas.

RDS for MySQL supports cascading read replicas. To learn how to configure cascading read replicas,
see Using cascading read replicas with RDS for MySQL.

You can run multiple read replica create and delete actions at the same time that reference the
same source DB instance. When you perform these actions, stay within the limit of 15 read replicas
for each source instance.

A read replica of a MySQL DB instance can't use a lower DB engine version than its source DB
instance.

Preparing MySQL DB instances that use MyISAM

If your MySQL DB instance uses a nontransactional engine such as MyISAM, you need to perform
the following steps to successfully set up your read replica. These steps are required to make sure
that the read replica has a consistent copy of your data. These steps are not required if all of your
tables use a transactional engine such as InnoDB.

1. Stop all data manipulation language (DML) and data definition language (DDL) operations
on non-transactional tables in the source DB instance and wait for them to complete. SELECT
statements can continue running.

2. Flush and lock the tables in the source DB instance.

3. Create the read replica using one of the methods in the following sections.

4. Check the progress of the read replica creation using, for example, the DescribeDBInstances
API operation. Once the read replica is available, unlock the tables of the source DB instance and
resume normal database operations.

Configuring replication filters with MySQL

You can use replication filters to specify which databases and tables are replicated with a read
replica. Replication filters can include databases and tables in replication or exclude them from
replication.

The following are some use cases for replication filters:

MySQL read replicas 3420

Amazon Relational Database Service User Guide

• To reduce the size of a read replica. With replication filtering, you can exclude the databases and
tables that aren't needed on the read replica.

• To exclude databases and tables from read replicas for security reasons.

• To replicate different databases and tables for specific use cases at different read replicas. For
example, you might use specific read replicas for analytics or sharding.

• For a DB instance that has read replicas in different AWS Regions, to replicate different databases
or tables in different AWS Regions.

Note

You can also use replication filters to specify which databases and tables are replicated
with a primary MySQL DB instance that is configured as a replica in an inbound replication
topology. For more information about this configuration, see Configuring binary log file
position replication with an external source instance.

Topics

• Setting replication filtering parameters for RDS for MySQL

• Replication filtering limitations for RDS for MySQL

• Replication filtering examples for RDS for MySQL

• Viewing the replication filters for a read replica

Setting replication filtering parameters for RDS for MySQL

To configure replication filters, set the following replication filtering parameters on the read
replica:

• replicate-do-db – Replicate changes to the specified databases. When you set this parameter
for a read replica, only the databases specified in the parameter are replicated.

• replicate-ignore-db – Don't replicate changes to the specified databases. When the
replicate-do-db parameter is set for a read replica, this parameter isn't evaluated.

• replicate-do-table – Replicate changes to the specified tables. When you set this parameter
for a read replica, only the tables specified in the parameter are replicated. Also, when the
replicate-do-db or replicate-ignore-db parameter is set, make sure to include the
database that includes the specified tables in replication with the read replica.

MySQL read replicas 3421

Amazon Relational Database Service User Guide

• replicate-ignore-table – Don't replicate changes to the specified tables. When the
replicate-do-table parameter is set for a read replica, this parameter isn't evaluated.

• replicate-wild-do-table – Replicate tables based on the specified database and table
name patterns. The % and _ wildcard characters are supported. When the replicate-do-db or
replicate-ignore-db parameter is set, make sure to include the database that includes the
specified tables in replication with the read replica.

• replicate-wild-ignore-table – Don't replicate tables based on the specified database and
table name patterns. The % and _ wildcard characters are supported. When the replicate-do-
table or replicate-wild-do-table parameter is set for a read replica, this parameter isn't
evaluated.

The parameters are evaluated in the order that they are listed. For more information about how
these parameters work, see the MySQL documentation:

• For general information, see Replica Server Options and Variables.

• For information about how database replication filtering parameters are evaluated, see
Evaluation of Database-Level Replication and Binary Logging Options.

• For information about how table replication filtering parameters are evaluated, see Evaluation
of Table-Level Replication Options.

By default, each of these parameters has an empty value. On each read replica, you can use these
parameters to set, change, and delete replication filters. When you set one of these parameters,
separate each filter from others with a comma.

You can use the % and _ wildcard characters in the replicate-wild-do-table and replicate-
wild-ignore-table parameters. The % wildcard matches any number of characters, and the _
wildcard matches only one character.

The binary logging format of the source DB instance is important for replication because it
determines the record of data changes. The setting of the binlog_format parameter determines
whether the replication is row-based or statement-based. For more information, see Configuring
RDS for MySQL binary logging.

MySQL read replicas 3422

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-table-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-table-options.html

Amazon Relational Database Service User Guide

Note

All data definition language (DDL) statements are replicated as statements, regardless of
the binlog_format setting on the source DB instance.

Replication filtering limitations for RDS for MySQL

The following limitations apply to replication filtering for RDS for MySQL:

• Each replication filtering parameter has a 2,000-character limit.

• Commas aren't supported in replication filters for parameter values. In a list of parameters,
commas can only be used as value separators. For example, ParameterValue='`a,b`' isn’t
supported, but ParameterValue='a,b' is.

• The MySQL --binlog-do-db and --binlog-ignore-db options for binary log filtering aren't
supported.

• Replication filtering doesn't support XA transactions.

For more information, see Restrictions on XA Transactions in the MySQL documentation.

Replication filtering examples for RDS for MySQL

To configure replication filtering for a read replica, modify the replication filtering parameters in
the parameter group associated with the read replica.

Note

You can't modify a default parameter group. If the read replica is using a default parameter
group, create a new parameter group and associate it with the read replica. For more
information on DB parameter groups, see Parameter groups for Amazon RDS.

You can set parameters in a parameter group using the AWS Management Console, AWS CLI, or
RDS API. For information about setting parameters, see Modifying parameters in a DB parameter
group in Amazon RDS. When you set parameters in a parameter group, all of the DB instances
associated with the parameter group use the parameter settings. If you set the replication filtering
parameters in a parameter group, make sure that the parameter group is associated only with read
replicas. Leave the replication filtering parameters empty for source DB instances.

MySQL read replicas 3423

https://dev.mysql.com/doc/refman/8.0/en/xa-restrictions.html

Amazon Relational Database Service User Guide

The following examples set the parameters using the AWS CLI. These examples set ApplyMethod
to immediate so that the parameter changes occur immediately after the CLI command
completes. If you want a pending change to be applied after the read replica is rebooted, set
ApplyMethod to pending-reboot.

The following examples set replication filters:

• Including databases in replication

• Including tables in replication

• Including tables in replication with wildcard characters

• Excluding databases from replication

• Excluding tables from replication

• Excluding tables from replication using wildcard characters

Example Including databases in replication

The following example includes the mydb1 and mydb2 databases in replication.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-do-
db,ParameterValue='mydb1,mydb2',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-do-
db,ParameterValue='mydb1,mydb2',ApplyMethod=immediate"

Example Including tables in replication

The following example includes the table1 and table2 tables in database mydb1 in replication.

MySQL read replicas 3424

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-do-
table,ParameterValue='mydb1.table1,mydb1.table2',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-do-
table,ParameterValue='mydb1.table1,mydb1.table2',ApplyMethod=immediate"

Example Including tables in replication using wildcard characters

The following example includes tables with names that begin with order and return in database
mydb in replication.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-wild-do-table,ParameterValue='mydb.order
%,mydb.return%',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-wild-do-table,ParameterValue='mydb.order
%,mydb.return%',ApplyMethod=immediate"

Example Excluding databases from replication

The following example excludes the mydb5 and mydb6 databases from replication.

For Linux, macOS, or Unix:

MySQL read replicas 3425

Amazon Relational Database Service User Guide

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-ignore-
db,ParameterValue='mydb5,mydb6',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-ignore-
db,ParameterValue='mydb5,mydb6',ApplyMethod=immediate"

Example Excluding tables from replication

The following example excludes tables table1 in database mydb5 and table2 in database mydb6
from replication.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-ignore-
table,ParameterValue='mydb5.table1,mydb6.table2',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-ignore-
table,ParameterValue='mydb5.table1,mydb6.table2',ApplyMethod=immediate"

Example Excluding tables from replication using wildcard characters

The following example excludes tables with names that begin with order and return in database
mydb7 from replication.

For Linux, macOS, or Unix:

MySQL read replicas 3426

Amazon Relational Database Service User Guide

aws rds modify-db-parameter-group \
 --db-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-wild-ignore-table,ParameterValue='mydb7.order
%,mydb7.return%',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-wild-ignore-table,ParameterValue='mydb7.order
%,mydb7.return%',ApplyMethod=immediate"

Viewing the replication filters for a read replica

You can view the replication filters for a read replica in the following ways:

• Check the settings of the replication filtering parameters in the parameter group associated with
the read replica.

For instructions, see Viewing parameter values for a DB parameter group in Amazon RDS.

• In a MySQL client, connect to the read replica and run the SHOW REPLICA STATUS statement.

In the output, the following fields show the replication filters for the read replica:

• Replicate_Do_DB

• Replicate_Ignore_DB

• Replicate_Do_Table

• Replicate_Ignore_Table

• Replicate_Wild_Do_Table

• Replicate_Wild_Ignore_Table

For more information about these fields, see Checking Replication Status in the MySQL
documentation.

Configuring delayed replication with MySQL

You can use delayed replication as a strategy for disaster recovery. With delayed replication, you
specify the minimum amount of time, in seconds, to delay replication from the source to the
MySQL read replicas 3427

https://dev.mysql.com/doc/refman/8.0/en/replication-administration-status.html

Amazon Relational Database Service User Guide

read replica. In the event of a disaster, such as a table deleted unintentionally, you complete the
following steps to recover from the disaster quickly:

• Stop replication to the read replica before the change that caused the disaster is sent to it.

Use the mysql.rds_stop_replication stored procedure to stop replication.

• Start replication and specify that replication stops automatically at a log file location.

You specify a location just before the disaster using the mysql.rds_start_replication_until stored
procedure.

• Promote the read replica to be the new source DB instance by using the instructions in
Promoting a read replica to be a standalone DB instance.

Note

• On RDS for MySQL 8.4, delayed replication is supported for MySQL 8.4.3 and higher. On
RDS for MySQL 8.0, delayed replication is supported for MySQL 8.0.28 and higher. On
RDS for MySQL 5.7, delayed replication is supported for MySQL 5.7.44 and higher.

• Use stored procedures to configure delayed replication. You can't configure delayed
replication with the AWS Management Console, the AWS CLI, or the Amazon RDS API.

• You can use replication based on global transaction identifiers (GTIDs) in a delayed
replication configuration for the following versions:

• RDS for MySQL version 5.7.44 and higher 5.7 versions

• RDS for MySQL version 8.0.28 and higher 8.0 versions

• RDS for MySQL version 8.4.3 and higher 8.4 versions

If you use GTID-based replication, use the mysql.rds_start_replication_until_gtid stored
procedure instead of the mysql.rds_start_replication_until stored procedure. For more
information about GTID-based replication, see Using GTID-based replication.

Topics

• Configuring delayed replication during read replica creation

• Modifying delayed replication for an existing read replica

• Setting a location to stop replication to a read replica

MySQL read replicas 3428

Amazon Relational Database Service User Guide

• Promoting a read replica

Configuring delayed replication during read replica creation

To configure delayed replication for any future read replica created from a DB instance, run the
mysql.rds_set_configuration stored procedure with the target delay parameter.

To configure delayed replication during read replica creation

1. Using a MySQL client, connect to the MySQL DB instance to be the source for read replicas as
the master user.

2. Run the mysql.rds_set_configuration stored procedure with the target delay parameter.

For example, run the following stored procedure to specify that replication is delayed by at
least one hour (3,600 seconds) for any read replica created from the current DB instance.

call mysql.rds_set_configuration('target delay', 3600);

Note

After running this stored procedure, any read replica you create using the AWS CLI or
Amazon RDS API is configured with replication delayed by the specified number of
seconds.

Modifying delayed replication for an existing read replica

To modify delayed replication for an existing read replica, run the mysql.rds_set_source_delay
stored procedure.

To modify delayed replication for an existing read replica

1. Using a MySQL client, connect to the read replica as the master user.

2. Use the mysql.rds_stop_replication stored procedure to stop replication.

3. Run the mysql.rds_set_source_delay stored procedure.

For example, run the following stored procedure to specify that replication to the read replica
is delayed by at least one hour (3600 seconds).

MySQL read replicas 3429

Amazon Relational Database Service User Guide

call mysql.rds_set_source_delay(3600);

4. Use the mysql.rds_start_replication stored procedure to start replication.

Setting a location to stop replication to a read replica

After stopping replication to the read replica, you can start replication and then stop it at a
specified binary log file location using the mysql.rds_start_replication_until stored procedure.

To start replication to a read replica and stop replication at a specific location

1. Using a MySQL client, connect to the source MySQL DB instance as the master user.

2. Run the mysql.rds_start_replication_until stored procedure.

The following example initiates replication and replicates changes until it reaches location 120
in the mysql-bin-changelog.000777 binary log file. In a disaster recovery scenario, assume
that location 120 is just before the disaster.

call mysql.rds_start_replication_until(
 'mysql-bin-changelog.000777',
 120);

Replication stops automatically when the stop point is reached. The following RDS event is
generated: Replication has been stopped since the replica reached the stop
point specified by the rds_start_replication_until stored procedure.

Promoting a read replica

After replication is stopped, in a disaster recovery scenario, you can promote a read replica to be
the new source DB instance. For information about promoting a read replica, see Promoting a read
replica to be a standalone DB instance.

Updating read replicas with MySQL

Read replicas are designed to support read queries, but you might need occasional updates. For
example, you might need to add an index to optimize the specific types of queries accessing the
replica.

MySQL read replicas 3430

Amazon Relational Database Service User Guide

Although you can enable updates by setting the read_only parameter to 0 in the DB parameter
group for the read replica, we recommend that you don't do so because it can cause problems if
the read replica becomes incompatible with the source DB instance. For maintenance operations,
we recommend that you use blue/green deployments. For more information, see Using Blue/Green
Deployments for database updates.

If you disable read-only on a read replica, change the value of the read_only parameter back to 1
as soon as possible.

Working with Multi-AZ read replica deployments with MySQL

You can create a read replica from either single-AZ or Multi-AZ DB instance deployments. You
use Multi-AZ deployments to improve the durability and availability of critical data, but you can't
use the Multi-AZ secondary to serve read-only queries. Instead, you can create read replicas from
high-traffic Multi-AZ DB instances to offload read-only queries. If the source instance of a Multi-
AZ deployment fails over to the secondary, any associated read replicas automatically switch to use
the secondary (now primary) as their replication source. For more information, see Configuring and
managing a Multi-AZ deployment for Amazon RDS.

You can create a read replica as a Multi-AZ DB instance. Amazon RDS creates a standby of your
replica in another Availability Zone for failover support for the replica. Creating your read replica as
a Multi-AZ DB instance is independent of whether the source database is a Multi-AZ DB instance.

Using cascading read replicas with RDS for MySQL

RDS for MySQL supports cascading read replicas. With cascading read replicas, you can scale reads
without adding overhead to your source RDS for MySQL DB instance.

With cascading read replicas, your RDS for MySQL DB instance sends data to the first read replica in
the chain. That read replica then sends data to the second replica in the chain, and so on. The end
result is that all read replicas in the chain have the changes from the RDS for MySQL DB instance,
but without the overhead solely on the source DB instance.

You can create a series of up to three read replicas in a chain from a source RDS for MySQL DB
instance. For example, suppose that you have an RDS for MySQL DB instance, mysql-main. You
can do the following:

• Starting with mysql-main, create the first read replica in the chain, read-replica-1.

• Next, from read-replica-1, create the next read replica in the chain, read-replica-2.

• Finally, from read-replica-2, create the third read replica in the chain, read-replica-3.

MySQL read replicas 3431

Amazon Relational Database Service User Guide

You can't create another read replica beyond this third cascading read replica in the series for
mysql-main. A complete series of instances from an RDS for MySQL source DB instance through
to the end of a series of cascading read replicas can consist of at most four DB instances.

For cascading read replicas to work, each source RDS for MySQL DB instance must have automated
backups turned on. To turn on automatic backups on a read replica, first create the read replica,
and then modify the read replica to turn on automatic backups. For more information, see Creating
a read replica.

As with any read replica, you can promote a read replica that's part of a cascade. Promoting a
read replica from within a chain of read replicas removes that replica from the chain. For example,
suppose that you want to move some of the workload from your mysql-main DB instance to a
new instance for use by the accounting department only. Assuming the chain of three read replicas
from the example, you decide to promote read-replica-2. The chain is affected as follows:

• Promoting read-replica-2 removes it from the replication chain.

• It is now a full read/write DB instance.

• It continues replicating to read-replica-3, just as it was doing before promotion.

• Your mysql-main continues replicating to read-replica-1.

For more information about promoting read replicas, see Promoting a read replica to be a
standalone DB instance.

Monitoring replication lag for MySQL read replicas

For MySQL read replicas, you can monitor replication lag in Amazon CloudWatch by viewing
the Amazon RDS ReplicaLag metric. The ReplicaLag metric reports the value of the
Seconds_Behind_Master field of the SHOW REPLICA STATUS command.

Common causes for replication lag for MySQL are the following:

• A network outage.

• Writing to tables that have different indexes on a read replica. If the read_only parameter
is set to 0 on the read replica, replication can break if the read replica becomes incompatible
with the source DB instance. After you've performed maintenance tasks on the read replica, we
recommend that you set the read_only parameter back to 1.

• Using a nontransactional storage engine such as MyISAM. Replication is only supported for the
InnoDB storage engine on MySQL.

MySQL read replicas 3432

Amazon Relational Database Service User Guide

When the ReplicaLag metric reaches 0, the replica has caught up to the source DB instance. If
the ReplicaLag metric returns -1, then replication is currently not active. ReplicaLag = -1 is
equivalent to Seconds_Behind_Master = NULL.

Starting and stopping replication with MySQL read replicas

You can stop and restart the replication process on an Amazon RDS DB instance by calling the
system stored procedures mysql.rds_stop_replication and mysql.rds_start_replication. You can do
this when replicating between two Amazon RDS instances for long-running operations such as
creating large indexes. You also need to stop and start replication when importing or exporting
databases. For more information, see Importing data to an Amazon RDS for MySQL database with
reduced downtime and Exporting data from a MySQL DB instance by using replication.

If replication is stopped for more than 30 consecutive days, either manually or due to a replication
error, Amazon RDS terminates replication between the source DB instance and all read replicas.
It does so to prevent increased storage requirements on the source DB instance and long failover
times. The read replica DB instance is still available. However, replication can't be resumed
because the binary logs required by the read replica are deleted from the source DB instance
after replication is terminated. You can create a new read replica for the source DB instance to
reestablish replication.

Troubleshooting a MySQL read replica problem

For MySQL DB instances, in some cases read replicas present replication errors or data
inconsistencies (or both) between the read replica and its source DB instance. This problem occurs
when some binary log (binlog) events or InnoDB redo logs aren't flushed during a failure of the
read replica or the source DB instance. In these cases, manually delete and recreate the read
replicas. You can reduce the chance of this happening by setting the following parameter values:
sync_binlog=1 and innodb_flush_log_at_trx_commit=1. These settings might reduce
performance, so test their impact before implementing the changes in a production environment.

Warning

In the parameter group associated with the source DB instance, we recommend keeping
these parameter values: sync_binlog=1 and innodb_flush_log_at_trx_commit=1.
These parameters are dynamic. If you don't want to use these settings, we recommend
temporarily setting those values before executing any operation on the source DB instance
that might cause it to restart. These operations include, but are not limited to, rebooting,
rebooting with failover, upgrading the database version, and changing the DB instance

MySQL read replicas 3433

Amazon Relational Database Service User Guide

class or its storage. The same recommendation applies to creating new read replicas for the
source DB instance.
Failure to follow this guidance increases the risk of read replicas presenting replication
errors or data inconsistencies (or both) between the read replica and its source DB instance.

The replication technologies for MySQL are asynchronous. Because they are asynchronous,
occasional BinLogDiskUsage increases on the source DB instance and ReplicaLag on the
read replica are to be expected. For example, a high volume of write operations to the source
DB instance can occur in parallel. In contrast, write operations to the read replica are serialized
using a single I/O thread, which can lead to a lag between the source instance and read replica.
For more information about read-only replicas in the MySQL documentation, see Replication
implementation details.

You can do several things to reduce the lag between updates to a source DB instance and the
subsequent updates to the read replica, such as the following:

• Sizing a read replica to have a storage size and DB instance class comparable to the source DB
instance.

• Ensuring that parameter settings in the DB parameter groups used by the source DB instance and
the read replica are compatible. For more information and an example, see the discussion of the
max_allowed_packet parameter later in this section.

Amazon RDS monitors the replication status of your read replicas and updates the Replication
State field of the read replica instance to Error if replication stops for any reason. An example
might be if DML queries run on your read replica conflict with the updates made on the source DB
instance.

You can review the details of the associated error thrown by the MySQL engine by viewing the
Replication Error field. Events that indicate the status of the read replica are also generated,
including RDS-EVENT-0045, RDS-EVENT-0046, and RDS-EVENT-0047. For more information about
events and subscribing to events, see Working with Amazon RDS event notification. If a MySQL
error message is returned, review the error number in the MySQL error message documentation.

One common issue that can cause replication errors is when the value for the
max_allowed_packet parameter for a read replica is less than the max_allowed_packet
parameter for the source DB instance. The max_allowed_packet parameter is a custom
parameter that you can set in a DB parameter group. You use max_allowed_packet to

MySQL read replicas 3434

https://dev.mysql.com/doc/refman/8.0/en/replication-implementation-details.html
https://dev.mysql.com/doc/refman/8.0/en/replication-implementation-details.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Amazon Relational Database Service User Guide

specify the maximum size of DML code that can be run on the database. In some cases, the
max_allowed_packet value in the DB parameter group associated with a read replica is smaller
than the max_allowed_packet value in the DB parameter group associated with the source
DB instance. In these cases, the replication process can throw the error Packet bigger than
'max_allowed_packet' bytes and stop replication. To fix the error, have the source DB
instance and read replica use DB parameter groups with the same max_allowed_packet
parameter values.

Other common situations that can cause replication errors include the following:

• Writing to tables on a read replica. In some cases, you might create indexes on a read replica
that are different from the indexes on the source DB instance. If you do, set the read_only
parameter to 0 to create the indexes. If you write to tables on the read replica, it might break
replication if the read replica becomes incompatible with the source DB instance. After you
perform maintenance tasks on the read replica, we recommend that you set the read_only
parameter back to 1.

• Using a non-transactional storage engine such as MyISAM. Read replicas require a transactional
storage engine. Replication is only supported for the InnoDB storage engine on MySQL.

• Using unsafe nondeterministic queries such as SYSDATE(). For more information, see
Determination of safe and unsafe statements in binary logging.

If you decide that you can safely skip an error, you can follow the steps described in the section
Skipping the current replication error for RDS for MySQL. Otherwise, you can first delete the read
replica. Then you create an instance using the same DB instance identifier so that the endpoint
remains the same as that of your old read replica. If a replication error is fixed, the Replication
State changes to replicating.

Using GTID-based replication

The following content explains how to use global transaction identifiers (GTIDs) with binary log
(binlog) replication among Amazon RDS for MySQL DB instances.

If you use binlog replication and aren't familiar with GTID-based replication with MySQL, see
Replication with global transaction identifiers in the MySQL documentation.

GTID-based replication is supported for the following versions:

• All RDS for MySQL 8.4 versions

GTID-based replication 3435

https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://dev.mysql.com/doc/refman/5.7/en/replication-gtids.html

Amazon Relational Database Service User Guide

• All RDS for MySQL 8.0 versions

• All RDS for MySQL 5.7 versions

All MySQL DB instances in a replication configuration must meet this version requirement.

Topics

• Overview of global transaction identifiers (GTIDs)

• Parameters for GTID-based replication

• Enabling GTID-based replication for new read replicas for RDS for MySQL

• Enabling GTID-based replication for existing read replicas for RDS for MySQL

• Disabling GTID-based replication for a MySQL DB instance with read replicas

Overview of global transaction identifiers (GTIDs)

Global transaction identifiers (GTIDs) are unique identifiers generated for committed MySQL
transactions. You can use GTIDs to make binlog replication simpler and easier to troubleshoot.

MySQL uses two different types of transactions for binlog replication:

• GTID transactions – Transactions that are identified by a GTID.

• Anonymous transactions – Transactions that don't have a GTID assigned.

In a replication configuration, GTIDs are unique across all DB instances. GTIDs simplify replication
configuration because when you use them, you don't have to refer to log file positions. GTIDs also
make it easier to track replicated transactions and determine whether the source instance and
replicas are consistent.

You can use GTID-based replication to replicate data with RDS for MySQL read replicas. You can
configure GTID-based replication when you are creating new read replicas, or you can convert
existing read replicas to use GTID-based replication.

You can also use GTID-based replication in a delayed replication configuration with RDS for MySQL.
For more information, see Configuring delayed replication with MySQL.

Parameters for GTID-based replication

Use the following parameters to configure GTID-based replication.

GTID-based replication 3436

Amazon Relational Database Service User Guide

Parameter Valid values Description

gtid_mode OFF, OFF_PERMISSIVE ,
ON_PERMISSIVE , ON

OFF specifies that new transactions are
anonymous transactions (that is, don't have
GTIDs), and a transaction must be anonymous
to be replicated.

OFF_PERMISSIVE specifies that new
transactions are anonymous transactions, but
all transactions can be replicated.

ON_PERMISSIVE specifies that new transacti
ons are GTID transactions, but all transactions
can be replicated.

ON specifies that new transactions are GTID
transactions, and a transaction must be a GTID
transaction to be replicated.

enforce_g
tid_consi
stency

OFF, ON, WARN OFF allows transactions to violate GTID
consistency.

ON prevents transactions from violating GTID
consistency.

WARN allows transactions to violate GTID
consistency but generates a warning when a
violation occurs.

Note

In the AWS Management Console, the gtid_mode parameter appears as gtid-mode.

For GTID-based replication, use these settings for the parameter group for your DB instance or read
replica:

GTID-based replication 3437

Amazon Relational Database Service User Guide

• ON and ON_PERMISSIVE apply only to outgoing replication from an RDS DB instance. Both of
these values cause your RDS DB instance to use GTIDs for transactions that are replicated. ON
requires that the target database also use GTID-based replication. ON_PERMISSIVE makes GTID-
based replication optional on the target database.

• OFF_PERMISSIVE, if set, means that your RDS DB instances can accept incoming replication
from a source database. They can do this regardless of whether the source database uses GTID-
based replication.

• OFF, if set, means that your RDS DB instance only accepts incoming replication from source
databases that don't use GTID-based replication.

For more information about parameter groups, see Parameter groups for Amazon RDS.

Enabling GTID-based replication for new read replicas for RDS for MySQL

When GTID-based replication is enabled for an RDS for MySQL DB instance, GTID-based replication
is configured automatically for read replicas of the DB instance.

To enable GTID-based replication for new read replicas

1. Make sure that the parameter group associated with the DB instance has the following
parameter settings:

• gtid_mode – ON or ON_PERMISSIVE

• enforce_gtid_consistency – ON

For more information about setting configuration parameters using parameter groups, see
Parameter groups for Amazon RDS.

2. If you changed the parameter group of the DB instance, reboot the DB instance. For more
information on how to do so, see Rebooting a DB instance.

3. Create one or more read replicas of the DB instance. For more information on how to do so,
see Creating a read replica.

Amazon RDS attempts to establish GTID-based replication between the MySQL DB instance
and the read replicas using the MASTER_AUTO_POSITION. If the attempt fails, Amazon RDS
uses log file positions for replication with the read replicas. For more information about the
MASTER_AUTO_POSITION, see GTID auto-positioning in the MySQL documentation.

GTID-based replication 3438

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-auto-positioning.html

Amazon Relational Database Service User Guide

Enabling GTID-based replication for existing read replicas for RDS for MySQL

For an existing MySQL DB instance with read replicas that doesn't use GTID-based replication, you
can configure GTID-based replication between the DB instance and the read replicas.

To enable GTID-based replication for existing read replicas

1. If the DB instance or any read replica is using an 8.0 version of RDS for MySQL version lower
than 8.0.26, upgrade the DB instance or read replica to 8.0.26 or a higher MySQL 8.0 version.
All RDS for MySQL 8.4 versions and 5.7 versions support GTID-based replication.

For more information, see Upgrades of the RDS for MySQL DB engine.

2. (Optional) Reset the GTID parameters and test the behavior of the DB instance and read
replicas:

a. Make sure that the parameter group associated with the DB instance and each read replica
has the enforce_gtid_consistency parameter set to WARN.

For more information about setting configuration parameters using parameter groups, see
Parameter groups for Amazon RDS.

b. If you changed the parameter group of the DB instance, reboot the DB instance. If you
changed the parameter group for a read replica, reboot the read replica.

For more information, see Rebooting a DB instance.

c. Run your DB instance and read replicas with your normal workload and monitor the log
files.

If you see warnings about GTID-incompatible transactions, adjust your application so that
it only uses GTID-compatible features. Make sure that the DB instance is not generating
any warnings about GTID-incompatible transactions before proceeding to the next step.

3. Reset the GTID parameters for GTID-based replication that allows anonymous transactions
until the read replicas have processed all of them.

a. Make sure that the parameter group associated with the DB instance and each read replica
has the following parameter settings:

• gtid_mode – ON_PERMISSIVE

• enforce_gtid_consistency – ON

GTID-based replication 3439

Amazon Relational Database Service User Guide

b. If you changed the parameter group of the DB instance, reboot the DB instance. If you
changed the parameter group for a read replica, reboot the read replica.

4. Wait for all of your anonymous transactions to be replicated. To check that these are
replicated, do the following:

a. Run the following statement on your source DB instance.

MySQL 8.4

SHOW BINARY LOG STATUS;

MySQL 5.7 and 8.0

SHOW MASTER STATUS;

Note the values in the File and Position columns.

b. On each read replica, use the file and position information from its source instance in the
previous step to run the following query.

SELECT MASTER_POS_WAIT('file', position);

For example, if the file name is mysql-bin-changelog.000031 and the position is 107,
run the following statement.

SELECT MASTER_POS_WAIT('mysql-bin-changelog.000031', 107);

If the read replica is past the specified position, the query returns immediately. Otherwise,
the function waits. Proceed to the next step when the query returns for all read replicas.

5. Reset the GTID parameters for GTID-based replication only.

a. Make sure that the parameter group associated with the DB instance and each read replica
has the following parameter settings:

• gtid_mode – ON

• enforce_gtid_consistency – ON

b. Reboot the DB instance and each read replica.

GTID-based replication 3440

Amazon Relational Database Service User Guide

6. On each read replica, run the following procedure.

MySQL 8.4 and higher major versions

CALL mysql.rds_set_source_auto_position(1);

MySQL 8.0 and lower major versions

CALL mysql.rds_set_master_auto_position(1);

Disabling GTID-based replication for a MySQL DB instance with read replicas

You can disable GTID-based replication for a MySQL DB instance with read replicas.

To disable GTID-based replication for a MySQL DB instance with read replicas

1. On each read replica, run the following procedure:

MySQL 8.4 and higher major versions

CALL mysql.rds_set_source_auto_position(0);

MySQL 8.0 and lower major versions

CALL mysql.rds_set_master_auto_position(0);

2. Reset the gtid_mode to ON_PERMISSIVE.

a. Make sure that the parameter group associated with the MySQL DB instance and each
read replica has gtid_mode set to ON_PERMISSIVE.

For more information about setting configuration parameters using parameter groups, see
Parameter groups for Amazon RDS.

b. Reboot the MySQL DB instance and each read replica. For more information about
rebooting, see Rebooting a DB instance.

3. Reset the gtid_mode to OFF_PERMISSIVE.

a. Make sure that the parameter group associated with the MySQL DB instance and each
read replica has gtid_mode set to OFF_PERMISSIVE.

GTID-based replication 3441

Amazon Relational Database Service User Guide

b. Reboot the MySQL DB instance and each read replica.

4. Wait for all of the GTID transactions to be applied on all of the read replicas. To check that
these are applied, do the following steps:

a. On the MySQL DB instance, run the following command:

MySQL 8.4

SHOW BINARY LOG STATUS

MySQL 5.7 and 8.0

SHOW MASTER STATUS

Your output should be similar to the following output.

File Position

mysql-bin-changelog.000031 107

Note the file and position in your output.

b. On each read replica, use the file and position information from its source instance in the
previous step to run the following query:

MySQL 8.4 and MySQL 8.0.26 and higher MySQL 8.0 versions

SELECT SOURCE_POS_WAIT('file', position);

MySQL 5.7

SELECT MASTER_POS_WAIT('file', position);

For example, if the file name is mysql-bin-changelog.000031 and the position is 107,
run the following statement:

MySQL 8.4 and MySQL 8.0.26 and higher MySQL 8.0 versions
GTID-based replication 3442

Amazon Relational Database Service User Guide

SELECT SOURCE_POS_WAIT('mysql-bin-changelog.000031', 107);

MySQL 5.7

SELECT MASTER_POS_WAIT('mysql-bin-changelog.000031', 107);

5. Reset the GTID parameters to disable GTID-based replication.

a. Make sure that the parameter group associated with the MySQL DB instance and each
read replica has the following parameter settings:

• gtid_mode – OFF

• enforce_gtid_consistency – OFF

b. Reboot the MySQL DB instance and each read replica.

Configuring binary log file position replication with an external source
instance

You can set up replication between an RDS for MySQL or MariaDB DB instance and a MySQL or
MariaDB instance that is external to Amazon RDS using binary log file replication.

Topics

• Before you begin

• Configuring binary log file position replication with an external source instance

Before you begin

You can configure replication using the binary log file position of replicated transactions.

The permissions required to start replication on an Amazon RDS DB instance are restricted and not
available to your Amazon RDS master user. Because of this, make sure that you use the Amazon
RDS mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0
and lower) or mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher), and
mysql.rds_start_replication commands to set up replication between your live database and your
Amazon RDS database.

Configuring binary log file position replication with an external source instance 3443

Amazon Relational Database Service User Guide

To set the binary logging format for a MySQL or MariaDB database, update the binlog_format
parameter. If your DB instance uses the default DB instance parameter group, create a new DB
parameter group to modify the binlog_format parameter. In MariaDB and MySQL 8.0 and lower
versions, binlog_format defaults to MIXED. However, you can also set binlog_format to ROW
or STATEMENT if you need a specific binary log (binlog) format. Reboot your DB instance for the
change to take effect. In MySQL 8.4 and higher versions, binlog_format defaults to ROW.

For information about setting the binlog_format parameter, see Configuring RDS for MySQL
binary logging. For information about the implications of different MySQL replication types,
see Advantages and disadvantages of statement-based and row-based replication in the MySQL
documentation.

Configuring binary log file position replication with an external source instance

Follow these guidelines when you set up an external source instance and a replica on Amazon RDS:

• Monitor failover events for the Amazon RDS DB instance that is your replica. If a failover occurs,
then the DB instance that is your replica might be recreated on a new host with a different
network address. For information on how to monitor failover events, see Working with Amazon
RDS event notification.

• Maintain the binlogs on your source instance until you have verified that they have been applied
to the replica. This maintenance makes sure that you can restore your source instance in the
event of a failure.

• Turn on automated backups on your Amazon RDS DB instance. Turning on automated backups
makes sure that you can restore your replica to a particular point in time if you need to re-
synchronize your source instance and replica. For information on backups and point-in-time
restore, see Backing up, restoring, and exporting data.

To configure binary log file replication with an external source instance

1. Make the source MySQL or MariaDB instance read-only.

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

2. Run the SHOW MASTER STATUS command on the source MySQL or MariaDB instance to
determine the binlog location.

You receive output similar to the following example.

Configuring binary log file position replication with an external source instance 3444

https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html

Amazon Relational Database Service User Guide

File Position

 mysql-bin-changelog.000031 107

3. Copy the database from the external instance to the Amazon RDS DB instance using
mysqldump. For very large databases, you might want to use the procedure in Importing data
to an Amazon RDS for MySQL database with reduced downtime.

For Linux, macOS, or Unix:

mysqldump --databases database_name \
 --single-transaction \
 --compress \
 --order-by-primary \
 -u local_user \
 -plocal_password | mysql \
 --host=hostname \
 --port=3306 \
 -u RDS_user_name \
 -pRDS_password

For Windows:

mysqldump --databases database_name ^
 --single-transaction ^
 --compress ^
 --order-by-primary ^
 -u local_user ^
 -plocal_password | mysql ^
 --host=hostname ^
 --port=3306 ^
 -u RDS_user_name ^
 -pRDS_password

Note

Make sure that there isn't a space between the -p option and the entered password.

Configuring binary log file position replication with an external source instance 3445

Amazon Relational Database Service User Guide

To specify the host name, user name, port, and password to connect to your Amazon RDS DB
instance, use the --host, --user (-u), --port and -p options in the mysql command.
The host name is the Domain Name Service (DNS) name from the Amazon RDS DB instance
endpoint, for example myinstance.123456789012.us-east-1.rds.amazonaws.com.
You can find the endpoint value in the instance details in the AWS Management Console.

4. Make the source MySQL or MariaDB instance writeable again.

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

For more information on making backups for use with replication, see the MySQL
documentation.

5. In the AWS Management Console, add the IP address of the server that hosts the external
database to the virtual private cloud (VPC) security group for the Amazon RDS DB instance.
For more information on modifying a VPC security group, see Security groups for your VPC in
the Amazon Virtual Private Cloud User Guide.

The IP address can change when the following conditions are met:

• You are using a public IP address for communication between the external source instance
and the DB instance.

• The external source instance was stopped and restarted.

If these conditions are met, verify the IP address before adding it.

You might also need to configure your local network to permit connections from the
IP address of your Amazon RDS DB instance. You do this so that your local network can
communicate with your external MySQL or MariaDB instance. To find the IP address of the
Amazon RDS DB instance, use the host command.

host db_instance_endpoint

The host name is the DNS name from the Amazon RDS DB instance endpoint.

Configuring binary log file position replication with an external source instance 3446

https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Relational Database Service User Guide

6. Using the client of your choice, connect to the external instance and create a user to use for
replication. Use this account solely for replication and restrict it to your domain to improve
security. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

Note

Specify a password other than the prompt shown here as a security best practice.

7. For the external instance, grant REPLICATION CLIENT and REPLICATION SLAVE privileges
to your replication user. For example, to grant the REPLICATION CLIENT and REPLICATION
SLAVE privileges on all databases for the 'repl_user' user for your domain, issue the
following command.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

8. Make the Amazon RDS DB instance the replica. To do so, first connect to the Amazon RDS DB
instance as the master user. Then identify the external MySQL or MariaDB database as the
source instance by using the mysql.rds_set_external_source (RDS for MySQL major versions
8.4 and higher) or mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major
versions 8.0 and lower) command. Use the master log file name and master log position that
you determined in step 2. The following commands are examples.

MySQL 8.4

CALL mysql.rds_set_external_source ('mysourceserver.mydomain.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

MariaDB and MySQL 8.0 and 5.7

CALL mysql.rds_set_external_master ('mymasterserver.mydomain.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1);

Note

On RDS for MySQL, you can choose to use delayed replication by running the
mysql.rds_set_external_source_with_delay (RDS for MySQL major versions 8.4

Configuring binary log file position replication with an external source instance 3447

Amazon Relational Database Service User Guide

and higher) or mysql.rds_set_external_master_with_delay (RDS for MariaDB
and RDS for MySQL major versions 8.0 and lower) stored procedure instead.
On RDS for MySQL, one reason to use delayed replication is to turn on
disaster recovery with the mysql.rds_start_replication_until stored procedure.
Currently, RDS for MariaDB supports delayed replication but doesn't support the
mysql.rds_start_replication_until procedure.

9. On the Amazon RDS DB instance, issue the mysql.rds_start_replication command to start
replication.

CALL mysql.rds_start_replication;

Configuring multi-source-replication for Amazon RDS for MySQL

With multi-source replication, you can set up an Amazon RDS for MySQL DB instance as a replica
that receives binary log events from more than one RDS for MySQL source DB instance. Multi-
source replication is supported for RDS for MySQL DB instances running the following engine
versions:

• All MySQL 8.4 versions

• 8.0.35 and higher minor versions

• 5.7.44 and higher minor versions

For information about MySQL multi-source replication, see MySQL Multi-Source Replication in
the MySQL documentation. The MySQL documentation contains detailed information about this
feature, while this topic describes how to configure and manage the multi-source replication
channels on your RDS for MySQL DB instances.

Use cases for multi-source replication

The following cases are good candidates for using multi-source replication on RDS for MySQL:

• Applications that need to merge or combine multiple shards on separate DB instances into a
single shard.

• Applications that need to generate reports from data consolidated from multiple sources.

Configuring multi-source replication 3448

https://dev.mysql.com/doc/refman/8.0/en/replication-multi-source.html

Amazon Relational Database Service User Guide

• Requirements to create consolidated long-term backups of data that's distributed among
multiple RDS for MySQL DB instances.

Prerequisites for multi-source replication

Before you configure multi-source replication, complete the following prerequisites.

• Make sure that each source RDS for MySQL DB instance has automatic backups enabled.
Enabling automatic backups enables binary logging. To learn how to enable automatic backups,
see the section called “Enabling automated backups”.

• To avoid replication errors, we recommended that you block write operations to the source DB
instances. You can do so by setting the read-only parameter to ON in a custom parameter
group attached to the RDS for MySQL source DB instance. You can use the AWS Management
Console or the AWS CLI to create a new custom parameter group or to modify an existing one.
For more information, see the section called “Creating a DB parameter group” and the section
called “Modifying parameters in a DB parameter group”.

• For each source DB instance, add the IP address of the instance to the Amazon virtual private
cloud (VPC) security group for the multi-source DB instance. To identify the IP address of a
source DB instance, you can run the command dig RDS Endpoint. Run the command from an
Amazon EC2 instance in the same VPC as the destination multi-source DB instance.

• For each source DB instance, use a client to connect to the DB instance and create a database
user with the required privileges for replication, as in the following example.

CREATE USER 'repl_user' IDENTIFIED BY 'password';
GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user';

Configuring multi-source replication channels on RDS for MySQL DB instances

Configuring multi-source replication channels is similar to configuring single source replication. For
multi-source replication, you first turn on binary logging on the source instance. Then, you import
data from the sources to the multi-source replica. Then, you start replication from each source by
using the binary log coordinates or by using GTID auto-positioning.

To configure an RDS for MySQL DB instance as a multi-source replica of two or more RDS for
MySQL DB instances, perform the following steps.

Topics

Configuring multi-source replication 3449

Amazon Relational Database Service User Guide

• Step 1: Import data from the source DB instances to the multi-source replica

• Step 2: Start replication from the source DB instances to the multi-source replica

Step 1: Import data from the source DB instances to the multi-source replica

Perform the following steps on each source DB instance.

Before you import the data from a source to the multi-source replica, determine the current binary
log file and position by running the SHOW MASTER STATUS command. Take note of these details
for use in the next step. In this example output, the file is mysql-bin-changelog.000031 and
the position is 107.

File Position

mysql-bin-changelog.000031 107

Now copy the database from the source DB instance to the multi-source replica by using
mysqldump, as in the following example.

mysqldump --databases database_name \
 --single-transaction \
 --compress \
 --order-by-primary \
 -u RDS_user_name \
 -p RDS_password \
 --host=RDS Endpoint | mysql \
 --host=RDS Endpoint \
 --port=3306 \
 -u RDS_user_name \
-p RDS_password

After copying the database, you can set the read-only parameter to OFF on the source DB instance.

Step 2: Start replication from the source DB instances to the multi-source replica

For each source DB instance, use the master user credentials to connect to the instance, and run
the following two stored procedures. These stored procedures configure replication on a channel
and start replication. This example uses the binlog file name and position from the example output
in the previous step.

Configuring multi-source replication 3450

Amazon Relational Database Service User Guide

CALL mysql.rds_set_external_source_for_channel('mysourcehost.example.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 1, 'channel_1');
CALL mysql.rds_start_replication_for_channel('channel_1');

For more information about using these stored procedures and others to set up and manage your
replication channels, see the section called “Managing multi-source replication”.

Using filters with multi-source replication

You can use replication filters to specify which databases and tables are replicated with in multi-
source replica. Replication filters can include databases and tables in replication or exclude them
from replication. For more information on replication filters, see the section called “Configuring
replication filters”.

With multi-source replication, you can configure replication filters globally or at the channel level.
Channel-level filtering is available only with supported DB instances running version 8.0 or version
8.4. The following examples show how to configure filters globally or at the channel level.

Note the following requirements and behavior with filtering in multi-source replication:

• Back quotes (``) around the channel names are required.

• If you change replication filters in the parameter group, the multi-source replica's sql_thread
for all channels with updates are restarted to apply the changes dynamically. If an update
involves a global filter, then all replication channels in the running state are restarted.

• All global filters are applied before any channel-specific filters.

• If a filter is applied globally and at the channel level, then only the channel-level filter is applied.
For example, if the filters are replicate_ignore_db="db1,`channel_22`:db2", then
replicate_ignore_db set to db1 is applied to all channels except for channel_22, and only
channel_22 ignores changes from db2.

Example 1: Setting a global filter

In the following example, the temp_data database is excluded from replication in every channel.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
--db-parameter-group-name myparametergroup \

Configuring multi-source replication 3451

Amazon Relational Database Service User Guide

--parameters "ParameterName=replicate-ignore-
db,ParameterValue='temp_data',ApplyMethod=immediate"

Example 2: Setting a channel-level filter

In the following example, changes from the sample22 database are only included in channel
channel_22. Similarly, changes from the sample99 database are only included in channel
channel_99.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
--db-parameter-group-name myparametergroup \
--parameters "ParameterName=replicate-do-db,ParameterValue='\`channel_22\`:sample22,
\`channel_99\`:sample99',ApplyMethod=immediate"

Monitoring multi-source replication channels

You can monitor individual channels in a multi-source replica by using the following methods:

• To monitor the status of all channels or a specific channel, connect to the multi-source
replica and run the SHOW REPLICA STATUS or SHOW REPLICA STATUS FOR CHANNEL
'channel_name' command. For more information, see Checking Replication Status in the
MySQL documentation.

• To receive notification when a replication channel is started, stopped, or removed, use RDS event
notification. For more information, see the section called “Working with Amazon RDS event
notification”.

• To monitor the lag for a specific channel, check the ReplicationChannelLag metric for it.
Data points for this metric have a period of 60 seconds (1 minute) are available for 15 days. To
locate the replication channel lag for a channel, use the instance identifier and the replication
channel name. To receive notification when this lag exceeds a particular threshold, you can set
up a CloudWatch alarm. For more information, see the section called “Monitoring RDS with
CloudWatch”.

Considerations and best practices for multi-source replication

Before you use multi-source replication on RDS for MySQL, review the following considerations and
best practices:

Configuring multi-source replication 3452

https://dev.mysql.com/doc/refman/8.0/en/replication-administration-status.html

Amazon Relational Database Service User Guide

• Make sure that a DB instance configured as a multi-source replica has sufficient resources such as
throughput, memory, CPU, and IOPS to handle the workload from multiple source instances.

• Regularly monitor resource utilization on your multi-source replica and adjust the storage or
instance configuration to handle the workload without straining resources.

• You can configure multi-threaded replication on a multi-source replica by setting the system
variable replica_parallel_workers to a value greater than 0. In this case, the number of
threads allocated to each channel is the value of this variable, plus one coordinator thread to
manage the applier threads.

• Configure replication filters appropriately to avoid conflicts. To replicate an entire database
to another database on a replica, you can use the --replicate-rewrite-db option.
For example, you can replicate all tables in database A to database B on a replica instance.
This approach can be helpful when all source instances are using the same schema naming
convention. For information about the --replicate-rewrite-db option, see Replica Server
Options and Variables in the MySQL documentation.

• To avoid replication errors, avoid writing to the replica. We recommended that you enable the
read_only parameter on multi-source replicas to block write operations. Doing so helps to
eliminate replication issues caused by conflicting write operations.

• To increase the performance of read operations such as sorts and high-load joins that are
executed on the multi-source replica, consider using RDS Optimized Reads. This feature can help
with queries that depend on large temporary tables or sort files. For more information, see the
section called “Improving query performance with RDS Optimized Reads”.

• To minimize replication lag and improve the performance of a multi-source replica, consider
enabling optimized writes. For more information, see the section called “Improving write
performance with RDS Optimized Writes for MySQL”.

• Perform management operations (such as changing configuration) on one channel at a
time, and avoid performing changes to multiple channels from multiple connections. These
practices can lead to conflicts in replication operations. For example, simultaneously executing
rds_skip_repl_error_for_channel and rds_start_replication_for_channel
procedures from multiple connections can cause skipping of events on a different channel than
intended.

• You can enable backups on a multi-source replication instance and export data from that
instance to an Amazon S3 bucket to store it for long-term purposes. However, it's important
to also configure backups with appropriate retention on the individual source instances. For
information about exporting snapshot data to Amazon S3, see the section called “Exporting DB
snapshot data to Amazon S3”.

Configuring multi-source replication 3453

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html

Amazon Relational Database Service User Guide

• To distribute the read workload on a multi-source replica, you can create read replicas from a
multi-source replica. You can locate these read replicas in different AWS Regions based on your
application's requirements. For more information about read replicas, see the section called
“MySQL read replicas”.

Limitations for multi-source replication on RDS for MySQL

The following limitations apply to multi-source replication on RDS for MySQL:

• Currently, RDS for MySQL supports configuring a maximum of 15 channels for a multi-source
replica.

• A read replica instance can't be configured as a multi-source replica.

• To configure multi-source replication on RDS for MySQL running engine version 5.7, Performance
Schema must be enabled on the replica instance. Enabling Performance Schema is optional on
RDS for MySQL running engine version 8.0 or 8.4.

• For RDS for MySQL running engine version 5.7, replication filters apply to all replication
channels. For RDS for MySQL running engine version 8.0 or 8.4, you can configure filters that
apply to all replication channels or to individual channels.

• Restoring an RDS snapshot or performing a Point-in-time-Restore (PITR) doesn't restore multi-
source replica channel configurations.

• When you create a read replica of a multi-source replica, it only replicates data from the multi-
source instance. It doesn't restore any channel configuration.

• MySQL doesn't support setting up a different number of parallel workers for each channel. Every
channel gets the same number of parallel workers based on the replica_parallel_workers
value.

The following additional limitations apply if your multi-source replication target is a Multi-AZ DB
cluster:

• A channel must be configured for a source RDS for MySQL instance before any writes to that
instance occur.

• Each source RDS for MySQL instance must have GTID-based replication enabled.

• A failover event on the DB cluster removes the multi-source replication configuration. Restoring
that configuration requires repeating the configuration steps.

Configuring multi-source replication 3454

Amazon Relational Database Service User Guide

Configuring active-active clusters for RDS for MySQL

An active-active cluster in Amazon RDS is a database configuration where multiple nodes actively
handle read and write operations, distributing the workload across instances to improve availability
and scalability. Each node in the cluster is synchronized to maintain data consistency, enabling high
availability and faster failover in case of node failure

You can set up an active-active cluster for RDS for MySQL by using the MySQL Group Replication
plugin. The Group Replication plugin is supported for RDS for MySQL DB instances running the
following versions:

• All MySQL 8.4 versions

• MySQL 8.0.35 and higher minor versions

For information about MySQL Group Replication, see Group Replication in the MySQL
documentation. The MySQL documentation contains detailed information about this feature, while
this topic describes how to configure and manage the plugin on your RDS for MySQL DB instances.

Note

For the sake of brevity, all mentions of "active-active" cluster in this topic refer to active-
active clusters using the MySQL Group Replication plugin.

Use cases for active-active clusters

The following cases are good candidates for using active-active clusters:

• Applications that need all of the DB instances in the cluster to support write operations. The
Group Replication plugin keeps the data consistent on each DB instance in the active-active
cluster. For more information about how this works, see Group Replication in the MySQL
documentation.

• Applications that require continuous availability of the database. With an active-active cluster,
the data is retained on the all of the DB instances in the cluster. If one DB instance fails, the
application can reroute traffic to another DB instance in the cluster.

• Applications that might need to split read and write operations among different DB instances
in the cluster for load balancing purposes. With an active-active cluster, your applications can

Configuring active-active clusters 3455

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-summary.html

Amazon Relational Database Service User Guide

send read traffic to specific DB instances and write traffic to others. You can also switch which DB
instances to send reads or writes to at any time.

Topics

• Limitations and considerations for active-active clusters

• Preparing for a cross-VPC active-active cluster

• Required parameter settings for active-active clusters

• Converting an existing DB instance to an active-active cluster

• Setting up an active-active cluster with new DB instances

• Adding a DB instance to an active-active cluster

• Monitoring active-active clusters

• Stopping Group Replication on a DB instance in an active-active cluster

• Renaming a DB instance in an active-active cluster

• Removing a DB instance from an active-active cluster

Limitations and considerations for active-active clusters

Active-active clusters in Amazon RDS offer enhanced availability and scalability by distributing
workloads across multiple instances. However, there are important limitations and considerations
to keep in mind when using this architecture.

The following sections outline key factors such as replication delays, conflict resolution, resource
allocation, and failover behavior. Understanding these considerations can help ensure optimal
performance and reliability in active-active cluster deployments.

Topics

• Limitations for RDS for MySQL active-active clusters

• Considerations and best practices for RDS for MySQL active-active clusters

Limitations for RDS for MySQL active-active clusters

The following limitations apply to active-active clusters for RDS for MySQL:

• The master user name can't be rdsgrprepladmin for DB instances in an active-active cluster.
This user name is reserved for Group Replication connections.

Limitations and considerations for active-active clusters 3456

Amazon Relational Database Service User Guide

• For DB instances with read replicas in active-active clusters, a prolonged replication status other
than Replicating can cause log files to exceed storage limits. For information about the status
of read replicas, see Monitoring read replication.

• Blue/green deployments aren't supported for DB instances in an active-active cluster. For more
information, see Using Amazon RDS Blue/Green Deployments for database updates.

• Kerberos authentication isn't supported for DB instances in an active-active cluster. For more
information, see Using Kerberos authentication for Amazon RDS for MySQL.

• The DB instances in a Multi-AZ DB cluster can't be added to an active-active cluster. However, the
DB instances in a Multi-AZ DB instance deployment can be added to an active-active cluster. For
more information, see Configuring and managing a Multi-AZ deployment for Amazon RDS.

• Tables that don't have a primary key aren't replicated in an active-active cluster because writes
are rejected by the Group Replication plugin.

• Non-InnoDB tables aren't replicated in an active-active cluster.

• Active-active clusters don't support concurrent DML and DDL statements on different DB
instances in the cluster.

• You can't configure an active-active cluster to use single-primary mode for the group's
replication mode. For this configuration, we recommend using a Multi-AZ DB cluster instead. For
more information, see Multi-AZ DB cluster deployments for Amazon RDS.

• Multi-source replication isn't supported for DB instances in an active-active cluster.

• A cross-Region active-active cluster can't enforce certificate authority (CA) verification for Group
Replication connections.

Considerations and best practices for RDS for MySQL active-active clusters

Before you use RDS for MySQL active-active clusters, review the following considerations and best
practices:

• Active-active clusters can't have more than nine DB instances.

• With the Group Replication plugin, you can control the transaction consistency guarantees of
the active-active cluster. For more information, see Transaction Consistency Guarantees in the
MySQL documentation.

• Conflicts are possible when different DB instances update the same row in an active-active
cluster. For information about conflicts and conflict resolution, see Group Replication in the
MySQL documentation.

Limitations and considerations for active-active clusters 3457

https://dev.mysql.com/doc/refman/8.0/en/group-replication-consistency-guarantees.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-summary.html

Amazon Relational Database Service User Guide

• For fault tolerance, include at least three DB instances in your active-active cluster. It is possible
to configure an active-active cluster with only one or two DB instances, but the cluster won't
be fault tolerant. For information about fault tolerance, see Fault-tolerance in the MySQL
documentation.

• When a DB instance joins an existing active-active cluster and is running the same engine version
as the lowest engine version in the cluster, the DB instance joins in read-write mode.

• When a DB instance joins an existing active-active cluster and is running a higher engine version
than the lowest engine version in the cluster, the DB instance must remain in read-only mode.

• If you enable Group Replication for a DB instance by setting its
rds.group_replication_enabled parameter to 1 in the DB parameter group, but replication
hasn't started or has failed to start, the DB instance is placed in super-read-only mode to
prevent data inconsistencies. For information about super-read-only mode, see the MySQL
documentation.

• You can upgrade a DB instance in an active-active cluster, but the DB instance is read-only until
all of the other DB instances in the active-active cluster are upgraded to same engine version or a
higher engine version. When you upgrade a DB instance, the DB instance automatically joins the
same active-active cluster when the upgrade completes. To avoid an unintended switch to read-
only mode for a DB instance, disable automatic minor version upgrades for it. For information
about upgrading a MySQL DB instance, see Upgrades of the RDS for MySQL DB engine.

• You can add a DB instance in a Multi-AZ DB instance deployment to an existing active-active
cluster. You can also convert a Single-AZ DB instance in an active-active cluster to a Multi-AZ
DB instance deployment. If a primary DB instance in a Multi-AZ deployment fails, that primary
instance fails over to the standby instance. The new primary DB instance automatically joins
the same cluster after failover completes. For more information about Multi-AZ DB instance
deployments, see Multi-AZ DB instance deployments for Amazon RDS.

• We recommend that the DB instances in an active-active cluster have different time ranges
for their maintenance windows. This practice avoids multiple DB instances in the cluster going
offline for maintenance at the same time. For more information, see Amazon RDS maintenance
window.

• Active-active clusters can use SSL for connections between DB instances. To configure SSL
connections, set the group_replication_recovery_use_ssl and group_replication_ssl_mode
parameters. The values for these parameters must match for all DB instances in the active-active
cluster.

Limitations and considerations for active-active clusters 3458

https://dev.mysql.com/doc/refman/8.0/en/group-replication-fault-tolerance.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_use_ssl
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_ssl_mode

Amazon Relational Database Service User Guide

Currently, active-active clusters don't support certificate authority (CA) verification for
connections between AWS Regions. So, the group_replication_ssl_mode parameter must be set
to DISABLED (the default) or REQUIRED for cross-Region clusters.

• An RDS for MySQL active-active cluster runs in multi-primary mode. The default value of the
group_replication_enforce_update_everywhere_checks is ON and the parameter is static. When
this parameter is set to ON, applications can't insert into a table that has cascading foreign key
constraints.

• An RDS for MySQL active-active cluster uses the MySQL communication stack for connection
security instead of XCOM. For more information, see Communication Stack for Connection
Security Management in the MySQL documentation.

• When a DB parameter group is associated with a DB instance in an active-active cluster, we
recommend only associating this DB parameter group with other DB instances that are in the
cluster.

• Active-active clusters only support RDS for MySQL DB instances. These DB instances must be
running supported versions of the DB engine.

• When a DB instance in an active-active cluster has an unexpected failure, RDS starts recovery
of the DB instance automatically. If the DB instance doesn't recover, we recommend replacing it
with a new DB instance by performing a point-in-time recovery with a healthy DB instance in the
cluster. For instructions, see Adding a DB instance to an active-active cluster using point-in-time
recovery.

• You can delete a DB instance in an active-active cluster without affecting the other DB instances
in the cluster. For information about deleting a DB instance, see Deleting a DB instance.

• When a DB instance unintentionally leaves an active-active cluster, by default the
group_replication_exit_state_action parameter changes to OFFLINE_MODE. In
this state, the DB instance is inaccessible and you must reboot the DB instance to bring
it back online and to rejoin the cluster. You can change this behavior by modifying the
group_replication_exit_state_action parameter in a custom parameter group. By
setting the parameter to READ_ONLY, when the DB instance unintentionally leaves a cluster, it
enters a super read-only state rather than going offline.

Preparing for a cross-VPC active-active cluster

You can configure an active-active cluster with Amazon RDS for MySQL DB instances in more than
one VPC. The VPCs can be in the same AWS Region or different AWS Regions.

Preparing for a cross-VPC active-active cluster 3459

https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_ssl_mode
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_enforce_update_everywhere_checks
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_enforce_update_everywhere_checks
https://dev.mysql.com/doc/refman/8.0/en/group-replication-connection-security.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-connection-security.html

Amazon Relational Database Service User Guide

Note

Sending traffic between multiple AWS Regions might incur additional costs. For more
information, see Overview of Data Transfer Costs for Common Architectures.

If you are configuring an active-active cluster in a single VPC, you can skip these steps and move on
to Setting up an active-active cluster with new DB instances.

To prepare for an active-active cluster with DB instances in more than one VPC

1. Make sure the IPv4 address ranges in the CIDR blocks meet the following requirements:

• The IPv4 address ranges in the CIDR blocks of the VPCs can't overlap.

• All of the IPv4 address ranges in the CIDR blocks either must be lower than
128.0.0.0/subnet_mask or higher than 128.0.0.0/subnet_mask.

The following ranges illustrate these requirements:

• 10.1.0.0/16 in one VPC and 10.2.0.0/16 in the other VPC is supported.

• 172.1.0.0/16 in one VPC and 172.2.0.0/16 in the other VPC is supported.

• 10.1.0.0/16 in one VPC and 10.1.0.0/16 in the other VPC is not supported because the
ranges overlap.

• 10.1.0.0/16 in one VPC and 172.1.0.0/16 in the other VPC is not supported because
one is below 128.0.0.0/subnet_mask and the other is above 128.0.0.0/subnet_mask.

For information about CIDR blocks, see VPC CIDR blocks in the Amazon VPC User Guide.

2. In each VPC, make sure DNS resolution and DNS hostnames are both enabled.

For instructions, see View and update DNS attributes for your VPC in the Amazon VPC User
Guide.

3. Configure the VPCs so that you can route traffic between them in one of the following ways:

• Create a VPC peering connection between the VPCs.

For instructions, see Create a VPC peering connection in the Amazon VPC Peering Guide.
In each VPC, make sure there are inbound rules for your security groups that reference

Preparing for a cross-VPC active-active cluster 3460

https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-cidr-blocks.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html

Amazon Relational Database Service User Guide

security groups in the peered VPC. Doing so allows traffic to flow to and from instances that
are associated with the referenced security group in the peered VPC. For instructions, see
Update your security groups to reference peer security groups in the Amazon VPC Peering
Guide.

• Create a transit gateway between the VPCs.

For instructions, see Getting started with transit gateways in Amazon VPC Transit Gateways.
In each VPC, make sure there are inbound rules for your security groups that allow traffic
from the other VPC, such as inbound rules that specify the CIDR of the other VPC. Doing so
allows traffic to flow to and from instances that are associated with the referenced security
group in the active-active cluster. For more information, see Control traffic to your AWS
resources using security groups in the Amazon VPC User Guide.

Required parameter settings for active-active clusters

Configuring parameters for active-active clusters in Amazon RDS for MySQL is essential for
maintaining consistent performance and operational stability. This table details the key parameters
that control replication, conflict resolution, and workload distribution. Correct configuration
ensures efficient synchronization between nodes, minimizes replication lag, and optimizes resource
utilization in distributed or high-traffic environments.

Parameter Description Required setting

binlog_format Sets the binary logging
format. The default value for
RDS for MySQL 8.0 versions
and lower is MIXED. The
default value for RDS for
MySQL 8.4 versions is ROW.
For more information, see
the MySQL documentation.

ROW

enforce_gtid_consi
stency

Enforces GTID consistency
for statement execution.
The default value for RDS
for MySQL is OFF. For more

ON

Required parameter settings for active-active clusters 3461

https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-security-groups.html
https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-security-groups.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-getting-started.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#working-with-security-groups
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#working-with-security-groups
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format

Amazon Relational Database Service User Guide

Parameter Description Required setting

information, see the MySQL
documentation.

group_replication_
group_name

Sets the Group Replicati
on name to a UUID. The
UUID format is 11111111-
2222-3333-4444-555
555555555 . You can
generate a MySQL UUID by
connecting to a MySQL DB
instance and running SELECT
UUID(). The value must be
the same for all of the DB
instances in the active-active
cluster. For more information,
see the MySQL documenta
tion.

A MySQL UUID

gtid-mode Controls GTID-based logging.
The default value for RDS for
MySQL is OFF_PERMISSIVE .
For more information, see
the MySQL documentation.

ON

Required parameter settings for active-active clusters 3462

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_enforce_gtid_consistency
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_enforce_gtid_consistency
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_mode

Amazon Relational Database Service User Guide

Parameter Description Required setting

rds.custom_dns_res
olution

Specifies whether to allow
DNS resolution from the
Amazon DNS server in your
VPC. DNS resolution must
be enabled when Group
Replication is enabled with
the rds.group_replicat
ion_enabled parameter
. DNS resolution can't be
enabled when Group Replicati
on is disabled with the
rds.group_replicat
ion_enabled parameter
. For more information, see
Amazon DNS server in the
Amazon VPC User Guide.

1

rds.group_replicat
ion_enabled

Specifies whether Group
Replication is enabled for a
DB instance. Group Replicati
on must be enabled on a DB
instance in an active-active
cluster.

1

replica_preserve_c
ommit_order (RDS
for MySQL 8.4 and higher
versions) or slave_pre
serve_commit_order
(RDS for MySQL 8.0 versions)

Controls the order that
transactions are committed
on a replica. The default value
for RDS for MySQL is ON. For
more information, see the
MySQL documentation.

ON

Required parameter settings for active-active clusters 3463

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#AmazonDNS
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#AmazonDNS
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_preserve_commit_order
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_preserve_commit_order

Amazon Relational Database Service User Guide

Converting an existing DB instance to an active-active cluster

The DB engine version of the DB instance you want to migrate to an active-active cluster must be
one of the following versions:

• All MySQL 8.4 versions

• MySQL 8.0.35 and higher minor versions

If you need to upgrade the engine version, see Upgrades of the RDS for MySQL DB engine.

If you are setting up an active-active cluster with DB instances in more than one VPC, make sure
you complete the prerequisites in Preparing for a cross-VPC active-active cluster.

Complete the following steps to migrate an existing DB instance to an active-active cluster for RDS
for MySQL.

Topics

• Step 1: Set the active-active cluster parameters in one or more custom parameter groups

• Step 2: Associate the DB instance with a DB parameter group that has the required Group
Replication parameters set

• Step 3: Create the active-active cluster

• Step 4: Create additional RDS for MySQL DB instances for the active-active cluster

• Step 5: Initialize the group on the DB instance you are converting

• Step 6: Start replication on the other DB instances in the active-active cluster

• Step 7: (Recommended) Check the status of the active-active cluster

Step 1: Set the active-active cluster parameters in one or more custom parameter
groups

The RDS for MySQL DB instances in an active-active cluster must be associated with a custom
parameter group that has the correct setting for required parameters. For information about the
parameters and the required setting for each one, see Required parameter settings for active-active
clusters.

You can set these parameters in new parameter groups or in existing parameter groups. However,
to avoid accidentally affecting DB instances that aren't part of the active-active cluster, we strongly

Converting a DB instance to an active-active cluster 3464

Amazon Relational Database Service User Guide

recommend that you create a new custom parameter group. The DB instances in an active-active
cluster can be associated with the same DB parameter group or with different DB parameter
groups.

You can use the AWS Management Console or the AWS CLI to create a new custom parameter
group. For more information, see Creating a DB parameter group in Amazon RDS. The following
example runs the create-db-parameter-group AWS CLI command to create a custom DB parameter
group named myactivepg for RDS for MySQL 8.0:

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name myactivepg \
 --db-parameter-group-family mysql8.0 \
 --description "Parameter group for active-active clusters"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name myactivepg ^
 --db-parameter-group-family mysql8.0 ^
 --description "Parameter group for active-active clusters"

You can also use the AWS Management Console or the AWS CLI to set the parameters in the
custom parameter group. For more information, see Modifying parameters in a DB parameter
group in Amazon RDS.

The following example runs the modify-db-parameter-group AWS CLI command to set the
parameters for RDS for MySQL 8.0. To use this example with RDS for MySQL 8.4, change
slave_preserve_commit_order to replica_preserve_commit_order.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myactivepg \
 --parameters
 "ParameterName='rds.group_replication_enabled',ParameterValue='1',ApplyMethod=pending-
reboot" \

 "ParameterName='rds.custom_dns_resolution',ParameterValue='1',ApplyMethod=pending-
reboot" \

Converting a DB instance to an active-active cluster 3465

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

 "ParameterName='enforce_gtid_consistency',ParameterValue='ON',ApplyMethod=pending-
reboot" \
 "ParameterName='gtid-mode',ParameterValue='ON',ApplyMethod=pending-
reboot" \

 "ParameterName='binlog_format',ParameterValue='ROW',ApplyMethod=immediate" \

 "ParameterName='slave_preserve_commit_order',ParameterValue='ON',ApplyMethod=immediate"
 \

 "ParameterName='group_replication_group_name',ParameterValue='11111111-2222-3333-4444-555555555555',ApplyMethod=pending-
reboot"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myactivepg ^
 --parameters
 "ParameterName='rds.group_replication_enabled',ParameterValue='1',ApplyMethod=pending-
reboot" ^

 "ParameterName='rds.custom_dns_resolution',ParameterValue='1',ApplyMethod=pending-
reboot" ^

 "ParameterName='enforce_gtid_consistency',ParameterValue='ON',ApplyMethod=pending-
reboot" ^
 "ParameterName='gtid-mode',ParameterValue='ON',ApplyMethod=pending-
reboot" ^

 "ParameterName='binlog_format',ParameterValue='ROW',ApplyMethod=immediate" ^

 "ParameterName='slave_preserve_commit_order',ParameterValue='ON',ApplyMethod=immediate"
 ^

 "ParameterName='group_replication_group_name',ParameterValue='11111111-2222-3333-4444-555555555555',ApplyMethod=pending-
reboot"

Converting a DB instance to an active-active cluster 3466

Amazon Relational Database Service User Guide

Step 2: Associate the DB instance with a DB parameter group that has the
required Group Replication parameters set

Associate the DB instance with a parameter group you created or modified in the previous step. For
instructions, see Associating a DB parameter group with a DB instance in Amazon RDS.

Reboot the DB instance for the new parameter settings to take effect. For instructions, see
Rebooting a DB instance.

Step 3: Create the active-active cluster

In the DB parameter group associated with the DB instance, set the
group_replication_group_seeds parameter to the endpoint of the DB instance you are
converting.

You can use the AWS Management Console or the AWS CLI to set the parameter. You don't
need to reboot the DB instance after setting this parameter. For more information about setting
parameters, see Modifying parameters in a DB parameter group in Amazon RDS.

The following example runs the modify-db-parameter-group AWS CLI command to set the
parameters:

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myactivepg \
 --parameters
 "ParameterName='group_replication_group_seeds',ParameterValue='myactivedb1.123456789012.us-
east-1.rds.amazonaws.com:3306',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myactivepg ^
 --parameters
 "ParameterName='group_replication_group_seeds',ParameterValue='myactivedb1.123456789012.us-
east-1.rds.amazonaws.com:3306',ApplyMethod=immediate"

Converting a DB instance to an active-active cluster 3467

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

Step 4: Create additional RDS for MySQL DB instances for the active-active cluster

To create additional DB instances for the active-active cluster, perform point-in-time recovery on
the DB instance you are converting. For instructions, see Adding a DB instance to an active-active
cluster using point-in-time recovery.

An active-active cluster can have up to nine DB instances. Perform point-in-time recovery on the
DB instance until you have the number of DB instances you want for the cluster. When you perform
point-in-recovery, make sure you associate the DB instance you are adding with a DB parameter
group that has rds.group_replication_enabled set to 1. Otherwise, Group Replication won't
start on the newly added DB instance.

Step 5: Initialize the group on the DB instance you are converting

Initialize the group and start replication:

1. Connect to that DB instance you are converting in a SQL client. For more information about
connecting to an RDS for MySQL DB instance, see Connecting to your MySQL DB instance.

2. In the SQL client, run the following stored procedures and replace
group_replication_user_password with the password for the rdsgrprepladmin user.
The rdsgrprepladmin user is reserved for Group Replication connections in an active-active
cluster. The password for this user must be the same on all of the DB instances in an active-
active cluster.

call mysql.rds_set_configuration('binlog retention hours', 168); -- 7 days binlog
call mysql.rds_group_replication_create_user('group_replication_user_password');
call
 mysql.rds_group_replication_set_recovery_channel('group_replication_user_password');
call mysql.rds_group_replication_start(1);

This example sets the binlog retention hours value to 168, which means that binary
log files are retained for seven days on the DB instance. You can adjust this value to meet your
requirements.

This example specifies 1 in the mysql.rds_group_replication_start stored procedure
to initialize a new group with the current DB instance.

For more information about the stored procedures called in the example, see Managing active-
active clusters.

Converting a DB instance to an active-active cluster 3468

Amazon Relational Database Service User Guide

Step 6: Start replication on the other DB instances in the active-active cluster

For each of the DB instances in the active-active cluster, use a SQL client to connect to the instance,
and run the following stored procedures. Replace group_replication_user_password with
the password for the rdsgrprepladmin user.

call mysql.rds_set_configuration('binlog retention hours', 168); -- 7 days binlog
call mysql.rds_group_replication_create_user('group_replication_user_password');
call
 mysql.rds_group_replication_set_recovery_channel('group_replication_user_password');
call mysql.rds_group_replication_start(0);

This example sets the binlog retention hours value to 168, which means that binary log
files are retained for seven days on each DB instance. You can adjust this value to meet your
requirements.

This example specifies 0 in the mysql.rds_group_replication_start stored procedure to join
the current DB instance to an existing group.

Tip

Make sure you run these stored procedures on all of the other DB instances in the active-
active cluster.

Step 7: (Recommended) Check the status of the active-active cluster

To make sure each member of the cluster is configured correctly, check the status of the cluster by
connecting to a DB instance in the active-active cluster, and running the following SQL command:

SELECT * FROM performance_schema.replication_group_members;

Your output should show ONLINE for the MEMBER_STATE of each DB instance, as in the following
sample output:

+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+

Converting a DB instance to an active-active cluster 3469

Amazon Relational Database Service User Guide

| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST |
 MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE | MEMBER_VERSION | MEMBER_COMMUNICATION_STACK
 |
+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
| group_replication_applier | 9854d4a2-5d7f-11ee-b8ec-0ec88c43c251 | ip-10-15-3-137 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
| group_replication_applier | 9e2e9c28-5d7f-11ee-8039-0e5d58f05fef | ip-10-15-3-225 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
| group_replication_applier | a6ba332d-5d7f-11ee-a025-0a5c6971197d | ip-10-15-1-83 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
3 rows in set (0.00 sec)

For information about the possible MEMBER_STATE values, see Group Replication Server States in
the MySQL documentation.

Setting up an active-active cluster with new DB instances

Complete the following steps to set up an active-active cluster using new Amazon RDS for MySQL
DB instances.

If you are setting up an active-active cluster with DB instances in more than one VPC, make sure
you complete the prerequisites in Preparing for a cross-VPC active-active cluster.

Topics

• Step 1: Set the active-active cluster parameters in one or more custom parameter groups

• Step 2: Create new RDS for MySQL DB instances for the active-active cluster

• Step 3: Specify the DB instances in the active-active cluster

• Step 4: Initialize the group on a DB instance and start replication

• Step 5: Start replication on the other DB instances in the active-active cluster

• Step 6: (Recommended) Check the status of the active-active cluster

• Step 7: (Optional) Import data into a DB instance in the active-active cluster

Setting up a new active-active cluster 3470

https://dev.mysql.com/doc/refman/8.0/en/group-replication-server-states.html

Amazon Relational Database Service User Guide

Step 1: Set the active-active cluster parameters in one or more custom parameter
groups

The RDS for MySQL DB instances in an active-active cluster must be associated with a custom
parameter group that has the correct setting for required parameters. For information about the
parameters and the required setting for each one, see Required parameter settings for active-active
clusters.

You can set these parameters in new parameter groups or in existing parameter groups. However,
to avoid accidentally affecting DB instances that aren't part of the active-active cluster, we strongly
recommend that you create a new custom parameter group. The DB instances in an active-active
cluster can be associated with the same DB parameter group or with different DB parameter
groups.

You can use the AWS Management Console or the AWS CLI to create a new custom parameter
group. For more information, see Creating a DB parameter group in Amazon RDS. The following
example runs the create-db-parameter-group AWS CLI command to create a custom DB parameter
group named myactivepg for RDS for MySQL 8.0:

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name myactivepg \
 --db-parameter-group-family mysql8.0 \
 --description "Parameter group for active-active clusters"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name myactivepg ^
 --db-parameter-group-family mysql8.0 ^
 --description "Parameter group for active-active clusters"

You can also use the AWS Management Console or the AWS CLI to set the parameters in the
custom parameter group. For more information, see Modifying parameters in a DB parameter
group in Amazon RDS.

The following example runs the modify-db-parameter-group AWS CLI command to set the
parameters for RDS for MySQL 8.0. To use this example with RDS for MySQL 8.4, change
slave_preserve_commit_order to replica_preserve_commit_order.

Setting up a new active-active cluster 3471

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myactivepg \
 --parameters
 "ParameterName='rds.group_replication_enabled',ParameterValue='1',ApplyMethod=pending-
reboot" \

 "ParameterName='rds.custom_dns_resolution',ParameterValue='1',ApplyMethod=pending-
reboot" \

 "ParameterName='enforce_gtid_consistency',ParameterValue='ON',ApplyMethod=pending-
reboot" \
 "ParameterName='gtid-mode',ParameterValue='ON',ApplyMethod=pending-
reboot" \

 "ParameterName='binlog_format',ParameterValue='ROW',ApplyMethod=immediate" \

 "ParameterName='slave_preserve_commit_order',ParameterValue='ON',ApplyMethod=immediate"
 \

 "ParameterName='group_replication_group_name',ParameterValue='11111111-2222-3333-4444-555555555555',ApplyMethod=pending-
reboot"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myactivepg ^
 --parameters
 "ParameterName='rds.group_replication_enabled',ParameterValue='1',ApplyMethod=pending-
reboot" ^

 "ParameterName='rds.custom_dns_resolution',ParameterValue='1',ApplyMethod=pending-
reboot" ^

 "ParameterName='enforce_gtid_consistency',ParameterValue='ON',ApplyMethod=pending-
reboot" ^
 "ParameterName='gtid-mode',ParameterValue='ON',ApplyMethod=pending-
reboot" ^

 "ParameterName='binlog_format',ParameterValue='ROW',ApplyMethod=immediate" ^

Setting up a new active-active cluster 3472

Amazon Relational Database Service User Guide

 "ParameterName='slave_preserve_commit_order',ParameterValue='ON',ApplyMethod=immediate"
 ^

 "ParameterName='group_replication_group_name',ParameterValue='11111111-2222-3333-4444-555555555555',ApplyMethod=pending-
reboot"

Step 2: Create new RDS for MySQL DB instances for the active-active cluster

Active-active clusters are supported for the following versions of RDS for MySQL DB instances:

• All MySQL version 8.4 versions

• MySQL version 8.0.35 and higher minor versions

You can create up to nine new DB instances for the cluster.

You can use the AWS Management Console or the AWS CLI to create new DB instances. For more
information about creating a DB instance, see Creating an Amazon RDS DB instance. When you
create the DB instance, associate it with a DB parameter group that you created or modified in the
previous step.

Step 3: Specify the DB instances in the active-active cluster

In the DB parameter group associated with each DB instance, set the
group_replication_group_seeds parameter to the endpoints of the DB instances you want to
include in the cluster.

You can use the AWS Management Console or the AWS CLI to set the parameter. You don't
need to reboot the DB instance after setting this parameter. For more information about setting
parameters, see Modifying parameters in a DB parameter group in Amazon RDS.

The following example runs the modify-db-parameter-group AWS CLI command to set the
parameters:

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name myactivepg \
 --parameters
 "ParameterName='group_replication_group_seeds',ParameterValue='myactivedb1.123456789012.us-

Setting up a new active-active cluster 3473

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

east-1.rds.amazonaws.com:3306,myactivedb2.123456789012.us-
east-1.rds.amazonaws.com:3306,myactivedb3.123456789012.us-
east-1.rds.amazonaws.com:3306',ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name myactivepg ^
 --parameters
 "ParameterName='group_replication_group_seeds',ParameterValue='myactivedb1.123456789012.us-
east-1.rds.amazonaws.com:3306,myactivedb2.123456789012.us-
east-1.rds.amazonaws.com:3306,myactivedb3.123456789012.us-
east-1.rds.amazonaws.com:3306',ApplyMethod=immediate"

Tip

Make sure you set the group_replication_group_seeds parameter in each DB
parameter group that is associated with a DB instance in the active-active cluster.

Step 4: Initialize the group on a DB instance and start replication

You can choose any new DB to initialize the group and start replication. To do so, complete the
following steps:

1. Choose a DB instance in the active-active cluster, and connect to that DB instance in a
SQL client. For more information about connecting to an RDS for MySQL DB instance, see
Connecting to your MySQL DB instance.

2. In the SQL client, run the following stored procedures and replace
group_replication_user_password with the password for the rdsgrprepladmin user.
The rdsgrprepladmin user is reserved for Group Replication connections in an active-active
cluster. The password for this user must be the same on all of the DB instances in an active-
active cluster.

call mysql.rds_set_configuration('binlog retention hours', 168); -- 7 days binlog
call mysql.rds_group_replication_create_user('group_replication_user_password');
call
 mysql.rds_group_replication_set_recovery_channel('group_replication_user_password');
call mysql.rds_group_replication_start(1);

Setting up a new active-active cluster 3474

Amazon Relational Database Service User Guide

This example sets the binlog retention hours value to 168, which means that binary
log files are retained for seven days on the DB instance. You can adjust this value to meet your
requirements.

This example specifies 1 in the mysql.rds_group_replication_start stored procedure
to initialize a new group with the current DB instance.

For more information about the stored procedures called in the example, see Managing active-
active clusters.

Step 5: Start replication on the other DB instances in the active-active cluster

For each of the DB instances in the active-active cluster, use a SQL client to connect to the instance,
and run the following stored procedures. Replace group_replication_user_password with
the password for the rdsgrprepladmin user.

call mysql.rds_set_configuration('binlog retention hours', 168); -- 7 days binlog
call mysql.rds_group_replication_create_user('group_replication_user_password');
call
 mysql.rds_group_replication_set_recovery_channel('group_replication_user_password');
call mysql.rds_group_replication_start(0);

This example sets the binlog retention hours value to 168, which means that binary log
files are retained for seven days on each DB instance. You can adjust this value to meet your
requirements.

This example specifies 0 in the mysql.rds_group_replication_start stored procedure to join
the current DB instance to an existing group.

Tip

Make sure you run these stored procedures on all of the other DB instances in the active-
active cluster.

Step 6: (Recommended) Check the status of the active-active cluster

To make sure each member of the cluster is configured correctly, check the status of the cluster by
connecting to a DB instance in the active-active cluster, and running the following SQL command:

Setting up a new active-active cluster 3475

Amazon Relational Database Service User Guide

SELECT * FROM performance_schema.replication_group_members;

Your output should show ONLINE for the MEMBER_STATE of each DB instance, as in the following
sample output:

+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST |
 MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE | MEMBER_VERSION | MEMBER_COMMUNICATION_STACK
 |
+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
| group_replication_applier | 9854d4a2-5d7f-11ee-b8ec-0ec88c43c251 | ip-10-15-3-137 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
| group_replication_applier | 9e2e9c28-5d7f-11ee-8039-0e5d58f05fef | ip-10-15-3-225 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
| group_replication_applier | a6ba332d-5d7f-11ee-a025-0a5c6971197d | ip-10-15-1-83 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
3 rows in set (0.00 sec)

For information about the possible MEMBER_STATE values, see Group Replication Server States in
the MySQL documentation.

Step 7: (Optional) Import data into a DB instance in the active-active cluster

You can import data from a MySQL database into a DB instance in the active-active cluster. After
the data is imported, Group Replication replicates it to the other DB instances in the cluster.

For information about importing data, see Importing data to an Amazon RDS for MySQL database
with reduced downtime.

Adding a DB instance to an active-active cluster

You can add a DB instance to an Amazon RDS for MySQL active-active cluster by restoring a DB
snapshot or by restoring a DB instance to a point in time. An active-active cluster can include up to
nine DB instances.

Adding a DB instance to an active-active cluster 3476

https://dev.mysql.com/doc/refman/8.0/en/group-replication-server-states.html

Amazon Relational Database Service User Guide

When you recover a DB instance to a point in time, it usually includes more recent transactions
than a DB instance that was restored from a DB snapshot. When the DB instance has more recent
transactions, fewer transactions need to be applied when you start replication. So, using point-in-
time recovery to add a DB instance to a cluster is usually faster than restoring from a DB snapshot.

Topics

• Adding a DB instance to an active-active cluster using point-in-time recovery

• Adding a DB instance to an active-active cluster using a DB snapshot

Adding a DB instance to an active-active cluster using point-in-time recovery

You can add a DB instance to an active-active cluster by performing point-in-time recovery on a DB
instance in the cluster.

For information about recovering a DB instance to a point in time in a different AWS Region, see
Replicating automated backups to another AWS Region.

To add a DB instance to an active-active cluster using point-in-time recovery

1. Create a new DB instance by performing point-in-time recovery on a DB instance in the active-
active cluster.

You can perform point-in-time recovery on any DB instance in the cluster to create the new DB
instance. For instructions, see Restoring a DB instance to a specified time for Amazon RDS.

Important

During point-in-time-recovery, associate the new DB instance with a DB parameter
group that has the active-active cluster parameters set. Otherwise, Group Replication
won't start on the new DB instance. For information about the parameters and the
required setting for each one, see Required parameter settings for active-active
clusters.

Adding a DB instance to an active-active cluster 3477

Amazon Relational Database Service User Guide

Tip

If you take a snapshot of the DB instance before you start point-in-time recovery, you
might be able to reduce the amount of time required to apply transactions on the new
DB instance.

2. Add the DB instance to the group_replication_group_seeds parameter in each DB
parameter group associated with a DB instance in the active-active cluster, including the DB
parameter group that you associated with the new DB instance.

For more information about setting parameters, see Modifying parameters in a DB parameter
group in Amazon RDS.

3. In a SQL client, connect to the new DB instance, and call the
mysql.rds_group_replication_set_recovery_channel stored procedure. Replace
group_replication_user_password with the password for the rdsgrprepladmin user.

call
 mysql.rds_group_replication_set_recovery_channel('group_replication_user_password');

4. Using the SQL client, call the mysql.rds_group_replication_start stored procedure to start
replication:

call mysql.rds_group_replication_start(0);

Adding a DB instance to an active-active cluster using a DB snapshot

You can add a DB instance to an active-active cluster by creating a DB snapshot of a DB instance in
the cluster and then restoring the DB snapshot.

For information about copying a snapshot to a different AWS Region, see the section called “Cross-
Region copying”.

To add a DB instance to an active-active cluster using a DB snapshot

1. Create a DB snapshot of a DB instance in the active-active cluster.

Adding a DB instance to an active-active cluster 3478

Amazon Relational Database Service User Guide

You can create a DB snapshot of any DB instance in the cluster. For instructions, see Creating a
DB snapshot for a Single-AZ DB instance for Amazon RDS.

2. Restore a DB instance from the DB snapshot.

During the snapshot restore operation, associate the new DB instance with a DB parameter
group that has the active-active cluster parameters set. For information about the parameters
and the required setting for each one, see Required parameter settings for active-active
clusters.

For information about restoring a DB instance from a DB snapshot, see Restoring to a DB
instance.

3. Add the DB instance to the group_replication_group_seeds parameter in each DB
parameter group associated with a DB instance in the active-active cluster, including the DB
parameter group that you associated with the new DB instance.

For more information about setting parameters, see Modifying parameters in a DB parameter
group in Amazon RDS.

4. In a SQL client, connect to the new DB instance, and call the
mysql.rds_group_replication_set_recovery_channel stored procedure. Replace
group_replication_user_password with the password for the rdsgrprepladmin user.

call
 mysql.rds_group_replication_set_recovery_channel('group_replication_user_password');

5. Using the SQL client, call the mysql.rds_group_replication_start stored procedure to start
replication:

call mysql.rds_group_replication_start(0);

Monitoring active-active clusters

Monitoring active-active clusters in Amazon RDS for MySQL is crucial for tracking performance,
replication integrity, and node synchronization. You can monitor your active-active cluster by
connecting to a DB instance in the cluster, and running the following SQL command:

SELECT * FROM performance_schema.replication_group_members;

Monitoring active-active clusters 3479

Amazon Relational Database Service User Guide

Your output should show ONLINE for the MEMBER_STATE of each DB instance, as in the following
sample output:

+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST |
 MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE | MEMBER_VERSION | MEMBER_COMMUNICATION_STACK
 |
+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
| group_replication_applier | 9854d4a2-5d7f-11ee-b8ec-0ec88c43c251 | ip-10-15-3-137 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
| group_replication_applier | 9e2e9c28-5d7f-11ee-8039-0e5d58f05fef | ip-10-15-3-225 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
| group_replication_applier | a6ba332d-5d7f-11ee-a025-0a5c6971197d | ip-10-15-1-83 |
 3306 | ONLINE | PRIMARY | 8.0.35 | MySQL |
+---------------------------+--------------------------------------
+----------------+-------------+--------------+-------------+----------------
+----------------------------+
3 rows in set (0.00 sec)

For information about the possible MEMBER_STATE values, see Group Replication Server States in
the MySQL documentation.

Stopping Group Replication on a DB instance in an active-active cluster

You can stop Group Replication on a DB instance in an active-active cluster. When you stop Group
Replication, the DB instance is placed in super-read-only mode until replication is restarted or
that DB instance is removed from the active-active cluster. For information about super-read-only
mode, see the MySQL documentation.

To stop Group Replication temporarily for an active-active cluster

1. Connect to a DB instance in the active-active cluster using a SQL client.

For more information about connecting to an RDS for MySQL DB instance, see Connecting to
your MySQL DB instance.

2. In the SQL client, call the mysql.rds_group_replication_stop stored procedure:

Stopping Group Replication in an active-active cluster 3480

https://dev.mysql.com/doc/refman/8.0/en/group-replication-server-states.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Amazon Relational Database Service User Guide

call mysql.rds_group_replication_stop();

Renaming a DB instance in an active-active cluster

You can change the name of a DB instance in an active-active cluster. To rename more than one DB
instance in an active-active cluster, do so one DB instance at a time. So, rename one DB instance
and rejoin it to the cluster before you rename the next DB instance.

To rename a DB instance in an active-active cluster

1. Connect to the DB instance in a SQL client, and call the mysql.rds_group_replication_stop
stored procedure:

call mysql.rds_group_replication_stop();

2. Rename the DB instance by following the instructions in Renaming a DB instance.

3. Modify the group_replication_group_seeds parameter in each DB parameter group
associated with a DB instance in the active-active cluster.

In the parameter setting, replace the old DB instance endpoint with the new DB instance
endpoint. For more information about setting parameters, see Modifying parameters in a DB
parameter group in Amazon RDS.

4. Connect to the DB instance in a SQL client, and call the mysql.rds_group_replication_start
stored procedure:

call mysql.rds_group_replication_start(0);

Removing a DB instance from an active-active cluster

When you remove a DB instance from an active-active cluster, it reverts to a standalone DB
instance.

To remove a DB instance from an active-active cluster

1. Connect to the DB instance in a SQL client, and call the mysql.rds_group_replication_stop
stored procedure:

Renaming a DB instance in an active-active cluster 3481

Amazon Relational Database Service User Guide

call mysql.rds_group_replication_stop();

2. Modify the group_replication_group_seeds parameter for the DB instances that will
remain in the active-active cluster.

In the group_replication_group_seeds parameter, delete the DB instance that you are
removing from the active-active cluster. For more information about setting parameters, see
Modifying parameters in a DB parameter group in Amazon RDS.

3. Modify the parameters of the DB instance you are removing from the active-active cluster so
that it is no longer part of the cluster.

You can either associate the DB instance with a different parameter group, or modify the
parameters in the DB parameter group associated with the DB instance. The parameters to
modify include group_replication_group_name, rds.group_replication_enabled,
and group_replication_group_seeds. For more information about active-active cluster
parameters, see Required parameter settings for active-active clusters.

If you modify the parameters in a DB parameter group, make sure the DB parameter group
isn't associated with other DB instances in the active-active cluster.

4. Reboot the DB instance you removed from the active-active cluster for the new parameter
settings to take effect.

For instructions, see Rebooting a DB instance.

Removing a DB instance from an active-active cluster 3482

Amazon Relational Database Service User Guide

Exporting data from a MySQL DB instance by using replication

To export data from an RDS for MySQL DB instance to a MySQL instance running external to
Amazon RDS, you can use replication. In this scenario, the MySQL DB instance is the source MySQL
DB instance, and the MySQL instance running external to Amazon RDS is the external MySQL
database.

The external MySQL database can run either on-premises in your data center, or on an Amazon
EC2 instance. The external MySQL database must run the same version as the source MySQL DB
instance, or a later version.

Replication to an external MySQL database is only supported during the time it takes to export a
database from the source MySQL DB instance. The replication should be terminated when the data
has been exported and applications can start accessing the external MySQL instance.

The following list shows the steps to take. Each step is discussed in more detail in later sections.

1. Prepare an external MySQL DB instance.

2. Prepare the source MySQL DB instance for replication.

3. Use the mysqldump utility to transfer the database from the source MySQL DB instance to the
external MySQL database.

4. Start replication to the external MySQL database.

5. After the export completes, stop replication.

Prepare an external MySQL database

Perform the following steps to prepare the external MySQL database.

To prepare the external MySQL database

1. Install the external MySQL database.

2. Connect to the external MySQL database as the master user. Then create the users required to
support the administrators, applications, and services that access the database.

3. Follow the directions in the MySQL documentation to prepare the external MySQL database
as a replica. For more information, see Setting the Replica Configuration in the MySQL
documentation.

Exporting data from a MySQL DB instance 3483

https://dev.mysql.com/doc/refman/8.0/en/replication-howto-slavebaseconfig.html

Amazon Relational Database Service User Guide

4. Configure an egress rule for the external MySQL database to operate as a read replica during
the export. The egress rule allows the external MySQL database to connect to the source
MySQL DB instance during replication. Specify an egress rule that allows Transmission Control
Protocol (TCP) connections to the port and IP address of the source MySQL DB instance.

Specify the appropriate egress rules for your environment:

• If the external MySQL database is running in an Amazon EC2 instance in a virtual private
cloud (VPC) based on the Amazon VPC service, specify the egress rules in a VPC security
group. For more information, see Controlling access with security groups.

• If the external MySQL database is installed on-premises, specify the egress rules in a firewall.

5. If the external MySQL database is running in a VPC, configure rules for the VPC access control
list (ACL) rules in addition to the security group egress rule:

• Configure an ACL ingress rule allowing TCP traffic to ports 1024–65535 from the IP address
of the source MySQL DB instance.

• Configure an ACL egress rule allowing outbound TCP traffic to the port and IP address of the
source MySQL DB instance.

For more information about Amazon VPC network ACLs, see Network ACLs in Amazon VPC
User Guide.

6. (Optional) Set the max_allowed_packet parameter to the maximum size to avoid replication
errors. We recommend this setting.

Prepare the source MySQL DB instance

Perform the following steps to prepare the source MySQL DB instance as the replication source.

To prepare the source MySQL DB instance

1. Ensure that your client computer has enough disk space available to save the binary logs while
setting up replication.

2. Connect to the source MySQL DB instance, and create a replication account by following the
directions in Creating a User for Replication in the MySQL documentation.

3. Configure ingress rules on the system running the source MySQL DB instance to allow the
external MySQL database to connect during replication. Specify an ingress rule that allows

Prepare the source MySQL DB instance 3484

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
http://dev.mysql.com/doc/refman/8.0/en/replication-howto-repuser.html

Amazon Relational Database Service User Guide

TCP connections to the port used by the source MySQL DB instance from the IP address of the
external MySQL database.

4. Specify the egress rules:

• If the source MySQL DB instance is running in a VPC, specify the ingress rules in a VPC
security group. For more information, see Controlling access with security groups.

5. If source MySQL DB instance is running in a VPC, configure VPC ACL rules in addition to the
security group ingress rule:

• Configure an ACL ingress rule to allow TCP connections to the port used by the Amazon RDS
instance from the IP address of the external MySQL database.

• Configure an ACL egress rule to allow TCP connections from ports 1024–65535 to the IP
address of the external MySQL database.

For more information about Amazon VPC network ACLs, see Network ACLs in the Amazon VPC
User Guide.

6. Ensure that the backup retention period is set long enough that no binary logs are purged
during the export. If any of the logs are purged before the export has completed, you must
restart replication from the beginning. For more information about setting the backup
retention period, see Introduction to backups.

7. Use the mysql.rds_set_configuration stored procedure to set the binary log
retention period long enough that the binary logs aren't purged during the export. For more
information, see Accessing MySQL binary logs.

8. Create an Amazon RDS read replica from the source MySQL DB instance to further ensure that
the binary logs of the source MySQL DB instance are not purged. For more information, see
Creating a read replica.

9. After the Amazon RDS read replica has been created, call the
mysql.rds_stop_replication stored procedure to stop the replication process. The
source MySQL DB instance no longer purges its binary log files, so they are available for the
replication process.

10. (Optional) Set both the max_allowed_packet parameter and the
slave_max_allowed_packet parameter to the maximum size to avoid replication errors.
The maximum size for both parameters is 1 GB. We recommend this setting for both
parameters. For information about setting parameters, see Modifying parameters in a DB
parameter group in Amazon RDS.

Prepare the source MySQL DB instance 3485

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html

Amazon Relational Database Service User Guide

Copy the database

Perform the following steps to copy the database.

To copy the database

1. Connect to the RDS read replica of the source MySQL DB instance, and run the MySQL SHOW
REPLICA STATUS\G statement. Note the values for the following:

• Master_Host

• Master_Port

• Master_Log_File

• Exec_Master_Log_Pos

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE
STATUS.

2. Use the mysqldump utility to create a snapshot, which copies the data from Amazon RDS to
your local client computer. Ensure that your client computer has enough space to hold the
mysqldump files from the databases to be replicated. This process can take several hours for
very large databases. Follow the directions in Creating a Data Snapshot Using mysqldump in
the MySQL documentation.

The following example runs mysqldump on a client and writes the dump to a file.

For Linux, macOS, or Unix:

mysqldump -h source_MySQL_DB_instance_endpoint \
 -u user \
 -ppassword \
 --port=3306 \
 --single-transaction \
 --routines \
 --triggers \
 --databases database database2 > path/rds-dump.sql

Copy the database 3486

https://dev.mysql.com/doc/mysql-replication-excerpt/8.0/en/replication-howto-mysqldump.html

Amazon Relational Database Service User Guide

For Windows:

mysqldump -h source_MySQL_DB_instance_endpoint ^
 -u user ^
 -ppassword ^
 --port=3306 ^
 --single-transaction ^
 --routines ^
 --triggers ^
 --databases database database2 > path\rds-dump.sql

You can load the backup file into the external MySQL database. For more information, see
Reloading SQL-Format Backups in the MySQL documentation. You can run another utility to
load the data into the external MySQL database.

Complete the export

Perform the following steps to complete the export.

To complete the export

1. Use the MySQL CHANGE MASTER statement to configure the external MySQL database.
Specify the ID and password of the user granted REPLICATION SLAVE permissions. Specify
the Master_Host, Master_Port, Relay_Master_Log_File, and Exec_Master_Log_Pos
values that you got from the MySQL SHOW REPLICA STATUS\G statement that you ran on
the RDS read replica. For more information, see CHANGE MASTER TO Statement in the MySQL
documentation.

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE
STATUS.

2. Use the MySQL START REPLICA command to initiate replication from the source MySQL DB
instance to the external MySQL database.

Complete the export 3487

https://dev.mysql.com/doc/refman/8.0/en/reloading-sql-format-dumps.html
https://dev.mysql.com/doc/refman/8.0/en/reloading-sql-format-dumps.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Amazon Relational Database Service User Guide

Doing this starts replication from the source MySQL DB instance and exports all source
changes that have occurred after you stopped replication from the Amazon RDS read replica.

Note

Previous versions of MySQL used START SLAVE instead of START REPLICA. If you are
using a MySQL version before 8.0.23, then use START SLAVE.

3. Run the MySQL SHOW REPLICA STATUS\G command on the external MySQL database to
verify that it is operating as a read replica. For more information about interpreting the results,
see SHOW SLAVE | REPLICA STATUS Statement in the MySQL documentation.

4. After replication on the external MySQL database has caught up with the source MySQL DB
instance, use the MySQL STOP REPLICA command to stop replication from the source MySQL
DB instance.

Note

Previous versions of MySQL used STOP SLAVE instead of STOP REPLICA. If you are
using a MySQL version before 8.0.23, then use STOP SLAVE.

5. On the Amazon RDS read replica, call the mysql.rds_start_replication stored
procedure. Doing this allows Amazon RDS to start purging the binary log files from the source
MySQL DB instance.

Complete the export 3488

https://dev.mysql.com/doc/refman/8.0/en/show-slave-status.html

Amazon Relational Database Service User Guide

Options for MySQL DB instances

Following, you can find a description of options, or additional features, that are available for
Amazon RDS instances running the MySQL DB engine. To enable these options, you can add them
to a custom option group, and then associate the option group with your DB instance. For more
information about working with option groups, see Working with option groups.

Amazon RDS supports the following options for MySQL:

Option Option ID Engine versions

MariaDB Audit
Plugin support
for MySQL

MARIADB_AUDIT_PLUGIN All MySQL 8.4 versions

MySQL 8.0.28 and higher 8.0
versions

All MySQL 5.7 versions

MySQL
memcached
support

MEMCACHED All MySQL 5.7 and 8.0 versions

Options for MySQL 3489

Amazon Relational Database Service User Guide

MariaDB Audit Plugin support for MySQL

Amazon RDS offers an audit plugin for MySQL database instances based on the open source
MariaDB Audit Plugin. For more information, see the Audit Plugin for MySQL Server GitHub
repository.

Note

The audit plugin for MySQL is based on the MariaDB Audit Plugin. Throughout this article,
we refer to it as MariaDB Audit Plugin.

The MariaDB Audit Plugin records database activity, including users logging on to the database and
queries run against the database. The record of database activity is stored in a log file.

Audit Plugin option settings

Amazon RDS supports the following settings for the MariaDB Audit Plugin option.

Option
setting

Valid values Default
value

Description

SERVER_AU
DIT_FILE_
PATH

/rdsdbdat
a/log/aud
it/

/rdsdbdat
a/log/aud
it/

The location of the log file. The log file
contains the record of the activity specified
in SERVER_AUDIT_EVENTS . For more
information, see Viewing and listing database
log files and MySQL database log files.

SERVER_AU
DIT_FILE_
ROTATE_SI
ZE

1–1000000
000

1000000 The size in bytes that when reached, causes
the file to rotate. For more information, see
Overview of RDS for MySQL database logs.

SERVER_AU
DIT_FILE_
ROTATIONS

0–100 9 The number of log rotations to save when
server_audit_output_type=file .
If set to 0, then the log file never rotates. For
more information, see Overview of RDS for

MariaDB Audit Plugin 3490

https://github.com/aws/audit-plugin-for-mysql
https://github.com/aws/audit-plugin-for-mysql

Amazon Relational Database Service User Guide

Option
setting

Valid values Default
value

Description

MySQL database logs and Downloading a
database log file.

SERVER_AU
DIT_EVENT
S

CONNECT,
QUERY,
QUERY_DDL

,
QUERY_DML

,
QUERY_DML
_NO_SELEC
T ,
QUERY_DCL

CONNECT,
QUERY

The types of activity to record in the log.
Installing the MariaDB Audit Plugin is itself
logged.

• CONNECT: Log successful and unsuccessful
connections to the database, and disconnec
tions from the database.

• QUERY: Log the text of all queries run
against the database.

• QUERY_DDL : Similar to the QUERY event,
but returns only data definition language
(DDL) queries (CREATE, ALTER, and so on).

• QUERY_DML : Similar to the QUERY
event, but returns only data manipulation
language (DML) queries (INSERT, UPDATE,
and so on, and also SELECT).

• QUERY_DML_NO_SELECT : Similar to the
QUERY_DML event, but doesn't log SELECT
queries.

• QUERY_DCL : Similar to the QUERY event,
but returns only data control language
(DCL) queries (GRANT, REVOKE, and so on).

For MySQL, TABLE is not supported.

MariaDB Audit Plugin 3491

Amazon Relational Database Service User Guide

Option
setting

Valid values Default
value

Description

SERVER_AU
DIT_INCL_
USERS

Multiple
comma-sep
arated values

None Include only activity from the specified
users. By default, activity is recorded for all
users. SERVER_AUDIT_INCL_USERS and
SERVER_AUDIT_EXCL_USERS are mutually
exclusive. If you add values to SERVER_AU
DIT_INCL_USERS , make sure no values are
added to SERVER_AUDIT_EXCL_USERS .

SERVER_AU
DIT_EXCL_
USERS

Multiple
comma-sep
arated values

None Exclude activity from the specified users.
By default, activity is recorded for all users.
SERVER_AUDIT_INCL_USERS and
SERVER_AUDIT_EXCL_USERS are mutually
exclusive. If you add values to SERVER_AU
DIT_EXCL_USERS , make sure no values are
added to SERVER_AUDIT_INCL_USERS .

The rdsadmin user queries the database
every second to check the health of the
database. Depending on your other settings,
this activity can possibly cause the size of
your log file to grow very large, very quickly.
If you don't need to record this activity,
add the rdsadmin user to the SERVER_AU
DIT_EXCL_USERS list.

Note

CONNECT activity is always recorded
for all users, even if the user is
specified for this option setting.

MariaDB Audit Plugin 3492

Amazon Relational Database Service User Guide

Option
setting

Valid values Default
value

Description

SERVER_AU
DIT_LOGGI
NG

ON ON Logging is active. The only valid value is ON.
Amazon RDS does not support deactivating
logging. If you want to deactivate logging,
remove the MariaDB Audit Plugin. For more
information, see Removing the MariaDB Audit
Plugin.

SERVER_AU
DIT_QUERY
_LOG_LIMI
T

0–2147483
647

1024 The limit on the length of the query string in a
record.

Adding the MariaDB Audit Plugin

The general process for adding the MariaDB Audit Plugin to a DB instance is the following:

• Create a new option group, or copy or modify an existing option group

• Add the option to the option group

• Associate the option group with the DB instance

After you add the MariaDB Audit Plugin, you don't need to restart your DB instance. As soon as the
option group is active, auditing begins immediately.

Important

Adding the MariaDB Audit Plugin to a DB instance might cause an outage. We recommend
adding the MariaDB Audit Plugin during a maintenance window or during a time of low
database workload.

To add the MariaDB Audit Plugin

1. Determine the option group you want to use. You can create a new option group or use an
existing option group. If you want to use an existing option group, skip to the next step.

MariaDB Audit Plugin 3493

Amazon Relational Database Service User Guide

Otherwise, create a custom DB option group. Choose mysql for Engine, and choose 5.7, 8.0, or
8.4 for Major engine version. For more information, see Creating an option group.

2. Add the MARIADB_AUDIT_PLUGIN option to the option group, and configure the option
settings. For more information about adding options, see Adding an option to an option group.
For more information about each setting, see Audit Plugin option settings.

3. Apply the option group to a new or existing DB instance.

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

Audit log format

Log files are represented as comma-separated variable (CSV) files in UTF-8 format.

Tip

Log file entries are not in sequential order. To order the entries, use the timestamp value.
To see the latest events, you might have to review all log files. For more flexibility in sorting
and searching the log data, turn on the setting to upload the audit logs to CloudWatch and
view them using the CloudWatch interface.
To view audit data with more types of fields and with output in JSON format, you can also
use the Database Activity Streams feature. For more information, see Monitoring Amazon
RDS with Database Activity Streams.

The audit log files include the following comma-delimited information in rows, in the specified
order:

Field Description

timestamp The YYYYMMDD followed by the HH:MI:SS (24-hour clock) for the logged event.

serverhost The name of the instance that the event is logged for.

MariaDB Audit Plugin 3494

Amazon Relational Database Service User Guide

Field Description

username The connected user name of the user.

host The host that the user connected from.

connectionid The connection ID number for the logged operation.

queryid The query ID number, which can be used for finding the relational table events
and related queries. For TABLE events, multiple lines are added.

operation The recorded action type. Possible values are: CONNECT, QUERY, READ, WRITE,
CREATE, ALTER, RENAME, and DROP.

database The active database, as set by the USE command.

object For QUERY events, this value indicates the query that the database performed.
For TABLE events, it indicates the table name.

retcode The return code of the logged operation.

connectio
n_type

The security state of the connection to the server. Possible values are:

• 0 – Undefined

• 1 – TCP/IP

• 2 – Socket

• 3 – Named pipe

• 4 – SSL/TLS

• 5 – Shared memory

Viewing and downloading the MariaDB Audit Plugin log

After you enable the MariaDB Audit Plugin, you access the results in the log files the same way you
access any other text-based log files. The audit log files are located at /rdsdbdata/log/audit/.
For information about viewing the log file in the console, see Viewing and listing database log files.
For information about downloading the log file, see Downloading a database log file.

MariaDB Audit Plugin 3495

Amazon Relational Database Service User Guide

Modifying MariaDB Audit Plugin settings

After you enable the MariaDB Audit Plugin, you can modify the settings. For more information
about how to modify option settings, see Modifying an option setting. For more information about
each setting, see Audit Plugin option settings.

Removing the MariaDB Audit Plugin

Amazon RDS doesn't support turning off logging in the MariaDB Audit Plugin. However, you
can remove the plugin from a DB instance. When you remove the MariaDB Audit Plugin, the DB
instance is restarted automatically to stop auditing.

To remove the MariaDB Audit Plugin from a DB instance, do one of the following:

• Remove the MariaDB Audit Plugin option from the option group it belongs to. This change
affects all DB instances that use the option group. For more information, see Removing an option
from an option group

• Modify the DB instance and specify a different option group that doesn't include the plugin.
This change affects a single DB instance. You can specify the default (empty) option group,
or a different custom option group. For more information, see Modifying an Amazon RDS DB
instance.

MariaDB Audit Plugin 3496

Amazon Relational Database Service User Guide

MySQL memcached support

Amazon RDS supports using the memcached interface to InnoDB tables that was introduced in
MySQL 5.6. The memcached API enables applications to use InnoDB tables in a manner similar to
NoSQL key-value data stores.

Note

The memcached interface is no longer available in MySQL 8.4. When you upgrade your DB
instances to MySQL 8.4, you must disable memcached in existing option groups.

The memcached interface is a simple, key-based cache. Applications use memcached to insert,
manipulate, and retrieve key-value data pairs from the cache. MySQL 5.6 introduced a plugin that
implements a daemon service that exposes data from InnoDB tables through the memcached
protocol. For more information about the MySQL memcached plugin, see InnoDB integration with
memcached.

To enable memcached support for an RDS for MySQL DB instance

1. Determine the security group to use for controlling access to the memcached interface. If
the set of applications already using the SQL interface are the same set that will access the
memcached interface, you can use the existing VPC security group used by the SQL interface.
If a different set of applications will access the memcached interface, define a new VPC or DB
security group. For more information about managing security groups, see Controlling access
with security groups

2. Create a custom DB option group, selecting MySQL as the engine type and version. For more
information about creating an option group, see Creating an option group.

3. Add the MEMCACHED option to the option group. Specify the port that the memcached
interface will use, and the security group to use in controlling access to the interface. For more
information about adding options, see Adding an option to an option group.

4. Modify the option settings to configure the memcached parameters, if necessary. For more
information about how to modify option settings, see Modifying an option setting.

5. Apply the option group to an instance. Amazon RDS enables memcached support for that
instance when the option group is applied:

memcached 3497

https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached.html

Amazon Relational Database Service User Guide

• You enable memcached support for a new instance by specifying the custom option group
when you launch the instance. For more information about launching a MySQL instance, see
Creating an Amazon RDS DB instance.

• You enable memcached support for an existing instance by specifying the custom option
group when you modify the instance. For more information about modifying a DB instance,
see Modifying an Amazon RDS DB instance.

6. Specify which columns in your MySQL tables can be accessed through the memcached
interface. The memcached plug-in creates a catalog table named containers in a dedicated
database named innodb_memcache. You insert a row into the containers table to map an
InnoDB table for access through memcached. You specify a column in the InnoDB table that
is used to store the memcached key values, and one or more columns that are used to store
the data values associated with the key. You also specify a name that a memcached application
uses to refer to that set of columns. For details on inserting rows in the containers table,
see InnoDB memcached plugin internals. For an example of mapping an InnoDB table and
accessing it through memcached, see Writing applications for the InnoDB memcached plugin.

7. If the applications accessing the memcached interface are on different computers or EC2
instances than the applications using the SQL interface, add the connection information for
those computers to the VPC security group associated with the MySQL instance. For more
information about managing security groups, see Controlling access with security groups.

You turn off the memcached support for an instance by modifying the instance and specifying
the default option group for your MySQL version. For more information about modifying a DB
instance, see Modifying an Amazon RDS DB instance.

MySQL memcached security considerations

The memcached protocol does not support user authentication. For more information about
MySQL memcached security considerations, see Security Considerations for the InnoDB
memcached Plugin in the MySQL documentation.

You can take the following actions to help increase the security of the memcached interface:

• Specify a different port than the default of 11211 when adding the MEMCACHED option to the
option group.

memcached 3498

https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached-internals.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached-developing.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached-security.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached-security.html

Amazon Relational Database Service User Guide

• Ensure that you associate the memcached interface with a VPC security group that limits access
to known, trusted client addresses and EC2 instances. For more information about managing
security groups, see Controlling access with security groups.

MySQL memcached connection information

To access the memcached interface, an application must specify both the DNS name of the Amazon
RDS instance and the memcached port number. For example, if an instance has a DNS name of my-
cache-instance.cg034hpkmmjt.region.rds.amazonaws.com and the memcached interface
is using port 11212, the connection information specified in PHP would be:

<?php

$cache = new Memcache;
$cache->connect('my-cache-instance.cg034hpkmmjt.region.rds.amazonaws.com',11212);
?>

To find the DNS name and memcached port of a MySQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the top right corner of the AWS Management Console, select the region that contains the
DB instance.

3. In the navigation pane, choose Databases.

4. Choose the MySQL DB instance name to display its details.

5. In the Connect section, note the value of the Endpoint field. The DNS name is the same as the
endpoint. Also, note that the port in the Connect section is not used to access the memcached
interface.

6. In the Details section, note the name listed in the Option Group field.

7. In the navigation pane, choose Option groups.

8. Choose the name of the option group used by the MySQL DB instance to show the option
group details. In the Options section, note the value of the Port setting for the MEMCACHED
option.

memcached 3499

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

MySQL memcached option settings

Amazon RDS exposes the MySQL memcached parameters as option settings in the Amazon RDS
MEMCACHED option.

MySQL memcached parameters

• DAEMON_MEMCACHED_R_BATCH_SIZE – an integer that specifies how many memcached read
operations (get) to perform before doing a COMMIT to start a new transaction. The allowed
values are 1 to 4294967295; the default is 1. The option does not take effect until the instance is
restarted.

• DAEMON_MEMCACHED_W_BATCH_SIZE – an integer that specifies how many memcached
write operations, such as add, set, or incr, to perform before doing a COMMIT to start a new
transaction. The allowed values are 1 to 4294967295; the default is 1. The option does not take
effect until the instance is restarted.

• INNODB_API_BK_COMMIT_INTERVAL – an integer that specifies how often to auto-commit idle
connections that use the InnoDB memcached interface. The allowed values are 1 to 1073741824;
the default is 5. The option takes effect immediately, without requiring that you restart the
instance.

• INNODB_API_DISABLE_ROWLOCK – a Boolean that disables (1 (true)) or enables (0 (false))
the use of row locks when using the InnoDB memcached interface. The default is 0 (false). The
option does not take effect until the instance is restarted.

• INNODB_API_ENABLE_MDL – a Boolean that when set to 0 (false) locks the table used by the
InnoDB memcached plugin, so that it cannot be dropped or altered by DDL through the SQL
interface. The default is 0 (false). The option does not take effect until the instance is restarted.

• INNODB_API_TRX_LEVEL – an integer that specifies the transaction isolation level for queries
processed by the memcached interface. The allowed values are 0 to 3. The default is 0. The
option does not take effect until the instance is restarted.

Amazon RDS configures these MySQL memcached parameters, and they cannot be
modified: DAEMON_MEMCACHED_LIB_NAME, DAEMON_MEMCACHED_LIB_PATH, and
INNODB_API_ENABLE_BINLOG. The parameters that MySQL administrators set by using
daemon_memcached_options are available as individual MEMCACHED option settings in Amazon
RDS.

memcached 3500

Amazon Relational Database Service User Guide

MySQL daemon_memcached_options parameters

• BINDING_PROTOCOL – a string that specifies the binding protocol to use. The allowed values are
auto, ascii, or binary. The default is auto, which means the server automatically negotiates
the protocol with the client. The option does not take effect until the instance is restarted.

• BACKLOG_QUEUE_LIMIT – an integer that specifies how many network connections can be
waiting to be processed by memcached. Increasing this limit may reduce errors received by
a client that is not able to connect to the memcached instance, but does not improve the
performance of the server. The allowed values are 1 to 2048; the default is 1024. The option
does not take effect until the instance is restarted.

• CAS_DISABLED – a Boolean that enables (1 (true)) or disables (0 (false)) the use of compare and
swap (CAS), which reduces the per-item size by 8 bytes. The default is 0 (false). The option does
not take effect until the instance is restarted.

• CHUNK_SIZE – an integer that specifies the minimum chunk size, in bytes, to allocate for the
smallest item's key, value, and flags. The allowed values are 1 to 48. The default is 48 and you
can significantly improve memory efficiency with a lower value. The option does not take effect
until the instance is restarted.

• CHUNK_SIZE_GROWTH_FACTOR – a float that controls the size of new chunks. The size of a
new chunk is the size of the previous chunk times CHUNK_SIZE_GROWTH_FACTOR. The allowed
values are 1 to 2; the default is 1.25. The option does not take effect until the instance is
restarted.

• ERROR_ON_MEMORY_EXHAUSTED – a Boolean that when set to 1 (true) specifies that memcached
will return an error rather than evicting items when there is no more memory to store items. If
set to 0 (false), memcached will evict items if there is no more memory. The default is 0 (false).
The option does not take effect until the instance is restarted.

• MAX_SIMULTANEOUS_CONNECTIONS – an integer that specifies the maximum number of
concurrent connections. Setting this value to anything under 10 prevents MySQL from starting.
The allowed values are 10 to 1024; the default is 1024. The option does not take effect until the
instance is restarted.

• VERBOSITY – a string that specifies the level of information logged in the MySQL error log by
the memcached service. The default is v. The option does not take effect until the instance is
restarted. The allowed values are:

• v – Logs errors and warnings while running the main event loop.

• vv – In addition to the information logged by v, also logs each client command and the
response.

memcached 3501

Amazon Relational Database Service User Guide

• vvv – In addition to the information logged by vv, also logs internal state transitions.

Amazon RDS configures these MySQL DAEMON_MEMCACHED_OPTIONS parameters, they cannot
be modified: DAEMON_PROCESS, LARGE_MEMORY_PAGES, MAXIMUM_CORE_FILE_LIMIT,
MAX_ITEM_SIZE, LOCK_DOWN_PAGE_MEMORY, MASK, IDFILE, REQUESTS_PER_EVENT, SOCKET,
and USER.

memcached 3502

Amazon Relational Database Service User Guide

Parameters for MySQL

By default, a MySQL DB instance uses a DB parameter group that is specific to a MySQL database.
This parameter group contains parameters for the MySQL database engine. For information about
working with parameter groups and setting parameters, see Parameter groups for Amazon RDS.

RDS for MySQL parameters are set to the default values of the storage engine that you have
selected. For more information about MySQL parameters, see the MySQL documentation. For more
information about MySQL storage engines, see Supported storage engines for RDS for MySQL.

You can view the parameters available for a specific RDS for MySQL version using the RDS console
or the AWS CLI. For information about viewing the parameters in a MySQL parameter group in the
RDS console, see Viewing parameter values for a DB parameter group in Amazon RDS.

Using the AWS CLI, you can view the parameters for an RDS for MySQL version by running the
describe-engine-default-parameters command. Specify one of the following values for the
--db-parameter-group-family option:

• mysql8.4

• mysql8.0

• mysql5.7

For example, to view the parameters for RDS for MySQL version 8.0, run the following command.

aws rds describe-engine-default-parameters --db-parameter-group-family mysql8.0

Your output looks similar to the following.

{
 "EngineDefaults": {
 "Parameters": [
 {
 "ParameterName": "activate_all_roles_on_login",
 "ParameterValue": "0",
 "Description": "Automatically set all granted roles as active after the
 user has authenticated successfully.",
 "Source": "engine-default",
 "ApplyType": "dynamic",
 "DataType": "boolean",

Parameters for MySQL 3503

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-parameters.html

Amazon Relational Database Service User Guide

 "AllowedValues": "0,1",
 "IsModifiable": true
 },
 {
 "ParameterName": "allow-suspicious-udfs",
 "Description": "Controls whether user-defined functions that have only
 an xxx symbol for the main function can be loaded",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "IsModifiable": false
 },
 {
 "ParameterName": "auto_generate_certs",
 "Description": "Controls whether the server autogenerates SSL key and
 certificate files in the data directory, if they do not already exist.",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "IsModifiable": false
 },
 ...

To list only the modifiable parameters for RDS for MySQL version 8.0, run the following command.

For Linux, macOS, or Unix:

aws rds describe-engine-default-parameters --db-parameter-group-family mysql8.0 \
 --query 'EngineDefaults.Parameters[?IsModifiable==`true`]'

For Windows:

aws rds describe-engine-default-parameters --db-parameter-group-family mysql8.0 ^
 --query "EngineDefaults.Parameters[?IsModifiable==`true`]"

Parameters for MySQL 3504

Amazon Relational Database Service User Guide

Common DBA tasks for MySQL DB instances

In the following content, you can find descriptions of the Amazon RDS-specific implementations
of some common DBA tasks for DB instances running the MySQL database engine. To deliver a
managed service experience, Amazon RDS doesn't provide shell access to DB instances. Also, it
restricts access to certain system procedures and tables that require advanced privileges.

For information about working with MySQL log files on Amazon RDS, see MySQL database log files.

Understanding predefined users

Amazon RDS automatically creates several predefined users with new RDS for MySQL DB instances.
Predefined users and their privileges can't be changed. You can't drop, rename, or modify privileges
for these predefined users. Attempting to do so results in an error.

• rdsadmin – A user that's created to handle many of the management tasks that the
administrator with superuser privileges would perform on a standalone MySQL database. This
user is used internally by RDS for MySQL for many management tasks.

• rdsrepladmin – A user that's used internally by Amazon RDS to support replication activities on
RDS for MySQL DB instances and clusters.

For information about other common DBA tasks, see the following topics.

Topics

• Role-based privilege model for RDS for MySQL

• Dynamic privileges for RDS for MySQL

• Ending a session or query for RDS for MySQL

• Skipping the current replication error for RDS for MySQL

• Working with InnoDB tablespaces to improve crash recovery times for RDS for MySQL

• Managing the Global Status History for RDS for MySQL

• Configuring buffer pool size and redo log capacity in MySQL 8.4

Role-based privilege model for RDS for MySQL

Starting with RDS for MySQL version 8.0.36, you can't modify the tables in the mysql database
directly. In particular, you can't create database users by performing data manipulation language

Common DBA tasks for MySQL 3505

Amazon Relational Database Service User Guide

(DML) operations on the grant tables. Instead, you use MySQL account-management statements
such as CREATE USER, GRANT, and REVOKE to grant role-based privileges to users. You also can't
create other kinds of objects such as stored procedures in the mysql database. You can still query
the mysql tables. If you use binary log replication, changes made directly to the mysql tables on
the source DB instance aren't replicated to the target cluster.

In some cases, your application might use shortcuts to create users or other objects by inserting
into the mysql tables. If so, change your application code to use the corresponding statements
such as CREATE USER.

To export metadata for database users during the migration from an external MySQL database, use
one of the following methods:

• Use MySQL Shell's instance dump utility with a filter to exclude users, roles, and grants. The
following example shows you the command syntax to use. Make sure that outputUrl is empty.

mysqlsh user@host -- util.dumpInstance(outputUrl,{excludeSchemas:['mysql'],users:
 true})

For more information, see Instance Dump Utility, Schema Dump Utility, and Table Dump Utility
in the MySQL Reference Manual.

• Use the mysqlpump client utility. This example includes all tables except for tables in the mysql
system database. It also includes CREATE USER and GRANT statements to reproduce all MySQL
users in the migrated database.

mysqlpump --exclude-databases=mysql --users

The mysqlpump client utility is no longer available with MySQL 8.4. Instead, use mysqldump.

To simplify managing permissions for many users or applications, you can use the CREATE ROLE
statement to create a role that has a set of permissions. Then you can use the GRANT and SET
ROLE statements and the current_role function to assign roles to users or applications, switch
the current role, and check which roles are in effect. For more information on the role-based
permission system in MySQL 8.0, see Using Roles in the MySQL Reference Manual.

Role-based privilege model 3506

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/roles.html

Amazon Relational Database Service User Guide

Important

We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal
privileges required for your application.

Starting with version 8.0.36, RDS for MySQL includes a special role that has all of the following
privileges. This role is named rds_superuser_role. The primary administrative user for each
DB instance already has this role granted. The rds_superuser_role role includes the following
privileges for all database objects:

• ALTER

• APPLICATION_PASSWORD_ADMIN

• ALTER ROUTINE

• CREATE

• CREATE ROLE

• CREATE ROUTINE

• CREATE TEMPORARY TABLES

• CREATE USER

• CREATE VIEW

• DELETE

• DROP

• DROP ROLE

• EVENT

• EXECUTE

• INDEX

• INSERT

• LOCK TABLES

• PROCESS

• REFERENCES

• RELOAD

• REPLICATION CLIENT

Role-based privilege model 3507

Amazon Relational Database Service User Guide

• REPLICATION SLAVE

• ROLE_ADMIN

• SET_USER_ID

• SELECT

• SHOW DATABASES

• SHOW VIEW

• TRIGGER

• UPDATE

• XA_RECOVER_ADMIN

The role definition also includes WITH GRANT OPTION so that an administrative user can grant
that role to other users. In particular, the administrator must grant any privileges needed to
perform binary log replication with the MySQL cluster as the target.

Tip

To see the full details of the permissions, use the following statement.

SHOW GRANTS FOR rds_superuser_role@'%';

When you grant access by using roles in RDS for MySQL version 8.0.36 and higher, you also activate
the role by using the SET ROLE role_name or SET ROLE ALL statement. The following example
shows how. Substitute the appropriate role name for CUSTOM_ROLE.

Grant role to user
mysql> GRANT CUSTOM_ROLE TO 'user'@'domain-or-ip-address'

Check the current roles for your user. In this case, the CUSTOM_ROLE role has not
 been activated.
Only the rds_superuser_role is currently in effect.
mysql> SELECT CURRENT_ROLE();
+--------------------------+
| CURRENT_ROLE() |
+--------------------------+
| `rds_superuser_role`@`%` |
+--------------------------+

Role-based privilege model 3508

Amazon Relational Database Service User Guide

1 row in set (0.00 sec)

Activate all roles associated with this user using SET ROLE.
You can activate specific roles or all roles.
In this case, the user only has 2 roles, so we specify ALL.
mysql> SET ROLE ALL;
Query OK, 0 rows affected (0.00 sec)

Verify role is now active
mysql> SELECT CURRENT_ROLE();
+--+
| CURRENT_ROLE() |
+--+
| `CUSTOM_ROLE`@`%`,`rds_superuser_role`@`%` |
+--+

Dynamic privileges for RDS for MySQL

Dynamic privileges are MySQL privileges that you can explicitly grant by using the GRANT
statement. Depending on your version of RDS for MySQL, RDS allows you to grant only specific
dynamic privileges. RDS disallows some of these privileges because they can interfere with the
specific database operations, such as replication and backup.

The following table shows which of these privileges you can grant for different MySQL versions. If
you are upgrading from a MySQL version lower than 8.0.36 to version 8.0.36 or higher, you might
have to update your application code if granting a particular privilege is no longer allowed.

Privilege MySQL 8.0.35 and
lower

MySQL 8.0.36
and higher minor
versions

MySQL 8.4.3 and
higher

ALLOW_NON
EXISTENT_DEFINER

Not available Not available Disallowed

APPLICATI
ON_PASSWO
RD_ADMIN

Allowed Allowed Allowed

AUDIT_ABO
RT_EXEMPT

Allowed Disallowed Disallowed

Dynamic privileges 3509

https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_allow-nonexistent-definer
https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_allow-nonexistent-definer
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_application-password-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_application-password-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_application-password-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_audit-abort-exempt
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_audit-abort-exempt

Amazon Relational Database Service User Guide

Privilege MySQL 8.0.35 and
lower

MySQL 8.0.36
and higher minor
versions

MySQL 8.4.3 and
higher

AUDIT_ADMIN Disallowed Disallowed Disallowed

AUTHENTIC
ATION_POL
ICY_ADMIN

Allowed Disallowed Disallowed

BACKUP_ADMIN Allowed Disallowed Disallowed

BINLOG_ADMIN Allowed Disallowed Disallowed

BINLOG_EN
CRYPTION_ADMIN

Disallowed Disallowed Disallowed

CLONE_ADMIN Disallowed Disallowed Disallowed

CONNECTION_ADMIN Allowed Disallowed Disallowed

ENCRYPTIO
N_KEY_ADMIN

Disallowed Disallowed Disallowed

FIREWALL_ADMIN Disallowed Disallowed Disallowed

FIREWALL_EXEMPT Allowed Disallowed Disallowed

FIREWALL_USER Disallowed Disallowed Disallowed

FLUSH_OPT
IMIZER_COSTS

Allowed Allowed Allowed

FLUSH_PRIVILEGES Not available Not available Allowed

FLUSH_STATUS Allowed Allowed Allowed

FLUSH_TABLES Allowed Allowed Allowed

FLUSH_USE
R_RESOURCES

Allowed Allowed Allowed

Dynamic privileges 3510

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_audit-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_authentication-policy-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_authentication-policy-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_authentication-policy-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_binlog-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_binlog-encryption-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_binlog-encryption-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_clone-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_connection-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_encryption-key-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_encryption-key-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_firewall-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_firewall-exempt
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_firewall-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_flush-optimizer-costs
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_flush-optimizer-costs
https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_flush-status
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_flush-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_flush-user-resources
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_flush-user-resources

Amazon Relational Database Service User Guide

Privilege MySQL 8.0.35 and
lower

MySQL 8.0.36
and higher minor
versions

MySQL 8.4.3 and
higher

GROUP_REP
LICATION_ADMIN

Disallowed Disallowed Disallowed

GROUP_REP
LICATION_STREAM

Disallowed Disallowed Disallowed

INNODB_RE
DO_LOG_ARCHIVE

Disallowed Disallowed Disallowed

INNODB_RE
DO_LOG_ENABLE

Disallowed Disallowed Disallowed

MASKING_D
ICTIONARIES_ADMIN

Disallowed Disallowed Disallowed

NDB_STORED_USER Disallowed Disallowed Disallowed

OPTIMIZE_
LOCAL_TABLE

Not available Not available Disallowed

PASSWORDL
ESS_USER_ADMIN

Disallowed Disallowed Disallowed

PERSIST_R
O_VARIABL
ES_ADMIN

Disallowed Disallowed Disallowed

REPLICATION_APPLIE
R

Allowed Disallowed Disallowed

REPLICATI
ON_SLAVE_ADMIN

Disallowed Disallowed Disallowed

RESOURCE_
GROUP_ADMIN

Allowed Disallowed Disallowed

Dynamic privileges 3511

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_group-replication-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_group-replication-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_group-replication-stream
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_group-replication-stream
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_innodb-redo-log-archive
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_innodb-redo-log-archive
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_innodb-redo-log-enable
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_innodb-redo-log-enable
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_masking-dictionaries-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_masking-dictionaries-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_optimize-local-table
https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_optimize-local-table
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_passwordless-user-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_passwordless-user-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_persist-ro-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_persist-ro-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_persist-ro-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_resource-group-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_resource-group-admin

Amazon Relational Database Service User Guide

Privilege MySQL 8.0.35 and
lower

MySQL 8.0.36
and higher minor
versions

MySQL 8.4.3 and
higher

RESOURCE_
GROUP_USER

Allowed Disallowed Disallowed

ROLE_ADMIN Allowed Allowed Allowed

SENSITIVE_VARIABLE
S_OBSERVER

Allowed Allowed Allowed

SERVICE_C
ONNECTION_ADMIN

Allowed Disallowed Disallowed

SESSION_V
ARIABLES_ADMIN

Allowed Allowed Allowed

SET_ANY_DEFINER Not available Not available Allowed

SET_USER_ID Allowed Allowed Not available

SHOW_ROUTINE Allowed Allowed Allowed

SKIP_QUER
Y_REWRITE

Disallowed Disallowed Disallowed

SYSTEM_USER Disallowed Disallowed Disallowed

SYSTEM_VA
RIABLES_ADMIN

Disallowed Disallowed Disallowed

TABLE_ENC
RYPTION_ADMIN

Disallowed Disallowed Disallowed

TELEMETRY
_LOG_ADMIN

Allowed Disallowed Disallowed

TP_CONNEC
TION_ADMIN

Disallowed Disallowed Disallowed

Dynamic privileges 3512

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_resource-group-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_resource-group-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_role-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_service-connection-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_service-connection-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_session-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_session-variables-admin
https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_set-any-definer
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_set-user-id
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_show-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_skip-query-rewrite
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_skip-query-rewrite
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_table-encryption-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_table-encryption-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_telemetry-log-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_telemetry-log-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_tp-connection-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_tp-connection-admin

Amazon Relational Database Service User Guide

Privilege MySQL 8.0.35 and
lower

MySQL 8.0.36
and higher minor
versions

MySQL 8.4.3 and
higher

TRANSACTI
ON_GTID_TAG

Not available Not available Disallowed

VERSION_T
OKEN_ADMIN

Disallowed Disallowed Disallowed

XA_RECOVER_ADMIN Allowed Allowed Allowed

Ending a session or query for RDS for MySQL

You can end user sessions or queries on DB instances by using the rds_kill and
rds_kill_query commands. First connect to your MySQL DB instance, then issue the appropriate
command as shown following. For more information, see Connecting to your MySQL DB instance.

CALL mysql.rds_kill(thread-ID)
CALL mysql.rds_kill_query(thread-ID)

For example, to end the session that is running on thread 99, you would type the following:

CALL mysql.rds_kill(99);

To end the query that is running on thread 99, you would type the following:

CALL mysql.rds_kill_query(99);

Skipping the current replication error for RDS for MySQL

You can skip an error on your read replica if the error is causing your read replica to stop
responding and the error doesn't affect the integrity of your data.

Note

First verify that the error in question can be safely skipped. In a MySQL utility, connect to
the read replica and run the following MySQL command.

Ending a session or query 3513

https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_transaction-gtid-tag
https://dev.mysql.com/doc/refman/8.4/en/privileges-provided.html#priv_transaction-gtid-tag
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_version-token-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_version-token-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_xa-recover-admin

Amazon Relational Database Service User Guide

SHOW REPLICA STATUS\G

For information about the values returned, see the MySQL documentation.
Previous versions of and MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE STATUS.

You can skip an error on your read replica in the following ways.

Topics

• Calling the mysql.rds_skip_repl_error procedure

• Setting the slave_skip_errors parameter

Calling the mysql.rds_skip_repl_error procedure

Amazon RDS provides a stored procedure that you can call to skip an error on your read replicas.
First connect to your read replica, then issue the appropriate commands as shown following. For
more information, see Connecting to your MySQL DB instance.

To skip the error, issue the following command.

CALL mysql.rds_skip_repl_error;

This command has no effect if you run it on the source DB instance, or on a read replica that hasn't
encountered a replication error.

For more information, such as the versions of MySQL that support
mysql.rds_skip_repl_error, see mysql.rds_skip_repl_error.

Important

If you attempt to call mysql.rds_skip_repl_error and encounter the following error:
ERROR 1305 (42000): PROCEDURE mysql.rds_skip_repl_error does not
exist, then upgrade your MySQL DB instance to the latest minor version or one of the
minimum minor versions listed in mysql.rds_skip_repl_error.

Skipping the current replication error 3514

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

Setting the slave_skip_errors parameter

To skip one or more errors, you can set the slave_skip_errors static parameter on the read
replica. You can set this parameter to skip one or more specific replication error codes. Currently,
you can set this parameter only for RDS for MySQL 5.7 DB instances. After you change the setting
for this parameter, make sure to reboot your DB instance for the new setting to take effect. For
information about setting this parameter, see the MySQL documentation.

We recommend setting this parameter in a separate DB parameter group. You can associate this DB
parameter group only with the read replicas that need to skip errors. Following this best practice
reduces the potential impact on other DB instances and read replicas.

Important

Setting a nondefault value for this parameter can lead to replication inconsistency. Only
set this parameter to a nondefault value if you have exhausted other options to resolve the
problem and you are sure of the potential impact on your read replica's data.

Working with InnoDB tablespaces to improve crash recovery times for
RDS for MySQL

Every table in MySQL consists of a table definition, data, and indexes. The MySQL storage engine
InnoDB stores table data and indexes in a tablespace. InnoDB creates a global shared tablespace
that contains a data dictionary and other relevant metadata, and it can contain table data and
indexes. InnoDB can also create separate tablespaces for each table and partition. These separate
tablespaces are stored in files with a .ibd extension and the header of each tablespace contains a
number that uniquely identifies it.

Amazon RDS provides a parameter in a MySQL parameter group called
innodb_file_per_table. This parameters controls whether InnoDB adds new table data
and indexes to the shared tablespace (by setting the parameter value to 0) or to individual
tablespaces (by setting the parameter value to 1). Amazon RDS sets the default value for
innodb_file_per_table parameter to 1, which allows you to drop individual InnoDB tables
and reclaim storage used by those tables for the DB instance. In most use cases, setting the
innodb_file_per_table parameter to 1 is the recommended setting.

You should set the innodb_file_per_table parameter to 0 when you have a large number of
tables, such as over 1000 tables when you use standard (magnetic) or general purpose SSD storage

Improve crash recovery times 3515

https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_skip_errors

Amazon Relational Database Service User Guide

or over 10,000 tables when you use Provisioned IOPS storage. When you set this parameter to 0,
individual tablespaces are not created and this can improve the time it takes for database crash
recovery.

MySQL processes each metadata file, which includes tablespaces, during the crash recovery cycle.
The time it takes MySQL to process the metadata information in the shared tablespace is negligible
compared to the time it takes to process thousands of tablespace files when there are multiple
tablespaces. Because the tablespace number is stored within the header of each file, the aggregate
time to read all the tablespace files can take up to several hours. For example, a million InnoDB
tablespaces on standard storage can take from five to eight hours to process during a crash
recovery cycle. In some cases, InnoDB can determine that it needs additional cleanup after a crash
recovery cycle so it will begin another crash recovery cycle, which will extend the recovery time.
Keep in mind that a crash recovery cycle also entails rolling-back transactions, fixing broken pages,
and other operations in addition to the processing of tablespace information.

Since the innodb_file_per_table parameter resides in a parameter group, you can change
the parameter value by editing the parameter group used by your DB instance without having to
reboot the DB instance. After the setting is changed, for example, from 1 (create individual tables)
to 0 (use shared tablespace), new InnoDB tables will be added to the shared tablespace while
existing tables continue to have individual tablespaces. To move an InnoDB table to the shared
tablespace, you must use the ALTER TABLE command.

Migrating multiple tablespaces to the shared tablespace

You can move an InnoDB table's metadata from its own tablespace to the shared tablespace,
which will rebuild the table metadata according to the innodb_file_per_table parameter
setting. First connect to your MySQL DB instance, then issue the appropriate commands as shown
following. For more information, see Connecting to your MySQL DB instance.

ALTER TABLE table_name ENGINE = InnoDB, ALGORITHM=COPY;

For example, the following query returns an ALTER TABLE statement for every InnoDB table that
is not in the shared tablespace.

For MySQL 5.7 DB instances:

SELECT CONCAT('ALTER TABLE `',
REPLACE(LEFT(NAME , INSTR((NAME), '/') - 1), '`', '``'), '`.`',
REPLACE(SUBSTR(NAME FROM INSTR(NAME, '/') + 1), '`', '``'), '` ENGINE=InnoDB,
 ALGORITHM=COPY;') AS Query

Improve crash recovery times 3516

Amazon Relational Database Service User Guide

FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES
WHERE SPACE <> 0 AND LEFT(NAME, INSTR((NAME), '/') - 1) NOT IN ('mysql','');

For MySQL 8.4 and 8.0 DB instances:

SELECT CONCAT('ALTER TABLE `',
REPLACE(LEFT(NAME , INSTR((NAME), '/') - 1), '`', '``'), '`.`',
REPLACE(SUBSTR(NAME FROM INSTR(NAME, '/') + 1), '`', '``'), '` ENGINE=InnoDB,
 ALGORITHM=COPY;') AS Query
FROM INFORMATION_SCHEMA.INNODB_TABLES
WHERE SPACE <> 0 AND LEFT(NAME, INSTR((NAME), '/') - 1) NOT IN ('mysql','');

Rebuilding a MySQL table to move the table's metadata to the shared tablespace requires
additional storage space temporarily to rebuild the table, so the DB instance must have storage
space available. During rebuilding, the table is locked and inaccessible to queries. For small tables
or tables not frequently accessed, this might not be an issue. For large tables or tables frequently
accessed in a heavily concurrent environment, you can rebuild tables on a read replica.

You can create a read replica and migrate table metadata to the shared tablespace on the read
replica. While the ALTER TABLE statement blocks access on the read replica, the source DB instance
is not affected. The source DB instance will continue to generate its binary logs while the read
replica lags during the table rebuilding process. Because the rebuilding requires additional storage
space and the replay log file can become large, you should create a read replica with storage
allocated that is larger than the source DB instance.

To create a read replica and rebuild InnoDB tables to use the shared tablespace, take the following
steps:

1. Make sure that backup retention is enabled on the source DB instance so that binary logging is
enabled.

2. Use the AWS Management Console or AWS CLI to create a read replica for the source DB
instance. Because the creation of a read replica involves many of the same processes as
crash recovery, the creation process can take some time if there is a large number of InnoDB
tablespaces. Allocate more storage space on the read replica than is currently used on the source
DB instance.

3. When the read replica has been created, create a parameter group with the parameter settings
read_only = 0 and innodb_file_per_table = 0. Then associate the parameter group
with the read replica.

4. Issue the following SQL statement for all tables that you want migrated on the replica:

Improve crash recovery times 3517

Amazon Relational Database Service User Guide

ALTER TABLE name ENGINE = InnoDB

5. When all of your ALTER TABLE statements have completed on the read replica, verify that the
read replica is connected to the source DB instance and that the two instances are in sync.

6. Use the console or CLI to promote the read replica to be the instance. Make sure that the
parameter group used for the new standalone DB instance has the innodb_file_per_table
parameter set to 0. Change the name of the new standalone DB instance, and point any
applications to the new standalone DB instance.

Managing the Global Status History for RDS for MySQL

Tip

To analyze database performance, you can also use Performance Insights on Amazon RDS.
For more information, see Monitoring DB load with Performance Insights on Amazon RDS.

MySQL maintains many status variables that provide information about its operation. Their value
can help you detect locking or memory issues on a DB instance. The values of these status variables
are cumulative since last time the DB instance was started. You can reset most status variables to 0
by using the FLUSH STATUS command.

To allow for monitoring of these values over time, Amazon RDS provides a set of procedures that
will snapshot the values of these status variables over time and write them to a table, along with
any changes since the last snapshot. This infrastructure, called Global Status History (GoSH), is
installed on all MySQL DB instances starting with versions 5.5.23. GoSH is disabled by default.

To enable GoSH, you first enable the event scheduler from a DB parameter group by setting the
parameter event_scheduler to ON. For MySQL DB instances running MySQL 5.7, also set the
parameter show_compatibility_56 to 1. For information about creating and modifying a DB
parameter group, see Parameter groups for Amazon RDS. For information about the side effects of
enabling this parameter, see show_compatibility_56 in the MySQL 5.7 Reference Manual.

You can then use the procedures in the following table to enable and configure GoSH. First connect
to your MySQL DB instance, then issue the appropriate commands as shown following. For more
information, see Connecting to your MySQL DB instance. For each procedure, run the following
command and replace procedure-name:

Managing the Global Status History 3518

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_show_compatibility_56

Amazon Relational Database Service User Guide

CALL procedure-name;

The following table lists all of the procedures that you can use for procedure-name in the
previous command.

Procedure Description

mysql.rds_enable_g
sh_collector

Enables GoSH to take default snapshots at intervals
specified by rds_set_gsh_collector .

mysql.rds_set_gsh_
collector

Specifies the interval, in minutes, between snapshots.
Default value is 5.

mysql.rds_disable_
gsh_collector

Disables snapshots.

mysql.rds_collect_
global_status_history

Takes a snapshot on demand.

mysql.rds_enable_g
sh_rotation

Enables rotation of the contents of the mysql.rds
_global_status_history table to mysql.rds
_global_status_history_old at intervals
 specified by rds_set_gsh_rotation .

mysql.rds_set_gsh_
rotation

Specifies the interval, in days, between table rotations.
Default value is 7.

mysql.rds_disable_
gsh_rotation

Disables table rotation.

mysql.rds_rotate_g
lobal_status_history

Rotates the contents of the mysql.rds_global_s
tatus_history table to mysql.rds_global_s
tatus_history_old on demand.

When GoSH is running, you can query the tables that it writes to. For example, to query the hit
ratio of the Innodb buffer pool, you would issue the following query:

Managing the Global Status History 3519

Amazon Relational Database Service User Guide

select a.collection_end, a.collection_start, ((a.variable_Delta-b.variable_delta)/
a.variable_delta)*100 as "HitRatio"
 from mysql.rds_global_status_history as a join mysql.rds_global_status_history as b
 on a.collection_end = b.collection_end
 where a. variable_name = 'Innodb_buffer_pool_read_requests' and b.variable_name =
 'Innodb_buffer_pool_reads'

Configuring buffer pool size and redo log capacity in MySQL 8.4

In MySQL 8.4, Amazon RDS enables the innodb_dedicated_server parameter by default.
With the innodb_dedicated_server parameter, the database engine calculates the
innodb_buffer_pool_size and innodb_redo_log_capacity parameters. For information
about how these parameters are calculated, see Configuring InnoDB Buffer Pool Size and Redo Log
in the MySQL documentation.

With innodb_dedicated_server enabled, the innodb_buffer_pool_size parameter is
calculated based on the DB instance class memory. The following table shows the detected server
memory and the corresponding buffer pool size.

Detected server memory Buffer pool size

< 1 GB Default value of 128 MB

1 GB to 4 GB Detected server memory * 0.5

> 4 GB Detected server memory * 0.75

The innodb_redo_log_capacity parameter automatically scales with the instance class to
(number of vCPUs / 2) GB up to a maximum of 16 GB. Larger instance classes have a larger redo log
capacity, which can improve performance and resilience for write-intensive workloads.

Before upgrading from MySQL 8.0 to MySQL 8.4, be sure to increase your storage space to
accommodate a potential increase in the size of the redo logs that might occur after the upgrade
completes. For more information, see Increasing DB instance storage capacity.

If you don't want the innodb_dedicated_server parameter to calculate the values for
the innodb_buffer_pool_size and innodb_redo_log_capacity parameters, you
can override these values by setting specific values for them in a custom parameter group.

Configuring buffer pool size and redo log capacity 3520

https://dev.mysql.com/doc/refman/8.4/en/innodb-buffer-pool-resize.html
https://dev.mysql.com/doc/refman/8.4/en/innodb-redo-log.html

Amazon Relational Database Service User Guide

Alternatively, you can disable the innodb_dedicated_server parameter and set values for
the innodb_buffer_pool_size and innodb_redo_log_capacity parameters in a custom
parameter group. For more information, see Default and custom parameter groups.

If you disable the innodb_dedicated_server parameter by setting it to 0 and don't set values
for the innodb_buffer_pool_size and innodb_redo_log_capacity parameters, then
Amazon RDS sets the latter two parameters to 128 MB and 100 MB, respectively. These defaults
result in poor performance on larger instance classes.

Configuring buffer pool size and redo log capacity 3521

Amazon Relational Database Service User Guide

Local time zone for MySQL DB instances

By default, the time zone for a MySQL DB instance is Universal Time Coordinated (UTC). You can
set the time zone for your DB instance to the local time zone for your application instead.

To set the local time zone for a DB instance, set the time_zone parameter in the parameter group
for your DB instance to one of the supported values listed later in this section. When you set the
time_zone parameter for a parameter group, all DB instances and read replicas that are using that
parameter group change to use the new local time zone. For information on setting parameters in
a parameter group, see Parameter groups for Amazon RDS.

After you set the local time zone, all new connections to the database reflect the change. If you
have any open connections to your database when you change the local time zone, you won't see
the local time zone update until after you close the connection and open a new connection.

You can set a different local time zone for a DB instance and one or more of its read replicas. To
do this, use a different parameter group for the DB instance and the replica or replicas and set the
time_zone parameter in each parameter group to a different local time zone.

If you are replicating across AWS Regions, then the source DB instance and the read replica use
different parameter groups (parameter groups are unique to an AWS Region). To use the same local
time zone for each instance, you must set the time_zone parameter in the instance's and read
replica's parameter groups.

When you restore a DB instance from a DB snapshot, the local time zone is set to UTC. You can
update the time zone to your local time zone after the restore is complete. If you restore a DB
instance to a point in time, then the local time zone for the restored DB instance is the time zone
setting from the parameter group of the restored DB instance.

The Internet Assigned Numbers Authority (IANA) publishes new time zones at https://
www.iana.org/time-zones several times a year. Every time RDS releases a new minor maintenance
release of MySQL, it ships with the latest time zone data at the time of the release. When you use
the latest RDS for MySQL versions, you have recent time zone data from RDS. To ensure that your
DB instance has recent time zone data, we recommend upgrading to a higher DB engine version.
Alternatively, you can modify the time zone tables in MariaDB DB instances manually. To do so, you
can use SQL commands or run the mysql_tzinfo_to_sql tool in a SQL client. After updating the time
zone data manually, reboot your DB instance so that the changes take effect. RDS doesn't modify
or reset the time zone data of running DB instances. New time zone data is installed only when you
perform a database engine version upgrade.

Local time zone 3522

https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://dev.mysql.com/doc/refman/8.0/en/mysql-tzinfo-to-sql.html

Amazon Relational Database Service User Guide

You can set your local time zone to one of the following values.

Zone Time zone

Africa Africa/Cairo, Africa/Casablanca, Africa/Harare, Africa/Monrovia, Africa/Na
irobi, Africa/Tripoli, Africa/Windhoek

America America/Araguaina, America/Asuncion, America/Bogota, America/B
uenos_Aires, America/Caracas, America/Chihuahua, America/Cuiaba,
America/Denver, America/Fortaleza, America/Guatemala, America/Halifax,
America/Manaus, America/Matamoros, America/Monterrey, America/M
ontevideo, America/Phoenix, America/Santiago, America/Tijuana

Asia Asia/Amman, Asia/Ashgabat, Asia/Baghdad, Asia/Baku, Asia/Bangkok, Asia/
Beirut, Asia/Calcutta, Asia/Damascus, Asia/Dhaka, Asia/Irkutsk, Asia/Jeru
salem, Asia/Kabul, Asia/Karachi, Asia/Kathmandu, Asia/Krasnoyarsk, Asia/
Magadan, Asia/Muscat, Asia/Novosibirsk, Asia/Riyadh, Asia/Seoul, Asia/
Shanghai, Asia/Singapore, Asia/Taipei, Asia/Tehran, Asia/Tokyo, Asia/Ulaa
nbaatar, Asia/Vladivostok, Asia/Yakutsk, Asia/Yerevan

Atlantic Atlantic/Azores

Australia Australia/Adelaide, Australia/Brisbane, Australia/Darwin, Australia/Hobart,
Australia/Perth, Australia/Sydney

Brazil Brazil/DeNoronha, Brazil/East

Canada Canada/Newfoundland, Canada/Saskatchewan, Canda/Yukon

Europe Europe/Amsterdam, Europe/Athens, Europe/Dublin, Europe/Helsinki,
Europe/Istanbul, Europe/Kaliningrad Europe/Moscow, Europe/Paris,
Europe/Prague, Europe/Sarajevo

Pacific Pacific/Auckland, Pacific/Fiji, Pacific/Guam, Pacific/Honolulu, Pacific/Samoa

US US/Alaska, US/Central, US/East-Indiana, US/Eastern, US/Pacific

UTC UTC

Local time zone 3523

Amazon Relational Database Service User Guide

Known issues and limitations for Amazon RDS for MySQL

Known issues and limitations for working with Amazon RDS for MySQL are as follows.

Topics

• InnoDB reserved word

• Storage-full behavior for Amazon RDS for MySQL

• Inconsistent InnoDB buffer pool size

• Index merge optimization returns incorrect results

• MySQL parameter exceptions for Amazon RDS DB instances

• MySQL file size limits in Amazon RDS

• MySQL Keyring Plugin not supported

• Custom ports

• MySQL stored procedure limitations

• GTID-based replication with an external source instance

• MySQL default authentication plugin

• Overriding innodb_buffer_pool_size

• Upgrading from MySQL 5.7 to MySQL 8.4

• InnoDB page compression

InnoDB reserved word

InnoDB is a reserved word for RDS for MySQL. You can't use this name for a MySQL database.

Storage-full behavior for Amazon RDS for MySQL

When storage becomes full for a MySQL DB instance, there can be metadata inconsistencies,
dictionary mismatches, and orphan tables. To prevent these issues, Amazon RDS automatically
stops a DB instance that reaches the storage-full state.

A MySQL DB instance reaches the storage-full state in the following cases:

• The DB instance has less than 20,000 MiB of storage, and available storage reaches 200 MiB or
less.

Known issues and limitations 3524

Amazon Relational Database Service User Guide

• The DB instance has more than 102,400 MiB of storage, and available storage reaches 1024 MiB
or less.

• The DB instance has between 20,000 MiB and 102,400 MiB of storage, and has less than 1% of
storage available.

After Amazon RDS stops a DB instance automatically because it reached the storage-full state,
you can still modify it. To restart the DB instance, complete at least one of the following:

• Modify the DB instance to enable storage autoscaling.

For more information about storage autoscaling, see Managing capacity automatically with
Amazon RDS storage autoscaling.

• Modify the DB instance to increase its storage capacity.

For more information about increasing storage capacity, see Increasing DB instance storage
capacity.

After you make one of these changes, the DB instance is restarted automatically. For information
about modifying a DB instance, see Modifying an Amazon RDS DB instance.

Inconsistent InnoDB buffer pool size

For MySQL 5.7, there is currently a bug in the way that the InnoDB buffer pool size is managed.
MySQL 5.7 might adjust the value of the innodb_buffer_pool_size parameter to a large value
that can result in the InnoDB buffer pool growing too large and using up too much memory. This
effect can cause the MySQL database engine to stop running or can prevent it from starting. This
issue is more common for DB instance classes that have less memory available.

To resolve this issue, set the value of the innodb_buffer_pool_size parameter to a
multiple of the product of the innodb_buffer_pool_instances parameter value and
the innodb_buffer_pool_chunk_size parameter value. For example, you might set the
innodb_buffer_pool_size parameter value to a multiple of eight times the product of the
innodb_buffer_pool_instances and innodb_buffer_pool_chunk_size parameter values,
as shown in the following example.

innodb_buffer_pool_chunk_size = 536870912
innodb_buffer_pool_instances = 4
innodb_buffer_pool_size = (536870912 * 4) * 8 = 17179869184

Inconsistent InnoDB buffer pool size 3525

Amazon Relational Database Service User Guide

For details on this MySQL 5.7 bug, see https://bugs.mysql.com/bug.php?id=79379 in the MySQL
documentation.

Index merge optimization returns incorrect results

Queries that use index merge optimization might return incorrect results because of a bug in the
MySQL query optimizer that was introduced in MySQL 5.5.37. When you issue a query against a
table with multiple indexes, the optimizer scans ranges of rows based on the multiple indexes, but
does not merge the results together correctly. For more information on the query optimizer bug,
see http://bugs.mysql.com/bug.php?id=72745 and http://bugs.mysql.com/bug.php?id=68194 in
the MySQL bug database.

For example, consider a query on a table with two indexes where the search arguments reference
the indexed columns.

SELECT * FROM table1
WHERE indexed_col1 = 'value1' AND indexed_col2 = 'value2';

In this case, the search engine will search both indexes. However, because of the bug, the merged
results are incorrect.

To resolve this issue, you can do one of the following:

• Set the optimizer_switch parameter to index_merge=off in the DB parameter group
for your MySQL DB instance. For information on setting DB parameter group parameters, see
Parameter groups for Amazon RDS.

• Upgrade your MySQL DB instance to MySQL version 5.7 or 8.0. For more information, see
Upgrades of the RDS for MySQL DB engine.

• If you cannot upgrade your instance or change the optimizer_switch parameter, you can
work around the bug by explicitly identifying an index for the query, for example:

SELECT * FROM table1
USE INDEX covering_index
WHERE indexed_col1 = 'value1' AND indexed_col2 = 'value2';

For more information, see Index merge optimization in the MySQL documentation.

Index merge optimization returns incorrect results 3526

https://bugs.mysql.com/bug.php?id=79379
https://bugs.mysql.com/bug.php?id=72745
https://bugs.mysql.com/bug.php?id=68194
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

Amazon Relational Database Service User Guide

MySQL parameter exceptions for Amazon RDS DB instances

Some MySQL parameters require special considerations when used with an Amazon RDS DB
instance.

lower_case_table_names

Because Amazon RDS uses a case-sensitive file system, setting the value of the
lower_case_table_names server parameter to 2 (names stored as given but compared in
lowercase) is not supported. The following are the supported values for Amazon RDS for MySQL
DB instances:

• 0 (names stored as given and comparisons are case-sensitive) is supported for all RDS for MySQL
versions.

• 1 (names stored in lowercase and comparisons are not case-sensitive) is supported for RDS for
MySQL version 5.7, version 8.0.28 and higher 8.0 versions, and version 8.4.

Set the lower_case_table_names parameter in a custom DB parameter group before creating a
DB instance. Then, specify the custom DB parameter group when you create the DB instance.

When a parameter group is associated with a MySQL DB instance with a version lower than 8.0, we
recommend that you avoid changing the lower_case_table_names parameter in the parameter
group. Changing it could cause inconsistencies with point-in-time recovery backups and read
replica DB instances.

When a parameter group is associated with a version 8.0 or 8.4 MySQL DB instance, you can't
modify the lower_case_table_names parameter in the parameter group.

Read replicas should always use the same lower_case_table_names parameter value as the
source DB instance.

long_query_time

You can set the long_query_time parameter to a floating point value so that you can log slow
queries to the MySQL slow query log with microsecond resolution. You can set a value such as 0.1
seconds, which would be 100 milliseconds, to help when debugging slow transactions that take
less than one second.

MySQL parameter exceptions for Amazon RDS DB instances 3527

Amazon Relational Database Service User Guide

MySQL file size limits in Amazon RDS

For MySQL versions 8.0 and higher DB instances, the maximum file size is 16 TiB. When using file-
per-table tablespaces, the maximum file size limits the size of an InnoDB table to 16 TiB. InnoDB
file-per-table tablespaces (with tables each in their own tablespace) is set by default for MySQL DB
instances. For more information, see InnoDB Limits in the MySQL documentation.

Note

Some existing DB instances have a lower limit. For example, MySQL DB instances created
before April 2014 have a file and table size limit of 2 TB. This 2 TB file size limit also applies
to DB instances or read replicas created from DB snapshots taken before April 2014,
regardless of when the DB instance was created.

There are advantages and disadvantages to using InnoDB file-per-table tablespaces, depending
on your application. To determine the best approach for your application, see File-per-table
tablespaces in the MySQL documentation.

We don't recommend allowing tables to grow to the maximum file size. In general, a better
practice is to partition data into smaller tables, which can improve performance and recovery
times.

One option that you can use for breaking up a large table into smaller tables is partitioning.
Partitioning distributes portions of your large table into separate files based on rules that you
specify. For example, if you store transactions by date, you can create partitioning rules that
distribute older transactions into separate files using partitioning. Then periodically, you can
archive the historical transaction data that doesn't need to be readily available to your application.
For more information, see Partitioning in the MySQL documentation.

Because there is no single system table or view that provides the size of all the tables and
the InnoDB system tablespace, you must query multiple tables to determine the size of the
tablespaces.

To determine the size of the InnoDB system tablespace and the data dictionary tablespace

• Use the following SQL command to determine if any of your tablespaces are too large and are
candidates for partitioning.

MySQL file size limits in Amazon RDS 3528

https://dev.mysql.com/doc/refman/8.0/en/innodb-limits.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-file-per-table-tablespaces.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-file-per-table-tablespaces.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html

Amazon Relational Database Service User Guide

Note

The data dictionary tablespace is specific to MySQL 8.0 and higher versions.

select FILE_NAME,TABLESPACE_NAME, ROUND(((TOTAL_EXTENTS*EXTENT_SIZE)
/1024/1024/1024), 2) as "File Size (GB)" from information_schema.FILES
where tablespace_name in ('mysql','innodb_system');

To determine the size of InnoDB user tables outside of the InnoDB system tablespace (for
MySQL 5.7 versions)

• Use the following SQL command to determine if any of your tables are too large and are
candidates for partitioning.

SELECT SPACE,NAME,ROUND((ALLOCATED_SIZE/1024/1024/1024), 2)
as "Tablespace Size (GB)"
FROM information_schema.INNODB_SYS_TABLESPACES ORDER BY 3 DESC;

To determine the size of InnoDB user tables outside of the InnoDB system tablespace (for
MySQL 8.0 and higher versions)

• Use the following SQL command to determine if any of your tables are too large and are
candidates for partitioning.

SELECT SPACE,NAME,ROUND((ALLOCATED_SIZE/1024/1024/1024), 2)
as "Tablespace Size (GB)"
FROM information_schema.INNODB_TABLESPACES ORDER BY 3 DESC;

To determine the size of non-InnoDB user tables

• Use the following SQL command to determine if any of your non-InnoDB user tables are too
large.

SELECT TABLE_SCHEMA, TABLE_NAME, round(((DATA_LENGTH + INDEX_LENGTH+DATA_FREE)
/ 1024 / 1024/ 1024), 2) As "Approximate size (GB)" FROM information_schema.TABLES

MySQL file size limits in Amazon RDS 3529

Amazon Relational Database Service User Guide

WHERE TABLE_SCHEMA NOT IN ('mysql', 'information_schema', 'performance_schema')
and ENGINE<>'InnoDB';

To enable InnoDB file-per-table tablespaces

• Set the innodb_file_per_table parameter to 1 in the parameter group for the DB instance.

To disable InnoDB file-per-table tablespaces

• Set the innodb_file_per_table parameter to 0 in the parameter group for the DB instance.

For information on updating a parameter group, see Parameter groups for Amazon RDS.

When you have enabled or disabled InnoDB file-per-table tablespaces, you can issue an ALTER
TABLE command to move a table from the global tablespace to its own tablespace, or from its own
tablespace to the global tablespace as shown in the following example:

ALTER TABLE table_name TABLESPACE=innodb_file_per_table;

MySQL Keyring Plugin not supported

Currently, Amazon RDS for MySQL doesn't support the MySQL keyring_aws Amazon Web
Services Keyring Plugin.

Custom ports

Amazon RDS blocks connections to custom port 33060 for the MySQL engine. Choose a different
port for your MySQL engine.

MySQL stored procedure limitations

The mysql.rds_kill and mysql.rds_kill_query stored procedures can't terminate sessions or queries
owned by MySQL users with usernames longer than 16 characters on the following RDS for MySQL
versions:

• 8.0.32 and lower 8 versions

• 5.7.41 and lower 5.7 versions

MySQL Keyring Plugin not supported 3530

Amazon Relational Database Service User Guide

GTID-based replication with an external source instance

Amazon RDS supports replication based on global transaction identifiers (GTIDs) from an external
MySQL instance into an Amazon RDS for MySQL DB instance that requires setting GTID_PURGED
during configuration. However, only RDS for MySQL 8.0.37 and higher versions support this
functionality.

MySQL default authentication plugin

RDS for MySQL version 8.0.34 and higher 8.0 versions use the mysql_native_password plugin.
You can't change the default_authentication_plugin setting.

RDS for MySQL version 8.4 and higher versions use the caching_sha2_password plugin as the
default authentication plugin. You can change the default authentication plugin for MySQL 8.4.
The mysql_native_password plugin still works with MySQL 8.4, but support of this plugin ends
with MySQL 8.4. To change the default authentication plugin, create a custom parameter group
and modify the value of the authentication_policy parameter. For more information, see the
section called “Default and custom parameter groups”.

Overriding innodb_buffer_pool_size

With micro or small DB instance classes, the default value for the innodb_buffer_pool_size
parameter might differ from the value returned by running the following command:

mysql> SELECT @@innodb_buffer_pool_size;

This difference can occur when Amazon RDS needs to override the default value as part of
managing the DB instance classes. If necessary, you can override the default value and set it to a
value that your DB instance class supports. To determine a valid value, add the memory usage and
the total memory available on your DB instance. For more information, see Amazon RDS instance
types.

If your DB instance has only 4 GB of memory, you can't set innodb_buffer_pool_size to 8 GB
but you might be able to set it to 3 GB, depending on how much memory you allocated for other
parameters.

If the value that you input is too large, Amazon RDS lowers the value to the following limits:

• Micro DB instance classes: 256 MB

GTID-based replication with an external source instance 3531

https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/

Amazon Relational Database Service User Guide

• db.t4g.micro DB instance classes: 128 MB

Upgrading from MySQL 5.7 to MySQL 8.4

You can't upgrade directly from MySQL 5.7 to MySQL 8.4. You must first upgrade from MySQL 5.7
to MySQL 8.0, and then upgrade from MySQL 8.0 to MySQL 8.4. For more information, see Major
version upgrades for RDS for MySQL.

InnoDB page compression

InnoDB page compression doesn't work with Amazon RDS DB instances that have a file system
block size of 16k because the file system block size must be smaller than the InnoDB page size.
Starting in February 2024, all newly created DB instances have a file system block size of 16k,
which increases throughput and decreases IOPS consumption during page flushes.

Upgrading from MySQL 5.7 to MySQL 8.4 3532

Amazon Relational Database Service User Guide

RDS for MySQL stored procedure reference

These topics describe system stored procedures that are available for Amazon RDS instances
running the MySQL DB engine. The master user must run these procedures.

Topics

• Collecting and maintaining the Global Status History

• Configuring, starting, and stopping binary log (binlog) replication

• Ending a session or query

• Managing active-active clusters

• Managing multi-source replication

• Replicating transactions using GTIDs

• Rotating the query logs

• Setting and showing binary log configuration

• Warming the InnoDB cache

RDS for MySQL stored procedures 3533

Amazon Relational Database Service User Guide

Collecting and maintaining the Global Status History

Amazon RDS provides a set of procedures that take snapshots of the values of status variables over
time and write them to a table, along with any changes since the last snapshot. This infrastructure
is called Global Status History. For more information, see Managing the Global Status History for
RDS for MySQL.

The following stored procedures manage how the Global Status History is collected and
maintained.

Topics

• mysql.rds_collect_global_status_history

• mysql.rds_disable_gsh_collector

• mysql.rds_disable_gsh_rotation

• mysql.rds_enable_gsh_collector

• mysql.rds_enable_gsh_rotation

• mysql.rds_rotate_global_status_history

• mysql.rds_set_gsh_collector

• mysql.rds_set_gsh_rotation

mysql.rds_collect_global_status_history

Takes a snapshot on demand for the Global Status History.

Syntax

CALL mysql.rds_collect_global_status_history;

mysql.rds_disable_gsh_collector

Turns off snapshots taken by the Global Status History.

Syntax

CALL mysql.rds_disable_gsh_collector;

Collecting and maintaining the Global Status History 3534

Amazon Relational Database Service User Guide

mysql.rds_disable_gsh_rotation

Turns off rotation of the mysql.global_status_history table.

Syntax

CALL mysql.rds_disable_gsh_rotation;

mysql.rds_enable_gsh_collector

Turns on the Global Status History to take default snapshots at intervals specified by
rds_set_gsh_collector.

Syntax

CALL mysql.rds_enable_gsh_collector;

mysql.rds_enable_gsh_rotation

Turns on rotation of the contents of the mysql.global_status_history table to
mysql.global_status_history_old at intervals specified by rds_set_gsh_rotation.

Syntax

CALL mysql.rds_enable_gsh_rotation;

mysql.rds_rotate_global_status_history

Rotates the contents of the mysql.global_status_history table to
mysql.global_status_history_old on demand.

Syntax

CALL mysql.rds_rotate_global_status_history;

mysql.rds_set_gsh_collector

Specifies the interval, in minutes, between snapshots taken by the Global Status History.

Collecting and maintaining the Global Status History 3535

Amazon Relational Database Service User Guide

Syntax

CALL mysql.rds_set_gsh_collector(intervalPeriod);

Parameters

intervalPeriod

The interval, in minutes, between snapshots. Default value is 5.

mysql.rds_set_gsh_rotation

Specifies the interval, in days, between rotations of the mysql.global_status_history table.

Syntax

CALL mysql.rds_set_gsh_rotation(intervalPeriod);

Parameters

intervalPeriod

The interval, in days, between table rotations. Default value is 7.

Collecting and maintaining the Global Status History 3536

Amazon Relational Database Service User Guide

Configuring, starting, and stopping binary log (binlog) replication

The following stored procedures control how transactions are replicated from an external database
into RDS for MySQL, or from RDS for MySQL to an external database.

When using these stored procedures to manage replication with a replication user configured
with caching_sha2_password, you must configure TLS by specifying SOURCE_SSL=1.
caching_sha2_password is the default authentication plugin for RDS for MySQL 8.4 For more
information, see Encrypting with SSL/TLS.

For information about configuring, using, and managing read replicas, see the section called
“MySQL read replicas”.

Topics

• mysql.rds_next_master_log (RDS for MariaDB and RDS for MySQL major versions 8.0 and lower)

• mysql.rds_next_source_log (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_reset_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_reset_external_source (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_set_external_master_with_auto_position (RDS for MySQL major versions 8.0 and
lower)

• mysql.rds_set_external_source_with_auto_position (RDS for MySQL major versions 8.4 and
higher)

• mysql.rds_set_external_master_with_delay (RDS for MariaDB and RDS for MySQL major versions
8.0 and lower)

• mysql.rds_set_external_source_with_delay (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_set_external_source_gtid_purged

• mysql.rds_set_master_auto_position (RDS for MySQL major versions 8.0 and lower)

• mysql.rds_set_source_auto_position (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_set_source_delay

• mysql.rds_skip_repl_error

Configuring, starting, and stopping binary log (binlog) replication 3537

Amazon Relational Database Service User Guide

• mysql.rds_start_replication

• mysql.rds_start_replication_until

• mysql.rds_stop_replication

mysql.rds_next_master_log (RDS for MariaDB and RDS for MySQL major versions
8.0 and lower)

Changes the source database instance log position to the start of the next binary log on the source
database instance. Use this procedure only if you are receiving replication I/O error 1236 on a read
replica.

Syntax

CALL mysql.rds_next_master_log(
curr_master_log
);

Parameters

curr_master_log

The index of the current master log file. For example, if the current file is named mysql-bin-
changelog.012345, then the index is 12345. To determine the current master log file name,
run the SHOW REPLICA STATUS command and view the Master_Log_File field.

Usage notes

The master user must run the mysql.rds_next_master_log procedure.

Warning

Call mysql.rds_next_master_log only if replication fails after a failover of a Multi-AZ
DB instance that is the replication source, and the Last_IO_Errno field of SHOW REPLICA
STATUS reports I/O error 1236.
Calling mysql.rds_next_master_log can result in data loss in the read replica if
transactions in the source instance were not written to the binary log on disk before the
failover event occurred. You can reduce the chance of this happening by setting the source

Configuring, starting, and stopping binary log (binlog) replication 3538

Amazon Relational Database Service User Guide

instance parameters sync_binlog and innodb_support_xa to 1, even though this
might reduce performance. For more information, see Troubleshooting a MySQL read
replica problem.

Examples

Assume replication fails on an RDS for MySQL read replica. Running SHOW REPLICA STATUS\G on
the read replica returns the following result:

*************************** 1. row ***************************
 Replica_IO_State:
 Source_Host: myhost.XXXXXXXXXXXXXXX.rr-rrrr-1.rds.amazonaws.com
 Source_User: MasterUser
 Source_Port: 3306
 Connect_Retry: 10
 Source_Log_File: mysql-bin-changelog.012345
 Read_Source_Log_Pos: 1219393
 Relay_Log_File: relaylog.012340
 Relay_Log_Pos: 30223388
 Relay_Source_Log_File: mysql-bin-changelog.012345
 Replica_IO_Running: No
 Replica_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 30223232
 Relay_Log_Space: 5248928866
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:
 Source_SSL_Cipher:
 Source_SSL_Key:

Configuring, starting, and stopping binary log (binlog) replication 3539

Amazon Relational Database Service User Guide

 Seconds_Behind_Master: NULL
Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 1236
 Last_IO_Error: Got fatal error 1236 from master when reading data from
 binary log: 'Client requested master to start replication from impossible position;
 the first event 'mysql-bin-changelog.013406' at 1219393, the last event read from
 '/rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4, the last byte read from '/
rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4.'
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 67285976

The Last_IO_Errno field shows that the instance is receiving I/O error 1236. The
Master_Log_File field shows that the file name is mysql-bin-changelog.012345,
which means that the log file index is 12345. To resolve the error, you can call
mysql.rds_next_master_log with the following parameter:

CALL mysql.rds_next_master_log(12345);

mysql.rds_next_source_log (RDS for MySQL major versions 8.4 and higher)

Changes the source database instance log position to the start of the next binary log on the source
database instance. Use this procedure only if you are receiving replication I/O error 1236 on a read
replica.

Syntax

CALL mysql.rds_next_source_log(
curr_source_log
);

Parameters

curr_source_log

The index of the current source log file. For example, if the current file is named mysql-bin-
changelog.012345, then the index is 12345. To determine the current source log file name,
run the SHOW REPLICA STATUS command and view the Source_Log_File field.

Configuring, starting, and stopping binary log (binlog) replication 3540

Amazon Relational Database Service User Guide

Usage notes

The administrative user must run the mysql.rds_next_source_log procedure.

Warning

Call mysql.rds_next_source_log only if replication fails after a failover of a Multi-AZ
DB instance that is the replication source, and the Last_IO_Errno field of SHOW REPLICA
STATUS reports I/O error 1236.
Calling mysql.rds_next_source_log can result in data loss in the read replica if
transactions in the source instance were not written to the binary log on disk before the
failover event occurred. You can reduce the chance of this happening by setting the source
instance parameters sync_binlog and innodb_support_xa to 1, even though this
might reduce performance. For more information, see Troubleshooting a MySQL read
replica problem.

Examples

Assume replication fails on an RDS for MySQL read replica. Running SHOW REPLICA STATUS\G on
the read replica returns the following result:

*************************** 1. row ***************************
 Replica_IO_State:
 Source_Host: myhost.XXXXXXXXXXXXXXX.rr-rrrr-1.rds.amazonaws.com
 Source_User: MasterUser
 Source_Port: 3306
 Connect_Retry: 10
 Source_Log_File: mysql-bin-changelog.012345
 Read_Source_Log_Pos: 1219393
 Relay_Log_File: relaylog.012340
 Relay_Log_Pos: 30223388
 Relay_Source_Log_File: mysql-bin-changelog.012345
 Replica_IO_Running: No
 Replica_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:

Configuring, starting, and stopping binary log (binlog) replication 3541

Amazon Relational Database Service User Guide

 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 30223232
 Relay_Log_Space: 5248928866
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:
 Source_SSL_Cipher:
 Source_SSL_Key:
 Seconds_Behind_Source: NULL
Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 1236
 Last_IO_Error: Got fatal error 1236 from source when reading data from
 binary log: 'Client requested source to start replication from impossible position;
 the first event 'mysql-bin-changelog.013406' at 1219393, the last event read from
 '/rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4, the last byte read from '/
rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4.'
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 67285976

The Last_IO_Errno field shows that the instance is receiving I/O error 1236. The
Source_Log_File field shows that the file name is mysql-bin-changelog.012345,
which means that the log file index is 12345. To resolve the error, you can call
mysql.rds_next_source_log with the following parameter:

CALL mysql.rds_next_source_log(12345);

mysql.rds_reset_external_master (RDS for MariaDB and RDS for MySQL major
versions 8.0 and lower)

Reconfigures an RDS for MySQL DB instance to no longer be a read replica of an instance of MySQL
running external to Amazon RDS.

Configuring, starting, and stopping binary log (binlog) replication 3542

Amazon Relational Database Service User Guide

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_reset_external_master;

Usage notes

The master user must run the mysql.rds_reset_external_master procedure. This procedure
must be run on the MySQL DB instance to be removed as a read replica of a MySQL instance
running external to Amazon RDS.

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored
procedures primarily to enable replication with MySQL instances running external to
Amazon RDS. For information about managing replication between Amazon RDS DB
instances, see Working with DB instance read replicas.

For more information about using replication to import data from an instance of MySQL running
external to Amazon RDS, see Configuring binary log file position replication with an external source
instance.

mysql.rds_reset_external_source (RDS for MySQL major versions 8.4 and higher)

Reconfigures an RDS for MySQL DB instance to no longer be a read replica of an instance of MySQL
running external to Amazon RDS.

Configuring, starting, and stopping binary log (binlog) replication 3543

Amazon Relational Database Service User Guide

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_reset_external_source;

Usage notes

The administrative user must run the mysql.rds_reset_external_source procedure. This
procedure must be run on the MySQL DB instance to be removed as a read replica of a MySQL
instance running external to Amazon RDS.

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored
procedures primarily to enable replication with MySQL instances running external to
Amazon RDS.
For information about managing replication between Amazon RDS DB instances, see
Working with DB instance read replicas. For more information about using replication to
import data from an instance of MySQL running external to Amazon RDS, see Configuring
binary log file position replication with an external source instance.

mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major
versions 8.0 and lower)

Configures an RDS for MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS.

Configuring, starting, and stopping binary log (binlog) replication 3544

Amazon Relational Database Service User Guide

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Note

You can use the mysql.rds_set_external_master_with_delay (RDS for MariaDB and RDS for
MySQL major versions 8.0 and lower) stored procedure to configure an external source
database instance and delayed replication.

Syntax

CALL mysql.rds_set_external_master (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS to become
the source database instance.

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes Secure Shell (SSH) port
replication that converts the port number, specify the port number that is exposed by SSH.

Configuring, starting, and stopping binary log (binlog) replication 3545

Amazon Relational Database Service User Guide

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

mysql_binary_log_file_name

The name of the binary log on the source database instance that contains the replication
information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication starts
reading the replication information.

You can determine the binlog file name and location by running SHOW MASTER STATUS on the
source database instance.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The MASTER_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

Usage notes

The master user must run the mysql.rds_set_external_master procedure. This procedure
must be run on the MySQL DB instance to be configured as the read replica of a MySQL instance
running external to Amazon RDS.

Before you run mysql.rds_set_external_master, you must configure the instance of MySQL
running external to Amazon RDS to be a source database instance. To connect to the MySQL
instance running external to Amazon RDS, you must specify replication_user_name and

Configuring, starting, and stopping binary log (binlog) replication 3546

Amazon Relational Database Service User Guide

replication_user_password values that indicate a replication user that has REPLICATION
CLIENT and REPLICATION SLAVE permissions on the external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

MySQL 5.7

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

MySQL 8.0

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED WITH mysql_native_password BY
 'password';

Note

Specify a password other than the prompt shown here as a security best practice.

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

MySQL 5.7

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
 IDENTIFIED BY 'password';

MySQL 8.0

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

To use encrypted replication, configure source database instance to use SSL connections.

Configuring, starting, and stopping binary log (binlog) replication 3547

Amazon Relational Database Service User Guide

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored
procedures primarily to enable replication with MySQL instances running external to
Amazon RDS. For information about managing replication between Amazon RDS DB
instances, see Working with DB instance read replicas.

After calling mysql.rds_set_external_master to configure an Amazon RDS DB instance as
a read replica, you can call mysql.rds_start_replication on the read replica to start the replication
process. You can call mysql.rds_reset_external_master (RDS for MariaDB and RDS for MySQL major
versions 8.0 and lower) to remove the read replica configuration.

When mysql.rds_set_external_master is called, Amazon RDS records the time, user, and
an action of set master in the mysql.rds_history and mysql.rds_replication_status
tables.

Examples

When run on a MySQL DB instance, the following example configures the DB instance to be a read
replica of an instance of MySQL running external to Amazon RDS.

call mysql.rds_set_external_master(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'password',
 'mysql-bin-changelog.0777',
 120,
 1);

mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher)

Configures an RDS for MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS.

Configuring, starting, and stopping binary log (binlog) replication 3548

Amazon Relational Database Service User Guide

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_source (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS to become
the source database instance.

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes Secure Shell (SSH) port
replication that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

Configuring, starting, and stopping binary log (binlog) replication 3549

Amazon Relational Database Service User Guide

mysql_binary_log_file_name

The name of the binary log on the source database instance that contains the replication
information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication starts
reading the replication information.

You can determine the binlog file name and location by running SHOW MASTER STATUS on the
source database instance.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The SOURCE_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

Usage notes

The administrative user must run the mysql.rds_set_external_source procedure. This
procedure must be run on the RDS for MySQL DB instance to be configured as the read replica of a
MySQL instance running external to Amazon RDS.

Before you run mysql.rds_set_external_source, you must configure the instance of MySQL
running external to Amazon RDS to be a source database instance. To connect to the MySQL
instance running external to Amazon RDS, you must specify replication_user_name and
replication_user_password values that indicate a replication user that has REPLICATION
CLIENT and REPLICATION SLAVE permissions on the external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

Configuring, starting, and stopping binary log (binlog) replication 3550

Amazon Relational Database Service User Guide

Note

Specify a password other than the prompt shown here as a security best practice.

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

To use encrypted replication, configure source database instance to use SSL connections. Also,
import the certificate authority certificate, client certificate, and client key into the DB instance or
DB cluster using the mysql.rds_import_binlog_ssl_material procedure.

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored
procedures primarily to enable replication with MySQL instances running external to
Amazon RDS. For information about managing replication between Amazon RDS DB
instances, see Working with DB instance read replicas.

After calling mysql.rds_set_external_source to configure an RDS for MySQL DB instance as
a read replica, you can call mysql.rds_start_replication on the read replica to start the replication
process. You can call mysql.rds_reset_external_source (RDS for MySQL major versions 8.4 and
higher) to remove the read replica configuration.

When mysql.rds_set_external_source is called, Amazon RDS records the time, user, and
an action of set master in the mysql.rds_history and mysql.rds_replication_status
tables.

Configuring, starting, and stopping binary log (binlog) replication 3551

url-rds-user;mysql_rds_import_binlog_ssl_material.html

Amazon Relational Database Service User Guide

Examples

When run on an RDS for MySQL DB instance, the following example configures the DB instance to
be a read replica of an instance of MySQL running external to Amazon RDS.

call mysql.rds_set_external_source(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'password',
 'mysql-bin-changelog.0777',
 120,
 1);

mysql.rds_set_external_master_with_auto_position (RDS for MySQL major
versions 8.0 and lower)

Configures an RDS for MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS. This procedure also configures delayed replication and replication based
on global transaction identifiers (GTIDs).

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_master_with_auto_position (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , ssl_encryption
 , delay
);

Configuring, starting, and stopping binary log (binlog) replication 3552

Amazon Relational Database Service User Guide

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS to become
the source database instance.

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes Secure Shell (SSH) port
replication that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The MASTER_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

delay

The minimum number of seconds to delay replication from source database instance.

The limit for this parameter is one day (86,400 seconds).

Configuring, starting, and stopping binary log (binlog) replication 3553

Amazon Relational Database Service User Guide

Usage notes

The master user must run the mysql.rds_set_external_master_with_auto_position
procedure. This procedure must be run on the MySQL DB instance to be configured as the read
replica of a MySQL instance running external to Amazon RDS.

This procedure is supported for all RDS for MySQL 5.7 versions, and RDS for MySQL 8.0.26 and
higher 8.0 versions.

Before you run mysql.rds_set_external_master_with_auto_position, you must
configure the instance of MySQL running external to Amazon RDS to be a source database
instance. To connect to the MySQL instance running external to Amazon RDS, you must specify
values for replication_user_name and replication_user_password. These values must
indicate a replication user that has REPLICATION CLIENT and REPLICATION SLAVE permissions
on the external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

For more information, see Configuring binary log file position replication with an external source
instance.

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored

Configuring, starting, and stopping binary log (binlog) replication 3554

Amazon Relational Database Service User Guide

procedures primarily to enable replication with MySQL instances running external to
Amazon RDS. For information about managing replication between Amazon RDS DB
instances, see Working with DB instance read replicas.

Before you call mysql.rds_set_external_master_with_auto_position, make sure to call
the section called “mysql.rds_set_external_source_gtid_purged” to set the gtid_purged system
variable with a specified GTID range from an external source.

After calling mysql.rds_set_external_master_with_auto_position to configure an
Amazon RDS DB instance as a read replica, you can call mysql.rds_start_replication on the
read replica to start the replication process. You can call mysql.rds_reset_external_master
(RDS for MariaDB and RDS for MySQL major versions 8.0 and lower) to remove the read replica
configuration.

When you call mysql.rds_set_external_master_with_auto_position, Amazon RDS
records the time, the user, and an action of set master in the mysql.rds_history and
mysql.rds_replication_status tables.

For disaster recovery, you can use this procedure with the mysql.rds_start_replication_until
or mysql.rds_start_replication_until_gtid stored procedure. To roll forward changes
to a delayed read replica to the time just before a disaster, you can run the
mysql.rds_set_external_master_with_auto_position procedure. After the
mysql.rds_start_replication_until_gtid procedure stops replication, you can promote
the read replica to be the new primary DB instance by using the instructions in Promoting a read
replica to be a standalone DB instance.

To use the mysql.rds_rds_start_replication_until_gtid procedure, GTID-based
replication must be enabled. To skip a specific GTID-based transaction that is known to cause
disaster, you can use the mysql.rds_skip_transaction_with_gtid stored procedure. For more
information about working with GTID-based replication, see Using GTID-based replication.

Examples

When run on a MySQL DB instance, the following example configures the DB instance to be a read
replica of an instance of MySQL running external to Amazon RDS. It sets the minimum replication
delay to one hour (3,600 seconds) on the MySQL DB instance. A change from the MySQL source
database instance running external to Amazon RDS isn't applied on the MySQL DB instance read
replica for at least one hour.

Configuring, starting, and stopping binary log (binlog) replication 3555

Amazon Relational Database Service User Guide

call mysql.rds_set_external_master_with_auto_position(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'SomePassW0rd',
 1,
 3600);

mysql.rds_set_external_source_with_auto_position (RDS for MySQL major
versions 8.4 and higher)

Configures an RDS for MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS. This procedure also configures delayed replication and replication based
on global transaction identifiers (GTIDs).

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_source_with_auto_position (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , ssl_encryption
 , delay
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS to become
the source database instance.

Configuring, starting, and stopping binary log (binlog) replication 3556

Amazon Relational Database Service User Guide

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes Secure Shell (SSH) port
replication that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The SOURCE_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

delay

The minimum number of seconds to delay replication from source database instance.

The limit for this parameter is one day (86,400 seconds).

Usage notes

The administrative user must run the
mysql.rds_set_external_source_with_auto_position procedure. This procedure must
be run on the MySQL DB instance to be configured as the read replica of a MySQL instance running
external to Amazon RDS.

Before you run mysql.rds_set_external_source_with_auto_position, you must
configure the instance of MySQL running external to Amazon RDS to be a source database
instance. To connect to the MySQL instance running external to Amazon RDS, you must specify

Configuring, starting, and stopping binary log (binlog) replication 3557

Amazon Relational Database Service User Guide

values for replication_user_name and replication_user_password. These values must
indicate a replication user that has REPLICATION CLIENT and REPLICATION SLAVE permissions
on the external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

For more information, see Configuring binary log file position replication with an external source
instance.

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored
procedures primarily to enable replication with MySQL instances running external to
Amazon RDS. For information about managing replication between Amazon RDS DB
instances, see Working with DB instance read replicas.

Before you call mysql.rds_set_external_source_with_auto_position, make sure to call
the section called “mysql.rds_set_external_source_gtid_purged” to set the gtid_purged system
variable with a specified GTID range from an external source.

After calling mysql.rds_set_external_source_with_auto_position to configure an
Amazon RDS DB instance as a read replica, you can call mysql.rds_start_replication on the read

Configuring, starting, and stopping binary log (binlog) replication 3558

Amazon Relational Database Service User Guide

replica to start the replication process. You can call mysql.rds_reset_external_source (RDS for
MySQL major versions 8.4 and higher) to remove the read replica configuration.

When you call mysql.rds_set_external_source_with_auto_position, Amazon RDS
records the time, the user, and an action of set master in the mysql.rds_history and
mysql.rds_replication_status tables.

For disaster recovery, you can use this procedure with the mysql.rds_start_replication_until
or mysql.rds_start_replication_until_gtid stored procedure. To roll forward changes
to a delayed read replica to the time just before a disaster, you can run the
mysql.rds_set_external_source_with_auto_position procedure. After the
mysql.rds_start_replication_until_gtid procedure stops replication, you can promote
the read replica to be the new primary DB instance by using the instructions in Promoting a read
replica to be a standalone DB instance.

To use the mysql.rds_rds_start_replication_until_gtid procedure, GTID-based
replication must be enabled. To skip a specific GTID-based transaction that is known to cause
disaster, you can use the mysql.rds_skip_transaction_with_gtid stored procedure. For more
information about working with GTID-based replication, see Using GTID-based replication.

Examples

When run on a MySQL DB instance, the following example configures the DB instance to be a read
replica of an instance of MySQL running external to Amazon RDS. It sets the minimum replication
delay to one hour (3,600 seconds) on the MySQL DB instance. A change from the MySQL source
database instance running external to Amazon RDS isn't applied on the MySQL DB instance read
replica for at least one hour.

call mysql.rds_set_external_source_with_auto_position(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'SomePassW0rd',
 1,
 3600);

Configuring, starting, and stopping binary log (binlog) replication 3559

Amazon Relational Database Service User Guide

mysql.rds_set_external_master_with_delay (RDS for MariaDB and RDS for MySQL
major versions 8.0 and lower)

Configures an RDS for MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS and configures delayed replication.

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_master_with_delay(
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
 , delay
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS that will
become the source database instance.

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes SSH port replication that
converts the port number, specify the port number that is exposed by SSH.

Configuring, starting, and stopping binary log (binlog) replication 3560

Amazon Relational Database Service User Guide

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

mysql_binary_log_file_name

The name of the binary log on the source database instance contains the replication
information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication will start
reading the replication information.

You can determine the binlog file name and location by running SHOW MASTER STATUS on the
source database instance.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The MASTER_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

delay

The minimum number of seconds to delay replication from source database instance.

The limit for this parameter is one day (86400 seconds).

Configuring, starting, and stopping binary log (binlog) replication 3561

Amazon Relational Database Service User Guide

Usage notes

The master user must run the mysql.rds_set_external_master_with_delay procedure. This
procedure must be run on the MySQL DB instance to be configured as the read replica of a MySQL
instance running external to Amazon RDS.

Before you run mysql.rds_set_external_master_with_delay, you must configure
the instance of MySQL running external to Amazon RDS to be a source database instance. To
connect to the MySQL instance running external to Amazon RDS, you must specify values for
replication_user_name and replication_user_password. These values must indicate a
replication user that has REPLICATION CLIENT and REPLICATION SLAVE permissions on the
external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

For more information, see Configuring binary log file position replication with an external source
instance.

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored
procedures primarily to enable replication with MySQL instances running external to

Configuring, starting, and stopping binary log (binlog) replication 3562

Amazon Relational Database Service User Guide

Amazon RDS. For information about managing replication between Amazon RDS DB
instances, see Working with DB instance read replicas.

After calling mysql.rds_set_external_master_with_delay to configure an Amazon RDS DB
instance as a read replica, you can call mysql.rds_start_replication on the read replica to start the
replication process. You can call mysql.rds_reset_external_master (RDS for MariaDB and RDS for
MySQL major versions 8.0 and lower) to remove the read replica configuration.

When you call mysql.rds_set_external_master_with_delay, Amazon RDS records
the time, the user, and an action of set master in the mysql.rds_history and
mysql.rds_replication_status tables.

For disaster recovery, you can use this procedure with the mysql.rds_start_replication_until
or mysql.rds_start_replication_until_gtid stored procedure. To roll forward
changes to a delayed read replica to the time just before a disaster, you can run
the mysql.rds_set_external_master_with_delay procedure. After the
mysql.rds_start_replication_until procedure stops replication, you can promote the read
replica to be the new primary DB instance by using the instructions in Promoting a read replica to
be a standalone DB instance.

To use the mysql.rds_rds_start_replication_until_gtid procedure, GTID-based
replication must be enabled. To skip a specific GTID-based transaction that is known to cause
disaster, you can use the mysql.rds_skip_transaction_with_gtid stored procedure. For more
information about working with GTID-based replication, see Using GTID-based replication.

The mysql.rds_set_external_master_with_delay procedure is available in these versions
of RDS for MySQL:

• MySQL 8.0.26 and higher 8.0 versions

• All 5.7 versions

Examples

When run on a MySQL DB instance, the following example configures the DB instance to be a read
replica of an instance of MySQL running external to Amazon RDS. It sets the minimum replication
delay to one hour (3,600 seconds) on the MySQL DB instance. A change from the MySQL source
database instance running external to Amazon RDS isn't applied on the MySQL DB instance read
replica for at least one hour.

Configuring, starting, and stopping binary log (binlog) replication 3563

Amazon Relational Database Service User Guide

call mysql.rds_set_external_master_with_delay(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'SomePassW0rd',
 'mysql-bin-changelog.000777',
 120,
 1,
 3600);

mysql.rds_set_external_source_with_delay (RDS for MySQL major versions 8.4
and higher)

Configures an RDS for MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS and configures delayed replication.

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_source_with_delay (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
 , delay
);

Configuring, starting, and stopping binary log (binlog) replication 3564

Amazon Relational Database Service User Guide

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS that will
become the source database instance.

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes SSH port replication that
converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

mysql_binary_log_file_name

The name of the binary log on the source database instance contains the replication
information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication will start
reading the replication information.

You can determine the binlog file name and location by running SHOW MASTER STATUS on the
source database instance.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The SOURCE_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

Configuring, starting, and stopping binary log (binlog) replication 3565

Amazon Relational Database Service User Guide

delay

The minimum number of seconds to delay replication from source database instance.

The limit for this parameter is one day (86400 seconds).

Usage notes

The administrative user must run the mysql.rds_set_external_source_with_delay
procedure. This procedure must be run on the MySQL DB instance to be configured as the read
replica of a MySQL instance running external to Amazon RDS.

Before you run mysql.rds_set_external_source_with_delay, you must configure
the instance of MySQL running external to Amazon RDS to be a source database instance. To
connect to the MySQL instance running external to Amazon RDS, you must specify values for
replication_user_name and replication_user_password. These values must indicate a
replication user that has REPLICATION CLIENT and REPLICATION SLAVE permissions on the
external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

For more information, see Configuring binary log file position replication with an external source
instance.

Configuring, starting, and stopping binary log (binlog) replication 3566

Amazon Relational Database Service User Guide

Note

We recommend that you use read replicas to manage replication between two Amazon
RDS DB instances when possible. When you do so, we recommend that you use only
this and other replication-related stored procedures. These practices enable more
complex replication topologies between Amazon RDS DB instances. We offer these stored
procedures primarily to enable replication with MySQL instances running external to
Amazon RDS. For information about managing replication between Amazon RDS DB
instances, see Working with DB instance read replicas.

After calling mysql.rds_set_external_source_with_delay to configure an Amazon RDS DB
instance as a read replica, you can call mysql.rds_start_replication on the read replica to start the
replication process. You can call mysql.rds_reset_external_source (RDS for MySQL major versions
8.4 and higher) to remove the read replica configuration.

When you call mysql.rds_set_external_source_with_delay, Amazon RDS records
the time, the user, and an action of set master in the mysql.rds_history and
mysql.rds_replication_status tables.

For disaster recovery, you can use this procedure with the mysql.rds_start_replication_until
or mysql.rds_start_replication_until_gtid stored procedure. To roll forward
changes to a delayed read replica to the time just before a disaster, you can run
the mysql.rds_set_external_source_with_delay procedure. After the
mysql.rds_start_replication_until procedure stops replication, you can promote the read
replica to be the new primary DB instance by using the instructions in Promoting a read replica to
be a standalone DB instance.

To use the mysql.rds_rds_start_replication_until_gtid procedure, GTID-based
replication must be enabled. To skip a specific GTID-based transaction that is known to cause
disaster, you can use the mysql.rds_skip_transaction_with_gtid stored procedure. For more
information about working with GTID-based replication, see Using GTID-based replication.

Examples

When run on a MySQL DB instance, the following example configures the DB instance to be a read
replica of an instance of MySQL running external to Amazon RDS. It sets the minimum replication
delay to one hour (3,600 seconds) on the MySQL DB instance. A change from the MySQL source

Configuring, starting, and stopping binary log (binlog) replication 3567

Amazon Relational Database Service User Guide

database instance running external to Amazon RDS isn't applied on the MySQL DB instance read
replica for at least one hour.

call mysql.rds_set_external_source_with_delay(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'SomePassW0rd',
 'mysql-bin-changelog.000777',
 120,
 1,
 3600);

mysql.rds_set_external_source_gtid_purged

Sets the gtid_purged system variable with a specified GTID range from an external source. The
gtid_purged value is required for configuring GTID-based replication to resume the replication
using auto positioning.

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_source_gtid_purged(
 server_uuid
 , start_pos
 , end_pos
);

Parameters

server_uuid

The universally unique identifier (UUID) of the external server from which the GTID range is
being imported.

Configuring, starting, and stopping binary log (binlog) replication 3568

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged

Amazon Relational Database Service User Guide

start_pos

The starting position of the GTID range to be set.

end_pos

The ending position of the GTID range to be set.

Usage notes

The mysql.rds_set_external_source_gtid_purged procedure is only available with MySQL
8.0.37 and higher 8.0 versions.

Call mysql.rds_set_external_source_gtid_purged before you call
mysql.rds_set_external_master_with_auto_position (RDS for MySQL major versions 8.0 and lower),
mysql.rds_set_external_source_with_auto_position (RDS for MySQL major versions 8.4 and higher),
or mysql.rds_set_external_source_with_auto_position_for_channel.

Before you call mysql.rds_set_external_source_gtid_purged, make sure to stop all
active replication channels for the database. To check the status of a channel, use the SHOW
REPLICA STATUS MySQL statement. To stop replication on a channel, call the section called
“mysql.rds_stop_replication_for_channel”.

The GTID range that you specify must be a superset of the existing GTID_PURGED value. This
stored procedure checks the following values before it sets the GTID_PURGED value:

• The server_uuid is valid.

• The value of start_pos is greater than 0 and less than the value of end_pos.

• The value of end_pos is greater than or equal to the value of start_pos.

If the GTID set on your external server contains multiple ranges of values, consider calling the
procedure multiple times with different GTID set values.

When you call mysql.rds_set_external_source_gtid_purged, Amazon RDS records the
time, the user, and an action of set gtid_purged in the mysql.rds_history table.

If you don't set the gtid_purged value appropriately for the backup that you use for replication,
this can result in missing or duplicated transactions during the replication process. Perform the
following steps to set the correct gtid_purged value.

Configuring, starting, and stopping binary log (binlog) replication 3569

Amazon Relational Database Service User Guide

To set the gtid_purged value on the replica

1. Determine the point in time or the specific backup file to use as the starting point for
replication. This could be a logical backup (a mysqldump file) or a physical backup (an Amazon
RDS snapshot).

2. Determine the gtid_executed value. This value represents the set of all GTIDs that
were committed on the server. To retrieve this value, on the source instance, do one of the
following:

• Run the SQL statement SELECT @@GLOBAL.GTID_EXECUTED; at the time the backup was
taken.

• If any related options are included in the respective backup utility, extract the value from
the backup file. For more information, see the set-gtid-purged option in the MySQL
documentation.

3. Determine the gtid_purged value to use for the call to
mysql.rds_set_external_source_gtid_purged. The gtid_purged value should
include all the GTIDs that were executed on the source instance and are no longer needed for
replication. Therefore, the gtid_purged value should be a subset of the gtid_executed
value that you retrieved in the previous step.

To determine the gtid_purged value, identify the GTIDs that aren't included in the backup
and are no longer needed for replication. You can do so by analyzing the binary logs or by
using a tool such as mysqlbinlog to find the GTIDs that were purged from the binary logs.

Alternatively, if you have a consistent backup that includes all of the binary logs up to the
backup point, you can set the gtid_purged value to be the same as the gtid_executed
value at the backup point.

4. After you determine the appropriate gtid_purged value that's consistent with your backup,
call the mysql.rds_set_external_source_gtid_purged stored procedure on your RDS
for MySQL DB instance to set the value.

Examples

When run on a MySQL DB instance, the following example sets the GTID range from an external
MySQL server with the UUID 12345678-abcd-1234-efgh-123456789abc, a starting position
of 1, and an ending position of 100. The resulting GTID value is set to +12345678-abcd-1234-
efgh-123456789abc:1-100.

Configuring, starting, and stopping binary log (binlog) replication 3570

https://dev.mysql.com/doc/refman/8.4/en/mysqldump.html#option_mysqldump_set-gtid-purged

Amazon Relational Database Service User Guide

CALL mysql.rds_set_external_source_gtid_purged('12345678-abcd-1234-efgh-123456789abc',
 1, 100);

mysql.rds_set_master_auto_position (RDS for MySQL major versions 8.0 and
lower)

Sets the replication mode to be based on either binary log file positions or on global transaction
identifiers (GTIDs).

Syntax

CALL mysql.rds_set_master_auto_position (
auto_position_mode
);

Parameters

auto_position_mode

A value that indicates whether to use log file position replication or GTID-based replication:

• 0 – Use the replication method based on binary log file position. The default is 0.

• 1 – Use the GTID-based replication method.

Usage notes

The master user must run the mysql.rds_set_master_auto_position procedure.

This procedure is supported for all RDS for MySQL 5.7 versions and RDS for MySQL 8.0.26 and
higher 8.0 versions.

mysql.rds_set_source_auto_position (RDS for MySQL major versions 8.4 and
higher)

Sets the replication mode to be based on either binary log file positions or on global transaction
identifiers (GTIDs).

Syntax

CALL mysql.rds_set_source_auto_position (auto_position_mode);

Configuring, starting, and stopping binary log (binlog) replication 3571

Amazon Relational Database Service User Guide

Parameters

auto_position_mode

A value that indicates whether to use log file position replication or GTID-based replication:

• 0 – Use the replication method based on binary log file position. The default is 0.

• 1 – Use the GTID-based replication method.

Usage notes

The administrative user must run the mysql.rds_set_source_auto_position procedure.

mysql.rds_set_source_delay

Sets the minimum number of seconds to delay replication from source database instance to
the current read replica. Use this procedure when you are connected to a read replica to delay
replication from its source database instance.

Syntax

CALL mysql.rds_set_source_delay(
delay
);

Parameters

delay

The minimum number of seconds to delay replication from the source database instance.

The limit for this parameter is one day (86400 seconds).

Usage notes

The master user must run the mysql.rds_set_source_delay procedure.

For disaster recovery, you can use this procedure with the mysql.rds_start_replication_until
stored procedure or the mysql.rds_start_replication_until_gtid stored procedure.
To roll forward changes to a delayed read replica to the time just before a

Configuring, starting, and stopping binary log (binlog) replication 3572

Amazon Relational Database Service User Guide

disaster, you can run the mysql.rds_set_source_delay procedure. After the
mysql.rds_start_replication_until or mysql.rds_start_replication_until_gtid
procedure stops replication, you can promote the read replica to be the new primary DB instance
by using the instructions in Promoting a read replica to be a standalone DB instance.

To use the mysql.rds_rds_start_replication_until_gtid procedure, GTID-based
replication must be enabled. To skip a specific GTID-based transaction that is known to cause
disaster, you can use the mysql.rds_skip_transaction_with_gtid stored procedure. For more
information on GTID-based replication, see Using GTID-based replication.

The mysql.rds_set_source_delay procedure is available in these versions of RDS for MySQL:

• All RDS for MySQL 8.4 versions

• MySQL 8.0.26 and higher 8.0 versions

• All 5.7 versions

Examples

To delay replication from source database instance to the current read replica for at least one hour
(3,600 seconds), you can call mysql.rds_set_source_delay with the following parameter:

CALL mysql.rds_set_source_delay(3600);

mysql.rds_skip_repl_error

Skips and deletes a replication error on a MySQL DB read replica.

Syntax

CALL mysql.rds_skip_repl_error;

Usage notes

The master user must run the mysql.rds_skip_repl_error procedure on a read replica. For
more information about this procedure, see Calling the mysql.rds_skip_repl_error procedure.

To determine if there are errors, run the MySQL SHOW REPLICA STATUS\G command. If a
replication error isn't critical, you can run mysql.rds_skip_repl_error to skip the error. If

Configuring, starting, and stopping binary log (binlog) replication 3573

Amazon Relational Database Service User Guide

there are multiple errors, mysql.rds_skip_repl_error deletes the first error, then warns that
others are present. You can then use SHOW REPLICA STATUS\G to determine the correct course
of action for the next error. For information about the values returned, see SHOW REPLICA STATUS
statement in the MySQL documentation.

For more information about addressing replication errors with Amazon RDS, see Troubleshooting a
MySQL read replica problem.

Replication stopped error

When you call the mysql.rds_skip_repl_error procedure, you might receive an error message
stating that the replica is down or disabled.

This error message appears if you run the procedure on the primary instance instead of the read
replica. You must run this procedure on the read replica for the procedure to work.

This error message might also appear if you run the procedure on the read replica, but replication
can't be restarted successfully.

If you need to skip a large number of errors, the replication lag can increase beyond the default
retention period for binary log (binlog) files. In this case, you might encounter a fatal error because
of binlog files being purged before they have been replayed on the read replica. This purge causes
replication to stop, and you can no longer call the mysql.rds_skip_repl_error command to
skip replication errors.

You can mitigate this issue by increasing the number of hours that binlog files are retained on
your source database instance. After you have increased the binlog retention time, you can restart
replication and call the mysql.rds_skip_repl_error command as needed.

To set the binlog retention time, use the mysql.rds_set_configuration procedure and specify a
configuration parameter of 'binlog retention hours' along with the number of hours to
retain binlog files on the DB cluster. The following example sets the retention period for binlog
files to 48 hours.

CALL mysql.rds_set_configuration('binlog retention hours', 48);

mysql.rds_start_replication

Initiates replication from an RDS for MySQL DB instance.

Configuring, starting, and stopping binary log (binlog) replication 3574

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

Note

You can use the mysql.rds_start_replication_until or mysql.rds_start_replication_until_gtid
stored procedure to initiate replication from an RDS for MySQL DB instance and stop
replication at the specified binary log file location.

Syntax

CALL mysql.rds_start_replication;

Usage notes

The master user must run the mysql.rds_start_replication procedure.

To import data from an instance of MySQL external to Amazon RDS, call
mysql.rds_start_replication on the read replica to start the replication process after you
call mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and
lower) or mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher) to build
the replication configuration. For more information, see Restoring a backup into an Amazon RDS
for MySQL DB instance.

To export data to an instance of MySQL external to Amazon RDS, call
mysql.rds_start_replication and mysql.rds_stop_replication on the read replica to
control some replication actions, such as purging binary logs. For more information, see Exporting
data from a MySQL DB instance by using replication.

You can also call mysql.rds_start_replication on the read replica to restart any replication
process that you previously stopped by calling mysql.rds_stop_replication. For more
information, see Working with DB instance read replicas.

mysql.rds_start_replication_until

Initiates replication from an RDS for MySQL DB instance and stops replication at the specified
binary log file location.

Syntax

Configuring, starting, and stopping binary log (binlog) replication 3575

Amazon Relational Database Service User Guide

CALL mysql.rds_start_replication_until (
replication_log_file
 , replication_stop_point
);

Parameters

replication_log_file

The name of the binary log on the source database instance that contains the replication
information.

replication_stop_point

The location in the replication_log_file binary log at which replication will stop.

Usage notes

The master user must run the mysql.rds_start_replication_until procedure.

The mysql.rds_start_replication_until procedure is available in these versions of RDS for
MySQL:

• All RDS for MySQL 8.4 versions

• MySQL 8.0.26 and higher 8.0 versions

• All 5.7 versions

You can use this procedure with delayed replication for disaster recovery. If you have delayed
replication configured, you can use this procedure to roll forward changes to a delayed read replica
to the time just before a disaster. After this procedure stops replication, you can promote the read
replica to be the new primary DB instance by using the instructions in Promoting a read replica to
be a standalone DB instance.

You can configure delayed replication using the following stored procedures:

• mysql.rds_set_configuration

• mysql.rds_set_external_master_with_delay (RDS for MariaDB and RDS for MySQL major versions
8.0 and lower)

• mysql.rds_set_external_source_with_delay (RDS for MySQL major versions 8.4 and higher)

Configuring, starting, and stopping binary log (binlog) replication 3576

Amazon Relational Database Service User Guide

• mysql.rds_set_source_delay

The file name specified for the replication_log_file parameter must match the source
database instance binlog file name.

When the replication_stop_point parameter specifies a stop location that is in the past,
replication is stopped immediately.

Examples

The following example initiates replication and replicates changes until it reaches location 120 in
the mysql-bin-changelog.000777 binary log file.

call mysql.rds_start_replication_until(
 'mysql-bin-changelog.000777',
 120);

mysql.rds_stop_replication

Stops replication from a MySQL DB instance.

Syntax

CALL mysql.rds_stop_replication;

Usage notes

The master user must run the mysql.rds_stop_replication procedure.

If you are configuring replication to import data from an instance of MySQL running external to
Amazon RDS, you call mysql.rds_stop_replication on the read replica to stop the replication
process after the import has completed. For more information, see Restoring a backup into an
Amazon RDS for MySQL DB instance.

If you are configuring replication to export data to an instance of MySQL external to Amazon RDS,
you call mysql.rds_start_replication and mysql.rds_stop_replication on the read
replica to control some replication actions, such as purging binary logs. For more information, see
Exporting data from a MySQL DB instance by using replication.

Configuring, starting, and stopping binary log (binlog) replication 3577

Amazon Relational Database Service User Guide

You can also use mysql.rds_stop_replication to stop replication between two Amazon
RDS DB instances. You typically stop replication to perform a long running operation on the read
replica, such as creating a large index on the read replica. You can restart any replication process
that you stopped by calling mysql.rds_start_replication on the read replica. For more information,
see Working with DB instance read replicas.

Configuring, starting, and stopping binary log (binlog) replication 3578

Amazon Relational Database Service User Guide

Ending a session or query

The following stored procedures end a session or query.

Topics

• mysql.rds_kill

• mysql.rds_kill_query

mysql.rds_kill

Ends a connection to the MySQL server.

Syntax

CALL mysql.rds_kill(processID);

Parameters

processID

The identity of the connection thread to be ended.

Usage notes

Each connection to the MySQL server runs in a separate thread. To end a connection, use the
mysql.rds_kill procedure and pass in the thread ID of that connection. To obtain the thread ID,
use the MySQL SHOW PROCESSLIST command.

For information about limitations, see MySQL stored procedure limitations.

Examples

The following example ends a connection with a thread ID of 4243:

CALL mysql.rds_kill(4243);

mysql.rds_kill_query

Ends a query running against the MySQL server.

Ending a session or query 3579

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Amazon Relational Database Service User Guide

Syntax

CALL mysql.rds_kill_query(processID);

Parameters

processID

The identity of the process or thread that is running the query to be ended.

Usage notes

To stop a query running against the MySQL server, use the mysql_rds_kill_query procedure
and pass in the connection ID of the thread that is running the query. The procedure then
terminates the connection.

To obtain the ID, query the MySQL INFORMATION_SCHEMA PROCESSLIST table or use the MySQL
SHOW PROCESSLIST command. The value in the ID column from SHOW PROCESSLIST or SELECT
* FROM INFORMATION_SCHEMA.PROCESSLIST is the processID.

For information about limitations, see MySQL stored procedure limitations.

Examples

The following example stops a query with a query thread ID of 230040:

CALL mysql.rds_kill_query(230040);

Ending a session or query 3580

https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Amazon Relational Database Service User Guide

Managing active-active clusters

The following stored procedures set up and manage RDS for MySQL active-active clusters. For
more information, see the section called “Configuring active-active clusters”.

These stored procedures are only available with RDS for MySQL DB instances running the following
versions:

• All MySQL 8.4 versions

• MySQL 8.0.35 and higher minor versions

Topics

• mysql.rds_group_replication_advance_gtid

• mysql.rds_group_replication_create_user

• mysql.rds_group_replication_set_recovery_channel

• mysql.rds_group_replication_start

• mysql.rds_group_replication_stop

mysql.rds_group_replication_advance_gtid

Creates placeholder GTIDs on the current DB instance.

Syntax

CALL mysql.rds_group_replication_advance_gtid(
begin_id
, end_id
, server_uuid
);

Parameters

begin_id

The start transaction ID to be created.

end_id

The end transaction ID to be created.

Managing active-active clusters 3581

Amazon Relational Database Service User Guide

begin_id

The group_replication_group_name for the transaction to be created. The
group_replication_group_name is specified as a UUID in the DB parameter group
associated with the DB instance.

Usage notes

In an active-active cluster, for a DB instance to join a group, all GTID transactions executed on
the new DB instance must exist on the other members in the cluster. In unusual cases, a new DB
instance might have more transactions when transactions are executed before joining the instance
to group. In this case, you can't remove any existing transactions, but you can use this procedure to
create the corresponding placeholder GTIDs on the othe DB instances in the group. Before doing
so, verify that the transactions don't affect the replicated data.

When you call this procedure, GTID transactions of server_uuid:begin_id-end_id are
created with empty content. To avoid replication issues, don't use this procedure under any other
conditions.

Important

Avoid calling this procedure when the active-active cluster is functioning normally. Don't
call this procedure unless you understand the possible consequences of the transactions
you are creating. Calling this procedure might result in inconsistent data.

Example

The following example creates placeholder GTIDs on current DB instance.:

CALL mysql.rds_group_replication_advance_gtid(5, 6,
 '11111111-2222-3333-4444-555555555555');

mysql.rds_group_replication_create_user

Creates the replication user rdsgrprepladmin for group replication on the DB instance.

Syntax

CALL mysql.rds_group_replication_create_user(

Managing active-active clusters 3582

Amazon Relational Database Service User Guide

replication_user_password
);

Parameters

replication_user_password

The password of the replication user rdsgrprepladmin.

Usage notes

• The password of the replication user rdsgrprepladmin must be the same on all of the DB
instances in an active-active cluster.

• The rdsgrprepladmin user name is reserved for group replication connections. No other user,
including the master user, can have this user name.

Example

The following example creates the replication user rdsgrprepladmin for group replication on the
DB instance:

CALL mysql.rds_group_replication_create_user('password');

mysql.rds_group_replication_set_recovery_channel

Sets the group_replication_recovery channel for an active-active cluster. The procedure uses
the reserved rdsgrprepladmin user to configure the channel.

Syntax

CALL mysql.rds_group_replication_set_recovery_channel(
replication_user_password);

Parameters

replication_user_password

The password of the replication user rdsgrprepladmin.

Managing active-active clusters 3583

Amazon Relational Database Service User Guide

Usage notes

The password of the replication user rdsgrprepladmin must be the
same on all of the DB instances in an active-active cluster. A call to the
mysql.rds_group_replication_create_user specifies the password.

Example

The following example sets the group_replication_recovery channel for an active-active
cluster:

CALL mysql.rds_group_replication_set_recovery_channel('password');

mysql.rds_group_replication_start

Starts group replication on the current DB instance.

Syntax

CALL mysql.rds_group_replication_start(
bootstrap
);

Parameters

bootstrap

A value that specifies whether to initialize a new group or join an existing group. 1 initializes a
new group with the current DB instance. 0 joins the current DB instance to an existing group by
connecting to the endpoints defined in group_replication_group_seeds parameter in the
of DB parameter group associated with the DB instance.

Example

The following example initializes a new group with the current DB instance:

CALL mysql.rds_group_replication_start(1);

mysql.rds_group_replication_stop

Stops group replication on the current DB instance.

Managing active-active clusters 3584

Amazon Relational Database Service User Guide

Syntax

CALL mysql.rds_group_replication_stop();

Usage notes

When you stop replication on a DB instance, it doesn't affect any other DB instance in the active-
active cluster.

Managing active-active clusters 3585

Amazon Relational Database Service User Guide

Managing multi-source replication

The following stored procedures set up and manage replication channels on a RDS for MySQL
multi-source replica. For more information, see the section called “Configuring multi-source
replication”.

These stored procedures are only available with RDS for MySQL DB instances running the following
engine versions:

• All 8.4 versions

• 8.0.35 and higher minor versions

• 5.7.44 and higher minor versions

When using stored procedures to manage replication with a replication user configured
with caching_sha2_passwword, you must configure TLS by specifying SOURCE_SSL=1.
caching_sha2_password is the default authentication plugin for RDS for MySQL 8.4.

Note

Although this documentation refers to source DB instances as RDS for MySQL DB instances,
these procedures also work for MySQL instances running external to Amazon RDS.

Topics

• mysql.rds_next_source_log_for_channel

• mysql.rds_reset_external_source_for_channel

• mysql.rds_set_external_source_for_channel

• mysql.rds_set_external_source_with_auto_position_for_channel

• mysql.rds_set_external_source_with_delay_for_channel

• mysql.rds_set_source_auto_position_for_channel

• mysql.rds_set_source_delay_for_channel

• mysql.rds_skip_repl_error_for_channel

• mysql.rds_start_replication_for_channel

• mysql.rds_start_replication_until_for_channel

• mysql.rds_start_replication_until_gtid_for_channel

Managing multi-source replication 3586

Amazon Relational Database Service User Guide

• mysql.rds_stop_replication_for_channel

mysql.rds_next_source_log_for_channel

Changes the source DB instance log position to the start of the next binary log on the source DB
instance for the channel. Use this procedure only if you are receiving replication I/O error 1236 on
a multi-source replica.

Syntax

CALL mysql.rds_next_source_log_for_channel(
curr_master_log,
channel_name
);

Parameters

curr_master_log

The index of the current source log file. For example, if the current file is named mysql-bin-
changelog.012345, then the index is 12345. To determine the current source log file name,
run the SHOW REPLICA STATUS FOR CHANNEL 'channel_name' command and view the
Source_Log_File field.

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_next_source_log_for_channel procedure. If there
is an IO_Thread error, for example, you can use this procedure to skip all the events in the current
binary log file and resume the replication from the next binary log file for the channel specified in
channel_name.

Managing multi-source replication 3587

Amazon Relational Database Service User Guide

Example

Assume replication fails on a channel on a multi-source replica. Running SHOW REPLICA STATUS
FOR CHANNEL 'channel_1'\G on the multi-source replica returns the following result:

mysql> SHOW REPLICA STATUS FOR CHANNEL 'channel_1'\G
*************************** 1. row ***************************
 Replica_IO_State: Waiting for source to send event
 Source_Host: myhost.XXXXXXXXXXXXXXX.rr-rrrr-1.rds.amazonaws.com
 Source_User: ReplicationUser
 Source_Port: 3306
 Connect_Retry: 60
 Source_Log_File: mysql-bin-changelog.012345
 Read_Source_Log_Pos: 1219393
 Relay_Log_File: replica-relay-bin.000003
 Relay_Log_Pos: 30223388
 Relay_Source_Log_File: mysql-bin-changelog.012345
 Replica_IO_Running: No
 Replica_SQL_Running: Yes
 Replicate_Do_DB:.
 .
 .
 Last_IO_Errno: 1236
 Last_IO_Error: Got fatal error 1236 from master when reading data from
 binary log: 'Client requested master to start replication from impossible position;
 the first event 'mysql-bin-changelog.013406' at 1219393, the last event read from
 '/rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4, the last byte read from '/
rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4.'
 Last_SQL_Errno: 0
 Last_SQL_Error:
 .
 .
 Channel_name: channel_1
 .
 .
 -- Some fields are omitted in this example output

The Last_IO_Errno field shows that the instance is receiving I/O error 1236. The
Source_Log_File field shows that the file name is mysql-bin-changelog.012345,
which means that the log file index is 12345. To resolve the error, you can call
mysql.rds_next_source_log_for_channel with the following parameters:

Managing multi-source replication 3588

Amazon Relational Database Service User Guide

CALL mysql.rds_next_source_log_for_channel(12345,'channel_1');

mysql.rds_reset_external_source_for_channel

Stops the replication process on the specified channel, and removes the channel and associated
configurations from the multi-source replica.

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_reset_external_source_for_channel (channel_name);

Parameters

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_reset_external_source_for_channel procedure.
This procedure deletes all relay logs that belong to the channel being removed.

mysql.rds_set_external_source_for_channel

Configures a replication channel on an RDS for MySQL DB instance to replicate the data from
another RDS for MySQL DB instance.

Managing multi-source replication 3589

Amazon Relational Database Service User Guide

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Note

You can use the the section called “mysql.rds_set_external_source_with_delay_for_channel”
stored procedure instead to configure this channel with delayed replication.

Syntax

CALL mysql.rds_set_external_source_for_channel (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
 , channel_name
);

Parameters

host_name

The host name or IP address of the RDS for MySQL source DB instance.

host_port

The port used by the RDS for MySQL source DB instance. If your network configuration includes
Secure Shell (SSH) port replication that converts the port number, specify the port number that
is exposed by SSH.

Managing multi-source replication 3590

Amazon Relational Database Service User Guide

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
RDS for MySQL source DB instance. We recommend that you provide an account that is used
solely for replication with the source DB instance.

replication_user_password

The password of the user ID specified in replication_user_name.

mysql_binary_log_file_name

The name of the binary log on the source DB instance that contains the replication information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication starts
reading the replication information.

You can determine the binlog file name and location by running SHOW BINARY LOG STATUS
on the source DB instance.

Note

Previous versions of MySQL used SHOW MASTER STATUS instead of SHOW BINARY LOG
STATUS. If you are using a MySQL version before 8.4, then use SHOW MASTER STATUS.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The SOURCE_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

channel_name

The name of the replication channel. Each replication channel receives the binary log events
from a single source RDS for MySQL DB instance running on a specific host and port.

Managing multi-source replication 3591

Amazon Relational Database Service User Guide

Usage notes

The master user must run the mysql.rds_set_external_source_for_channel procedure.
This procedure must be run on the target RDS for MySQL DB instance on which you're creating the
replication channel.

Before you run mysql.rds_set_external_source_for_channel, configure a replication user
on the source DB instance with the privileges required for the multi-source replica. To connect the
multi-source replica to the source DB instance, you must specify replication_user_name and
replication_user_password values of a replication user that has REPLICATION CLIENT and
REPLICATION SLAVE permissions on the source DB instance.

To configure a replication user on the source DB instance

1. Using the MySQL client of your choice, connect to the source DB instance and create a user
account to be used for replication. The following is an example.

Important

As a security best practice, specify a password other than the placeholder value shown
in the following examples.

CREATE USER 'repl_user'@'example.com' IDENTIFIED BY 'password';

2. On the source DB instance, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'example.com';

To use encrypted replication, configure the source DB instance to use SSL connections.

After calling mysql.rds_set_external_source_for_channel to configure
this replication channel, you can call mysql.rds_start_replication_for_channel on the
replica to start the replication process on the channel. You can call the section called
“mysql.rds_reset_external_source_for_channel” to stop replication on the channel and remove the
channel configuration from the replica.

Managing multi-source replication 3592

Amazon Relational Database Service User Guide

When you call mysql.rds_set_external_source_for_channel, Amazon RDS records the
time, user, and an action of set channel source in the mysql.rds_history table without
channel-specific details, and in the mysql.rds_replication_status table, with the channel
name. This information is recorded only for internal usage and monitoring purposes. To record the
complete procedure call for auditing purpose, consider enabling audit logs or general logs, based
on the specific requirements of your application.

Examples

When run on a RDS for MySQL DB instance, the following example configures a replication
channel named channel_1 on this DB instance to replicate data from the source specified by host
sourcedb.example.com and port 3306.

call mysql.rds_set_external_source_for_channel(
 'sourcedb.example.com',
 3306,
 'repl_user',
 'password',
 'mysql-bin-changelog.0777',
 120,
 0,
 'channel_1');

mysql.rds_set_external_source_with_auto_position_for_channel

Configures a replication channel on an RDS for MySQL DB instance with an optional replication
delay. The replication is based on global transaction identifiers (GTIDs).

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_source_with_auto_position_for_channel (
 host_name
 , host_port

Managing multi-source replication 3593

Amazon Relational Database Service User Guide

 , replication_user_name
 , replication_user_password
 , ssl_encryption
 , delay
 , channel_name
);

Parameters

host_name

The host name or IP address of the RDS for MySQL source DB instance.

host_port

The port used by the RDS for MySQL source DB instance. If your network configuration includes
Secure Shell (SSH) port replication that converts the port number, specify the port number that
is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
RDS for MySQL source DB instance. We recommend that you provide an account that is used
solely for replication with the source DB instance.

replication_user_password

The password of the user ID specified in replication_user_name.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The SOURCE_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

delay

The minimum number of seconds to delay replication from source DB instance.

The limit for this parameter is one day (86,400 seconds).

Managing multi-source replication 3594

Amazon Relational Database Service User Guide

channel_name

The name of the replication channel. Each replication channel receives the binary log events
from a single source RDS for MySQL DB instance running on a specific host and port.

Usage notes

The master user must run the
mysql.rds_set_external_source_with_auto_position_for_channel procedure. This
procedure must be run on the target RDS for MySQL DB instance on which you're creating the
replication channel.

Before you run rds_set_external_source_with_auto_position_for_channel,
configure a replication user on the source DB instance with the privileges required for the multi-
source replica. To connect the multi-source replica to the source DB instance, you must specify
replication_user_name and replication_user_password values of a replication user that
has REPLICATION CLIENT and REPLICATION SLAVE permissions on the source DB instance.

To configure a replication user on the source DB instance

1. Using the MySQL client of your choice, connect to the source DB instance and create a user
account to be used for replication. The following is an example.

Important

As a security best practice, specify a password other than the placeholder value shown
in the following examples.

CREATE USER 'repl_user'@'example.com' IDENTIFIED BY 'password';

2. On the source DB instance, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'example.com';

To use encrypted replication, configure the source DB instance to use SSL connections.

Managing multi-source replication 3595

Amazon Relational Database Service User Guide

Before you call mysql.rds_set_external_source_with_auto_position_for_channel,
make sure to call the section called “mysql.rds_set_external_source_gtid_purged” to set the
gtid_purged system variable with a specified GTID range from an external source.

After calling mysql.rds_set_external_source_with_auto_position_for_channel to
configure an Amazon RDS DB instance as a read replica on a specific channel, you can call the
section called “mysql.rds_start_replication_for_channel” on the read replica to start the replication
process on that channel.

After calling mysql.rds_set_external_source_with_auto_position_for_channel
to configure this replication channel, you can call mysql.rds_start_replication_for_channel
on the replica to start the replication process on the channel. You can call the section called
“mysql.rds_reset_external_source_for_channel” to stop replication on the channel and remove the
channel configuration from the replica.

Examples

When run on a RDS for MySQL DB instance, the following example configures a replication
channel named channel_1 on this DB instance to replicate data from the source specified by host
sourcedb.example.com and port 3306 It sets the minimum replication delay to one hour (3,600
seconds). This means that a change from the source RDS for MySQL DB instance isn't applied on
the multi-source replica for at least one hour.

call mysql.rds_set_external_source_with_auto_position_for_channel(
 'sourcedb.example.com',
 3306,
 'repl_user',
 'password',
 1,
 3600,
 'channel_1');

mysql.rds_set_external_source_with_delay_for_channel

Configures a replication channel on an RDS for MySQL DB instance with a specified replication
delay.

Managing multi-source replication 3596

Amazon Relational Database Service User Guide

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group in Amazon RDS.

Syntax

CALL mysql.rds_set_external_source_with_delay_for_channel (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
 , delay
 , channel_name
);

Parameters

host_name

The host name or IP address of the RDS for MySQL source DB instance.

host_port

The port used by the RDS for MySQL source DB instance. If your network configuration includes
Secure Shell (SSH) port replication that converts the port number, specify the port number that
is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
RDS for MySQL source DB instance. We recommend that you provide an account that is used
solely for replication with the source DB instance.

replication_user_password

The password of the user ID specified in replication_user_name.

Managing multi-source replication 3597

Amazon Relational Database Service User Guide

mysql_binary_log_file_name

The name of the binary log on the source DB instance contains the replication information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication will start
reading the replication information.

You can determine the binlog file name and location by running SHOW BINARY LOG STATUS
on the source database instance.

Note

Previous versions of MySQL used SHOW MASTER STATUS instead of SHOW BINARY LOG
STATUS. If you are using a MySQL version before 8.4, then use SHOW MASTER STATUS.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The SOURCE_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

delay

The minimum number of seconds to delay replication from source DB instance.

The limit for this parameter is one day (86400 seconds).

channel_name

The name of the replication channel. Each replication channel receives the binary log events
from a single source RDS for MySQL DB instance running on a specific host and port.

Managing multi-source replication 3598

Amazon Relational Database Service User Guide

Usage notes

The master user must run the mysql.rds_set_external_source_with_delay_for_channel
procedure. This procedure must be run on the target RDS for MySQL DB instance on which you're
creating the replication channel.

Before you run mysql.rds_set_external_source_with_delay_for_channel, configure
a replication user on the source DB instance with the privileges required for the multi-source
replica. To connect the multi-source replica to the source DB instance, you must specify
replication_user_name and replication_user_password values of a replication user that
has REPLICATION CLIENT and REPLICATION SLAVE permissions on the source DB instance.

To configure a replication user on the source DB instance

1. Using the MySQL client of your choice, connect to the source DB instance and create a user
account to be used for replication. The following is an example.

Important

As a security best practice, specify a password other than the placeholder value shown
in the following examples.

CREATE USER 'repl_user'@'example.com' IDENTIFIED BY 'password';

2. On the source DB instance, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'example.com';

To use encrypted replication, configure the source DB instance to use SSL connections.

After calling mysql.rds_set_external_source_with_delay_for_channel to
configure this replication channel, you can call mysql.rds_start_replication_for_channel on
the replica to start the replication process on the channel. You can call the section called
“mysql.rds_reset_external_source_for_channel” to stop replication on the channel and remove the
channel configuration from the replica.

Managing multi-source replication 3599

Amazon Relational Database Service User Guide

When you call mysql.rds_set_external_source_with_delay_for_channel, Amazon RDS
records the time, user, and an action of set channel source in the mysql.rds_history table
without channel-specific details, and in the mysql.rds_replication_status table, with the
channel name. This information is recorded only for internal usage and monitoring purposes. To
record the complete procedure call for auditing purpose, consider enabling audit logs or general
logs, based on the specific requirements of your application.

Examples

When run on a RDS for MySQL DB instance, the following example configures a replication
channel named channel_1 on this DB instance to replicate data from the source specified by host
sourcedb.example.com and port 3306 It sets the minimum replication delay to one hour (3,600
seconds). This means that a change from the source RDS for MySQL DB instance isn't applied on
the multi-source replica for at least one hour.

call mysql.rds_set_external_source_with_delay_for_channel(
 'sourcedb.example.com',
 3306,
 'repl_user',
 'password',
 'mysql-bin-changelog.000777',
 120,
 1,
 3600,
 'channel_1');

mysql.rds_set_source_auto_position_for_channel

Sets the replication mode for the specified channel to be based on either binary log file positions
or on global transaction identifiers (GTIDs).

Syntax

CALL mysql.rds_set_source_auto_position_for_channel (
auto_position_mode
 , channel_name
);

Managing multi-source replication 3600

Amazon Relational Database Service User Guide

Parameters

auto_position_mode

A value that indicates whether to use log file position replication or GTID-based replication:

• 0 – Use the replication method based on binary log file position. The default is 0.

• 1 – Use the GTID-based replication method.

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_set_source_auto_position_for_channel
procedure. This procedure restarts replication on the specified channel to apply the specified auto
position mode.

Examples

The following example sets the auto position mode for channel_1 to use the GTID-based
replication method.

call mysql.rds_set_source_auto_position_for_channel(1,'channel_1');

mysql.rds_set_source_delay_for_channel

Sets the minimum number of seconds to delay replication from the source database instance to the
multi-source replica for the specified channel.

Syntax

CALL mysql.rds_set_source_delay_for_channel(delay, channel_name);

Parameters

delay

The minimum number of seconds to delay replication from the source DB instance.

Managing multi-source replication 3601

Amazon Relational Database Service User Guide

The limit for this parameter is one day (86400 seconds).

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_set_source_delay_for_channel procedure.
To use this procedure, first call mysql.rds_stop_replication_for_channel to stop the
replication. Then, call this procedure to set the replication delay value. When the delay is set, call
mysql.rds_start_replication_for_channel to restart the replication.

Examples

The following example sets the delay for replication from the source database instance on
channel_1 of the multi-source replica for at least one hour (3,600 seconds).

CALL mysql.rds_set_source_delay_for_channel(3600,'channel_1');

mysql.rds_skip_repl_error_for_channel

Skips a binary log event and deletes a replication error on a MySQL DB multi-source replica for the
specified channel.

Syntax

CALL mysql.rds_skip_repl_error_for_channel(channel_name);

Parameters

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Managing multi-source replication 3602

Amazon Relational Database Service User Guide

Usage notes

The master user must run the mysql.rds_skip_repl_error_for_channel procedure on a
read replica. You can use this procedure in a similar way mysql.rds_skip_repl_error is used
to skip an error on a read replica. For more information, see Calling the mysql.rds_skip_repl_error
procedure.

Note

To skip errors in GTID-based replication, we recommend that you use the procedure the
section called “mysql.rds_skip_transaction_with_gtid” instead.

To determine if there are errors, run the MySQL SHOW REPLICA STATUS FOR
CHANNEL 'channel_name'\G command. If a replication error isn't critical, you can run
mysql.rds_skip_repl_error_for_channel to skip the error. If there are multiple errors,
mysql.rds_skip_repl_error_for_channel deletes the first error on the specified replication
channel, then warns that others are present. You can then use SHOW REPLICA STATUS FOR
CHANNEL 'channel_name'\G to determine the correct course of action for the next error. For
information about the values returned, see SHOW REPLICA STATUS statement in the MySQL
documentation.

mysql.rds_start_replication_for_channel

Initiates replication from an RDS for MySQL DB instance to a multi-source replica on the specified
channel.

Note

You can use the mysql.rds_start_replication_until_for_channel or
mysql.rds_start_replication_until_gtid_for_channel stored procedure to initiate replication
from an RDS for MySQL DB instance and stop replication at the specified binary log file
location.

Syntax

CALL mysql.rds_start_replication_for_channel(channel_name);

Managing multi-source replication 3603

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

Parameters

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_start_replication_for_channel procedure. After
you import the data from the source RDS for MySQL DB instance, run this command on the multi-
source replica to start replication on the specified channel.

Examples

The following example starts replication on channel_1 of the multi-source replica.

CALL mysql.rds_start_replication_for_channel('channel_1');

mysql.rds_start_replication_until_for_channel

Initiates replication from an RDS for MySQL DB instance on the specified channel and stops
replication at the specified binary log file location.

Syntax

CALL mysql.rds_start_replication_until_for_channel (
replication_log_file
 , replication_stop_point
 , channel_name
);

Parameters

replication_log_file

The name of the binary log on the source DB instance contains the replication information.

Managing multi-source replication 3604

Amazon Relational Database Service User Guide

replication_stop_point

The location in the replication_log_file binary log at which replication will stop.

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_start_replication_until_for_channel
procedure. With this procedure, replication starts and then stops when the specified binlog file
position is reached. This procedure stops both the SQL_THREAD and IO_THREAD.

The file name specified for the replication_log_file parameter must match the source DB
instance binlog file name.

When the replication_stop_point parameter specifies a stop location that's in the past,
replication is stopped immediately.

Examples

The following example initiates replication on channel_1, and replicates changes until it reaches
location 120 in the mysql-bin-changelog.000777 binary log file.

call mysql.rds_start_replication_until_for_channel(
 'mysql-bin-changelog.000777',
 120,
 'channel_1'
);

mysql.rds_start_replication_until_gtid_for_channel

Initiates replication on the specified channel from an RDS for MySQL DB instance and stops
replication at the specified global transaction identifier (GTID).

Syntax

CALL mysql.rds_start_replication_until_gtid_for_channel(gtid,channel_name);

Managing multi-source replication 3605

Amazon Relational Database Service User Guide

Parameters

gtid

The GTID after which to stop replication.

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_start_replication_until_gtid_for_channel
procedure. The procedure starts replication on the specified channel and applies all changes up to
the specified GTID value. Then, it stops replication on the channel.

When the gtid parameter specifies a transaction that has already been run by the replica,
replication is stopped immediately.

Before you run this procedure, you must disable multi-threaded replication by setting the value of
replica_parallel_workers or slave_parallel_workers to 0.

Examples

The following example initiates replication on channel_1, and replicates changes until it reaches
GTID 3E11FA47-71CA-11E1-9E33-C80AA9429562:23.

call mysql.rds_start_replication_until_gtid_for_channel('3E11FA47-71CA-11E1-9E33-
C80AA9429562:23','channel_1');

mysql.rds_stop_replication_for_channel

Stops replication from a MySQL DB instance on the specified channel.

Syntax

CALL mysql.rds_stop_replication_for_channel(channel_name);

Managing multi-source replication 3606

Amazon Relational Database Service User Guide

Parameters

channel_name

The name of the replication channel on the multi-source replica. Each replication channel
receives the binary log events from a single source RDS for MySQL DB instance running on a
specific host and port.

Usage notes

The master user must run the mysql.rds_stop_replication_for_channel procedure.

Examples

The following example stops replication on channel_1 of the multi-source replica.

CALL mysql.rds_stop_replication_for_channel('channel_1');

Managing multi-source replication 3607

Amazon Relational Database Service User Guide

Replicating transactions using GTIDs

The following stored procedures control how transactions are replicated using global transaction
identifiers (GTIDs) with RDS for MySQL. For more information about replication based on GTIDs
with RDS for MySQL, see Using GTID-based replication.

When using stored procedures to manage replication with a replication user configured
with caching_sha2_password, you must configure TLS by specifying SOURCE_SSL=1.
caching_sha2_password is the default authentication plugin for RDS for MySQL 8.4.

Topics

• mysql.rds_skip_transaction_with_gtid

• mysql.rds_start_replication_until_gtid

mysql.rds_skip_transaction_with_gtid

Skips replication of a transaction with the specified global transaction identifier (GTID) on a MySQL
DB instance.

You can use this procedure for disaster recovery when a specific GTID transaction is known to cause
a problem. Use this stored procedure to skip the problematic transaction. Examples of problematic
transactions include transactions that disable replication, delete important data, or cause the DB
instance to become unavailable.

Syntax

CALL mysql.rds_skip_transaction_with_gtid (
gtid_to_skip
);

Parameters

gtid_to_skip

The GTID of the replication transaction to skip.

Usage notes

The master user must run the mysql.rds_skip_transaction_with_gtid procedure.

Replicating transactions using GTIDs 3608

Amazon Relational Database Service User Guide

This procedure is supported for all RDS for MySQL 5.7 versions, all RDS for MySQL 8.0 versions, and
all RDS for MySQL 8.4 versions.

Examples

The following example skips replication of the transaction with the GTID
3E11FA47-71CA-11E1-9E33-C80AA9429562:23.

CALL mysql.rds_skip_transaction_with_gtid('3E11FA47-71CA-11E1-9E33-C80AA9429562:23');

mysql.rds_start_replication_until_gtid

Initiates replication from an RDS for MySQL DB instance and stops replication immediately after
the specified global transaction identifier (GTID).

Syntax

CALL mysql.rds_start_replication_until_gtid(gtid);

Parameters

gtid

The GTID after which replication is to stop.

Usage notes

The master user must run the mysql.rds_start_replication_until_gtid procedure.

This procedure is supported for all RDS for MySQL 5.7 versions, all RDS for MySQL 8.0 versions, and
all RDS for MySQL 8.4 versions.

You can use this procedure with delayed replication for disaster recovery. If you have delayed
replication configured, you can use this procedure to roll forward changes to a delayed read replica
to the time just before a disaster. After this procedure stops replication, you can promote the read
replica to be the new primary DB instance by using the instructions in Promoting a read replica to
be a standalone DB instance.

You can configure delayed replication using the following stored procedures:

Replicating transactions using GTIDs 3609

Amazon Relational Database Service User Guide

• mysql.rds_set_configuration

• mysql.rds_set_external_master_with_delay (RDS for MariaDB and RDS for MySQL major versions
8.0 and lower)

• mysql.rds_set_external_source_with_delay (RDS for MySQL major versions 8.4 and higher)

• mysql.rds_set_source_delay

When the gtid parameter specifies a transaction that has already been run by the replica,
replication is stopped immediately.

Examples

The following example initiates replication and replicates changes until it reaches GTID
3E11FA47-71CA-11E1-9E33-C80AA9429562:23.

call mysql.rds_start_replication_until_gtid('3E11FA47-71CA-11E1-9E33-C80AA9429562:23');

Replicating transactions using GTIDs 3610

Amazon Relational Database Service User Guide

Rotating the query logs

The following stored procedures rotate MySQL logs to backup tables. For more information, see
MySQL database log files.

Topics

• mysql.rds_rotate_general_log

• mysql.rds_rotate_slow_log

mysql.rds_rotate_general_log

Rotates the mysql.general_log table to a backup table.

Syntax

CALL mysql.rds_rotate_general_log;

Usage notes

You can rotate the mysql.general_log table to a backup table by calling the
mysql.rds_rotate_general_log procedure. When log tables are rotated, the current log table
is copied to a backup log table and the entries in the current log table are removed. If a backup log
table already exists, then it is deleted before the current log table is copied to the backup. You can
query the backup log table if needed. The backup log table for the mysql.general_log table is
named mysql.general_log_backup.

You can run this procedure only when the log_output parameter is set to TABLE.

mysql.rds_rotate_slow_log

Rotates the mysql.slow_log table to a backup table.

Syntax

CALL mysql.rds_rotate_slow_log;

Rotating the query logs 3611

Amazon Relational Database Service User Guide

Usage notes

You can rotate the mysql.slow_log table to a backup table by calling the
mysql.rds_rotate_slow_log procedure. When log tables are rotated, the current log table is
copied to a backup log table and the entries in the current log table are removed. If a backup log
table already exists, then it is deleted before the current log table is copied to the backup.

You can query the backup log table if needed. The backup log table for the mysql.slow_log
table is named mysql.slow_log_backup.

Rotating the query logs 3612

Amazon Relational Database Service User Guide

Setting and showing binary log configuration

The following stored procedures set and show configuration parameters, such as for binary log file
retention.

Topics

• mysql.rds_set_configuration

• mysql.rds_show_configuration

mysql.rds_set_configuration

Specifies the number of hours to retain binary logs or the number of seconds to delay replication.

Syntax

CALL mysql.rds_set_configuration(name,value);

Parameters

name

The name of the configuration parameter to set.

value

The value of the configuration parameter.

Usage notes

The mysql.rds_set_configuration procedure supports the following configuration
parameters:

• binlog retention hours

• source delay

• target delay

The configuration parameters are stored permanently and survive any DB instance reboot or
failover.

Setting and showing binary log configuration 3613

Amazon Relational Database Service User Guide

binlog retention hours

The binlog retention hours parameter is used to specify the number of hours to retain
binary log files. Amazon RDS normally purges a binary log as soon as possible, but the binary log
might still be required for replication with a MySQL database external to RDS.

The default value of binlog retention hours is NULL. For RDS for MySQL, NULL means binary
logs aren't retained (0 hours).

To specify the number of hours to retain binary logs on a DB instance, use the
mysql.rds_set_configuration stored procedure and specify a period with enough time for
replication to occur, as shown in the following example.

call mysql.rds_set_configuration('binlog retention hours', 24);

Note

You can't use the value 0 for binlog retention hours.

For MySQL DB instances, the maximum binlog retention hours value is 168 (7 days).

After you set the retention period, monitor storage usage for the DB instance to make sure that the
retained binary logs don't take up too much storage.

For Multi-AZ DB cluster deployments, you can only configure binary log retention from the writer
DB instance, and the setting is propagated to all reader DB instances asynchronously. If binary logs
on the DB cluster exceed half of the total local storage space, Amazon RDS automatically moves
stale logs to the EBS volume. However, the newest logs remain in local storage, so they're subject
to be lost if there's a failure that requires a host replacement, or if you scale the database up or
down.

source delay

Use the source delay parameter in a read replica to specify the number of seconds to delay
replication from the read replica to its source DB instance. Amazon RDS normally replicates
changes as soon as possible, but you might want some environments to delay replication. For
example, when replication is delayed, you can roll forward a delayed read replica to the time just
before a disaster. If a table is dropped accidentally, you can use delayed replication to quickly
recover it. The default value of target delay is 0 (don't delay replication).

Setting and showing binary log configuration 3614

Amazon Relational Database Service User Guide

When you use this parameter, it runs mysql.rds_set_source_delay and applies CHANGE primary TO
MASTER_DELAY = input value. If successful, the procedure saves the source delay parameter to
the mysql.rds_configuration table.

To specify the number of seconds for Amazon RDS to delay replication to a source DB instance, use
the mysql.rds_set_configuration stored procedure and specify the number of seconds to
delay replication. In the following example, the replication is delayed by at least one hour (3,600
seconds).

call mysql.rds_set_configuration('source delay', 3600);

The procedure then runs mysql.rds_set_source_delay(3600).

The limit for the source delay parameter is one day (86400 seconds).

target delay

Use the target delay parameter to specify the number of seconds to delay replication
between a DB instance and any future RDS-managed read replicas created from this instance.
This parameter is ignored for non-RDS-managed read replicas. Amazon RDS normally replicates
changes as soon as possible, but you might want some environments to delay replication. For
example, when replication is delayed, you can roll forward a delayed read replica to the time just
before a disaster. If a table is dropped accidentally, you can use delayed replication to recover it
quickly. The default value of target delay is 0 (don't delay replication).

For disaster recovery, you can use this configuration parameter with the
mysql.rds_start_replication_until stored procedure or the mysql.rds_start_replication_until_gtid
stored procedure. To roll forward changes to a delayed read replica to the time just
before a disaster, you can run the mysql.rds_set_configuration procedure
with this parameter set. After the mysql.rds_start_replication_until or
mysql.rds_start_replication_until_gtid procedure stops replication, you can promote
the read replica to be the new primary DB instance by using the instructions in Promoting a read
replica to be a standalone DB instance.

To use the mysql.rds_rds_start_replication_until_gtid procedure, GTID-based
replication must be enabled. To skip a specific GTID-based transaction that is known to cause
disaster, you can use the mysql.rds_skip_transaction_with_gtid stored procedure. For more
information about working with GTID-based replication, see Using GTID-based replication.

To specify the number of seconds for Amazon RDS to delay replication to a read replica, use the
mysql.rds_set_configuration stored procedure and specify the number of seconds to delay

Setting and showing binary log configuration 3615

Amazon Relational Database Service User Guide

replication. The following example specifies that replication is delayed by at least one hour (3,600
seconds).

call mysql.rds_set_configuration('target delay', 3600);

The limit for the target delay parameter is one day (86400 seconds).

mysql.rds_show_configuration

The number of hours that binary logs are retained.

Syntax

CALL mysql.rds_show_configuration;

Usage notes

To verify the number of hours that Amazon RDS retains binary logs, use the
mysql.rds_show_configuration stored procedure.

Examples

The following example displays the retention period:

call mysql.rds_show_configuration;
 name value description
 binlog retention hours 24 binlog retention hours specifies
 the duration in hours before binary logs are automatically deleted.

Setting and showing binary log configuration 3616

Amazon Relational Database Service User Guide

Warming the InnoDB cache

The following stored procedures save, load, or cancel loading the InnoDB buffer pool on RDS for
MySQL DB instances. For more information, see InnoDB cache warming for MySQL on Amazon RDS.

Topics

• mysql.rds_innodb_buffer_pool_dump_now

• mysql.rds_innodb_buffer_pool_load_abort

• mysql.rds_innodb_buffer_pool_load_now

mysql.rds_innodb_buffer_pool_dump_now

Dumps the current state of the buffer pool to disk.

Syntax

CALL mysql.rds_innodb_buffer_pool_dump_now();

Usage notes

The master user must run the mysql.rds_innodb_buffer_pool_dump_now procedure.

mysql.rds_innodb_buffer_pool_load_abort

Cancels a load of the saved buffer pool state while in progress.

Syntax

CALL mysql.rds_innodb_buffer_pool_load_abort();

Usage notes

The master user must run the mysql.rds_innodb_buffer_pool_load_abort procedure.

mysql.rds_innodb_buffer_pool_load_now

Loads the saved state of the buffer pool from disk.

Warming the InnoDB cache 3617

Amazon Relational Database Service User Guide

Syntax

CALL mysql.rds_innodb_buffer_pool_load_now();

Usage notes

The master user must run the mysql.rds_innodb_buffer_pool_load_now procedure.

Warming the InnoDB cache 3618

Amazon Relational Database Service User Guide

Amazon RDS for Oracle

Amazon RDS supports DB instances that run the following versions and editions of Oracle
Database:

• Oracle Database 21c (21.0.0.0)

• Oracle Database 19c (19.0.0.0)

Note

Oracle Database 11g, Oracle Database 12c, and Oracle Database 18c are legacy versions
that are no longer supported in Amazon RDS.

Before creating a DB instance, complete the steps in the Setting up your Amazon RDS environment
section of this guide. When you create a DB instance using your master account, the account gets
DBA privileges, with some limitations. Use this account for administrative tasks such as creating
additional database accounts. You can't use SYS, SYSTEM, or other Oracle-supplied administrative
accounts.

You can create the following:

• DB instances

• DB snapshots

• Point-in-time restores

• Automated backups

• Manual backups

You can use DB instances running Oracle Database inside a VPC. You can also add features to your
DB instance by enabling various options, such as Oracle Spatial or Oracle Statspack. Amazon RDS
supports Multi-AZ deployments for Oracle as a high-availability, failover solution.

Important

To deliver a managed service experience, Amazon RDS doesn't provide shell access to
DB instances. It also restricts access to certain system procedures and tables that need

3619

Amazon Relational Database Service User Guide

advanced privileges. You can access your database using standard SQL clients such as
Oracle SQL*Plus. However, you can't access the host directly by using Telnet or Secure Shell
(SSH).

Topics

• Overview of Oracle on Amazon RDS

• Connecting to your Oracle DB instance

• Securing Oracle DB instance connections

• Working with CDBs in RDS for Oracle

• Administering your RDS for Oracle DB instance

• Configuring advanced RDS for Oracle features

• Importing data into Oracle on Amazon RDS

• Working with read replicas for Amazon RDS for Oracle

• Adding options to Oracle DB instances

• Upgrading the RDS for Oracle DB engine

• Using third-party software with your RDS for Oracle DB instance

• Oracle Database engine release notes

Overview of Oracle on Amazon RDS

You can read the following sections to get an overview of RDS for Oracle.

Topics

• RDS for Oracle features

• RDS for Oracle releases

• RDS for Oracle licensing options

• RDS for Oracle users and privileges

• RDS for Oracle DB instance classes

• RDS for Oracle database architecture

• RDS for Oracle parameters

• RDS for Oracle character sets

Oracle overview 3620

Amazon Relational Database Service User Guide

• RDS for Oracle limitations

RDS for Oracle features

Amazon RDS for Oracle supports most of the features and capabilities of Oracle Database. Some
features might have limited support or restricted privileges. Some features are only available
in Enterprise Edition, and some require additional licenses. For more information about Oracle
Database features for specific Oracle Database versions, see the Oracle Database Licensing
Information User Manual for the version you're using.

Topics

• New features in RDS for Oracle

• Supported features in RDS for Oracle

• Unsupported features in RDS for Oracle

New features in RDS for Oracle

To see new features in RDS for Oracle, use the following techniques:

• Search Document history for the keyword Oracle.

• Filter new Amazon RDS features on the What's New with Database? page. For Products, select
Amazon RDS. Then search for Oracle YYYY, where YYYY is a year such as 2025.

Supported features in RDS for Oracle

Amazon RDS for Oracle supports the following Oracle Database features:

Note

The following list isn't exhaustive.

• Advanced Compression

• Application Express (APEX)

For more information, see Oracle Application Express (APEX).

• Automatic Memory Management

Oracle features 3621

https://aws.amazon.com/about-aws/whats-new/database/

Amazon Relational Database Service User Guide

• Automatic Undo Management

• Automatic Workload Repository (AWR)

For more information, see Generating performance reports with Automatic Workload Repository
(AWR).

• Active Data Guard with Maximum Performance in the same AWS Region or across AWS Regions

For more information, see Working with read replicas for Amazon RDS for Oracle.

• Blockchain tables (Oracle Database 21c and higher)

For more information, see Managing Blockchain Tables in the Oracle Database documentation.

• Continuous Query Notification

For more information, see Using Continuous Query Notification (CQN) in the Oracle
documentation.

• Data Redaction

• Continuous Query Notification

For more information, see Database Change Notification in the Oracle documentation.

• Database In-Memory

• Distributed Queries and Transactions

• Edition-Based Redefinition

For more information, see Setting the default edition for a DB instance.

• EM Express (12c and higher)

For more information, see Oracle Enterprise Manager.

• Fine-Grained Auditing

• Flashback Table, Flashback Query, Flashback Transaction Query

• Gradual password rollover for applications (Oracle Database 21c and higher)

For more information, see Managing Gradual Database Password Rollover for Applications in the
Oracle Database documentation.

• HugePages

For more information, see Turning on HugePages for an RDS for Oracle instance.

Oracle features 3622

https://docs.oracle.com/en/database/oracle/oracle-database/21/admin/managing-tables.html#GUID-43470B0C-DE4A-4640-9278-B066901C3926
https://docs.oracle.com/en/database/oracle/oracle-database/19/adfns/cqn.html#GUID-373BAF72-3E63-42FE-8BEA-8A2AEFBF1C35
https://docs.oracle.com/cd/E11882_01/java.112/e16548/dbchgnf.htm#JJDBC28815
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-authentication.html#GUID-ACBA8DAE-C5B4-4811-A31D-53B97C50249B

Amazon Relational Database Service User Guide

• Import/export (legacy and Data Pump) and SQL*Loader

For more information, see Importing data into Oracle on Amazon RDS.

• Java Virtual Machine (JVM)

For more information, see Oracle Java virtual machine.

• JavaScript (Oracle Database 21c and higher)

For more information, see DBMS_MLE in the Oracle Database documentation.

• Label Security

For more information, see Oracle Label Security.

• Locator

For more information, see Oracle Locator.

• Materialized Views

• Multitenant

The Oracle multitenant architecture is supported for all Oracle Database 19c and higher releases.
For more information, see Working with CDBs in RDS for Oracle.

• Network encryption

For more information, see Oracle native network encryption and Oracle Secure Sockets Layer.

• Partitioning

• Real Application Testing

To use the full capture and replay capabilities, you must use Amazon Elastic File System (Amazon
EFS) to access files generated by Oracle Real Application Testing. For more information, see
Amazon EFS integration and the blog post Use Oracle Real Application Testing features with
Amazon RDS for Oracle.

• Sharding at the application level (but not the Oracle Sharding feature)

• Spatial and Graph

For more information, see Oracle Spatial.

• Star Query Optimization

• Streams and Advanced Queuing

• Summary Management – Materialized View Query Rewrite

Oracle features 3623

https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/dbms_mle.html#GUID-3F5B47A5-2C73-4317-ACD7-E93AE8B8E301
https://aws.amazon.com/blogs/database/use-oracle-real-application-testing-features-with-amazon-rds-for-oracle/
https://aws.amazon.com/blogs/database/use-oracle-real-application-testing-features-with-amazon-rds-for-oracle/

Amazon Relational Database Service User Guide

• Text (File and URL data store types are not supported)

• Total Recall

• Transparent Data Encryption (TDE)

For more information, see Oracle Transparent Data Encryption.

• Unified Auditing, Mixed Mode

For more information, see Mixed mode auditing in the Oracle documentation.

• XML DB (without the XML DB Protocol Server)

For more information, see Oracle XML DB.

• Virtual Private Database

Unsupported features in RDS for Oracle

Amazon RDS for Oracle doesn't support the following Oracle Database features:

Note

The following list isn't exhaustive.

• Automatic Storage Management (ASM)

• Database Vault

• Flashback Database

Note

For alternative solutions, see the AWS Database Blog entry Alternatives to the Oracle
flashback database feature in Amazon RDS for Oracle.

• FTP and SFTP

• Hybrid partitioned tables

• Messaging Gateway

• Oracle Enterprise Manager Cloud Control Management Repository

• Real Application Clusters (Oracle RAC)

Oracle features 3624

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/introduction-to-auditing.html#GUID-4A3AEFC3-5422-4320-A048-8219EC96EAC1
https://aws.amazon.com/blogs/database/alternatives-to-the-oracle-flashback-database-feature-in-amazon-rds-for-oracle/
https://aws.amazon.com/blogs/database/alternatives-to-the-oracle-flashback-database-feature-in-amazon-rds-for-oracle/

Amazon Relational Database Service User Guide

• Real Application Security (RAS)

• Unified Auditing, Pure Mode

• Workspace Manager (WMSYS) schema

Warning

In general, Amazon RDS doesn't prevent you from creating schemas for unsupported
features. However, if you create schemas for Oracle features and components that require
SYSDBA privileges, you can damage the data dictionary and affect the availability of your
DB instance. Use only supported features and schemas that are available in Adding options
to Oracle DB instances.

RDS for Oracle releases

RDS for Oracle for Oracle supports multiple Oracle Database releases.

Note

For information about upgrading your releases, see Upgrading the RDS for Oracle DB
engine.

Topics

• Oracle Database 21c with Amazon RDS

• Oracle Database 19c with Amazon RDS

Oracle Database 21c with Amazon RDS

Amazon RDS supports Oracle Database 21c, which includes Oracle Enterprise Edition and Oracle
Standard Edition 2. Oracle Database 21c (21.0.0.0) includes many new features and updates from
the previous version. A key change is that Oracle Database 21c supports only the multitenant
architecture: you can no longer create a database as a traditional non-CDB. To learn more about
the differences between CDBs and non-CDBs, see Limitations of RDS for Oracle CDBs.

In this section, you can find the features and changes important to using Oracle Database 21c
(21.0.0.0) on Amazon RDS. For a complete list of the changes, see the Oracle database 21c

Oracle versions 3625

https://docs.oracle.com/en/database/oracle/oracle-database/21/index.html

Amazon Relational Database Service User Guide

documentation. For a complete list of features supported by each Oracle Database 21c edition,
see Permitted features, options, and management packs by Oracle database offering in the Oracle
documentation.

Amazon RDS parameter changes for Oracle Database 21c (21.0.0.0)

Oracle Database 21c (21.0.0.0) includes several new parameters and parameters with new ranges
and new default values.

Topics

• New parameters

• Changes for the compatible parameter

• Removed parameters

New parameters

The following table shows the new Amazon RDS parameters for Oracle Database 21c (21.0.0.0).

Name Range of
values

Default
value

Modifiabl
e

Description

blockchain_table_m
ax_no_drop

NONE | 0 NONE Y Lets you control the
maximum amount of idle
time that can be specified
when creating a blockchain
table.

dbnest_enable NONE |
CDB_RESOU
RCE_PDB_A
LL

NONE N Allows you to enable or
disable dbNest. DbNest
provides operating system
resource isolation and
management, file system
isolation, and secure
computing for PDBs.

dbnest_pdb_fs_conf NONE |
pathname

NONE N Specifies the dbNest file
system configuration file for
a PDB.

Oracle versions 3626

https://docs.oracle.com/en/database/oracle/oracle-database/21/dblic/Licensing-Information.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/BLOCKCHAIN_TABLE_MAX_NO_DROP.html#GUID-26AF15B2-5621-4602-AA6E-D92842E4285C
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/BLOCKCHAIN_TABLE_MAX_NO_DROP.html#GUID-26AF15B2-5621-4602-AA6E-D92842E4285C
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/DBNEST_ENABLE.html#GUID-2F30C9D3-808E-42CD-ADA6-595FAE518A60
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/DBNEST_PDB_FS_CONF.html

Amazon Relational Database Service User Guide

Name Range of
values

Default
value

Modifiabl
e

Description

diagnostics_control ERROR |
WARNING |
IGNORE

IGNORE Y Allows you to control
and monitor the users
who perform potentially
unsafe database diagnostic
operations.

drcp_dedicated_opt YES | NO YES Y Enables or disables the use
of dedicated optimization
with Database Resident
Connection Pooling (DRCP).

enable_per_pdb_drcp true |
false

true N Controls whether Database
Resident Connection Pooling
(DRCP) configures one
connection pool for the
entire CDB or one isolated
connection pool for each
PDB.

inmemory_deep_vect
orization

true |
false

true Y Enables or disables the deep
vectorization framework.

mandatory_user_pro
file

profile_n
ame

N/A N Specifies the mandatory user
profile for a CDB or PDB.

optimizer_capture_
sql_quarantine

true |
false

false Y Enables or disables the deep
vectorization framework.

optimizer_use_sql_
quarantine

true |
false

false Y Enables or disables the
automatic creation of SQL
Quarantine configurations.

Oracle versions 3627

https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/DIAGNOSTICS_CONTROL.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/DRCP_DEDICATED_OPT.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/ENABLE_PER_PDB_DRCP.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/INMEMORY_DEEP_VECTORIZATION.html#GUID-59E87FDC-1DB4-4ACD-A807-D0C1AE44210D
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/INMEMORY_DEEP_VECTORIZATION.html#GUID-59E87FDC-1DB4-4ACD-A807-D0C1AE44210D
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/MANDATORY_USER_PROFILE.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/MANDATORY_USER_PROFILE.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/OPTIMIZER_CAPTURE_SQL_QUARANTINE.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/OPTIMIZER_CAPTURE_SQL_QUARANTINE.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/OPTIMIZER_CAPTURE_SQL_QUARANTINE.html#GUID-9DBBDBD3-2AA3-4627-9D3A-5330F447BEBB
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/OPTIMIZER_CAPTURE_SQL_QUARANTINE.html#GUID-9DBBDBD3-2AA3-4627-9D3A-5330F447BEBB

Amazon Relational Database Service User Guide

Name Range of
values

Default
value

Modifiabl
e

Description

result_cache_execu
tion_threshold

0 to
687194767
36

2 Y Specifies the maximum
number of times a PL/SQL
function can be executed
before its result is stored in
the result cache.

result_cache_max_t
emp_result

0 to 100 5 Y Specifies the percentage of
RESULT_CACHE_MAX_T
EMP_SIZE that any single
cached query result can
consume.

result_cache_max_t
emp_size

0 to
219902325
5552

RESULT_CA
CHE_SIZE
* 10

Y Specifies the maximum
amount of temporary
tablespace (in bytes) that can
be consumed by the result
cache.

sga_min_size 0 to
219902325
5552
(maximum
value is
50% of
sga_targe
t)

0 Y Indicates a possible
minimum value for SGA
usage of a pluggable
database (PDB).

Oracle versions 3628

https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/RESULT_CACHE_EXECUTION_THRESHOLD.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/RESULT_CACHE_EXECUTION_THRESHOLD.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/RESULT_CACHE_MAX_TEMP_RESULT.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/RESULT_CACHE_MAX_TEMP_RESULT.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/RESULT_CACHE_MAX_TEMP_SIZE.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/RESULT_CACHE_MAX_TEMP_SIZE.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/SGA_MIN_SIZE.html

Amazon Relational Database Service User Guide

Name Range of
values

Default
value

Modifiabl
e

Description

tablespace_encrypt
ion_default_algori
thm

GOST256 |
SEED128 |
ARIA256 |
ARIA192 |
ARIA128 |
3DES168 |
AES256 |
AES192 |
AES128

AES128 Y Specifies the default
algorithm the database uses
when encrypting a tablespac
e.

Changes for the compatible parameter

The compatible parameter has a new maximum value for Oracle Database 21c (21.0.0.0) on
Amazon RDS. The following table shows the new default value.

Parameter name Oracle Database 21c (21.0.0.0) maximum value

compatible 21.0.0

Removed parameters

The following parameters were removed in Oracle Database 21c (21.0.0.0):

• remote_os_authent

• sec_case_sensitive_logon

• unified_audit_sga_queue_size

Oracle Database 19c with Amazon RDS

Amazon RDS supports Oracle Database 19c, which includes Oracle Enterprise Edition and Oracle
Standard Edition Two.

Oracle versions 3629

https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/COMPATIBLE.html#GUID-6C57EE11-BD06-4BB8-A0F7-D6CDDD086FA9

Amazon Relational Database Service User Guide

Oracle Database 19c (19.0.0.0) includes many new features and updates from the previous
version. In this section, you can find the features and changes important to using Oracle Database
19c (19.0.0.0) on Amazon RDS. For a complete list of the changes, see the Oracle database 19c
documentation. For a complete list of features supported by each Oracle Database 19c edition,
see Permitted features, options, and management packs by Oracle database offering in the Oracle
documentation.

Amazon RDS parameter changes for Oracle Database 19c (19.0.0.0)

Oracle Database 19c (19.0.0.0) includes several new parameters and parameters with new ranges
and new default values.

Topics

• New parameters

• Changes to the compatible parameter

• Removed parameters

New parameters

The following table shows the new Amazon RDS parameters for Oracle Database 19c (19.0.0.0).

Name Values Modifiabl
e

Description

lob_signature_enable TRUE, FALSE
(default)

Y Enables or disables the LOB locator
signature feature.

max_datapump_paral
lel_per_job

1 to 1024, or AUTO Y Specifies the maximum number of
parallel processes allowed for each
Oracle Data Pump job.

Changes to the compatible parameter

The compatible parameter has a new maximum value for Oracle Database 19c (19.0.0.0) on
Amazon RDS. The following table shows the new default value.

Oracle versions 3630

https://docs.oracle.com/en/database/oracle/oracle-database/19/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dblic/Licensing-Information.html#GUID-0F9EB85D-4610-4EDF-89C2-4916A0E7AC87
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/lob_signature_enable.html#GUID-62997AB5-1084-4C9A-8258-8CB695C7A1D6
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/MAX_DATAPUMP_PARALLEL_PER_JOB.html#GUID-33B1F962-B8C3-4DCE-BE68-66FC5D34ECA3
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/MAX_DATAPUMP_PARALLEL_PER_JOB.html#GUID-33B1F962-B8C3-4DCE-BE68-66FC5D34ECA3

Amazon Relational Database Service User Guide

Parameter name Oracle Database 19c (19.0.0.0) maximum value

compatible 19.0.0

Removed parameters

The following parameters were removed in Oracle Database 19c (19.0.0.0):

• exafusion_enabled

• max_connections

• o7_dictionary_access

RDS for Oracle licensing options

Amazon RDS for Oracle has two licensing options: License Included (LI) and Bring Your Own License
(BYOL). After you create an Oracle DB instance on Amazon RDS, you can change the licensing
model by modifying the DB instance. For more information, see Modifying an Amazon RDS DB
instance.

Important

Make sure that you have the appropriate Oracle Database license, with Software Update
License and Support, for your DB instance class and Oracle Database edition. Also make
sure that you have licenses for any separately licensed Oracle Database features.

Topics

• License Included model for SE2

• Bring Your Own License (BYOL) for EE and SE2

• Licensing Oracle Multi-AZ deployments

License Included model for SE2

In the License Included model, you don't need to purchase Oracle Database licenses separately.
AWS holds the license for the Oracle database software. The License Included model is only
supported on Amazon RDS for Oracle Database Standard Edition 2 (SE2).

Oracle licensing 3631

https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/COMPATIBLE.html#GUID-6C57EE11-BD06-4BB8-A0F7-D6CDDD086FA9

Amazon Relational Database Service User Guide

In this model, if you have an AWS Support account with case support, contact Support for both
Amazon RDS and Oracle Database service requests. Your use of RDS for Oracle the LI option is
subject to Section 10.3.1 of the AWS Service Terms.

Bring Your Own License (BYOL) for EE and SE2

In the BYOL model, you can use your existing Oracle Database licenses to deploy databases on
Amazon RDS. Amazon RDS supports the BYOL model only for Oracle Database Enterprise Edition
(EE) and Oracle Database Standard Edition 2 (SE2).

Make sure that you have the appropriate Oracle Database license (with Software Update License
and Support) for the DB instance class and Oracle Database edition you wish to run. You must
also follow Oracle's policies for licensing Oracle Database software in the cloud computing
environment. For more information on Oracle's licensing policy for Amazon EC2, see Licensing
Oracle software in the cloud computing environment.

In this model, you continue to use your active Oracle support account, and you contact Oracle
directly for Oracle Database service requests. If you have an AWS Support account with case
support, you can contact Support for Amazon RDS issues. Amazon Web Services and Oracle have a
multi-vendor support process for cases that require assistance from both organizations.

Integrating with AWS License Manager

To make it easier to monitor Oracle license usage in the BYOL model, AWS License Manager
integrates with Amazon RDS for Oracle. License Manager supports tracking of RDS for Oracle
engine editions and licensing packs based on virtual cores (vCPUs). You can also use License
Manager with AWS Organizations to manage all of your organizational accounts centrally.

The following table shows the product information filters for RDS for Oracle.

Filter Name Description

oracle-ee Oracle Database Enterprise Edition (EE)Engine Edition

oracle-se2 Oracle Database Standard Edition 2 (SE2)

data guard See Working with read replicas for Amazon RDS
for Oracle (Oracle Active Data Guard)

License Pack

olap See Oracle OLAP

Oracle licensing 3632

https://aws.amazon.com/service-terms/
http://www.oracle.com/us/corporate/pricing/cloud-licensing-070579.pdf
http://www.oracle.com/us/corporate/pricing/cloud-licensing-070579.pdf
https://aws.amazon.com/license-manager/

Amazon Relational Database Service User Guide

Filter Name Description

ols See Oracle Label Security

diagnostic pack
sqlt

See Oracle SQLT

tuning pack sqlt See Oracle SQLT

To track license usage of your Oracle DB instances, you can create a self-managed license using
AWS License Manager. In this case, RDS for Oracle resources that match the product information
filter are automatically associated with the self-managed license. Discovery of Oracle DB instances
can take up to 24 hours. You can also track a license across accounts by using AWS Resource Access
Manager.

Console

To create a self-managed license in AWS License Manager to track the license usage of your RDS
for Oracle DB instances

1. Go to https://console.aws.amazon.com/license-manager/.

2. Choose Create self-managed license.

For instructions, see Create a self-managed license in the AWS License Manager User Guide.

Add a rule for an RDS Product Information Filter in the Product Information panel.

For more information, see ProductInformation in the AWS License Manager API Reference.

3. (Cross-account tracking only) Use AWS Resource Access Manager to share your self-managed
licenses with any AWS account or through AWS Organizations. For more information, see
Sharing your AWS resources.

AWS CLI

To create a self-managed license by using the AWS CLI, call the create-license-configuration
command. Use the --cli-input-json or --cli-input-yaml parameters to pass the
parameters to the command.

Oracle licensing 3633

https://console.aws.amazon.com/license-manager/
https://docs.aws.amazon.com/license-manager/latest/userguide/create-license-configuration.html
https://docs.aws.amazon.com/license-manager/latest/APIReference/API_ProductInformation.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/create-license-configuration.html

Amazon Relational Database Service User Guide

Example

The following example creates a self-managed license for Oracle Enterprise Edition.

aws license-manager create-license-configuration --cli-input-json file://rds-oracle-
ee.json

The following is the sample rds-oracle-ee.json file used in the example.

{
 "Name": "rds-oracle-ee",
 "Description": "RDS Oracle Enterprise Edition",
 "LicenseCountingType": "vCPU",
 "LicenseCountHardLimit": false,
 "ProductInformationList": [
 {
 "ResourceType": "RDS",
 "ProductInformationFilterList": [
 {
 "ProductInformationFilterName": "Engine Edition",
 "ProductInformationFilterValue": ["oracle-ee"],
 "ProductInformationFilterComparator": "EQUALS"
 }
]
 }
]
}

For more information about product information, see Automated discovery of resource inventory in
the AWS License Manager User Guide.

For more information about the --cli-input parameter, see Generating AWS CLI skeleton and
input parameters from a JSON or YAML input file in the AWS CLI User Guide.

Migrating between Oracle Database editions

If you have an unused BYOL Oracle Database license appropriate for the edition and class of DB
instance that you plan to run, you can migrate from Standard Edition 2 (SE2) to Enterprise Edition
(EE). You can't migrate from EE to other editions.

To change your Oracle Database edition and retain your data

1. Create a snapshot of the DB instance.

Oracle licensing 3634

https://docs.aws.amazon.com/license-manager/latest/userguide/automated-discovery.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html

Amazon Relational Database Service User Guide

For more information, see Creating a DB snapshot for a Single-AZ DB instance for Amazon
RDS.

2. Restore the snapshot to a new DB instance, and select the Oracle database edition you want to
use.

For more information, see Restoring to a DB instance.

3. (Optional) Delete the old DB instance, unless you want to keep it running and have the
appropriate Oracle Database licenses for it.

For more information, see Deleting a DB instance.

Licensing Oracle Multi-AZ deployments

Amazon RDS supports Multi-AZ deployments for Oracle as a high-availability, failover solution.
We recommend Multi-AZ for production workloads. For more information, see Configuring and
managing a Multi-AZ deployment for Amazon RDS.

If you use the Bring Your Own License model, you must have a license for both the primary DB
instance and the standby DB instance in a Multi-AZ deployment.

RDS for Oracle users and privileges

When you create an Amazon RDS for Oracle DB instance, the default master user has most of the
maximum user permissions on the DB instance. Use the master user account for any administrative
tasks, such as creating additional user accounts in your database. Because RDS is a managed
service, you aren't allowed to log in as SYS and SYSTEM, and thus don't have SYSDBA privileges.

Topics

• Limitations for Oracle DBA privileges

• How to manage privileges on SYS objects

Limitations for Oracle DBA privileges

In the database, a role is a collection of privileges that you can grant to or revoke from a user. An
Oracle database uses roles to provide security. For more information, see Configuring Privilege and
Role Authorization in the Oracle Database documentation.

Oracle users and privileges 3635

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-privilege-and-role-authorization.html#GUID-89CE989D-C97F-4CFD-941F-18203090A1AC
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-privilege-and-role-authorization.html#GUID-89CE989D-C97F-4CFD-941F-18203090A1AC

Amazon Relational Database Service User Guide

The predefined role DBA normally allows all administrative privileges on an Oracle database. When
you create a DB instance, your master user account gets DBA privileges (with some limitations). To
deliver a managed experience, an RDS for Oracle database doesn't provide the following privileges
for the DBA role:

• ALTER DATABASE

• ALTER SYSTEM

• CREATE ANY DIRECTORY

• DROP ANY DIRECTORY

• GRANT ANY PRIVILEGE

• GRANT ANY ROLE

For more RDS for Oracle system privilege and role information, see Master user account privileges.

How to manage privileges on SYS objects

You can manage privileges on SYS objects by using the rdsadmin.rdsadmin_util
package. For example, if you create the database user myuser, you could use the
rdsadmin.rdsadmin_util.grant_sys_object procedure to grant SELECT privileges on V_
$SQLAREA to myuser. For more information, see the following topics:

• Granting SELECT or EXECUTE privileges to SYS objects

• Revoking SELECT or EXECUTE privileges on SYS objects

• Granting privileges to non-master users

RDS for Oracle DB instance classes

The computation and memory capacity of an RDS for Oracle DB instance is determined by its
instance class. The DB instance class you need depends on your processing power and memory
requirements.

Supported RDS for Oracle DB instance classes

The supported RDS for Oracle instance classes are a subset of the RDS DB instance classes. For the
complete list of RDS instance classes, see DB instance classes.

Oracle instance classes 3636

Amazon Relational Database Service User Guide

RDS for Oracle preconfigured DB instance classes

RDS for Oracle also offers instance classes that are preconfigured for workloads that require
additional memory, storage, and I/O per vCPU. These instance classes use the following naming
convention:

db.r5b.instance_size.tpcthreads_per_core.memratio
db.r5.instance_size.tpcthreads_per_core.memratio

The following is an example of an instance class that is preconfigured for additional memory:

db.r5b.4xlarge.tpc2.mem2x

The components of the preceding instance class name are as follows:

• db.r5b.4xlarge – The name of the instance class.

• tpc2 – The threads per core. A value of 2 means that multithreading is turned on. A value of 1
means that multithreading is turned off.

• mem2x – The ratio of additional memory to the standard memory for the instance class. In this
example, the optimization provides twice as much memory as a standard db.r5.4xlarge DB
instance.

Supported edition, instance class, and licensing combinations in RDS for Oracle

If you're using the RDS console, you can find out whether a specific edition, instance class, and
license combination is supported by choosing Create database and specifying different option. In
the AWS CLI, you can run the following command:

aws rds describe-orderable-db-instance-options --engine engine-type --license-
model license-type

The following table lists all editions, instance classes, and license types supported for RDS for
Oracle. For information about the memory attributes of each type, see RDS for Oracle instance
types. For information about pricing, see Amazon RDS for Oracle pricing models.

Oracle edition Oracle Database 19c and higher

Enterprise Edition (EE) Standard instance classes

Oracle instance classes 3637

https://aws.amazon.com/rds/oracle/instance-types
https://aws.amazon.com/rds/oracle/instance-types
https://aws.amazon.com/rds/oracle/pricing/#Pricing_models

Amazon Relational Database Service User Guide

Oracle edition Oracle Database 19c and higher

db.m7i.large–db.m7i.48xlarge

db.m6id.large–db.m6id.32xlarge

db.m6i.large–db.m6i.32xlarge

db.m5d.large–db.m5d.24xlarge

db.m5.large–db.m5.24xlarge

Memory optimized instance classes

db.r7i.large–db.r7i.48xlarge

db.r6id.large–db.r6id.32xlarge

db.r6i.large–db.r6i.32xlarge

db.r5d.large–db.r5d.24xlarge

db.r5b.large–db.r5b.24xlarge

db.r5.large–db.r5.24xlarge

db.x2iedn.xlarge–db.x2iedn.32xlarge

db.x2iezn.2xlarge–db.x2iezn.12xlarge

db.x2idn.16xlarge–db.x2idn.32xlarge

db.x1e.xlarge–db.x1e.32xlarge

db.x1.16xlarge–db.x1.32xlarge1

db.z1d.large–db.z1d.12xlarge

Bring Your Own License
(BYOL)

Memory optimized preconfigured instance classes

Oracle instance classes 3638

Amazon Relational Database Service User Guide

Oracle edition Oracle Database 19c and higher

db.r6i.8xlarge.tpc2.mem4x

db.r6i.8xlarge.tpc2.mem3x

db.r6i.6xlarge.tpc2.mem4x

db.r6i.4xlarge.tpc2.mem4x

db.r6i.4xlarge.tpc2.mem3x

db.r6i.4xlarge.tpc2.mem2x

db.r6i.2xlarge.tpc2.mem8x

db.r6i.2xlarge.tpc2.mem4x

db.r6i.2xlarge.tpc1.mem2x

db.r6i.xlarge.tpc2.mem4x

db.r6i.xlarge.tpc2.mem2x

db.r6i.large.tpc1.mem2x

db.r5b.8xlarge.tpc2.mem3x

db.r5b.6xlarge.tpc2.mem4x

db.r5b.4xlarge.tpc2.mem4x

db.r5b.4xlarge.tpc2.mem3x

db.r5b.4xlarge.tpc2.mem2x

db.r5b.2xlarge.tpc2.mem8x

db.r5b.2xlarge.tpc2.mem4x

db.r5b.2xlarge.tpc1.mem2x

db.r5b.xlarge.tpc2.mem4x

Oracle instance classes 3639

Amazon Relational Database Service User Guide

Oracle edition Oracle Database 19c and higher

db.r5b.xlarge.tpc2.mem2x

db.r5b.large.tpc1.mem2x

db.r5.12xlarge.tpc2.mem2x

db.r5.8xlarge.tpc2.mem3x

db.r5.6xlarge.tpc2.mem4x

db.r5.4xlarge.tpc2.mem4x

db.r5.4xlarge.tpc2.mem3x

db.r5.4xlarge.tpc2.mem2x

db.r5.2xlarge.tpc2.mem8x

db.r5.2xlarge.tpc2.mem4x

db.r5.2xlarge.tpc1.mem2x

db.r5.xlarge.tpc2.mem4x

db.r5.xlarge.tpc2.mem2x

db.r5.large.tpc1.mem2x

Burstable performance instance classes

db.t3.small–db.t3.2xlarge

Oracle instance classes 3640

Amazon Relational Database Service User Guide

Oracle edition Oracle Database 19c and higher

Standard instance classes

db.m7i.large–db.m7i.4xlarge

db.m6id.large–db.m6id.4xlarge

db.m6i.large–db.m6i.4xlarge

db.m5d.large–db.m5d.4xlarge

db.m5.large–db.m5.4xlarge

Memory optimized instance classes

db.r7i.large–db.r7i.4xlarge

db.r6id.large–db.r6id.4xlarge

db.r6i.large–db.r6i.4xlarge

db.r5d.large–db.r5d.4xlarge

db.r5b.large–db.r5b.4xlarge

db.r5.large–db.r5.4xlarge

db.x2iedn.xlarge–db.x2iedn.4xlarge

db.x2iezn.2xlarge–db.x2iezn.4xlarge

db.z1d.large–db.z1d.3xlarge

Standard Edition 2 (SE2)

Bring Your Own License
(BYOL)

Memory optimized preconfigured instance classes

Oracle instance classes 3641

Amazon Relational Database Service User Guide

Oracle edition Oracle Database 19c and higher

db.r6i.4xlarge.tpc2.mem4x

db.r6i.4xlarge.tpc2.mem3x

db.r6i.4xlarge.tpc2.mem2x

db.r6i.2xlarge.tpc2.mem8x

db.r6i.2xlarge.tpc2.mem4x

db.r6i.2xlarge.tpc1.mem2x

db.r6i.xlarge.tpc2.mem4x

db.r6i.xlarge.tpc2.mem2x

db.r6i.large.tpc1.mem2x

db.r5b.4xlarge.tpc2.mem4x

db.r5b.4xlarge.tpc2.mem3x

db.r5b.4xlarge.tpc2.mem2x

db.r5b.2xlarge.tpc2.mem8x

db.r5b.2xlarge.tpc2.mem4x

db.r5b.2xlarge.tpc1.mem2x

db.r5b.xlarge.tpc2.mem4x

db.r5b.xlarge.tpc2.mem2x

db.r5b.large.tpc1.mem2x

db.r5.4xlarge.tpc2.mem4x

db.r5.4xlarge.tpc2.mem3x

db.r5.4xlarge.tpc2.mem2x

Oracle instance classes 3642

Amazon Relational Database Service User Guide

Oracle edition Oracle Database 19c and higher

db.r5.2xlarge.tpc2.mem8x

db.r5.2xlarge.tpc2.mem4x

db.r5.2xlarge.tpc1.mem2x

db.r5.xlarge.tpc2.mem4x

db.r5.xlarge.tpc2.mem2x

db.r5.large.tpc1.mem2x

Burstable performance instance classes

db.t3.small–db.t3.2xlarge

Standard instance classes

db.m5.large–db.m5.4xlarge

Memory optimized instance classes

db.r6i.large–db.r6i.4xlarge

db.r5.large–db.r5.4xlarge

Burstable performance instance classes

Standard Edition 2 (SE2)

License Included

db.t3.small–db.t3.2xlarge

1 You can no longer create RDS for Oracle DB instances using the X1.* instance class family (X1e.*
instance classes are still supported). If you currently use X1.* classes, switch to a new generation
instance class as soon as possible. Starting on January 22, 2025, RDS begins automated upgrades
in your defined maintenance window. During the upgrade, RDS chooses the equivalent X2iedn
instance type and upgrades it. For more information, see the re:Post article Amazon RDS for Oracle
is ending support for X1 Database Instances on January 22, 2025.

Oracle instance classes 3643

https://repost.aws/articles/ARM9RDhfR2Tz2nFmKwpcjCSQ
https://repost.aws/articles/ARM9RDhfR2Tz2nFmKwpcjCSQ

Amazon Relational Database Service User Guide

Note

We encourage all BYOL customers to consult their licensing agreement to assess the impact
of Amazon RDS for Oracle deprecations. For more information on the compute capacity of
DB instance classes supported by RDS for Oracle, see DB instance classes and Configuring
the processor for a DB instance class in RDS for Oracle.

Note

If you have DB snapshots of DB instances that were using deprecated DB instance classes,
you can choose a DB instance class that is not deprecated when you restore the DB
snapshots. For more information, see Restoring to a DB instance.

Deprecated RDS for Oracle DB instance classes

The following DB instance classes are deprecated for RDS for Oracle:

• db.m1, db.m2, db.m3, db.m4

• db.t1, db.t2

• db.r1, db.r2, db.r3, db.r4

The preceding DB instance classes have been replaced by better performing DB instance classes
that are generally available at a lower cost. If you have DB instances that use deprecated DB
instance classes, you have the following options:

• Allow Amazon RDS to modify each DB instance automatically to use a comparable non-
deprecated DB instance class. For deprecation timelines, see DB instance class types.

• Change the DB instance class yourself by modifying the DB instance. For more information, see
Modifying an Amazon RDS DB instance.

If you have DB snapshots of DB instances that were using deprecated DB instance classes, you can
choose a DB instance class that is not deprecated when you restore the DB snapshots. For more
information, see Restoring to a DB instance.

Oracle instance classes 3644

Amazon Relational Database Service User Guide

RDS for Oracle database architecture

The Oracle multitenant architecture, also known as the CDB architecture, enables an Oracle
database to function as a multitenant container database (CDB). A CDB can include customer-
created pluggable databases (PDBs). A non-CDB is an Oracle database that uses the traditional
architecture, which can't contain PDBs. For more information about the multitenant architecture,
see Oracle Multitenant Administrator’s Guide.

For Oracle Database 19c and higher, you can create an RDS for Oracle DB instance that uses
the CDB architecture. In RDS for Oracle, PDBs are referred to as tenant databases. Your client
applications connect at the tenant database (PDB) level rather than the CDB level. RDS for Oracle
supports the following configurations of the CDB architecture:

Multi-tenant configuration

This RDS platform allows an RDS for Oracle CDB instance to contain between 1–30 tenant
databases, depending on the database edition and any required option licenses. You can use
RDS APIs to add, modify, and remove tenant databases. The multi-tenant configuration in RDS
for Oracle doesn't support application PDBs or proxy PDBs, which are special types of PDBs.
For more information about application PDBs and proxy PDBs, see Types of PDBs in the Oracle
Database documentation.

Note

The Amazon RDS configuration is called "multi-tenant" rather than "multitenant"
because it is a capability of the RDS platform, not just the Oracle DB engine. Similarly,
the RDS term "tenant" refers to any tenant in an RDS configuration, not just Oracle
PDBs. In the RDS documentation, the unhyphenated term "Oracle multitenant" refers
exclusively to the Oracle database CDB architecture, which is compatible with both on-
premises and RDS deployments.

Single-tenant configuration

This RDS platform feature limits an RDS for Oracle CDB instance to 1 tenant database (PDB).
You can't add more PDBs using RDS APIs. The single-tenant configuration uses the same RDS
APIs as the non-CDB architecture. Thus, the experience of working with a CDB in the single-
tenant configuration is mostly the same as working with a non-CDB.

Oracle database architecture 3645

https://docs.oracle.com/en/database/oracle/oracle-database/19/multi/introduction-to-the-multitenant-architecture.html#GUID-267F7D12-D33F-4AC9-AA45-E9CD671B6F22
https://docs.oracle.com/en/database/oracle/oracle-database/19/multi/overview-of-the-multitenant-architecture.html#GUID-D0F40745-FC70-4BE0-85D3-3745DE3312AC

Amazon Relational Database Service User Guide

You can convert a CDB that uses the single-tenant configuration to the multi-tenant
configuration, thus allowing you to add PDBs to your CDB. This architecture change is
permanent and irreversible. For more information, see Converting the single-tenant
configuration to multi-tenant.

Note

You can't access the CDB itself.

In Oracle Database 21c and higher, all databases are CDBs. In contrast, you can create an Oracle
Database 19c DB instance as either a CDB or non-CDB. You can't upgrade a non-CDB to a CDB, but
you convert an Oracle Database 19c non-CDB to a CDB, and then upgrade it. You can't convert a
CDB to a non-CDB.

For more information, see the following resources:

• Working with CDBs in RDS for Oracle

• Limitations of RDS for Oracle CDBs

• Creating an Amazon RDS DB instance

RDS for Oracle parameters

DB parameter groups

In Amazon RDS, you manage parameters using DB parameter groups. For more information, see
Parameter groups for Amazon RDS. To view the supported initialization parameters for a specific
Oracle Database edition and version, run the AWS CLI command describe-engine-default-
parameters.

For example, to view the supported initialization parameters for the Enterprise Edition of Oracle
Database 19c, run the following command.

aws rds describe-engine-default-parameters \
 --db-parameter-group-family oracle-ee-19

Oracle parameters 3646

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-parameters.html

Amazon Relational Database Service User Guide

Oracle database initialization parameters

To find documentation for the initialization parameters, see Initialization Parameters in the Oracle
Database documentation. The following initialization parameters have special considerations:

• ARCHIVE_LAG_TARGET

This parameter forces a redo log switch after the specified time elapses. In RDS for Oracle,
ARCHIVE_LAG_TARGET is set to 300 because the recovery point objective (RPO) is 5 minutes. To
honor this objective, RDS for Oracle switches the online redo log every 5 minutes and stores it
in an Amazon S3 bucket. If the frequency of the log switch causes a performance issue for your
RDS for Oracle database, you can scale your DB instance and storage to one with higher IOPS
and throughput. Alternatively, if you use RDS Custom for Oracle or deploy an Oracle database on
Amazon EC2, you can adjust the setting of the ARCHIVE_LAG_TARGET initialization parameter.

RDS for Oracle character sets

RDS for Oracle supports two types of character sets: the DB character set and national character
set.

DB character set

The Oracle database character set is used in the CHAR, VARCHAR2, and CLOB data types. The
database also uses this character set for metadata such as table names, column names, and SQL
statements. The Oracle database character set is typically referred to as the DB character set.

You set the character set when you create a DB instance. You can't change the DB character set
after you create the database.

Supported DB character sets

The following table lists the Oracle DB character sets that are supported in Amazon RDS. You
can use a value from this table with the --character-set-name parameter of the AWS CLI
create-db-instance command or with the CharacterSetName parameter of the Amazon RDS API
CreateDBInstance operation.

Oracle character sets 3647

https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/initialization-parameters.html#GUID-6F1C3203-0AA0-4AF1-921C-A027DD7CB6A9
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

Note

The character set for a CDB is always AL32UTF8. You can set a different character set for
the PDB only.

Value Description

AL32UTF8 Unicode 5.0 UTF-8 Universal character set
(default)

AR8ISO8859P6 ISO 8859-6 Latin/Arabic

AR8MSWIN1256 Microsoft Windows Code Page 1256 8-bit
Latin/Arabic

BLT8ISO8859P13 ISO 8859-13 Baltic

BLT8MSWIN1257 Microsoft Windows Code Page 1257 8-bit
Baltic

CL8ISO8859P5 ISO 88559-5 Latin/Cyrillic

CL8MSWIN1251 Microsoft Windows Code Page 1251 8-bit
Latin/Cyrillic

EE8ISO8859P2 ISO 8859-2 East European

EL8ISO8859P7 ISO 8859-7 Latin/Greek

EE8MSWIN1250 Microsoft Windows Code Page 1250 8-bit East
European

EL8MSWIN1253 Microsoft Windows Code Page 1253 8-bit
Latin/Greek

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew

IW8MSWIN1255 Microsoft Windows Code Page 1255 8-bit
Latin/Hebrew

Oracle character sets 3648

Amazon Relational Database Service User Guide

Value Description

JA16EUC EUC 24-bit Japanese

JA16EUCTILDE Same as JA16EUC except for mapping of wave
dash and tilde to and from Unicode

JA16SJIS Shift-JIS 16-bit Japanese

JA16SJISTILDE Same as JA16SJIS except for mapping of wave
dash and tilde to and from Unicode

KO16MSWIN949 Microsoft Windows Code Page 949 Korean

NE8ISO8859P10 ISO 8859-10 North European

NEE8ISO8859P4 ISO 8859-4 North and Northeast European

TH8TISASCII Thai Industrial Standard 620-2533-ASCII 8-bit

TR8MSWIN1254 Microsoft Windows Code Page 1254 8-bit
Turkish

US7ASCII ASCII 7-bit American

UTF8 Unicode 3.0 UTF-8 Universal character set,
CESU-8 compliant

VN8MSWIN1258 Microsoft Windows Code Page 1258 8-bit
Vietnamese

WE8ISO8859P1 Western European 8-bit ISO 8859 Part 1

WE8ISO8859P15 ISO 8859-15 West European

WE8ISO8859P9 ISO 8859-9 West European and Turkish

WE8MSWIN1252 Microsoft Windows Code Page 1252 8-bit
West European

ZHS16GBK GBK 16-bit Simplified Chinese

Oracle character sets 3649

Amazon Relational Database Service User Guide

Value Description

ZHT16HKSCS Microsoft Windows Code Page 950 with
Hong Kong Supplementary Character Set
HKSCS-2001. Character set conversion is
based on Unicode 3.0.

ZHT16MSWIN950 Microsoft Windows Code Page 950 Traditional
Chinese

ZHT32EUC EUC 32-bit Traditional Chinese

NLS_LANG environment variable

A locale is a set of information addressing linguistic and cultural requirements that corresponds
to a given language and country. Setting the NLS_LANG environment variable in your client's
environment is the simplest way to specify locale behavior for Oracle. This variable sets the
language and territory used by the client application and the database server. It also indicates the
client's character set, which corresponds to the character set for data entered or displayed by a
client application. For more information on NLS_LANG and character sets, see What is a character
set or code page? in the Oracle documentation.

NLS initialization parameters

You can also set the following National Language Support (NLS) initialization parameters at the
instance level for an Oracle DB instance in Amazon RDS:

• NLS_DATE_FORMAT

• NLS_LENGTH_SEMANTICS

• NLS_NCHAR_CONV_EXCP

• NLS_TIME_FORMAT

• NLS_TIME_TZ_FORMAT

• NLS_TIMESTAMP_FORMAT

• NLS_TIMESTAMP_TZ_FORMAT

For information about modifying instance parameters, see Parameter groups for Amazon RDS.

Oracle character sets 3650

http://www.oracle.com/technetwork/database/database-technologies/globalization/nls-lang-099431.html#_Toc110410570
http://www.oracle.com/technetwork/database/database-technologies/globalization/nls-lang-099431.html#_Toc110410570

Amazon Relational Database Service User Guide

You can set other NLS initialization parameters in your SQL client. For example, the following
statement sets the NLS_LANGUAGE initialization parameter to GERMAN in a SQL client that is
connected to an Oracle DB instance:

ALTER SESSION SET NLS_LANGUAGE=GERMAN;

For information about connecting to an Oracle DB instance with a SQL client, see Connecting to
your Oracle DB instance.

National character set

The national character set is used in the NCHAR, NVARCHAR2, and NCLOB data types. The national
character set is typically referred to as the NCHAR character set. Unlike the DB character set, the
NCHAR character set doesn't affect database metadata.

The NCHAR character set supports the following character sets:

• AL16UTF16 (default)

• UTF8

You can specify either value with the --nchar-character-set-name parameter of the create-
db-instance command (AWS CLI version 2 only). If you use the Amazon RDS API, specify the
NcharCharacterSetName parameter of CreateDBInstance operation. You can't change the
national character set after you create the database.

For more information about Unicode in Oracle databases, see Supporting multilingual databases
with unicode in the Oracle documentation.

RDS for Oracle limitations

In the following sections, you can find important limitations of using RDS for Oracle. For
limitations specific to CDBs, see Limitations of RDS for Oracle CDBs.

Note

This list is not exhaustive.

Topics

Oracle limitations 3651

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/create-db-instance.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/nlspg/supporting-multilingual-databases-with-unicode.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/nlspg/supporting-multilingual-databases-with-unicode.html

Amazon Relational Database Service User Guide

• Oracle file size limits in Amazon RDS

• Public synonyms for Oracle-supplied schemas

• Schemas for unsupported features

• Limitations for Oracle DBA privileges

• Deprecation of TLS 1.0 and 1.1 Transport Layer Security

Oracle file size limits in Amazon RDS

The maximum size of a single file on RDS for Oracle DB instances is 16 TiB (tebibytes). This limit is
imposed by the ext4 filesystem used by the instance. Thus, Oracle bigfile data files are limited to
16 TiB. If you try to resize a data file in a bigfile tablespace to a value over the limit, you receive an
error such as the following.

ORA-01237: cannot extend datafile 6
ORA-01110: data file 6: '/rdsdbdata/db/mydir/datafile/myfile.dbf'
ORA-27059: could not reduce file size
Linux-x86_64 Error: 27: File too large
Additional information: 2

Public synonyms for Oracle-supplied schemas

Don't create or modify public synonyms for Oracle-supplied schemas, including SYS, SYSTEM, and
RDSADMIN. Such actions might result in invalidation of core database components and affect the
availability of your DB instance.

You can create public synonyms referencing objects in your own schemas.

Schemas for unsupported features

In general, Amazon RDS doesn't prevent you from creating schemas for unsupported features.
However, if you create schemas for Oracle features and components that require SYS privileges,
you can damage the data dictionary and affect your instance availability. Use only supported
features and schemas that are available in Adding options to Oracle DB instances.

Limitations for Oracle DBA privileges

In the database, a role is a collection of privileges that you can grant to or revoke from a user. An
Oracle database uses roles to provide security.

Oracle limitations 3652

Amazon Relational Database Service User Guide

The predefined role DBA normally allows all administrative privileges on an Oracle database. When
you create a DB instance, your master user account gets DBA privileges (with some limitations). To
deliver a managed experience, an RDS for Oracle database doesn't provide the following privileges
for the DBA role:

• ALTER DATABASE

• ALTER SYSTEM

• CREATE ANY DIRECTORY

• DROP ANY DIRECTORY

• GRANT ANY PRIVILEGE

• GRANT ANY ROLE

Use the master user account for administrative tasks such as creating additional user accounts in
the database. You can't use SYS, SYSTEM, and other Oracle-supplied administrative accounts.

Deprecation of TLS 1.0 and 1.1 Transport Layer Security

Transport Layer Security protocol versions 1.0 and 1.1 (TLS 1.0 and TLS 1.1) are deprecated. In
accordance with security best practices, Oracle has deprecated the use of TLS 1.0 and TLS 1.1.
To meet your security requirements, RDS for Oracle strongly recommends that you use TLS 1.2
instead.

Oracle limitations 3653

Amazon Relational Database Service User Guide

Connecting to your Oracle DB instance

After Amazon RDS provisions your Oracle DB instance, you can use any standard SQL client
application to log in to your DB instance. Because RDS is a managed service, you can't log in as SYS
or SYSTEM. For more information, see RDS for Oracle users and privileges.

In this topic, you learn how to use Oracle SQL Developer or SQL*Plus to connect to an RDS for
Oracle DB instance. For an example that walks you through the process of creating and connecting
to a sample DB instance, see Creating and connecting to an Oracle DB instance.

Topics

• Finding the endpoint of your RDS for Oracle DB instance

• Connecting to your DB instance using Oracle SQL developer

• Connecting to your DB instance using SQL*Plus

• Considerations for security groups

• Considerations for process architecture

• Troubleshooting connections to your Oracle DB instance

• Modifying connection properties using sqlnet.ora parameters

Finding the endpoint of your RDS for Oracle DB instance

Each Amazon RDS DB instance has an endpoint, and each endpoint has the DNS name and port
number for the DB instance. To connect to your DB instance using a SQL client application, you
need the DNS name and port number for your DB instance.

You can find the endpoint for a DB instance using the Amazon RDS console or the AWS CLI.

Note

If you are using Kerberos authentication, see Connecting to Oracle with Kerberos
authentication.

Connecting to your Oracle DB instance 3654

Amazon Relational Database Service User Guide

Console

To find the endpoint using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the console, choose the AWS Region of your DB instance.

3. Find the DNS name and port number for your DB instance.

a. Choose Databases to display a list of your DB instances.

b. Choose the Oracle DB instance name to display the instance details.

c. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You
need both the endpoint and the port number to connect to the DB instance.

Finding the endpoint 3655

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To find the endpoint of an Oracle DB instance by using the AWS CLI, call the describe-db-instances
command.

Example To find the endpoint using the AWS CLI

aws rds describe-db-instances

Search for Endpoint in the output to find the DNS name and port number for your DB instance.
The Address line in the output contains the DNS name. The following is an example of the JSON
endpoint output.

"Endpoint": {
 "HostedZoneId": "Z1PVIF0B656C1W",
 "Port": 3306,
 "Address": "myinstance.123456789012.us-west-2.rds.amazonaws.com"
},

Note

The output might contain information for multiple DB instances.

Connecting to your DB instance using Oracle SQL developer

In this procedure, you connect to your DB instance by using Oracle SQL Developer. To download a
standalone version of this utility, see the Oracle SQL developer downloads page.

To connect to your DB instance, you need its DNS name and port number. For information about
finding the DNS name and port number for a DB instance, see Finding the endpoint of your RDS for
Oracle DB instance.

To connect to a DB instance using SQL developer

1. Start Oracle SQL Developer.

2. On the Connections tab, choose the add (+) icon.

SQL developer 3656

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://www.oracle.com/tools/downloads/sqldev-downloads.html

Amazon Relational Database Service User Guide

3. In the New/Select Database Connection dialog box, provide the information for your DB
instance:

• For Connection Name, enter a name that describes the connection, such as Oracle-RDS.

• For Username, enter the name of the database administrator for the DB instance.

• For Password, enter the password for the database administrator.

• For Hostname, enter the DNS name of the DB instance.

• For Port, enter the port number.

• For SID, enter the DB name. You can find the DB name on the Configuration tab of your
database details page.

The completed dialog box should look similar to the following.

SQL developer 3657

Amazon Relational Database Service User Guide

4. Choose Connect.

5. You can now start creating your own databases and running queries against your DB instance
and databases as usual. To run a test query against your DB instance, do the following:

a. In the Worksheet tab for your connection, enter the following SQL query.

SELECT NAME FROM V$DATABASE;

b. Choose the execute icon to run the query.

SQL Developer returns the database name.

SQL developer 3658

Amazon Relational Database Service User Guide

Connecting to your DB instance using SQL*Plus

You can use a utility like SQL*Plus to connect to an Amazon RDS DB instance running Oracle. To
download Oracle Instant Client, which includes a standalone version of SQL*Plus, see Oracle
Instant Client Downloads.

To connect to your DB instance, you need its DNS name and port number. For information about
finding the DNS name and port number for a DB instance, see Finding the endpoint of your RDS for
Oracle DB instance.

Example To connect to an Oracle DB instance using SQL*Plus

In the following examples, substitute the user name of your DB instance administrator. Also,
substitute the DNS name for your DB instance, and then include the port number and the Oracle
SID. The SID value is the name of the DB instance's database that you specified when you created
the DB instance, and not the name of the DB instance.

For Linux, macOS, or Unix:

SQL*Plus 3659

https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

Amazon Relational Database Service User Guide

sqlplus 'user_name@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=dns_name)(PORT=port))
(CONNECT_DATA=(SID=database_name)))'

For Windows:

sqlplus user_name@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=dns_name)(PORT=port))
(CONNECT_DATA=(SID=database_name)))

You should see output similar to the following.

SQL*Plus: Release 12.1.0.2.0 Production on Mon Aug 21 09:42:20 2017

After you enter the password for the user, the SQL prompt appears.

SQL>

Note

The shorter format connection string (EZ Connect), such as sqlplus USER/
PASSWORD@longer-than-63-chars-rds-endpoint-here:1521/database-
identifier, might encounter a maximum character limit, so you we recommend that you
don't use it to connect.

Considerations for security groups

For you to connect to your DB instance, it must be associated with a security group that contains
the necessary IP addresses and network configuration. Your DB instance might use the default
security group. If you assigned a default, nonconfigured security group when you created the DB
instance, the firewall prevents connections. For information about creating a new security group,
see Controlling access with security groups.

After you create the new security group, you modify your DB instance to associate it with the
security group. For more information, see Modifying an Amazon RDS DB instance.

You can enhance security by using SSL to encrypt connections to your DB instance. For more
information, see Oracle Secure Sockets Layer.

Security group considerations 3660

Amazon Relational Database Service User Guide

Considerations for process architecture

Server processes handle user connections to an Oracle DB instance. By default, the Oracle DB
instance uses dedicated server processes. With dedicated server processes, each server process
services only one user process. You can optionally configure shared server processes. With shared
server processes, each server process can service multiple user processes.

You might consider using shared server processes when a high number of user sessions are using
too much memory on the server. You might also consider shared server processes when sessions
connect and disconnect very often, resulting in performance issues. There are also disadvantages
to using shared server processes. For example, they can strain CPU resources, and they are more
complicated to configure and administer.

For more information about dedicated and shared server processes, see About dedicated and
shared server processes in the Oracle documentation. For more information about configuring
shared server processes on an RDS for Oracle DB instance, see How do I configure Amazon RDS for
Oracle database to work with shared servers? in the Knowledge Center.

Troubleshooting connections to your Oracle DB instance

The following are issues you might encounter when you try to connect to your Oracle DB instance.

Issue Troubleshooting suggestions

Unable to connect to your
DB instance.

For a newly created DB instance, the DB instance has a status
of creating until it is ready to use. When the state changes to
available, you can connect to the DB instance. Depending on the
DB instance class and the amount of storage, it can take up to 20
minutes before the new DB instance is available.

Unable to connect to your
DB instance.

If you can't send or receive communications over the port that you
specified when you created the DB instance, you can't connect to
the DB instance. Check with your network administrator to verify
that the port you specified for your DB instance allows inbound
and outbound communication.

Unable to connect to your
DB instance.

The access rules enforced by your local firewall and the IP
addresses you authorized to access your DB instance in the

Dedicated and shared server processes 3661

https://docs.oracle.com/database/121/ADMIN/manproc.htm#ADMIN11166
https://docs.oracle.com/database/121/ADMIN/manproc.htm#ADMIN11166
https://aws.amazon.com/premiumsupport/knowledge-center/oracle-db-shared/
https://aws.amazon.com/premiumsupport/knowledge-center/oracle-db-shared/

Amazon Relational Database Service User Guide

Issue Troubleshooting suggestions

security group for the DB instance might not match. The problem
is most likely the inbound or outbound rules on your firewall.

You can add or edit an inbound rule in the security group. For
Source, choose My IP. This allows access to the DB instance from
the IP address detected in your browser. For more information, see
Amazon VPC and Amazon RDS.

For more information about security groups, see Controlling
access with security groups.

To walk through the process of setting up rules for your security
group, see Tutorial: Create a VPC for use with a DB instance (IPv4
only).

Connect failed because
target host or object does
not exist – Oracle, Error:
ORA-12545

Make sure that you specified the server name and port number
correctly. For Server name, enter the DNS name from the console.

For information about finding the DNS name and port number for
a DB instance, see Finding the endpoint of your RDS for Oracle DB
instance.

Invalid username/
password; logon denied –
Oracle, Error: ORA-01017

You were able to reach the DB instance, but the connection was
refused. This is usually caused by providing an incorrect user name
or password. Verify the user name and password, and then retry.

TNS:listener does not
currently know of
SID given in connect
descriptor - Oracle,
ERROR: ORA-12505

Ensure the correct SID is entered. The SID is the same as your
DB name. Find the DB name in the Configuration tab of the
Databases page for your instance. You can also find the DB name
using the AWS CLI:

aws rds describe-db-instances --query 'DBInstances[*].
[DBInstanceIdentifier,DBName]' --output text

For more information on connection issues, see Can't connect to Amazon RDS DB instance.

Troubleshooting 3662

Amazon Relational Database Service User Guide

Modifying connection properties using sqlnet.ora parameters

The sqlnet.ora file includes parameters that configure Oracle Net features on Oracle database
servers and clients. Using the parameters in the sqlnet.ora file, you can modify properties for
connections in and out of the database.

For more information about why you might set sqlnet.ora parameters, see Configuring profile
parameters in the Oracle documentation.

Setting sqlnet.ora parameters

Amazon RDS for Oracle parameter groups include a subset of sqlnet.ora parameters. You set them
in the same way that you set other Oracle parameters. The sqlnetora. prefix identifies which
parameters are sqlnet.ora parameters. For example, in an Oracle parameter group in Amazon RDS,
the default_sdu_size sqlnet.ora parameter is sqlnetora.default_sdu_size.

For information about managing parameter groups and setting parameter values, see Parameter
groups for Amazon RDS.

Supported sqlnet.ora parameters

Amazon RDS supports the following sqlnet.ora parameters. Changes to dynamic sqlnet.ora
parameters take effect immediately.

Parameter Valid
values

Static/
Dy
namic

Description

sqlnetora.default_sdu_size 512
to
2097152

Dynamic The session data unit (SDU)
size, in bytes.

The SDU is the amount of
data that is put in a buffer
and sent across the network
at one time.

sqlnetora.diag_adr_enabled ON,
OFF

Dynamic A value that enables or
disables Automatic Diagnosti
c Repository (ADR) tracing.

Modifying Oracle sqlnet.ora parameters 3663

https://docs.oracle.com/database/121/NETAG/profile.htm#NETAG009
https://docs.oracle.com/database/121/NETAG/profile.htm#NETAG009

Amazon Relational Database Service User Guide

Parameter Valid
values

Static/
Dy
namic

Description

ON specifies that ADR file
tracing is used.

OFF specifies that non-ADR
file tracing is used.

sqlnetora.recv_buf_size 8192
to
268435456

Dynamic The buffer space limit
for receive operations of
sessions, supported by the
TCP/IP, TCP/IP with SSL, and
SDP protocols.

sqlnetora.send_buf_size 8192
to
268435456

Dynamic The buffer space limit for
send operations of sessions,
supported by the TCP/IP,
TCP/IP with SSL, and SDP
protocols.

sqlnetora.sqlnet.allowed_lo
gon_version_client

8, 10,
11,
12

Dynamic Minimum authentication
protocol version allowed for
clients, and servers acting
as clients, to establish a
connection to Oracle DB
instances.

sqlnetora.sqlnet.allowed_lo
gon_version_server

8, 9,
10,
11,
12,
12a

Dynamic Minimum authentication
protocol version allowed to
establish a connection to
Oracle DB instances.

Modifying Oracle sqlnet.ora parameters 3664

Amazon Relational Database Service User Guide

Parameter Valid
values

Static/
Dy
namic

Description

sqlnetora.sqlnet.expire_time 0 to
1440

Dynamic Time interval, in minutes, to
send a check to verify that
client-server connections are
active.

sqlnetora.sqlnet.inbound_co
nnect_timeout

0 or
10 to
7200

Dynamic Time, in seconds, for a
client to connect with the
database server and provide
the necessary authentication
information.

sqlnetora.sqlnet.outbound_c
onnect_timeout

0 or
10 to
7200

Dynamic Time, in seconds, for a
client to establish an Oracle
Net connection to the DB
instance.

sqlnetora.sqlnet.recv_timeout 0 or
10 to
7200

Dynamic Time, in seconds, for a
database server to wait for
client data after establishing
a connection.

sqlnetora.sqlnet.send_timeout 0 or
10 to
7200

Dynamic Time, in seconds, for
a database server to
complete a send operation
to clients after establishing a
connection.

sqlnetora.tcp.connect_timeout 0 or
10 to
7200

Dynamic Time, in seconds, for a client
to establish a TCP connectio
n to the database server.

Modifying Oracle sqlnet.ora parameters 3665

Amazon Relational Database Service User Guide

Parameter Valid
values

Static/
Dy
namic

Description

sqlnetora.trace_level_server 0, 4,
10,
16,
OFF,
USER,
ADMIN,
SUPPORT

Dynamic For non-ADR tracing, turns
server tracing on at a
specified level or turns it off.

The default value for each supported sqlnet.ora parameter is the Oracle Database default for the
release.

Viewing sqlnet.ora parameters

You can view sqlnet.ora parameters and their settings using the AWS Management Console, the
AWS CLI, or a SQL client.

Viewing sqlnet.ora parameters using the console

For information about viewing parameters in a parameter group, see Parameter groups for Amazon
RDS.

In Oracle parameter groups, the sqlnetora. prefix identifies which parameters are sqlnet.ora
parameters.

Viewing sqlnet.ora parameters using the AWS CLI

To view the sqlnet.ora parameters that were configured in an Oracle parameter group, use the AWS
CLI describe-db-parameters command.

To view the all of the sqlnet.ora parameters for an Oracle DB instance, call the AWS CLI download-
db-log-file-portion command. Specify the DB instance identifier, the log file name, and the type of
output.

Example

The following code lists all of the sqlnet.ora parameters for mydbinstance.

Modifying Oracle sqlnet.ora parameters 3666

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/download-db-log-file-portion.html
https://docs.aws.amazon.com/cli/latest/reference/rds/download-db-log-file-portion.html

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

aws rds download-db-log-file-portion \
 --db-instance-identifier mydbinstance \
 --log-file-name trace/sqlnet-parameters \
 --output text

For Windows:

aws rds download-db-log-file-portion ^
 --db-instance-identifier mydbinstance ^
 --log-file-name trace/sqlnet-parameters ^
 --output text

Viewing sqlnet.ora parameters using a SQL client

After you connect to the Oracle DB instance in a SQL client, the following query lists the sqlnet.ora
parameters.

SELECT * FROM TABLE
 (rdsadmin.rds_file_util.read_text_file(
 p_directory => 'BDUMP',
 p_filename => 'sqlnet-parameters'));

For information about connecting to an Oracle DB instance in a SQL client, see Connecting to your
Oracle DB instance.

Modifying Oracle sqlnet.ora parameters 3667

Amazon Relational Database Service User Guide

Securing Oracle DB instance connections

Amazon RDS for Oracle supports SSL/TLS encrypted connections and also the Oracle Native
Network Encryption (NNE) option to encrypt connections between your application and your
Oracle DB instance. For more information about the Oracle Native Network Encryption option, see
Oracle native network encryption.

Topics

• Using SSL with an RDS for Oracle DB instance

• Updating applications to connect to Oracle DB instances using new SSL/TLS certificates

• Using native network encryption with an RDS for Oracle DB instance

• Configuring Kerberos authentication for Amazon RDS for Oracle

• Configuring UTL_HTTP access using certificates and an Oracle wallet

Using SSL with an RDS for Oracle DB instance

Secure Sockets Layer (SSL) is an industry-standard protocol for securing network connections
between client and server. After SSL version 3.0, the name was changed to Transport Layer
Security (TLS), but we still often refer to the protocol as SSL. Amazon RDS supports SSL encryption
for Oracle DB instances. Using SSL, you can encrypt a connection between your application client
and your Oracle DB instance. SSL support is available in all AWS Regions for Oracle.

To enable SSL encryption for an Oracle DB instance, add the Oracle SSL option to the option group
associated with the DB instance. Amazon RDS uses a second port, as required by Oracle, for SSL
connections. Doing this allows both clear text and SSL-encrypted communication to occur at the
same time between a DB instance and an Oracle client. For example, you can use the port with
clear text communication to communicate with other resources inside a VPC while using the port
with SSL-encrypted communication to communicate with resources outside the VPC.

For more information, see Oracle Secure Sockets Layer.

Note

You can't use both SSL and Oracle native network encryption (NNE) on the same DB
instance. Before you can use SSL encryption, you must disable any other connection
encryption.

Securing Oracle connections 3668

Amazon Relational Database Service User Guide

Updating applications to connect to Oracle DB instances using new
SSL/TLS certificates

As of January 13, 2023, Amazon RDS has published new Certificate Authority (CA) certificates
for connecting to your RDS DB instances using Secure Socket Layer or Transport Layer Security
(SSL/TLS). Following, you can find information about updating your applications to use the new
certificates.

This topic can help you to determine whether any client applications use SSL/TLS to connect to
your DB instances.

Important

When you change the certificate for an Amazon RDS for Oracle DB instance, only
the database listener is restarted. The DB instance isn't restarted. Existing database
connections are unaffected, but new connections will encounter errors for a brief period
while the listener is restarted.
We recommend that you restart your Oracle DB to prevent any connection errors.

Note

For client applications that use SSL/TLS to connect to your DB instances, you must update
your client application trust stores to include the new CA certificates.

After you update your CA certificates in the client application trust stores, you can rotate
the certificates on your DB instances. We strongly recommend testing these procedures in a
development or staging environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate. For more
information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
instance or cluster. For information about using SSL/TLS with Oracle DB instances, see Oracle
Secure Sockets Layer.

Topics

• Finding out whether applications connect using SSL

Using new SSL/TLS certificates 3669

Amazon Relational Database Service User Guide

• Updating your application trust store

• Example Java code for establishing SSL connections

Finding out whether applications connect using SSL

If your Oracle DB instance uses an option group with the SSL option added, you might be using
SSL. Check this by following the instructions in Listing the options and option settings for an
option group. For information about the SSL option, see Oracle Secure Sockets Layer.

Check the listener log to determine whether there are SSL connections. The following is sample
output in a listener log.

date time * (CONNECT_DATA=(CID=(PROGRAM=program)
(HOST=host)(USER=user))(SID=sid)) *
(ADDRESS=(PROTOCOL=tcps)(HOST=host)(PORT=port)) * establish * ORCL * 0

When PROTOCOL has the value tcps for an entry, it shows an SSL connection. However, when
HOST is 127.0.0.1, you can ignore the entry. Connections from 127.0.0.1 are a local
management agent on the DB instance. These connections aren't external SSL connections.
Therefore, you have applications connecting using SSL if you see listener log entries where
PROTOCOL is tcps and HOST is not 127.0.0.1.

To check the listener log, you can publish the log to Amazon CloudWatch Logs. For more
information, see Publishing Oracle logs to Amazon CloudWatch Logs.

Updating your application trust store

You can update the trust store for applications that use SQL*Plus or JDBC for SSL/TLS connections.

Updating your application trust store for SQL*Plus

You can update the trust store for applications that use SQL*Plus for SSL/TLS connections.

Note

When you update the trust store, you can retain older certificates in addition to adding the
new certificates.

Using new SSL/TLS certificates 3670

Amazon Relational Database Service User Guide

To update the trust store for SQL*Plus applications

1. Download the new root certificate that works for all AWS Regions and put the file in the
ssl_wallet directory.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a
connection to a DB instance or cluster.

2. Run the following command to update the Oracle wallet.

prompt>orapki wallet add -wallet $ORACLE_HOME/ssl_wallet -trusted_cert -cert
 $ORACLE_HOME/ssl_wallet/ssl-cert.pem -auto_login_only

Replace the file name with the one that you downloaded.

3. Run the following command to confirm that the wallet was updated successfully.

prompt>orapki wallet display -wallet $ORACLE_HOME/ssl_wallet

Your output should contain the following.

Trusted Certificates:
Subject: CN=Amazon RDS Root 2019 CA,OU=Amazon RDS,O=Amazon Web Services\,
 Inc.,L=Seattle,ST=Washington,C=US

Updating your application trust store for JDBC

You can update the trust store for applications that use JDBC for SSL/TLS connections.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB instance or cluster.

For sample scripts that import certificates, see Sample script for importing certificates into your
trust store.

Example Java code for establishing SSL connections

The following code example shows how to set up the SSL connection using JDBC.

import java.sql.Connection;

Using new SSL/TLS certificates 3671

Amazon Relational Database Service User Guide

import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Properties;

public class OracleSslConnectionTest {
 private static final String DB_SERVER_NAME = "<dns-name-provided-by-amazon-rds>";
 private static final Integer SSL_PORT = "<ssl-option-port-configured-in-option-
group>";
 private static final String DB_SID = "<oracle-sid>";
 private static final String DB_USER = "<user name>";
 private static final String DB_PASSWORD = "<password>";
 // This key store has only the prod root ca.
 private static final String KEY_STORE_FILE_PATH = "<file-path-to-keystore>";
 private static final String KEY_STORE_PASS = "<keystore-password>";

 public static void main(String[] args) throws SQLException {
 final Properties properties = new Properties();
 final String connectionString = String.format(
 "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=%s)(PORT=
%d))(CONNECT_DATA=(SID=%s)))",
 DB_SERVER_NAME, SSL_PORT, DB_SID);
 properties.put("user", DB_USER);
 properties.put("password", DB_PASSWORD);
 properties.put("oracle.jdbc.J2EE13Compliant", "true");
 properties.put("javax.net.ssl.trustStore", KEY_STORE_FILE_PATH);
 properties.put("javax.net.ssl.trustStoreType", "JKS");
 properties.put("javax.net.ssl.trustStorePassword", KEY_STORE_PASS);
 final Connection connection = DriverManager.getConnection(connectionString,
 properties);
 // If no exception, that means handshake has passed, and an SSL connection can
 be opened
 }
}

Important

After you have determined that your database connections use SSL/TLS and have updated
your application trust store, you can update your database to use the rds-ca-rsa2048-g1
certificates. For instructions, see step 3 in Updating your CA certificate by modifying your
DB instance or cluster.

Using new SSL/TLS certificates 3672

Amazon Relational Database Service User Guide

Using native network encryption with an RDS for Oracle DB instance

Oracle Database offers two ways to encrypt data over the network: native network encryption
(NNE) and Transport Layer Security (TLS). NNE is a proprietary Oracle security feature, whereas TLS
is an industry standard. RDS for Oracle supports NNE for all editions of Oracle Database.

NNE has the following advantages over TLS:

• You can control NNE on the client and server using settings in the NNE option:

• SQLNET.ALLOW_WEAK_CRYPTO_CLIENTS and SQLNET.ALLOW_WEAK_CRYPTO

• SQLNET.CRYPTO_CHECKSUM_CLIENT and SQLNET.CRYPTO_CHECKSUM_SERVER

• SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT and
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER

• SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER

• SQLNET.ENCRYPTION_TYPES_CLIENT and SQLNET.ENCRYPTION_TYPES_SERVER

• In most cases, you don't need to configure your client or server. In contrast, TLS requires you to
configure both client and server.

• No certificates are required. In TLS, the server requires a certificate (which eventually expires),
and the client requires a trusted root certificate for the certificate authority that issued the
server’s certificate.

To enable NNE encryption for an Oracle DB instance, add the Oracle NNE option to the option
group associated with the DB instance. For more information, see Oracle native network
encryption.

Note

You can't use both NNE and TLS on the same DB instance.

Configuring Kerberos authentication for Amazon RDS for Oracle

You can use Kerberos authentication to authenticate users when they connect to your Amazon RDS
for Oracle DB instance. In this configuration, your DB instance works with AWS Directory Service
for Microsoft Active Directory, also called AWS Managed Microsoft AD. When users authenticate

Encrypting with NNE 3673

Amazon Relational Database Service User Guide

with an RDS for Oracle DB instance joined to the trusting domain, authentication requests are
forwarded to the directory that you create with AWS Directory Service.

Keeping all of your credentials in the same directory can save you time and effort. You have a
centralized place for storing and managing credentials for multiple database instances. A directory
can also improve your overall security profile.

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability of RDS for Oracle with
Kerberos authentication, see Supported Regions and DB engines for Kerberos authentication in
Amazon RDS.

Note

Kerberos authentication isn't supported for DB instance classes that are deprecated for RDS
for Oracle DB instances. For more information, see RDS for Oracle DB instance classes.

Topics

• Setting up Kerberos for Oracle DB instances

• Managing a DB instance in a domain

• Connecting to Oracle with Kerberos authentication

Setting up Kerberos for Oracle DB instances

Use AWS Directory Service for Microsoft Active Directory, also called AWS Managed Microsoft AD,
to set up Kerberos authentication for an Oracle DB instance. To set up Kerberos authentication,
complete the following steps:

• Step 1: Create a directory using the AWS Managed Microsoft AD

• Step 2: Create a trust

• Step 3: Configure IAM permissions for Amazon RDS

• Step 4: Create and configure users

• Step 5: Enable cross-VPC traffic between the directory and the DB instance

• Step 6: Create or modify an Oracle DB instance

Configuring Kerberos authentication 3674

Amazon Relational Database Service User Guide

• Step 7: Create Kerberos authentication Oracle logins

• Step 8: Configure an Oracle client

Note

During the setup, RDS creates an Oracle database user named
managed_service_user@example.com with the CREATE SESSION privilege, where
example.com is your domain name. This user corresponds to the user that Directory
Service creates inside your Managed Active Directory. Periodically, RDS uses the credentials
provided by the Directory Service to log in to your Oracle database. Afterwards, RDS
immediately destroys the ticket cache.

Step 1: Create a directory using the AWS Managed Microsoft AD

AWS Directory Service creates a fully managed Active Directory in the AWS Cloud. When you create
an AWS Managed Microsoft AD directory, AWS Directory Service creates two domain controllers
and Domain Name System (DNS) servers on your behalf. The directory servers are created in
different subnets in a VPC. This redundancy helps make sure that your directory remains accessible
even if a failure occurs.

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the
following tasks on your behalf:

• Sets up an Active Directory within the VPC.

• Creates a directory administrator account with the user name Admin and the specified password.
You use this account to manage your directory.

Note

Be sure to save this password. AWS Directory Service doesn't store it. You can reset it, but
you can't retrieve it.

• Creates a security group for the directory controllers.

When you launch an AWS Managed Microsoft AD, AWS creates an Organizational Unit (OU) that
contains all of your directory's objects. This OU has the NetBIOS name that you typed when you

Configuring Kerberos authentication 3675

Amazon Relational Database Service User Guide

created your directory and is located in the domain root. The domain root is owned and managed
by AWS.

The Admin account that was created with your AWS Managed Microsoft AD directory has
permissions for the most common administrative activities for your OU:

• Create, update, or delete users

• Add resources to your domain such as file or print servers, and then assign permissions for those
resources to users in your OU

• Create additional OUs and containers

• Delegate authority

• Restore deleted objects from the Active Directory Recycle Bin

• Run AD and DNS Windows PowerShell modules on the Active Directory Web Service

The Admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders)

• View DNS event logs

• View security event logs

To create the directory, use the AWS Management Console, the AWS CLI, or the AWS Directory
Service API. Make sure to open the relevant outbound ports on the directory security group so that
the directory can communicate with the Oracle DB instance.

To create a directory with AWS Managed Microsoft AD

1. Sign in to the AWS Management Console and open the AWS Directory Service console at
https://console.aws.amazon.com/directoryservicev2/.

2. In the navigation pane, choose Directories and choose Set up Directory.

3. Choose AWS Managed Microsoft AD. AWS Managed Microsoft AD is the only option that you
can currently use with Amazon RDS.

4. Enter the following information:

Directory DNS name

The fully qualified name for the directory, such as corp.example.com.

Configuring Kerberos authentication 3676

https://console.aws.amazon.com/directoryservicev2/

Amazon Relational Database Service User Guide

Directory NetBIOS name

The short name for the directory, such as CORP.

Directory description

(Optional) A description for the directory.

Admin password

The password for the directory administrator. The directory creation process creates an
administrator account with the user name Admin and this password.

The directory administrator password and can't include the word "admin." The password
is case-sensitive and must be 8–64 characters in length. It must also contain at least one
character from three of the following four categories:

• Lowercase letters (a–z)

• Uppercase letters (A–Z)

• Numbers (0–9)

• Non-alphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

Confirm password

The administrator password retyped.

5. Choose Next.

6. Enter the following information in the Networking section and then choose Next:

VPC

The VPC for the directory. Create the Oracle DB instance in this same VPC.

Subnets

Subnets for the directory servers. The two subnets must be in different Availability Zones.

7. Review the directory information and make any necessary changes. When the information is
correct, choose Create directory.

Configuring Kerberos authentication 3677

Amazon Relational Database Service User Guide

It takes several minutes for the directory to be created. When it has been successfully created, the
Status value changes to Active.

To see information about your directory, choose the directory name in the directory listing. Note
the Directory ID value because you need this value when you create or modify your Oracle DB
instance.

Configuring Kerberos authentication 3678

Amazon Relational Database Service User Guide

Step 2: Create a trust

If you plan to use AWS Managed Microsoft AD only, move on to Step 3: Configure IAM permissions
for Amazon RDS.

To enable Kerberos authentication using your self-managed Active Directory, you must create
a forest trust relationship between your self-managed Active Directory and the AWS Managed
Microsoft AD created in the previous step. The trust can be one-way, where the AWS Managed
Microsoft AD trusts the self-managed Active Directory. The trust can also be two-way, where
both Active Directories trust each other. For more information about setting up forest trusts

Configuring Kerberos authentication 3679

Amazon Relational Database Service User Guide

using AWS Directory Service, see When to create a trust relationship in the AWS Directory Service
Administration Guide.

Step 3: Configure IAM permissions for Amazon RDS

To call AWS Directory Service for you, Amazon RDS requires an IAM role that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess. This role allows Amazon RDS to make calls to
the AWS Directory Service.

Note

For the role to allow access, the AWS Security Token Service (AWS STS) endpoint must be
activated in the correct AWS Region for your AWS account. AWS STS endpoints are active
by default in all AWS Regions, and you can use them without any further actions. For more
information, see Activating and deactivating AWS STS in an AWS Region in the IAM User
Guide.

Creating an IAM role

When you create a DB instance using the AWS Management Console, and the console user has
the iam:CreateRole permission, the console creates rds-directoryservice-kerberos-
access-role automatically. Otherwise, you must create the IAM role manually. When you
create an IAM role manually, choose Directory Service, and attach the AWS managed policy
AmazonRDSDirectoryServiceAccess to it.

For more information about creating IAM roles for a service, see Creating a role to delegate
permissions to an AWS service in the IAM User Guide.

Note

The IAM role used for Windows Authentication for RDS for Microsoft SQL Server can't be
used for RDS for Oracle.

Creating an IAM trust policy manually

Optionally, you can create resource policies with the required permissions instead of
using the managed IAM policy AmazonRDSDirectoryServiceAccess. Specify both
directoryservice.rds.amazonaws.com and rds.amazonaws.com as principals.

Configuring Kerberos authentication 3680

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_setup_trust.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

To limit the permissions that Amazon RDS gives another service for a specific resource, we
recommend using the aws:SourceArn and aws:SourceAccount global condition context keys in
resource policies. The most effective way to protect against the confused deputy problem is to use
the aws:SourceArn global condition context key with the full ARN of an Amazon RDS resource.
For more information, see Preventing cross-service confused deputy problems.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in Amazon RDS to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:rds:us-east-1:123456789012:db:mydbinstance"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
]
}

For opt-in Regions, you must also include a service principal for that Region in the form of
directoryservice.rds.region_name.amazonaws.com. For example, in the Africa (Cape
Town) Region, use the following trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Configuring Kerberos authentication 3681

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Relational Database Service User Guide

 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "directoryservice.rds.af-south-1.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:rds:af-south-1:123456789012:db:mydbinstance"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
]
}

The role must also have the following IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",
 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Configuring Kerberos authentication 3682

Amazon Relational Database Service User Guide

Step 4: Create and configure users

You can create users with the Active Directory Users and Computers tool, which is one of the Active
Directory Domain Services and Active Directory Lightweight Directory Services tools. In this case,
users are individual people or entities that have access to your directory.

To create users in an AWS Directory Service directory, you must be connected to a Windows-based
Amazon EC2 instance that is a member of the AWS Directory Service directory. At the same time,
you must be logged in as a user that has privileges to create users. For more information about
creating users in your Microsoft Active Directory, see Manage users and groups in AWS Managed
Microsoft AD in the AWS Directory Service Administration Guide.

Step 5: Enable cross-VPC traffic between the directory and the DB instance

If you plan to locate the directory and the DB instance in the same VPC, skip this step and move on
to Step 6: Create or modify an Oracle DB instance.

If you plan to locate the directory and the DB instance in different AWS accounts or VPCs, configure
cross-VPC traffic using VPC peering or AWS Transit Gateway. The following procedure enables
traffic between VPCs using VPC peering. Follow the instructions in What is VPC peering? in the
Amazon Virtual Private Cloud Peering Guide.

To enable cross-VPC traffic using VPC peering

1. Set up appropriate VPC routing rules to ensure that network traffic can flow both ways.

2. Ensure that the DB instance's security group can receive inbound traffic from the directory's
security group. For more information, see Best practices for AWS Managed Microsoft AD in the
AWS Directory Service Administration Guide.

3. Ensure that there is no network access control list (ACL) rule to block traffic.

If a different AWS account owns the directory, you must share the directory.

To share the directory between AWS accounts

1. Start sharing the directory with the AWS account that the DB instance will be created in by
following the instructions in Tutorial: Sharing your AWS Managed Microsoft AD directory for
seamless EC2 Domain-join in the AWS Directory Service Administration Guide.

2. Sign in to the AWS Directory Service console using the account for the DB instance, and ensure
that the domain has the SHARED status before proceeding.

Configuring Kerberos authentication 3683

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_best_practices.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html

Amazon Relational Database Service User Guide

3. While signed into the AWS Directory Service console using the account for the DB instance,
note the Directory ID value. You use this directory ID to join the DB instance to the domain.

Step 6: Create or modify an Oracle DB instance

Create or modify an Oracle DB instance for use with your directory. You can use the console, CLI, or
RDS API to associate a DB instance with a directory. You can do this in one of the following ways:

• Create a new Oracle DB instance using the console, the create-db-instance CLI command, or the
CreateDBInstance RDS API operation.

For instructions, see Creating an Amazon RDS DB instance.

• Modify an existing Oracle DB instance using the console, the modify-db-instance CLI command,
or the ModifyDBInstance RDS API operation.

For instructions, see Modifying an Amazon RDS DB instance.

• Restore an Oracle DB instance from a DB snapshot using the console, the restore-db-instance-
from-db-snapshot CLI command, or the RestoreDBInstanceFromDBSnapshot RDS API operation.

For instructions, see Restoring to a DB instance.

• Restore an Oracle DB instance to a point-in-time using the console, the restore-db-instance-to-
point-in-time CLI command, or the RestoreDBInstanceToPointInTime RDS API operation.

For instructions, see Restoring a DB instance to a specified time for Amazon RDS.

Kerberos authentication is only supported for Oracle DB instances in a VPC. The DB instance can be
in the same VPC as the directory, or in a different VPC. When you create or modify the DB instance,
do the following:

• Provide the domain identifier (d-* identifier) that was generated when you created your
directory.

• Provide the name of the IAM role that you created.

• Ensure that the DB instance security group can receive inbound traffic from the directory security
group and send outbound traffic to the directory.

Configuring Kerberos authentication 3684

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

When you use the console to create a DB instance, choose Password and Kerberos authentication
in the Database authentication section. Choose Browse Directory and then select the directory, or
choose Create a new directory.

When you use the console to modify or restore a DB instance, choose the directory in the Kerberos
authentication section, or choose Create a new directory.

When you use the AWS CLI, the following parameters are required for the DB instance to be able to
use the directory that you created:

• For the --domain parameter, use the domain identifier ("d-*" identifier) generated when you
created the directory.

• For the --domain-iam-role-name parameter, use the role you created that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess.

Configuring Kerberos authentication 3685

Amazon Relational Database Service User Guide

For example, the following CLI command modifies a DB instance to use a directory.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --domain d-ID \
 --domain-iam-role-name role-name

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --domain d-ID ^
 --domain-iam-role-name role-name

Important

If you modify a DB instance to enable Kerberos authentication, reboot the DB instance after
making the change.

Note

MANAGED_SERVICE_USER is a service account whose name is randomly generated by
Directory Service for RDS. During the Kerberos authentication setup, RDS for Oracle
creates a user with the same name and assigns it the CREATE SESSION privilege. The
Oracle DB user is identified externally as MANAGED_SERVICE_USER@EXAMPLE.COM, where
EXAMPLE.COM is the name of your domain. Periodically, RDS uses the credentials provided
by the Directory Service to log in to your Oracle database. Afterward, RDS immediately
destroys the ticket cache.

Step 7: Create Kerberos authentication Oracle logins

Use the Amazon RDS master user credentials to connect to the Oracle DB instance as you do any
other DB instance. The DB instance is joined to the AWS Managed Microsoft AD domain. Thus, you
can provision Oracle logins and users from the Microsoft Active Directory users in your domain. To
manage database permissions, you grant and revoke standard Oracle permissions to these logins.

Configuring Kerberos authentication 3686

Amazon Relational Database Service User Guide

To allow a Microsoft Active Directory user to authenticate with Oracle

1. Connect to the Oracle DB instance using your Amazon RDS master user credentials.

2. Create an externally authenticated user in Oracle database.

In the following example, replace KRBUSER@CORP.EXAMPLE.COM with the user name and
domain name.

CREATE USER "KRBUSER@CORP.EXAMPLE.COM" IDENTIFIED EXTERNALLY;
GRANT CREATE SESSION TO "KRBUSER@CORP.EXAMPLE.COM";

Users (both humans and applications) from your domain can now connect to the Oracle DB
instance from a domain joined client machine using Kerberos authentication.

Step 8: Configure an Oracle client

To configure an Oracle client, meet the following requirements:

• Create a configuration file named krb5.conf (Linux) or krb5.ini (Windows) to point to the domain.
Configure the Oracle client to use this configuration file.

• Verify that traffic can flow between the client host and AWS Directory Service over DNS port 53
over TCP/UDP, Kerberos ports (88 and 464 for managed AWS Directory Service) over TCP, and
LDAP port 389 over TCP.

• Verify that traffic can flow between the client host and the DB instance over the database port.

Following is sample content for AWS Managed Microsoft AD.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
[domain_realm]
 .example.com = CORP.EXAMPLE.COM
 example.com = CORP.EXAMPLE.COM

Configuring Kerberos authentication 3687

Amazon Relational Database Service User Guide

Following is sample content for on-premise Microsoft AD. In your krb5.conf or krb5.ini file, replace
on-prem-ad-server-name with the name of your on-premises AD server.

[libdefaults]
 default_realm = ONPREM.COM
[realms]
 AWSAD.COM = {
 kdc = awsad.com
 admin_server = awsad.com
 }
 ONPREM.COM = {
 kdc = on-prem-ad-server-name
 admin_server = on-prem-ad-server-name
 }
[domain_realm]
 .awsad.com = AWSAD.COM
 awsad.com= AWSAD.COM
 .onprem.com = ONPREM.COM
 onprem.com= ONPREM.COM

Note

After you configure your krb5.ini or krb5.conf file, we recommend that you reboot the
server.

The following is sample sqlnet.ora content for a SQL*Plus configuration:

SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5PRE,KERBEROS5)
SQLNET.KERBEROS5_CONF=path_to_krb5.conf_file

For an example of a SQL Developer configuration, see Document 1609359.1 from Oracle Support.

Managing a DB instance in a domain

You can use the console, the CLI, or the RDS API to manage your DB instance and its relationship
with your Microsoft Active Directory. For example, you can associate a Microsoft Active Directory
to enable Kerberos authentication. You can also disassociate a Microsoft Active Directory to disable
Kerberos authentication. You can also move a DB instance to be externally authenticated by one
Microsoft Active Directory to another.

Configuring Kerberos authentication 3688

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1609359.1

Amazon Relational Database Service User Guide

For example, using the CLI, you can do the following:

• To reattempt enabling Kerberos authentication for a failed membership, use the modify-db-
instance CLI command and specify the current membership's directory ID for the --domain
option.

• To disable Kerberos authentication on a DB instance, use the modify-db-instance CLI command
and specify none for the --domain option.

• To move a DB instance from one domain to another, use the modify-db-instance CLI command
and specify the domain identifier of the new domain for the --domain option.

Viewing the status of domain membership

After you create or modify your DB instance, the DB instance becomes a member of the domain.
You can view the status of the domain membership for the DB instance in the console or by
running the describe-db-instances CLI command. The status of the DB instance can be one of the
following:

• kerberos-enabled – The DB instance has Kerberos authentication enabled.

• enabling-kerberos – AWS is in the process of enabling Kerberos authentication on this DB
instance.

• pending-enable-kerberos – Enabling Kerberos authentication is pending on this DB
instance.

• pending-maintenance-enable-kerberos – AWS will attempt to enable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• pending-disable-kerberos – Disabling Kerberos authentication is pending on this DB
instance.

• pending-maintenance-disable-kerberos – AWS will attempt to disable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• enable-kerberos-failed – A configuration problem has prevented AWS from enabling
Kerberos authentication on the DB instance. Correct the configuration problem before reissuing
the command to modify the DB instance.

• disabling-kerberos – AWS is in the process of disabling Kerberos authentication on this DB
instance.

Configuring Kerberos authentication 3689

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

A request to enable Kerberos authentication can fail because of a network connectivity issue or
an incorrect IAM role. If the attempt to enable Kerberos authentication fails when you create
or modify a DB instance, make sure that you're using the correct IAM role. Then modify the DB
instance to join the domain.

Note

Only Kerberos authentication with Amazon RDS for Oracle sends traffic to the domain's
DNS servers. All other DNS requests are treated as outbound network access on your DB
instances running Oracle. For more information about outbound network access with
Amazon RDS for Oracle, see Setting up a custom DNS server.

Force-rotating Kerberos keys

A secret key is shared between AWS Managed Microsoft AD and Amazon RDS for Oracle DB
instance. This key is rotated automatically every 45 days. You can use the following Amazon RDS
procedure to force the rotation of this key.

SELECT rdsadmin.rdsadmin_kerberos_auth_tasks.rotate_kerberos_keytab AS TASK_ID FROM
 DUAL;

Note

In a read replica configuration, this procedure is available only on the source DB instance
and not on the read replica.

The SELECT statement returns the ID of the task in a VARCHAR2 data type. You can view the status
of an ongoing task in a bdump file. The bdump files are located in the /rdsdbdata/log/trace
directory. Each bdump file name is in the following format.

dbtask-task-id.log

You can view the result by displaying the task's output file.

SELECT text FROM table(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-task-
id.log'));

Configuring Kerberos authentication 3690

Amazon Relational Database Service User Guide

Replace task-id with the task ID returned by the procedure.

Note

Tasks are executed asynchronously.

Connecting to Oracle with Kerberos authentication

This section assumes that you have set up your Oracle client as described in Step 8: Configure
an Oracle client. To connect to the Oracle DB with Kerberos authentication, log in using the
Kerberos authentication type. For example, after launching Oracle SQL Developer, choose Kerberos
Authentication as the authentication type, as shown in the following example.

To connect to Oracle with Kerberos authentication with SQL*Plus:

1. At a command prompt, run the following command:

kinit username

Configuring Kerberos authentication 3691

Amazon Relational Database Service User Guide

Replace username with the user name and, at the prompt, enter the password stored in the
Microsoft Active Directory for the user.

2. Open SQL*Plus and connect using the DNS name and port number for the Oracle DB instance.

For more information about connecting to an Oracle DB instance in SQL*Plus, see Connecting to
your DB instance using SQL*Plus.

Tip

If you are using a native Windows cache, you can also set the
SQLNET.KERBEROS5_CC_NAME parameter to OSMSFT:// or MSLSA in the sqlnet.ora file to
use the credentials stored in the Microsoft Active Directory.

Configuring UTL_HTTP access using certificates and an Oracle wallet

Amazon RDS supports outbound network access on your RDS for Oracle DB instances. To connect
your DB instance to the network, you can use the following PL/SQL packages:

UTL_HTTP

This package makes HTTP calls from SQL and PL/SQL. You can use it to access data on the
Internet over HTTP. For more information, see UTL_HTTP in the Oracle documentation.

UTL_TCP

This package provides TCP/IP client-side access functionality in PL/SQL. This package is useful
to PL/SQL applications that use Internet protocols and email. For more information, see
UTL_TCP in the Oracle documentation.

UTL_SMTP

This package provides interfaces to the SMTP commands that enable a client to dispatch emails
to an SMTP server. For more information, see UTL_SMTP in the Oracle documentation.

By completing the following tasks, you can configure UTL_HTTP.REQUEST to work with websites
that require client authentication certificates during the SSL handshake. You can also configure
password authentication for UTL_HTTP access to websites by modifying the Oracle wallet

Configuring UTL_HTTP access 3692

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/UTL_HTTP.html#GUID-A85D2D1F-90FC-45F1-967F-34368A23C9BB
https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/UTL_TCP.html#GUID-348AFFE8-78B2-4217-AE73-384F46A1D292
https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/UTL_SMTP.html#GUID-F0065C52-D618-4F8A-A361-7B742D44C520

Amazon Relational Database Service User Guide

generation commands and the DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE procedure. For
more information, see DBMS_NETWORK_ACL_ADMIN in the Oracle Database documentation.

Note

You can adapt the following tasks for UTL_SMTP, which enables you to send emails over
SSL/TLS (including Amazon Simple Email Service).

Topics

• Considerations when configuring UTL_HTTP access

• Step 1: Get the root certificate for a website

• Step 2: Create an Oracle wallet

• Step 3: Download your Oracle wallet to your RDS for Oracle instance

• Step 4: Grant user permissions for the Oracle wallet

• Step 5: Configure access to a website from your DB instance

• Step 6: Test connections from your DB instance to a website

Considerations when configuring UTL_HTTP access

Before configuring access, consider the following:

• You can use SMTP with the UTL_MAIL option. For more information, see Oracle UTL_MAIL.

• The Domain Name Server (DNS) name of the remote host can be any of the following:

• Publicly resolvable.

• The endpoint of an Amazon RDS DB instance.

• Resolvable through a custom DNS server. For more information, see Setting up a custom DNS
server.

• The private DNS name of an Amazon EC2 instance in the same VPC or a peered VPC. In this
case, make sure that the name is resolvable through a custom DNS server. Alternatively, to
use the DNS provided by Amazon, you can enable the enableDnsSupport attribute in the
VPC settings and enable DNS resolution support for the VPC peering connection. For more
information, see DNS support in your VPC and Modifying your VPC peering connection.

• To connect securely to remote SSL/TLS resources, we recommend that you create and upload
customized Oracle wallets. By using the Amazon S3 integration with Amazon RDS for Oracle

Configuring UTL_HTTP access 3693

https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/DBMS_NETWORK_ACL_ADMIN.html
https://aws.amazon.com/ses/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.aws.amazon.com/vpc/latest/peering/working-with-vpc-peering.html#modify-peering-connections

Amazon Relational Database Service User Guide

feature, you can download a wallet from Amazon S3 into Oracle DB instances. For information
about Amazon S3 integration for Oracle, see Amazon S3 integration.

• You can establish database links between Oracle DB instances over an SSL/TLS endpoint if the
Oracle SSL option is configured for each instance. No further configuration is required. For more
information, see Oracle Secure Sockets Layer.

Step 1: Get the root certificate for a website

For the RDS for Oracle DB instance to make secure connections to a website, add the root CA
certificate. Amazon RDS uses the root certificate to sign the website certificate to the Oracle wallet.

You can get the root certificate in various ways. For example, you can do the following:

1. Use a web server to visit the website secured by the certificate.

2. Download the root certificate that was used for signing.

For AWS services, root certificates typically reside in the Amazon trust services repository.

Step 2: Create an Oracle wallet

Create an Oracle wallet that contains both the web server certificates and the client authentication
certificates. The RDS Oracle instance uses the web server certificate to establish a secure
connection to the website. The website needs the client certificate to authenticate the Oracle
database user.

You might want to configure secure connections without using client certificates for
authentication. In this case, you can skip the Java keystore steps in the following procedure.

To create an Oracle wallet

1. Place the root and client certificates in a single directory, and then change into this directory.

2. Convert the .p12 client certificate to the Java keystore.

Note

If you're not using client certificates for authentication, you can skip this step.

Configuring UTL_HTTP access 3694

https://www.amazontrust.com/repository/

Amazon Relational Database Service User Guide

The following example converts the client certificate named client_certificate.p12 to
the Java keystore named client_keystore.jks. The keystore is then included in the Oracle
wallet. The keystore password is P12PASSWORD.

orapki wallet pkcs12_to_jks -wallet ./client_certificate.p12 -
jksKeyStoreLoc ./client_keystore.jks -jksKeyStorepwd P12PASSWORD

3. Create a directory for your Oracle wallet that is different from the certificate directory.

The following example creates the directory /tmp/wallet.

mkdir -p /tmp/wallet

4. Create an Oracle wallet in your wallet directory.

The following example sets the Oracle wallet password to P12PASSWORD, which is the same
password used by the Java keystore in a previous step. Using the same password is convenient,
but not necessary. The -auto_login parameter turns on the automatic login feature, so that
you don’t need to specify a password every time you want to access it.

Note

Specify a password other than the prompt shown here as a security best practice.

orapki wallet create -wallet /tmp/wallet -pwd P12PASSWORD -auto_login

5. Add the Java keystore to your Oracle wallet.

Note

If you're not using client certificates for authentication, you can skip this step.

The following example adds the keystore client_keystore.jks to the Oracle wallet named
/tmp/wallet. In this example, you specify the same password for the Java keystore and the
Oracle wallet.

Configuring UTL_HTTP access 3695

Amazon Relational Database Service User Guide

orapki wallet jks_to_pkcs12 -wallet /tmp/wallet -pwd P12PASSWORD -
keystore ./client_keystore.jks -jkspwd P12PASSWORD

6. Add the root certificate for your target website to the Oracle wallet.

The following example adds a certificate named Root_CA.cer.

orapki wallet add -wallet /tmp/wallet -trusted_cert -cert ./Root_CA.cer -
pwd P12PASSWORD

7. Add any intermediate certificates.

The following example adds a certificate named Intermediate.cer. Repeat this step as
many times as need to load all intermediate certificates.

orapki wallet add -wallet /tmp/wallet -trusted_cert -cert ./Intermediate.cer -
pwd P12PASSWORD

8. Confirm that your newly created Oracle wallet has the required certificates.

orapki wallet display -wallet /tmp/wallet -pwd P12PASSWORD

Step 3: Download your Oracle wallet to your RDS for Oracle instance

In this step, you upload your Oracle wallet to Amazon S3, and then download the wallet from
Amazon S3 to your RDS for Oracle instance.

To download your Oracle wallet to your RDS for Oracle DB instance

1. Complete the prerequisites for Amazon S3 integration with Oracle, and add the
S3_INTEGRATION option to your Oracle DB instance. Ensure that the IAM role for the option
has access to the Amazon S3 bucket you are using.

For more information, see Amazon S3 integration.

2. Log in to your DB instance as the master user, and then create an Oracle directory to hold the
Oracle wallet.

The following example creates an Oracle directory named WALLET_DIR.

Configuring UTL_HTTP access 3696

Amazon Relational Database Service User Guide

EXEC rdsadmin.rdsadmin_util.create_directory('WALLET_DIR');

For more information, see Creating and dropping directories in the main data storage space.

3. Upload the Oracle wallet to your Amazon S3 bucket.

You can use any supported upload technique.

4. If you're re-uploading an Oracle wallet, delete the existing wallet. Otherwise, skip to the next
step.

The following example removes the existing wallet, which is named cwallet.sso.

EXEC UTL_FILE.FREMOVE ('WALLET_DIR','cwallet.sso');

5. Download the Oracle wallet from your Amazon S3 bucket to the Oracle DB instance.

The following example downloads the wallet named cwallet.sso from the Amazon S3
bucket named my_s3_bucket to the DB instance directory named WALLET_DIR.

SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(
 p_bucket_name => 'my_s3_bucket',
 p_s3_prefix => 'cwallet.sso',
 p_directory_name => 'WALLET_DIR')
 AS TASK_ID FROM DUAL;

6. (Optional) Download a password-protected Oracle wallet.

Download this wallet only if you want to require a password for every use of the wallet. The
following example downloads password-protected wallet ewallet.p12.

SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(
 p_bucket_name => 'my_s3_bucket',
 p_s3_prefix => 'ewallet.p12',
 p_directory_name => 'WALLET_DIR')
 AS TASK_ID FROM DUAL;

7. Check the status of your DB task.

Substitute the task ID returned from the preceding steps for
dbtask-1234567890123-4567.log in the following example.

Configuring UTL_HTTP access 3697

Amazon Relational Database Service User Guide

SELECT TEXT FROM
 TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-1234567890123-4567.log'));

8. Check the contents of the directory that you're using to store the Oracle wallet.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir(p_directory => 'WALLET_DIR'));

For more information, see Listing files in a DB instance directory.

Step 4: Grant user permissions for the Oracle wallet

You can either create a new database user or configure an existing user. In either case, you must
configure the user to access the Oracle wallet for secure connections and client authentication
using certificates.

To grant user permissions for the Oracle wallet

1. Log in your RDS for Oracle DB instance as the master user.

2. If you don't want to configure an existing database user, create a new user. Otherwise, skip to
the next step.

The following example creates a database user named my-user.

CREATE USER my-user IDENTIFIED BY my-user-pwd;
GRANT CONNECT TO my-user;

3. Grant permission to your database user on the directory containing your Oracle wallet.

The following example grants read access to user my-user on directory WALLET_DIR.

GRANT READ ON DIRECTORY WALLET_DIR TO my-user;

4. Grant permission to your database user to use the UTL_HTTP package.

The following PL/SQL program grants UTL_HTTP access to user my-user.

BEGIN
 rdsadmin.rdsadmin_util.grant_sys_object('UTL_HTTP', UPPER('my-user'));
 END;

Configuring UTL_HTTP access 3698

Amazon Relational Database Service User Guide

/

5. Grant permission to your database user to use the UTL_FILE package.

The following PL/SQL program grants UTL_FILE access to user my-user.

BEGIN
 rdsadmin.rdsadmin_util.grant_sys_object('UTL_FILE', UPPER('my-user'));
 END;
/

Step 5: Configure access to a website from your DB instance

In this step, you configure your Oracle database user so that it can connect to your target website
using UTL_HTTP, your uploaded Oracle Wallet, and the client certificate. For more information, see
Configuring Access Control to an Oracle Wallet in the Oracle Database documentation.

To configure access to a website from your RDS for Oracle DB instance

1. Log in your RDS for Oracle DB instance as the master user.

2. Create a Host Access Control Entry (ACE) for your user and the target website on a secure port.

The following example configures my-user to access secret.encrypted-website.com on
secure port 443.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'secret.encrypted-website.com',
 lower_port => 443,
 upper_port => 443,
 ace => xs$ace_type(privilege_list => xs$name_list('http'),
 principal_name => 'my-user',
 principal_type => xs_acl.ptype_db));
 -- If the program unit results in PLS-00201, set
 -- the principal_type parameter to 2 as follows:
 -- principal_type => 2));
END;
/

Configuring UTL_HTTP access 3699

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/managing-fine-grained-access-in-pl-sql-packages-and-types.html#GUID-0BCB5925-A40F-4507-95F9-5DA4A1919EBD

Amazon Relational Database Service User Guide

Important

The preceding program unit can result in the following error: PLS-00201:
identifier 'XS_ACL' must be declared. If this error is returned, replace the
line that assigns a value to principal_type with the following line, and then rerun
the program unit:

principal_type => 2));

For more information about constants in the PL/SQL package XS_ACL, see Real
Application Security Administrator's and Developer's Guide in the Oracle Database
documentation.

For more information, see Configuring Access Control for External Network Services in the
Oracle Database documentation.

3. (Optional) Create an ACE for your user and target website on the standard port.

You might need to use the standard port if some web pages are served from the standard web
server port (80) instead of the secure port (443).

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'secret.encrypted-website.com',
 lower_port => 80,
 upper_port => 80,
 ace => xs$ace_type(privilege_list => xs$name_list('http'),
 principal_name => 'my-user',
 principal_type => xs_acl.ptype_db));
 -- If the program unit results in PLS-00201, set
 -- the principal_type parameter to 2 as follows:
 -- principal_type => 2));
END;
/

4. Confirm that the access control entries exist.

SET LINESIZE 150
COLUMN HOST FORMAT A40

Configuring UTL_HTTP access 3700

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbfsg/XS_ACL-package.html#GUID-A157FB28-FE23-4D30-AAEB-8224230517E7
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbfsg/XS_ACL-package.html#GUID-A157FB28-FE23-4D30-AAEB-8224230517E7
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/managing-fine-grained-access-in-pl-sql-packages-and-types.html#GUID-3D5B66BC-0277-4887-9CD1-97DB44EB5213

Amazon Relational Database Service User Guide

COLUMN ACL FORMAT A50

SELECT HOST, LOWER_PORT, UPPER_PORT, ACL
 FROM DBA_NETWORK_ACLS
ORDER BY HOST;

5. Grant permission to your database user to use the UTL_HTTP package.

The following PL/SQL program grants UTL_HTTP access to user my-user.

BEGIN
 rdsadmin.rdsadmin_util.grant_sys_object('UTL_HTTP', UPPER('my-user'));
 END;
/

6. Confirm that related access control lists exist.

SET LINESIZE 150
COLUMN ACL FORMAT A50
COLUMN PRINCIPAL FORMAT A20
COLUMN PRIVILEGE FORMAT A10

SELECT ACL, PRINCIPAL, PRIVILEGE, IS_GRANT,
 TO_CHAR(START_DATE, 'DD-MON-YYYY') AS START_DATE,
 TO_CHAR(END_DATE, 'DD-MON-YYYY') AS END_DATE
 FROM DBA_NETWORK_ACL_PRIVILEGES
ORDER BY ACL, PRINCIPAL, PRIVILEGE;

7. Grant permission to your database user to use certificates for client authentication and your
Oracle wallet for connections.

Note

If you're not using client certificates for authentication, you can skip this step.

DECLARE
 l_wallet_path all_directories.directory_path%type;
BEGIN
 SELECT DIRECTORY_PATH
 INTO l_wallet_path
 FROM ALL_DIRECTORIES

Configuring UTL_HTTP access 3701

Amazon Relational Database Service User Guide

 WHERE UPPER(DIRECTORY_NAME)='WALLET_DIR';
 DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE(
 wallet_path => 'file:/' || l_wallet_path,
 ace => xs$ace_type(privilege_list => xs
$name_list('use_client_certificates'),
 principal_name => 'my-user',
 principal_type => xs_acl.ptype_db));
END;
/

Step 6: Test connections from your DB instance to a website

In this step, you configure your database user so that it can connect to the website using
UTL_HTTP, your uploaded Oracle Wallet, and the client certificate.

To configure access to a website from your RDS for Oracle DB instance

1. Log in your RDS for Oracle DB instance as a database user with UTL_HTTP permissions.

2. Confirm that a connection to your target website can resolve the host address.

The following example gets the host address from secret.encrypted-website.com.

SELECT UTL_INADDR.GET_HOST_ADDRESS(host => 'secret.encrypted-website.com')
 FROM DUAL;

3. Test a failed connection.

The following query fails because UTL_HTTP requires the location of the Oracle wallet with
the certificates.

SELECT UTL_HTTP.REQUEST('secret.encrypted-website.com') FROM DUAL;

4. Test website access by using UTL_HTTP.SET_WALLET and selecting from DUAL.

DECLARE
 l_wallet_path all_directories.directory_path%type;
BEGIN
 SELECT DIRECTORY_PATH
 INTO l_wallet_path
 FROM ALL_DIRECTORIES

Configuring UTL_HTTP access 3702

Amazon Relational Database Service User Guide

 WHERE UPPER(DIRECTORY_NAME)='WALLET_DIR';
 UTL_HTTP.SET_WALLET('file:/' || l_wallet_path);
END;
/

SELECT UTL_HTTP.REQUEST('secret.encrypted-website.com') FROM DUAL;

5. (Optional) Test website access by storing your query in a variable and using EXECUTE
IMMEDIATE.

DECLARE
 l_wallet_path all_directories.directory_path%type;
 v_webpage_sql VARCHAR2(1000);
 v_results VARCHAR2(32767);
BEGIN
 SELECT DIRECTORY_PATH
 INTO l_wallet_path
 FROM ALL_DIRECTORIES
 WHERE UPPER(DIRECTORY_NAME)='WALLET_DIR';
 v_webpage_sql := 'SELECT UTL_HTTP.REQUEST(''secret.encrypted-website.com'', '''',
 ''file:/' ||l_wallet_path||''') FROM DUAL';
 DBMS_OUTPUT.PUT_LINE(v_webpage_sql);
 EXECUTE IMMEDIATE v_webpage_sql INTO v_results;
 DBMS_OUTPUT.PUT_LINE(v_results);
END;
/

6. (Optional) Find the file system location of your Oracle wallet directory.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir(p_directory => 'WALLET_DIR'));

Use the output from the previous command to make an HTTP request. For example, if the
directory is rdsdbdata/userdirs/01, run the following query.

SELECT UTL_HTTP.REQUEST('https://secret.encrypted-website.com/', '',
 'file://rdsdbdata/userdirs/01')
FROM DUAL;

Configuring UTL_HTTP access 3703

Amazon Relational Database Service User Guide

Working with CDBs in RDS for Oracle

In the Oracle multitenant architecture, a container database (CDB) can include customer-created
pluggable databases (PDBs). For more information about CDBs, see Introduction to the Multitenant
Architecture in the Oracle Database documentation.

Topics

• Overview of RDS for Oracle CDBs

• Configuring an RDS for Oracle CDB

• Backing up and restoring a CDB

• Converting an RDS for Oracle non-CDB to a CDB

• Converting the single-tenant configuration to multi-tenant

• Adding an RDS for Oracle tenant database to your CDB instance

• Modifying an RDS for Oracle tenant database

• Deleting an RDS for Oracle tenant database from your CDB

• Viewing tenant database details

• Upgrading your CDB

Overview of RDS for Oracle CDBs

You can create an RDS for Oracle DB instance as a container database (CDB) when you run Oracle
Database 19c or higher. Starting with Oracle Database 21c, all databases are CDBs. A CDB differs
from a non-CDB because it can contain pluggable databases (PDBs), which are called tenant
databases in RDS for Oracle. A PDB is a portable collection of schemas and objects that appears to
an application as a separate database.

You create your initial tenant database (PDB) when you create your CDB instance. In RDS for
Oracle, your client application interacts with a PDB rather than the CDB. Your experience with a
PDB is mostly identical to your experience with a non-CDB.

Topics

• Multi-tenant configuration of the CDB architecture

• Single-tenant configuration of the CDB architecture

• Creation and conversion options for CDBs

Working with CDBs 3704

https://docs.oracle.com/en/database/oracle/oracle-database/19/multi/introduction-to-the-multitenant-architecture.html#GUID-267F7D12-D33F-4AC9-AA45-E9CD671B6F22
https://docs.oracle.com/en/database/oracle/oracle-database/19/multi/introduction-to-the-multitenant-architecture.html#GUID-267F7D12-D33F-4AC9-AA45-E9CD671B6F22

Amazon Relational Database Service User Guide

• User accounts and privileges in a CDB

• Parameter group families in a CDB

• Limitations of RDS for Oracle CDBs

Multi-tenant configuration of the CDB architecture

RDS for Oracle supports the multi-tenant configuration of the Oracle multitenant architecture, also
called the CDB architecture. In this configuration, your RDS for Oracle CDB instance can contain
1–30 tenant databases, depending on the database edition and any required option licenses. In
Oracle database, a tenant database is a PDB. Your DB instance must use Oracle database release
19.0.0.0.ru-2022-01.rur-2022.r1 or higher.

Note

The Amazon RDS configuration is called "multi-tenant" rather than "multitenant" because
it is a capability of the RDS platform, not just the Oracle DB engine. Similarly, the RDS
term "tenant" refers to any tenant in an RDS configuration, not just Oracle PDBs. In the
RDS documentation, the unhyphenated term "Oracle multitenant" refers exclusively to the
Oracle database CDB architecture, which is compatible with both on-premises and RDS
deployments.

You can configure the following settings:

• Tenant database name

• Tenant database master username

• Tenant database master password (optionally integrated with Secrets Manager)

• Tenant database character set

• Tenant database national character set

The tenant database character set can be different from the CDB character set. The same applies to
the national character set. After you create your initial tenant database, you can create, modify, or
delete tenant databases using RDS APIs. The CDB name defaults to RDSCDB and can't be changed.
For more information, see Settings for DB instances and Modifying an RDS for Oracle tenant
database.

Overview of CDBs 3705

Amazon Relational Database Service User Guide

Single-tenant configuration of the CDB architecture

RDS for Oracle supports a legacy configuration of the Oracle multitenant architecture called the
single-tenant configuration. In this configuration, an RDS for Oracle CDB instance can contain only
one tenant (PDB). You can't create more PDBs later.

Creation and conversion options for CDBs

Oracle Database 21c supports only CDBs, whereas Oracle Database 19c supports both CDBs and
non-CDBs. All RDS for Oracle CDB instances support both the multi-tenant and single-tenant
configurations.

Creation, conversion, and upgrade options for the Oracle database architecture

The following table shows the different architecture options for creating and upgrading RDS for
Oracle databases.

Release Database creation
options

Architecture
conversion options

Major version
upgrade targets

Oracle Database
21c

CDB architecture only N/A N/A

Oracle Database
19c

CDB or non-CDB
architecture

Non-CDB to CDB
architecture (April
2021 RU or higher)

Oracle Database 21c
CDB

As shown in the preceding table, you can't directly upgrade a non-CDB to a CDB in a new major
database version. But you can convert an Oracle Database 19c non-CDB to an Oracle Database 19c
CDB, and then upgrade the Oracle Database 19c CDB to an Oracle Database 21c CDB. For more
information, see Converting an RDS for Oracle non-CDB to a CDB.

Conversion options for CDB architecture configurations

The following table shows the different options for converting the architecture configuration of an
RDS for Oracle DB instance.

Overview of CDBs 3706

Amazon Relational Database Service User Guide

Current
architecture
and configura
tion

Conversion to
the single-tenant
configuration of the
CDB architecture

Conversion to
the multi-tenant
configuration of the
CDB architecture

Conversion to the non-
CDB architecture

Non-CDB Supported Supported* N/A

CDB using the
single-tenant
configuration

N/A Supported Not supported

CDB using the
multi-tenant
configuration

Not supported N/A Not supported

* You can't convert a non-CDB to the multi-tenant configuration in a single operation. When you
convert a non-CDB to a CDB, the CDB is in the single-tenant configuration. You can then convert
the single-tenant to the multi-tenant configuration in a separate operation.

User accounts and privileges in a CDB

In the Oracle multitenant architecture, all user accounts are either common users or local users. A
CDB common user is a database user whose single identity and password are known in the CDB
root and in every existing and future PDB. In contrast, a local user exists only in a single PDB.

The RDS master user is a local user account in the PDB, which you name when you create your DB
instance. If you create new user accounts, these users will also be local users residing in the PDB.
You can't use any user accounts to create new PDBs or modify the state of the existing PDB.

The rdsadmin user is a common user account. You can run RDS for Oracle packages that exist in
this account, but you can't log in as rdsadmin. For more information, see About Common Users
and Local Users in the Oracle documentation.

For master users in both the multi-tenant and single-tenant configurations, you can use credentials
that are self-managed or managed by AWS Secrets Manager. In the single-tenant configuration,
you use instance-level CLI commands such as create-db-instance for managed master
passwords. In the multi-tenant configuration, you use tenant database commands such as
create-tenant-database for managed master passwords. For more information about Secrets

Overview of CDBs 3707

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/managing-security-for-oracle-database-users.html#GUID-BBBD9904-F2F3-442B-9AFC-8ACDD9A588D8
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/managing-security-for-oracle-database-users.html#GUID-BBBD9904-F2F3-442B-9AFC-8ACDD9A588D8

Amazon Relational Database Service User Guide

Manager integration, see Managing the master user password for an RDS for Oracle tenant
database with Secrets Manager.

Parameter group families in a CDB

CDBs have their own parameter group families and default parameter values. The CDB parameter
group families are as follows:

• oracle-ee-cdb-21

• oracle-se2-cdb-21

• oracle-ee-cdb-19

• oracle-se2-cdb-19

Limitations of RDS for Oracle CDBs

RDS for Oracle supports a subset of features available in an on-premises CDB.

CDB limitations

The following limitations apply to RDS for Oracle at the CDB level:

• You can’t connect to a CDB. You always connect to the tenant database (PDB) rather than the
CDB. Specify the endpoint for the PDB just as for a non-CDB. The only difference is that you
specify pdb_name for the database name, where pdb_name is the name you chose for your PDB.

• You can't convert a CDB in the multi-tenant configuration to a CDB in the single-tenant
conversion. Conversion to the multi-tenant configuration is one-way and irreversible.

• You can't enable or convert to the multi-tenant configuration if your DB instance uses an Oracle
database release lower than 19.0.0.0.ru-2022-01.rur-2022.r1.

• You can't use an RDS for Oracle CDB with ORDS 22 and higher. As a workaround, you can either
use a lower version of ORDS or use an Oracle Database 19c non-CDB.

• You can't use Oracle Data Guard in the multi-tenant configuration, but you can use it in the
single-tenant configuration.

• You can't use Database Activity Streams in a CDB.

• You can't enable auditing from within CDB$ROOT. You must enable auditing within each PDB
individually.

Overview of CDBs 3708

Amazon Relational Database Service User Guide

Tenant database (PDB) limitations

The following limitations apply to tenant databases in the RDS for Oracle multi-tenant
configuration:

• You can't defer tenant database operations to the maintenance window. All changes occur
immediately.

• You can't add a tenant database to a CDB that uses the single-tenant configuration.

• You can't add or modify multiple tenant databases in a single operation. You can only add or
modify them one at a time.

• You can't modify a tenant database to be named CDB$ROOT or PDB$SEED.

• You can't delete a tenant database if it is the only tenant in the CDB.

• Not all DB instance class types have sufficient resources to support multiple PDBs in an RDS
for Oracle CDB instance. An increased PDB count affects the performance and stability of the
smaller instance classes and increases the time of most instance-level operations, for example,
database upgrades.

• You can't use multiple AWS accounts to create PDBs in the same CDB. PDBs must be owned by
the same account as the DB instance that the PDBs are hosted on.

• All PDBs in a CDB use the same endpoint and database listener.

• The following operations aren't supported at the PDB level but are supported at the CDB level:

• Backup and recovery

• Database upgrades

• Maintenance actions

• The following features aren't supported at the PDB level but are supported at the CDB level:

• Option groups (options are installed on all PDBs on your CDB instance)

• Parameter groups (all parameters are derived from the parameter group associated with your
CDB instance)

• PDB-level operations that are supported in the on-premises CDB architecture but aren't
supported in an RDS for Oracle CDB include the following:

Note

The following list is not exhaustive.

Overview of CDBs 3709

Amazon Relational Database Service User Guide

• Application PDBs

• Proxy PDBs

• Starting and stopping a PDB

• Unplugging and plugging in PDBs

To move data into or out of your CDB, use the same techniques as for a non-CDB. For more
information about migrating data, see Importing data into Oracle on Amazon RDS.

• Setting options at the PDB level

The PDB inherits options settings from the CDB option group. For more information about
setting options, see Parameter groups for Amazon RDS. For best practices, see Working with
DB parameter groups.

• Configuring parameters in a PDB

The PDB inherits parameter settings from the CDB. For more information about setting option,
see Adding options to Oracle DB instances.

• Configuring different listeners for PDBs in the same CDB

• Oracle Flashback features

Configuring an RDS for Oracle CDB

Configuring a CDB is similar to configuring a non-CDB.

Topics

• Creating an RDS for Oracle CDB instance

• Connecting to a PDB in your RDS for Oracle CDB

Creating an RDS for Oracle CDB instance

In RDS for Oracle, creating a CDB instance is almost identical to creating a non-CDB instance. The
difference is that you choose the Oracle multitenant architecture when creating your DB instance
and also choose an architecture configuration: multi-tenant or single-tenant. If you create tags
when you create a CDB in the multi-tenant configuration, RDS propagates the tags to the initial
tenant database. To create a CDB, use the AWS Management Console, the AWS CLI, or the RDS API.

Configuring a CDB 3710

Amazon Relational Database Service User Guide

Console

To create a CDB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the CDB instance.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. In Choose a database creation method, select Standard Create.

6. In Engine options, choose Oracle.

7. For Database management type, choose Amazon RDS.

8. For Architecture settings, choose Oracle multitenant architecture.

9. For Architecture configuration, do either of the following:

• Choose Multi-tenant configuration and proceed to the next step.

• Choose Single-tenant configuration and skip to Step 11.

10. (Multi-tenant configuration) For Tenant database settings, make the following changes:

• For Tenant database name, enter the name of your initial PDB. The PDB name must be
different from the CDB name, which defaults to RDSCDB.

• For Tenant database master username, enter the master username of your PDB. You can't
use the tenant database master username to log in to the CDB itself.

• For Credentials management, choose either of the following credentials management
options:

• Managed in AWS Secrets Manager

The managed password is for the initial tenant database rather than for the instance. In
Select the encryption key, choose either a KMS key that Secrets Manager creates or a key
that you have created.

Configuring a CDB 3711

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Note

We recommend AWS Secrets Manager as the most secure technique for managing
credentials. Additional charges apply. For more information, see Password
management with Amazon RDS and AWS Secrets Manager.

• Self managed

To specify a password, clear the Auto generate a password check box if it is selected.
Enter the same password in Master password and Confirm master password.

• For Tenant database character set, choose a character set for the PDB. You can choose a
tenant database character set that is different from the CDB character set.

The default PDB character set is AL32UTF8. If you choose a nondefault PDB character set,
CDB creation might be slower.

Note

You can't specify multiple tenant databases in the create operation. The CDB has one
PDB when it is created. You can add PDBs to an existing CDB in a separate operation.

11. (Single-tenant configuration) Choose the settings that you want based on the options listed in
Settings for DB instances:

• In the Settings section, open Credential Settings. Then do the following:

i. For Master username, enter the name for a local user in your PDB. You can't use the
master username to log in to the CDB root.

ii. For Credentials management, choose either of the following credentials
management options:

• Managed in AWS Secrets Manager

In Select the encryption key, choose either a KMS key that Secrets Manager creates
or a key that you have created.

Configuring a CDB 3712

Amazon Relational Database Service User Guide

Note

We recommend AWS Secrets Manager as the most secure technique for
managing credentials. Additional charges apply. For more information, see
Password management with Amazon RDS and AWS Secrets Manager.

• Self managed

To specify a password, clear the Auto generate a password check box if it is
selected. Enter the same password in Master password and Confirm master
password.

12. For the remaining sections, specify your DB instance settings. For information about each
setting, see Settings for DB instances.

13. Choose Create database.

AWS CLI

To create a CDB in the multi-tenant configuration, use the create-db-instance command with the
following parameters:

• --db-instance-identifier

• --db-instance-class

• --engine { oracle-ee-cdb | oracle-se2-cdb }

• --master-username

• --master-user-password or --manage-master-user-password

• --multi-tenant (for the single-tenant configuration, either don't specify multi-tenant or
specify --no-multi-tenant)

• --allocated-storage

• --backup-retention-period

For information about each setting, see Settings for DB instances.

This following example creates an RDS for Oracle DB instance named my-cdb-inst in the multi-
tenant configuration. If you specify --no-multi-tenant or don't specify --multi-tenant,

Configuring a CDB 3713

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.Settings.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

the default CDB configuration is single-tenant. The engine is oracle-ee-cdb: a command that
specifies oracle-ee and --multi-tenant fails with an error. The initial tenant database is
named mypdb.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --engine oracle-ee-cdb \
 --db-instance-identifier my-cdb-inst \
 --multi-tenant \
 --db-name mypdb \
 --allocated-storage 250 \
 --db-instance-class db.t3.large \
 --master-username pdb_admin \
 --manage-master-user-password \
 --backup-retention-period 3

For Windows:

aws rds create-db-instance ^
 --engine oracle-ee-cdb ^
 --db-instance-identifier my-cdb-inst ^
 --multi-tenant ^
 --db-name mypdb ^
 --allocated-storage 250 ^
 --db-instance-class db.t3.large ^
 --master-username pdb_admin ^
 --manage-master-user-password \ ^
 --backup-retention-period 3

Note

Specify a password other than the prompt shown here as a security best practice.

This command produces output similar to the following. The database name, character set,
national character set, master user, and master user secret aren't included in the output. You can
view this information by using the CLI command describe-tenant-databases.

Configuring a CDB 3714

Amazon Relational Database Service User Guide

{
 "DBInstance": {
 "DBInstanceIdentifier": "my-cdb-inst",
 "DBInstanceClass": "db.t3.large",
 "MultiTenant": true,
 "Engine": "oracle-ee-cdb",
 "DBResourceId": "db-ABCDEFGJIJKLMNOPQRSTUVWXYZ",
 "DBInstanceStatus": "creating",
 "AllocatedStorage": 250,
 "PreferredBackupWindow": "04:59-05:29",
 "BackupRetentionPeriod": 3,
 "DBSecurityGroups": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-0a1bcd2e",
 "Status": "active"
 }
],
 "DBParameterGroups": [
 {
 "DBParameterGroupName": "default.oracle-ee-cdb-19",
 "ParameterApplyStatus": "in-sync"
 }
],
 "DBSubnetGroup": {
 "DBSubnetGroupName": "default",
 "DBSubnetGroupDescription": "default",
 "VpcId": "vpc-1234567a",
 "SubnetGroupStatus": "Complete",
 ...

RDS API

To create a DB instance by using the Amazon RDS API, call the CreateDBInstance operation.

For information about each setting, see Settings for DB instances.

Connecting to a PDB in your RDS for Oracle CDB

You can use a utility like SQL*Plus to connect to a PDB. To download Oracle Instant Client, which
includes a standalone version of SQL*Plus, see Oracle Instant Client Downloads.

To connect SQL*Plus to your PDB, you need the following information:

Configuring a CDB 3715

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

Amazon Relational Database Service User Guide

• PDB name

• Database user name and password

• Endpoint for your DB instance

• Port number

For information about finding the preceding information, see Finding the endpoint of your RDS for
Oracle DB instance.

Example To connect to your PDB using SQL*Plus

In the following examples, substitute your master user for master_user_name. Also, substitute
the endpoint for your DB instance, and then include the port number and the Oracle SID. The SID
value is the name of the PDB that you specified when you created your DB instance, and not the DB
instance identifier.

For Linux, macOS, or Unix:

sqlplus 'master_user_name@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=endpoint)
(PORT=port))(CONNECT_DATA=(SID=pdb_name)))'

For Windows:

sqlplus master_user_name@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=endpoint)
(PORT=port))(CONNECT_DATA=(SID=pdb_name)))

You should see output similar to the following.

SQL*Plus: Release 19.0.0.0.0 Production on Mon Aug 21 09:42:20 2021

After you enter the password for the user, the SQL prompt appears.

SQL>

Note

The shorter format connection string (Easy connect or EZCONNECT), such as
sqlplus username/password@LONGER-THAN-63-CHARS-RDS-ENDPOINT-

Configuring a CDB 3716

Amazon Relational Database Service User Guide

HERE:1521/database-identifier, might encounter a maximum character limit and
should not be used to connect.

Backing up and restoring a CDB

You can back up and restore your CDB using either RDS DB snapshots or Recovery Manager
(RMAN).

Backing up and restoring a CDB using DB snapshots

DB snapshots work similarly in the CDB and non-CDB architectures. The principal differences are as
follows:

• When you restore a DB snapshot of a CDB, you can't rename the CDB. The CDB is named RDSCDB
and can't be changed.

• When you restore a DB snapshot of a CDB, you can't rename PDBs. You can modify the PDB
name by using the modify-tenant-database command.

• To find tenant databases in a snapshot, use the CLI command describe-db-snapshot-tenant-
databases.

• You can't directly interact with the tenant databases in a CDB snapshot that uses the multi-
tenant architecture configuration. If you restore the DB snapshot, you restore all its tenant
databases.

• RDS for Oracle implicitly copies tags on a tenant database to the tenant database in a DB
snapshot. When you restore a tenant database, the tags appear in the restored database.

• If you restore a DB snapshot and specify new tags using the --tags parameter, the new tags
overwrite all existing tags.

• If you take a DB snapshot of a CDB instance that has tags, and you specify --copy-tags-to-
snapshot, RDS for Oracle copies tags from the tenant databases to the tenant databases in the
snapshot.

For more information, see Oracle Database considerations.

Backing up and restoring a CDB using RMAN

To learn how to back up and restore a CDB or individual tenant database using RMAN, see
Performing common RMAN tasks for Oracle DB instances.

Backing up and restoring a CDB 3717

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyTenantDatabase.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshotTenantDatabases.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshotTenantDatabases.html

Amazon Relational Database Service User Guide

Converting an RDS for Oracle non-CDB to a CDB

You can change the architecture of an Oracle database from the non-CDB architecture to the
Oracle multitenant architecture, also called the CDB architecture, with the modify-db-instance
command. In most cases, this technique is preferable to creating a new CDB and importing data.
The conversion operation incurs downtime.

When you upgrade your database engine version, you can't change the database architecture in the
same operation. Therefore, to upgrade an Oracle Database 19c non-CDB to an Oracle Database 21c
CDB, you first need to convert the non-CDB to a CDB in one step, and then upgrade the 19c CDB to
a 21c CDB in a separate step.

The non-CDB conversion operation has the following requirements:

• You must specify oracle-ee-cdb or oracle-se2-cdb for the DB engine type. These are the
only supported values.

• Your DB engine must use Oracle Database 19c with an April 2021 or later release update (RU).

The operation has the following limitations:

• You can't convert a CDB to a non-CDB. You can only convert a non-CDB to a CDB.

• You can't convert a non-CDB to the multi-tenant configuration in a single modify-db-
instance call. After you convert a non-CDB to a CDB, your CDB is in the single-tenant
configuration. To convert the single-tenant configuration to the multi-tenant configuration,
run modify-db-instance again. For more information, see Converting the single-tenant
configuration to multi-tenant.

• You can't convert a primary or replica database that has Oracle Data Guard enabled. To convert a
non-CDB that has read replicas, first delete all read replicas.

• You can't upgrade the DB engine version and convert a non-CDB to a CDB in the same operation.

Before converting your non-CDB, consider the following:

• The considerations for option and parameter groups are the same as for upgrading the DB
engine. For more information, see Considerations for Oracle database upgrades.

• You can convert existing non-CDB instances that uses managed master passwords to single-
tenant instances in a single operation. The single-tenant instances inherit the managed
passwords.

Converting a non-CDB to a CDB 3718

Amazon Relational Database Service User Guide

• If your DB instance has the OEMAGENT option installed, a best practice is to remove this option
before you convert your non-CDB. After your non-CDB is converted to a CDB, reinstall the option.
For more information, see Oracle Management Agent for Enterprise Manager Cloud Control.

• During the conversion process, RDS resets the online redo log size to the default 128M.

Console

To convert a non-CDB to a CDB

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region where your DB
instance resides.

3. In the navigation pane, choose Databases, and then choose the non-CDB instance that you
want to convert to a CDB instance.

4. Choose Modify.

5. For Architecture settings, select Oracle multitenant architecture. After conversion, your CDB
will be in the single-tenant configuration.

6. (Optional) For DB parameter group, choose a new parameter group for your CDB instance. The
same parameter group considerations apply when converting a DB instance as when upgrading
a DB instance. For more information, see Parameter group considerations.

7. (Optional) For Option group, choose a new option group for your CDB instance. The same
option group considerations apply when converting a DB instance as when upgrading a DB
instance. For more information, see Option group considerations.

8. (Optional) For Credentials management, choose Managed in AWS Secrets Manager or Self-
managed. For more information, see Managing the master user password for a DB instance
with Secrets Manager.

9. When all the changes are as you want them, choose Continue and check the summary of
modifications.

10. (Optional) Choose Apply immediately to apply the changes immediately. Choosing this
option can cause downtime in some cases. For more information, see Using the schedule
modifications setting.

11. On the confirmation page, review your changes. If they are correct, choose Modify DB
instance.

Converting a non-CDB to a CDB 3719

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To convert the non-CDB on your DB instance to a CDB in the single-tenant configuration, set --
engine to oracle-ee-cdb or oracle-se2-cdb in the AWS CLI command modify-db-instance.
For more information, see Settings for DB instances.

The following example converts the DB instance named my-non-cdb and specifies a custom
option group and parameter group. The command also enables password management with
Secrets Manager.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier my-non-cdb \
 --engine oracle-ee-cdb \
 --option-group-name custom-option-group \
 --db-parameter-group-name custom-parameter-group \
 --manage-master-user-password

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier my-non-cdb ^
 --engine oracle-ee-cdb ^
 --option-group-name custom-option-group ^
 --db-parameter-group-name custom-parameter-group ^
 --manage-master-user-password

RDS API

To convert a non-CDB to a CDB, specify Engine in the RDS API operation ModifyDBInstance.

Converting the single-tenant configuration to multi-tenant

You can modify the architecture of an RDS for Oracle CDB from the single-tenant configuration to
the multi-tenant configuration. Before and after the conversion, your CDB contains a single tenant

Converting single-tenant to multi-tenant 3720

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

database (PDB). Tags for the DB instance propagate to the initial tenant database created during
the conversion.

Before you begin, make sure that your IAM policy has permission to create a tenant database.
During the conversion, RDS for Oracle migrates the following metadata to the new tenant
database:

• The master username

• The managed master password (if the source CDB integrates with Secrets Manager)

• The database name

• The character set

• The national character set

Before the conversion, you view the preceding information by using the describe-db-
instances command. After the conversion, you view the information by using the describe-
tenant-database command.

The conversion from single-tenant to multi-tenant has the following limitations:

• You can't later convert back to the single-tenant configuration after you convert to the multi-
tenant configuration. The conversion is irreversible.

• You can't convert a primary or replica database that has Oracle Data Guard enabled.

• You can't upgrade the DB engine version and convert to the multi-tenant configuration in the
same operation.

• You can't enable or disable managed master user passwords during the conversion.

Console

To convert a CDB using the single-tenant configuration to the multi-tenant configuration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region where your DB
instance resides.

3. In the navigation pane, choose Databases, and then choose the non-CDB instance that you
want to convert to a CDB instance.

Converting single-tenant to multi-tenant 3721

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

4. Choose Modify.

5. For Architecture settings, select Oracle multitenant architecture.

6. For Architecture configuration, select Multi-tenant configuration.

7. (Optional) For DB parameter group, choose a new parameter group for your CDB instance. The
same parameter group considerations apply when converting a DB instance as when upgrading
a DB instance.

8. (Optional) For Option group, choose a new option group for your CDB instance. The same
option group considerations apply when converting a DB instance as when upgrading a DB
instance.

9. When all the changes are as you want them, choose Continue and check the summary of
modifications.

10. Choose Apply immediately. This option is required when you switch to a multi-tenant
configuration. Note that this option can cause downtime in some cases.

11. On the confirmation page, review your changes. If they are correct, choose Modify DB
instance.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To convert a CDB using the single-tenant configuration to the multi-tenant configuration, specify
--multi-tenant in the AWS CLI command modify-db-instance.

The following example converts the DB instance named my-st-cdb from the single-tenant
configuration to the multi-tenant configuration. The --apply-immediately option is required.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance --region us-east-1\
 --db-instance-identifier my-st-cdb \
 --multi-tenant \
 --apply-immediately

For Windows:

aws rds modify-db-instance --region us-east-1 ^

Converting single-tenant to multi-tenant 3722

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

 --db-instance-identifier my-st-cdb ^
 --multi-tenant ^
 --apply-immediately

The output looks something like the following.

{
 "DBInstance": {
 "DBInstanceIdentifier": "my-st-cdb",
 "DBInstanceClass": "db.r5.large",
 "MultiTenant": false,
 "Engine": "oracle-ee-cdb",
 "DBResourceId": "db-AB1CDE2FGHIJK34LMNOPRLXTXU",
 "DBInstanceStatus": "modifying",
 "MasterUsername": "admin",
 "DBName": "ORCL",
 ...
 "EngineVersion": "19.0.0.0.ru-2022-01.rur-2022-01.r1",
 "AutoMinorVersionUpgrade": true,
 "ReadReplicaDBInstanceIdentifiers": [],
 "LicenseModel": "bring-your-own-license",
 "OptionGroupMemberships": [
 {
 "OptionGroupName": "default:oracle-ee-cdb-19",
 "Status": "in-sync"
 }
],
 ...
 "PendingModifiedValues": {
 "MultiTenant": "true"
 }
 }
}

Adding an RDS for Oracle tenant database to your CDB instance

In the RDS for Oracle multi-tenant configuration, a tenant database is a PDB. To add a tenant
database, make sure you meet the following prerequisites:

• Your CDB has the multi-tenant configuration enabled. For more information, see Multi-tenant
configuration of the CDB architecture.

• You have the necessary IAM permissions to create the tenant database.

Adding an RDS for Oracle tenant database to your CDB instance 3723

Amazon Relational Database Service User Guide

You can add a tenant database using the AWS Management Console, the AWS CLI, or the RDS API.
You can't add multiple tenant databases in a single operation: you must add them one at a time. If
the CDB has backup retention enabled, Amazon RDS backs up the DB instance before and after it
adds a new tenant database.

Console

To add a tenant database to your DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the tenant database.

3. In the navigation pane, choose Databases.

4. Choose the CDB instance to which you want to add a tenant database. Your DB instance must
use the multi-tenant configuration of the CDB architecture.

5. Choose Actions and then Add tenant database.

6. For Tenant database settings, do the following:

• For Tenant database name, enter the name of your new PDB.

• For Tenant database master username, enter the name of the master user for your PDB.

• Choose either of the following credentials management options:

• Managed in AWS Secrets Manager

In Select the encryption key, choose either a KMS key that Secrets Manager creates or a
key that you have created.

Note

We recommend AWS Secrets Manager as the most secure technique for managing
credentials. Additional charges apply. For more information, see Password
management with Amazon RDS and AWS Secrets Manager.

• Self managed

To specify a password, clear the Auto generate a password check box if it is selected.
Enter the same password in Master password and Confirm master password.

Adding an RDS for Oracle tenant database to your CDB instance 3724

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• Under Additional configuration, enter the name of your PDB for Initial database name.
You can't name the CDB, which has the default name RDSCDB.

• For Tenant database character set, choose a character set for the PDB. The default is
AL32UTF8. You can choose a PDB character set that is different from the CDB character set.

• For Tenant database national character set, choose a national character set for the PDB.
The default is AL32UTF8. The national character set specifies the encoding only for columns
that use the NCHAR data type (NCHAR, NVARCHAR2, and NCLOB) and doesn't affect database
metadata.

For more information about the preceding settings, see Settings for DB instances.

7. Choose Add tenant.

AWS CLI

To add a tenant database to your CDB with the AWS CLI, use the command create-tenant-database
with the following required parameters:

• --db-instance-identifier

• --tenant-db-name

• --master-username

• --master-user-password

This following example creates a tenant database named mypdb2 in the RDS for Oracle CDB
instance named my-cdb-inst. The PDB character set is UTF-16.

Example

For Linux, macOS, or Unix:

aws rds create-tenant-database --region us-east-1 \
 --db-instance-identifier my-cdb-inst \
 --tenant-db-name mypdb2 \
 --master-username mypdb2-admin \
 --master-user-password mypdb2-pwd \
 --character-set-name UTF-16

For Windows:

Adding an RDS for Oracle tenant database to your CDB instance 3725

https://docs.aws.amazon.com/cli/latest/reference/rds/create-tenant-database.html

Amazon Relational Database Service User Guide

aws rds create-tenant-database --region us-east-1 \
 --db-instance-identifier my-cdb-inst ^
 --tenant-db-name mypdb2 ^
 --master-username mypdb2-admin ^
 --master-user-password mypdb2-pwd ^
 --character-set-name UTF-16

The output looks similar to the following.

...}
 "TenantDatabase" :
 {
 "DbiResourceId" : "db-abc123",
 "TenantDatabaseResourceId" : "tdb-bac567",
 "TenantDatabaseArn" : "arn:aws:rds:us-east-1:123456789012:db:my-cdb-
inst:mypdb2",
 "DBInstanceIdentifier" : "my-cdb-inst",
 "TenantDBName" : "mypdb2",
 "Status" : "creating",
 "MasterUsername" : "mypdb2",
 "CharacterSetName" : "UTF-16",
 ...
 }
}...

Modifying an RDS for Oracle tenant database

You can modify only the PDB name and the master user password of a tenant database in your
CDB. Note the following requirements and limitations:

• To modify the settings of a tenant database in your DB instance, the tenant database must exist.

• You can't modify multiple tenant databases in a single operation. You can only modify one
tenant database at a time.

• You can't change the name of a tenant database to CDB$ROOT or PDB$SEED.

You can modify PDBs using the AWS Management Console, the AWS CLI, or the RDS API.

Modifying an RDS for Oracle tenant database 3726

Amazon Relational Database Service User Guide

Console

To modify the PDB name or master password of a tenant database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the tenant database.

3. In the navigation pane, choose Databases.

4. Choose the tenant database whose database name or master user password you want to
modify.

5. Choose Modify.

6. For Tenant database settings, do any of the following:

• For Tenant database name, enter the new name of your new PDB.

• For Tenant database master password, enter a new password.

7. Choose Modify tenant.

AWS CLI

To modify a tenant database using the AWS CLI, call the modify-tenant-database command with
the following parameters:

• --db-instance-identifier value

• --tenant-db-name value

• [--new-tenant-db-name value]

• [--master-user-password value]

The following example renames tenant database pdb1 to pdb-hr on DB instance my-cdb-inst.

Example

For Linux, macOS, or Unix:

aws rds modify-tenant-database --region us-east-1 \
 --db-instance-identifier my-cdb-inst \
 --tenant-db-name pdb1 \

Modifying an RDS for Oracle tenant database 3727

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-tenant-database.html

Amazon Relational Database Service User Guide

 --new-tenant-db-name pdb-hr

For Windows:

aws rds modify-tenant-database --region us-east-1 ^
 --db-instance-identifier my-cdb-inst ^
 --tenant-db-name pdb1 ^
 --new-tenant-db-name pdb-hr

This command produces output similar to the following.

{
 "TenantDatabase" : {
 "DbiResourceId" : "db-abc123",
 "TenantDatabaseResourceId" : "tdb-bac567",
 "TenantDatabaseArn" : "arn:aws:rds:us-east-1:123456789012:db:my-cdb-inst:pdb1",
 "DBInstanceIdentifier" : "my-cdb-inst",
 "TenantDBName" : "pdb1",
 "Status" : "modifying",
 "MasterUsername" : "tenant-admin-user"
 "Port" : "6555",
 "CharacterSetName" : "UTF-16",
 "MaxAllocatedStorage" : "1000",
 "ParameterGroups": [
 {
 "ParameterGroupName": "pdb1-params",
 "ParameterApplyStatus": "in-sync"
 }
],
 "OptionGroupMemberships": [
 {
 "OptionGroupName": "pdb1-options",
 "Status": "in-sync"
 }
],
 "PendingModifiedValues": {
 "TenantDBName": "pdb-hr"
 }
 }
}

Modifying an RDS for Oracle tenant database 3728

Amazon Relational Database Service User Guide

Deleting an RDS for Oracle tenant database from your CDB

You can delete a tenant database (PDB) using the AWS Management Console, the AWS CLI, or the
RDS API. Consider the following prerequisites and limitations:

• The tenant database and DB instance must exist.

• For the deletion to succeed, one of the following situations must exist:

• The tenant database and DB instance are available.

Note

You can take a final snapshot, but only if the tenant database and DB instance were in
an available state before you issued the delete-tenant-database command.

• The tenant database is being created.

• The DB instance is modifying the tenant database.

• You can't delete multiple tenant databases in a single operation.

• You can't delete a tenant database if it is the only tenant in the CDB.

Console

To delete a tenant database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the tenant database that you want
to delete.

3. For Actions, choose Delete.

4. To create a final DB snapshot for the DB instance, choose Create final snapshot?.

5. If you chose to create a final snapshot, enter the Final snapshot name.

6. Enter delete me in the box.

7. Choose Delete.

Deleting an RDS for Oracle tenant database from your CDB 3729

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To delete a tenant database using the AWS CLI, call the delete-tenant-database command with the
following parameters:

• --db-instance-identifier value

• --tenant-db-name value

• [--skip-final-snapshot | --no-skip-final-snapshot]

• [--final-snapshot-identifier value]

This following example deletes the tenant database named pdb-test from the CDB named my-
cdb-inst. By default, the operation creates a final snapshot.

Example

For Linux, macOS, or Unix:

aws rds delete-tenant-database --region us-east-1 \
 --db-instance-identifier my-cdb-inst \
 --tenant-db-name pdb-test \
 --final-snapshot-identifier final-snap-pdb-test

For Windows:

aws rds delete-tenant-database --region us-east-1 ^
 --db-instance-identifier my-cdb-inst ^
 --tenant-db-name pdb-test ^
 --final-snapshot-identifier final-snap-pdb-test

This command produces output similar to the following.

{
 "TenantDatabase" : {
 "DbiResourceId" : "db-abc123",
 "TenantDatabaseResourceId" : "tdb-bac456",
 "TenantDatabaseArn" : "arn:aws:rds:us-east-1:123456789012:db:my-cdb-inst:pdb-
test",
 "DBInstanceIdentifier" : "my-cdb-inst",
 "TenantDBName" : "pdb-test",
 "Status" : "deleting",
 "MasterUsername" : "pdb-test-admin"

Deleting an RDS for Oracle tenant database from your CDB 3730

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-tenant-database.html

Amazon Relational Database Service User Guide

 "Port" : "6555",
 "CharacterSetName" : "UTF-16",
 "MaxAllocatedStorage" : "1000",
 "ParameterGroups": [
 {
 "ParameterGroupName": "tenant-1-params",
 "ParameterApplyStatus": "in-sync"
 }
],
 "OptionGroupMemberships": [
 {
 "OptionGroupName": "tenant-1-options",
 "Status": "in-sync"
 }
]
 }
}

Viewing tenant database details

You can view details about a tenant database in the same way that you can for a non-CDB or CDB.

Console

To view details about a tenant database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region where your DB
instance resides.

3. In the navigation pane, choose Databases.

In the preceding image, the sole tenant database (PDB) appears as a child of the DB instance.

4. Choose the name of a tenant database.

Viewing tenant database details 3731

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To see details about your PDBs, use the AWS CLI command describe-tenant-databases.

This following example describes all tenant databases in the specified Region.

Example

For Linux, macOS, or Unix:

aws rds describe-tenant-databases --region us-east-1

For Windows:

aws rds describe-tenant-databases --region us-east-1

This command produces output similar to the following.

 "TenantDatabases" : [
 {
 "DBInstanceIdentifier" : "my-cdb-inst",
 "TenantDBName" : "pdb-test",

Viewing tenant database details 3732

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-tenant-databases.html

Amazon Relational Database Service User Guide

 "Status" : "available",
 "MasterUsername" : "pdb-test-admin",
 "DbiResourceId" : "db-abc123",
 "TenantDatabaseResourceId" : "tdb-bac456",
 "TenantDatabaseArn" : "arn:aws:rds:us-east-1:123456789012:db:my-cdb-
inst:pdb-test",
 "CharacterSetName": "AL32UTF8",
 "NcharCharacterSetName": "AL16UTF16",
 "DeletionProtection": false,
 "PendingModifiedValues": {
 "MasterUserPassword": "****"
 },
 "TagList": []
 },
 {

 "DBInstanceIdentifier" : "my-cdb-inst2",
 "TenantDBName" : "pdb-dev",
 "Status" : "modifying",
 "MasterUsername" : "masterrdsuser"
 "DbiResourceId" : "db-xyz789",
 "TenantDatabaseResourceId" : "tdb-ghp890",
 "TenantDatabaseArn" : "arn:aws:rds:us-east-1:123456789012:db:my-cdb-
inst2:pdb-dev",
 "CharacterSetName": "AL32UTF8",
 "NcharCharacterSetName": "AL16UTF16",
 "DeletionProtection": false,
 "PendingModifiedValues": {
 "MasterUserPassword": "****"
 },
 "TagList": []
 },
 ... other truncated data

The following example describes the tenant databases on DB instance my-cdb-inst in the
specified Region.

Example

For Linux, macOS, or Unix:

aws rds describe-tenant-databases --region us-east-1 \
 --db-instance-identifier my-cdb-inst

Viewing tenant database details 3733

Amazon Relational Database Service User Guide

For Windows:

aws rds describe-tenant-databases --region us-east-1 ^
 --db-instance-identifier my-cdb-inst

This command produces output similar to the following.

{
 "TenantDatabase": {
 "TenantDatabaseCreateTime": "2023-10-19T23:55:30.046Z",
 "DBInstanceIdentifier": "my-cdb-inst",
 "TenantDBName": "pdb-hr",
 "Status": "creating",
 "MasterUsername": "tenant-admin-user",
 "DbiResourceId": "db-abc123",
 "TenantDatabaseResourceId": "tdb-bac567",
 "TenantDatabaseARN": "arn:aws:rds:us-west-2:579508833180:pdb-hr:tdb-
abcdefghi1jklmno2p3qrst4uvw5xy6zabc7defghi8jklmn90op",
 "CharacterSetName": "AL32UTF8",
 "NcharCharacterSetName": "AL16UTF16",
 "DeletionProtection": false,
 "PendingModifiedValues": {
 "MasterUserPassword": "****"
 },
 "TagList": [
 {
 "Key": "TEST",
 "Value": "testValue"
 }
]
 }
}

The following example describes tenant database pdb1 on DB instance my-cdb-inst in the US
East (N. Virginia) Region.

Example

For Linux, macOS, or Unix:

aws rds describe-tenant-databases --region us-east-1 \
--db-instance-identifier my-cdb-inst \

Viewing tenant database details 3734

Amazon Relational Database Service User Guide

--tenant-db-name pdb1

For Windows:

aws rds describe-tenant-databases --region us-east-1 ^
--db-instance-identifier my-cdb-inst ^
--tenant-db-name pdb1

This command produces output similar to the following.

{
 "TenantDatabases" : [
 {
 "DbiResourceId" : "db-abc123",
 "TenantDatabaseResourceId" : "tdb-bac567",
 "TenantDatabaseArn" : "arn:aws:rds:us-east-1:123456789012:db:my-cdb-
inst:pdb1"
 "DBInstanceIdentifier" : "my-cdb-inst",
 "TenantDBName" : "pdb1",
 "Status" : "ACTIVE",
 "MasterUsername" : "masterawsuser"
 "Port" : "1234",
 "CharacterSetName": "UTF-8",
 "ParameterGroups": [
 {
 "ParameterGroupName": "tenant-custom-pg",
 "ParameterApplyStatus": "in-sync"
 }
],
 {
 "OptionGroupMemberships": [
 {
 "OptionGroupName": "tenant-custom-og",
 "Status": "in-sync"
 }
]
 }
]
}

Viewing tenant database details 3735

Amazon Relational Database Service User Guide

Upgrading your CDB

You can upgrade a CDB to a different Oracle Database release. For example, you can upgrade
an Oracle Database 19c CDB to an Oracle Database 21c CDB. You can't change the database
architecture during an upgrade. Thus, you can't upgrade a non-CDB to a CDB or upgrade a CDB to a
non-CDB.

The procedure for upgrading a CDB to a CDB is the same as for upgrading a non-CDB to a non-CDB.
For more information, see Upgrading the RDS for Oracle DB engine.

Upgrading your CDB 3736

Amazon Relational Database Service User Guide

Administering your RDS for Oracle DB instance

Following are the common management tasks that you perform with an RDS for Oracle DB
instance. Some tasks are the same for all RDS DB instances. Other tasks are specific to RDS for
Oracle.

The following tasks are common to all RDS databases, but Oracle Database has special
considerations. For example, you connect to an Oracle database using the Oracle clients SQL*Plus
and SQL Developer.

Task area Relevant documentation

Instance classes, storage, and PIOPS

If you are creating a production instance, learn how instance
classes, storage types, and Provisioned IOPS work in Amazon
RDS.

RDS for Oracle DB instance
classes

Amazon RDS storage types

Multi-AZ deployments

A production DB instance should use Multi-AZ deploymen
ts. Multi-AZ deployments provide increased availability, data
durability, and fault tolerance for DB instances.

Configuring and managing
a Multi-AZ deployment for
Amazon RDS

Amazon VPC

If your AWS account has a default virtual private cloud (VPC),
then your DB instance is automatically created inside the
default VPC. If your account doesn't have a default VPC, and
you want the DB instance in a VPC, create the VPC and subnet
groups before you create the instance.

Working with a DB instance in
a VPC

Security groups

By default, DB instances use a firewall that prevents access.
Make sure that you create a security group with the correct IP
addresses and network configuration to access the DB instance.

Controlling access with
security groups

Parameter groups Parameter groups for Amazon
RDS

Administering your Oracle DB instance 3737

Amazon Relational Database Service User Guide

Task area Relevant documentation

If your DB instance is going to require specific database
parameters, create a parameter group before you create the
DB instance.

Option groups

If your DB instance requires specific database options, create
an option group before you create the DB instance.

Adding options to Oracle DB
instances

Connecting to your DB instance

After creating a security group and associating it to a DB
instance, you can connect to the DB instance using any
standard SQL client application such as Oracle SQL*Plus.

Connecting to your Oracle DB
instance

Backup and restore

You can configure your DB instance to take automated
backups, or take manual snapshots, and then restore instances
from the backups or snapshots.

Backing up, restoring, and
exporting data

Monitoring

You can monitor an Oracle DB instance by using CloudWatch
Amazon RDS metrics, events, and enhanced monitoring.

Viewing metrics in the
Amazon RDS console

Viewing Amazon RDS events

Log files

You can access the log files for your Oracle DB instance.

Monitoring Amazon RDS log
files

Following, you can find a description for Amazon RDS–specific implementations of common DBA
tasks for RDS Oracle. To deliver a managed service experience, Amazon RDS doesn't provide shell
access to DB instances. Also, RDS restricts access to certain system procedures and tables that
require advanced privileges. In many of the tasks, you run the rdsadmin package, which is an
Amazon RDS–specific tool that enables you to administer your database.

The following are common DBA tasks for DB instances running Oracle:

Administering your Oracle DB instance 3738

Amazon Relational Database Service User Guide

• System tasks

Disconnecting a
session

Amazon RDS method: rdsadmin.rdsadmin_util.disc
onnect

Oracle method: alter system disconnect session

Terminating a
session

Amazon RDS method: rdsadmin.rdsadmin_util.kill

Oracle method: alter system kill session

Canceling a SQL
statement in a
session

Amazon RDS method: rdsadmin.rdsadmin_util.cancel

Oracle method: alter system cancel sql

Enabling and
disabling restricted
sessions

Amazon RDS method: rdsadmin.rdsadmin_util.rest
ricted_session

Oracle method: alter system enable restricted session

Flushing the shared
pool

Amazon RDS method: rdsadmin.rdsadmin_util.flus
h_shared_pool

Oracle method: alter system flush shared_pool

Flushing the buffer
cache

Amazon RDS method: rdsadmin.rdsadmin_util.flus
h_buffer_cache

Oracle method: alter system flush buffer_cache

Granting SELECT or
EXECUTE privileges
to SYS objects

Amazon RDS method: rdsadmin.rdsadmin_util.gran
t_sys_object

Oracle method: grant

Revoking SELECT or
EXECUTE privileges
on SYS objects

Amazon RDS method: rdsadmin.rdsadmin_util.revo
ke_sys_object

Oracle method: revoke

Administering your Oracle DB instance 3739

Amazon Relational Database Service User Guide

Managing RDS_X$
views for Oracle DB
instances

Amazon RDS method: rdsadmin.rdsadmin_util.crea
te_sys_x$_view

Oracle method: CREATE VIEW

Granting privileges
to non-master users

Amazon RDS method: grant

Creating custom
functions to verify
passwords

Amazon RDS method: rdsadmin.rdsadmin_password_
verify.create_verify_function

Amazon RDS method: rdsadmin.rdsadmin_password_
verify.create_passthrough_verify_fcn

Setting up a custom
DNS server

—

Listing allowed
system diagnostic
events

Amazon RDS method: rdsadmin.rdsadmin_util.list
_allowed_system_events

Oracle method: —

Setting system
diagnostic events

Amazon RDS method: rdsadmin.rdsadmin_util.set_
allowed_system_events

Oracle method: ALTER SYSTEM SET EVENTS 'set_even
t_clause'

Listing system
diagnostic events
that are set

Amazon RDS method: rdsadmin.rdsadmin_util.list
_set_system_events

Oracle method: ALTER SESSION SET EVENTS 'IMMEDIATE
EVENTDUMP(SYSTEM)'

Unsetting system
diagnostic events

Amazon RDS method: rdsadmin.rdsadmin_util.unse
t_system_event

Oracle method: ALTER SYSTEM SET EVENTS 'unset_ev
ent_clause'

Administering your Oracle DB instance 3740

Amazon Relational Database Service User Guide

• Database tasks

Changing the global name of
a database

Amazon RDS method: rdsadmin.rdsadmin_util.rena
me_global_name

Oracle method: alter database rename

Creating and sizing tablespac
es

Amazon RDS method: create tablespace

Oracle method: alter database

Setting the default tablespac
e

Amazon RDS method: rdsadmin.rdsadmin_util.alte
r_default_tablespace

Oracle method: alter database default tablespace

Setting the default
temporary tablespace

Amazon RDS method: rdsadmin.rdsadmin_util.alte
r_default_temp_tablespace

Oracle method: alter database default temporary
tablespace

Creating a temporary
tablespace on the instance
store

Amazon RDS method: rdsadmin.rdsadmin_util.crea
te_inst_store_tmp_tblspace

Oracle method: create temporary tablespace

Checkpointing a database Amazon RDS method: rdsadmin.rdsadmin_util.chec
kpoint

Oracle method: alter system checkpoint

Setting distributed recovery Amazon RDS method: rdsadmin.rdsadmin_util.enab
le_distr_recovery

Oracle method: alter system enable distributed
recovery

Administering your Oracle DB instance 3741

Amazon Relational Database Service User Guide

Setting the database time
zone

Amazon RDS method: rdsadmin.rdsadmin_util.alte
r_db_time_zone

Oracle method: alter database set time_zone

Working with Oracle external
tables

—

Generating performance
reports with Automatic
Workload Repository (AWR)

Amazon RDS method: rdsadmin.rdsadmin_diagnosti
c_util procedures

Oracle method: dbms_workload_repository package

Adjusting database links for
use with DB instances in a
VPC

—

Setting the default edition
for a DB instance

Amazon RDS method: rdsadmin.rdsadmin_util.alte
r_default_edition

Oracle method: alter database default edition

Enabling auditing for the
SYS.AUD$ table

Amazon RDS method: rdsadmin.rdsadmin_master_ut
il.audit_all_sys_aud_table

Oracle method: audit

Disabling auditing for the
SYS.AUD$ table

Amazon RDS method: rdsadmin.rdsadmin_master_ut
il.noaudit_all_sys_aud_table

Oracle method: noaudit

Cleaning up interrupted
online index builds

Amazon RDS method: rdsadmin.rdsadmin_dbms_repa
ir.online_index_clean

Oracle method: dbms_repair.online_index_clean

Administering your Oracle DB instance 3742

Amazon Relational Database Service User Guide

Skipping corrupt blocks Amazon RDS method: Several rdsadmin.rdsadmin_
dbms_repair procedures

Oracle method: dbms_repair package

Resizing tablespaces, data
files, and temp files

Amazon RDS method: rdsadmin.rdsadmin_util.resi
ze_temp_tablespace , rdsadmin.rdsadmin_
util.resize_tempfile , or rdsadmin.rdsadmin_
util.autoextend_tempfile procedures

rdsadmin.rdsadmin_util.resize_datafile or
rdsadmin.rdsadmin_util.autoextend_datafile
procedure

Oracle method: —

Purging the recycle bin Amazon RDS method: EXEC rdsadmin.rdsadmin_
util.purge_dba_recyclebin

Oracle method: purge dba_recyclebin

Setting the default displayed
values for full redaction

Amazon RDS method: EXEC rdsadmin.rdsadmin_
util.dbms_redact_upd_full_rdct_val

Oracle method: exec dbms_redact.UPDATE_FULL_RED
ACTION_VALUES

• Log tasks

Setting force logging Amazon RDS method:
rdsadmin.rdsadmin_
util.force_logging

Oracle method: alter
database force logging

Administering your Oracle DB instance 3743

Amazon Relational Database Service User Guide

Setting supplemental logging Amazon RDS method:
rdsadmin.rdsadmin_
util.alter_supplem
ental_logging

Oracle method: alter
database add supplemen
tal log

Switching online log files Amazon RDS method:
rdsadmin.rdsadmin_
util.switch_logfile

Oracle method: alter
system switch logfile

Adding online redo logs Amazon RDS method:
rdsadmin.rdsadmin_
util.add_logfile

Dropping online redo logs Amazon RDS method:
rdsadmin.rdsadmin_
util.drop_logfile

Resizing online redo logs —

Retaining archived redo logs Amazon RDS method:
rdsadmin.rdsadmin_
util.set_configura
tion

Administering your Oracle DB instance 3744

Amazon Relational Database Service User Guide

Downloading archived redo logs from Amazon S3 Amazon RDS method:
rdsadmin.rdsadmin_
archive_log_downlo
ad.download_log_wi
th_seqnum

Amazon RDS method:
rdsadmin.rdsadmin_
archive_log_downlo
ad.download_logs_i
n_seqnum_range

Accessing online and archived redo logs Amazon RDS method:
rdsadmin.rdsadmin_
master_util.create
_archivelog_dir

Amazon RDS method:
rdsadmin.rdsadmin_
master_util.create
_onlinelog_dir

• RMAN tasks

Validating database files in RDS for Oracle Amazon RDS method:
rdsadmin_rman_util
. procedure

Oracle method: RMAN
VALIDATE

Administering your Oracle DB instance 3745

Amazon Relational Database Service User Guide

Enabling and disabling block change tracking Amazon RDS method:
rdsadmin_rman_util
. procedure

Oracle method: ALTER
DATABASE

Crosschecking archived redo logs Amazon RDS method:
rdsadmin_rman_util
.crosscheck_archiv
elog

Oracle method: RMAN
BACKUP

Backing up archived redo log files Amazon RDS method:
rdsadmin_rman_util
. procedure

Oracle method: RMAN
BACKUP

Performing a full database backup Amazon RDS method:
rdsadmin_rman_util
.backup_database_f
ull

Oracle method: RMAN
BACKUP

Performing an incremental database backup Amazon RDS method:
rdsadmin_rman_util
.backup_database_i
ncremental

Oracle method: RMAN
BACKUP

Administering your Oracle DB instance 3746

Amazon Relational Database Service User Guide

Backing up a tablespace Amazon RDS method:
rdsadmin_rman_util
.backup_database_t
ablespace

Oracle method: RMAN
BACKUP

• Oracle Scheduler tasks

Modifying DBMS_SCHEDULER jobs Amazon RDS method:
dbms_scheduler.set
_attribute

Oracle method: dbms_sche
duler.set_attribute

Modifying AutoTask maintenance windows Amazon RDS method:
dbms_scheduler.set
_attribute

Oracle method: dbms_sche
duler.set_attribute

Setting the time zone for Oracle Scheduler jobs Amazon RDS method:
dbms_scheduler.set
_scheduler_attribu
te

Oracle method: dbms_sche
duler.set_schedule
r_attribute

Administering your Oracle DB instance 3747

Amazon Relational Database Service User Guide

Turning off Oracle Scheduler jobs owned by SYS Amazon RDS method:
rdsadmin.rdsadmin_
dbms_scheduler.dis
able

Oracle method: dbms_sche
duler.disable

Turning on Oracle Scheduler jobs owned by SYS Amazon RDS method:
rdsadmin.rdsadmin_
dbms_scheduler.ena
ble

Oracle method: dbms_sche
duler.enable

Modifying the Oracle Scheduler repeat interval for jobs of
CALENDAR type

Amazon RDS method:
rdsadmin.rdsadmin_
dbms_scheduler.set
_attribute

Oracle method: dbms_sche
duler.set_attribute

Modifying the Oracle Scheduler repeat interval for jobs of
NAMED type

Amazon RDS method:
rdsadmin.rdsadmin_
dbms_scheduler.set
_attribute

Oracle method: dbms_sche
duler.set_attribute

Administering your Oracle DB instance 3748

Amazon Relational Database Service User Guide

Turning off autocommit for Oracle Scheduler job creation Amazon RDS method:
rdsadmin.rdsadmin_
dbms_scheduler.set
_no_commit_flag

Oracle method: dbms_isch
ed.set_no_commit_f
lag

• Diagnosing problems

Listing incidents Amazon RDS method:
rdsadmin.rdsadmin_
adrci_util.list_ad
rci_incidents

Oracle method: ADRCI
command show incident

Listing problems Amazon RDS method:
rdsadmin.rdsadmin_
adrci_util.list_ad
rci_problem

Oracle method: ADRCI
command show problem

Creating incident packages Amazon RDS method:
rdsadmin.rdsadmin_
adrci_util.create_
adrci_package

Oracle method: ADRCI
command ips create
package

Administering your Oracle DB instance 3749

Amazon Relational Database Service User Guide

Showing trace files Amazon RDS method:
rdsadmin.rdsadmin_
adrci_util.show_ad
rci_tracefile

Oracle method: ADRCI
command show tracefile

• Other tasks

Creating and dropping directories in the main data storage
space

Amazon RDS method:
rdsadmin.rdsadmin_
util.create_direct
ory

Oracle method: CREATE
DIRECTORY

Amazon RDS method:
rdsadmin.rdsadmin_
util.drop_directory

Oracle method: DROP
DIRECTORY

Listing files in a DB instance directory Amazon RDS method:
rdsadmin.rds_file_
util.listdir

Oracle method: —

Administering your Oracle DB instance 3750

Amazon Relational Database Service User Guide

Reading files in a DB instance directory Amazon RDS method:
rdsadmin.rds_file_
util.read_text_file

Oracle method: —

Accessing Opatch files Amazon RDS method:
rdsadmin.rds_file_
util.read_text_file
or rdsadmin.tracefile
_listing

Oracle method: opatch

Setting parameters for advisor tasks Amazon RDS method:
rdsadmin.rdsadmin_
util.advisor_task_
set_parameter

Oracle method: Various
stored package procedures

Disabling AUTO_STATS_ADVISOR_TASK Amazon RDS method:
rdsadmin.rdsadmin_
util.advisor_task_
drop

Oracle method: —

Re-enabling AUTO_STATS_ADVISOR_TASK Amazon RDS method:
rdsadmin.rdsadmin_
util.dbms_stats_in
it

Oracle method: —

Administering your Oracle DB instance 3751

Amazon Relational Database Service User Guide

You can also use Amazon RDS procedures for Amazon S3 integration with Oracle and for running
OEM Management Agent database tasks. For more information, see Amazon S3 integration and
Administering the Management Agent.

Performing common system tasks for Oracle DB instances

Following, you can find how to perform certain common DBA tasks related to the system on your
Amazon RDS DB instances running Oracle. To deliver a managed service experience, Amazon RDS
doesn't provide shell access to DB instances, and restricts access to certain system procedures and
tables that require advanced privileges.

Topics

• Disconnecting a session

• Terminating a session

• Canceling a SQL statement in a session

• Enabling and disabling restricted sessions

• Flushing the shared pool

• Granting SELECT or EXECUTE privileges to SYS objects

• Revoking SELECT or EXECUTE privileges on SYS objects

• Managing RDS_X$ views for Oracle DB instances

• Granting privileges to non-master users

• Creating custom functions to verify passwords

• Setting up a custom DNS server

• Setting and unsetting system diagnostic events

Disconnecting a session

To disconnect the current session by ending the dedicated server process, use the Amazon RDS
procedure rdsadmin.rdsadmin_util.disconnect. The disconnect procedure has the
following parameters.

Parameter name Data type Default Required Description

sid number — Yes The session identifier.

System tasks 3752

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

serial number — Yes The serial number of the
session.

method varchar 'IMMEDIAT
E'

No Valid values are
'IMMEDIATE' or
'POST_TRANSACTION'

.

The following example disconnects a session.

begin
 rdsadmin.rdsadmin_util.disconnect(
 sid => sid,
 serial => serial_number);
end;
/

To get the session identifier and the session serial number, query the V$SESSION view. The
following example gets all sessions for the user AWSUSER.

SELECT SID, SERIAL#, STATUS FROM V$SESSION WHERE USERNAME = 'AWSUSER';

The database must be open to use this method. For more information about disconnecting a
session, see ALTER SYSTEM in the Oracle documentation.

Terminating a session

To terminate a session, use the Amazon RDS procedure rdsadmin.rdsadmin_util.kill. The
kill procedure has the following parameters.

Parameter name Data type Default Required Description

sid number — Yes The session identifier.

serial number — Yes The serial number of the
session.

System tasks 3753

http://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_2014.htm#SQLRF53166

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

method varchar null No Valid values are
'IMMEDIATE' or
'PROCESS' . If you
specify IMMEDIATE , it
has the same effect as
running the following
statement:

ALTER SYSTEM KILL
 SESSION 'sid,seri
al#' IMMEDIATE

If you specify PROCESS,
you terminate the
processes associated
with a session. Only
specify PROCESS if
terminating the session
using IMMEDIATE was
unsuccessful.

To get the session identifier and the session serial number, query the V$SESSION view. The
following example gets all sessions for the user AWSUSER.

SELECT SID, SERIAL#, STATUS FROM V$SESSION WHERE USERNAME = 'AWSUSER';

The following example terminates a session.

BEGIN
 rdsadmin.rdsadmin_util.kill(
 sid => sid,
 serial => serial_number,
 method => 'IMMEDIATE');
END;
/

System tasks 3754

Amazon Relational Database Service User Guide

The following example terminates the processes associated with a session.

BEGIN
 rdsadmin.rdsadmin_util.kill(
 sid => sid,
 serial => serial_number,
 method => 'PROCESS');
END;
/

Canceling a SQL statement in a session

To cancel a SQL statement in a session, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.cancel.

Note

This procedure is supported for Oracle Database 19c (19.0.0) and all higher major and
minor versions of RDS for Oracle.

The cancel procedure has the following parameters.

Parameter name Data type Default Required Description

sid number — Yes The session identifier.

serial number — Yes The serial number of the
session.

sql_id varchar2 null No The SQL identifier of the
SQL statement.

The following example cancels a SQL statement in a session.

begin
 rdsadmin.rdsadmin_util.cancel(
 sid => sid,

System tasks 3755

Amazon Relational Database Service User Guide

 serial => serial_number,
 sql_id => sql_id);
end;
/

To get the session identifier, the session serial number, and the SQL identifier of a SQL statement,
query the V$SESSION view. The following example gets all sessions and SQL identifiers for the
user AWSUSER.

select SID, SERIAL#, SQL_ID, STATUS from V$SESSION where USERNAME = 'AWSUSER';

Enabling and disabling restricted sessions

To enable and disable restricted sessions, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.restricted_session. The restricted_session procedure has
the following parameters.

Parameter name Data type Default Yes Description

p_enable boolean true No Set to true to enable
restricted sessions,
 false to disable
restricted sessions.

The following example shows how to enable and disable restricted sessions.

/* Verify that the database is currently unrestricted. */

SELECT LOGINS FROM V$INSTANCE;

LOGINS

ALLOWED

/* Enable restricted sessions */

EXEC rdsadmin.rdsadmin_util.restricted_session(p_enable => true);

System tasks 3756

Amazon Relational Database Service User Guide

/* Verify that the database is now restricted. */

SELECT LOGINS FROM V$INSTANCE;

LOGINS

RESTRICTED

/* Disable restricted sessions */

EXEC rdsadmin.rdsadmin_util.restricted_session(p_enable => false);

/* Verify that the database is now unrestricted again. */

SELECT LOGINS FROM V$INSTANCE;

LOGINS

ALLOWED

Flushing the shared pool

To flush the shared pool, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.flush_shared_pool. The flush_shared_pool procedure has no
parameters.

The following example flushes the shared pool.

EXEC rdsadmin.rdsadmin_util.flush_shared_pool;

Flushing the buffer cache

To flush the buffer cache, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.flush_buffer_cache. The flush_buffer_cache procedure has
no parameters.

The following example flushes the buffer cache.

EXEC rdsadmin.rdsadmin_util.flush_buffer_cache;

System tasks 3757

Amazon Relational Database Service User Guide

Flushing the database smart flash cache

To flush the database smart flash cache, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.flush_flash_cache. The flush_flash_cache procedure has no
parameters. The following example flushes the database smart flash cache.

EXEC rdsadmin.rdsadmin_util.flush_flash_cache;

For more information about using the database smart flash cache with RDS for Oracle, see Storing
temporary data in an RDS for Oracle instance store.

Granting SELECT or EXECUTE privileges to SYS objects

Usually you transfer privileges by using roles, which can contain many
objects. To grant privileges to a single object, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.grant_sys_object. The procedure grants only privileges that the
master user has already been granted through a role or direct grant.

The grant_sys_object procedure has the following parameters.

Important

For all parameter values, use uppercase unless you created the user with a case-sensitive
identifier. For example, if you run CREATE USER myuser or CREATE USER MYUSER,
the data dictionary stores MYUSER. However, if you use double quotes in CREATE USER
"MyUser", the data dictionary stores MyUser.

Parameter name Data type Default Required Description

p_obj_name varchar2 — Yes The name of the object
to grant privileges for.
The object can be a
directory, function,
package, procedure,
sequence, table, or view.
Object names must be
spelled exactly as they
appear in DBA_OBJEC

System tasks 3758

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

TS . Most system objects
are defined in uppercase
, so we recommend that
you try that first.

p_grantee varchar2 — Yes The name of the object
to grant privileges to.
The object can be a
schema or a role.

p_privilege varchar2 null Yes —

p_grant_option boolean false No Set to true to use the
with grant option.

The following example grants select privileges on an object named V_$SESSION to a user named
USER1.

begin
 rdsadmin.rdsadmin_util.grant_sys_object(
 p_obj_name => 'V_$SESSION',
 p_grantee => 'USER1',
 p_privilege => 'SELECT');
end;
/

The following example grants select privileges on an object named V_$SESSION to a user named
USER1 with the grant option.

begin
 rdsadmin.rdsadmin_util.grant_sys_object(
 p_obj_name => 'V_$SESSION',
 p_grantee => 'USER1',
 p_privilege => 'SELECT',
 p_grant_option => true);
end;
/

System tasks 3759

Amazon Relational Database Service User Guide

To be able to grant privileges on an object, your account must have those privileges granted
to it directly with the grant option, or via a role granted using with admin option. In the
most common case, you may want to grant SELECT on a DBA view that has been granted to the
SELECT_CATALOG_ROLE role. If that role isn't already directly granted to your user using with
admin option, then you can't transfer the privilege. If you have the DBA privilege, then you can
grant the role directly to another user.

The following example grants the SELECT_CATALOG_ROLE and EXECUTE_CATALOG_ROLE to
USER1. Since the with admin option is used, USER1 can now grant access to SYS objects that
have been granted to SELECT_CATALOG_ROLE.

GRANT SELECT_CATALOG_ROLE TO USER1 WITH ADMIN OPTION;
GRANT EXECUTE_CATALOG_ROLE to USER1 WITH ADMIN OPTION;

Objects already granted to PUBLIC do not need to be re-granted. If you use the
grant_sys_object procedure to re-grant access, the procedure call succeeds.

Revoking SELECT or EXECUTE privileges on SYS objects

To revoke privileges on a single object, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.revoke_sys_object. The procedure only revokes privileges that
the master account has already been granted through a role or direct grant.

The revoke_sys_object procedure has the following parameters.

Parameter name Data type Default Required Description

p_obj_name varchar2 — Yes The name of the object
to revoke privileges
for. The object can be
a directory, function,
package, procedure,
sequence, table, or view.
Object names must be
spelled exactly as they
appear in DBA_OBJEC
TS . Most system objects
are defined in upper

System tasks 3760

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

case, so we recommend
you try that first.

p_revokee varchar2 — Yes The name of the object
to revoke privileges
for. The object can be a
schema or a role.

p_privilege varchar2 null Yes —

The following example revokes select privileges on an object named V_$SESSION from a user
named USER1.

begin
 rdsadmin.rdsadmin_util.revoke_sys_object(
 p_obj_name => 'V_$SESSION',
 p_revokee => 'USER1',
 p_privilege => 'SELECT');
end;
/

Managing RDS_X$ views for Oracle DB instances

You might need to access SYS.X$ fixed tables, which are only accessible by SYS. To create
SYS.RDS_X$ views on eligible X$ tables, use the procedures in the rdsadmin.rdsadmin_util
package. Your master user is automatically granted the privilege SELECT … WITH GRANT OPTION
on the RDS_X$ views.

The rdsadmin.rdsadmin_util procedures are available in the following database engine
versions:

• 21.0.0.0.ru-2023-10.rur-2023-10.r1 and higher Oracle Database 21c versions

• 19.0.0.0.ru-2023-10.rur-2023-10.r1 and higher Oracle Database 19c versions

System tasks 3761

Amazon Relational Database Service User Guide

Important

Internally, the rdsadmin.rdsadmin_util package creates views on X$ tables. The
X$ tables are internal system objects that aren’t described in the Oracle Database
documentation. We recommend that you test specific views in your non-production
database and only create views in your production database under the guidance of Oracle
Support.

List X$ fixed tables eligible for use in RDS_X$ views

To list X$ tables that are eligible for use in RDS_X$ views, use the RDS procedure
rdsadmin.rdsadmin_util.list_allowed_sys_x$_views. This procedure accepts no
parameters. The following statements lists all eligible X$ tables (sample output included).

SQL> SET SERVEROUTPUT ON
SQL> SELECT * FROM TABLE(rdsadmin.rdsadmin_util.list_allowed_sys_x$_views);

'X$BH'
'X$K2GTE'
'X$KCBWBPD'
'X$KCBWDS'
'X$KGLLK'
'X$KGLOB'
'X$KGLPN'
'X$KSLHOT'
'X$KSMSP'
'X$KSPPCV'
'X$KSPPI'
'X$KSPPSV'
'X$KSQEQ'
'X$KSQRS'
'X$KTUXE'
'X$KQRFP'

The list of eligible X$ tables can change over time. To make sure that your list of eligible X$ fixed
tables is current, rerun list_allowed_sys_x$_views periodically.

System tasks 3762

Amazon Relational Database Service User Guide

Creating SYS.RDS_X$ views

To create an RDS_X$ view on an eligible X$ table, use the RDS procedure
rdsadmin.rdsadmin_util.create_sys_x$_view. You can only create views for the tables
listed in the output of rdsadmin.rdsadmin_util.list_allowed_sys_x$_views. The
create_sys_x$_view procedure accepts the following parameters.

Parameter name Data type Default Required Description

p_x$_tbl varchar2 Null Yes A valid X$ table name.
The value must be one of
the X$ tables reported by
list_allowed_sys_x
$_views .

p_force_creation Boolean FALSE No A value indicating
whether to force creation
of an RDS_X$ view that
already exists for an
X$ table. By default,
RDS won't create a view
if it already exists. To
force creation, set this
parameter to TRUE.

The following example creates the SYS.RDS_X$KGLOB view on the table X$KGLOB. The format for
the view name is RDS_X$tablename.

SQL> SET SERVEROUTPUT ON
SQL> EXEC rdsadmin.rdsadmin_util.create_sys_x$_view('X$KGLOB');

PL/SQL procedure successfully completed.

The following data dictionary query lists the view SYS.RDS_X$KGLOB and shows its status. Your
master user is automatically granted the privilege SELECT ... WITH GRANT OPTION on this
view.

SQL> SET SERVEROUTPUT ON

System tasks 3763

Amazon Relational Database Service User Guide

SQL> COL OWNER FORMAT A30
SQL> COL OBJECT_NAME FORMAT A30
SQL> COL STATUS FORMAT A30
SQL> SET LINESIZE 200
SQL> SELECT OWNER, OBJECT_NAME, STATUS
FROM DBA_OBJECTS
WHERE OWNER = 'SYS' AND OBJECT_NAME = 'RDS_X$KGLOB';

OWNER OBJECT_NAME STATUS
------------------------------ ------------------------------

SYS RDS_X$KGLOB VALID

Important

X$ tables aren't guaranteed to stay the same before and after an upgrade. RDS for Oracle
drops and recreates the RDS_X$ views on X$ tables during an engine upgrade. Then it
grants the SELECT ... WITH GRANT OPTION privilege to the master user. After an
upgrade, grant privileges to database users as needed on the corresponding RDS_X$ views.

Listing SYS.RDS_X$ views

To list existing RDS_X$ views, use the RDS procedure
rdsadmin.rdsadmin_util.list_created_sys_x$_views. The procedure lists only views
that were created by the procedure create_sys_x$_view. The following example lists X$ tables
that have corresponding RDS_X$ views (sample output included).

SQL> SET SERVEROUTPUT ON
SQL> COL XD_TBL_NAME FORMAT A30
SQL> COL STATUS FORMAT A30
SQL> SET LINESIZE 200
SQL> SELECT * FROM TABLE(rdsadmin.rdsadmin_util.list_created_sys_x$_views);

XD_TBL_NAME STATUS
------------------------------ ------------------------------
X$BH VALID
X$K2GTE VALID
X$KCBWBPD VALID

3 rows selected.

System tasks 3764

Amazon Relational Database Service User Guide

Dropping RDS_X$ views

To drop a SYS.RDS_X$ view, use the RDS procedure rdsadmin.rdsadmin_util.drop_sys_x
$_view. You can only drop views listed in the output of
rdsadmin.rdsadmin_util.list_allowed_sys_x$_views. The drop_sys_x$_view
procedure accepts the following parameter.

Parameter name Data type Default Required Description

p_x$_tbl varchar2 Null Yes A valid X$ fixed table
name. The value must
be one of the X$ fixed
tables reported by
list_created_sys_x
$_views .

The following example drops the RDS_X$KGLOB view, which was created on the table X$KGLOB.

SQL> SET SERVEROUTPUT ON
SQL> EXEC rdsadmin.rdsadmin_util.drop_sys_x$_view('X$KGLOB');

PL/SQL procedure successfully completed.

The following example shows that the view SYS.RDS_X$KGLOB has been dropped (sample output
included).

SQL> SET SERVEROUTPUT ON
SQL> COL OWNER FORMAT A30
SQL> COL OBJECT_NAME FORMAT A30
SQL> COL STATUS FORMAT A30
SQL> SET LINESIZE 200
SQL> SELECT OWNER, OBJECT_NAME, STATUS
FROM DBA_OBJECTS
WHERE OWNER = 'SYS' AND OBJECT_NAME = 'RDS_X$KGLOB';

no rows selected

System tasks 3765

Amazon Relational Database Service User Guide

Granting privileges to non-master users

You can grant select privileges for many objects in the SYS schema by using the
SELECT_CATALOG_ROLE role. The SELECT_CATALOG_ROLE role gives users SELECT privileges on
data dictionary views. The following example grants the role SELECT_CATALOG_ROLE to a user
named user1.

GRANT SELECT_CATALOG_ROLE TO user1;

You can grant EXECUTE privileges for many objects in the SYS schema by using the
EXECUTE_CATALOG_ROLE role. The EXECUTE_CATALOG_ROLE role gives users EXECUTE privileges
for packages and procedures in the data dictionary. The following example grants the role
EXECUTE_CATALOG_ROLE to a user named user1.

GRANT EXECUTE_CATALOG_ROLE TO user1;

The following example gets the permissions that the roles SELECT_CATALOG_ROLE and
EXECUTE_CATALOG_ROLE allow.

 SELECT *
 FROM ROLE_TAB_PRIVS
 WHERE ROLE IN ('SELECT_CATALOG_ROLE','EXECUTE_CATALOG_ROLE')
ORDER BY ROLE, TABLE_NAME ASC;

The following example creates a non-master user named user1, grants the CREATE SESSION
privilege, and grants the SELECT privilege on a database named sh.sales.

CREATE USER user1 IDENTIFIED BY PASSWORD;
GRANT CREATE SESSION TO user1;
GRANT SELECT ON sh.sales TO user1;

Creating custom functions to verify passwords

You can create a custom password verification function in the following ways:

• To use standard verification logic, and to store your function in the SYS schema, use the
create_verify_function procedure.

• To use custom verification logic, or to avoid storing your function in the SYS schema, use the
create_passthrough_verify_fcn procedure.

System tasks 3766

Amazon Relational Database Service User Guide

The create_verify_function procedure

You can create a custom function to verify passwords by using the Amazon RDS
procedure rdsadmin.rdsadmin_password_verify.create_verify_function. The
create_verify_function procedure is supported for all versions of RDS for Oracle.

The create_verify_function procedure has the following parameters.

Parameter name Data type Default Required Description

p_verify_function_
name

varchar2 — Yes The name for your
custom function. This
function is created for
you in the SYS schema.
You assign this function
to user profiles.

p_min_length number 8 No The minimum number of
characters required.

p_max_length number 256 No The maximum number of
characters allowed.

p_min_letters number 1 No The minimum number of
letters required.

p_min_uppercase number 0 No The minimum number
of uppercase letters
required.

p_min_lowercase number 0 No The minimum number
of lowercase letters
required.

p_min_digits number 1 No The minimum number of
digits required.

System tasks 3767

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

p_min_special number 0 No The minimum number
of special characters
required.

p_min_different_ch
ars

number 3 No The minimum number
of different characters
required between the old
and new password.

p_disallow_usernam
e

boolean true No Set to true to disallow
the user name in the
password.

p_disallow_reverse boolean true No Set to true to disallow
the reverse of the user
name in the password.

p_disallow_db_name boolean true No Set to true to disallow
the database or server
name in the password.

p_disallow_simple_
strings

boolean true No Set to true to disallow
simple strings as the
password.

p_disallow_whitesp
ace

boolean false No Set to true to disallow
white space characters in
the password.

p_disallow_at_sign boolean false No Set to true to disallow
the @ character in the
password.

You can create multiple password verification functions.

System tasks 3768

Amazon Relational Database Service User Guide

There are restrictions on the name of your custom function. Your custom function can't have the
same name as an existing system object. The name can be no more than 30 characters long. Also,
the name must include one of the following strings: PASSWORD, VERIFY, COMPLEXITY, ENFORCE,
or STRENGTH.

The following example creates a function named CUSTOM_PASSWORD_FUNCTION. The function
requires that a password has at least 12 characters, 2 uppercase characters, 1 digit, and 1 special
character, and that the password disallows the @ character.

begin
 rdsadmin.rdsadmin_password_verify.create_verify_function(
 p_verify_function_name => 'CUSTOM_PASSWORD_FUNCTION',
 p_min_length => 12,
 p_min_uppercase => 2,
 p_min_digits => 1,
 p_min_special => 1,
 p_disallow_at_sign => true);
end;
/

To see the text of your verification function, query DBA_SOURCE. The following example gets the
text of a custom password function named CUSTOM_PASSWORD_FUNCTION.

COL TEXT FORMAT a150

 SELECT TEXT
 FROM DBA_SOURCE
 WHERE OWNER = 'SYS'
 AND NAME = 'CUSTOM_PASSWORD_FUNCTION'
ORDER BY LINE;

To associate your verification function with a user profile, use alter profile. The following
example associates a verification function with the DEFAULT user profile.

ALTER PROFILE DEFAULT LIMIT PASSWORD_VERIFY_FUNCTION CUSTOM_PASSWORD_FUNCTION;

To see what user profiles are associated with what verification functions, query DBA_PROFILES.
The following example gets the profiles that are associated with the custom verification function
named CUSTOM_PASSWORD_FUNCTION.

System tasks 3769

Amazon Relational Database Service User Guide

SELECT * FROM DBA_PROFILES WHERE RESOURCE_NAME = 'PASSWORD' AND LIMIT =
 'CUSTOM_PASSWORD_FUNCTION';

PROFILE RESOURCE_NAME RESOURCE LIMIT
------------------------- -------------------------------- --------

DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD
 CUSTOM_PASSWORD_FUNCTION

The following example gets all profiles and the password verification functions that they are
associated with.

SELECT * FROM DBA_PROFILES WHERE RESOURCE_NAME = 'PASSWORD_VERIFY_FUNCTION';

PROFILE RESOURCE_NAME RESOURCE LIMIT
------------------------- -------------------------------- --------

DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD
 CUSTOM_PASSWORD_FUNCTION
RDSADMIN PASSWORD_VERIFY_FUNCTION PASSWORD NULL

The create_passthrough_verify_fcn procedure

The create_passthrough_verify_fcn procedure is supported for all versions of RDS for
Oracle.

You can create a custom function to verify passwords by using the Amazon RDS procedure
rdsadmin.rdsadmin_password_verify.create_passthrough_verify_fcn. The
create_passthrough_verify_fcn procedure has the following parameters.

Parameter name Data type Default Required Description

p_verify_function_
name

varchar2 — Yes The name for your
custom verification
function. This is a
wrapper function that
is created for you in
the SYS schema, and

System tasks 3770

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

it doesn't contain any
verification logic. You
assign this function to
user profiles.

p_target_owner varchar2 — Yes The schema owner for
your custom verification
function.

p_target_function_
name

varchar2 — Yes The name of your
existing custom function
that contains the
verification logic. Your
custom function must
return a boolean. Your
function should return
true if the password is
valid and false if the
password is invalid.

The following example creates a password verification function that uses the logic from the
function named PASSWORD_LOGIC_EXTRA_STRONG.

begin
 rdsadmin.rdsadmin_password_verify.create_passthrough_verify_fcn(
 p_verify_function_name => 'CUSTOM_PASSWORD_FUNCTION',
 p_target_owner => 'TEST_USER',
 p_target_function_name => 'PASSWORD_LOGIC_EXTRA_STRONG');
end;
/

To associate the verification function with a user profile, use alter profile. The following
example associates the verification function with the DEFAULT user profile.

ALTER PROFILE DEFAULT LIMIT PASSWORD_VERIFY_FUNCTION CUSTOM_PASSWORD_FUNCTION;

System tasks 3771

Amazon Relational Database Service User Guide

Setting up a custom DNS server

Amazon RDS supports outbound network access on your DB instances running Oracle. For more
information about outbound network access, including prerequisites, see Configuring UTL_HTTP
access using certificates and an Oracle wallet.

Amazon RDS Oracle allows Domain Name Service (DNS) resolution from a custom DNS server
owned by the customer. You can resolve only fully qualified domain names from your Amazon RDS
DB instance through your custom DNS server.

After you set up your custom DNS name server, it takes up to 30 minutes to propagate the changes
to your DB instance. After the changes are propagated to your DB instance, all outbound network
traffic requiring a DNS lookup queries your DNS server over port 53.

To set up a custom DNS server for your Amazon RDS for Oracle DB instance, do the following:

• From the DHCP options set attached to your virtual private cloud (VPC), set the domain-name-
servers option to the IP address of your DNS name server. For more information, see DHCP
options sets.

Note

The domain-name-servers option accepts up to four values, but your Amazon RDS DB
instance uses only the first value.

• Ensure that your DNS server can resolve all lookup queries, including public DNS names, Amazon
EC2 private DNS names, and customer-specific DNS names. If the outbound network traffic
contains any DNS lookups that your DNS server can't handle, your DNS server must have
appropriate upstream DNS providers configured.

• Configure your DNS server to produce User Datagram Protocol (UDP) responses of 512 bytes or
less.

• Configure your DNS server to produce Transmission Control Protocol (TCP) responses of 1024
bytes or less.

• Configure your DNS server to allow inbound traffic from your Amazon RDS DB instances over
port 53. If your DNS server is in an Amazon VPC, the VPC must have a security group that
contains inbound rules that permit UDP and TCP traffic on port 53. If your DNS server is not in
an Amazon VPC, it must have appropriate firewall allow-listing to permit UDP and TCP inbound
traffic on port 53.

System tasks 3772

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html

Amazon Relational Database Service User Guide

For more information, see Security groups for your VPC and Adding and removing rules.

• Configure the VPC of your Amazon RDS DB instance to allow outbound traffic over port 53. Your
VPC must have a security group that contains outbound rules that allow UDP and TCP traffic on
port 53.

For more information, see Security groups for your VPC and Adding and removing rules.

• The routing path between the Amazon RDS DB instance and the DNS server has to be configured
correctly to allow DNS traffic.

• If the Amazon RDS DB instance and the DNS server are not in the same VPC, a peering
connection has to be set up between them. For more information, see What is VPC peering?

Setting and unsetting system diagnostic events

To set and unset diagnostic events at the session level, you can use the Oracle SQL statement
ALTER SESSION SET EVENTS. However, to set events at the system level you can't use Oracle
SQL. Instead, use the system event procedures in the rdsadmin.rdsadmin_util package. The
system event procedures are available in the following engine versions:

• All Oracle Database 21c versions

• 19.0.0.0.ru-2020-10.rur-2020-10.r1 and higher Oracle Database 19c versions

For more information, see Version 19.0.0.0.ru-2020-10.rur-2020-10.r1 in the Amazon RDS for
Oracle Release Notes

Important

Internally, the rdsadmin.rdsadmin_util package sets events by using the ALTER
SYSTEM SET EVENTS statement. This ALTER SYSTEM statement isn't documented in
the Oracle Database documentation. Some system diagnostic events can generate large
amounts of tracing information, cause contention, or affect database availability. We
recommend that you test specific diagnostic events in your nonproduction database, and
only set events in your production database under guidance of Oracle Support.

System tasks 3773

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#AddRemoveRules
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#AddRemoveRules
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html#oracle-version-RU-RUR.19.0.0.0.ru-2020-10.rur-2020-10.r1

Amazon Relational Database Service User Guide

Listing allowed system diagnostic events

To list the system events that you can set, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.list_allowed_system_events. This procedure accepts no
parameters.

The following example lists all system events that you can set.

SET SERVEROUTPUT ON
EXEC rdsadmin.rdsadmin_util.list_allowed_system_events;

The following sample output lists event numbers and their descriptions. Use the Amazon RDS
procedures set_system_event to set these events and unset_system_event to unset them.

604 - error occurred at recursive SQL level
942 - table or view does not exist
1401 - inserted value too large for column
1403 - no data found
1410 - invalid ROWID
1422 - exact fetch returns more than requested number of rows
1426 - numeric overflow
1427 - single-row subquery returns more than one row
1476 - divisor is equal to zero
1483 - invalid length for DATE or NUMBER bind variable
1489 - result of string concatenation is too long
1652 - unable to extend temp segment by in tablespace
1858 - a non-numeric character was found where a numeric was expected
4031 - unable to allocate bytes of shared memory ("","","","")
6502 - PL/SQL: numeric or value error
10027 - Specify Deadlock Trace Information to be Dumped
10046 - enable SQL statement timing
10053 - CBO Enable optimizer trace
10173 - Dynamic Sampling time-out error
10442 - enable trace of kst for ORA-01555 diagnostics
12008 - error in materialized view refresh path
12012 - error on auto execute of job
12504 - TNS:listener was not given the SERVICE_NAME in CONNECT_DATA
14400 - inserted partition key does not map to any partition
31693 - Table data object failed to load/unload and is being skipped due to error:

System tasks 3774

Amazon Relational Database Service User Guide

Note

The list of the allowed system events can change over time. To
make sure that you have the most recent list of eligible events, use
rdsadmin.rdsadmin_util.list_allowed_system_events.

Setting system diagnostic events

To set a system event, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.set_system_event. You can only set events listed in the output
of rdsadmin.rdsadmin_util.list_allowed_system_events. The set_system_event
procedure accepts the following parameters.

Parameter name Data type Default Required Description

p_event number — Yes The system event
number. The value must
be one of the event
numbers reported by
list_allowed_syste
m_events .

p_level number — Yes The event level. See
the Oracle Database
documentation or Oracle
Support for descriptions
of different level values.

The procedure set_system_event constructs and runs the required ALTER SYSTEM SET
EVENTS statements according to the following principles:

• The event type (context or errorstack) is determined automatically.

• A statement in the form ALTER SYSTEM SET EVENTS 'event LEVEL event_level' sets
the context events. This notation is equivalent to ALTER SYSTEM SET EVENTS 'event TRACE
NAME CONTEXT FOREVER, LEVEL event_level'.

System tasks 3775

Amazon Relational Database Service User Guide

• A statement in the form ALTER SYSTEM SET EVENTS 'event ERRORSTACK
(event_level)' sets the error stack events. This notation is equivalent to ALTER SYSTEM
SET EVENTS 'event TRACE NAME ERRORSTACK LEVEL event_level'.

The following example sets event 942 at level 3, and event 10442 at level 10. Sample output is
included.

SQL> SET SERVEROUTPUT ON
SQL> EXEC rdsadmin.rdsadmin_util.set_system_event(942,3);
Setting system event 942 with: alter system set events '942 errorstack (3)'

PL/SQL procedure successfully completed.

SQL> EXEC rdsadmin.rdsadmin_util.set_system_event(10442,10);
Setting system event 10442 with: alter system set events '10442 level 10'

PL/SQL procedure successfully completed.

Listing system diagnostic events that are set

To list the system events that are currently set, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.list_set_system_events. This procedure reports only events set
at system level by set_system_event.

The following example lists the active system events.

SET SERVEROUTPUT ON
EXEC rdsadmin.rdsadmin_util.list_set_system_events;

The following sample output shows the list of events, the event type, the level at which the events
are currently set, and the time when the event was set.

942 errorstack (3) - set at 2020-11-03 11:42:27
10442 level 10 - set at 2020-11-03 11:42:41

PL/SQL procedure successfully completed.

System tasks 3776

Amazon Relational Database Service User Guide

Unsetting system diagnostic events

To unset a system event, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.unset_system_event. You can only unset events listed
in the output of rdsadmin.rdsadmin_util.list_allowed_system_events. The
unset_system_event procedure accepts the following parameter.

Parameter name Data type Default Required Description

p_event number — Yes The system event
number. The value must
be one of the event
numbers reported by
list_allowed_syste
m_events .

The following example unsets events 942 and 10442. Sample output is included.

SQL> SET SERVEROUTPUT ON
SQL> EXEC rdsadmin.rdsadmin_util.unset_system_event(942);
Unsetting system event 942 with: alter system set events '942 off'

PL/SQL procedure successfully completed.

SQL> EXEC rdsadmin.rdsadmin_util.unset_system_event(10442);
Unsetting system event 10442 with: alter system set events '10442 off'

PL/SQL procedure successfully completed.

Performing common database tasks for Oracle DB instances

Following, you can find how to perform certain common DBA tasks related to databases on your
Amazon RDS DB instances running Oracle. To deliver a managed service experience, Amazon RDS
doesn't provide shell access to DB instances. Amazon RDS also restricts access to some system
procedures and tables that require advanced privileges.

Topics

• Changing the global name of a database

Database tasks 3777

Amazon Relational Database Service User Guide

• Using tablespaces

• Using tempfiles

• Checkpointing a database

• Setting distributed recovery

• Setting the database time zone

• Working with Oracle external tables

• Generating performance reports with Automatic Workload Repository (AWR)

• Adjusting database links for use with DB instances in a VPC

• Setting the default edition for a DB instance

• Enabling auditing for the SYS.AUD$ table

• Disabling auditing for the SYS.AUD$ table

• Cleaning up interrupted online index builds

• Skipping corrupt blocks

• Resizing tablespaces, data files, and temp files

• Purging the recycle bin

• Setting the default displayed values for full redaction

Changing the global name of a database

To change the global name of a database, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.rename_global_name. The rename_global_name procedure has
the following parameters.

Parameter name Data type Default Required Description

p_new_global_name varchar2 — Yes The new global name for
the database.

The database must be open for the name change to occur. For more information about changing
the global name of a database, see ALTER DATABASE in the Oracle documentation.

The following example changes the global name of a database to new_global_name.

Database tasks 3778

http://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_1004.htm#SQLRF52547

Amazon Relational Database Service User Guide

EXEC rdsadmin.rdsadmin_util.rename_global_name(p_new_global_name => 'new_global_name');

Using tablespaces

You can use tablespaces with RDS for Oracle, which is logical storage unite and stores the
database's data.

Topics

• Creating and sizing tablespaces

• Setting the default tablespace

• Setting the default temporary tablespace

• Creating a temporary tablespace on the instance store

Creating and sizing tablespaces

Amazon RDS only supports Oracle Managed Files (OMF) for data files, log files, and control files.
When you create data files and log files, you can't specify the physical file names.

By default, if you don't specify a data file size, tablespaces are created with the default of
AUTOEXTEND ON, and no maximum size. In the following example, the tablespace users1 is
autoextensible.

CREATE TABLESPACE users1;

Because of these default settings, tablespaces can grow to consume all allocated storage.
We recommend that you specify an appropriate maximum size on permanent and temporary
tablespaces, and that you carefully monitor space usage.

The following example creates a tablespace named users2 with a starting size of 1 gigabyte.
Because a data file size is specified, but AUTOEXTEND ON isn't specified, the tablespace isn't
autoextensible.

CREATE TABLESPACE users2 DATAFILE SIZE 1G;

The following example creates a tablespace named users3 with a starting size of 1 gigabyte,
autoextend turned on, and a maximum size of 10 gigabytes.

Database tasks 3779

Amazon Relational Database Service User Guide

CREATE TABLESPACE users3 DATAFILE SIZE 1G AUTOEXTEND ON MAXSIZE 10G;

The following example creates a temporary tablespace named temp01.

CREATE TEMPORARY TABLESPACE temp01;

You can resize a bigfile tablespace by using ALTER TABLESPACE. You can specify the size in
kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). The following example resizes a bigfile
tablespace named users_bf to 200 MB.

ALTER TABLESPACE users_bf RESIZE 200M;

The following example adds an additional data file to a smallfile tablespace named users_sf.

ALTER TABLESPACE users_sf ADD DATAFILE SIZE 100000M AUTOEXTEND ON NEXT 250m
 MAXSIZE UNLIMITED;

Setting the default tablespace

To set the default tablespace, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.alter_default_tablespace. The
alter_default_tablespace procedure has the following parameters.

Parameter name Data type Default Required Description

tablespace_name varchar — Yes The name of the default
tablespace.

The following example sets the default tablespace to users2:

EXEC rdsadmin.rdsadmin_util.alter_default_tablespace(tablespace_name => 'users2');

Setting the default temporary tablespace

To set the default temporary tablespace, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.alter_default_temp_tablespace. The
alter_default_temp_tablespace procedure has the following parameters.

Database tasks 3780

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

tablespace_name varchar — Yes The name of the default
temporary tablespace.

The following example sets the default temporary tablespace to temp01.

EXEC rdsadmin.rdsadmin_util.alter_default_temp_tablespace(tablespace_name => 'temp01');

Creating a temporary tablespace on the instance store

To create a temporary tablespace on the instance store, use the Amazon RDS
procedure rdsadmin.rdsadmin_util.create_inst_store_tmp_tblspace. The
create_inst_store_tmp_tblspace procedure has the following parameters.

Parameter name Data type Default Required Description

p_tablespace_name varchar — Yes The name of the
temporary tablespace.

The following example creates the temporary tablespace temp01 in the instance store.

EXEC rdsadmin.rdsadmin_util.create_inst_store_tmp_tblspace(p_tablespace_name =>
 'temp01');

Important

When you run rdsadmin_util.create_inst_store_tmp_tblspace, the newly
created temporary tablespace is not automatically set as the default temporary tablespace.
To set it as the default, see Setting the default temporary tablespace.

For more information, see Storing temporary data in an RDS for Oracle instance store.

Database tasks 3781

Amazon Relational Database Service User Guide

Using tempfiles

Adding a tempfile to the instance store on a read replica

When you create a temporary tablespace on a primary DB instance, the read replica doesn't create
tempfiles. Assume that an empty temporary tablespace exists on your read replica for either of the
following reasons:

• You dropped a tempfile from the tablespace on your read replica. For more information, see
Dropping tempfiles on a read replica.

• You created a new temporary tablespace on the primary DB instance. In this case, RDS for Oracle
synchronizes the metadata to the read replica.

You can add a tempfile to the empty temporary tablespace, and store the tempfile in the
instance store. To create a tempfile in the instance store, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.add_inst_store_tempfile. You can use this procedure only on a
read replica. The procedure has the following parameters.

Parameter name Data type Default Required Description

p_tablespace_name varchar — Yes The name of the
temporary tablespace on
your read replica.

In the following example, the empty temporary tablespace temp01 exists on your read replica. Run
the following command to create a tempfile for this tablespace, and store it in the instance store.

EXEC rdsadmin.rdsadmin_util.add_inst_store_tempfile(p_tablespace_name => 'temp01');

For more information, see Storing temporary data in an RDS for Oracle instance store.

Dropping tempfiles on a read replica

You can't drop an existing temporary tablespace on a read replica. You can change the tempfile
storage on a read replica from Amazon EBS to the instance store, or from the instance store to
Amazon EBS. To achieve these goals, do the following:

1. Drop the current tempfiles in the temporary tablespace on the read replica.

Database tasks 3782

Amazon Relational Database Service User Guide

2. Create new tempfiles on different storage.

To drop the tempfiles, use the Amazon RDS procedure rdsadmin.rdsadmin_util.
drop_replica_tempfiles. You can use this procedure only on read replicas. The
drop_replica_tempfiles procedure has the following parameters.

Parameter name Data type Default Required Description

p_tablespace_name varchar — Yes The name of the
temporary tablespace on
your read replica.

Assume that a temporary tablespace named temp01 resides in the instance store on your read
replica. Drop all tempfiles in this tablespace by running the following command.

EXEC rdsadmin.rdsadmin_util.drop_replica_tempfiles(p_tablespace_name => 'temp01');

For more information, see Storing temporary data in an RDS for Oracle instance store.

Checkpointing a database

To checkpoint the database, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.checkpoint. The checkpoint procedure has no parameters.

The following example checkpoints the database.

EXEC rdsadmin.rdsadmin_util.checkpoint;

Setting distributed recovery

To set distributed recovery, use the Amazon RDS procedures
rdsadmin.rdsadmin_util.enable_distr_recovery and disable_distr_recovery. The
procedures have no parameters.

The following example enables distributed recovery.

EXEC rdsadmin.rdsadmin_util.enable_distr_recovery;

Database tasks 3783

Amazon Relational Database Service User Guide

The following example disables distributed recovery.

EXEC rdsadmin.rdsadmin_util.disable_distr_recovery;

Setting the database time zone

You can set the time zone of your Amazon RDS Oracle database in the following ways:

• The Timezone option

The Timezone option changes the time zone at the host level and affects all date columns and
values such as SYSDATE. For more information, see Oracle time zone.

• The Amazon RDS procedure rdsadmin.rdsadmin_util.alter_db_time_zone

The alter_db_time_zone procedure changes the time zone for only certain data types, and
doesn't change SYSDATE. There are additional restrictions on setting the time zone listed in the
Oracle documentation.

Note

You can also set the default time zone for Oracle Scheduler. For more information, see
Setting the time zone for Oracle Scheduler jobs.

The alter_db_time_zone procedure has the following parameters.

Parameter name Data type Default Required Description

p_new_tz varchar2 — Yes The new time zone as
a named region or an
absolute offset from
Coordinated Universal
Time (UTC). Valid offsets
range from -12:00 to
+14:00.

The following example changes the time zone to UTC plus three hours.

Database tasks 3784

http://docs.oracle.com/cd/B19306_01/server.102/b14225/ch4datetime.htm#i1006705

Amazon Relational Database Service User Guide

EXEC rdsadmin.rdsadmin_util.alter_db_time_zone(p_new_tz => '+3:00');

The following example changes the time zone to the Africa/Algiers time zone.

EXEC rdsadmin.rdsadmin_util.alter_db_time_zone(p_new_tz => 'Africa/Algiers');

After you alter the time zone by using the alter_db_time_zone procedure, reboot your DB
instance for the change to take effect. For more information, see Rebooting a DB instance. For
information about upgrading time zones, see Time zone considerations.

Working with Oracle external tables

Oracle external tables are tables with data that is not in the database. Instead, the data is in
external files that the database can access. By using external tables, you can access data without
loading it into the database. For more information about external tables, see Managing external
tables in the Oracle documentation.

With Amazon RDS, you can store external table files in directory objects. You can create a directory
object, or you can use one that is predefined in the Oracle database, such as the DATA_PUMP_DIR
directory. For information about creating directory objects, see Creating and dropping directories in
the main data storage space. You can query the ALL_DIRECTORIES view to list the directory objects
for your Amazon RDS Oracle DB instance.

Note

Directory objects point to the main data storage space (Amazon EBS volume) used by your
instance. The space used—along with data files, redo logs, audit, trace, and other files—
counts against allocated storage.

You can move an external data file from one Oracle database to another by using the
DBMS_FILE_TRANSFER package or the UTL_FILE package. The external data file is moved from
a directory on the source database to the specified directory on the destination database. For
information about using DBMS_FILE_TRANSFER, see Importing using Oracle Data Pump.

After you move the external data file, you can create an external table with it. The following
example creates an external table that uses the emp_xt_file1.txt file in the USER_DIR1
directory.

Database tasks 3785

http://docs.oracle.com/database/121/ADMIN/tables.htm#ADMIN01507
http://docs.oracle.com/database/121/ADMIN/tables.htm#ADMIN01507
https://docs.oracle.com/database/121/ARPLS/d_ftran.htm#ARPLS095
https://docs.oracle.com/database/121/ARPLS/d_ftran.htm#ARPLS095
https://docs.oracle.com/database/121/ARPLS/u_file.htm#ARPLS069

Amazon Relational Database Service User Guide

CREATE TABLE emp_xt (
 emp_id NUMBER,
 first_name VARCHAR2(50),
 last_name VARCHAR2(50),
 user_name VARCHAR2(20)
)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY USER_DIR1
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ','
 MISSING FIELD VALUES ARE NULL
 (emp_id,first_name,last_name,user_name)
)
 LOCATION ('emp_xt_file1.txt')
)
PARALLEL
REJECT LIMIT UNLIMITED;

Suppose that you want to move data that is in an Amazon RDS Oracle DB instance into an external
data file. In this case, you can populate the external data file by creating an external table and
selecting the data from the table in the database. For example, the following SQL statement
creates the orders_xt external table by querying the orders table in the database.

CREATE TABLE orders_xt
 ORGANIZATION EXTERNAL
 (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY DATA_PUMP_DIR
 LOCATION ('orders_xt.dmp')
)
 AS SELECT * FROM orders;

In this example, the data is populated in the orders_xt.dmp file in the DATA_PUMP_DIR
directory.

Generating performance reports with Automatic Workload Repository (AWR)

To gather performance data and generate reports, Oracle recommends Automatic Workload
Repository (AWR). AWR requires Oracle Database Enterprise Edition and a license for the

Database tasks 3786

Amazon Relational Database Service User Guide

Diagnostics and Tuning packs. To enable AWR, set the CONTROL_MANAGEMENT_PACK_ACCESS
initialization parameter to either DIAGNOSTIC or DIAGNOSTIC+TUNING.

Working with AWR reports in RDS

To generate AWR reports, you can run scripts such as awrrpt.sql. These scripts are installed on
the database host server. In Amazon RDS, you don't have direct access to the host. However, you
can get copies of SQL scripts from another installation of Oracle Database.

You can also use AWR by running procedures in the SYS.DBMS_WORKLOAD_REPOSITORY
PL/SQL package. You can use this package to manage baselines and snapshots, and also to
display ASH and AWR reports. For example, to generate an AWR report in text format run the
DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_TEXT procedure. However, you can't reach these
AWR reports from the AWS Management Console.

When working with AWR, we recommend using the rdsadmin.rdsadmin_diagnostic_util
procedures. You can use these procedures to generate the following:

• AWR reports

• Active Session History (ASH) reports

• Automatic Database Diagnostic Monitor (ADDM) reports

• Oracle Data Pump Export dump files of AWR data

The rdsadmin_diagnostic_util procedures save the reports to the DB instance file
system. You can access these reports from the console. You can also access reports using the
rdsadmin.rds_file_util procedures, and you can access reports that are copied to Amazon S3
using the S3 Integration option. For more information, see Reading files in a DB instance directory
and Amazon S3 integration.

You can use the rdsadmin_diagnostic_util procedures in the following Amazon RDS for
Oracle DB engine versions:

• All Oracle Database 21c versions

• 19.0.0.0.ru-2020-04.rur-2020-04.r1 and higher Oracle Database 19c versions

For a blog that explains how to work with diagnostic reports in a replication scenario, see Generate
AWR reports for Amazon RDS for Oracle read replicas.

Database tasks 3787

https://aws.amazon.com/blogs/database/generate-awr-reports-for-amazon-rds-for-oracle-read-replicas/
https://aws.amazon.com/blogs/database/generate-awr-reports-for-amazon-rds-for-oracle-read-replicas/

Amazon Relational Database Service User Guide

Common parameters for the diagnostic utility package

You typically use the following parameters when managing AWR and ADDM with the
rdsadmin_diagnostic_util package.

Parameter Data
type

DefaultRequiredDescription

begin_sna
p_id

NUMBER — Yes The ID of the beginning snapshot.

end_snap_
id

NUMBER — Yes The ID of the ending snapshot.

dump_dire
ctory

VARCHAR2BDUMP No The directory to write the report or export file to. If you
specify a nondefault directory, the user that runs the
rdsadmin_diagnostic_util procedures must
have write permissions for the directory.

p_tag VARCHAR2— No A string that can be used to distinguish between
backups to indicate the purpose or usage of backups,
such as incremental or daily.

You can specify up to 30 characters. Valid characters
are a-z, A-Z, 0-9, an underscore (_), a dash (-), and a
period (.). The tag is not case-sensitive. RMAN always
stores tags in uppercase, regardless of the case used
when entering them.

Tags don't need to be unique, so multiple backups can
have the same tag. If you don't specify a tag, RMAN
assigns a default tag automatically using the format
TAGYYYYMMDDTHHMMSS , where YYYY is the year, MM
is the month, DD is the day, HH is the hour (in 24-hour
format), MM is the minutes, and SS is the seconds. The
date and time indicate when RMAN started the backup.
For example, a backup with the default tagTAG201909
27T214517 indicates a backup that started on
2019-09-27 at 21:45:17.

Database tasks 3788

Amazon Relational Database Service User Guide

Parameter Data
type

DefaultRequiredDescription

The p_tag parameter is supported for the following
RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0), using 19.0.0.0.
ru-2021-10.rur-2021-10.r1 and higher

report_ty
pe

VARCHAR2HTML No The format of the report. Valid values are TEXT and
HTML.

dbid NUMBER — No A valid database identifier (DBID) shown in the
DBA_HIST_DATABASE_INSTANCE view for Oracle.
If this parameter is not specified, RDS uses the current
DBID, which is shown in the V$DATABASE.DBID view.

You typically use the following parameters when managing ASH with the rdsadmin_diagnostic_util
package.

Parameter Data
type

Default RequiredDescription

begin_tim
e

DATE — Yes The beginning time of the ASH analysis.

end_time DATE — Yes The ending time of the ASH analysis.

slot_widt
h

NUMBER 0 No The duration of the slots (in seconds) used in the
"Top Activity" section of the ASH report. If this
parameter isn't specified, the time interval between
begin_time and end_time uses no more than
10 slots.

sid NUMBER Null No The session ID.

sql_id VARCHAR2 Null No The SQL ID.

Database tasks 3789

Amazon Relational Database Service User Guide

Parameter Data
type

Default RequiredDescription

wait_clas
s

VARCHAR2 Null No The wait class name.

service_h
ash

NUMBER Null No The service name hash.

module_na
me

VARCHAR2 Null No The module name.

action_na
me

VARCHAR2 Null No The action name.

client_id VARCHAR2 Null No The application-specific ID of the database session.

plsql_ent
ry

VARCHAR2 Null No The PL/SQL entry point.

Generating an AWR report

To generate an AWR report, use the rdsadmin.rdsadmin_diagnostic_util.awr_report
procedure.

The following example generates a AWR report for the snapshot range 101–106. The output text
file is named awrrpt_101_106.txt. You can access this report from the AWS Management
Console.

EXEC rdsadmin.rdsadmin_diagnostic_util.awr_report(101,106,'TEXT');

The following example generates an HTML report for the snapshot range 63–65. The output HTML
file is named awrrpt_63_65.html. The procedure writes the report to the nondefault database
directory named AWR_RPT_DUMP.

EXEC rdsadmin.rdsadmin_diagnostic_util.awr_report(63,65,'HTML','AWR_RPT_DUMP');

Database tasks 3790

Amazon Relational Database Service User Guide

Extracting AWR data into a dump file

To extract AWR data into a dump file, use the
rdsadmin.rdsadmin_diagnostic_util.awr_extract procedure.

The following example extracts the snapshot range 101–106. The output dump file is named
awrextract_101_106.dmp. You can access this file through the console.

EXEC rdsadmin.rdsadmin_diagnostic_util.awr_extract(101,106);

The following example extracts the snapshot range 63–65. The output dump file is named
awrextract_63_65.dmp. The file is stored in the nondefault database directory named
AWR_RPT_DUMP.

EXEC rdsadmin.rdsadmin_diagnostic_util.awr_extract(63,65,'AWR_RPT_DUMP');

Generating an ADDM report

To generate an ADDM report, use the rdsadmin.rdsadmin_diagnostic_util.addm_report
procedure.

The following example generates an ADDM report for the snapshot range 101–106. The output
text file is named addmrpt_101_106.txt. You can access the report through the console.

EXEC rdsadmin.rdsadmin_diagnostic_util.addm_report(101,106);

The following example generates an ADDM report for the snapshot range 63–65. The output text
file is named addmrpt_63_65.txt. The file is stored in the nondefault database directory named
ADDM_RPT_DUMP.

EXEC rdsadmin.rdsadmin_diagnostic_util.addm_report(63,65,'ADDM_RPT_DUMP');

Generating an ASH report

To generate an ASH report, use the rdsadmin.rdsadmin_diagnostic_util.ash_report
procedure.

The following example generates an ASH report that includes the data from 14
minutes ago until the current time. The name of the output file uses the format

Database tasks 3791

Amazon Relational Database Service User Guide

ashrptbegin_timeend_time.txt, where begin_time and end_time use the format
YYYYMMDDHH24MISS. You can access the file through the console.

BEGIN
 rdsadmin.rdsadmin_diagnostic_util.ash_report(
 begin_time => SYSDATE-14/1440,
 end_time => SYSDATE,
 report_type => 'TEXT');
END;
/

The following example generates an ASH report that includes the data from November 18, 2019,
at 6:07 PM through November 18, 2019, at 6:15 PM. The name of the output HTML report is
ashrpt_20190918180700_20190918181500.html. The report is stored in the nondefault
database directory named AWR_RPT_DUMP.

BEGIN
 rdsadmin.rdsadmin_diagnostic_util.ash_report(
 begin_time => TO_DATE('2019-09-18 18:07:00', 'YYYY-MM-DD HH24:MI:SS'),
 end_time => TO_DATE('2019-09-18 18:15:00', 'YYYY-MM-DD HH24:MI:SS'),
 report_type => 'html',
 dump_directory => 'AWR_RPT_DUMP');
END;
/

Accessing AWR reports from the console or CLI

To access AWR reports or export dump files, you can use the AWS Management Console or AWS
CLI. For more information, see Downloading a database log file.

Adjusting database links for use with DB instances in a VPC

To use Oracle database links with Amazon RDS DB instances inside the same virtual private cloud
(VPC) or peered VPCs, the two DB instances should have a valid route between them. Verify the
valid route between the DB instances by using your VPC routing tables and network access control
list (ACL).

The security group of each DB instance must allow ingress to and egress from the other DB
instance. The inbound and outbound rules can refer to security groups from the same VPC or a
peered VPC. For more information, see Updating your security groups to reference peered VPC
security groups.

Database tasks 3792

https://docs.aws.amazon.com/vpc/latest/peering/working-with-vpc-peering.html#vpc-peering-security-groups
https://docs.aws.amazon.com/vpc/latest/peering/working-with-vpc-peering.html#vpc-peering-security-groups

Amazon Relational Database Service User Guide

If you have configured a custom DNS server using the DHCP Option Sets in your VPC, your custom
DNS server must be able to resolve the name of the database link target. For more information, see
Setting up a custom DNS server.

For more information about using database links with Oracle Data Pump, see Importing using
Oracle Data Pump.

Setting the default edition for a DB instance

You can redefine database objects in a private environment called an edition. You can use edition-
based redefinition to upgrade an application's database objects with minimal downtime.

You can set the default edition of an Amazon RDS Oracle DB instance using the Amazon RDS
procedure rdsadmin.rdsadmin_util.alter_default_edition.

The following example sets the default edition for the Amazon RDS Oracle DB instance to
RELEASE_V1.

EXEC rdsadmin.rdsadmin_util.alter_default_edition('RELEASE_V1');

The following example sets the default edition for the Amazon RDS Oracle DB instance back to the
Oracle default.

EXEC rdsadmin.rdsadmin_util.alter_default_edition('ORA$BASE');

For more information about Oracle edition-based redefinition, see About editions and edition-
based redefinition in the Oracle documentation.

Enabling auditing for the SYS.AUD$ table

To enable auditing on the database audit trail table SYS.AUD$, use the Amazon RDS procedure
rdsadmin.rdsadmin_master_util.audit_all_sys_aud_table. The only supported audit
property is ALL. You can't audit or not audit individual statements or operations.

Enabling auditing is supported for Oracle DB instances running the following versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

The audit_all_sys_aud_table procedure has the following parameters.

Database tasks 3793

https://docs.oracle.com/database/121/ADMIN/general.htm#ADMIN13167
https://docs.oracle.com/database/121/ADMIN/general.htm#ADMIN13167

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

p_by_access boolean true No Set to true to audit BY
ACCESS. Set to false to
audit BY SESSION.

The following query returns the current audit configuration for SYS.AUD$ for a database.

SELECT * FROM DBA_OBJ_AUDIT_OPTS WHERE OWNER='SYS' AND OBJECT_NAME='AUD$';

The following commands enable audit of ALL on SYS.AUD$ BY ACCESS.

EXEC rdsadmin.rdsadmin_master_util.audit_all_sys_aud_table;

EXEC rdsadmin.rdsadmin_master_util.audit_all_sys_aud_table(p_by_access => true);

The following command enables audit of ALL on SYS.AUD$ BY SESSION.

EXEC rdsadmin.rdsadmin_master_util.audit_all_sys_aud_table(p_by_access => false);

For more information, see AUDIT (traditional auditing) in the Oracle documentation.

Disabling auditing for the SYS.AUD$ table

To disable auditing on the database audit trail table SYS.AUD$, use the Amazon RDS procedure
rdsadmin.rdsadmin_master_util.noaudit_all_sys_aud_table. This procedure takes no
parameters.

The following query returns the current audit configuration for SYS.AUD$ for a database:

SELECT * FROM DBA_OBJ_AUDIT_OPTS WHERE OWNER='SYS' AND OBJECT_NAME='AUD$';

The following command disables audit of ALL on SYS.AUD$.

EXEC rdsadmin.rdsadmin_master_util.noaudit_all_sys_aud_table;

For more information, see NOAUDIT (traditional auditing) in the Oracle documentation.

Database tasks 3794

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sqlrf/AUDIT-Traditional-Auditing.html#GUID-ADF45B07-547A-4096-8144-50241FA2D8DD
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sqlrf/NOAUDIT-Traditional-Auditing.html#GUID-9D8EAF18-4AB3-4C04-8BF7-37BD0E15434D

Amazon Relational Database Service User Guide

Cleaning up interrupted online index builds

To clean up failed online index builds, use the Amazon RDS procedure
rdsadmin.rdsadmin_dbms_repair.online_index_clean.

The online_index_clean procedure has the following parameters.

Parameter name Data type Default Required Description

object_id binary_in
teger

ALL_INDEX
_ID

No The object ID of the
index. Typically, you can
use the object ID from
the ORA-08104 error
text.

wait_for_lock binary_in
teger

rdsadmin.
rdsadmin_
dbms_repa
ir.lock_w
ait

No Specify rdsadmin.
rdsadmin_
dbms_repa
ir.lock_wait , the
default, to try to get a
lock on the underlying
object and retry until an
internal limit is reached if
the lock fails.

Specify rdsadmin.
rdsadmin_
dbms_repa
ir.lock_nowait to
try to get a lock on the
underlying object but
not retry if the lock fails.

The following example cleans up a failed online index build:

declare
 is_clean boolean;
begin

Database tasks 3795

Amazon Relational Database Service User Guide

 is_clean := rdsadmin.rdsadmin_dbms_repair.online_index_clean(
 object_id => 1234567890,
 wait_for_lock => rdsadmin.rdsadmin_dbms_repair.lock_nowait
);
end;
/

For more information, see ONLINE_INDEX_CLEAN function in the Oracle documentation.

Skipping corrupt blocks

To skip corrupt blocks during index and table scans, use the rdsadmin.rdsadmin_dbms_repair
package.

The following procedures wrap the functionality of the sys.dbms_repair.admin_table
procedure and take no parameters:

• rdsadmin.rdsadmin_dbms_repair.create_repair_table

• rdsadmin.rdsadmin_dbms_repair.create_orphan_keys_table

• rdsadmin.rdsadmin_dbms_repair.drop_repair_table

• rdsadmin.rdsadmin_dbms_repair.drop_orphan_keys_table

• rdsadmin.rdsadmin_dbms_repair.purge_repair_table

• rdsadmin.rdsadmin_dbms_repair.purge_orphan_keys_table

The following procedures take the same parameters as their counterparts in the DBMS_REPAIR
package for Oracle databases:

• rdsadmin.rdsadmin_dbms_repair.check_object

• rdsadmin.rdsadmin_dbms_repair.dump_orphan_keys

• rdsadmin.rdsadmin_dbms_repair.fix_corrupt_blocks

• rdsadmin.rdsadmin_dbms_repair.rebuild_freelists

• rdsadmin.rdsadmin_dbms_repair.segment_fix_status

• rdsadmin.rdsadmin_dbms_repair.skip_corrupt_blocks

For more information about handling database corruption, see DBMS_REPAIR in the Oracle
documentation.

Database tasks 3796

https://docs.oracle.com/database/121/ARPLS/d_repair.htm#ARPLS67555
https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_REPAIR.html#GUID-B8EC4AB3-4D6A-46C9-857F-4ED53CD9C948

Amazon Relational Database Service User Guide

Example Responding to corrupt blocks

This example shows the basic workflow for responding to corrupt blocks. Your steps will depend on
the location and nature of your block corruption.

Important

Before attempting to repair corrupt blocks, review the DBMS_REPAIR documentation
carefully.

To skip corrupt blocks during index and table scans

1. Run the following procedures to create repair tables if they don't already exist.

EXEC rdsadmin.rdsadmin_dbms_repair.create_repair_table;
EXEC rdsadmin.rdsadmin_dbms_repair.create_orphan_keys_table;

2. Run the following procedures to check for existing records and purge them if appropriate.

SELECT COUNT(*) FROM SYS.REPAIR_TABLE;
SELECT COUNT(*) FROM SYS.ORPHAN_KEY_TABLE;
SELECT COUNT(*) FROM SYS.DBA_REPAIR_TABLE;
SELECT COUNT(*) FROM SYS.DBA_ORPHAN_KEY_TABLE;

EXEC rdsadmin.rdsadmin_dbms_repair.purge_repair_table;
EXEC rdsadmin.rdsadmin_dbms_repair.purge_orphan_keys_table;

3. Run the following procedure to check for corrupt blocks.

SET SERVEROUTPUT ON
DECLARE v_num_corrupt INT;
BEGIN
 v_num_corrupt := 0;
 rdsadmin.rdsadmin_dbms_repair.check_object (
 schema_name => '&corruptionOwner',
 object_name => '&corruptionTable',
 corrupt_count => v_num_corrupt
);
 dbms_output.put_line('number corrupt: '||to_char(v_num_corrupt));
END;
/

Database tasks 3797

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_REPAIR.html#GUID-B8EC4AB3-4D6A-46C9-857F-4ED53CD9C948

Amazon Relational Database Service User Guide

COL CORRUPT_DESCRIPTION FORMAT a30
COL REPAIR_DESCRIPTION FORMAT a30

SELECT OBJECT_NAME, BLOCK_ID, CORRUPT_TYPE, MARKED_CORRUPT,
 CORRUPT_DESCRIPTION, REPAIR_DESCRIPTION
FROM SYS.REPAIR_TABLE;

SELECT SKIP_CORRUPT
FROM DBA_TABLES
WHERE OWNER = '&corruptionOwner'
AND TABLE_NAME = '&corruptionTable';

4. Use the skip_corrupt_blocks procedure to enable or disable corruption skipping for
affected tables. Depending on the situation, you may also need to extract data to a new table,
and then drop the table containing the corrupt block.

Run the following procedure to enable corruption skipping for affected tables.

begin
 rdsadmin.rdsadmin_dbms_repair.skip_corrupt_blocks (
 schema_name => '&corruptionOwner',
 object_name => '&corruptionTable',
 object_type => rdsadmin.rdsadmin_dbms_repair.table_object,
 flags => rdsadmin.rdsadmin_dbms_repair.skip_flag);
end;
/
select skip_corrupt from dba_tables where owner = '&corruptionOwner' and table_name
 = '&corruptionTable';

Run the following procedure to disable corruption skipping.

begin
 rdsadmin.rdsadmin_dbms_repair.skip_corrupt_blocks (
 schema_name => '&corruptionOwner',
 object_name => '&corruptionTable',
 object_type => rdsadmin.rdsadmin_dbms_repair.table_object,
 flags => rdsadmin.rdsadmin_dbms_repair.noskip_flag);
end;
/

Database tasks 3798

Amazon Relational Database Service User Guide

select skip_corrupt from dba_tables where owner = '&corruptionOwner' and table_name
 = '&corruptionTable';

5. When you have completed all repair work, run the following procedures to drop the repair
tables.

EXEC rdsadmin.rdsadmin_dbms_repair.drop_repair_table;
EXEC rdsadmin.rdsadmin_dbms_repair.drop_orphan_keys_table;

Resizing tablespaces, data files, and temp files

By default, Oracle tablespaces are created with auto-extend turned on and no maximum size.
Because of these default settings, tablespaces can sometimes grow too large. We recommend that
you specify an appropriate maximum size on permanent and temporary tablespaces, and that you
carefully monitor space usage.

Resizing permanent tablespaces

To resize a permanent tablespace in an RDS for Oracle DB instance, use any of the following
Amazon RDS procedures:

• rdsadmin.rdsadmin_util.resize_datafile

• rdsadmin.rdsadmin_util.autoextend_datafile

The resize_datafile procedure has the following parameters.

Parameter name Data type Default Required Description

p_data_file_id number — Yes The identifier of the data
file to resize.

p_size varchar2 — Yes The size of the data file.
Specify the size in bytes
(the default), kilobytes
(K), megabytes (M), or
gigabytes (G).

Database tasks 3799

Amazon Relational Database Service User Guide

The autoextend_datafile procedure has the following parameters.

Parameter name Data type Default Required Description

p_data_file_id number — Yes The identifier of the data
file to resize.

p_autoextend_state varchar2 — Yes The state of the
autoextension feature.
Specify ON to extend
the data file automatic
ally and OFF to turn off
autoextension.

p_next varchar2 — No The size of the next
data file increment.
Specify the size in bytes
(the default), kilobytes
(K), megabytes (M), or
gigabytes (G).

p_maxsize varchar2 — No The maximum disk space
allowed for automatic
extension. Specify
the size in bytes (the
default), kilobytes
(K), megabytes (M), or
gigabytes (G). You can
specify UNLIMITED to
remove the file size limit.

The following example resizes data file 4 to 500 MB.

EXEC rdsadmin.rdsadmin_util.resize_datafile(4,'500M');

The following example turns off autoextension for data file 4. It also turns on autoextension for
data file 5, with an increment of 128 MB and no maximum size.

Database tasks 3800

Amazon Relational Database Service User Guide

EXEC rdsadmin.rdsadmin_util.autoextend_datafile(4,'OFF');
EXEC rdsadmin.rdsadmin_util.autoextend_datafile(5,'ON','128M','UNLIMITED');

Resizing temporary tablespaces

To resize a temporary tablespaces in an RDS for Oracle DB instance, including a read replica, use
any of the following Amazon RDS procedures:

• rdsadmin.rdsadmin_util.resize_temp_tablespace

• rdsadmin.rdsadmin_util.resize_tempfile

• rdsadmin.rdsadmin_util.autoextend_tempfile

The resize_temp_tablespace procedure has the following parameters.

Parameter name Data type Default Required Description

p_temp_tablespace_
name

varchar2 — Yes The name of the
temporary tablespace to
resize.

p_size varchar2 — Yes The size of the tablespac
e. Specify the size in
bytes (the default),
kilobytes (K), megabytes
(M), or gigabytes (G).

The resize_tempfile procedure has the following parameters.

Parameter name Data type Default Required Description

p_temp_file_id number — Yes The identifier of the
temp file to resize.

p_size varchar2 — Yes The size of the temp file.
Specify the size in bytes
(the default), kilobytes

Database tasks 3801

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

(K), megabytes (M), or
gigabytes (G).

The autoextend_tempfile procedure has the following parameters.

Parameter name Data type Default Required Description

p_temp_file_id number — Yes The identifier of the
temp file to resize.

p_autoextend_state varchar2 — Yes The state of the
autoextension feature.
Specify ON to extend
the temp file automatic
ally and OFF to turn off
autoextension.

p_next varchar2 — No The size of the next
temp file increment.
Specify the size in bytes
(the default), kilobytes
(K), megabytes (M), or
gigabytes (G).

p_maxsize varchar2 — No The maximum disk space
allowed for automatic
extension. Specify
the size in bytes (the
default), kilobytes
(K), megabytes (M), or
gigabytes (G). You can
specify UNLIMITED to
remove the file size limit.

Database tasks 3802

Amazon Relational Database Service User Guide

The following examples resize a temporary tablespace named TEMP to the size of 4 GB.

EXEC rdsadmin.rdsadmin_util.resize_temp_tablespace('TEMP','4G');

EXEC rdsadmin.rdsadmin_util.resize_temp_tablespace('TEMP','4096000000');

The following example resizes a temporary tablespace based on the temp file with the file
identifier 1 to the size of 2 MB.

EXEC rdsadmin.rdsadmin_util.resize_tempfile(1,'2M');

The following example turns off autoextension for temp file 1. It also sets the maximum
autoextension size of temp file 2 to 10 GB, with an increment of 100 MB.

EXEC rdsadmin.rdsadmin_util.autoextend_tempfile(1,'OFF');
EXEC rdsadmin.rdsadmin_util.autoextend_tempfile(2,'ON','100M','10G');

For more information about read replicas for Oracle DB instances see Working with read replicas
for Amazon RDS for Oracle.

Purging the recycle bin

When you drop a table, your Oracle database doesn't immediately remove its storage space. The
database renames the table and places it and any associated objects in a recycle bin. Purging the
recycle bin removes these items and releases their storage space.

To purge the entire recycle bin, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.purge_dba_recyclebin. However, this procedure can't purge
the recycle bin of SYS and RDSADMIN objects. If you need to purge these objects, contact AWS
Support.

The following example purges the entire recycle bin.

EXEC rdsadmin.rdsadmin_util.purge_dba_recyclebin;

Setting the default displayed values for full redaction

To change the default displayed values for full redaction on your Amazon RDS Oracle instance, use
the Amazon RDS procedure rdsadmin.rdsadmin_util.dbms_redact_upd_full_rdct_val.

Database tasks 3803

Amazon Relational Database Service User Guide

Note that you create a redaction policy with the DBMS_REDACT PL/SQL package, as explained
in the Oracle Database documentation. The dbms_redact_upd_full_rdct_val procedure
specifies the characters to display for different data types affected by an existing policy.

The dbms_redact_upd_full_rdct_val procedure has the following parameters.

Parameter name Data type Default Required Description

p_number_val number Null No Modifies the default
value for columns of the
NUMBER data type.

p_binfloat_val binary_fl
oat

Null No Modifies the default
value for columns of the
BINARY_FLOAT data
type.

p_bindouble_val binary_do
uble

Null No Modifies the default
value for columns of the
BINARY_DOUBLE data
type.

p_char_val char Null No Modifies the default
value for columns of the
CHAR data type.

p_varchar_val varchar2 Null No Modifies the default
value for columns of the
VARCHAR2 data type.

p_nchar_val nchar Null No Modifies the default
value for columns of the
NCHAR data type.

p_nvarchar_val nvarchar2 Null No Modifies the default
value for columns of the
NVARCHAR2 data type.

Database tasks 3804

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

p_date_val date Null No Modifies the default
value for columns of the
DATE data type.

p_ts_val timestamp Null No Modifies the default
value for columns of the
TIMESTAMP data type.

p_tswtz_val timestamp
with time
zone

Null No Modifies the default
value for columns of
the TIMESTAMP WITH
TIME ZONE data type.

p_blob_val blob Null No Modifies the default
value for columns of the
BLOB data type.

p_clob_val clob Null No Modifies the default
value for columns of the
CLOB data type.

p_nclob_val nclob Null No Modifies the default
value for columns of the
NCLOB data type.

The following example changes the default redacted value to * for the CHAR data type:

EXEC rdsadmin.rdsadmin_util.dbms_redact_upd_full_rdct_val(p_char_val => '*');

The following example changes the default redacted values for NUMBER, DATE, and CHAR data
types:

BEGIN
rdsadmin.rdsadmin_util.dbms_redact_upd_full_rdct_val(
 p_number_val=>1,
 p_date_val=>to_date('1900-01-01','YYYY-MM-DD'),

Database tasks 3805

Amazon Relational Database Service User Guide

 p_varchar_val=>'X');
END;
/

After you alter the default values for full redaction with the dbms_redact_upd_full_rdct_val
procedure, reboot your DB instance for the change to take effect. For more information, see
Rebooting a DB instance.

Performing common log-related tasks for Oracle DB instances

Following, you can find how to perform certain common DBA tasks related to logging on your
Amazon RDS DB instances running Oracle. To deliver a managed service experience, Amazon RDS
doesn't provide shell access to DB instances, and restricts access to certain system procedures and
tables that require advanced privileges.

For more information, see Amazon RDS for Oracle database log files.

Topics

• Setting force logging

• Setting supplemental logging

• Switching online log files

• Adding online redo logs

• Dropping online redo logs

• Resizing online redo logs

• Retaining archived redo logs

• Accessing online and archived redo logs

• Downloading archived redo logs from Amazon S3

Setting force logging

In force logging mode, Oracle logs all changes to the database except changes in temporary
tablespaces and temporary segments (NOLOGGING clauses are ignored). For more information, see
Specifying FORCE LOGGING mode in the Oracle documentation.

To set force logging, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.force_logging. The force_logging procedure has the following
parameters.

Log tasks 3806

https://docs.oracle.com/cd/E11882_01/server.112/e25494/create.htm#ADMIN11096

Amazon Relational Database Service User Guide

Parameter name Data type Default Yes Description

p_enable boolean true No Set to true to put the
database in force logging
mode, false to remove
the database from force
logging mode.

The following example puts the database in force logging mode.

EXEC rdsadmin.rdsadmin_util.force_logging(p_enable => true);

Setting supplemental logging

If you enable supplemental logging, LogMiner has the necessary information to support chained
rows and clustered tables. For more information, see Supplemental logging in the Oracle
documentation.

Oracle Database doesn't enable supplemental logging by default. To
enable and disable supplemental logging, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.alter_supplemental_logging. For more information about how
Amazon RDS manages the retention of archived redo logs for Oracle DB instances, see Retaining
archived redo logs.

The alter_supplemental_logging procedure has the following parameters.

Parameter name Data type Default Required Description

p_action varchar2 — Yes 'ADD' to add supplemen
tal logging, 'DROP'
to drop supplemental
logging.

p_type varchar2 null No The type of supplemen
tal logging. Valid values
are 'ALL', 'FOREIGN
KEY', 'PRIMARY

Log tasks 3807

https://docs.oracle.com/cd/E11882_01/server.112/e22490/logminer.htm#SUTIL1582

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

KEY', 'UNIQUE', or
PROCEDURAL .

The following example enables supplemental logging.

begin
 rdsadmin.rdsadmin_util.alter_supplemental_logging(
 p_action => 'ADD');
end;
/

The following example enables supplemental logging for all fixed-length maximum size columns.

begin
 rdsadmin.rdsadmin_util.alter_supplemental_logging(
 p_action => 'ADD',
 p_type => 'ALL');
end;
/

The following example enables supplemental logging for primary key columns.

begin
 rdsadmin.rdsadmin_util.alter_supplemental_logging(
 p_action => 'ADD',
 p_type => 'PRIMARY KEY');
end;
/

Switching online log files

To switch log files, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.switch_logfile. The switch_logfile procedure has no
parameters.

The following example switches log files.

EXEC rdsadmin.rdsadmin_util.switch_logfile;

Log tasks 3808

Amazon Relational Database Service User Guide

Adding online redo logs

An Amazon RDS DB instance running Oracle starts with four online redo logs, 128 MB each. To add
additional redo logs, use the Amazon RDS procedure rdsadmin.rdsadmin_util.add_logfile.

The add_logfile procedure has the following parameters.

Note

The parameters are mutually exclusive.

Parameter name Data type Default Required Description

bytes positive null No The size of the log file in
bytes.

Use this parameter only
if the size of the log is
under 2147483648 bytes
(2 GiB). Otherwise, RDS
issues an error. For log
sizes above this byte
value, use the p_size
parameter instead.

p_size varchar2 — Yes The size of the log file in
kilobytes (K), megabytes
(M), or gigabytes (G).

The following command adds a 100 MB log file.

EXEC rdsadmin.rdsadmin_util.add_logfile(p_size => '100M');

Dropping online redo logs

To drop redo logs, use the Amazon RDS procedure rdsadmin.rdsadmin_util.drop_logfile.
The drop_logfile procedure has the following parameters.

Log tasks 3809

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

grp positive — Yes The group number of the
log.

The following example drops the log with group number 3.

EXEC rdsadmin.rdsadmin_util.drop_logfile(grp => 3);

You can only drop logs that have a status of unused or inactive. The following example gets the
statuses of the logs.

SELECT GROUP#, STATUS FROM V$LOG;

GROUP# STATUS
---------- ----------------
1 CURRENT
2 INACTIVE
3 INACTIVE
4 UNUSED

Resizing online redo logs

An Amazon RDS DB instance running Oracle starts with four online redo logs, 128 MB each. The
following example shows how you can use Amazon RDS procedures to resize your logs from 128
MB each to 512 MB each.

/* Query V$LOG to see the logs. */
/* You start with 4 logs of 128 MB each. */

SELECT GROUP#, BYTES, STATUS FROM V$LOG;

GROUP# BYTES STATUS
---------- ---------- ----------------
1 134217728 INACTIVE
2 134217728 CURRENT
3 134217728 INACTIVE
4 134217728 INACTIVE

Log tasks 3810

Amazon Relational Database Service User Guide

/* Add four new logs that are each 512 MB */

EXEC rdsadmin.rdsadmin_util.add_logfile(bytes => 536870912);
EXEC rdsadmin.rdsadmin_util.add_logfile(bytes => 536870912);
EXEC rdsadmin.rdsadmin_util.add_logfile(bytes => 536870912);
EXEC rdsadmin.rdsadmin_util.add_logfile(bytes => 536870912);

/* Query V$LOG to see the logs. */
/* Now there are 8 logs. */

SELECT GROUP#, BYTES, STATUS FROM V$LOG;

GROUP# BYTES STATUS
---------- ---------- ----------------
1 134217728 INACTIVE
2 134217728 CURRENT
3 134217728 INACTIVE
4 134217728 INACTIVE
5 536870912 UNUSED
6 536870912 UNUSED
7 536870912 UNUSED
8 536870912 UNUSED

/* Drop each inactive log using the group number. */

EXEC rdsadmin.rdsadmin_util.drop_logfile(grp => 1);
EXEC rdsadmin.rdsadmin_util.drop_logfile(grp => 3);
EXEC rdsadmin.rdsadmin_util.drop_logfile(grp => 4);

/* Query V$LOG to see the logs. */
/* Now there are 5 logs. */

select GROUP#, BYTES, STATUS from V$LOG;

GROUP# BYTES STATUS
---------- ---------- ----------------
2 134217728 CURRENT
5 536870912 UNUSED
6 536870912 UNUSED
7 536870912 UNUSED
8 536870912 UNUSED

Log tasks 3811

Amazon Relational Database Service User Guide

/* Switch logs so that group 2 is no longer current. */

EXEC rdsadmin.rdsadmin_util.switch_logfile;

/* Query V$LOG to see the logs. */
/* Now one of the new logs is current. */

SQL>SELECT GROUP#, BYTES, STATUS FROM V$LOG;

GROUP# BYTES STATUS
---------- ---------- ----------------
2 134217728 ACTIVE
5 536870912 CURRENT
6 536870912 UNUSED
7 536870912 UNUSED
8 536870912 UNUSED

/* If the status of log 2 is still "ACTIVE", issue a checkpoint to clear it to
 "INACTIVE". */

EXEC rdsadmin.rdsadmin_util.checkpoint;

/* Query V$LOG to see the logs. */
/* Now the final original log is inactive. */

select GROUP#, BYTES, STATUS from V$LOG;

GROUP# BYTES STATUS
---------- ---------- ----------------
2 134217728 INACTIVE
5 536870912 CURRENT
6 536870912 UNUSED
7 536870912 UNUSED
8 536870912 UNUSED

Drop the final inactive log.

EXEC rdsadmin.rdsadmin_util.drop_logfile(grp => 2);

Log tasks 3812

Amazon Relational Database Service User Guide

/* Query V$LOG to see the logs. */
/* Now there are four 512 MB logs. */

SELECT GROUP#, BYTES, STATUS FROM V$LOG;

GROUP# BYTES STATUS
---------- ---------- ----------------
5 536870912 CURRENT
6 536870912 UNUSED
7 536870912 UNUSED
8 536870912 UNUSED

Retaining archived redo logs

You can retain archived redo logs locally on your DB instance for use with products like Oracle
LogMiner (DBMS_LOGMNR). After you have retained the redo logs, you can use LogMiner to
analyze the logs. For more information, see Using LogMiner to analyze redo log files in the Oracle
documentation.

To retain archived redo logs, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.set_configuration. If you use this procedure on a primary
instance in Oracle Data Guard, RDS changes the archive log retention setting on the primary
instance and open read replicas, but not on mounted replicas. RDS retains the latest archive
redo logs on mounted replicas for a short period of time. RDS automatically deletes older logs
downloaded to mounted replicas.

The set_configuration procedure has the following parameters.

Parameter name Data type Default Required Description

name varchar — Yes The name of the
configuration to update.
To change the archived
redo log retention
hours, set the name
to archivelog
retention hours.

Log tasks 3813

http://docs.oracle.com/cd/E11882_01/server.112/e22490/logminer.htm

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

value varchar — Yes The value for the
configuration. Set the
value the number of
hours to retain the logs.

The following example retains 24 hours of redo logs.

begin
 rdsadmin.rdsadmin_util.set_configuration(
 name => 'archivelog retention hours',
 value => '24');
end;
/
commit;

Note

The commit is required for the change to take effect.

To view how long archived redo logs are kept for your DB instance, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.show_configuration.

The following example shows the log retention time.

set serveroutput on
EXEC rdsadmin.rdsadmin_util.show_configuration;

The output shows the current setting for archivelog retention hours. The following output
shows that archived redo logs are kept for 48 hours.

NAME:archivelog retention hours
VALUE:48
DESCRIPTION:ArchiveLog expiration specifies the duration in hours before archive/redo
 log files are automatically deleted.

Log tasks 3814

Amazon Relational Database Service User Guide

Because the archived redo logs are retained on your DB instance, ensure that your DB instance has
enough allocated storage for the retained logs. To determine how much space your DB instance
has used in the last X hours, you can run the following query, replacing X with the number of hours.

SELECT SUM(BLOCKS * BLOCK_SIZE) bytes
 FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME >= SYSDATE-(X/24) AND DEST_ID=1;

RDS for Oracle only generates archived redo logs when the backup retention period of your DB
instance is greater than zero. By default the backup retention period is greater than zero.

When the archived log retention period expires, RDS for Oracle removes the archived redo logs
from your DB instance. To support restoring your DB instance to a point in time, Amazon RDS
retains the archived redo logs outside of your DB instance based on the backup retention period. To
modify the backup retention period, see Modifying an Amazon RDS DB instance.

Note

In some cases, you might be using JDBC on Linux to download archived redo logs and
experience long latency times and connection resets. In such cases, the issues might
be caused by the default random number generator setting on your Java client. We
recommend setting your JDBC drivers to use a nonblocking random number generator.

Accessing online and archived redo logs

You might want to access your online and archived redo log files for mining with external tools
such as GoldenGate, Attunity, Informatica, and others. To access these files, do the following:

1. Create directory objects that provide read-only access to the physical file paths.

Use rdsadmin.rdsadmin_master_util.create_archivelog_dir and
rdsadmin.rdsadmin_master_util.create_onlinelog_dir.

2. Read the files using PL/SQL.

You can read the files by using PL/SQL. For more information about reading files from directory
objects, see Listing files in a DB instance directory and Reading files in a DB instance directory.

Accessing transaction logs is supported for the following releases:

Log tasks 3815

Amazon Relational Database Service User Guide

• Oracle Database 21c

• Oracle Database 19c

The following code creates directories that provide read-only access to your online and archived
redo log files:

Important

This code also revokes the DROP ANY DIRECTORY privilege.

EXEC rdsadmin.rdsadmin_master_util.create_archivelog_dir;
EXEC rdsadmin.rdsadmin_master_util.create_onlinelog_dir;

The following code drops the directories for your online and archived redo log files.

EXEC rdsadmin.rdsadmin_master_util.drop_archivelog_dir;
EXEC rdsadmin.rdsadmin_master_util.drop_onlinelog_dir;

The following code grants and revokes the DROP ANY DIRECTORY privilege.

EXEC rdsadmin.rdsadmin_master_util.revoke_drop_any_directory;
EXEC rdsadmin.rdsadmin_master_util.grant_drop_any_directory;

Downloading archived redo logs from Amazon S3

You can download archived redo logs on your DB instance using the
rdsadmin.rdsadmin_archive_log_download package. If archived redo logs are no longer on
your DB instance, you might want to download them again from Amazon S3. Then you can mine
the logs or use them to recover or replicate your database.

Note

You can't download archived redo logs on read replica instances.

Downloading archived redo logs: basic steps

The availability of your archived redo logs depends on the following retention policies:

Log tasks 3816

Amazon Relational Database Service User Guide

• Backup retention policy – Logs inside of this policy are available in Amazon S3. Logs outside of
this policy are removed.

• Archived log retention policy – Logs inside of this policy are available on your DB instance. Logs
outside of this policy are removed.

If logs aren't on your instance but are protected by your backup retention period, use
rdsadmin.rdsadmin_archive_log_download to download them again. RDS for Oracle saves
the logs to the /rdsdbdata/log/arch directory on your DB instance.

To download archived redo logs from Amazon S3

1. Configure your retention period to ensure your downloaded archived redo logs are retained for
the duration you need them. Make sure to COMMIT your change.

RDS retains your downloaded logs according to the archived log retention policy, starting from
the time the logs were downloaded. To learn how to set the retention policy, see Retaining
archived redo logs.

2. Wait up to 5 minutes for the archived log retention policy change to take effect.

3. Download the archived redo logs from Amazon S3 using
rdsadmin.rdsadmin_archive_log_download.

For more information, see Downloading a single archived redo log and Downloading a series of
archived redo logs.

Note

RDS automatically checks the available storage before downloading. If the requested
logs consume a high percentage of space, you receive an alert.

4. Confirm that the logs were downloaded from Amazon S3 successfully.

You can view the status of your download task in a bdump file. The bdump files have the
path name /rdsdbdata/log/trace/dbtask-task-id.log. In the preceding download
step, you run a SELECT statement that returns the task ID in a VARCHAR2 data type. For more
information, see similar examples in Monitoring the status of a file transfer.

Log tasks 3817

Amazon Relational Database Service User Guide

Downloading a single archived redo log

To download a single archived redo log to the /rdsdbdata/log/arch directory, use
rdsadmin.rdsadmin_archive_log_download.download_log_with_seqnum. This procedure
has the following parameter.

Parameter name Data type Default Required Description

seqnum number — Yes The sequence number of
the archived redo log.

The following example downloads the log with sequence number 20.

SELECT rdsadmin.rdsadmin_archive_log_download.download_log_with_seqnum(seqnum => 20)
 AS TASK_ID
FROM DUAL;

Downloading a series of archived redo logs

To download a series of archived redo logs to the /rdsdbdata/log/arch directory, use
download_logs_in_seqnum_range. Your download is limited to 300 logs per request. The
download_logs_in_seqnum_range procedure has the following parameters.

Parameter name Data type Default Required Description

start_seq number — Yes The starting sequence
number for the series.

end_seq number — Yes The ending sequence
number for the series.

The following example downloads the logs from sequence 50 to 100.

SELECT rdsadmin.rdsadmin_archive_log_download.download_logs_in_seqnum_range(start_seq
 => 50, end_seq => 100)
 AS TASK_ID
FROM DUAL;

Log tasks 3818

Amazon Relational Database Service User Guide

Performing common RMAN tasks for Oracle DB instances

In the following section, you can find how you can perform Oracle Recovery Manager (RMAN) DBA
tasks on your Amazon RDS DB instances running Oracle. To deliver a managed service experience,
Amazon RDS doesn't provide shell access to DB instances. It also restricts access to certain system
procedures and tables that require advanced privileges.

Use the Amazon RDS package rdsadmin.rdsadmin_rman_util to perform RMAN backups of
your Amazon RDS for Oracle database to disk. The rdsadmin.rdsadmin_rman_util package
supports full and incremental database file backups, tablespace backups, and archived redo log
backups.

After an RMAN backup has finished, you can copy the backup files off the Amazon RDS for Oracle
DB instance host. You might do this for the purpose of restoring to a non-RDS host or for long-
term storage of backups. For example, you can copy the backup files to an Amazon S3 bucket. For
more information, see using Amazon S3 integration.

The backup files for RMAN backups remain on the Amazon RDS DB instance host until you remove
them manually. You can use the UTL_FILE.FREMOVE Oracle procedure to remove files from a
directory. For more information, see FREMOVE procedure in the Oracle Database documentation.

You can't use the RMAN to restore RDS for Oracle DB instances. However, you can use RMAN to
restore a backup to an on-premises or Amazon EC2 instance. For more information, see the blog
article Restore an Amazon RDS for Oracle instance to a self-managed instance.

Note

For backing up and restoring to another Amazon RDS for Oracle DB instance, you can
continue to use the Amazon RDS backup and restore features. For more information, see
Backing up, restoring, and exporting data.

Topics

• Prerequisites for RMAN backups

• Common parameters for RMAN procedures

• Validating database files in RDS for Oracle

• Enabling and disabling block change tracking

• Crosschecking archived redo logs

RMAN tasks 3819

https://docs.oracle.com/database/121/ARPLS/u_file.htm#ARPLS70924
https://aws.amazon.com/blogs/database/restore-an-amazon-rds-for-oracle-instance-to-a-self-managed-instance/

Amazon Relational Database Service User Guide

• Backing up archived redo log files

• Performing a full database backup

• Performing a full backup of a tenant database

• Performing an incremental database backup

• Performing an incremental backup of a tenant database

• Backing up a tablespace

• Backing up a control file

• Performing block media recovery

Prerequisites for RMAN backups

Before backing up your database using the rdsadmin.rdsadmin_rman_util package, make sure
that you meet the following prerequisites:

• Make sure that your RDS for Oracle database is in ARCHIVELOG mode. To enable this mode, set
the backup retention period to a non-zero value.

• When backing up archived redo logs or performing a full or incremental backup that includes
archived redo logs, and when backing up the database, make sure that redo log retention is set
to a nonzero value. Archived redo logs are required to make database files consistent during
recovery. For more information, see Retaining archived redo logs.

• Make sure that your DB instance has sufficient free space to hold the backups. When back
up your database, you specify an Oracle directory object as a parameter in the procedure
call. RMAN places the files in the specified directory. You can use default directories, such as
DATA_PUMP_DIR, or create a new directory. For more information, see Creating and dropping
directories in the main data storage space.

You can monitor the current free space in an RDS for Oracle instance using the CloudWatch
metric FreeStorageSpace. We recommend that your free space exceeds the current size of the
database, though RMAN backs up only formatted blocks and supports compression.

Common parameters for RMAN procedures

You can use procedures in the Amazon RDS package rdsadmin.rdsadmin_rman_util to
perform tasks with RMAN. Several parameters are common to the procedures in the package. The
package has the following common parameters.

RMAN tasks 3820

Amazon Relational Database Service User Guide

Parameter
name

Data
type

Valid
values

DefaultRequiredDescription

p_directo
ry_name

varchar2A valid
database
directory
name.

— Yes The name of the directory to contain
the backup files.

p_label varchar2a-z, A-Z,
0-9, '_',
'-', '.'

— No A unique string that is included in the
backup file names.

Note

The limit is 30 characters.

p_owner varchar2A valid
owner
of the
directory
specified in
p_directo
ry_name .

— Yes The owner of the directory to contain
the backup files.

p_tag varchar2a-z, A-Z,
0-9, '_',
'-', '.'

NULL No A string that can be used to distingui
sh between backups to indicate the
purpose or usage of backups, such
as daily, weekly, or incremental-level
backups.

The limit is 30 characters. The tag is
not case-sensitive. Tags are always
stored in uppercase, regardless of the
case used when entering them.

Tags don't need to be unique, so
multiple backups can have the same
tag.

RMAN tasks 3821

Amazon Relational Database Service User Guide

Parameter
name

Data
type

Valid
values

DefaultRequiredDescription

If you don't specify a tag, then RMAN
assigns a default tag automatically
using the format TAGYYYYMMDDT
HHMMSS , where YYYY is the year, MM
is the month, DD is the day, HH is the
hour (in 24-hour format), MM is the
minutes, and SS is the seconds. The
date and time refer to when RMAN
started the backup.

For example, a backup might receive
a tag TAG20190927T214517 for a
backup that started on 2019-09-27 at
21:45:17.

The p_tag parameter is supported for
the following Amazon RDS for Oracle
DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0), using
19.0.0.0.ru-2021-10.rur-2021-10.r1
or higher

p_compress boolean TRUE,
FALSE

FALSE No Specify TRUE to enable BASIC backup
compression.

Specify FALSE to disable BASIC backup
compression.

RMAN tasks 3822

Amazon Relational Database Service User Guide

Parameter
name

Data
type

Valid
values

DefaultRequiredDescription

p_include
archive
logs

boolean TRUE,
FALSE

FALSE No Specify TRUE to include archived redo
logs in the backup.

Specify FALSE to exclude archived
redo logs from the backup.

If you include archived redo logs
in the backup, set retention to
one hour or greater using the
rdsadmin.rdsadmin_util.set_
configuration procedure. Also,
call the rdsadmin.rdsadmin_
rman_util.crossche
ck_archivelog procedure
immediately before running the
backup. Otherwise, the backup might
fail due to missing archived redo
log files that have been deleted by
Amazon RDS management procedures.

p_include
_controlf
ile

boolean TRUE,
FALSE

FALSE No Specify TRUE to include the control file
in the backup.

Specify FALSE to exclude the control
file from the backup.

p_optimize boolean TRUE,
FALSE

TRUE No Specify TRUE to enable backup
optimization, if archived redo logs are
included, to reduce backup size.

Specify FALSE to disable backup
optimization.

RMAN tasks 3823

Amazon Relational Database Service User Guide

Parameter
name

Data
type

Valid
values

DefaultRequiredDescription

p_parallel number A valid
integer
between
1 and 254
for Oracle
Database
Enterpris
e Edition
(EE)

1 for other
Oracle
Database
editions

1 No Number of channels.

p_rman_to
_dbms_out
put

boolean TRUE,
FALSE

FALSE No When TRUE, the RMAN output is
sent to the DBMS_OUTPUT package
in addition to a file in the BDUMP
directory. In SQL*Plus, use SET
SERVEROUTPUT ON to see the
output.

When FALSE, the RMAN output is only
sent to a file in the BDUMP directory.

p_section
_size_mb

number A valid
integer

NULL No The section size in megabytes (MB).

Validates in parallel by dividing each
file into the specified section size.

When NULL, the parameter is ignored.

RMAN tasks 3824

Amazon Relational Database Service User Guide

Parameter
name

Data
type

Valid
values

DefaultRequiredDescription

p_validat
ion_type

varchar2'PHYSICAL
' ,
'PHYSICAL
+LOGICAL'

'PHYSICAL
'

No The level of corruption detection.

Specify 'PHYSICAL' to check for
physical corruption. An example of
physical corruption is a block with a
mismatch in the header and footer.

Specify 'PHYSICAL+LOGICAL'
to check for logical inconsistencies
in addition to physical corruption.
An example of logical corruption is a
corrupt block.

Validating database files in RDS for Oracle

You can use the Amazon RDS package rdsadmin.rdsadmin_rman_util to validate Amazon RDS
for Oracle database files, such as data files, tablespaces, control files, and server parameter files
(SPFILEs).

For more information about RMAN validation, see Validating database files and backups and
VALIDATE in the Oracle documentation.

Topics

• Validating a database

• Validating a tenant database

• Validating a tablespace

• Validating a control file

• Validating an SPFILE

• Validating an Oracle data file

RMAN tasks 3825

https://docs.oracle.com/database/121/BRADV/rcmvalid.htm#BRADV90063
https://docs.oracle.com/database/121/RCMRF/rcmsynta2025.htm#RCMRF162
https://docs.oracle.com/database/121/RCMRF/rcmsynta2025.htm#RCMRF162

Amazon Relational Database Service User Guide

Validating a database

To validate all of the relevant files used by an Oracle database in RDS for Oracle, use the Amazon
RDS procedure rdsadmin.rdsadmin_rman_util.validate_database.

This procedure uses the following common parameters for RMAN tasks:

• p_validation_type

• p_parallel

• p_section_size_mb

• p_rman_to_dbms_output

For more information, see Common parameters for RMAN procedures.

The following example validates the database using the default values for the parameters.

EXEC rdsadmin.rdsadmin_rman_util.validate_database;

The following example validates the database using the specified values for the parameters.

BEGIN
 rdsadmin.rdsadmin_rman_util.validate_database(
 p_validation_type => 'PHYSICAL+LOGICAL',
 p_parallel => 4,
 p_section_size_mb => 10,
 p_rman_to_dbms_output => FALSE);
END;
/

When the p_rman_to_dbms_output parameter is set to FALSE, the RMAN output is written to a
file in the BDUMP directory.

To view the files in the BDUMP directory, run the following SELECT statement.

SELECT * FROM table(rdsadmin.rds_file_util.listdir('BDUMP')) order by mtime;

To view the contents of a file in the BDUMP directory, run the following SELECT statement.

SELECT text FROM table(rdsadmin.rds_file_util.read_text_file('BDUMP','rds-rman-
validate-nnn.txt'));

RMAN tasks 3826

Amazon Relational Database Service User Guide

Replace the file name with the name of the file you want to view.

Validating a tenant database

To validate the data files of the tenant database in a container database (CDB), use the Amazon
RDS procedure rdsadmin.rdsadmin_rman_util.validate_tenant.

This procedure applies only to the current tenant database and uses the following common
parameters for RMAN tasks:

• p_validation_type

• p_parallel

• p_section_size_mb

• p_rman_to_dbms_output

For more information, see Common parameters for RMAN procedures. This procedure is supported
for the following DB engine versions:

• Oracle Database 21c (21.0.0) CDB

• Oracle Database 19c (19.0.0) CDB

The following example validates the current tenant database using the default values for the
parameters.

EXEC rdsadmin.rdsadmin_rman_util.validate_tenant;

The following example validates the current tenant database using the specified values for the
parameters.

BEGIN
 rdsadmin.rdsadmin_rman_util.validate_tenant(
 p_validation_type => 'PHYSICAL+LOGICAL',
 p_parallel => 4,
 p_section_size_mb => 10,
 p_rman_to_dbms_output => FALSE);
END;
/

RMAN tasks 3827

Amazon Relational Database Service User Guide

When the p_rman_to_dbms_output parameter is set to FALSE, the RMAN output is written to a
file in the BDUMP directory.

To view the files in the BDUMP directory, run the following SELECT statement.

SELECT * FROM table(rdsadmin.rds_file_util.listdir('BDUMP')) order by mtime;

To view the contents of a file in the BDUMP directory, run the following SELECT statement.

SELECT text FROM table(rdsadmin.rds_file_util.read_text_file('BDUMP','rds-rman-
validate-nnn.txt'));

Replace the file name with the name of the file you want to view.

Validating a tablespace

To validate the files associated with a tablespace, use the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.validate_tablespace.

This procedure uses the following common parameters for RMAN tasks:

• p_validation_type

• p_parallel

• p_section_size_mb

• p_rman_to_dbms_output

For more information, see Common parameters for RMAN procedures.

This procedure also uses the following additional parameter.

Parameter name Data
type

Valid
values

Default Required Description

p_tablesp
ace_name

varchar2 A valid
tablespac
e name

— Yes The name of the
tablespace.

RMAN tasks 3828

Amazon Relational Database Service User Guide

Validating a control file

To validate only the control file used by an Amazon RDS Oracle DB instance, use the Amazon RDS
procedure rdsadmin.rdsadmin_rman_util.validate_current_controlfile.

This procedure uses the following common parameter for RMAN tasks:

• p_validation_type

• p_rman_to_dbms_output

For more information, see Common parameters for RMAN procedures.

Validating an SPFILE

To validate only the server parameter file (SPFILE) used by an Amazon RDS Oracle DB instance, use
the Amazon RDS procedure rdsadmin.rdsadmin_rman_util.validate_spfile.

This procedure uses the following common parameter for RMAN tasks:

• p_validation_type

• p_rman_to_dbms_output

For more information, see Common parameters for RMAN procedures.

Validating an Oracle data file

To validate a data file, use the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.validate_datafile.

This procedure uses the following common parameters for RMAN tasks:

• p_validation_type

• p_parallel

• p_section_size_mb

• p_rman_to_dbms_output

For more information, see Common parameters for RMAN procedures.

RMAN tasks 3829

Amazon Relational Database Service User Guide

This procedure also uses the following additional parameters.

Parameter name Data
type

Valid
values

Default Required Description

p_datafile varchar2 A valid
datafile
ID
number
or a valid
datafile
name
including
complete
path

— Yes The datafile ID
number (from v
$datafile.file#)
or the full datafile
name including
the path (from v
$datafile.name).

p_from_block number A valid
integer

NULL No The number of the
block where the
validation starts
within the data file.
When this is NULL, 1
is used.

p_to_block number A valid
integer

NULL No The number of the
block where the
validation ends
within the data file.
When this is NULL,
the maximum block
in the data file is
used.

Enabling and disabling block change tracking

Block changing tracking records changed blocks in a tracking file. This technique can improve
the performance of RMAN incremental backups. For more information, see Using Block Change
Tracking to Improve Incremental Backup Performance in the Oracle Database documentation.

RMAN tasks 3830

https://docs.oracle.com/en/database/oracle/oracle-database/19/bradv/backing-up-database.html#GUID-4E1F605A-76A7-48D0-9D9B-7343B4327E2A
https://docs.oracle.com/en/database/oracle/oracle-database/19/bradv/backing-up-database.html#GUID-4E1F605A-76A7-48D0-9D9B-7343B4327E2A

Amazon Relational Database Service User Guide

RMAN features aren't supported in a read replica. However, as part of your high availability
strategy, you might choose to enable block tracking in a read-only replica using the procedure
rdsadmin.rdsadmin_rman_util.enable_block_change_tracking. If you promote this
read-only replica to a source DB instance, block change tracking is enabled for the new source
instance. Thus, your instance can benefit from fast incremental backups.

Block change tracking procedures are supported in Enterprise Edition only for the following DB
engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

Note

In a single-tenant CDB, the following operations work, but no customer-visible mechanism
can detect the current status of the operations. See also Limitations of RDS for Oracle
CDBs.

To enable block change tracking for a DB instance, use the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.enable_block_change_tracking. To disable block change
tracking, use disable_block_change_tracking. These procedures take no parameters.

To determine whether block change tracking is enabled for your DB instance, run the following
query.

SELECT STATUS, FILENAME FROM V$BLOCK_CHANGE_TRACKING;

The following example enables block change tracking for a DB instance.

EXEC rdsadmin.rdsadmin_rman_util.enable_block_change_tracking;

The following example disables block change tracking for a DB instance.

EXEC rdsadmin.rdsadmin_rman_util.disable_block_change_tracking;

RMAN tasks 3831

Amazon Relational Database Service User Guide

Crosschecking archived redo logs

You can crosscheck archived redo logs using the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.crosscheck_archivelog.

You can use this procedure to crosscheck the archived redo logs registered in the control file and
optionally delete the expired logs records. When RMAN makes a backup, it creates a record in the
control file. Over time, these records increase the size of the control file. We recommend that you
remove expired records periodically.

Note

Standard Amazon RDS backups don't use RMAN and therefore don't create records in the
control file.

This procedure uses the common parameter p_rman_to_dbms_output for RMAN tasks.

For more information, see Common parameters for RMAN procedures.

This procedure also uses the following additional parameter.

Parameter name Data
type

Valid
values

Default Required Description

p_delete_
expired

boolean TRUE,
FALSE

TRUE No When TRUE, delete
expired archived redo
log records from the
control file.

When FALSE, retain
the expired archived
redo log records in
the control file.

This procedure is supported for the following Amazon RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

RMAN tasks 3832

Amazon Relational Database Service User Guide

• Oracle Database 19c (19.0.0)

The following example marks archived redo log records in the control file as expired, but does not
delete the records.

BEGIN
 rdsadmin.rdsadmin_rman_util.crosscheck_archivelog(
 p_delete_expired => FALSE,
 p_rman_to_dbms_output => FALSE);
END;
/

The following example deletes expired archived redo log records from the control file.

BEGIN
 rdsadmin.rdsadmin_rman_util.crosscheck_archivelog(
 p_delete_expired => TRUE,
 p_rman_to_dbms_output => FALSE);
END;
/

Backing up archived redo log files

You can use the Amazon RDS package rdsadmin.rdsadmin_rman_util to back up archived
redo logs for an Amazon RDS Oracle DB instance.

The procedures for backing up archived redo logs are supported for the following Amazon RDS for
Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

Topics

• Backing up all archived redo logs

• Backing up an archived redo log from a date range

• Backing up an archived redo log from an SCN range

• Backing up an archived redo log from a sequence number range

RMAN tasks 3833

Amazon Relational Database Service User Guide

Backing up all archived redo logs

To back up all of the archived redo logs for an Amazon RDS Oracle DB instance, use the Amazon
RDS procedure rdsadmin.rdsadmin_rman_util.backup_archivelog_all.

This procedure uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

The following example backs up all archived redo logs for the DB instance.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_archivelog_all(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_parallel => 4,
 p_tag => 'MY_LOG_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Backing up an archived redo log from a date range

To back up specific archived redo logs for an Amazon RDS Oracle DB
instance by specifying a date range, use the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.backup_archivelog_date. The date range specifies which
archived redo logs to back up.

This procedure uses the following common parameters for RMAN tasks:

RMAN tasks 3834

Amazon Relational Database Service User Guide

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure also uses the following additional parameters.

Parameter name Data
type

Valid
values

Default Required Description

p_from_date date A date
that is
between
the
start_dat
e and
next_date

 of an
archived
redo
log that
exists on
disk. The
value
must be
less than
or equal
to the
value
specified

— Yes The starting date
for the archived log
backups.

RMAN tasks 3835

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

for
p_to_date

.

p_to_date date A date
that is
between
the
start_dat
e and
next_date

 of an
archived
redo
log that
exists on
disk. The
value
must be
greater
than or
equal to
the value
specified
for
p_from_da
te .

— Yes The ending date
for the archived log
backups.

The following example backs up archived redo logs in the date range for the DB instance.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_archivelog_date(
 p_owner => 'SYS',

RMAN tasks 3836

Amazon Relational Database Service User Guide

 p_directory_name => 'MYDIRECTORY',
 p_from_date => '03/01/2019 00:00:00',
 p_to_date => '03/02/2019 00:00:00',
 p_parallel => 4,
 p_tag => 'MY_LOG_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Backing up an archived redo log from an SCN range

To back up specific archived redo logs for an Amazon RDS Oracle DB instance by
specifying a system change number (SCN) range, use the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.backup_archivelog_scn. The SCN range specifies which
archived redo logs to back up.

This procedure uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure also uses the following additional parameters.

Parameter name Data
type

Valid
values

Default Required Description

p_from_scn number An SCN
of an
archived
redo

— Yes The starting SCN
for the archived log
backups.

RMAN tasks 3837

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

log that
exists on
disk. The
value
must be
less than
or equal
to the
value
specified
for
p_to_scn.

p_to_scn number An SCN
of an
archived
redo
log that
exists on
disk. The
value
must be
greater
than or
equal to
the value
specified
 for
p_from_sc
n .

— Yes The ending SCN for
the archived log
backups.

The following example backs up archived redo logs in the SCN range for the DB instance.

RMAN tasks 3838

Amazon Relational Database Service User Guide

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_archivelog_scn(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_from_scn => 1533835,
 p_to_scn => 1892447,
 p_parallel => 4,
 p_tag => 'MY_LOG_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Backing up an archived redo log from a sequence number range

To back up specific archived redo logs for an Amazon RDS Oracle DB instance
by specifying a sequence number range, use the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.backup_archivelog_sequence. The sequence number
range specifies which archived redo logs to back up.

This procedure uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure also uses the following additional parameters.

Parameter name Data
type

Valid
values

Default Required Description

p_from_sequence number A
sequence

— Yes The starting
sequence number

RMAN tasks 3839

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

number
an
archived
redo
log that
exists on
disk. The
value
must be
less than
or equal
to the
value
specified
for
p_to_sequ
ence .

for the archived log
backups.

RMAN tasks 3840

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

p_to_sequence number A
sequence
number
of an
archived
redo
log that
exists on
disk. The
value
must be
greater
than or
equal to
the value
specified
for
p_from_se
quence .

— Yes The ending sequence
number for the
archived log backups.

The following example backs up archived redo logs in the sequence number range for the DB
instance.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_archivelog_sequence(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_from_sequence => 11160,
 p_to_sequence => 11160,
 p_parallel => 4,
 p_tag => 'MY_LOG_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

RMAN tasks 3841

Amazon Relational Database Service User Guide

Performing a full database backup

You can perform a backup of all blocks of data files included in the backup using Amazon RDS
procedure rdsadmin.rdsadmin_rman_util.backup_database_full.

This procedure uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_section_size_mb

• p_include_archive_logs

• p_optimize

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure is supported for the following Amazon RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

The following example performs a full backup of the DB instance using the specified values for the
parameters.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_database_full(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_parallel => 4,
 p_section_size_mb => 10,
 p_tag => 'FULL_DB_BACKUP',
 p_rman_to_dbms_output => FALSE);

RMAN tasks 3842

Amazon Relational Database Service User Guide

END;
/

Performing a full backup of a tenant database

You can perform a backup of all data blocks included a tenant database in a container database
(CDB). Use the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.backup_tenant_full. This procedure applies only to the
current database backup and uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_section_size_mb

• p_include_archive_logs

• p_optimize

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

The rdsadmin_rman_util.backup_tenant_full procedure is supported for the following RDS
for Oracle DB engine versions:

• Oracle Database 21c (21.0.0) CDB

• Oracle Database 19c (19.0.0) CDB

The following example performs a full backup of the current tenant database using the specified
values for the parameters.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_tenant_full(
 p_owner => 'SYS',

RMAN tasks 3843

Amazon Relational Database Service User Guide

 p_directory_name => 'MYDIRECTORY',
 p_parallel => 4,
 p_section_size_mb => 10,
 p_tag => 'FULL_TENANT_DB_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Performing an incremental database backup

You can perform an incremental backup of your DB instance using the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.backup_database_incremental.

For more information about incremental backups, see Incremental backups in the Oracle
documentation.

This procedure uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_section_size_mb

• p_include_archive_logs

• p_include_controlfile

• p_optimize

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure is supported for the following Amazon RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

RMAN tasks 3844

https://docs.oracle.com/database/121/RCMRF/rcmsynta006.htm#GUID-73642FF2-43C5-48B2-9969-99001C52EB50__BGBHABHH

Amazon Relational Database Service User Guide

This procedure also uses the following additional parameter.

Parameter name Data
type

Valid
values

Default Required Description

p_level number 0, 1 0 No Specify 0 to enable
a full incremental
backup.

Specify 1 to enable
a non-cumulative
incremental backup.

The following example performs an incremental backup of the DB instance using the specified
values for the parameters.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_database_incremental(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_level => 1,
 p_parallel => 4,
 p_section_size_mb => 10,
 p_tag => 'MY_INCREMENTAL_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Performing an incremental backup of a tenant database

You can perform an incremental backup of the current tenant database in your CDB. Use the
Amazon RDS procedure rdsadmin.rdsadmin_rman_util.backup_tenant_incremental.

For more information about incremental backups, see Incremental backups in the Oracle Database
documentation.

This procedure applies only to the current tenant database and uses the following common
parameters for RMAN tasks:

• p_owner

RMAN tasks 3845

https://docs.oracle.com/database/121/RCMRF/rcmsynta006.htm#GUID-73642FF2-43C5-48B2-9969-99001C52EB50__BGBHABHH

Amazon Relational Database Service User Guide

• p_directory_name

• p_label

• p_parallel

• p_section_size_mb

• p_include_archive_logs

• p_include_controlfile

• p_optimize

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure is supported for the following Amazon RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0) CDB

• Oracle Database 19c (19.0.0) CDB

This procedure also uses the following additional parameter.

Parameter name Data
type

Valid
values

Default Required Description

p_level number 0, 1 0 No Specify 0 to enable
a full incremental
backup.

Specify 1 to enable
a non-cumulative
incremental backup.

The following example performs an incremental backup of the current tenant database using the
specified values for the parameters.

RMAN tasks 3846

Amazon Relational Database Service User Guide

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_tenant_incremental(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_level => 1,
 p_parallel => 4,
 p_section_size_mb => 10,
 p_tag => 'MY_INCREMENTAL_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Backing up a tablespace

You can back up a tablespace using the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.backup_tablespace.

This procedure uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

• p_parallel

• p_section_size_mb

• p_include_archive_logs

• p_include_controlfile

• p_optimize

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure also uses the following additional parameter.

RMAN tasks 3847

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

p_tablesp
ace_name

varchar2 A valid
tablespac
e name.

— Yes The name of the
tablespace to back
up.

This procedure is supported for the following Amazon RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

The following example performs a tablespace backup using the specified values for the
parameters.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_tablespace(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_tablespace_name => 'MYTABLESPACE',
 p_parallel => 4,
 p_section_size_mb => 10,
 p_tag => 'MYTABLESPACE_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Backing up a control file

You can back up a control file using the Amazon RDS procedure
rdsadmin.rdsadmin_rman_util.backup_current_controlfile.

This procedure uses the following common parameters for RMAN tasks:

• p_owner

• p_directory_name

• p_label

RMAN tasks 3848

Amazon Relational Database Service User Guide

• p_compress

• p_rman_to_dbms_output

• p_tag

For more information, see Common parameters for RMAN procedures.

This procedure is supported for the following Amazon RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

The following example backs up a control file using the specified values for the parameters.

BEGIN
 rdsadmin.rdsadmin_rman_util.backup_current_controlfile(
 p_owner => 'SYS',
 p_directory_name => 'MYDIRECTORY',
 p_tag => 'CONTROL_FILE_BACKUP',
 p_rman_to_dbms_output => FALSE);
END;
/

Performing block media recovery

You can recovery individual data blocks, known as block media recovery, using the Amazon RDS
procedures rdsadmin.rdsadmin_rman_util.recover_datafile_block. You can use this
overloaded procedure to recover either an individual data block or a range of data blocks.

This procedure uses the following common parameter for RMAN tasks:

• p_rman_to_dbms_output

For more information, see Common parameters for RMAN procedures.

This procedure uses the following additional parameters.

RMAN tasks 3849

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

p_datafile NUMBER A valid
data
file ID
number.

— Yes The data file containin
g the corrupt blocks.
Specify the data file in
either of the following
ways:

• The data file ID
number, which is
located in V$DATAFIL
E.FILE#

• The full data file
name, including the
path, located in V
$DATAFILE.NAME

p_block NUMBER A valid
integer.

— Yes The number of an
individual block to be
recovered.

The following parameter
s are mutually exclusive:

• p_block

• p_from_block and
p_to_block

p_from_block NUMBER A valid
integer.

— Yes The first block number
in a range of blocks to
be recovered.

The following parameter
s are mutually exclusive:

• p_block

RMAN tasks 3850

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

• p_from_block and
p_to_block

p_to_block NUMBER A valid
integer.

— Yes The last block number in
a range of blocks to be
recovered.

The following parameter
s are mutually exclusive:

• p_block

• p_from_block and
p_to_block

This procedure is supported for the following Amazon RDS for Oracle DB engine versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

The following example recovers block 100 in data file 5.

BEGIN
 rdsadmin.rdsadmin_rman_util.recover_datafile_block(
 p_datafile => 5,
 p_block => 100,
 p_rman_to_dbms_output => TRUE);
END;
/

The following example recovers blocks 100 to 150 in data file 5.

BEGIN
 rdsadmin.rdsadmin_rman_util.recover_datafile_block(
 p_datafile => 5,
 p_from_block => 100,
 p_to_block => 150,

RMAN tasks 3851

Amazon Relational Database Service User Guide

 p_rman_to_dbms_output => TRUE);
END;
/

Performing common scheduling tasks for Oracle DB instances

Some scheduler jobs owned by SYS can interfere with normal database operations. In such cases,
Oracle Support recommends that you modify the schedule. If you need to enable or disable
SYS jobs, test the operation on scheduled jobs in a test environment before implementing it in
a production environment. To perform tasks for Oracle Scheduler jobs owned by SYS, use the
Amazon RDS package rdsadmin.rdsadmin_dbms_scheduler.

The rdsadmin.rdsadmin_dbms_scheduler procedures are supported for the Amazon RDS for
Oracle DB engine versions shown in the following table. When using this package, you can specify
the SYS jobs listed in the table.

Database
release

Jobs enabled by default Jobs disabled by default

Oracle Database
19c

BSLN_MAINTAIN_STATS_JOB
CLEANUP_NON_EXIST_OBJ
CLEANUP_ONLINE_IND_BUILD
CLEANUP_ONLINE_PMO
CLEANUP_TAB_IOT_PMO
CLEANUP_TRANSIENT_PKG
CLEANUP_TRANSIENT_TYPE
DRA_REEVALUATE_OPEN_FAILU
RES
FILE_SIZE_UPD
ORA$AUTOTASK_CLEAN
PMO_DEFERRED_GIDX_MAINT_JO
B
PURGE_LOG
RSE$CLEAN_RECOVERABLE_SC
RIPT
SM$CLEAN_AUTO_SPLIT_MERGE

FGR$AUTOPURGE_JOB
FILE_WATCHER
HM_CREATE_OFFLINE_DICTIONARY
LOAD_OPATCH_INVENTORY
ORA$PREPLUGIN_BACKUP_JOB
XMLDB_NFS_CLEANUP_JOB

Oracle Database
21c

BSLN_MAINTAIN_STATS_JOB
CLEANUP_NON_EXIST_OBJ
CLEANUP_ONLINE_IND_BUILD

FGR$AUTOPURGE_JOB
FILE_WATCHER
HM_CREATE_OFFLINE_DICTIONARY

Oracle Scheduler tasks 3852

Amazon Relational Database Service User Guide

Database
release

Jobs enabled by default Jobs disabled by default

CLEANUP_ONLINE_PMO
CLEANUP_TAB_IOT_PMO
CLEANUP_TRANSIENT_PKG
CLEANUP_TRANSIENT_TYPE
DRA_REEVALUATE_OPEN_FAILU
RES
FILE_SIZE_UPD
ORA$AUTOTASK_CLEAN
PMO_DEFERRED_GIDX_MAINT_JO
B
PURGE_LOG

LOAD_OPATCH_INVENTORY
ORA$PREPLUGIN_BACKUP_JOB
ORA$_ATSK_AUTOSTS
XMLDB_NFS_CLEANUP_JOB

Common parameters for Oracle Scheduler procedures

To perform tasks with Oracle Scheduler, use procedures in the Amazon RDS package
rdsadmin.rdsadmin_dbms_scheduler. Several parameters are common to the procedures in
the package. The package has the following common parameters.

Parameter name Data
type

Valid
values

Default Required Description

name varchar2 The
procedure
s listed
in the
table in
Performin
g
common
schedulin
g tasks
for
Oracle
DB
instances

— Yes The name of the job
to modify.

Oracle Scheduler tasks 3853

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

attribute varchar2 'REPEAT_I
NTERVAL' ,'SCHEDULE
_NAME'

– Yes Attribute to modify.

To modify the repeat
interval for the job,
specify 'REPEAT_I
NTERVAL' .

To modify the
schedule name for
the job, specify
'SCHEDULE_NAME' .

value varchar2 A valid
schedule
interval
or
schedule
name,
depending
on
attribute
used.

– Yes The new value of the
attribute.

Modifying DBMS_SCHEDULER jobs

To modify certain components of Oracle Scheduler, use the Oracle procedure
dbms_scheduler.set_attribute. For more information, see DBMS_SCHEDULER and
SET_ATTRIBUTE procedure in the Oracle documentation.

When working with Amazon RDS DB instances, prepend the schema name SYS to the object name.
The following example sets the resource plan attribute for the Monday window object.

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE(
 name => 'SYS.MONDAY_WINDOW',

Oracle Scheduler tasks 3854

https://docs.oracle.com/database/121/ARPLS/d_sched.htm#ARPLS72235
https://docs.oracle.com/database/121/ARPLS/d_sched.htm#ARPLS72399

Amazon Relational Database Service User Guide

 attribute => 'RESOURCE_PLAN',
 value => 'resource_plan_1');
END;
/

Modifying AutoTask maintenance windows

Amazon RDS for Oracle instances are created with default settings for maintenance windows.
Automated maintenance tasks such as optimizer statistics collection run during these windows. By
default, the maintenance windows turn on Oracle Database Resource Manager.

To modify the window, use the DBMS_SCHEDULER package. You might need to modify the
maintenance window settings for the following reasons:

• You want maintenance jobs to run at a different time, with different settings, or not at all. For
example, might want to modify the window duration, or change the repeat time and interval.

• You want to avoid the performance impact of enabling Resource Manager during maintenance.
For example, if the default maintenance plan is specified, and if the maintenance window opens
while the database is under load, you might see wait events such as resmgr:cpu quantum. This
wait event is related to Database Resource Manager. You have the following options:

• Ensure that maintenance windows are active during off-peak times for your DB instance.

• Disable the default maintenance plan by setting the resource_plan attribute to an empty
string.

• Set the resource_manager_plan parameter to FORCE: in your parameter group. If your
instance uses Enterprise Edition, this setting prevents Database Resource Manager plans from
activating.

To modify your maintenance window settings

1. Connect to your database using an Oracle SQL client.

2. Query the current configuration for a scheduler window.

The following example queries the configuration for MONDAY_WINDOW.

SELECT ENABLED, RESOURCE_PLAN, DURATION, REPEAT_INTERVAL
FROM DBA_SCHEDULER_WINDOWS
WHERE WINDOW_NAME='MONDAY_WINDOW';

Oracle Scheduler tasks 3855

Amazon Relational Database Service User Guide

The following output shows that the window is using the default values.

ENABLED RESOURCE_PLAN DURATION REPEAT_INTERVAL
--------------- ------------------------------ ----------------

TRUE DEFAULT_MAINTENANCE_PLAN +000 04:00:00
 freq=daily;byday=MON;byhour=22
 ;byminute=0;
 bysecond=0

3. Modify the window using the DBMS_SCHEDULER package.

The following example sets the resource plan to null so that the Resource Manager won't run
during the maintenance window.

BEGIN
 -- disable the window to make changes
 DBMS_SCHEDULER.DISABLE(name=>'"SYS"."MONDAY_WINDOW"',force=>TRUE);

 -- specify the empty string to use no plan
 DBMS_SCHEDULER.SET_ATTRIBUTE(name=>'"SYS"."MONDAY_WINDOW"',
 attribute=>'RESOURCE_PLAN', value=>'');

 -- re-enable the window
 DBMS_SCHEDULER.ENABLE(name=>'"SYS"."MONDAY_WINDOW"');
END;
/

The following example sets the maximum duration of the window to 2 hours.

BEGIN
 DBMS_SCHEDULER.DISABLE(name=>'"SYS"."MONDAY_WINDOW"',force=>TRUE);
 DBMS_SCHEDULER.SET_ATTRIBUTE(name=>'"SYS"."MONDAY_WINDOW"',
 attribute=>'DURATION', value=>'0 2:00:00');
 DBMS_SCHEDULER.ENABLE(name=>'"SYS"."MONDAY_WINDOW"');
END;
/

The following example sets the repeat interval to every Monday at 10 AM.

BEGIN

Oracle Scheduler tasks 3856

Amazon Relational Database Service User Guide

 DBMS_SCHEDULER.DISABLE(name=>'"SYS"."MONDAY_WINDOW"',force=>TRUE);
 DBMS_SCHEDULER.SET_ATTRIBUTE(name=>'"SYS"."MONDAY_WINDOW"',
 attribute=>'REPEAT_INTERVAL',
 value=>'freq=daily;byday=MON;byhour=10;byminute=0;bysecond=0');
 DBMS_SCHEDULER.ENABLE(name=>'"SYS"."MONDAY_WINDOW"');
END;
/

Setting the time zone for Oracle Scheduler jobs

To modify the time zone for Oracle Scheduler, you can use the Oracle procedure
dbms_scheduler.set_scheduler_attribute. For more information about the
dbms_scheduler package, see DBMS_SCHEDULER and SET_SCHEDULER_ATTRIBUTE in the
Oracle documentation.

To modify the current time zone setting

1. Connect to the database using a client such as SQL Developer. For more information, see
Connecting to your DB instance using Oracle SQL developer.

2. Set the default time zone as following, substituting your time zone for time_zone_name.

BEGIN
 DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE(
 attribute => 'default_timezone',
 value => 'time_zone_name'
);
END;
/

In the following example, you change the time zone to Asia/Shanghai.

Start by querying the current time zone, as shown following.

SELECT VALUE FROM DBA_SCHEDULER_GLOBAL_ATTRIBUTE WHERE
 ATTRIBUTE_NAME='DEFAULT_TIMEZONE';

The output shows that the current time zone is ETC/UTC.

VALUE

Oracle Scheduler tasks 3857

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_SCHEDULER.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_SCHEDULER.html#GUID-2AB97BF7-7154-4E6C-933F-B2659B18A907

Amazon Relational Database Service User Guide

Etc/UTC

Then you set the time zone to Asia/Shanghai.

BEGIN
 DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE(
 attribute => 'default_timezone',
 value => 'Asia/Shanghai'
);
END;
/

For more information about changing the system time zone, see Oracle time zone.

Turning off Oracle Scheduler jobs owned by SYS

To disable an Oracle Scheduler job owned by the SYS user, use the
rdsadmin.rdsadmin_dbms_scheduler.disable procedure.

This procedure uses the name common parameter for Oracle Scheduler tasks. For more
information, see Common parameters for Oracle Scheduler procedures.

The following example disables the SYS.CLEANUP_ONLINE_IND_BUILD Oracle Scheduler job.

BEGIN
 rdsadmin.rdsadmin_dbms_scheduler.disable('SYS.CLEANUP_ONLINE_IND_BUILD');
END;
/

Turning on Oracle Scheduler jobs owned by SYS

To turn on an Oracle Scheduler job owned by SYS, use the
rdsadmin.rdsadmin_dbms_scheduler.enable procedure.

This procedure uses the name common parameter for Oracle Scheduler tasks. For more
information, see Common parameters for Oracle Scheduler procedures.

The following example enables the SYS.CLEANUP_ONLINE_IND_BUILD Oracle Scheduler job.

BEGIN
 rdsadmin.rdsadmin_dbms_scheduler.enable('SYS.CLEANUP_ONLINE_IND_BUILD');

Oracle Scheduler tasks 3858

Amazon Relational Database Service User Guide

END;
/

Modifying the Oracle Scheduler repeat interval for jobs of CALENDAR type

To modify the repeat interval to modify a SYS-owned Oracle Scheduler job of CALENDAR type, use
the rdsadmin.rdsadmin_dbms_scheduler.disable procedure.

This procedure uses the following common parameters for Oracle Scheduler tasks:

• name

• attribute

• value

For more information, see Common parameters for Oracle Scheduler procedures.

The following example modifies the repeat interval of the SYS.CLEANUP_ONLINE_IND_BUILD
Oracle Scheduler job.

BEGIN
 rdsadmin.rdsadmin_dbms_scheduler.set_attribute(
 name => 'SYS.CLEANUP_ONLINE_IND_BUILD',
 attribute => 'repeat_interval',
 value => 'freq=daily;byday=FRI,SAT;byhour=20;byminute=0;bysecond=0');
END;
/

Modifying the Oracle Scheduler repeat interval for jobs of NAMED type

Some Oracle Scheduler jobs use a schedule name instead of an interval. For this type of
jobs, you must create a new named schedule in the master user schema. Use the standard
Oracle sys.dbms_scheduler.create_schedule procedure to do this. Also, use the
rdsadmin.rdsadmin_dbms_scheduler.set_attribute procedure to assign the new
named schedule to the job.

This procedure uses the following common parameter for Oracle Scheduler tasks:

• name

• attribute

Oracle Scheduler tasks 3859

Amazon Relational Database Service User Guide

• value

For more information, see Common parameters for Oracle Scheduler procedures.

The following example modifies the repeat interval of the SYS.BSLN_MAINTAIN_STATS_JOB
Oracle Scheduler job.

BEGIN
 DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name => 'rds_master_user.new_schedule',
 start_date => SYSTIMESTAMP,
 repeat_interval =>
 'freq=daily;byday=MON,TUE,WED,THU,FRI;byhour=0;byminute=0;bysecond=0',
 end_date => NULL,
 comments => 'Repeats daily forever');
END;
/

BEGIN
 rdsadmin.rdsadmin_dbms_scheduler.set_attribute (
 name => 'SYS.BSLN_MAINTAIN_STATS_JOB',
 attribute => 'schedule_name',
 value => 'rds_master_user.new_schedule');
END;
/

Turning off autocommit for Oracle Scheduler job creation

When DBMS_SCHEDULER.CREATE_JOB creates Oracle Scheduler jobs, it creates the jobs
immediately and commits the changes. You might need to incorporate the creation of Oracle
Scheduler jobs in the user transaction to do the following:

• Roll back the Oracle Schedule job when the user transaction is rolled back.

• Create the Oracle Scheduler job when the main user transaction is committed.

You can use the procedure rdsadmin.rdsadmin_dbms_scheduler.set_no_commit_flag
to turn on this behavior. This procedure takes no parameters. You can use this procedure in the
following RDS for Oracle releases:

• 21.0.0.0.ru-2022-07.rur-2022-07.r1 and higher

Oracle Scheduler tasks 3860

Amazon Relational Database Service User Guide

• 19.0.0.0.ru-2022-07.rur-2022-07.r1 and higher

The following example turns off autocommit for Oracle Scheduler, creates an Oracle Scheduler job,
and then rolls back the transaction. Because autocommit is turned off, the database also rolls back
the creation of the Oracle Scheduler job.

BEGIN
 rdsadmin.rdsadmin_dbms_scheduler.set_no_commit_flag;
 DBMS_SCHEDULER.CREATE_JOB(job_name => 'EMPTY_JOB',
 job_type => 'PLSQL_BLOCK',
 job_action => 'begin null; end;',
 auto_drop => false);
 ROLLBACK;
END;
/

PL/SQL procedure successfully completed.

SELECT * FROM DBA_SCHEDULER_JOBS WHERE JOB_NAME='EMPTY_JOB';

no rows selected

Diagnosing problems with RDS for Oracle DB instances

Oracle Database includes a fault diagnosability infrastructure that you can use to investigate
database problems. In Oracle terminology, a problem is a critical error such as a code bug or data
corruption. An incident is the occurrence of a problem. If the same error occurs three times, then
the infrastructure shows three incidents of this problem. For more information, see Diagnosing and
resolving problems in the Oracle Database documentation.

The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility is an Oracle command-
line tool that you use to manage diagnostic data. For example, you can use this tool to investigate
problems and package diagnostic data. An incident package includes diagnostic data for an incident
or all incidents that reference a specific problem. You can upload an incident package, which is
implemented as a .zip file, to Oracle Support.

To deliver a managed service experience, Amazon RDS doesn't provide shell access to ADRCI.
To perform diagnostic tasks for your RDS for Oracle DB instance, use the Amazon RDS package
rdsadmin.rdsadmin_adrci_util.

Diagnosing problems 3861

https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/diagnosing-and-resolving-problems.html#GUID-8DEB1BE0-8FB9-4FB2-A19A-17CF6F5791C3
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/diagnosing-and-resolving-problems.html#GUID-8DEB1BE0-8FB9-4FB2-A19A-17CF6F5791C3

Amazon Relational Database Service User Guide

By using the functions in rdsadmin_adrci_util, you can list and package problems and
incidents, and also show trace files. All functions return a task ID. This ID forms part of the name
of log file that contains the ADRCI output, as in dbtask-task_id.log. The log file resides in
the BDUMP directory. You can download the log file by following the procedure described in
Downloading a database log file.

Common parameters for diagnostic procedures

To perform diagnostic tasks, use functions in the Amazon RDS package
rdsadmin.rdsadmin_adrci_util. The package has the following common parameters.

Parameter name Data
type

Valid
values

Default Required Description

incident_id number A valid
incident
ID or null

Null No If the value is null,
the function shows
all incidents. If the
value isn't null and
represents a valid
incident ID, the
function shows the
specified incident.

problem_id number A valid
problem
ID or null

Null No If the value is null,
the function shows
all problems. If the
value isn't null and
represents a valid
problem ID, the
function shows the
specified problem.

last number A valid
integer
greater
than 0 or
null

Null No If the value is null,
then the function
displays at most 50
items. If the value
isn't null, the function

Diagnosing problems 3862

Amazon Relational Database Service User Guide

Parameter name Data
type

Valid
values

Default Required Description

displays the specified
number.

Listing incidents

To list diagnostic incidents for Oracle, use the Amazon RDS function
rdsadmin.rdsadmin_adrci_util.list_adrci_incidents. You can list incidents in either
basic or detailed mode. By default, the function lists the 50 most recent incidents.

This function uses the following common parameters:

• incident_id

• problem_id

• last

If you specify incident_id and problem_id, then incident_id overrides problem_id. For
more information, see Common parameters for diagnostic procedures.

This function uses the following additional parameter.

Parameter name Data
type

Valid
values

Default Required Description

detail boolean TRUE or
FALSE

FALSE No If TRUE, the function
lists incidents in
detail mode. If
FALSE, the function
lists incidents in basic
mode.

To list all incidents, query the rdsadmin.rdsadmin_adrci_util.list_adrci_incidents
function without any arguments. The query returns the task ID.

SQL> SELECT rdsadmin.rdsadmin_adrci_util.list_adrci_incidents AS task_id FROM DUAL;

Diagnosing problems 3863

Amazon Relational Database Service User Guide

TASK_ID

1590786706158-3126

Or call the rdsadmin.rdsadmin_adrci_util.list_adrci_incidents function without
any arguments and store the output in a SQL client variable. You can use the variable in other
statements.

SQL> VAR task_id VARCHAR2(80);
SQL> EXEC :task_id := rdsadmin.rdsadmin_adrci_util.list_adrci_incidents;

PL/SQL procedure successfully completed.

To read the log file, call the Amazon RDS procedure
rdsadmin.rds_file_util.read_text_file. Supply the task ID as part of the file name. The
following output shows three incidents: 53523, 53522, and 53521.

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log'));

TEXT

2020-05-29 21:11:46.193 UTC [INFO] Listing ADRCI incidents.
2020-05-29 21:11:46.256 UTC [INFO]
ADR Home = /rdsdbdata/log/diag/rdbms/orcl_a/ORCL:

INCIDENT_ID PROBLEM_KEY CREATE_TIME
----------- ---
 --
53523 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_003 2020-05-29
 20:15:20.928000 +00:00
53522 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_002 2020-05-29
 20:15:15.247000 +00:00
53521 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_001 2020-05-29
 20:15:06.047000 +00:00
3 rows fetched

2020-05-29 21:11:46.256 UTC [INFO] The ADRCI incidents were successfully listed.
2020-05-29 21:11:46.256 UTC [INFO] The task finished successfully.

Diagnosing problems 3864

Amazon Relational Database Service User Guide

14 rows selected.

To list a particular incident, specify its ID using the incident_id parameter. In the following
example, you query the log file for incident 53523 only.

SQL> EXEC :task_id :=
 rdsadmin.rdsadmin_adrci_util.list_adrci_incidents(incident_id=>53523);

PL/SQL procedure successfully completed.

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log'));

TEXT
--
2020-05-29 21:15:25.358 UTC [INFO] Listing ADRCI incidents.
2020-05-29 21:15:25.426 UTC [INFO]
ADR Home = /rdsdbdata/log/diag/rdbms/orcl_a/ORCL:

INCIDENT_ID PROBLEM_KEY
 CREATE_TIME
-------------------- ---

53523 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_003
 2020-05-29 20:15:20.928000 +00:00
1 rows fetched

2020-05-29 21:15:25.427 UTC [INFO] The ADRCI incidents were successfully listed.
2020-05-29 21:15:25.427 UTC [INFO] The task finished successfully.

12 rows selected.

Listing problems

To list diagnostic problems for Oracle, use the Amazon RDS function
rdsadmin.rdsadmin_adrci_util.list_adrci_problems.

By default, the function lists the 50 most recent problems.

This function uses the common parameters problem_id and last. For more information, see
Common parameters for diagnostic procedures.

Diagnosing problems 3865

Amazon Relational Database Service User Guide

To get the task ID for all problems, call the
rdsadmin.rdsadmin_adrci_util.list_adrci_problems function without any arguments,
and store the output in a SQL client variable.

SQL> EXEC :task_id := rdsadmin.rdsadmin_adrci_util.list_adrci_problems;

PL/SQL procedure successfully completed.

To read the log file, call the rdsadmin.rds_file_util.read_text_file function, supplying
the task ID as part of the file name. In the following output, the log file shows three problems: 1, 2,
and 3.

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log'));

TEXT
--
2020-05-29 21:18:50.764 UTC [INFO] Listing ADRCI problems.
2020-05-29 21:18:50.829 UTC [INFO]
ADR Home = /rdsdbdata/log/diag/rdbms/orcl_a/ORCL:

PROBLEM_ID PROBLEM_KEY LAST_INCIDENT
 LASTINC_TIME
---------- --- -------------

2 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_003 53523
 2020-05-29 20:15:20.928000 +00:00
3 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_002 53522
 2020-05-29 20:15:15.247000 +00:00
1 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_001 53521
 2020-05-29 20:15:06.047000 +00:00
3 rows fetched

2020-05-29 21:18:50.829 UTC [INFO] The ADRCI problems were successfully listed.
2020-05-29 21:18:50.829 UTC [INFO] The task finished successfully.

14 rows selected.

In the following example, you list problem 3 only.

SQL> EXEC :task_id := rdsadmin.rdsadmin_adrci_util.list_adrci_problems(problem_id=>3);

Diagnosing problems 3866

Amazon Relational Database Service User Guide

PL/SQL procedure successfully completed.

To read the log file for problem 3, call rdsadmin.rds_file_util.read_text_file. Supply the
task ID as part of the file name.

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log'));

TEXT

2020-05-29 21:19:42.533 UTC [INFO] Listing ADRCI problems.
2020-05-29 21:19:42.599 UTC [INFO]
ADR Home = /rdsdbdata/log/diag/rdbms/orcl_a/ORCL:

PROBLEM_ID PROBLEM_KEY LAST_INCIDENT
 LASTINC_TIME
---------- --- -------------

3 ORA 700 [EVENT_CREATED_INCIDENT] [942] [SIMULATED_ERROR_002 53522
 2020-05-29 20:15:15.247000 +00:00
1 rows fetched

2020-05-29 21:19:42.599 UTC [INFO] The ADRCI problems were successfully listed.
2020-05-29 21:19:42.599 UTC [INFO] The task finished successfully.

12 rows selected.

Creating incident packages

You can create incident packages using the Amazon RDS function
rdsadmin.rdsadmin_adrci_util.create_adrci_package. The output is a .zip file that you
can supply to Oracle Support.

This function uses the following common parameters:

• problem_id

• incident_id

Diagnosing problems 3867

Amazon Relational Database Service User Guide

Make sure to specify one of the preceding parameters. If you specify both parameters,
incident_id overrides problem_id. For more information, see Common parameters for
diagnostic procedures.

To create a package for a specific incident, call the Amazon RDS function
rdsadmin.rdsadmin_adrci_util.create_adrci_package with the incident_id
parameter. The following example creates a package for incident 53523.

SQL> EXEC :task_id :=
 rdsadmin.rdsadmin_adrci_util.create_adrci_package(incident_id=>53523);

PL/SQL procedure successfully completed.

To read the log file, call the rdsadmin.rds_file_util.read_text_file. You can supply
the task ID as part of the file name. The output shows that you generated incident package
ORA700EVE_20200529212043_COM_1.zip.

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log'));

TEXT
--
2020-05-29 21:20:43.031 UTC [INFO] The ADRCI package is being created.
2020-05-29 21:20:47.641 UTC [INFO] Generated package 1 in file /rdsdbdata/log/trace/
ORA700EVE_20200529212043_COM_1.zip, mode complete
2020-05-29 21:20:47.642 UTC [INFO] The ADRCI package was successfully created.
2020-05-29 21:20:47.642 UTC [INFO] The task finished successfully.

To package diagnostic data for a particular problem, specify its ID using the problem_id
parameter. In the following example, you package data for problem 3 only.

SQL> EXEC :task_id := rdsadmin.rdsadmin_adrci_util.create_adrci_package(problem_id=>3);

PL/SQL procedure successfully completed.

To read the task output, call rdsadmin.rds_file_util.read_text_file, supplying
the task ID as part of the file name. The output shows that you generated incident package
ORA700EVE_20200529212111_COM_1.zip.

Diagnosing problems 3868

Amazon Relational Database Service User Guide

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log'));

TEXT
--
2020-05-29 21:21:11.050 UTC [INFO] The ADRCI package is being created.
2020-05-29 21:21:15.646 UTC [INFO] Generated package 2 in file /rdsdbdata/log/trace/
ORA700EVE_20200529212111_COM_1.zip, mode complete
2020-05-29 21:21:15.646 UTC [INFO] The ADRCI package was successfully created.
2020-05-29 21:21:15.646 UTC [INFO] The task finished successfully.

You can also download the log file. For more information, see Downloading a database log file.

Showing trace files

You can use the Amazon RDS function
rdsadmin.rdsadmin_adrci_util.show_adrci_tracefile to list trace files under the trace
directory and all incident directories under the current ADR home. You can also show the contents
of trace files and incident trace files.

This function uses the following parameter.

Parameter name Data
type

Valid
values

Default Required Description

filename varchar2 A valid
trace file
name

Null No If the value is null,
the function shows
all trace files. If it isn't
null, the function
shows the specified
 file.

To show the trace file, call the Amazon RDS function
rdsadmin.rdsadmin_adrci_util.show_adrci_tracefile.

SQL> EXEC :task_id := rdsadmin.rdsadmin_adrci_util.show_adrci_tracefile;

PL/SQL procedure successfully completed.

Diagnosing problems 3869

Amazon Relational Database Service User Guide

To list the trace file names, call the Amazon RDS procedure
rdsadmin.rds_file_util.read_text_file, supplying the task ID as part of the file name.

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log')) WHERE TEXT LIKE '%/alert_%';

TEXT

 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-28
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-27
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-26
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-25
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-24
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-23
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-22
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log.2020-05-21
 diag/rdbms/orcl_a/ORCL/trace/alert_ORCL.log

9 rows selected.

In the following example, you generate output for alert_ORCL.log.

SQL> EXEC :task_id := rdsadmin.rdsadmin_adrci_util.show_adrci_tracefile('diag/rdbms/
orcl_a/ORCL/trace/alert_ORCL.log');

PL/SQL procedure successfully completed.

To read the log file, call rdsadmin.rds_file_util.read_text_file. Supply the task ID as
part of the file name. The output shows the first 10 lines of alert_ORCL.log.

SQL> SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||:task_id||'.log')) WHERE ROWNUM <= 10;

TEXT

2020-05-29 21:24:02.083 UTC [INFO] The trace files are being displayed.
2020-05-29 21:24:02.128 UTC [INFO] Thu May 28 23:59:10 2020
Thread 1 advanced to log sequence 2048 (LGWR switch)
 Current log# 3 seq# 2048 mem# 0: /rdsdbdata/db/ORCL_A/onlinelog/o1_mf_3_hbl2p8xs_.log
Thu May 28 23:59:10 2020
Archived Log entry 2037 added for thread 1 sequence 2047 ID 0x5d62ce43 dest 1:
Fri May 29 00:04:10 2020

Diagnosing problems 3870

Amazon Relational Database Service User Guide

Thread 1 advanced to log sequence 2049 (LGWR switch)
 Current log# 4 seq# 2049 mem# 0: /rdsdbdata/db/ORCL_A/onlinelog/o1_mf_4_hbl2qgmh_.log
Fri May 29 00:04:10 2020

10 rows selected.

You can also download the log file. For more information, see Downloading a database log file.

Performing miscellaneous tasks for Oracle DB instances

Following, you can find how to perform miscellaneous DBA tasks on your Amazon RDS DB
instances running Oracle. To deliver a managed service experience, Amazon RDS doesn't provide
shell access to DB instances, and restricts access to certain system procedures and tables that
require advanced privileges.

Topics

• Creating and dropping directories in the main data storage space

• Listing files in a DB instance directory

• Reading files in a DB instance directory

• Accessing Opatch files

• Managing advisor tasks

• Transporting tablespaces

Creating and dropping directories in the main data storage space

To create directories, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.create_directory. You can create up to 10,000 directories,
all located in your main data storage space. To drop directories, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.drop_directory.

The create_directory and drop_directory procedures have the following required
parameter.

Parameter name Data type Default Required Description

p_directory_name VARCHAR2 — Yes The name of the
directory.

Other tasks 3871

Amazon Relational Database Service User Guide

The following example creates a new directory named PRODUCT_DESCRIPTIONS.

EXEC rdsadmin.rdsadmin_util.create_directory(p_directory_name =>
 'product_descriptions');

The data dictionary stores the directory name in uppercase. You can list the directories by querying
DBA_DIRECTORIES. The system chooses the actual host pathname automatically. The following
example gets the directory path for the directory named PRODUCT_DESCRIPTIONS:

SELECT DIRECTORY_PATH
 FROM DBA_DIRECTORIES
 WHERE DIRECTORY_NAME='PRODUCT_DESCRIPTIONS';

DIRECTORY_PATH
--
/rdsdbdata/userdirs/01

The master user name for the DB instance has read and write privileges in the new directory,
and can grant access to other users. EXECUTE privileges are not available for directories on a DB
instance. Directories are created in your main data storage space and will consume space and I/O
bandwidth.

The following example drops the directory named PRODUCT_DESCRIPTIONS.

EXEC rdsadmin.rdsadmin_util.drop_directory(p_directory_name => 'product_descriptions');

Note

You can also drop a directory by using the Oracle SQL command DROP DIRECTORY.

Dropping a directory doesn't remove its contents. Because the
rdsadmin.rdsadmin_util.create_directory procedure can reuse pathnames, files in
dropped directories can appear in a newly created directory. Before you drop a directory, we
recommend that you use UTL_FILE.FREMOVE to remove files from the directory. For more
information, see FREMOVE procedure in the Oracle documentation.

Other tasks 3872

https://docs.oracle.com/database/121/ARPLS/u_file.htm#ARPLS70924

Amazon Relational Database Service User Guide

Listing files in a DB instance directory

To list the files in a directory, use the Amazon RDS procedure
rdsadmin.rds_file_util.listdir. This procedure isn't supported on an Oracle replica. The
listdir procedure has the following parameters.

Parameter name Data type Default Required Description

p_directory varchar2 — Yes The name of the
directory to list.

The following example grants read/write privileges on the directory PRODUCT_DESCRIPTIONS to
user rdsadmin, and then lists the files in this directory.

GRANT READ,WRITE ON DIRECTORY PRODUCT_DESCRIPTIONS TO rdsadmin;
SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir(p_directory =>
 'PRODUCT_DESCRIPTIONS'));

Reading files in a DB instance directory

To read a text file, use the Amazon RDS procedure
rdsadmin.rds_file_util.read_text_file. The read_text_file procedure has the
following parameters.

Parameter name Data type Default Required Description

p_directory varchar2 — Yes The name of the
directory that contains
the file.

p_filename varchar2 — Yes The name of the file to
read.

The following example creates the file rice.txt in the directory PRODUCT_DESCRIPTIONS.

declare
 fh sys.utl_file.file_type;

Other tasks 3873

Amazon Relational Database Service User Guide

begin
 fh := utl_file.fopen(location=>'PRODUCT_DESCRIPTIONS', filename=>'rice.txt',
 open_mode=>'w');
 utl_file.put(file=>fh, buffer=>'AnyCompany brown rice, 15 lbs');
 utl_file.fclose(file=>fh);
end;
/

The following example reads the file rice.txt from the directory PRODUCT_DESCRIPTIONS.

SELECT * FROM TABLE
 (rdsadmin.rds_file_util.read_text_file(
 p_directory => 'PRODUCT_DESCRIPTIONS',
 p_filename => 'rice.txt'));

Accessing Opatch files

Opatch is an Oracle utility that enables the application and rollback of patches to Oracle
software. The Oracle mechanism for determining which patches have been applied to a
database is the opatch lsinventory command. To open service requests for Bring Your Own
Licence (BYOL) customers, Oracle Support requests the lsinventory file and sometimes the
lsinventory_detail file generated by Opatch.

To deliver a managed service experience, Amazon RDS doesn't provide shell access to Opatch.
Instead, the lsinventory-dbv.txt in the BDUMP directory contains the patch information
related to your current engine version. When you perform a minor or major upgrade, Amazon
RDS updates lsinventory-dbv.txt within an hour of applying the patch. To verify the
applied patches, read lsinventory-dbv.txt. This action is similar to running the opatch
lsinventory command.

Note

The examples in this section assume that the BDUMP directory is named BDUMP. On a read
replica, the BDUMP directory name is different. To learn how to get the BDUMP name by
querying V$DATABASE.DB_UNIQUE_NAME on a read replica, see Listing files.

The inventory files use the Amazon RDS naming convention lsinventory-dbv.txt
and lsinventory_detail-dbv.txt, where dbv is the full name of your DB version.

Other tasks 3874

Amazon Relational Database Service User Guide

The lsinventory-dbv.txt file is available on all DB versions. The corresponding
lsinventory_detail-dbv.txt is available on 19.0.0.0, ru-2020-01.rur-2020-01.r1 or later.

For example, if your DB version is 19.0.0.0.ru-2021-07.rur-2021-07.r1, then your inventory files
have the following names.

lsinventory-19.0.0.0.ru-2021-07.rur-2021-07.r1.txt
lsinventory_detail-19.0.0.0.ru-2021-07.rur-2021-07.r1.txt

Ensure that you download the files that match the current version of your DB engine.

Console

To download an inventory file using the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

5. Scroll down to the Logs section.

6. In the Logs section, search for lsinventory.

7. Select the file that you want to access, and then choose Download.

SQL

To read the lsinventory-dbv.txt in a SQL client, you can use a SELECT
statement. For this technique, use either of the following rdsadmin functions:
rdsadmin.rds_file_util.read_text_file or rdsadmin.tracefile_listing.

In the following sample query, replace dbv with your Oracle DB version. For example, your DB
version might be 19.0.0.0.ru-2020-04.rur-2020-04.r1.

SELECT text
FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP', 'lsinventory-dbv.txt'));

Other tasks 3875

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

PL/SQL

To read the lsinventory-dbv.txt in a SQL client, you can write a PL/SQL program. This
program uses utl_file to read the file, and dbms_output to print it. These are Oracle-supplied
packages.

In the following sample program, replace dbv with your Oracle DB version. For example, your DB
version might be 19.0.0.0.ru-2020-04.rur-2020-04.r1.

SET SERVEROUTPUT ON
DECLARE
 v_file SYS.UTL_FILE.FILE_TYPE;
 v_line VARCHAR2(1000);
 v_oracle_home_type VARCHAR2(1000);
 c_directory VARCHAR2(30) := 'BDUMP';
 c_output_file VARCHAR2(30) := 'lsinventory-dbv.txt';
BEGIN
 v_file := SYS.UTL_FILE.FOPEN(c_directory, c_output_file, 'r');
 LOOP
 BEGIN
 SYS.UTL_FILE.GET_LINE(v_file, v_line,1000);
 DBMS_OUTPUT.PUT_LINE(v_line);
 EXCEPTION
 WHEN no_data_found THEN
 EXIT;
 END;
 END LOOP;
END;
/

Or query rdsadmin.tracefile_listing, and spool the output to a file. The following example
spools the output to /tmp/tracefile.txt.

SPOOL /tmp/tracefile.txt
SELECT *
FROM rdsadmin.tracefile_listing
WHERE FILENAME LIKE 'lsinventory%';
SPOOL OFF;

Other tasks 3876

Amazon Relational Database Service User Guide

Managing advisor tasks

Oracle Database includes a number of advisors. Each advisor supports automated and manual
tasks. You can use procedures in the rdsadmin.rdsadmin_util package to manage some
advisor tasks.

The advisor task procedures are available in the following engine versions:

• Oracle Database 21c (21.0.0)

• Version 19.0.0.0.ru-2021-01.rur-2021-01.r1 and higher Oracle Database 19c versions

For more information, see Version 19.0.0.0.ru-2021-01.rur-2021-01.r1 in the Amazon RDS for
Oracle Release Notes.

Topics

• Setting parameters for advisor tasks

• Disabling AUTO_STATS_ADVISOR_TASK

• Re-enabling AUTO_STATS_ADVISOR_TASK

Setting parameters for advisor tasks

To set parameters for some advisor tasks, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.advisor_task_set_parameter. The
advisor_task_set_parameter procedure has the following parameters.

Parameter name Data
type

Default Required Description

p_task_name varchar2 — Yes The name of the advisor task whose
parameters you want to change. The
following values are valid:

• AUTO_STATS_ADVISOR_TASK

• INDIVIDUAL_STATS_ADVISOR_TASK

• SYS_AUTO_SPM_EVOLVE_TASK

• SYS_AUTO_SQL_TUNING_TASK

Other tasks 3877

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html#oracle-version-RU-RUR.19.0.0.0.ru-2021-01.rur-2021-01.r1

Amazon Relational Database Service User Guide

Parameter name Data
type

Default Required Description

p_parameter varchar2 — Yes The name of the task parameter. To find
valid parameters for an advisor task, run the
following query. Substitute p_task_name
with a valid value for p_task_name :

COL PARAMETER_NAME FORMAT a30
COL PARAMETER_VALUE FORMAT a30
SELECT PARAMETER_NAME, PARAMETER
_VALUE
FROM DBA_ADVISOR_PARAMETERS
WHERE TASK_NAME=' p_task_name '
AND PARAMETER_VALUE != 'UNUSED'
ORDER BY PARAMETER_NAME;

p_value varchar2 — Yes The value for a task parameter. To find valid
values for task parameters, run the following
query. Substitute p_task_name with a valid
value for p_task_name :

COL PARAMETER_NAME FORMAT a30
COL PARAMETER_VALUE FORMAT a30
SELECT PARAMETER_NAME, PARAMETER
_VALUE
FROM DBA_ADVISOR_PARAMETERS
WHERE TASK_NAME=' p_task_name '
AND PARAMETER_VALUE != 'UNUSED'
ORDER BY PARAMETER_NAME;

The following PL/SQL program sets ACCEPT_PLANS to FALSE for SYS_AUTO_SPM_EVOLVE_TASK.
The SQL Plan Management automated task verifies the plans and generates a report of its findings,
but does not evolve the plans automatically. You can use a report to identify new SQL plan
baselines and accept them manually.

BEGIN
 rdsadmin.rdsadmin_util.advisor_task_set_parameter(

Other tasks 3878

Amazon Relational Database Service User Guide

 p_task_name => 'SYS_AUTO_SPM_EVOLVE_TASK',
 p_parameter => 'ACCEPT_PLANS',
 p_value => 'FALSE');
END;

The following PL/SQL program sets EXECUTION_DAYS_TO_EXPIRE to 10 for
AUTO_STATS_ADVISOR_TASK. The predefined task AUTO_STATS_ADVISOR_TASK runs
automatically in the maintenance window once per day. The example sets the retention period for
the task execution to 10 days.

BEGIN
 rdsadmin.rdsadmin_util.advisor_task_set_parameter(
 p_task_name => 'AUTO_STATS_ADVISOR_TASK',
 p_parameter => 'EXECUTION_DAYS_TO_EXPIRE',
 p_value => '10');
END;

Disabling AUTO_STATS_ADVISOR_TASK

To disable AUTO_STATS_ADVISOR_TASK, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.advisor_task_drop. The advisor_task_drop procedure
accepts the following parameter.

Parameter name Data
type

Default Required Description

p_task_name varchar2 — Yes The name of the advisor task to be
disabled. The only valid value is AUTO_STAT
S_ADVISOR_TASK .

The following command drops AUTO_STATS_ADVISOR_TASK.

EXEC rdsadmin.rdsadmin_util.advisor_task_drop('AUTO_STATS_ADVISOR_TASK')

You can re-enable AUTO_STATS_ADVISOR_TASK using
rdsadmin.rdsadmin_util.dbms_stats_init.

Other tasks 3879

Amazon Relational Database Service User Guide

Re-enabling AUTO_STATS_ADVISOR_TASK

To re-enable AUTO_STATS_ADVISOR_TASK, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.dbms_stats_init. The dbms_stats_init procedure takes no
parameters.

The following command re-enables AUTO_STATS_ADVISOR_TASK.

EXEC rdsadmin.rdsadmin_util.dbms_stats_init()

Transporting tablespaces

Use the Amazon RDS package rdsadmin.rdsadmin_transport_util to copy a set of
tablespaces from an on-premises Oracle database to an RDS for Oracle DB instance. At the physical
level, the transportable tablespace feature incrementally copies source data files and metadata
files to your target instance. You can transfer the files using either Amazon EFS or Amazon S3. For
more information, see Migrating using Oracle transportable tablespaces.

Topics

• Importing transported tablespaces to your DB instance

• Importing transportable tablespace metadata into your DB instance

• Listing orphaned files after a tablespace import

• Deleting orphaned data files after a tablespace import

Importing transported tablespaces to your DB instance

Use the procedure rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces to
restore tablespaces that you have previously exported from a source DB instance. In the transport
phase, you back up your read-only tablespaces, export Data Pump metadata, transfer these files
to your target DB instance, and then import the tablespaces. For more information, see Phase 4:
Transport the tablespaces.

Syntax

FUNCTION import_xtts_tablespaces(
 p_tablespace_list IN CLOB,
 p_directory_name IN VARCHAR2,
 p_platform_id IN NUMBER DEFAULT 13,

Other tasks 3880

Amazon Relational Database Service User Guide

 p_parallel IN INTEGER DEFAULT 0) RETURN VARCHAR2;

Parameters

Parameter name Data type Default Required Description

p_tablespace_list CLOB — Yes The list of tablespaces to
import.

p_directory_name VARCHAR2 — Yes The directory that
contains the tablespace
backups.

p_platform_id NUMBER 13 No Provide a platform ID
that matches the one
specified during the
backup phase. To find a
list of platforms, query V
$TRANSPORTABLE_PL
ATFORM . The default
platform is Linux x86 64-
bit, which is little endian.

p_parallel INTEGER 0 No The degree of paralleli
sm. By default, paralleli
sm is disabled.

Examples

The following example imports the tablespaces TBS1, TBS2, and TBS3 from the directory
DATA_PUMP_DIR. The source platform is AIX-Based Systems (64-bit), which has the platform ID of
6. You can find the platform IDs by querying V$TRANSPORTABLE_PLATFORM.

VAR task_id CLOB

BEGIN
 :task_id:=rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces(
 'TBS1,TBS2,TBS3',
 'DATA_PUMP_DIR',

Other tasks 3881

Amazon Relational Database Service User Guide

 p_platform_id => 6);
END;
/

PRINT task_id

Importing transportable tablespace metadata into your DB instance

Use the procedure rdsadmin.rdsadmin_transport_util.import_xtts_metadata to import
transportable tablespace metadata into your RDS for Oracle DB instance. During the operation, the
status of the metadata import is shown in the table rdsadmin.rds_xtts_operation_info. For
more information, see Step 5: Import tablespace metadata on your target DB instance.

Syntax

PROCEDURE import_xtts_metadata(
 p_datapump_metadata_file IN SYS.DBA_DATA_FILES.FILE_NAME%TYPE,
 p_directory_name IN VARCHAR2,
 p_exclude_stats IN BOOLEAN DEFAULT FALSE,
 p_remap_tablespace_list IN CLOB DEFAULT NULL,
 p_remap_user_list IN CLOB DEFAULT NULL);

Parameters

Parameter name Data type Default Required Description

p_datapum
p_metadat
a_file

SYS.DBA_DATA_FILES
.FILE_NAME%TYPE

— Yes The name of the
Oracle Data Pump
file that contains
the metadata for
your transportable
tablespaces.

p_directo
ry_name

VARCHAR2 — Yes The directory that
contains the Data
Pump file.

p_exclude_stats BOOLEAN FALSE No Flag that indicates
whether to exclude
statistics.

Other tasks 3882

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

p_remap_t
ablespace_list

CLOB NULL No A list of tablespac
es to be remapped
during the
metadata import.
Use the format
from_tbs:to_tbs.
For example,
specify users:use
r_data .

p_remap_u
ser_list

CLOB NULL No A list of user
schemas to be
remapped during
the metadata
import. Use the
format from_sche
ma_name :to_schema
_name . For
example, specify
hr:human_
resources .

Examples

The example imports the tablespace metadata from the file xttdump.dmp, which is located in
directory DATA_PUMP_DIR.

BEGIN
 rdsadmin.rdsadmin_transport_util.import_xtts_metadata('xttdump.dmp','DATA_PUMP_DIR');
END;
/

Listing orphaned files after a tablespace import

Use the rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files
procedure to list data files that were orphaned after a tablespace

Other tasks 3883

Amazon Relational Database Service User Guide

import. After you identify the data files, you can delete them by calling
rdsadmin.rdsadmin_transport_util.cleanup_incomplete_xtts_import.

Syntax

FUNCTION list_xtts_orphan_files RETURN xtts_orphan_files_list_t PIPELINED;

Examples

The following example runs the procedure
rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files. The output shows two
data files that are orphaned.

SQL> SELECT * FROM TABLE(rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files);

FILENAME FILESIZE
-------------- ---------
datafile_7.dbf 104865792
datafile_8.dbf 104865792

Deleting orphaned data files after a tablespace import

Use the rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files procedure to
delete data files that were orphaned after a tablespace import. Running this command generates
a log file that uses the name format rds-xtts-delete_xtts_orphaned_files-YYYY-
MM-DD.HH24-MI-SS.FF.log in the BDUMP directory. Use the procedure
rdsadmin.rdsadmin_transport_util.cleanup_incomplete_xtts_import
to find the orphaned files. You can read the log file by calling the procedure
rdsadmin.rds_file_util.read_text_file. For more information, see Phase 6: Clean up
leftover files.

Syntax

PROCEDURE cleanup_incomplete_xtts_import(
 p_directory_name IN VARCHAR2);

Other tasks 3884

Amazon Relational Database Service User Guide

Parameters

Parameter name Data type Default Required Description

p_directory_name VARCHAR2 — Yes The directory that
contains the orphaned
data files.

Examples

The following example deletes the orphaned data files in DATA_PUMP_DIR.

BEGIN
 rdsadmin.rdsadmin_transport_util.cleanup_incomplete_xtts_import('DATA_PUMP_DIR');
END;
/

The following example reads the log file generated by the previous command.

SELECT *
FROM TABLE(rdsadmin.rds_file_util.read_text_file(
 p_directory => 'BDUMP',
 p_filename => 'rds-xtts-
delete_xtts_orphaned_files-2023-06-01.09-33-11.868894000.log'));

TEXT
--
orphan transported datafile datafile_7.dbf deleted.
orphan transported datafile datafile_8.dbf deleted.

Other tasks 3885

Amazon Relational Database Service User Guide

Configuring advanced RDS for Oracle features

RDS for Oracle supports various advanced features, including HugePages, an instance store, and
extended data types.

Topics

• Storing temporary data in an RDS for Oracle instance store

• Turning on HugePages for an RDS for Oracle instance

• Turning on extended data types in RDS for Oracle

Storing temporary data in an RDS for Oracle instance store

Use an instance store for the temporary tablespaces and the Database Smart Flash Cache (the flash
cache) on supported RDS for Oracle DB instance classes.

Topics

• Overview of the RDS for Oracle instance store

• Turning on an RDS for Oracle instance store

• Configuring an RDS for Oracle instance store

• Working with an instance store on an Oracle read replica

• Configuring a temporary tablespace group on an instance store and Amazon EBS

• Removing an RDS for Oracle instance store

Overview of the RDS for Oracle instance store

An instance store provides temporary block-level storage for an RDS for Oracle DB instance. You
can use an instance store for temporary storage of information that changes frequently.

An instance store is based on Non-Volatile Memory Express (NVMe) devices that are physically
attached to the host computer. The storage is optimized for low latency, random I/O performance,
and sequential read throughput.

The size of the instance store varies by DB instance type. For more information about the instance
store, see Amazon EC2 instance store in the Amazon Elastic Compute Cloud User Guide for Linux
Instances.

Configuring advanced RDS for Oracle features 3886

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Amazon Relational Database Service User Guide

Topics

• Types of data in the RDS for Oracle instance store

• Benefits of the RDS for Oracle instance store

• Supported instance classes for the RDS for Oracle instance store

• Supported engine versions for the RDS for Oracle instance store

• Supported AWS Regions for the RDS for Oracle instance store

• Cost of the RDS for Oracle instance store

Types of data in the RDS for Oracle instance store

You can place the following types of RDS for Oracle temporary data in an instance store:

A temporary tablespace

Oracle Database uses temporary tablespaces to store intermediate query results that don't fit
in memory. Larger queries can generate large amounts of intermediate data that needs to be
cached temporarily, but doesn't need to persist. In particular, a temporary tablespace is useful
for sorts, hash aggregations, and joins. If your RDS for Oracle DB instance uses the Enterprise
Edition or Standard Edition 2, you can place a temporary tablespace in an instance store.

The flash cache

The flash cache improves the performance of single-block random reads in the conventional
path. A best practice is to size the cache to accommodate most of your active data set. If your
RDS for Oracle DB instance uses the Enterprise Edition, you can place the flash cache in an
instance store.

By default, an instance store is configured for a temporary tablespace but not for the flash cache.
You can't place Oracle data files and database log files in an instance store.

Benefits of the RDS for Oracle instance store

You might consider using an instance store to store temporary files and caches that you can
afford to lose. If you want to improve DB performance, or if an increasing workload is causing
performance problems for your Amazon EBS storage, consider scaling to an instance class that
supports an instance store.

By placing your temporary tablespace and flash cache on an instance store, you get the following
benefits:

Configuring the instance store 3887

Amazon Relational Database Service User Guide

• Lower read latencies

• Higher throughput

• Reduced load on your Amazon EBS volumes

• Lower storage and snapshot costs because of reduced Amazon EBS load

• Less need to provision high IOPS, possibly lowering your overall cost

By placing your temporary tablespace on the instance store, you deliver an immediate performance
boost to queries that use temporary space. When you place the flash cache on the instance store,
cached block reads typically have much lower latency than Amazon EBS reads. The flash cache
needs to be "warmed up" before it delivers performance benefits. The cache warms up by itself
because the database writes blocks to the flash cache as they age out of the database buffer cache.

Note

In some cases, the flash cache causes performance overhead because of cache
management. Before you turn on the flash cache in a production environment, we
recommend that you analyze your workload and test the cache in a test environment.

Supported instance classes for the RDS for Oracle instance store

Amazon RDS supports the instance store for the following DB instance classes:

• db.m5d

• db.r5d

• db.x2idn

• db.x2iedn

RDS for Oracle supports the preceding DB instance classes for the BYOL licensing model only. For
more information, see Supported RDS for Oracle DB instance classes and Bring Your Own License
(BYOL) for EE and SE2.

To see the total instance storage for the supported DB instance types, run the following command
in the AWS CLI.

Configuring the instance store 3888

Amazon Relational Database Service User Guide

Example

aws ec2 describe-instance-types \
 --filters "Name=instance-type,Values=*5d.*large*" \
 --query "InstanceTypes[?contains(InstanceType,'m5d')||contains(InstanceType,'r5d')]
[InstanceType, InstanceStorageInfo.TotalSizeInGB]" \
 --output table

The preceding command returns the raw device size for the instance store. RDS for Oracle uses a
small portion of this space for configuration. The space in the instance store that is available for
temporary tablespaces or the flash cache is slightly smaller.

Supported engine versions for the RDS for Oracle instance store

The instance store is supported for the following RDS for Oracle engine versions:

• 21.0.0.0.ru-2022-01.rur-2022-01.r1 or higher Oracle Database 21c versions

• 19.0.0.0.ru-2021-10.rur-2021-10.r1 or higher Oracle Database 19c versions

Supported AWS Regions for the RDS for Oracle instance store

The instance store is available in all AWS Regions where one or more of these instance types are
supported. For more information on the db.m5d and db.r5d instance classes, see DB instance
classes. For more information on the instance classes supported by Amazon RDS for Oracle, see
RDS for Oracle DB instance classes.

Cost of the RDS for Oracle instance store

The cost of the instance store is built into the cost of the instance-store turned on instances. You
don't incur additional costs by enabling an instance store on an RDS for Oracle DB instance. For
more information about instance-store turned on instances, see Supported instance classes for the
RDS for Oracle instance store.

Turning on an RDS for Oracle instance store

To turn on the instance store for RDS for Oracle temporary data, do one of the following:

• Create an RDS for Oracle DB instance using a supported instance class. For more information, see
Creating an Amazon RDS DB instance.

Configuring the instance store 3889

Amazon Relational Database Service User Guide

• Modify an existing RDS for Oracle DB instance to use a supported instance class. For more
information, see Modifying an Amazon RDS DB instance.

Configuring an RDS for Oracle instance store

By default, 100% of instance store space is allocated to the temporary tablespace. To configure
the instance store to allocate space to the flash cache and temporary tablespace, set the following
parameters in the parameter group for your instance:

db_flash_cache_size={DBInstanceStore*{0,2,4,6,8,10}/10}

This parameter specifies the amount of storage space allocated for the flash cache.
This parameter is valid only for Oracle Database Enterprise Edition. The default value is
{DBInstanceStore*0/10}. If you set a nonzero value for db_flash_cache_size, your RDS
for Oracle instance enables the flash cache after you restart the instance.

rds.instance_store_temp_size={DBInstanceStore*{0,2,4,6,8,10}/10}

This parameter specifies the amount of storage space allocated for the temporary tablespace.
The default value is {DBInstanceStore*10/10}. This parameter is modifiable for Oracle
Database Enterprise Edition and read-only for Standard Edition 2. If you set a nonzero value for
rds.instance_store_temp_size, Amazon RDS allocates space in the instance store for the
temporary tablespace.

You can set the db_flash_cache_size and rds.instance_store_temp_size parameters
for DB instances that don't use an instance store. In this case, both settings evaluate to 0, which
turns off the feature. In this case, you can use the same parameter group for different instance
sizes and for instances that don't use an instance store. If you modify these parameters, make
sure to reboot the associated instances so that the changes can take effect.

Important

If you allocate space for a temporary tablespace, Amazon RDS doesn't create the
temporary tablespace automatically. To learn how to create the temporary tablespace
on the instance store, see Creating a temporary tablespace on the instance store.

The combined value of the preceding parameters must not exceed 10/10, or 100%. The following
table illustrates valid and invalid parameter settings.

Configuring the instance store 3890

Amazon Relational Database Service User Guide

db_flash_cache_size setting rds.instance_store_temp_size setting Explanation

db_flash_cache_size={DBInst
anceStore*0/10}

rds.instance_store_temp_size={DBInst
anceStore*10/10}

This is a valid
configuration
for all editions
of Oracle
Database.
Amazon RDS
allocates 100%
of instance
store space to
the temporary
tablespace. This
is the default.

db_flash_cache_size={DBInst
anceStore*10/10}

rds.instance_store_temp_size={DBInst
anceStore*0/10}

This is a valid
configuration
for Oracle
Database
Enterprise
Edition only.
Amazon RDS
allocates 100%
of instance
store space to
the flash cache.

db_flash_cache_size={DBInst
anceStore*2/10}

rds.instance_store_temp_size={DBInst
anceStore*8/10}

This is a valid
configuration
for Oracle
Database
Enterprise
Edition only.
Amazon RDS
allocates 20%
of instance
store space to

Configuring the instance store 3891

Amazon Relational Database Service User Guide

db_flash_cache_size setting rds.instance_store_temp_size setting Explanation

the flash cache,
and 80% of
instance store
space to the
temporary
tablespace.

db_flash_cache_size={DBInst
anceStore*6/10}

rds.instance_store_temp_size={DBInst
anceStore*4/10}

This is a valid
configuration
for Oracle
Database
Enterprise
Edition only.
Amazon RDS
allocates 60%
of instance
store space to
the flash cache,
and 40% of
instance store
space to the
temporary
tablespace.

Configuring the instance store 3892

Amazon Relational Database Service User Guide

db_flash_cache_size setting rds.instance_store_temp_size setting Explanation

db_flash_cache_size={DBInst
anceStore*2/10}

rds.instance_store_temp_size={DBInst
anceStore*4/10}

This is a valid
configuration
for Oracle
Database
Enterprise
Edition only.
Amazon RDS
allocates 20%
of instance
store space to
the flash cache,
and 40% of
instance store
space to the
temporary
tablespace.

db_flash_cache_size={DBInst
anceStore*8/10}

rds.instance_store_temp_size={DBInst
anceStore*8/10}

This is an
invalid
configuration
because the
combined
percentage of
instance store
space exceeds
100%. In such
cases, Amazon
RDS fails the
attempt.

Considerations when changing the DB instance type

If you change your DB instance type, it can affect the configuration of the flash cache or the
temporary tablespace on the instance store. Consider the following modifications and their effects:

Configuring the instance store 3893

Amazon Relational Database Service User Guide

You scale up or scale down the DB instance that supports the instance store.

The following values increase or decrease proportionally to the new size of the instance store:

• The new size of the flash cache.

• The space allocated to the temporary tablespaces that reside in the instance store.

For example, the setting db_flash_cache_size={DBInstanceStore*6/10} on a
db.m5d.4xlarge instance provides around 340 GB of flash cache space. If you scale up the
instance type to db.m5d.8xlarge, the flash cache space increases to around 680 GB.

You modify a DB instance that doesn't use an instance store to an instance that does use an
instance store.

If db_flash_cache_size is set to a value larger than 0, the flash cache is configured. If
rds.instance_store_temp_size is set to a value larger than 0, the instance store space
is allocated for use by a temporary tablespace. RDS for Oracle doesn't move tempfiles to the
instance store automatically. For information about using the allocated space, see Creating a
temporary tablespace on the instance store or Adding a tempfile to the instance store on a read
replica.

You modify a DB instance that uses an instance store to an instance that doesn't use an instance
store.

In this case, RDS for Oracle removes the flash cache. RDS re-creates the tempfile that is
currently located on the instance store on an Amazon EBS volume. The maximum size of the
new tempfile is the former size of the rds.instance_store_temp_size parameter.

Working with an instance store on an Oracle read replica

Read replicas support the flash cache and temporary tablespaces on an instance store. While the
flash cache works the same way as on the primary DB instance, note the following differences for
temporary tablespaces:

• You can't create a temporary tablespace on a read replica. If you create a new temporary
tablespace on the primary instance, RDS for Oracle replicates the tablespace information without
tempfiles. To add a new tempfile, use either of the following techniques:

• Use the Amazon RDS procedure rdsadmin.rdsadmin_util.add_inst_store_tempfile.
RDS for Oracle creates a tempfile in the instance store on your read replica, and adds it to the
specified temporary tablespace.

Configuring the instance store 3894

Amazon Relational Database Service User Guide

• Run the ALTER TABLESPACE … ADD TEMPFILE command. RDS for Oracle places the
tempfile on Amazon EBS storage.

Note

The tempfile sizes and storage types can be different on the primary DB instance and the
read replica.

• You can manage the default temporary tablespace setting only on the primary DB instance. RDS
for Oracle replicates the setting to all read replicas.

• You can configure the temporary tablespace groups only on the primary DB instance. RDS for
Oracle replicates the setting to all read replicas.

Configuring a temporary tablespace group on an instance store and Amazon EBS

You can configure a temporary tablespace group to include temporary tablespaces on both an
instance store and Amazon EBS. This technique is useful when you want more temporary storage
than is allowed by the maximum setting of rds.instance_store_temp_size.

When you configure a temporary tablespace group on both an instance store and Amazon EBS, the
two tablespaces have significantly different performance characteristics. Oracle Database chooses
the tablespace to serve queries based on an internal algorithm. Therefore, similar queries can vary
in performance.

Typically, you create a temporary tablespace in the instance store as follows:

1. Create a temporary tablespace in the instance store.

2. Set the new tablespace as the database default temporary tablespace.

If the tablespace size in the instance store is insufficient, you can create additional temporary
storage as follows:

1. Assign the temporary tablespace in the instance store to a temporary tablespace group.

2. Create a new temporary tablespace in Amazon EBS if one doesn't exist.

3. Assign the temporary tablespace in Amazon EBS to the same tablespace group that includes the
instance store tablespace.

4. Set the tablespace group as the default temporary tablespace.

Configuring the instance store 3895

Amazon Relational Database Service User Guide

The following example assumes that the size of the temporary tablespace in the instance store
doesn't meet your application requirements. The example creates the temporary tablespace
temp_in_inst_store in the instance store, assigns it to tablespace group temp_group, adds
the existing Amazon EBS tablespace named temp_in_ebs to this group, and sets this group as the
default temporary tablespace.

SQL> EXEC rdsadmin.rdsadmin_util.create_inst_store_tmp_tblspace('temp_in_inst_store');

PL/SQL procedure successfully completed.

SQL> ALTER TABLESPACE temp_in_inst_store TABLESPACE GROUP temp_group;

Tablespace altered.

SQL> ALTER TABLESPACE temp_in_ebs TABLESPACE GROUP temp_group;

Tablespace altered.

SQL> EXEC rdsadmin.rdsadmin_util.alter_default_temp_tablespace('temp_group');

PL/SQL procedure successfully completed.

SQL> SELECT * FROM DBA_TABLESPACE_GROUPS;

GROUP_NAME TABLESPACE_NAME
------------------------------ ------------------------------
TEMP_GROUP TEMP_IN_EBS
TEMP_GROUP TEMP_IN_INST_STORE

SQL> SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES WHERE
 PROPERTY_NAME='DEFAULT_TEMP_TABLESPACE';

PROPERTY_VALUE

TEMP_GROUP

Removing an RDS for Oracle instance store

To remove the instance store, modify your RDS for Oracle DB instance to use an instance type that
doesn't support instance store, such as db.m5 or db.r5.

Configuring the instance store 3896

Amazon Relational Database Service User Guide

Turning on HugePages for an RDS for Oracle instance

Amazon RDS for Oracle supports Linux kernel HugePages for increased database scalability.
HugePages results in smaller page tables and less CPU time spent on memory management,
increasing the performance of large database instances. For more information, see Overview of
HugePages in the Oracle documentation.

You can use HugePages with all supported versions and editions of RDS for Oracle.

The use_large_pages parameter controls whether HugePages are turned on
for a DB instance. The possible settings for this parameter are ONLY, FALSE, and
{DBInstanceClassHugePagesDefault}. The use_large_pages parameter is set to
{DBInstanceClassHugePagesDefault} in the default DB parameter group for Oracle.

To control whether HugePages are turned on for a DB instance automatically, you can use the
DBInstanceClassHugePagesDefault formula variable in parameter groups. The value is
determined as follows:

• For the DB instance classes mentioned in the table following,
DBInstanceClassHugePagesDefault always evaluates to FALSE by default, and
use_large_pages evaluates to FALSE. You can turn on HugePages manually for these DB
instance classes if the DB instance class has at least 14 GiB of memory.

• For DB instance classes not mentioned in the table following, if the DB instance class has less
than 14 GiB of memory, DBInstanceClassHugePagesDefault always evaluates to FALSE.
Also, use_large_pages evaluates to FALSE.

• For DB instance classes not mentioned in the table following, if the instance class has at least
14 GiB of memory and less than 100 GiB of memory, DBInstanceClassHugePagesDefault
evaluates to TRUE by default. Also, use_large_pages evaluates to ONLY. You can turn off
HugePages manually by setting use_large_pages to FALSE.

• For DB instance classes not mentioned in the table following, if the instance class has at least
100 GiB of memory, DBInstanceClassHugePagesDefault always evaluates to TRUE. Also,
use_large_pages evaluates to ONLY and HugePages can't be disabled.

HugePages are not turned on by default for the following DB instance classes.

Turning on HugePages 3897

https://docs.oracle.com/database/121/UNXAR/appi_vlm.htm#UNXAR400
https://docs.oracle.com/database/121/UNXAR/appi_vlm.htm#UNXAR400

Amazon Relational Database Service User Guide

DB instance class family DB instance classes with HugePages not turned on by default

db.m5 db.m5.large

db.m4 db.m4.large, db.m4.xlarge, db.m4.2xlarge, db.m4.4xlarge,
db.m4.10xlarge

db.t3 db.t3.micro, db.t3.small, db.t3.medium, db.t3.large

For more information about DB instance classes, see Hardware specifications for DB instance
classes.

To turn on HugePages for new or existing DB instances manually, set the use_large_pages
parameter to ONLY. You can't use HugePages with Oracle Automatic Memory Management
(AMM). If you set the parameter use_large_pages to ONLY, then you must also set both
memory_target and memory_max_target to 0. For more information about setting DB
parameters for your DB instance, see Parameter groups for Amazon RDS.

You can also set the sga_target, sga_max_size, and pga_aggregate_target
parameters. When you set system global area (SGA) and program global area (PGA) memory
parameters, add the values together. Subtract this total from your available instance memory
(DBInstanceClassMemory) to determine the free memory beyond the HugePages allocation. You
must leave free memory of at least 2 GiB, or 10 percent of the total available instance memory,
whichever is smaller.

After you configure your parameters, you must reboot your DB instance for the changes to take
effect. For more information, see Rebooting a DB instance.

Note

The Oracle DB instance defers changes to SGA-related initialization parameters until you
reboot the instance without failover. In the Amazon RDS console, choose Reboot but do not
choose Reboot with failover. In the AWS CLI, call the reboot-db-instance command
with the --no-force-failover parameter. The DB instance does not process the SGA-
related parameters during failover or during other maintenance operations that cause the
instance to restart.

Turning on HugePages 3898

Amazon Relational Database Service User Guide

The following is a sample parameter configuration for HugePages that enables HugePages
manually. You should set the values to meet your needs.

memory_target = 0
memory_max_target = 0
pga_aggregate_target = {DBInstanceClassMemory*1/8}
sga_target = {DBInstanceClassMemory*3/4}
sga_max_size = {DBInstanceClassMemory*3/4}
use_large_pages = ONLY

Assume the following parameters values are set in a parameter group.

memory_target = IF({DBInstanceClassHugePagesDefault}, 0,
 {DBInstanceClassMemory*3/4})
memory_max_target = IF({DBInstanceClassHugePagesDefault}, 0,
 {DBInstanceClassMemory*3/4})
pga_aggregate_target = IF({DBInstanceClassHugePagesDefault},
 {DBInstanceClassMemory*1/8}, 0)
sga_target = IF({DBInstanceClassHugePagesDefault},
 {DBInstanceClassMemory*3/4}, 0)
sga_max_size = IF({DBInstanceClassHugePagesDefault},
 {DBInstanceClassMemory*3/4}, 0)
use_large_pages = {DBInstanceClassHugePagesDefault}

The parameter group is used by a db.r4 DB instance class with less than 100
GiB of memory. With these parameter settings and use_large_pages set to
{DBInstanceClassHugePagesDefault}, HugePages are turned on for the db.r4 instance.

Consider another example with following parameters values set in a parameter group.

memory_target = IF({DBInstanceClassHugePagesDefault}, 0,
 {DBInstanceClassMemory*3/4})
memory_max_target = IF({DBInstanceClassHugePagesDefault}, 0,
 {DBInstanceClassMemory*3/4})
pga_aggregate_target = IF({DBInstanceClassHugePagesDefault},
 {DBInstanceClassMemory*1/8}, 0)
sga_target = IF({DBInstanceClassHugePagesDefault},
 {DBInstanceClassMemory*3/4}, 0)
sga_max_size = IF({DBInstanceClassHugePagesDefault},
 {DBInstanceClassMemory*3/4}, 0)
use_large_pages = FALSE

Turning on HugePages 3899

Amazon Relational Database Service User Guide

The parameter group is used by a db.r4 DB instance class and a db.r5 DB instance class, both with
less than 100 GiB of memory. With these parameter settings, HugePages are turned off on the
db.r4 and db.r5 instance.

Note

If this parameter group is used by a db.r4 DB instance class or db.r5 DB instance class with
at least 100 GiB of memory, the FALSE setting for use_large_pages is overridden and
set to ONLY. In this case, a customer notification regarding the override is sent.

After HugePages are active on your DB instance, you can view HugePages information by enabling
enhanced monitoring. For more information, see Monitoring OS metrics with Enhanced Monitoring.

Turning on extended data types in RDS for Oracle

Amazon RDS for Oracle supports extended data types. With extended data types, the maximum
size is 32,767 bytes for the VARCHAR2, NVARCHAR2, and RAW data types. To use extended data
types, set the MAX_STRING_SIZE parameter to EXTENDED. For more information, see Extended
data types in the Oracle documentation.

If you don't want to use extended data types, keep the MAX_STRING_SIZE parameter set to
STANDARD (the default). In this case, the size limits are 4,000 bytes for the VARCHAR2 and
NVARCHAR2 data types, and 2,000 bytes for the RAW data type.

You can turn on extended data types on a new or existing DB instance. For new DB instances, DB
instance creation time is typically longer when you turn on extended data types. For existing DB
instances, the DB instance is unavailable during the conversion process.

Considerations for extended data types

Consider the following when you enable extended data types for your DB instance:

• When you turn on extended data types for a new or existing DB instance, you must reboot the
instance for the change to take effect.

• After you turn on extended data types, you can't change the DB instance back to use the
standard size for data types. If you set the MAX_STRING_SIZE parameter back to STANDARD it
results in the incompatible-parameters status.

Turning on extended data types 3900

https://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#SQLRF55623
https://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#SQLRF55623

Amazon Relational Database Service User Guide

• When you restore a DB instance that uses extended data types, you must specify a parameter
group with the MAX_STRING_SIZE parameter set to EXTENDED. During restore, if you specify
the default parameter group or any other parameter group with MAX_STRING_SIZE set to
STANDARD it results in the incompatible-parameters status.

• When the DB instance status is incompatible-parameters because of the
MAX_STRING_SIZE setting, the DB instance remains unavailable until you set the
MAX_STRING_SIZE parameter to EXTENDED and reboot the DB instance.

Turning on extended data types for a new DB instance

When you create a DB instance with MAX_STRING_SIZE set to EXTENDED, the instance shows
MAX_STRING_SIZE set to the default STANDARD. Reboot the instance to enable the change.

To turn on extended data types for a new DB instance

1. Set the MAX_STRING_SIZE parameter to EXTENDED in a parameter group.

To set the parameter, you can either create a new parameter group or modify an existing
parameter group.

For more information, see Parameter groups for Amazon RDS.

2. Create a new RDS for Oracle DB instance.

For more information, see Creating an Amazon RDS DB instance.

3. Associate the parameter group with MAX_STRING_SIZE set to EXTENDED with the DB
instance.

For more information, see Creating an Amazon RDS DB instance.

4. Reboot the DB instance for the parameter change to take effect.

For more information, see Rebooting a DB instance.

Turning on extended data types for an existing DB instance

When you modify a DB instance to turn on extended data types, RDS converts the data in the
database to use the extended sizes. The conversion and downtime occur when you next reboot the
database after the parameter change. The DB instance is unavailable during the conversion.

Turning on extended data types 3901

Amazon Relational Database Service User Guide

The amount of time it takes to convert the data depends on the DB instance class, the database
size, and the time of the last DB snapshot. To reduce downtime, consider taking a snapshot
immediately before rebooting. This shortens the time of the backup that occurs during the
conversion workflow.

Note

After you turn on extended data types, you can't perform a point-in-time restore to a time
during the conversion. You can restore to the time immediately before the conversion or
after the conversion.

To turn on extended data types for an existing DB instance

1. Take a snapshot of the database.

If there are invalid objects in the database, Amazon RDS tries to recompile them. The
conversion to extended data types can fail if Amazon RDS can't recompile an invalid object.
The snapshot enables you to restore the database if there is a problem with the conversion.
Always check for invalid objects before conversion and fix or drop those invalid objects. For
production databases, we recommend testing the conversion process on a copy of your DB
instance first.

For more information, see Creating a DB snapshot for a Single-AZ DB instance for Amazon
RDS.

2. Set the MAX_STRING_SIZE parameter to EXTENDED in a parameter group.

To set the parameter, you can either create a new parameter group or modify an existing
parameter group.

For more information, see Parameter groups for Amazon RDS.

3. Modify the DB instance to associate it with the parameter group with MAX_STRING_SIZE set
to EXTENDED.

For more information, see Modifying an Amazon RDS DB instance.

4. Reboot the DB instance for the parameter change to take effect.

For more information, see Rebooting a DB instance.

Turning on extended data types 3902

Amazon Relational Database Service User Guide

Turning on extended data types 3903

Amazon Relational Database Service User Guide

Importing data into Oracle on Amazon RDS

How you import data into an Amazon RDS for Oracle DB instance depends on the following:

• The amount of data you have

• The number of database objects in your database

• The variety of database objects in your database

For example, you can use the following tools, depending on your requirements:

• Oracle SQL Developer – Import a simple, 20 MB database.

• Oracle Data Pump – Import complex databases, or databases that are several hundred
megabytes or several terabytes in size. For example, you can transport tablespaces from an
on-premises database to your RDS for Oracle DB instance. You can use Amazon S3 or Amazon
EFS to transfer the data files and metadata. For more information, see Migrating using Oracle
transportable tablespaces, Amazon EFS integration, and Amazon S3 integration.

• AWS Database Migration Service (AWS DMS) – Migrate databases without downtime. For more
information about AWS DMS, see What is AWS Database Migration Service and the blog post
Migrating Oracle databases with near-zero downtime using AWS DMS.

Important

Before you use the preceding migration techniques, we recommend that you back up your
database. After you import the data, you can back up your RDS for Oracle DB instances by
creating snapshots. Later, you can restore the snapshots. For more information, see Backing
up, restoring, and exporting data.

For many database engines, ongoing replication can continue until you are ready to switch over
to the target database. You can use AWS DMS to migrate to RDS for Oracle from either the same
database engine or a different engine. If you migrate from a different database engine, you can use
the AWS Schema Conversion Tool to migrate schema objects that AWS DMS doesn't migrate.

Topics

• Importing using Oracle SQL Developer

• Migrating using Oracle transportable tablespaces

Importing data into Oracle 3904

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://aws.amazon.com/blogs/database/migrating-oracle-databases-with-near-zero-downtime-using-aws-dms/

Amazon Relational Database Service User Guide

• Importing using Oracle Data Pump

• Importing using Oracle Export/Import

• Importing using Oracle SQL*Loader

• Migrating with Oracle materialized views

Importing using Oracle SQL Developer

Oracle SQL Developer is a graphical Java tool distributed without cost by Oracle. SQL Developer
provides options for migrating data between two Oracle databases, or for migrating data from
other databases, such as MySQL, to an Oracle database. This tool is best for migrating small
databases.

You can install this tool on your desktop computer (Windows, Linux, or Mac) or on one of your
servers. After you install SQL Developer, you can use it to connect to your source and target
databases. Use the Database Copy command on the Tools menu to copy your data to your RDS for
Oracle DB instance.

To download SQL Developer, go to http://www.oracle.com/technetwork/developer-tools/sql-
developer.

We recommend that you read the Oracle SQL Developer product documentation before you begin
migrating your data. Oracle also has documentation on how to migrate from other databases,
including MySQL and SQL Server. For more information, see http://www.oracle.com/technetwork/
database/migration in the Oracle documentation.

Migrating using Oracle transportable tablespaces

You can use the Oracle transportable tablespaces feature to copy a set of tablespaces from an
on-premises Oracle database to an RDS for Oracle DB instance. At the physical level, you transfer
source data files and metadata files to your target DB instance using either Amazon EFS or Amazon
S3. The transportable tablespaces feature uses the rdsadmin.rdsadmin_transport_util
package. For syntax and semantics of this package, see Transporting tablespaces.

For blog posts that explain how to transport tablespaces, see Migrate Oracle Databases to AWS
using transportable tablespace and Amazon RDS for Oracle Transportable Tablespaces using
RMAN.

Topics

Importing using Oracle SQL Developer 3905

http://www.oracle.com/technetwork/developer-tools/sql-developer
http://www.oracle.com/technetwork/developer-tools/sql-developer
http://www.oracle.com/technetwork/database/migration
http://www.oracle.com/technetwork/database/migration
https://aws.amazon.com/blogs/database/migrate-oracle-databases-to-aws-using-transportable-tablespace/
https://aws.amazon.com/blogs/database/migrate-oracle-databases-to-aws-using-transportable-tablespace/
https://aws.amazon.com/blogs/database/amazon-rds-for-oracle-transportable-tablespaces-using-rman/
https://aws.amazon.com/blogs/database/amazon-rds-for-oracle-transportable-tablespaces-using-rman/

Amazon Relational Database Service User Guide

• Overview of Oracle transportable tablespaces

• Phase 1: Set up your source host

• Phase 2: Prepare the full tablespace backup

• Phase 3: Make and transfer incremental backups

• Phase 4: Transport the tablespaces

• Phase 5: Validate the transported tablespaces

• Phase 6: Clean up leftover files

Overview of Oracle transportable tablespaces

A transportable tablespace set consists of data files for the set of tablespaces being transported
and an export dump file containing tablespace metadata. In a physical migration solution such as
transportable tablespaces, you transfer physical files: data files, configuration files, and Data Pump
dump files.

Topics

• Advantages and disadvantages of transportable tablespaces

• Limitations for transportable tablespaces

• Prerequisites for transportable tablespaces

Advantages and disadvantages of transportable tablespaces

We recommend that you use transportable tablespaces when you need to migrate one or more
large tablespaces to RDS with minimum downtime. Transportable tablespaces offer the following
advantages over logical migration:

• Downtime is lower than most other Oracle migration solutions.

• Because the transportable tablespace feature copies only physical files, it avoids the data
integrity errors and logical corruption that can occur in logical migration.

• No additional license is required.

• You can migrate a set of tablespaces across different platforms and endianness types, for
example, from an Oracle Solaris platform to Linux. However, transporting tablespaces to and
from Windows servers isn't supported.

Migrating using Oracle transportable tablespaces 3906

Amazon Relational Database Service User Guide

Note

Linux is fully tested and supported. Not all UNIX variations have been tested.

If you use transportable tablespaces, you can transport data using either Amazon S3 or Amazon
EFS:

• When you use EFS, your backups remain in the EFS file system for the duration of the import.
You can remove the files afterward. In this technique, you don't need to provision EBS storage
for your DB instance. For this reason, we recommend using Amazon EFS instead of S3. For more
information, see Amazon EFS integration.

• When you use S3, you download RMAN backups to EBS storage attached to your DB instance.
The files remain in your EBS storage during the import. After the import, you can free up this
space, which remains allocated to your DB instance.

The primary disadvantage of transportable tablespaces is that you need relatively advanced
knowledge of Oracle Database. For more information, see Transporting Tablespaces Between
Databases in the Oracle Database Administrator’s Guide.

Limitations for transportable tablespaces

Oracle Database limitations for transportable tablespaces apply when you use this feature in
RDS for Oracle. For more information, see Limitations on Transportable Tablespaces and General
Limitations on Transporting Data in the Oracle Database Administrator’s Guide. Note the following
additional limitations for transportable tablespaces in RDS for Oracle:

• Neither the source or target database can use Standard Edition 2 (SE2). Only Enterprise Edition is
supported.

• You can't use an Oracle Database 11g database as a source. The RMAN cross-platform
transportable tablespaces feature relies on the RMAN transport mechanism, which Oracle
Database 11g doesn't support.

• You can't migrate data from an RDS for Oracle DB instance using transportable tablespaces. You
can only use transportable tablespaces to migrate data to an RDS for Oracle DB instance.

• The Windows operating system isn't supported.

Migrating using Oracle transportable tablespaces 3907

https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/transporting-data.html#GUID-F7B2B591-AA88-4D16-8DCF-712763923FFB
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/transporting-data.html#GUID-F7B2B591-AA88-4D16-8DCF-712763923FFB
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/transporting-data.html#GUID-DAB51E42-9BBC-4001-B5CB-0ECDBE128787
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/transporting-data.html#GUID-28800719-6CB9-4A71-95DD-4B61AA603173
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/transporting-data.html#GUID-28800719-6CB9-4A71-95DD-4B61AA603173

Amazon Relational Database Service User Guide

• You can't transport tablespaces into a database at a lower release level. The target database
must be at the same or later release level as the source database. For example, you can’t
transport tablespaces from Oracle Database 21c into Oracle Database 19c.

• You can't transport administrative tablespaces such as SYSTEM and SYSAUX.

• You can't transport non-data objects such as PL/SQL packages, Java classes, views, triggers,
sequences, users, roles, and temporary tables. To transport non-data objects, create them
manually or use Data Pump metadata export and import. For more information, see My Oracle
Support Note 1454872.1.

• You can't transport tablespaces that are encrypted or use encrypted columns.

• If you transfer files using Amazon S3, the maximum supported file size is 5 TiB.

• If the source database uses Oracle options such as Spatial, you can't transport tablespaces unless
the same options are configured on the target database.

• You can't transport tablespaces into an RDS for Oracle DB instance in an Oracle replica
configuration. As a workaround, you can delete all replicas, transport the tablespaces, and then
recreate the replicas.

Prerequisites for transportable tablespaces

Before you begin, complete the following tasks:

• Review the requirements for transportable tablespaces described in the following documents in
My Oracle Support:

• Reduce Transportable Tablespace Downtime using Cross Platform Incremental Backup (Doc ID
2471245.1)

• Transportable Tablespace (TTS) Restrictions and Limitations: Details, Reference, and Version
Where Applicable (Doc ID 1454872.1)

• Primary Note for Transportable Tablespaces (TTS) -- Common Questions and Issues (Doc ID
1166564.1)

• Plan for endianness conversion. If you specify the source platform ID, RDS for Oracle converts
the endianness automatically. To learn how to find platform IDs, see Data Guard Support for
Heterogeneous Primary and Physical Standbys in Same Data Guard Configuration (Doc ID
413484.1).

• Make sure that the transportable tablespace feature is enabled on your target DB instance. The
feature is enabled only if you don't get an ORA-20304 error when you run the following query:

Migrating using Oracle transportable tablespaces 3908

https://support.oracle.com/knowledge/Oracle%20Cloud/1454872_1.html
https://support.oracle.com/knowledge/Oracle%20Cloud/1454872_1.html
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2471245.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2471245.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1454872.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1454872.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1166564.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1166564.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=413484.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=413484.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=413484.1

Amazon Relational Database Service User Guide

SELECT * FROM TABLE(rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files);

If the transportable tablespace feature isn't enabled, reboot your DB instance. For more
information, see Rebooting a DB instance.

• Make sure that the time zone file is the same in the source and target databases.

• Make sure that the database character sets on the source and target databases meet either of
the following requirements:

• The character sets are the same.

• The character sets are compatible. For a list of compatibility requirements, see General
Limitations on Transporting Data in the Oracle Database documentation.

• If you plan to transfer files using Amazon S3, do the following:

• Make sure that an Amazon S3 bucket is available for file transfers, and that the Amazon S3
bucket is in the same AWS Region as your DB instance. For instructions, see Create a bucket in
the Amazon Simple Storage Service Getting Started Guide.

• Prepare the Amazon S3 bucket for Amazon RDS integration by following the instructions in
Configuring IAM permissions for RDS for Oracle integration with Amazon S3.

• If you plan to transfer files using Amazon EFS, make sure that you have configured EFS according
to the instructions in Amazon EFS integration.

• We strongly recommend that you turn on automatic backups in your target DB instance. Because
the metadata import step can potentially fail, it's important to be able to restore your DB
instance to its state before the import, thereby avoiding the necessity to back up, transfer, and
import your tablespaces again.

Phase 1: Set up your source host

In this step, you copy the transport tablespaces scripts provided by My Oracle Support and set up
necessary configuration files. In the following steps, the source host is running the database that
contains the tablespaces to be transported to your target instance.

To set up your source host

1. Log in to your source host as the owner of your Oracle home.

2. Make sure that your ORACLE_HOME and ORACLE_SID environment variables point to your
source database.

Migrating using Oracle transportable tablespaces 3909

https://docs.oracle.com/en/database/oracle/oracle-database/19/spmdu/general-limitations-on-transporting-data.html#GUID-28800719-6CB9-4A71-95DD-4B61AA603173
https://docs.oracle.com/en/database/oracle/oracle-database/19/spmdu/general-limitations-on-transporting-data.html#GUID-28800719-6CB9-4A71-95DD-4B61AA603173
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Amazon Relational Database Service User Guide

3. Log in to your database as an administrator, and verify that the time zone version, DB
character set, and national character set are the same as in your target database.

SELECT * FROM V$TIMEZONE_FILE;
SELECT * FROM NLS_DATABASE_PARAMETERS
 WHERE PARAMETER IN ('NLS_CHARACTERSET','NLS_NCHAR_CHARACTERSET');

4. Set up the transportable tablespace utility as described in Oracle Support note 2471245.1.

The setup includes editing the xtt.properties file on your source host. The following
sample xtt.properties file specifies backups of three tablespaces in the /dsk1/backups
directory. These are the tablespaces that you intend to transport to your target DB instance. It
also specifies the source platform ID to convert the endianness automatically.

Note

For valid platform IDs, see Data Guard Support for Heterogeneous Primary and
Physical Standbys in Same Data Guard Configuration (Doc ID 413484.1).

#linux system
platformid=13
#list of tablespaces to transport
tablespaces=TBS1,TBS2,TBS3
#location where backup will be generated
src_scratch_location=/dsk1/backups
#RMAN command for performing backup
usermantransport=1

Phase 2: Prepare the full tablespace backup

In this phase, you back up your tablespaces for the first time, transfer the
backups to your target host, and then restore them using the procedure
rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces. When this phase is
complete, the initial tablespace backups reside on your target DB instance and can be updated with
incremental backups.

Topics

Migrating using Oracle transportable tablespaces 3910

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2471245.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=413484.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=413484.1

Amazon Relational Database Service User Guide

• Step 1: Back up the tablespaces on your source host

• Step 2: Transfer the backup files to your target DB instance

• Step 3: Import the tablespaces on your target DB instance

Step 1: Back up the tablespaces on your source host

In this step, you use the xttdriver.pl script to make a full backup of your tablespaces. The
output of xttdriver.pl is stored in the TMPDIR environment variable.

To back up your tablespaces

1. If your tablespaces are in read-only mode, log in to your source database as a user with the
ALTER TABLESPACE privilege, and place your tablespaces in read/write mode. Otherwise, skip
to the next step.

The following example places tbs1, tbs2, and tbs3 in read/write mode.

ALTER TABLESPACE tbs1 READ WRITE;
ALTER TABLESPACE tbs2 READ WRITE;
ALTER TABLESPACE tbs3 READ WRITE;

2. Back up your tablespaces using the xttdriver.pl script. Optionally, you can specify --
debug to run the script in debug mode.

export TMPDIR=location_of_log_files
cd location_of_xttdriver.pl
$ORACLE_HOME/perl/bin/perl xttdriver.pl --backup

Step 2: Transfer the backup files to your target DB instance

In this step, copy the backup and configuration files from your scratch location to your target DB
instance. Choose one of the following options:

• If the source and target hosts share an Amazon EFS file system, use an operating system utility
such as cp to copy your backup files and the res.txt file from your scratch location to a shared
directory. Then skip to Step 3: Import the tablespaces on your target DB instance.

• If you need to stage your backups to an Amazon S3 bucket, complete the following steps.

Migrating using Oracle transportable tablespaces 3911

Amazon Relational Database Service User Guide

Step 2.2: Upload the backups to your Amazon S3 bucket

Upload your backups and the res.txt file from your scratch directory to your Amazon S3 bucket.
For more information, see Uploading objects in the Amazon Simple Storage Service User Guide.

Step 2.3: Download the backups from your Amazon S3 bucket to your target DB instance

In this step, you use the procedure rdsadmin.rdsadmin_s3_tasks.download_from_s3 to
download your backups to your RDS for Oracle DB instance.

To download your backups from your Amazon S3 bucket

1. Start SQL*Plus or Oracle SQL Developer and log in to your RDS for Oracle DB instance.

2. Download the backups from the Amazon S3 bucket to your target DB instance by using the
Amazon RDS procedure rdsadmin.rdsadmin_s3_tasks.download_from_s3 to d. The
following example downloads all of the files from an Amazon S3 bucket named amzn-s3-
demo-bucket to the DATA_PUMP_DIR directory.

EXEC UTL_FILE.FREMOVE ('DATA_PUMP_DIR', 'res.txt');
SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_directory_name => 'DATA_PUMP_DIR')
AS TASK_ID FROM DUAL;

The SELECT statement returns the ID of the task in a VARCHAR2 data type. For more
information, see Downloading files from an Amazon S3 bucket to an Oracle DB instance.

Migrating using Oracle transportable tablespaces 3912

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Amazon Relational Database Service User Guide

Step 3: Import the tablespaces on your target DB instance

To restore your tablespaces to your target DB instance, use the procedure
rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces. This procedure
automatically converts the data files to the correct endian format.

If you import from a platform other than Linux, specify the source platform using the parameter
p_platform_id when you call import_xtts_tablespaces. Make sure that the platform ID that
you specify matches the one specified in the xtt.properties file in Step 2: Export tablespace
metadata on your source host.

Import the tablespaces on your target DB instance

1. Start an Oracle SQL client and log in to your target RDS for Oracle DB instance as the master
user.

2. Run the procedure rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces,
specifying the tablespaces to import and the directory containing the backups.

The following example imports the tablespaces TBS1, TBS2, and TBS3 from the directory
DATA_PUMP_DIR. The source platform is AIX-Based Systems (64-bit), which has the platform
ID of 6. You can find the platform IDs by querying V$TRANSPORTABLE_PLATFORM.

VAR task_id CLOB

BEGIN
 :task_id:=rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces(
 'TBS1,TBS2,TBS3',
 'DATA_PUMP_DIR',
 p_platform_id => 6);
END;
/

PRINT task_id

3. (Optional) Monitor progress by querying the table rdsadmin.rds_xtts_operation_info.
The xtts_operation_state column shows the value EXECUTING, COMPLETED, or FAILED.

SELECT * FROM rdsadmin.rds_xtts_operation_info;

Migrating using Oracle transportable tablespaces 3913

Amazon Relational Database Service User Guide

Note

For long-running operations, you can also query V$SESSION_LONGOPS, V
$RMAN_STATUS, and V$RMAN_OUTPUT.

4. View the log of the completed import by using the task ID from the previous step.

SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||'&task_id'||'.log'));

Make sure that the import succeeded before continuing to the next step.

Phase 3: Make and transfer incremental backups

In this phase, you make and transfer incremental backups periodically while the source database
is active. This technique reduces the size of your final tablespace backup. If you take multiple
incremental backups, you must copy the res.txt file after the last incremental backup before you
can apply it on the target instance.

The steps are the same as in Phase 2: Prepare the full tablespace backup, except that the import
step is optional.

Phase 4: Transport the tablespaces

In this phase, you back up your read-only tablespaces and export Data Pump metadata, transfer
these files to your target host, and import both the tablespaces and the metadata.

Topics

• Step 1: Back up your read-only tablespaces

• Step 2: Export tablespace metadata on your source host

• Step 3: (Amazon S3 only) Transfer the backup and export files to your target DB instance

• Step 4: Import the tablespaces on your target DB instance

• Step 5: Import tablespace metadata on your target DB instance

Migrating using Oracle transportable tablespaces 3914

Amazon Relational Database Service User Guide

Step 1: Back up your read-only tablespaces

This step is identical to Step 1: Back up the tablespaces on your source host, with one key
difference: you place your tablespaces in read-only mode before backing up your tablespaces for
the last time.

The following example places tbs1, tbs2, and tbs3 in read-only mode.

ALTER TABLESPACE tbs1 READ ONLY;
ALTER TABLESPACE tbs2 READ ONLY;
ALTER TABLESPACE tbs3 READ ONLY;

Step 2: Export tablespace metadata on your source host

Export your tablespace metadata by running the expdb utility on your source host. The following
example exports tablespaces TBS1, TBS2, and TBS3 to dump file xttdump.dmp in directory
DATA_PUMP_DIR.

expdp username/pwd \
dumpfile=xttdump.dmp \
directory=DATA_PUMP_DIR \
statistics=NONE \
transport_tablespaces=TBS1,TBS2,TBS3 \
transport_full_check=y \
logfile=tts_export.log

If DATA_PUMP_DIR is a shared directory in Amazon EFS, skip to Step 4: Import the tablespaces on
your target DB instance.

Step 3: (Amazon S3 only) Transfer the backup and export files to your target DB instance

If you are using Amazon S3 to stage your tablespace backups and Data Pump export file, complete
the following steps.

Step 3.1: Upload the backups and dump file from your source host to your Amazon S3 bucket

Upload your backup and dump files from your source host to your Amazon S3 bucket. For more
information, see Uploading objects in the Amazon Simple Storage Service User Guide.

Migrating using Oracle transportable tablespaces 3915

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Amazon Relational Database Service User Guide

Step 3.2: Download the backups and dump file from your Amazon S3 bucket to your target DB
instance

In this step, you use the procedure rdsadmin.rdsadmin_s3_tasks.download_from_s3 to
download your backups and dump file to your RDS for Oracle DB instance. Follow the steps in Step
2.3: Download the backups from your Amazon S3 bucket to your target DB instance.

Step 4: Import the tablespaces on your target DB instance

Use the procedure rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces to
restore the tablespaces. For syntax and semantics of this procedure, see Importing transported
tablespaces to your DB instance

Important

After you complete your final tablespace import, the next step is importing the Oracle Data
Pump metadata. If the import fails, it's important to return your DB instance to its state
before the failure. Thus, we recommend that you create a DB snapshot of your DB instance
by following the instructions in Creating a DB snapshot for a Single-AZ DB instance for
Amazon RDS. The snapshot will contain all imported tablespaces, so if the import fails, you
don’t need to repeat the backup and import process.
If your target DB instance has automatic backups turned on, and Amazon RDS doesn't
detect that a valid snapshot was initiated before you import the metadata, RDS attempts
to create a snapshot. Depending on your instance activity, this snapshot might or might
not succeed. If a valid snapshot isn't detected or a snapshot can't be initiated, the metadata
import exits with errors.

Import the tablespaces on your target DB instance

1. Start an Oracle SQL client and log in to your target RDS for Oracle DB instance as the master
user.

2. Run the procedure rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces,
specifying the tablespaces to import and the directory containing the backups.

The following example imports the tablespaces TBS1, TBS2, and TBS3 from the directory
DATA_PUMP_DIR.

BEGIN

Migrating using Oracle transportable tablespaces 3916

Amazon Relational Database Service User Guide

 :task_id:=rdsadmin.rdsadmin_transport_util.import_xtts_tablespaces('TBS1,TBS2,TBS3','DATA_PUMP_DIR');
END;
/
PRINT task_id

3. (Optional) Monitor progress by querying the table rdsadmin.rds_xtts_operation_info.
The xtts_operation_state column shows the value EXECUTING, COMPLETED, or FAILED.

SELECT * FROM rdsadmin.rds_xtts_operation_info;

Note

For long-running operations, you can also query V$SESSION_LONGOPS, V
$RMAN_STATUS, and V$RMAN_OUTPUT.

4. View the log of the completed import by using the task ID from the previous step.

SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file('BDUMP',
 'dbtask-'||'&task_id'||'.log'));

Make sure that the import succeeded before continuing to the next step.

5. Take a manual DB snapshot by following the instructions in Creating a DB snapshot for a
Single-AZ DB instance for Amazon RDS.

Step 5: Import tablespace metadata on your target DB instance

In this step, you import the transportable tablespace metadata into your RDS for Oracle DB
instance using the procedure
rdsadmin.rdsadmin_transport_util.import_xtts_metadata. For syntax and
semantics of this procedure, see Importing transportable tablespace metadata into
your DB instance. During the operation, the status of the import is shown in the table
rdsadmin.rds_xtts_operation_info.

Migrating using Oracle transportable tablespaces 3917

Amazon Relational Database Service User Guide

Important

Before you import metadata, we strongly recommend that you confirm that a DB snapshot
was successfully created after you imported your tablespaces. If the import step fails,
restore your DB instance, address the import errors, and then attempt the import again.

Import the Data Pump metadata into your RDS for Oracle DB instance

1. Start your Oracle SQL client and log in to your target DB instance as the master user.

2. Create the users that own schemas in your transported tablespaces, if these users don't
already exist.

CREATE USER tbs_owner IDENTIFIED BY password;

3. Import the metadata, specifying the name of the dump file and its directory location.

BEGIN

 rdsadmin.rdsadmin_transport_util.import_xtts_metadata('xttdump.dmp','DATA_PUMP_DIR');
END;
/

4. (Optional) Query the transportable tablespace history table to see the status of the metadata
import.

SELECT * FROM rdsadmin.rds_xtts_operation_info;

When the operation completes, your tablespaces are in read-only mode.

5. (Optional) View the log file.

The following example lists the contents of the BDUMP directory and then queries the import
log.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir(p_directory => 'BDUMP'));

SELECT * FROM TABLE(rdsadmin.rds_file_util.read_text_file(
 p_directory => 'BDUMP',

Migrating using Oracle transportable tablespaces 3918

Amazon Relational Database Service User Guide

 p_filename => 'rds-xtts-
import_xtts_metadata-2023-05-22.01-52-35.560858000.log'));

Phase 5: Validate the transported tablespaces

In this optional step, you validate your transported tablespaces using the procedure
rdsadmin.rdsadmin_rman_util.validate_tablespace, and then place your tablespaces in
read/write mode.

To validate the transported data

1. Start SQL*Plus or SQL Developer and log in to your target DB instance as the master user.

2. Validate the tablespaces using the procedure
rdsadmin.rdsadmin_rman_util.validate_tablespace.

SET SERVEROUTPUT ON
BEGIN
 rdsadmin.rdsadmin_rman_util.validate_tablespace(
 p_tablespace_name => 'TBS1',
 p_validation_type => 'PHYSICAL+LOGICAL',
 p_rman_to_dbms_output => TRUE);
 rdsadmin.rdsadmin_rman_util.validate_tablespace(
 p_tablespace_name => 'TBS2',
 p_validation_type => 'PHYSICAL+LOGICAL',
 p_rman_to_dbms_output => TRUE);
 rdsadmin.rdsadmin_rman_util.validate_tablespace(
 p_tablespace_name => 'TBS3',
 p_validation_type => 'PHYSICAL+LOGICAL',
 p_rman_to_dbms_output => TRUE);
END;
/

3. Place your tablespaces in read/write mode.

ALTER TABLESPACE TBS1 READ WRITE;
ALTER TABLESPACE TBS2 READ WRITE;
ALTER TABLESPACE TBS3 READ WRITE;

Migrating using Oracle transportable tablespaces 3919

Amazon Relational Database Service User Guide

Phase 6: Clean up leftover files

In this optional step, you remove any unneeded files. Use the
rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files procedure
to list data files that were orphaned after a tablespace import, and then use
rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files procedure to delete
them. For syntax and semantics of these procedures, see Listing orphaned files after a tablespace
import and Deleting orphaned data files after a tablespace import.

To clean up leftover files

1. Remove old backups in DATA_PUMP_DIR as follows:

a. List the backup files by running rdsadmin.rdsadmin_file_util.listdir.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir(p_directory =>
 'DATA_PUMP_DIR'));

b. Remove the backups one by one by calling UTL_FILE.FREMOVE.

EXEC UTL_FILE.FREMOVE ('DATA_PUMP_DIR', 'backup_filename');

2. If you imported tablespaces but didn't import metadata for these tablespaces, you can delete
the orphaned data files as follows:

a. List the orphaned data files that you need to delete. The following example runs the
procedure rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files.

SQL> SELECT * FROM
 TABLE(rdsadmin.rdsadmin_transport_util.list_xtts_orphan_files);

FILENAME FILESIZE
-------------- ---------
datafile_7.dbf 104865792
datafile_8.dbf 104865792

b. Delete the orphaned files by running the procedure
rdsadmin.rdsadmin_transport_util.cleanup_incomplete_xtts_import.

BEGIN

Migrating using Oracle transportable tablespaces 3920

Amazon Relational Database Service User Guide

 rdsadmin.rdsadmin_transport_util.cleanup_incomplete_xtts_import('DATA_PUMP_DIR');
END;
/

The cleanup operation generates a log file that uses the name format rds-xtts-
delete_xtts_orphaned_files-YYYY-MM-DD.HH24-MI-SS.FF.log in the BDUMP
directory.

c. Read the log file generated in the previous step. The following example reads log rds-
xtts-delete_xtts_orphaned_files-2023-06-01.09-33-11.868894000.log.

SELECT *
FROM TABLE(rdsadmin.rds_file_util.read_text_file(
 p_directory => 'BDUMP',
 p_filename => 'rds-xtts-
delete_xtts_orphaned_files-2023-06-01.09-33-11.868894000.log'));

TEXT
--
orphan transported datafile datafile_7.dbf deleted.
orphan transported datafile datafile_8.dbf deleted.

3. If you imported tablespaces and imported metadata for these tablespaces, but you
encountered compatibility errors or other Oracle Data Pump issues, clean up the partially
transported data files as follows:

a. List the tablespaces that contain partially transported data files by querying
DBA_TABLESPACES.

SQL> SELECT TABLESPACE_NAME FROM DBA_TABLESPACES WHERE PLUGGED_IN='YES';

TABLESPACE_NAME
--
TBS_3

b. Drop the tablespaces and the partially transported data files.

DROP TABLESPACE TBS_3 INCLUDING CONTENTS AND DATAFILES;

Migrating using Oracle transportable tablespaces 3921

Amazon Relational Database Service User Guide

Importing using Oracle Data Pump

Oracle Data Pump is a utility that allows you to export Oracle data to a dump file and import it
into another Oracle database. It is a long-term replacement for the Oracle Export/Import utilities.
Oracle Data Pump is the recommended way to move large amounts of data from an Oracle
database to an Amazon RDS DB instance.

The examples in this section show one way to import data into an Oracle database, but Oracle Data
Pump supports other techniques. For more information, see the Oracle Database documentation.

The examples in this section use the DBMS_DATAPUMP package. You can accomplish the same tasks
using the Oracle Data Pump command line utilities impdp and expdp. You can install these utilities
on a remote host as part of an Oracle Client installation, including Oracle Instant Client. For more
information, see How do I use Oracle Instant Client to run Data Pump Import or Export for my
Amazon RDS for Oracle DB instance?

Topics

• Overview of Oracle Data Pump

• Importing data with Oracle Data Pump and an Amazon S3 bucket

• Importing data with Oracle Data Pump and a database link

Overview of Oracle Data Pump

Oracle Data Pump is made up of the following components:

• Command-line clients expdp and impdp

• The DBMS_DATAPUMP PL/SQL package

• The DBMS_METADATA PL/SQL package

You can use Oracle Data Pump for the following scenarios:

• Import data from an Oracle database, either on-premises or on an Amazon EC2 instance, to an
RDS for Oracle DB instance.

• Import data from an RDS for Oracle DB instance to an Oracle database, either on-premises or on
an Amazon EC2 instance.

• Import data between RDS for Oracle DB instances, for example, to migrate data from EC2-Classic
to VPC.

Importing using Oracle Data Pump 3922

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/oracle-data-pump.html#GUID-501A9908-BCC5-434C-8853-9A6096766B5A
https://aws.amazon.com/premiumsupport/knowledge-center/rds-oracle-instant-client-datapump/
https://aws.amazon.com/premiumsupport/knowledge-center/rds-oracle-instant-client-datapump/

Amazon Relational Database Service User Guide

To download Oracle Data Pump utilities, see Oracle database software downloads on the Oracle
Technology Network website. For compatibility considerations when migrating between versions of
Oracle Database, see the Oracle Database documentation.

Oracle Data Pump workflow

Typically, you use Oracle Data Pump in the following stages:

1. Export your data into a dump file on the source database.

2. Upload your dump file to your destination RDS for Oracle DB instance. You can transfer using an
Amazon S3 bucket or by using a database link between the two databases.

3. Import the data from your dump file into your RDS for Oracle DB instance.

Oracle Data Pump best practices

When you use Oracle Data Pump to import data into an RDS for Oracle instance, we recommend
the following best practices:

• Perform imports in schema or table mode to import specific schemas and objects.

• Limit the schemas you import to those required by your application.

• Don't import in full mode or import schemas for system-maintained components.

Because RDS for Oracle doesn't allow access to SYS or SYSDBA administrative users, these
actions might damage the Oracle data dictionary and affect the stability of your database.

• When loading large amounts of data, do the following:

1. Transfer the dump file to the target RDS for Oracle DB instance.

2. Take a DB snapshot of your instance.

3. Test the import to verify that it succeeds.

If database components are invalidated, you can delete the DB instance and re-create it from the
DB snapshot. The restored DB instance includes any dump files staged on the DB instance when
you took the DB snapshot.

• Don't import dump files that were created using the Oracle Data Pump export parameters
TRANSPORT_TABLESPACES, TRANSPORTABLE, or TRANSPORT_FULL_CHECK. RDS for Oracle DB
instances don't support importing these dump files.

• Don't import dump files that contain Oracle Scheduler objects in SYS, SYSTEM, RDSADMIN,
RDSSEC, and RDS_DATAGUARD, and belong to the following categories:

Importing using Oracle Data Pump 3923

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/oracle-data-pump-overview.html#GUID-BAA3B679-A758-4D55-9820-432D9EB83C68

Amazon Relational Database Service User Guide

• Jobs

• Programs

• Schedules

• Chains

• Rules

• Evaluation contexts

• Rule sets

RDS for Oracle DB instances don't support importing these dump files.

• To exclude unsupported Oracle Scheduler objects, use additional directives during the Data
Pump export. If you use DBMS_DATAPUMP, you can add an additional METADATA_FILTER before
the DBMS_METADATA.START_JOB:

DBMS_DATAPUMP.METADATA_FILTER(
 v_hdnl,
 'EXCLUDE_NAME_EXPR',
 q'[IN (SELECT NAME FROM SYS.OBJ$
 WHERE TYPE# IN (66,67,74,79,59,62,46)
 AND OWNER# IN
 (SELECT USER# FROM SYS.USER$
 WHERE NAME IN ('RDSADMIN','SYS','SYSTEM','RDS_DATAGUARD','RDSSEC')
)
)
]',
 'PROCOBJ'
);

If you use expdp, create a parameter file that contains the exclude directive shown in the
following example. Then use PARFILE=parameter_file with your expdp command.

exclude=procobj:"IN
 (SELECT NAME FROM sys.OBJ$
 WHERE TYPE# IN (66,67,74,79,59,62,46)
 AND OWNER# IN
 (SELECT USER# FROM SYS.USER$
 WHERE NAME IN ('RDSADMIN','SYS','SYSTEM','RDS_DATAGUARD','RDSSEC')
)
)"

Importing using Oracle Data Pump 3924

Amazon Relational Database Service User Guide

Importing data with Oracle Data Pump and an Amazon S3 bucket

The following import process uses Oracle Data Pump and an Amazon S3 bucket. The steps are as
follows:

1. Export data on the source database using the Oracle DBMS_DATAPUMP package.

2. Place the dump file in an Amazon S3 bucket.

3. Download the dump file from the Amazon S3 bucket to the DATA_PUMP_DIR directory on the
target RDS for Oracle DB instance.

4. Import the data from the copied dump file into the RDS for Oracle DB instance using the
package DBMS_DATAPUMP.

Topics

• Requirements for Importing data with Oracle Data Pump and an Amazon S3 bucket

• Step 1: Grant privileges to the database user on the RDS for Oracle target DB instance

• Step 2: Export data into a dump file using DBMS_DATAPUMP

• Step 3: Upload the dump file to your Amazon S3 bucket

• Step 4: Download the dump file from your Amazon S3 bucket to your target DB instance

• Step 5: Import your dump file into your target DB instance using DBMS_DATAPUMP

• Step 6: Clean up

Requirements for Importing data with Oracle Data Pump and an Amazon S3 bucket

The process has the following requirements:

• Make sure that an Amazon S3 bucket is available for file transfers, and that the Amazon S3
bucket is in the same AWS Region as the DB instance. For instructions, see Create a bucket in the
Amazon Simple Storage Service Getting Started Guide.

• The object that you upload into the Amazon S3 bucket must be 5 TB or less. For more
information about working with objects in Amazon S3, see Amazon Simple Storage Service User
Guide.

Importing using Oracle Data Pump 3925

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_DATAPUMP.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html

Amazon Relational Database Service User Guide

Note

If you dump file exceeds 5 TB, you can run the Oracle Data Pump export with the parallel
option. This operation spreads the data into multiple dump files so that you do not
exceed the 5 TB limit for individual files.

• You must prepare the Amazon S3 bucket for Amazon RDS integration by following the
instructions in Configuring IAM permissions for RDS for Oracle integration with Amazon S3.

• You must ensure that you have enough storage space to store the dump file on the source
instance and the target DB instance.

Note

This process imports a dump file into the DATA_PUMP_DIR directory, a preconfigured
directory on all Oracle DB instances. This directory is located on the same storage volume
as your data files. When you import the dump file, the existing Oracle data files use more
space. Thus, you should make sure that your DB instance can accommodate that additional
use of space. The imported dump file is not automatically deleted or purged from the
DATA_PUMP_DIR directory. To remove the imported dump file, use UTL_FILE.FREMOVE,
found on the Oracle website.

Step 1: Grant privileges to the database user on the RDS for Oracle target DB instance

In this step, you create the schemas into which you plan to import data and grant the users
necessary privileges.

To create users and grant necessary privileges on the RDS for Oracle target instance

1. Use SQL*Plus or Oracle SQL Developer to log in as the master user to the RDS for Oracle
DB instance into which the data will be imported. For information about connecting to a DB
instance, see Connecting to your Oracle DB instance.

2. Create the required tablespaces before you import the data. For more information, see
Creating and sizing tablespaces.

Importing using Oracle Data Pump 3926

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/UTL_FILE.html#GUID-09B09C2A-2C21-4F70-BF04-D0EEA7B59CAF

Amazon Relational Database Service User Guide

3. Create the user account and grant the necessary permissions and roles if the user account into
which the data is imported doesn't exist. If you plan to import data into multiple user schemas,
create each user account and grant the necessary privileges and roles to it.

For example, the following SQL statements create a new user and grant the necessary
permissions and roles to import the data into the schema owned by this user. Replace
schema_1 with the name of your schema in this step and in the following steps.

CREATE USER schema_1 IDENTIFIED BY my_password;
GRANT CREATE SESSION, RESOURCE TO schema_1;
ALTER USER schema_1 QUOTA 100M ON users;

Note

Specify a password other than the prompt shown here as a security best practice.

The preceding statements grant the new user the CREATE SESSION privilege and the
RESOURCE role. You might need additional privileges and roles depending on the database
objects that you import.

Step 2: Export data into a dump file using DBMS_DATAPUMP

To create a dump file, use the DBMS_DATAPUMP package.

To export Oracle data into a dump file

1. Use SQL Plus or Oracle SQL Developer to connect to the source RDS for Oracle DB instance
with an administrative user. If the source database is an RDS for Oracle DB instance, connect
with the Amazon RDS master user.

2. Export the data by calling DBMS_DATAPUMP procedures.

The following script exports the SCHEMA_1 schema into a dump file named sample.dmp in
the DATA_PUMP_DIR directory. Replace SCHEMA_1 with the name of the schema that you
want to export.

DECLARE
 v_hdnl NUMBER;

Importing using Oracle Data Pump 3927

Amazon Relational Database Service User Guide

BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(
 operation => 'EXPORT',
 job_mode => 'SCHEMA',
 job_name => null
);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl ,
 filename => 'sample.dmp' ,
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_dump_file
);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_exp.log',
 directory => 'DATA_PUMP_DIR' ,
 filetype => dbms_datapump.ku$_file_type_log_file
);
 DBMS_DATAPUMP.METADATA_FILTER(v_hdnl,'SCHEMA_EXPR','IN (''SCHEMA_1'')');
 DBMS_DATAPUMP.METADATA_FILTER(
 v_hdnl,
 'EXCLUDE_NAME_EXPR',
 q'[IN (SELECT NAME FROM SYS.OBJ$
 WHERE TYPE# IN (66,67,74,79,59,62,46)
 AND OWNER# IN
 (SELECT USER# FROM SYS.USER$
 WHERE NAME IN ('RDSADMIN','SYS','SYSTEM','RDS_DATAGUARD','RDSSEC')
)
)
]',
 'PROCOBJ'
);
 DBMS_DATAPUMP.START_JOB(v_hdnl);
END;
/

Note

Data Pump starts jobs asynchronously. For information about monitoring a Data Pump
job, see Monitoring job status in the Oracle documentation.

Importing using Oracle Data Pump 3928

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/oracle-data-pump-overview.html#GUID-E365D74E-12CD-495C-BA23-5A55F679C7E7

Amazon Relational Database Service User Guide

3. (Optional) View the contents of the export log by calling the
rdsadmin.rds_file_util.read_text_file procedure. For more information, see
Reading files in a DB instance directory.

Step 3: Upload the dump file to your Amazon S3 bucket

Use the Amazon RDS procedure rdsadmin.rdsadmin_s3_tasks.upload_to_s3 to copy
the dump file to the Amazon S3 bucket. The following example uploads all of the files from the
DATA_PUMP_DIR directory to an Amazon S3 bucket named amzn-s3-demo-bucket.

SELECT rdsadmin.rdsadmin_s3_tasks.upload_to_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_directory_name => 'DATA_PUMP_DIR')
AS TASK_ID FROM DUAL;

The SELECT statement returns the ID of the task in a VARCHAR2 data type. For more information,
see Uploading files from your RDS for Oracle DB instance to an Amazon S3 bucket.

Step 4: Download the dump file from your Amazon S3 bucket to your target DB instance

Perform this step using the Amazon RDS procedure
rdsadmin.rdsadmin_s3_tasks.download_from_s3. When you download a file to a directory,
the procedure download_from_s3 skips the download if an identically named file already exists in
the directory. To remove a file from the download directory, use UTL_FILE.FREMOVE, found on the
Oracle website.

To download your dump file

1. Start SQL*Plus or Oracle SQL Developer and log in as the master on your Amazon RDS target
Oracle DB instance

2. Download the dump file using the Amazon RDS procedure
rdsadmin.rdsadmin_s3_tasks.download_from_s3.

The following example downloads all files from an Amazon S3 bucket named amzn-s3-demo-
bucket to the directory DATA_PUMP_DIR.

SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_directory_name => 'DATA_PUMP_DIR')

Importing using Oracle Data Pump 3929

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/UTL_FILE.html#GUID-09B09C2A-2C21-4F70-BF04-D0EEA7B59CAF

Amazon Relational Database Service User Guide

AS TASK_ID FROM DUAL;

The SELECT statement returns the ID of the task in a VARCHAR2 data type. For more
information, see Downloading files from an Amazon S3 bucket to an Oracle DB instance.

Step 5: Import your dump file into your target DB instance using DBMS_DATAPUMP

Use DBMS_DATAPUMP to import the schema into your RDS for Oracle DB instance. Additional
options such as METADATA_REMAP might be required.

To import data into your target DB instance

1. Start SQL*Plus or SQL Developer and log in as the master user to your RDS for Oracle DB
instance.

2. Import the data by calling DBMS_DATAPUMP procedures.

The following example imports the SCHEMA_1 data from sample_copied.dmp into your
target DB instance.

DECLARE
 v_hdnl NUMBER;
BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(
 operation => 'IMPORT',
 job_mode => 'SCHEMA',
 job_name => null);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_copied.dmp',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_dump_file);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_imp.log',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_log_file);
 DBMS_DATAPUMP.METADATA_FILTER(v_hdnl,'SCHEMA_EXPR','IN (''SCHEMA_1'')');
 DBMS_DATAPUMP.START_JOB(v_hdnl);
END;
/

Importing using Oracle Data Pump 3930

Amazon Relational Database Service User Guide

Note

Data Pump jobs are started asynchronously. For information about
monitoring a Data Pump job, see Monitoring job status in the Oracle
documentation. You can view the contents of the import log by using the
rdsadmin.rds_file_util.read_text_file procedure. For more information, see
Reading files in a DB instance directory.

3. Verify the data import by listing the schema tables on your target DB instance.

For example, the following query returns the number of tables for SCHEMA_1.

SELECT COUNT(*) FROM DBA_TABLES WHERE OWNER='SCHEMA_1';

Step 6: Clean up

After the data has been imported, you can delete the files that you don't want to keep.

To remove unneeded files

1. Start SQL*Plus or SQL Developer and log in as the master user to your RDS for Oracle DB
instance.

2. List the files in DATA_PUMP_DIR using the following command.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('DATA_PUMP_DIR')) ORDER BY
 MTIME;

3. Delete files in DATA_PUMP_DIR that you no longer require, use the following command.

EXEC UTL_FILE.FREMOVE('DATA_PUMP_DIR','filename');

For example, the following command deletes the file named sample_copied.dmp.

EXEC UTL_FILE.FREMOVE('DATA_PUMP_DIR','sample_copied.dmp');

Importing using Oracle Data Pump 3931

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/oracle-data-pump-overview.html#GUID-E365D74E-12CD-495C-BA23-5A55F679C7E7

Amazon Relational Database Service User Guide

Importing data with Oracle Data Pump and a database link

The following import process uses Oracle Data Pump and the Oracle DBMS_FILE_TRANSFER
package. The steps are as follows:

1. Connect to a source Oracle database, which can be an on-premises database, Amazon EC2
instance, or an RDS for Oracle DB instance.

2. Export data using the DBMS_DATAPUMP package.

3. Use DBMS_FILE_TRANSFER.PUT_FILE to copy the dump file from the Oracle database to the
DATA_PUMP_DIR directory on the target RDS for Oracle DB instance that is connected using a
database link.

4. Import the data from the copied dump file into the RDS for Oracle DB instance using the
DBMS_DATAPUMP package.

The import process using Oracle Data Pump and the DBMS_FILE_TRANSFER package has the
following steps.

Topics

• Requirements for importing data with Oracle Data Pump and a database link

• Step 1: Grant privileges to the user on the RDS for Oracle target DB instance

• Step 2: Grant privileges to the user on the source database

• Step 3: Create a dump file using DBMS_DATAPUMP

• Step 4: Create a database link to the target DB instance

• Step 5: Copy the exported dump file to the target DB instance using DBMS_FILE_TRANSFER

• Step 6: Import the data file to the target DB instance using DBMS_DATAPUMP

• Step 7: Clean up

Requirements for importing data with Oracle Data Pump and a database link

The process has the following requirements:

• You must have execute privileges on the DBMS_FILE_TRANSFER and DBMS_DATAPUMP packages.

• You must have write privileges to the DATA_PUMP_DIR directory on the source DB instance.

• You must ensure that you have enough storage space to store the dump file on the source
instance and the target DB instance.

Importing using Oracle Data Pump 3932

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_FILE_TRANSFER.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_DATAPUMP.html

Amazon Relational Database Service User Guide

Note

This process imports a dump file into the DATA_PUMP_DIR directory, a preconfigured
directory on all Oracle DB instances. This directory is located on the same storage volume
as your data files. When you import the dump file, the existing Oracle data files use more
space. Thus, you should make sure that your DB instance can accommodate that additional
use of space. The imported dump file is not automatically deleted or purged from the
DATA_PUMP_DIR directory. To remove the imported dump file, use UTL_FILE.FREMOVE,
found on the Oracle website.

Step 1: Grant privileges to the user on the RDS for Oracle target DB instance

To grant privileges to the user on the RDS for Oracle target DB instance, take the following steps:

1. Use SQL Plus or Oracle SQL Developer to connect to the RDS for Oracle DB instance into which
you intend to import the data. Connect as the Amazon RDS master user. For information about
connecting to the DB instance, see Connecting to your Oracle DB instance.

2. Create the required tablespaces before you import the data. For more information, see Creating
and sizing tablespaces.

3. If the user account into which the data is imported doesn't exist, create the user account and
grant the necessary permissions and roles. If you plan to import data into multiple user schemas,
create each user account and grant the necessary privileges and roles to it.

For example, the following commands create a new user named schema_1 and grant the
necessary permissions and roles to import the data into the schema for this user.

CREATE USER schema_1 IDENTIFIED BY my-password;
GRANT CREATE SESSION, RESOURCE TO schema_1;
ALTER USER schema_1 QUOTA 100M ON users;

Note

Specify a password other than the prompt shown here as a security best practice.

Importing using Oracle Data Pump 3933

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/UTL_FILE.html#GUID-09B09C2A-2C21-4F70-BF04-D0EEA7B59CAF

Amazon Relational Database Service User Guide

The preceding example grants the new user the CREATE SESSION privilege and the RESOURCE
role. Additional privileges and roles might be required depending on the database objects that
you import.

Note

Replace schema_1 with the name of your schema in this step and in the following steps.

Step 2: Grant privileges to the user on the source database

Use SQL*Plus or Oracle SQL Developer to connect to the RDS for Oracle DB instance that contains
the data to be imported. If necessary, create a user account and grant the necessary permissions.

Note

If the source database is an Amazon RDS instance, you can skip this step. You use your
Amazon RDS master user account to perform the export.

The following commands create a new user and grant the necessary permissions.

CREATE USER export_user IDENTIFIED BY my-password;
GRANT CREATE SESSION, CREATE TABLE, CREATE DATABASE LINK TO export_user;
ALTER USER export_user QUOTA 100M ON users;
GRANT READ, WRITE ON DIRECTORY data_pump_dir TO export_user;
GRANT SELECT_CATALOG_ROLE TO export_user;
GRANT EXECUTE ON DBMS_DATAPUMP TO export_user;
GRANT EXECUTE ON DBMS_FILE_TRANSFER TO export_user;

Note

Specify a password other than the prompt shown here as a security best practice.

Step 3: Create a dump file using DBMS_DATAPUMP

To create a dump file, do the following:

Importing using Oracle Data Pump 3934

Amazon Relational Database Service User Guide

1. Use SQL*Plus or Oracle SQL Developer to connect to the source Oracle instance with an
administrative user or with the user you created in step 2. If the source database is an Amazon
RDS for Oracle DB instance, connect with the Amazon RDS master user.

2. Create a dump file using the Oracle Data Pump utility.

The following script creates a dump file named sample.dmp in the DATA_PUMP_DIR directory.

DECLARE
 v_hdnl NUMBER;
BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(
 operation => 'EXPORT' ,
 job_mode => 'SCHEMA' ,
 job_name => null
);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample.dmp' ,
 directory => 'DATA_PUMP_DIR' ,
 filetype => dbms_datapump.ku$_file_type_dump_file
);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl ,
 filename => 'sample_exp.log' ,
 directory => 'DATA_PUMP_DIR' ,
 filetype => dbms_datapump.ku$_file_type_log_file
);
 DBMS_DATAPUMP.METADATA_FILTER(
 v_hdnl ,
 'SCHEMA_EXPR' ,
 'IN (''SCHEMA_1'')'
);
 DBMS_DATAPUMP.METADATA_FILTER(
 v_hdnl,
 'EXCLUDE_NAME_EXPR',
 q'[IN (SELECT NAME FROM sys.OBJ$
 WHERE TYPE# IN (66,67,74,79,59,62,46)
 AND OWNER# IN
 (SELECT USER# FROM SYS.USER$
 WHERE NAME IN ('RDSADMIN','SYS','SYSTEM','RDS_DATAGUARD','RDSSEC')
)
)
]',

Importing using Oracle Data Pump 3935

Amazon Relational Database Service User Guide

 'PROCOBJ'
);
 DBMS_DATAPUMP.START_JOB(v_hdnl);
END;
/

Note

Data Pump jobs are started asynchronously. For information about monitoring a Data
Pump job, see Monitoring job status in the Oracle documentation. You can view the
contents of the export log by using the rdsadmin.rds_file_util.read_text_file
procedure. For more information, see Reading files in a DB instance directory.

Step 4: Create a database link to the target DB instance

Create a database link between your source DB instance and your target DB instance. Your local
Oracle instance must have network connectivity to the DB instance in order to create a database
link and to transfer your export dump file.

Perform this step connected with the same user account as the previous step.

If you are creating a database link between two DB instances inside the same VPC or peered VPCs,
the two DB instances should have a valid route between them. The security group of each DB
instance must allow ingress to and egress from the other DB instance. The security group inbound
and outbound rules can refer to security groups from the same VPC or a peered VPC. For more
information, see Adjusting database links for use with DB instances in a VPC.

The following command creates a database link named to_rds that connects to the Amazon RDS
master user at the target DB instance.

CREATE DATABASE LINK to_rds
 CONNECT TO <master_user_account> IDENTIFIED BY <password>
 USING '(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<dns or ip address of remote db>)
 (PORT=<listener port>))(CONNECT_DATA=(SID=<remote SID>)))';

Importing using Oracle Data Pump 3936

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/oracle-data-pump-overview.html#GUID-E365D74E-12CD-495C-BA23-5A55F679C7E7

Amazon Relational Database Service User Guide

Step 5: Copy the exported dump file to the target DB instance using DBMS_FILE_TRANSFER

Use DBMS_FILE_TRANSFER to copy the dump file from the source database instance to the target
DB instance. The following script copies a dump file named sample.dmp from the source instance
to a target database link named to_rds (created in the previous step).

BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'DATA_PUMP_DIR',
 source_file_name => 'sample.dmp',
 destination_directory_object => 'DATA_PUMP_DIR',
 destination_file_name => 'sample_copied.dmp',
 destination_database => 'to_rds');
END;
/

Step 6: Import the data file to the target DB instance using DBMS_DATAPUMP

Use Oracle Data Pump to import the schema in the DB instance. Additional options such as
METADATA_REMAP might be required.

Connect to the DB instance with the Amazon RDS master user account to perform the import.

DECLARE
 v_hdnl NUMBER;
BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(
 operation => 'IMPORT',
 job_mode => 'SCHEMA',
 job_name => null);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_copied.dmp',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_dump_file);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_imp.log',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_log_file);
 DBMS_DATAPUMP.METADATA_FILTER(v_hdnl,'SCHEMA_EXPR','IN (''SCHEMA_1'')');
 DBMS_DATAPUMP.START_JOB(v_hdnl);

Importing using Oracle Data Pump 3937

Amazon Relational Database Service User Guide

END;
/

Note

Data Pump jobs are started asynchronously. For information about monitoring a Data
Pump job, see Monitoring job status in the Oracle documentation. You can view the
contents of the import log by using the rdsadmin.rds_file_util.read_text_file
procedure. For more information, see Reading files in a DB instance directory.

You can verify the data import by viewing the user's tables on the DB instance. For example, the
following query returns the number of tables for schema_1.

SELECT COUNT(*) FROM DBA_TABLES WHERE OWNER='SCHEMA_1';

Step 7: Clean up

After the data has been imported, you can delete the files that you don't want to keep. You can list
the files in DATA_PUMP_DIR using the following command.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('DATA_PUMP_DIR')) ORDER BY MTIME;

To delete files in DATA_PUMP_DIR that you no longer require, use the following command.

EXEC UTL_FILE.FREMOVE('DATA_PUMP_DIR','<file name>');

For example, the following command deletes the file named "sample_copied.dmp".

EXEC UTL_FILE.FREMOVE('DATA_PUMP_DIR','sample_copied.dmp');

Importing using Oracle Export/Import

You might consider Oracle Export/Import utilities for migrations in the following conditions:

• Your data size is small.

• Data types such as binary float and double aren't required.

Importing using Oracle Export/Import 3938

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/oracle-data-pump-overview.html#GUID-E365D74E-12CD-495C-BA23-5A55F679C7E7

Amazon Relational Database Service User Guide

The import process creates the necessary schema objects. Thus, you don't need to run a script to
create the objects beforehand.

The easiest way to install the Oracle the export and import utilities is to install the Oracle Instant
Client. To download the software, go to https://www.oracle.com/database/technologies/instant-
client.html. For documentation, see Instant Client for SQL*Loader, Export, and Import in the Oracle
Database Utilities manual.

To export tables and then import them

1. Export the tables from the source database using the exp command.

The following command exports the tables named tab1, tab2, and tab3. The dump file is
exp_file.dmp.

exp cust_dba@ORCL FILE=exp_file.dmp TABLES=(tab1,tab2,tab3) LOG=exp_file.log

The export creates a binary dump file that contains both the schema and data for the specified
tables.

2. Import the schema and data into a target database using the imp command.

The following command imports the tables tab1, tab2, and tab3 from dump file
exp_file.dmp.

imp cust_dba@targetdb FROMUSER=cust_schema TOUSER=cust_schema \
TABLES=(tab1,tab2,tab3) FILE=exp_file.dmp LOG=imp_file.log

Export and Import have other variations that might be better suited to your requirements. See the
Oracle Database documentation for full details.

Importing using Oracle SQL*Loader

You might consider Oracle SQL*Loader for large databases that contain a limited number of
objects. Because the process of exporting from a source database and loading to a target database
is specific to the schema, the following example creates the sample schema objects, exports from a
source, and then loads the data into a target database.

The easiest way to install Oracle SQL*Loader is to install the Oracle Instant Client. To download
the software, go to https://www.oracle.com/database/technologies/instant-client.html. For

Importing using Oracle SQL*Loader 3939

https://www.oracle.com/database/technologies/instant-client.html
https://www.oracle.com/database/technologies/instant-client.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/sutil/instant-client-sql-loader-export-import.html#GUID-FF1B6F75-09F5-4911-9317-9776FAD15965
https://www.oracle.com/database/technologies/instant-client.html

Amazon Relational Database Service User Guide

documentation, see Instant Client for SQL*Loader, Export, and Import in the Oracle Database
Utilities manual.

To import data using Oracle SQL*Loader

1. Create a sample source table using the following SQL statement.

CREATE TABLE customer_0 TABLESPACE users
 AS (SELECT ROWNUM id, o.*
 FROM ALL_OBJECTS o, ALL_OBJECTS x
 WHERE ROWNUM <= 1000000);

2. On the target RDS for Oracle DB instance, create a destination table for loading the data. The
clause WHERE 1=2 ensures that you copy the structure of ALL_OBJECTS, but don't copy any
rows.

CREATE TABLE customer_1 TABLESPACE users
 AS (SELECT 0 AS ID, OWNER, OBJECT_NAME, CREATED
 FROM ALL_OBJECTS
 WHERE 1=2);

3. Export the data from the source database to a text file. The following example uses SQL*Plus.
For your data, you will likely need to generate a script that does the export for all the objects
in the database.

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY/MM/DD HH24:MI:SS'

SET LINESIZE 800 HEADING OFF FEEDBACK OFF ARRAY 5000 PAGESIZE 0
SPOOL customer_0.out
SET MARKUP HTML PREFORMAT ON
SET COLSEP ','

SELECT id, owner, object_name, created
FROM customer_0;

SPOOL OFF

4. Create a control file to describe the data. You might need to write a script to perform this step.

cat << EOF > sqlldr_1.ctl
load data
infile customer_0.out

Importing using Oracle SQL*Loader 3940

https://docs.oracle.com/en/database/oracle/oracle-database/21/sutil/instant-client-sql-loader-export-import.html#GUID-FF1B6F75-09F5-4911-9317-9776FAD15965

Amazon Relational Database Service User Guide

into table customer_1
APPEND
fields terminated by "," optionally enclosed by '"'
(
 id POSITION(01:10) INTEGER EXTERNAL,
 owner POSITION(12:41) CHAR,
 object_name POSITION(43:72) CHAR,
 created POSITION(74:92) date "YYYY/MM/DD HH24:MI:SS"
)

If needed, copy the files generated by the preceding code to a staging area, such as an Amazon
EC2 instance.

5. Import the data using SQL*Loader with the appropriate user name and password for the target
database.

sqlldr cust_dba@targetdb CONTROL=sqlldr_1.ctl BINDSIZE=10485760 READSIZE=10485760
 ROWS=1000

Migrating with Oracle materialized views

To migrate large datasets efficiently, you can use Oracle materialized view replication. With
replication, you can keep the target tables synchronized with the source tables. Thus, you can
switch over to Amazon RDS later, if needed.

Before you can migrate using materialized views, make sure that you meet the following
requirements:

• Configure access from the target database to the source database. In the following example,
access rules were enabled on the source database to allow the RDS for Oracle target database to
connect to the source over SQL*Net.

• Create a database link from the RDS for Oracle DB instance to the source database.

To migrate data using materialized views

1. Create a user account on both source and RDS for Oracle target instances that can
authenticate with the same password. The following example creates a user named
dblink_user.

Migrating with Oracle materialized views 3941

Amazon Relational Database Service User Guide

CREATE USER dblink_user IDENTIFIED BY my-password
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp;

GRANT CREATE SESSION TO dblink_user;

GRANT SELECT ANY TABLE TO dblink_user;

GRANT SELECT ANY DICTIONARY TO dblink_user;

Note

Specify a password other than the prompt shown here as a security best practice.

2. Create a database link from the RDS for Oracle target instance to the source instance using
your newly created user.

CREATE DATABASE LINK remote_site
 CONNECT TO dblink_user IDENTIFIED BY my-password
 USING '(description=(address=(protocol=tcp) (host=my-host)
 (port=my-listener-port)) (connect_data=(sid=my-source-db-sid)))';

Note

Specify a password other than the prompt shown here as a security best practice.

3. Test the link:

SELECT * FROM V$INSTANCE@remote_site;

4. Create a sample table with primary key and materialized view log on the source instance.

CREATE TABLE customer_0 TABLESPACE users
 AS (SELECT ROWNUM id, o.*
 FROM ALL_OBJECTS o, ALL_OBJECTS x
 WHERE ROWNUM <= 1000000);

ALTER TABLE customer_0 ADD CONSTRAINT pk_customer_0 PRIMARY KEY (id) USING INDEX;

Migrating with Oracle materialized views 3942

Amazon Relational Database Service User Guide

CREATE MATERIALIZED VIEW LOG ON customer_0;

5. On the target RDS for Oracle DB instance, create a materialized view.

CREATE MATERIALIZED VIEW customer_0
 BUILD IMMEDIATE REFRESH FAST
 AS (SELECT *
 FROM cust_dba.customer_0@remote_site);

6. On the target RDS for Oracle DB instance, refresh the materialized view.

EXEC DBMS_MVIEW.REFRESH('CUSTOMER_0', 'f');

7. Drop the materialized view and include the PRESERVE TABLE clause to retain the materialized
view container table and its contents.

DROP MATERIALIZED VIEW customer_0 PRESERVE TABLE;

The retained table has the same name as the dropped materialized view.

Migrating with Oracle materialized views 3943

Amazon Relational Database Service User Guide

Working with read replicas for Amazon RDS for Oracle

To configure replication between Oracle DB instances, you can create replica databases. For an
overview of Amazon RDS read replicas, see Overview of Amazon RDS read replicas. For a summary
of the differences between Oracle replicas and other DB engines, see Differences among read
replicas for DB engines.

Topics

• Overview of RDS for Oracle replicas

• Requirements and considerations for RDS for Oracle replicas

• Preparing to create an Oracle replica

• Creating an RDS for Oracle replica in mounted mode

• Modifying the RDS for Oracle replica mode

• Working with RDS for Oracle replica backups

• Performing an Oracle Data Guard switchover

• Troubleshooting RDS for Oracle replicas

Overview of RDS for Oracle replicas

An Oracle replica database is a physical copy of your primary database. An Oracle replica in read-
only mode is called a read replica. An Oracle replica in mounted mode is called a mounted replica.
Oracle Database doesn't permit writes in a replica, but you can promote a replica to make it
writable. The promoted read replica has the replicated data to the point when the request was
made to promote it.

The following video provides a helpful overview of RDS for Oracle disaster recovery.

For more information, see the blog post Managed disaster recovery with Amazon RDS for Oracle
cross-Region automated backups - Part 1 and Managed disaster recovery with Amazon RDS for
Oracle cross-Region automated backups - Part 2.

Topics

• Read-only and mounted replicas

• Read replicas of CDBs

Working with Oracle replicas 3944

https://aws.amazon.com/blogs/database/managed-disaster-recovery-with-amazon-rds-for-oracle-cross-region-automated-backups-part-1/
https://aws.amazon.com/blogs/database/managed-disaster-recovery-with-amazon-rds-for-oracle-cross-region-automated-backups-part-1/
https://aws.amazon.com/blogs/database/part-2-managed-disaster-recovery-with-amazon-rds-for-oracle-xrab/
https://aws.amazon.com/blogs/database/part-2-managed-disaster-recovery-with-amazon-rds-for-oracle-xrab/

Amazon Relational Database Service User Guide

• Archived redo log retention

• Outages during Oracle replication

Read-only and mounted replicas

When creating or modifying an Oracle replica, you can place it in either of the following modes:

Read-only

This is the default. Active Data Guard transmits and applies changes from the source database
to all read replica databases.

You can create up to five read replicas from one source DB instance. For general information
about read replicas that applies to all DB engines, see Working with DB instance read replicas.
For information about Oracle Data Guard, see Oracle Data Guard concepts and administration in
the Oracle documentation.

Mounted

In this case, replication uses Oracle Data Guard, but the replica database doesn't accept user
connections. The primary use for mounted replicas is cross-Region disaster recovery.

A mounted replica can't serve a read-only workload. The mounted replica deletes archived redo
log files after it applies them, regardless of the archived log retention policy.

You can create a combination of mounted and read-only DB replicas for the same source DB
instance. You can change a read-only replica to mounted mode, or change a mounted replica to
read-only mode. In either case, the Oracle database preserves the archived log retention setting.

Read replicas of CDBs

RDS for Oracle supports Data Guard read replicas for Oracle Database 19c and 21c CDBs in the
single-tenant configuration only. You can create, manage, and promote read replicas in a CDB just
as you can in a non-CDB. Mounted replicas are also supported. You get the following benefits:

• Managed disaster recovery, high availability, and read-only access to your replicas

• The ability to create read replicas in a different AWS Region.

• Integration with the existing RDS read replica APIs: CreateDBInstanceReadReplica,
PromoteReadReplica, and SwitchoverReadReplica

Overview of Oracle replicas 3945

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/oracle-data-guard-concepts.html#GUID-F78703FB-BD74-4F20-9971-8B37ACC40A65
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_SwitchoverReadReplica.html

Amazon Relational Database Service User Guide

To use this feature, you need an Active Data Guard license and an Oracle Database Enterprise
Edition license for both the replica and primary DB instances. There are no additional costs related
to using CDB architecture. You pay only for your DB instances.

For more information about the single-tenant and multi-tenant configurations of the CDB
architecture, see Overview of RDS for Oracle CDBs.

Archived redo log retention

If a primary DB instance has no cross-Region read replicas, Amazon RDS for Oracle
keeps a minimum of two hours of archived redo logs on the source DB instance.
This is true regardless of the setting for archivelog retention hours in
rdsadmin.rdsadmin_util.set_configuration.

RDS purges logs from the source DB instance after two hours or after the archive log retention
hours setting has passed, whichever is longer. RDS purges logs from the read replica after the
archive log retention hours setting has passed only if they have been successfully applied to the
database.

In some cases, a primary DB instance might have one or more cross-Region read replicas. If
so, Amazon RDS for Oracle keeps the transaction logs on the source DB instance until they
have been transmitted and applied to all cross-Region read replicas. For information about
rdsadmin.rdsadmin_util.set_configuration, see Retaining archived redo logs.

Outages during Oracle replication

When you create a read replica, Amazon RDS takes a DB snapshot of your source DB instance and
begins replication. The source DB instance experiences a very brief I/O suspension when the DB
snapshot operation begins. The I/O suspension typically lasts about one second. You can avoid
the I/O suspension if the source DB instance is a Multi-AZ deployment, because in that case the
snapshot is taken from the secondary DB instance.

The DB snapshot becomes the Oracle replica. Amazon RDS sets the necessary parameters and
permissions for the source database and replica without service interruption. Similarly, if you delete
a replica, no outage occurs.

Requirements and considerations for RDS for Oracle replicas

Before creating an Oracle replica, familiarize yourself with the following requirements and
considerations.

Requirements and considerations for Oracle replicas 3946

Amazon Relational Database Service User Guide

Topics

• Version and licensing requirements for RDS for Oracle replicas

• Option group limitations for RDS for Oracle replicas

• Backup and restore considerations for RDS for Oracle replicas

• Oracle Data Guard requirements and limitations for RDS for Oracle replicas

• Miscellaneous considerations for RDS for Oracle replicas

Version and licensing requirements for RDS for Oracle replicas

Before you create an RDS for Oracle replica, consider the following:

• If the replica is in read-only mode, make sure that you have an Active Data Guard license. If you
place the replica in mounted mode, you don't need an Active Data Guard license. Only the Oracle
DB engine supports mounted replicas.

• Oracle replicas are supported only for Oracle Enterprise Edition (EE).

• Oracle replicas of non-CDBs are supported only for DB instances created using non-CDB
instances running Oracle Database 19c.

• Oracle replicas are available for DB instances running only on DB instance classes with two or
more vCPUs. A source DB instance can't use the db.t3.small instance class.

• The Oracle DB engine version of the source DB instance and all its replicas must be the same.
Amazon RDS upgrades the replicas immediately after upgrading the source DB instance,
regardless of a replica's maintenance window. For major version upgrades of cross-Region
replicas, Amazon RDS automatically does the following:

• Generates an option group for the target version.

• Copies all options and option settings from the original option group to the new option group.

• Associates the upgraded cross-Region replica with the new option group.

For more information about upgrading the DB engine version, see Upgrading the RDS for Oracle
DB engine.

Option group limitations for RDS for Oracle replicas

When working with option groups for your RDS for Oracle replica, consider the following:

Requirements and considerations for Oracle replicas 3947

Amazon Relational Database Service User Guide

• You can't use a replica option group different from the source DB instance option group when
the source and replica are in the same AWS Region.

Modifications to the source option group or source option group membership propagate to
Oracle replicas. These changes are applied to the replicas immediately after they are applied to
the source DB instance, regardless of the replica's maintenance window. For more information
about option groups, see Working with option groups.

• You can't remove an RDS for Oracle cross-Region replica from its dedicated option group, which
is automatically created for the replica.

• You can't add the dedicated option group for an RDS for Oracle cross-Region replica to a
different DB instance.

• You can't add or remove nonreplicated options from a dedicated option group for an RDS for
Oracle cross-Region replica, with the exception of the following options:

• NATIVE_NETWORK_ENCRYPTION

• OEM

• OEM_AGENT

• SSL

To add other options to an RDS for Oracle cross-Region replica, add them to the source DB
instance's option group. The option is also installed on all of the source DB instance's replicas. For
licensed options, make sure that there are sufficient licenses for the replicas.

When you promote an RDS for Oracle cross-Region replica, the promoted replica behaves the
same as other Oracle DB instances, including the management of its options. You can promote a
replica explicitly or implicitly by deleting its source DB instance.

For more information about option groups, see Working with option groups.

• You can't add the EFS_INTEGRATION option to RDS for Oracle cross-Region replicas.

Backup and restore considerations for RDS for Oracle replicas

Before you create an RDS for Oracle replica, consider the following:

• To create snapshots of RDS for Oracle replicas or turn on automatic backups, make sure to set
the backup retention period manually. Automatic backups aren't turned on by default.

Requirements and considerations for Oracle replicas 3948

Amazon Relational Database Service User Guide

• When you restore a replica backup, you restore to the database time, not the time that the
backup was taken. The database time refers to the latest applied transaction time of the data in
the backup. The difference is significant because a replica can lag behind the primary for minutes
or hours.

To find the difference, use the describe-db-snapshots command. Compare the
snapshotDatabaseTime, which is the database time of the replica backup, and the
OriginalSnapshotCreateTime field, which is the latest applied transaction on the primary
database.

Oracle Data Guard requirements and limitations for RDS for Oracle replicas

Before you create an RDS for Oracle replica, note the following requirements and limitations:

• If your primary DB instance uses the single-tenant configuration of the multitenant architecture,
consider the following:

• You must use Oracle Database 19c or higher with the Enterprise Edition.

• Your primary CDB instance must be in an ACTIVE lifecycle.

• You can't convert a non-CDB primary instance to a CDB instance and convert its replicas in the
same operation. Instead, delete the non-CDB replicas, convert the primary DB instance to a
CDB, and then create new replicas

• Make sure that a logon trigger on a primary DB instance permits access to the RDS_DATAGUARD
user and to any user whose AUTHENTICATED_IDENTITY value is RDS_DATAGUARD or rdsdb.
Also, the trigger must not set the current schema for the RDS_DATAGUARD user.

• To avoid blocking connections from the Data Guard broker process, don't enable restricted
sessions. For more information about restricted sessions, see Enabling and disabling restricted
sessions.

Miscellaneous considerations for RDS for Oracle replicas

Before you create an RDS for Oracle replica, consider the following:

• If your DB instance is a source for one or more cross-Region replicas, the source DB retains its
archived redo log files until they are applied on all cross-Region replicas. The archived redo logs
might result in increased storage consumption.

Requirements and considerations for Oracle replicas 3949

Amazon Relational Database Service User Guide

• To avoid disrupting RDS automation, system triggers must permit specific users to log on to the
primary and replica database. System triggers include DDL, logon, and database role triggers.
We recommend that you add code to your triggers to exclude the users listed in the following
sample code:

-- Determine who the user is
SELECT SYS_CONTEXT('USERENV','AUTHENTICATED_IDENTITY') INTO CURRENT_USER FROM DUAL;
-- The following users should always be able to login to either the Primary or
 Replica
IF CURRENT_USER IN ('master_user', 'SYS', 'SYSTEM', 'RDS_DATAGUARD', 'rdsdb') THEN
RETURN;
END IF;

• Block change tracking is supported for read-only replicas, but not for mounted replicas. You can
change a mounted replica to a read-only replica, and then enable block change tracking. For
more information, see Enabling and disabling block change tracking.

• You can't create an Oracle read replica when the source database manages master user
credentials with Secrets Manager.

Preparing to create an Oracle replica

Before you can begin using your replica, perform the following tasks.

Topics

• Enabling automatic backups

• Enabling force logging mode

• Changing your logging configuration

• Setting the MAX_STRING_SIZE parameter

• Planning compute and storage resources

Enabling automatic backups

Before a DB instance can serve as a source DB instance, make sure to enable automatic backups on
the source DB instance. To learn how to perform this procedure, see Enabling automated backups.

Preparing to create an Oracle replica 3950

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnpls/plsql-triggers.html#GUID-FE23FCE8-DE36-41EF-80A9-6B4B49E80E5B

Amazon Relational Database Service User Guide

Enabling force logging mode

We recommend that you enable force logging mode. In force logging mode, the Oracle database
writes redo records even when NOLOGGING is used with data definition language (DDL) statements.

To enable force logging mode

1. Log in to your Oracle database using a client tool such as SQL Developer.

2. Enable force logging mode by running the following procedure.

exec rdsadmin.rdsadmin_util.force_logging(p_enable => true);

For more information about this procedure, see Setting force logging.

Changing your logging configuration

For n online redo logs of size m, RDS automatically creates n+1 standby logs of size m on the
primary DB instance and all replicas. Whenever you change the logging configuration on the
primary, the changes propagate automatically to the replicas.

If you change your logging configuration, consider the following guidelines:

• We recommend that you complete the changes before making a DB instance the source for
replicas. RDS for Oracle also supports updating the instance after it becomes a source.

• Before you change the logging configuration on the primary DB instance, check that each replica
has enough storage to accommodate the new configuration.

You can modify the logging configuration for a DB instance by using the Amazon RDS procedures
rdsadmin.rdsadmin_util.add_logfile and rdsadmin.rdsadmin_util.drop_logfile.
For more information, see Adding online redo logs and Dropping online redo logs.

Setting the MAX_STRING_SIZE parameter

Before you create an Oracle replica, ensure that the setting of the MAX_STRING_SIZE parameter
is the same on the source DB instance and the replica. You can do this by associating them with the
same parameter group. If you have different parameter groups for the source and the replica, you
can set MAX_STRING_SIZE to the same value. For more information about setting this parameter,
see Turning on extended data types for a new DB instance.

Preparing to create an Oracle replica 3951

Amazon Relational Database Service User Guide

Planning compute and storage resources

Ensure that the source DB instance and its replicas are sized properly, in terms of compute and
storage, to suit their operational load. If a replica reaches compute, network, or storage resource
capacity, the replica stops receiving or applying changes from its source. Amazon RDS for Oracle
doesn't intervene to mitigate high replica lag between a source DB instance and its replicas. You
can modify the storage and CPU resources of a replica independently from its source and other
replicas.

Creating an RDS for Oracle replica in mounted mode

By default, Oracle replicas are read-only. To create a replica in mounted mode, use the console, the
AWS CLI, or the RDS API.

Console

To create a mounted replica from a source Oracle DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Oracle DB instance that you want to use as the source for a mounted replica.

4. For Actions, choose Create replica.

5. For Replica mode, choose Mounted.

6. Choose the settings that you want to use. For DB instance identifier, enter a name for the
read replica. Adjust other settings as needed.

7. For Regions, choose the Region where the mounted replica will be launched.

8. Choose your instance size and storage type. We recommend that you use the same DB instance
class and storage type as the source DB instance for the read replica.

9. For Multi-AZ deployment, choose Create a standby instance to create a standby of your
replica in another Availability Zone for failover support for the mounted replica. Creating your
mounted replica as a Multi-AZ DB instance is independent of whether the source database is a
Multi-AZ DB instance.

10. Choose the other settings that you want to use.

11. Choose Create replica.

Creating a mounted Oracle replica 3952

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

In the Databases page, the mounted replica has the role Replica.

AWS CLI

To create an Oracle replica in mounted mode, set --replica-mode to mounted in the AWS CLI
command create-db-instance-read-replica.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance-read-replica \
 --db-instance-identifier myreadreplica \
 --source-db-instance-identifier mydbinstance \
 --replica-mode mounted

For Windows:

aws rds create-db-instance-read-replica ^
 --db-instance-identifier myreadreplica ^
 --source-db-instance-identifier mydbinstance ^
 --replica-mode mounted

To change a read-only replica to a mounted state, set --replica-mode to mounted in the AWS
CLI command modify-db-instance. To place a mounted replica in read-only mode, set --replica-
mode to open-read-only.

RDS API

To create an Oracle replica in mounted mode, specify ReplicaMode=mounted in the RDS API
operation CreateDBInstanceReadReplica.

Modifying the RDS for Oracle replica mode

To change the replica mode of an existing replica, use the console, AWS CLI, or RDS API. When
you change to mounted mode, the replica disconnects all active connections. When you change to
read-only mode, Amazon RDS initializes Active Data Guard.

The change operation can take a few minutes. During the operation, the DB instance status
changes to modifying. For more information about status changes, see Viewing Amazon RDS DB
instance status.

Modifying the replica mode 3953

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html

Amazon Relational Database Service User Guide

Console

To change the replica mode of an Oracle replica from mounted to read-only

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the mounted replica database.

4. Choose Modify.

5. For Replica mode, choose Read-only.

6. Choose the other settings that you want to change.

7. Choose Continue.

8. For Scheduling of modifications, choose Apply immediately.

9. Choose Modify DB instance.

AWS CLI

To change a read replica to mounted mode, set --replica-mode to mounted in the AWS CLI
command modify-db-instance. To change a mounted replica to read-only mode, set --replica-
mode to open-read-only.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier myreadreplica \
 --replica-mode mode

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier myreadreplica ^
 --replica-mode mode

Modifying the replica mode 3954

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

RDS API

To change a read-only replica to mounted mode, set ReplicaMode=mounted in
ModifyDBInstance. To change a mounted replica to read-only mode, set ReplicaMode=read-
only.

Working with RDS for Oracle replica backups

You can create and restore backups of an RDS for Oracle replica. Both automatic backups and
manual snapshots are supported. For more information, see Backing up, restoring, and exporting
data. The following sections describe the key differences between managing backups of a primary
and an RDS for Oracle replica.

Turning on RDS for Oracle replica backups

An Oracle replica doesn't have automated backups turned on by default. You turn on automated
backups by setting the backup retention period to a positive nonzero value.

Console

To enable automated backups immediately

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance or Multi-AZ DB
cluster that you want to modify.

3. Choose Modify.

4. For Backup retention period, choose a positive nonzero value, for example 3 days.

5. Choose Continue.

6. Choose Apply immediately.

7. Choose Modify DB instance or Modify cluster to save your changes and enable automated
backups.

AWS CLI

To enable automated backups, use the AWS CLI modify-db-instance or modify-db-cluster
command.

Working with Oracle replica backups 3955

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

Include the following parameters:

• --db-instance-identifier (or --db-cluster-identifier for a Multi-AZ DB cluster)

• --backup-retention-period

• --apply-immediately or --no-apply-immediately

In the following example, we enable automated backups by setting the backup retention period to
three days. The changes are applied immediately.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --backup-retention-period 3 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --backup-retention-period 3 ^
 --apply-immediately

RDS API

To enable automated backups, use the RDS API ModifyDBInstance or ModifyDBCluster
operation with the following required parameters:

• DBInstanceIdentifier or DBClusterIdentifier

• BackupRetentionPeriod

Restoring an RDS for Oracle replica backup

You can restore an Oracle replica backup just as you can restore a backup of the primary instance.
For more information, see the following:

• Restoring to a DB instance

Working with Oracle replica backups 3956

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

• Restoring a DB instance to a specified time for Amazon RDS

The main consideration when you restore a replica backup is determining the point in time to
which you are restoring. The database time refers to the latest applied transaction time of the data
in the backup. When you restore a replica backup, you restore to the database time, not the time
when the backup completed. The difference is significant because an RDS for Oracle replica can lag
behind the primary by minutes or hours. Thus, the database time of a replica backup, and thus the
point in time to which you restore it, might be much earlier than the backup creation time.

To find the difference between database time and creation time, use the describe-db-
snapshots command. Compare the SnapshotDatabaseTime, which is the database time of
the replica backup, and the OriginalSnapshotCreateTime field, which is the latest applied
transaction on the primary database. The following example shows the difference between the two
times:

aws rds describe-db-snapshots \
 --db-instance-identifier my-oracle-replica
 --db-snapshot-identifier my-replica-snapshot

{
 "DBSnapshots": [
 {
 "DBSnapshotIdentifier": "my-replica-snapshot",
 "DBInstanceIdentifier": "my-oracle-replica",
 "SnapshotDatabaseTime": "2022-07-26T17:49:44Z",
 ...
 "OriginalSnapshotCreateTime": "2021-07-26T19:49:44Z"
 }
]
}

Performing an Oracle Data Guard switchover

A switchover is a role reversal between a primary database and a standby database. During a
switchover, the original primary database transitions to a standby role, while the original standby
database transitions to the primary role.

In an Oracle Data Guard environment, a primary database supports one or more standby
databases. You can perform a managed, switchover-based role transition from a primary database

Performing an Oracle Data Guard switchover 3957

Amazon Relational Database Service User Guide

to a standby database. A switchover is a role reversal between a primary database and a standby
database. During a switchover, the original primary database transitions to a standby role, while
the original standby database transitions to the primary role.

Topics

• Overview of Oracle Data Guard switchover

• Requirements for the Oracle Data Guard switchover

• Initiating the Oracle Data Guard switchover

• Monitoring the Oracle Data Guard switchover

Overview of Oracle Data Guard switchover

Amazon RDS supports a fully managed, switchover-based role transition for Oracle Database
replicas. You can only initiate a switchover to a standby database that is mounted or open read-
only.

The replicas can reside in separate AWS Regions or in different Availability Zones (AZs) of a single
Region. All AWS Regions are supported.

Performing an Oracle Data Guard switchover 3958

Amazon Relational Database Service User Guide

A switchover differs from a read replica promotion. In a switchover, the source and replica DB
instances change roles. In a promotion, a read replica becomes a source DB instance, but the source
DB instance doesn't become a replica. For more information, see Promoting a read replica to be a
standalone DB instance.

Topics

• Benefits of Oracle Data Guard switchover

• Supported Oracle Database versions

• Cost of Oracle Data Guard switchover

• How Oracle Data Guard switchover works

Performing an Oracle Data Guard switchover 3959

Amazon Relational Database Service User Guide

Benefits of Oracle Data Guard switchover

Just as for RDS for Oracle read replicas, a managed switchover relies on Oracle Data Guard. The
operation is designed to have zero data loss. Amazon RDS automates the following aspects of the
switchover:

• Reverses the roles of your primary database and specified standby database, putting the new
standby database in the same state (mounted or read-only) as the original standby

• Ensures data consistency

• Maintains your replication configuration after the transition

• Supports repeated reversals, allowing your new standby database to return to its original
primary role

Supported Oracle Database versions

Oracle Data Guard switchover is supported for Oracle Database 19c and higher releases.

Cost of Oracle Data Guard switchover

The Oracle Data Guard switchover feature doesn't incur additional costs. Oracle Database
Enterprise Edition includes support for standby databases in mounted mode. To open standby
databases in read-only mode, you need the Oracle Active Data Guard option.

How Oracle Data Guard switchover works

Oracle Data Guard switchover is a fully managed operation. You initiate the switchover for a
standby database by issuing the CLI command switchover-read-replica. Then Amazon RDS
modifies the primary and standby roles in your replication configuration.

The original standby and original primary are the roles that exist before the switchover. The new
standby and new primary are the roles that exist after the switchover. A bystander replica is a replica
database that serves as a standby database in the Oracle Data Guard environment but is not
switching roles.

Topics

• Stages of the Oracle Data Guard switchover

• After the Oracle Data Guard switchover

Performing an Oracle Data Guard switchover 3960

Amazon Relational Database Service User Guide

Stages of the Oracle Data Guard switchover

To perform the switchover, Amazon RDS must take the following steps:

1. Block new transactions on the original primary database. During the switchover, Amazon RDS
interrupts replication for all databases in your Oracle Data Guard configuration. During the
switchover, the original primary database can't process write requests.

2. Ship unapplied transactions to the original standby database, and apply them.

3. Restart the new standby database in read-only or mounted mode. The mode depends on the
open state of the original standby database before the switchover.

4. Open the new primary database in read/write mode.

After the Oracle Data Guard switchover

Amazon RDS switches the roles of the primary and standby database. You are responsible for
reconnecting your application and performing any other desired configuration.

Topics

• Success criteria

• Connection to the new primary database

• Configuration of the new primary database

Success criteria

The Oracle Data Guard switchover is successful when the original standby database does the
following:

• Transitions to its role as new primary database

• Completes its reconfiguration

To limit downtime, your new primary database becomes active as soon as possible. Because
Amazon RDS configures bystander replicas asynchronously, these replicas might become active
after the original primary database.

Performing an Oracle Data Guard switchover 3961

Amazon Relational Database Service User Guide

Connection to the new primary database

Amazon RDS won't propagate your current database connections to the new primary database
after the switchover. After the Oracle Data Guard switchover completes, reconnect your application
to the new primary database.

Configuration of the new primary database

To perform a switchover to the new primary database, Amazon RDS changes the mode of the
original standby database to open. The change in role is the only change to the database. Amazon
RDS doesn't set up features such as Multi-AZ replication.

If you perform a switchover to a cross-Region replica with different options, the new primary
database keeps its own options. Amazon RDS won't migrate the options on the original primary
database. If the original primary database had options such as SSL, NNE, OEM, and OEM_AGENT,
Amazon RDS doesn't propagate them to the new primary database.

Requirements for the Oracle Data Guard switchover

Before initiating the Oracle Data Guard switchover, make sure that your replication environment
meets the following requirements:

• The original standby database is mounted or open read-only.

• Automatic backups are enabled on the original standby database.

• The original primary database and the original standby database are in the available state.

• The original primary database and the original standby database don't have pending
maintenance actions in any of the following states: required, next window, or in progress.
Actions in these states block switchover. To learn how to check the status of pending
maintenance updates, see Viewing pending maintenance updates.

Pending maintenance actions in the available state don't block switchover. RDS for Oracle
frequently releases operating system (OS) updates in the available state. These pending OS
updates won't block a switchover unless you schedule them for the next maintenance window,
which puts them in the next window state.

Note

If you want to defer a scheduled maintenance action so that you can execute a
switchover, choose Actions and then Defer upgrade in the RDS console. You can also

Performing an Oracle Data Guard switchover 3962

Amazon Relational Database Service User Guide

prevent a switchover from being blocked by applying a pending maintenance action
or moving the maintenance window to an interval before your switchover. For more
information, see the re:Post article How to remove RDS pending maintenance items.

• The original standby database is in the replicating state.

• You aren't attempting to initiate a switchover when either the primary database or standby
database is currently in a switchover lifecycle. If a replica database is reconfiguring after a
switchover, Amazon RDS prevents you from initiating another switchover.

Note

A bystander replica is a replica in the Oracle Data Guard configuration that isn't the target
of the switchover. Bystander replicas can be in any state during the switchover.

• The original standby database has a configuration that is as close as desired to the original
primary database. Assume a scenario where the original primary and original standby databases
have different options. After the switchover completes, Amazon RDS doesn't automatically
reconfigure the new primary database to have the same options as the original primary
database.

• You configure your desired Multi-AZ deployment before initiating a switchover. Amazon RDS
doesn't manage Multi-AZ as part of the switchover. The Multi-AZ deployment remains as it is.

Assume that db_maz is the primary database in a Multi-AZ deployment, and db_saz is a Single-
AZ replica. You initiate a switchover from db_maz to db_saz. Afterward, db_maz is a Multi-AZ
replica database, and db_saz is a Single-AZ primary database. The new primary database is now
unprotected by a Multi-AZ deployment.

• In preparation for a cross-Region switchover, the primary database doesn't use the same option
group as a DB instance outside of the replication configuration. For a cross-Region switchover
to succeed, the current primary database and its read replicas must be the only DB instances
to use the option group of the current primary database. Otherwise, Amazon RDS prevents the
switchover.

Initiating the Oracle Data Guard switchover

You can switch over an RDS for Oracle read replica to the primary role, and the former primary DB
instance to a replica role.

Performing an Oracle Data Guard switchover 3963

https://repost.aws/questions/QUV3dBjmVVRnmVV1pAlzjx1w/how-to-remove-rds-pending-maintenance-item

Amazon Relational Database Service User Guide

Console

To switch over an Oracle read replica to the primary DB role

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Amazon RDS console, choose Databases.

The Databases pane appears. Each read replica shows Replica in the Role column.

3. Choose the read replica that you want to switch over to the primary role.

4. For Actions, choose Switch over replica.

5. Choose I acknowledge. Then choose Switch over replica.

6. On the Databases page, monitor the progress of the switchover.

When the switchover completes, the role of the switchover target changes from Replica to
Source.

Performing an Oracle Data Guard switchover 3964

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To switch over an Oracle replica to the primary DB role, use the AWS CLI switchover-read-
replica command. The following examples make the Oracle replica named replica-to-be-
made-primary into the new primary database.

Example

For Linux, macOS, or Unix:

aws rds switchover-read-replica \
 --db-instance-identifier replica-to-be-made-primary

For Windows:

aws rds switchover-read-replica ^
 --db-instance-identifier replica-to-be-made-primary

RDS API

To switch over an Oracle replica to the primary DB role, call the Amazon RDS API
SwitchoverReadReplica operation with the required parameter DBInstanceIdentifier. This
parameter specifies the name of the Oracle replica that you want to assume the primary DB role.

Monitoring the Oracle Data Guard switchover

To check the status of your instances, use the AWS CLI command describe-db-instances.
The following command checks the status of the DB instance orcl2. This database was a standby
database before the switchover, but is the new primary database after the switchover.

aws rds describe-db-instances \
 --db-instance-identifier orcl2

To confirm that the switchover completed successfully, query V$DATABASE.OPEN_MODE. Check
that the value for the new primary database is READ WRITE.

SELECT OPEN_MODE FROM V$DATABASE;

To look for switchover-related events, use the AWS CLI command describe-events. The
following example looks for events on the orcl2 instance.

Performing an Oracle Data Guard switchover 3965

https://docs.aws.amazon.com/cli/latest/reference/rds/switchover-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/switchover-read-replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_SwitchoverReadReplica.html

Amazon Relational Database Service User Guide

aws rds describe-events \
 --source-identifier orcl2 \
 --source-type db-instance

Troubleshooting RDS for Oracle replicas

This section describes possible replication problems and solutions.

Topics

• Monitoring Oracle replication lag

• Troubleshooting Oracle replication failure after adding or modifying triggers

Monitoring Oracle replication lag

To monitor replication lag in Amazon CloudWatch, view the Amazon RDS ReplicaLag metric.
For more information about replication lag time, see Monitoring read replication and Amazon
CloudWatch metrics for Amazon RDS.

For a read replica, if the lag time is too long, query the following views:

• V$ARCHIVED_LOG – Shows which commits have been applied to the read replica.

• V$DATAGUARD_STATS – Shows a detailed breakdown of the components that make up the
ReplicaLag metric.

• V$DATAGUARD_STATUS – Shows the log output from Oracle's internal replication processes.

For a mounted replica, if the lag time is too long, you can't query the V$ views. Instead, do the
following:

• Check the ReplicaLag metric in CloudWatch.

• Check the alert log file for the replica in the console. Look for errors in the recovery messages.
The messages include the log sequence number, which you can compare to the primary sequence
number. For more information, see Amazon RDS for Oracle database log files.

Troubleshooting Oracle replicas 3966

Amazon Relational Database Service User Guide

Troubleshooting Oracle replication failure after adding or modifying triggers

If you add or modify any triggers, and if replication fails afterward, the problem may be the
triggers. Ensure that the trigger excludes the following user accounts, which are required by RDS
for replication:

• User accounts with administrator privileges

• SYS

• SYSTEM

• RDS_DATAGUARD

• rdsdb

For more information, see Miscellaneous considerations for RDS for Oracle replicas.

Troubleshooting Oracle replicas 3967

Amazon Relational Database Service User Guide

Adding options to Oracle DB instances

In Amazon RDS, an option is an additional feature. Following, you can find a description of options
that you can add to Amazon RDS instances running the Oracle DB engine.

Topics

• Overview of Oracle DB options

• Amazon S3 integration

• Oracle Application Express (APEX)

• Amazon EFS integration

• Oracle Java virtual machine

• Oracle Enterprise Manager

• Oracle Label Security

• Oracle Locator

• Oracle native network encryption

• Oracle OLAP

• Oracle Secure Sockets Layer

• Oracle Spatial

• Oracle SQLT

• Oracle Statspack

• Oracle time zone

• Oracle time zone file autoupgrade

• Oracle Transparent Data Encryption

• Oracle UTL_MAIL

• Oracle XML DB

Overview of Oracle DB options

To enable options for your Oracle database, add them to an option group, and then associate the
option group with your DB instance. For more information, see Working with option groups.

Topics

Options for Oracle 3968

Amazon Relational Database Service User Guide

• Summary of Oracle Database options

• Options supported for different editions

• Memory requirements for specific options

Summary of Oracle Database options

You can add the following options for Oracle DB instances.

Option Option ID

Amazon S3 integration S3_INTEGRATION

Oracle Application Express (APEX) APEX

APEX-DEV

Oracle Enterprise Manager OEM

OEM_AGENT

Oracle Java virtual machine JVM

Oracle Label Security OLS

Oracle Locator LOCATOR

Oracle native network encryption NATIVE_NETWORK_ENC
RYPTION

Oracle OLAP OLAP

Oracle Secure Sockets Layer SSL

Oracle Spatial SPATIAL

Oracle SQLT SQLT

Oracle Statspack STATSPACK

Oracle time zone Timezone

Overview of Oracle DB options 3969

Amazon Relational Database Service User Guide

Option Option ID

Oracle time zone file autoupgrade TIMEZONE_FILE_AUTO
UPGRADE

Oracle Transparent Data Encryption TDE

Oracle UTL_MAIL UTL_MAIL

Oracle XML DB XMLDB

Options supported for different editions

RDS for Oracle prevents you from adding options to an edition if they aren't supported. To find out
which RDS options are supported in different Oracle Database editions, use the command aws rds
describe-option-group-options. The following example lists supported options for Oracle
Database 19c Enterprise Edition.

aws rds describe-option-group-options \
 --engine-name oracle-ee \
 --major-engine-version 19

For more information, see describe-option-group-options in the AWS CLI Command Reference.

Memory requirements for specific options

Some options require additional memory to run on your DB instance. For example, Oracle
Enterprise Manager Database Control uses about 300 MB of RAM. If you enable this option for a
small DB instance, you might encounter performance problems due to memory constraints. You
can adjust the Oracle parameters so that the database requires less RAM. Alternatively, you can
scale up to a larger DB instance.

Overview of Oracle DB options 3970

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-option-group-options.html

Amazon Relational Database Service User Guide

Amazon S3 integration

You can transfer files between your RDS for Oracle DB instance and an Amazon S3 bucket. You can
use Amazon S3 integration with Oracle Database features such as Oracle Data Pump. For example,
you can download Data Pump files from Amazon S3 to your RDS for Oracle DB instance. For more
information, see Importing data into Oracle on Amazon RDS.

Note

Your DB instance and your Amazon S3 bucket must be in the same AWS Region.

Topics

• Configuring IAM permissions for RDS for Oracle integration with Amazon S3

• Adding the Amazon S3 integration option

• Transferring files between Amazon RDS for Oracle and an Amazon S3 bucket

• Troubleshooting Amazon S3 integration

• Removing the Amazon S3 integration option

Configuring IAM permissions for RDS for Oracle integration with Amazon S3

For RDS for Oracle to integrate with Amazon S3, your DB instance must have access to an Amazon
S3 bucket. The Amazon VPC used by your DB instance doesn't need to provide access to the
Amazon S3 endpoints.

RDS for Oracle supports transferring files between a DB instance in one account and an Amazon S3
bucket in a different account. Where additional steps are required, they are noted in the following
sections.

Topics

• Step 1: Create an IAM policy for your Amazon RDS role

• Step 2: (Optional) Create an IAM policy for your Amazon S3 bucket

• Step 3: Create an IAM role for your DB instance and attach your policy

• Step 4: Associate your IAM role with your RDS for Oracle DB instance

Amazon S3 integration 3971

Amazon Relational Database Service User Guide

Step 1: Create an IAM policy for your Amazon RDS role

In this step, you create an AWS Identity and Access Management (IAM) policy with the permissions
required to transfer files between your Amazon S3 bucket and your RDS DB instance. This step
assumes that you have already created an S3 bucket.

Before you create the policy, note the following pieces of information:

• The Amazon Resource Name (ARN) for your bucket

• The ARN for your AWS KMS key, if your bucket uses SSE-KMS or SSE-S3 encryption

Note

An RDS for Oracle DB instance can't access Amazon S3 buckets encrypted with SSE-C.

For more information, see Protecting data using server-side encryption in the Amazon Simple
Storage Service User Guide.

Console

To create an IAM policy to allow Amazon RDS to access your Amazon S3 bucket

1. Open the IAM Management Console.

2. Under Access management, choose Policies.

3. Choose Create Policy.

4. On the Visual editor tab, choose Choose a service, and then choose S3.

5. For Actions, choose Expand all, and then choose the bucket permissions and object
permissions required to transfer files from an Amazon S3 bucket to Amazon RDS. For example,
do the following:

• Expand List, and then select ListBucket.

• Expand Read, and then select GetObject.

• Expand Write, and then select PutObject and DeleteObject.

• Expand Permissions management, and then select PutObjectAcl. This permission is
necessary if you plan to upload files to a bucket owned by a different account, and this
account needs full control of the bucket contents.

Amazon S3 integration 3972

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://console.aws.amazon.com/iam/home?#home

Amazon Relational Database Service User Guide

Object permissions are permissions for object operations in Amazon S3. You must grant them
for objects in a bucket, not the bucket itself. For more information, see Permissions for object
operations.

6. Choose Resources, and then do the following:

a. Choose Specific.

b. For bucket, choose Add ARN. Enter your bucket ARN. The bucket name is filled in
automatically. Then choose Add.

c. If the object resource is shown, either choose Add ARN to add resources manually or
choose Any.

Note

You can set Amazon Resource Name (ARN) to a more specific ARN value to allow
Amazon RDS to access only specific files or folders in an Amazon S3 bucket.
For more information about how to define an access policy for Amazon S3, see
Managing access permissions to your Amazon S3 resources.

7. (Optional) Choose Add additional permissions to add resources to the policy. For example, do
the following:

a. If your bucket is encrypted with a custom KMS key, select KMS for the service.

b. For Manual actions, select the following:

• Encrypt

• ReEncrypt from and ReEncrypt to

• Decrypt

• DescribeKey

• GenerateDataKey

c. For Resources, choose Specific.

d. For key, choose Add ARN. Enter the ARN of your custom key as the resource, and then
choose Add.

Amazon S3 integration 3973

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html#using-with-s3-actions-related-to-objects
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html#using-with-s3-actions-related-to-objects
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Relational Database Service User Guide

For more information, see Protecting Data Using Server-Side Encryption with KMS keys
Stored in AWS Key Management Service (SSE-KMS) in the Amazon Simple Storage Service
User Guide.

e. If you want Amazon RDS to access to access other buckets, add the ARNs for these
buckets. Optionally, you can also grant access to all buckets and objects in Amazon S3.

8. Choose Next: Tags and then Next: Review.

9. For Name, enter a name for your IAM policy, for example rds-s3-integration-policy.
You use this name when you create an IAM role to associate with your DB instance. You can
also add an optional Description value.

10. Choose Create policy.

AWS CLI

Create an AWS Identity and Access Management (IAM) policy that grants Amazon RDS access to an
Amazon S3 bucket. After you create the policy, note the ARN of the policy. You need the ARN for a
subsequent step.

Include the appropriate actions in the policy based on the type of access required:

• GetObject – Required to transfer files from an Amazon S3 bucket to Amazon RDS.

• ListBucket – Required to transfer files from an Amazon S3 bucket to Amazon RDS.

• PutObject – Required to transfer files from Amazon RDS to an Amazon S3 bucket.

The following AWS CLI command creates an IAM policy named rds-s3-integration-policy
with these options. It grants access to a bucket named amzn-s3-demo-bucket.

Example

For Linux, macOS, or Unix:

aws iam create-policy \
 --policy-name rds-s3-integration-policy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {

Amazon S3 integration 3974

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon Relational Database Service User Guide

 "Sid": "s3integration",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }'

The following example includes permissions for custom KMS keys.

aws iam create-policy \
 --policy-name rds-s3-integration-policy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3integration",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject",
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey",
 "kms:DescribeKey",
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*",
 "arn:aws:kms:::your-kms-arn"
]
 }
]
 }'

Amazon S3 integration 3975

Amazon Relational Database Service User Guide

For Windows:

aws iam create-policy ^
 --policy-name rds-s3-integration-policy ^
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3integration",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }'

The following example includes permissions for custom KMS keys.

aws iam create-policy ^
 --policy-name rds-s3-integration-policy ^
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3integration",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject",
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:ReEncrypt",
 "kms:GenerateDataKey",
 "kms:DescribeKey",
],
 "Effect": "Allow",

Amazon S3 integration 3976

Amazon Relational Database Service User Guide

 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*",
 "arn:aws:kms:::your-kms-arn"
]
 }
]
 }'

Step 2: (Optional) Create an IAM policy for your Amazon S3 bucket

This step is necessary only in the following conditions:

• You plan to upload files to an Amazon S3 bucket from one account (account A) and access them
from a different account (account B).

• Account B owns the bucket.

• Account B needs full control of objects loaded into the bucket.

If the preceding conditions don't apply to you, skip to Step 3: Create an IAM role for your DB
instance and attach your policy.

To create your bucket policy, make sure you have the following:

• The account ID for account A

• The user name for account A

• The ARN value for the Amazon S3 bucket in account B

Console

To create or edit a bucket policy

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the Buckets list, choose the name of the bucket that you want to create a bucket policy for
or whose bucket policy you want to edit.

3. Choose Permissions.

4. Under Bucket policy, choose Edit. This opens the Edit bucket policy page.

Amazon S3 integration 3977

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Relational Database Service User Guide

5. On the Edit bucket policy page, explore Policy examples in the Amazon S3 User Guide, choose
Policy generator to generate a policy automatically, or edit the JSON in the Policy section.

If you choose Policy generator, the AWS Policy Generator opens in a new window:

a. On the AWS Policy Generator page, in Select Type of Policy, choose S3 Bucket Policy.

b. Add a statement by entering the information in the provided fields, and then choose Add
Statement. Repeat for as many statements as you would like to add. For more information
about these fields, see the IAM JSON policy elements reference in the IAM User Guide.

Note

For convenience, the Edit bucket policy page displays the Bucket ARN (Amazon
Resource Name) of the current bucket above the Policy text field. You can copy
this ARN for use in the statements on the AWS Policy Generator page.

c. After you finish adding statements, choose Generate Policy.

d. Copy the generated policy text, choose Close, and return to the Edit bucket policy page in
the Amazon S3 console.

6. In the Policy box, edit the existing policy or paste the bucket policy from the Policy generator.
Make sure to resolve security warnings, errors, general warnings, and suggestions before you
save your policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::account-A-ID:account-A-user"
 },
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-destination-bucket",
 "arn:aws:s3:::amzn-s3-demo-destination-bucket/*"
]

Amazon S3 integration 3978

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Relational Database Service User Guide

 }
]
}

7. Choose Save changes, which returns you to the Bucket Permissions page.

Step 3: Create an IAM role for your DB instance and attach your policy

This step assumes that you have created the IAM policy in Step 1: Create an IAM policy for your
Amazon RDS role. In this step, you create a role for your RDS for Oracle DB instance and then
attach your policy to the role.

Console

To create an IAM role to allow Amazon RDS to access an Amazon S3 bucket

1. Open the IAM Management Console.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Choose AWS service.

5. For Use cases for other AWS services:, choose RDS and then RDS – Add Role to Database.
Then choose Next.

6. For Search under Permissions policies, enter the name of the IAM policy you created in Step
1: Create an IAM policy for your Amazon RDS role, and select the policy when it appears in the
list. Then choose Next.

7. For Role name, enter a name for your IAM role, for example, rds-s3-integration-role.
You can also add an optional Description value.

8. Choose Create role.

AWS CLI

To create a role and attach your policy to it

1. Create an IAM role that Amazon RDS can assume on your behalf to access your Amazon S3
buckets.

Amazon S3 integration 3979

https://console.aws.amazon.com/iam/home?#home

Amazon Relational Database Service User Guide

We recommend using the aws:SourceArn and aws:SourceAccount global condition
context keys in resource-based trust relationships to limit the service's permissions to a specific
resource. This is the most effective way to protect against the confused deputy problem.

You might use both global condition context keys and have the aws:SourceArn value
contain the account ID. In this case, the aws:SourceAccount value and the account in the
aws:SourceArn value must use the same account ID when used in the same statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the trust relationship, make sure to use the aws:SourceArn global condition context key
with the full Amazon Resource Name (ARN) of the resources accessing the role.

The following AWS CLI command creates the role named rds-s3-integration-role for
this purpose.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-integration-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "my_account_ID",
 "aws:SourceArn": "arn:aws:rds:Region:my_account_ID:db:dbname"
 }
 }
 }

Amazon S3 integration 3980

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

]
 }'

For Windows:

aws iam create-role ^
 --role-name rds-s3-integration-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "my_account_ID",
 "aws:SourceArn": "arn:aws:rds:Region:my_account_ID:db:dbname"
 }
 }
 }
]
 }'

For more information, see Creating a role to delegate permissions to an IAM user in the IAM
User Guide.

2. After the role is created, note the ARN of the role. You need the ARN for a subsequent step.

3. Attach the policy you created to the role you created.

The following AWS CLI command attaches the policy to the role named rds-s3-
integration-role.

Example

For Linux, macOS, or Unix:

aws iam attach-role-policy \
 --policy-arn your-policy-arn \

Amazon S3 integration 3981

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Relational Database Service User Guide

 --role-name rds-s3-integration-role

For Windows:

aws iam attach-role-policy ^
 --policy-arn your-policy-arn ^
 --role-name rds-s3-integration-role

Replace your-policy-arn with the policy ARN that you noted in a previous step.

Step 4: Associate your IAM role with your RDS for Oracle DB instance

The last step in configuring permissions for Amazon S3 integration is associating your IAM role
with your DB instance. Note the following requirements:

• You must have access to an IAM role with the required Amazon S3 permissions policy attached to
it.

• You can only associate one IAM role with your RDS for Oracle DB instance at a time.

• Your DB instance must be in the Available state.

Console

To associate your IAM role with your RDS for Oracle DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases from the navigation pane.

3. Choose the RDS for Oracle DB instance name to display its details.

4. On the Connectivity & security tab, scroll down to the Manage IAM roles section at the
bottom of the page.

5. For Add IAM roles to this instance, choose the role that you created in Step 3: Create an IAM
role for your DB instance and attach your policy.

6. For Feature, choose S3_INTEGRATION.

Amazon S3 integration 3982

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

7. Choose Add role.

AWS CLI

The following AWS CLI command adds the role to an Oracle DB instance named mydbinstance.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-instance \
 --db-instance-identifier mydbinstance \
 --feature-name S3_INTEGRATION \
 --role-arn your-role-arn

For Windows:

aws rds add-role-to-db-instance ^
 --db-instance-identifier mydbinstance ^
 --feature-name S3_INTEGRATION ^
 --role-arn your-role-arn

Replace your-role-arn with the role ARN that you noted in a previous step. S3_INTEGRATION
must be specified for the --feature-name option.

Adding the Amazon S3 integration option

To integrate Amazon RDS for Oracle with Amazon S3, your DB instance must be associated with an
option group that includes the S3_INTEGRATION option.

Amazon S3 integration 3983

Amazon Relational Database Service User Guide

Console

To configure an option group for Amazon S3 integration

1. Create a new option group or identify an existing option group to which you can add the
S3_INTEGRATION option.

For information about creating an option group, see Creating an option group.

2. Add the S3_INTEGRATION option to the option group.

For information about adding an option to an option group, see Adding an option to an option
group.

3. Create a new RDS for Oracle DB instance and associate the option group with it, or modify an
RDS for Oracle DB instance to associate the option group with it.

For information about creating a DB instance, see Creating an Amazon RDS DB instance.

For information about modifying a DB instance, see Modifying an Amazon RDS DB instance.

AWS CLI

To configure an option group for Amazon S3 integration

1. Create a new option group or identify an existing option group to which you can add the
S3_INTEGRATION option.

For information about creating an option group, see Creating an option group.

2. Add the S3_INTEGRATION option to the option group.

For example, the following AWS CLI command adds the S3_INTEGRATION option to an option
group named myoptiongroup.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name myoptiongroup \
 --options OptionName=S3_INTEGRATION,OptionVersion=1.0

Amazon S3 integration 3984

Amazon Relational Database Service User Guide

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name myoptiongroup ^
 --options OptionName=S3_INTEGRATION,OptionVersion=1.0

3. Create a new RDS for Oracle DB instance and associate the option group with it, or modify an
RDS for Oracle DB instance to associate the option group with it.

For information about creating a DB instance, see Creating an Amazon RDS DB instance.

For information about modifying an RDS for Oracle DB instance, see Modifying an Amazon
RDS DB instance.

Transferring files between Amazon RDS for Oracle and an Amazon S3 bucket

To transfer files between an RDS for Oracle DB instance and an Amazon S3 bucket, you can use the
Amazon RDS package rdsadmin_s3_tasks. You can compress files with GZIP when uploading
them, and decompress them when downloading.

Topics

• Requirements and limitations for file transfers

• Uploading files from your RDS for Oracle DB instance to an Amazon S3 bucket

• Downloading files from an Amazon S3 bucket to an Oracle DB instance

• Monitoring the status of a file transfer

Requirements and limitations for file transfers

Before transferring files between your DB instance and an Amazon S3 bucket, note the following:

• The rdsadmin_s3_tasks package transfers files located in a single directory. You can't include
subdirectories in a transfer.

• The maximum object size in an Amazon S3 bucket is 5 TB.

• Tasks created by rdsadmin_s3_tasks run asynchronously.

• You can upload files from the Data Pump directory, such as DATA_PUMP_DIR, or any user-
created directory. You can't upload files from a directory used by Oracle background processes,
such as the adump, bdump, or trace directories.

Amazon S3 integration 3985

Amazon Relational Database Service User Guide

• The download limit is 2000 files per procedure call for download_from_s3. If you need to
download more than 2000 files from Amazon S3, split your download into separate actions, with
no more than 2000 files per procedure call.

• If a file exists in your download folder, and you attempt to download a file with the same name,
download_from_s3 skips the download. To remove a file from the download directory, use the
PL/SQL procedure UTL_FILE.FREMOVE.

Uploading files from your RDS for Oracle DB instance to an Amazon S3 bucket

To upload files from your DB instance to an Amazon S3 bucket, use the procedure
rdsadmin.rdsadmin_s3_tasks.upload_to_s3. For example, you can upload Oracle Recovery
Manager (RMAN) backup files or Oracle Data Pump files. For more information about working with
objects, see Amazon Simple Storage Service User Guide. For more information about performing
RMAN backups, see Performing common RMAN tasks for Oracle DB instances.

The rdsadmin.rdsadmin_s3_tasks.upload_to_s3 procedure has the following parameters.

Parameter name Data type Default Required Description

p_bucket_name VARCHAR2 – required The name of the Amazon
S3 bucket to upload files
to.

p_directory_name VARCHAR2 – required The name of the Oracle
directory object to
upload files from. The
directory can be any
user-created directory
object or the Data
Pump directory, such
as DATA_PUMP_DIR .
You can't upload files
from a directory used by
background processes,
such as adump, bdump,
and trace.

Amazon S3 integration 3986

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/UTL_FILE.html#GUID-09B09C2A-2C21-4F70-BF04-D0EEA7B59CAF
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

Note

You can only
upload files from
the specified
directory. You
can't upload files
in subdirectories
in the specified
directory.

p_s3_prefix VARCHAR2 – required An Amazon S3 file name
prefix that files are
uploaded to. An empty
prefix uploads all files
to the top level in the
specified Amazon S3
bucket and doesn't add a
prefix to the file names.

For example, if the prefix
is folder_1/oradb ,
files are uploaded to
folder_1. In this case,
the oradb prefix is
added to each file.

p_prefix VARCHAR2 – required A file name prefix that
file names must match to
be uploaded. An empty
prefix uploads all files in
the specified directory.

Amazon S3 integration 3987

Amazon Relational Database Service User Guide

Parameter name Data type Default Required Description

p_compression_leve
l

NUMBER 0 optional The level of GZIP
compression. Valid
values range from 0 to 9:

• 0 – No compression

• 1 – Fastest compressi
on

• 9 – Highest compressi
on

p_bucket_owner_ful
l_control

VARCHAR2 – optional The access control
setting for the bucket.
The only valid values
are null or FULL_CONT
ROL . This setting is
required only if you
upload files from one
account (account A)
into a bucket owned
by a different account
(account B), and account
B needs full control of
the files.

The return value for the rdsadmin.rdsadmin_s3_tasks.upload_to_s3 procedure is a task ID.

The following example uploads all of the files in the DATA_PUMP_DIR directory to the Amazon S3
bucket named amzn-s3-demo-bucket. The files aren't compressed.

SELECT rdsadmin.rdsadmin_s3_tasks.upload_to_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_prefix => '',
 p_s3_prefix => '',
 p_directory_name => 'DATA_PUMP_DIR')
 AS TASK_ID FROM DUAL;

Amazon S3 integration 3988

Amazon Relational Database Service User Guide

The following example uploads all of the files with the prefix db in the DATA_PUMP_DIR directory
to the Amazon S3 bucket named amzn-s3-demo-bucket. Amazon RDS applies the highest level
of GZIP compression to the files.

SELECT rdsadmin.rdsadmin_s3_tasks.upload_to_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_prefix => 'db',
 p_s3_prefix => '',
 p_directory_name => 'DATA_PUMP_DIR',
 p_compression_level => 9)
 AS TASK_ID FROM DUAL;

The following example uploads all of the files in the DATA_PUMP_DIR directory to the Amazon
S3 bucket named amzn-s3-demo-bucket. The files are uploaded to a dbfiles folder. In this
example, the GZIP compression level is 1, which is the fastest level of compression.

SELECT rdsadmin.rdsadmin_s3_tasks.upload_to_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_prefix => '',
 p_s3_prefix => 'dbfiles/',
 p_directory_name => 'DATA_PUMP_DIR',
 p_compression_level => 1)
 AS TASK_ID FROM DUAL;

The following example uploads all of the files in the DATA_PUMP_DIR directory to the Amazon S3
bucket named amzn-s3-demo-bucket. The files are uploaded to a dbfiles folder and ora is
added to the beginning of each file name. No compression is applied.

SELECT rdsadmin.rdsadmin_s3_tasks.upload_to_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_prefix => '',
 p_s3_prefix => 'dbfiles/ora',
 p_directory_name => 'DATA_PUMP_DIR')
 AS TASK_ID FROM DUAL;

The following example assumes that the command is run in account A, but account B requires full
control of the bucket contents. The command rdsadmin_s3_tasks.upload_to_s3 transfers
all files in the DATA_PUMP_DIR directory to the bucket named s3bucketOwnedByAccountB.
Access control is set to FULL_CONTROL so that account B can access the files in the bucket. The
GZIP compression level is 6, which balances speed and file size.

Amazon S3 integration 3989

Amazon Relational Database Service User Guide

SELECT rdsadmin.rdsadmin_s3_tasks.upload_to_s3(
 p_bucket_name => 's3bucketOwnedByAccountB',
 p_prefix => '',
 p_s3_prefix => '',
 p_directory_name => 'DATA_PUMP_DIR',
 p_bucket_owner_full_control => 'FULL_CONTROL',
 p_compression_level => 6)
 AS TASK_ID FROM DUAL;

In each example, the SELECT statement returns the ID of the task in a VARCHAR2 data type.

You can view the result by displaying the task's output file.

SELECT text FROM table(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-task-
id.log'));

Replace task-id with the task ID returned by the procedure.

Note

Tasks are executed asynchronously.

Downloading files from an Amazon S3 bucket to an Oracle DB instance

To download files from an Amazon S3 bucket to an RDS for Oracle instance, use the Amazon RDS
procedure rdsadmin.rdsadmin_s3_tasks.download_from_s3.

The download_from_s3 procedure has the following parameters.

Parameter name Data
type

Default Required Description

p_bucket_name VARCHAR2– Required The name of the Amazon S3 bucket to
download files from.

p_directory_name VARCHAR2– Required The name of the Oracle directory
object to download files to. The
directory can be any user-created

Amazon S3 integration 3990

Amazon Relational Database Service User Guide

Parameter name Data
type

Default Required Description

directory object or the Data Pump
directory, such as DATA_PUMP_DIR .

p_error_o
n_zero_do
wnloads

VARCHAR2FALSE Optional A flag that determines whether the
task raises an error when no objects
in the Amazon S3 bucket match the
prefix. If this parameter is not set or
set to FALSE (default), the task prints
a message that no objects were found,
but doesn't raise an exception or fail. If
this parameter is TRUE, the task raises
an exception and fails.

Examples of prefix specifications
that can fail match tests are spaces
in prefixes, as in ' import/te
st9.log' , and case mismatches, as
in test9.log and test9.LOG .

Amazon S3 integration 3991

Amazon Relational Database Service User Guide

Parameter name Data
type

Default Required Description

p_s3_prefix VARCHAR2– Required A file name prefix that file names
must match to be downloaded. An
empty prefix downloads all of the top
level files in the specified Amazon S3
bucket, but not the files in folders in
the bucket.

The procedure downloads Amazon
S3 objects only from the first level
folder that matches the prefix. Nested
directory structures matching the
specified prefix are not downloaded.

For example, suppose that an Amazon
S3 bucket has the folder structure
 folder_1/folder_2/folder_3 .
You specify the 'folder_1/
folder_2/' prefix. In this case, only
the files in folder_2 are downloade
d, not the files in folder_1 or
folder_3.

If, instead, you specify the 'folder_1
/folder_2' prefix, all files in
folder_1 that match the 'folder_2
' prefix are downloaded, and no files
in folder_2 are downloaded.

p_decompr
ession_format

VARCHAR2– Optional The decompression format. Valid
values are NONE for no decompression
and GZIP for decompression.

The return value for the rdsadmin.rdsadmin_s3_tasks.download_from_s3 procedure is a
task ID.

Amazon S3 integration 3992

Amazon Relational Database Service User Guide

The following example downloads all files in the Amazon S3 bucket named amzn-s3-demo-
bucket to the DATA_PUMP_DIR directory. The files aren't compressed, so no decompression is
applied.

SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_directory_name => 'DATA_PUMP_DIR')
 AS TASK_ID FROM DUAL;

The following example downloads all of the files with the prefix db in the Amazon S3 bucket
named amzn-s3-demo-bucket to the DATA_PUMP_DIR directory. The files are compressed with
GZIP, so decompression is applied. The parameter p_error_on_zero_downloads turns on prefix
error checking, so if the prefix doesn't match any files in the bucket, the task raises and exception
and fails.

SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_s3_prefix => 'db',
 p_directory_name => 'DATA_PUMP_DIR',
 p_decompression_format => 'GZIP',
 p_error_on_zero_downloads => 'TRUE')
 AS TASK_ID FROM DUAL;

The following example downloads all of the files in the folder myfolder/ in the Amazon S3
bucket named amzn-s3-demo-bucket to the DATA_PUMP_DIR directory. Use the p_s3_prefix
parameter to specify the Amazon S3 folder. The uploaded files are compressed with GZIP, but
aren't decompressed during the download.

SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(
 p_bucket_name => 'amzn-s3-demo-bucket',
 p_s3_prefix => 'myfolder/',
 p_directory_name => 'DATA_PUMP_DIR',
 p_decompression_format => 'NONE')
 AS TASK_ID FROM DUAL;

The following example downloads the file mydumpfile.dmp in the Amazon S3 bucket named
amzn-s3-demo-bucket to the DATA_PUMP_DIR directory. No decompression is applied.

SELECT rdsadmin.rdsadmin_s3_tasks.download_from_s3(

Amazon S3 integration 3993

Amazon Relational Database Service User Guide

 p_bucket_name => 'amzn-s3-demo-bucket',
 p_s3_prefix => 'mydumpfile.dmp',
 p_directory_name => 'DATA_PUMP_DIR')
 AS TASK_ID FROM DUAL;

In each example, the SELECT statement returns the ID of the task in a VARCHAR2 data type.

You can view the result by displaying the task's output file.

SELECT text FROM table(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-task-
id.log'));

Replace task-id with the task ID returned by the procedure.

Note

Tasks are executed asynchronously.
You can use the UTL_FILE.FREMOVE Oracle procedure to remove files from a directory.
For more information, see FREMOVE procedure in the Oracle documentation.

Monitoring the status of a file transfer

File transfer tasks publish Amazon RDS events when they start and when they complete. The
event message contains the task ID for the file transfer. For information about viewing events, see
Viewing Amazon RDS events.

You can view the status of an ongoing task in a bdump file. The bdump files are located in the /
rdsdbdata/log/trace directory. Each bdump file name is in the following format.

dbtask-task-id.log

Replace task-id with the ID of the task that you want to monitor.

Note

Tasks are executed asynchronously.

Amazon S3 integration 3994

https://docs.oracle.com/database/121/ARPLS/u_file.htm#ARPLS70924

Amazon Relational Database Service User Guide

You can use the rdsadmin.rds_file_util.read_text_file stored procedure to view
the contents of bdump files. For example, the following query returns the contents of the
dbtask-1234567890123-1234.log bdump file.

SELECT text FROM
 table(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-1234567890123-1234.log'));

The following sample shows the log file for a failed transfer.

TASK_ID

--
1234567890123-1234

TEXT

--
2023-04-17 18:21:33.993 UTC [INFO] File #1: Uploading the file /rdsdbdata/datapump/
A123B4CDEF567890G1234567890H1234/sample.dmp to Amazon S3 with bucket name amzn-s3-demo-
bucket and key sample.dmp.
2023-04-17 18:21:34.188 UTC [ERROR] RDS doesn't have permission to write to Amazon S3
 bucket name amzn-s3-demo-bucket and key sample.dmp.
2023-04-17 18:21:34.189 UTC [INFO] The task failed.

Amazon S3 integration 3995

Amazon Relational Database Service User Guide

Troubleshooting Amazon S3 integration

For troubleshooting tips, see the AWS re:Post article How do troubleshoot issues when I integrate
Amazon RDS for Oracle with Amazon S3?.

Removing the Amazon S3 integration option

You can remove Amazon S3 integration option from a DB instance.

To remove the Amazon S3 integration option from a DB instance, do one of the following:

• To remove the Amazon S3 integration option from multiple DB instances, remove the
S3_INTEGRATION option from the option group to which the DB instances belong. This change
affects all DB instances that use the option group. For more information, see Removing an option
from an option group.

• To remove the Amazon S3 integration option from a single DB instance, modify the instance
and specify a different option group that doesn't include the S3_INTEGRATION option. You
can specify the default (empty) option group or a different custom option group. For more
information, see Modifying an Amazon RDS DB instance.

Amazon S3 integration 3996

https://repost.aws/en/knowledge-center/rds-oracle-s3-integration
https://repost.aws/en/knowledge-center/rds-oracle-s3-integration

Amazon Relational Database Service User Guide

Oracle Application Express (APEX)

Amazon RDS supports Oracle Application Express (APEX) through the use of the APEX and APEX-
DEV options. You can deploy Oracle APEX as a runtime environment or as a full development
environment for web-based applications. Using Oracle APEX, you can build applications entirely
within the web browser. For more information, see Oracle application Express in the Oracle
documentation.

Topics

• APEX components

• Requirements and limitations

• Setting up APEX and Oracle Rest Data Services (ORDS)

• Configuring Oracle Rest Data Services (ORDS)

• Upgrading and removing APEX

APEX components

Oracle APEX consists of the following main components:

• A repository that stores the metadata for APEX applications and components. The repository
consists of tables, indexes, and other objects that are installed in your Amazon RDS DB instance.

• A listener that manages HTTP communications with Oracle APEX clients. The listener resides on
a separate host such as an Amazon EC2 instance, an on-premises server at your company, or your
desktop computer. The listener accepts incoming connections from web browsers, forwards them
to the Amazon RDS DB instance for processing, and then sends results from the repository back
to the browsers.

RDS for Oracle supports the following types of listeners:

• For APEX version 5.0 and later, use Oracle REST Data Services (ORDS) version 19.1 and higher.
We recommend that you use the latest supported version of Oracle APEX and ORDS. This
documentation describes older versions for backwards compatibility only.

• For APEX version 4.1.1, you can use Oracle APEX Listener version 1.1.4.

• You can use Oracle HTTP Server and mod_plsql listeners.

Application Express (APEX) 3997

https://apex.oracle.com/

Amazon Relational Database Service User Guide

Note

Amazon RDS doesn't support the Oracle XML DB HTTP server with the embedded PL/
SQL gateway as a listener for APEX. In general, Oracle recommends against using the
embedded PL/SQL gateway for applications that run on the internet.

For more information about these listener types, see About choosing a web listener in the Oracle
documentation.

When you add the Amazon RDS APEX options to your RDS for Oracle DB instance, Amazon RDS
installs the Oracle APEX repository only. Install your listener on a separate host.

Requirements and limitations

The following topic lists the requirements and limitations for APEX and ORDS.

APEX version requirements

The APEX option uses storage on the DB instance class for your DB instance. Following are the
supported versions and approximate storage requirements for Oracle APEX.

APEX version Storage
requireme
nts

Supported
Oracle
Database
versions

Notes

Oracle APEX
version 24.2.v1

114 MiB All This version includes patch 37885097: PSE
BUNDLE FOR APEX 24.2 (PSES ON TOP OF
24.2.0), PATCH_VERSION 4.

Oracle APEX
version 24.1.v1

112 MiB All This version includes patch 36695709: PSE
BUNDLE FOR APEX 24.1 (PSES ON TOP OF
24.1.0), PATCH_VERSION 3. If you need exactly
the same APEX images version to install on
your EC2 instance, download patch 37544819:
24.1.3 PSE BUNDLE FOR APEX 24.1 (PSES ON
TOP OF 24.1.0).

Application Express (APEX) 3998

https://docs.oracle.com/database/apex-5.1/HTMIG/choosing-web-listener.htm#HTMIG29321

Amazon Relational Database Service User Guide

APEX version Storage
requireme
nts

Supported
Oracle
Database
versions

Notes

Oracle APEX
version 23.2.v1

110 MiB All This version includes patch 35895964: PSE
BUNDLE FOR APEX 23.2 (PSES ON TOP OF
23.2.0), PATCH_VERSION 6. If you need exactly
the same APEX images version to install on
your EC2 instance, download patch 37593125:
23.2.6 PSE BUNDLE FOR APEX 23.2 (PSES ON
TOP OF 23.2.0).

Oracle APEX
version 23.1.v1

106 MiB All This version includes patch 35283657: PSE
BUNDLE FOR APEX 23.1 (PSES ON TOP OF
23.1.0), PATCH_VERSION 2.

Oracle APEX
version 22.2.v1

106 MiB All This versiosn includes patch 34628174: PSE
BUNDLE FOR APEX 22.2 (PSES ON TOP OF
22.2.0), PATCH_VERSION 4.

Oracle APEX
version 22.1.v1

124 MiB All This version includes patch 34020981: PSE
BUNDLE FOR APEX 22.1 (PSES ON TOP OF
22.1.0), PATCH_VERSION 6.

Oracle APEX
version 21.2.v1

125 MiB All This version includes patch 33420059: PSE
BUNDLE FOR APEX 21.2 (PSES ON TOP OF
21.2.0), PATCH_VERSION 8.

Oracle APEX
version 21.1.v1

125 MiB All This version includes patch 32598392: PSE
BUNDLE FOR APEX 21.1, PATCH_VERSION 3.

Application Express (APEX) 3999

Amazon Relational Database Service User Guide

APEX version Storage
requireme
nts

Supported
Oracle
Database
versions

Notes

Oracle APEX
version 20.2.v1

148 MiB All except
Oracle
Database
21c

This version includes patch 32006852: PSE
BUNDLE FOR APEX 20.2, PATCH_VERSION
2020.11.12. You can see the patch number and
date by running the following query:

SELECT PATCH_VERSION, PATCH_NUMBER
FROM APEX_PATCHES;

Oracle APEX
version 20.1.v1

173 MiB All except
Oracle
Database
21c

This version includes patch 30990551: PSE
BUNDLE FOR APEX 20.1, PATCH_VERSION
2020.07.15.

Oracle APEX
version 19.2.v1

149 MiB All except
Oracle
Database
21c

Oracle APEX
version 19.1.v1

148 MiB All except
Oracle
Database
21c

For downloadable APEX .zip files, see Oracle APEX Prior Release Archives on the Oracle website.

Oracle APEX and ORDS prerequisites

Note the following prerequisites for using APEX and ORDS:

• Your system must use the Java Runtime Environment (JRE).

• Your Oracle client installation must include the following:

• SQL*Plus or SQL Developer for administration tasks

Application Express (APEX) 4000

https://www.oracle.com/tools/downloads/apex-all-archives-downloads.html

Amazon Relational Database Service User Guide

• Oracle Net Services for configuring connections to your RDS for Oracle DB instance

APEX limitations

You can't modify the APEX_version user account, which is managed by Amazon RDS. Thus, you
can't apply database profiles or enforce password rules on this user. The profiles and password
settings for APEX_version are predefined by Oracle and AWS and are designed to meet the
security requirements for Amazon RDS.

Setting up APEX and Oracle Rest Data Services (ORDS)

The following topic lists the steps required to set up APEX and ORDS

Topics

• Adding the APEX and APEX-DEV options to your DB instance

• Unlocking the public user account on your DB instance

• Configuring RESTful services for Oracle APEX

• Preparing to install ORDS on a separate host

• Setting up Oracle APEX listener

Adding the APEX and APEX-DEV options to your DB instance

To add the APEX and APEX-DEV options to your RDS for Oracle DB instance, do the following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the APEX and APEX-DEV options to the option group.

3. Associate the option group with your DB instance.

When you add the Amazon RDS APEX options, a brief outage occurs while your DB instance is
automatically restarted.

Note

APEX_MAIL is available when the APEX option is installed. The execute privilege for the
APEX_MAIL package is granted to PUBLIC so you don't need the APEX administrative
account to use it.

Application Express (APEX) 4001

Amazon Relational Database Service User Guide

To add the APEX options to a DB instance

1. Determine the option group that you want to use. You can create a new option group or use
an existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine, choose the Oracle edition that you want to use. The APEX options are
supported on all editions.

b. For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the options to the option group. If you want to deploy only the Oracle APEX runtime
environment, add only the APEX option. To deploy the full development environment, add
both the APEX and APEX-DEV options.

For Version, choose the version of APEX that you want to use.

Important

If you add the APEX options to an existing option group that is already attached to one
or more DB instances, a brief outage occurs. During this outage, all the DB instances
are automatically restarted.

For more information about adding options, see Adding an option to an option group.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. When you add the APEX options to an existing DB
instance, a brief outage occurs while your DB instance is automatically restarted. For more
information, see Modifying an Amazon RDS DB instance.

Application Express (APEX) 4002

Amazon Relational Database Service User Guide

Unlocking the public user account on your DB instance

After the Amazon RDS APEX options are installed on your DB instance, make sure to do the
following:

1. Change the password for the APEX public user account.

2. Unlock the account.

You can do this by using the Oracle SQL*Plus command line utility. Connect to your DB instance as
the master user, and issue the following commands. Replace new_password with a password of
your choice.

ALTER USER APEX_PUBLIC_USER IDENTIFIED BY new_password;
ALTER USER APEX_PUBLIC_USER ACCOUNT UNLOCK;

Configuring RESTful services for Oracle APEX

To configure RESTful services in APEX (not needed for APEX 4.1.1.V1), use SQL*Plus
to connect to your DB instance as the master user. After you do this, run the
rdsadmin.rdsadmin_run_apex_rest_config stored procedure. When you run the stored
procedure, you provide passwords for the following users:

• APEX_LISTENER

• APEX_REST_PUBLIC_USER

The stored procedure runs the apex_rest_config.sql script, which creates new database
accounts for these users.

Note

Configuration isn't required for Oracle APEX version 4.1.1.v1. For this Oracle APEX version
only, you don't need to run the stored procedure.

The following command runs the stored procedure.

EXEC rdsadmin.rdsadmin_run_apex_rest_config('apex_listener_password',
 'apex_rest_public_user_password');

Application Express (APEX) 4003

Amazon Relational Database Service User Guide

Preparing to install ORDS on a separate host

Install ORDS on a separate host such as an Amazon EC2 instance, an on-premises server at your
company, or your desktop computer. The examples in this section,assume that your host runs Linux
and is named myapexhost.example.com.

Before you can install ORDS, you need to create a nonprivileged OS user, and then download and
unzip the APEX installation file.

To prepare for ORDS installation

1. Log in to myapexhost.example.com as root.

2. Create a nonprivileged OS user to own the listener installation. The following command
creates a new user named apexuser.

useradd -d /home/apexuser apexuser

The following command assigns a password to the new user.

passwd apexuser;

3. Log in to myapexhost.example.com as apexuser, and download the APEX installation file
from Oracle to your /home/apexuser directory:

• http://www.oracle.com/technetwork/developer-tools/apex/downloads/index.html

• Oracle application Express prior release archives

4. Unzip the file in the /home/apexuser directory.

unzip apex_version.zip

After you unzip the file, there is an apex directory in the /home/apexuser directory.

5. While you are still logged into myapexhost.example.com as apexuser, download the
Oracle REST Data Services file from Oracle to your /home/apexuser directory: http://
www.oracle.com/technetwork/developer-tools/apex-listener/downloads/index.html.

Application Express (APEX) 4004

http://www.oracle.com/technetwork/developer-tools/apex/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/apex/downloads/all-archives-099381.html
http://www.oracle.com/technetwork/developer-tools/apex-listener/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/apex-listener/downloads/index.html

Amazon Relational Database Service User Guide

Setting up Oracle APEX listener

Note

Oracle APEX Listener is deprecated.

Amazon RDS for Oracle continues to support APEX version 4.1.1 and Oracle APEX Listener version
1.1.4. We recommend that you use the latest supported versions of Oracle APEX and ORDS.

Install Oracle APEX Listener on a separate host such as an Amazon EC2 instance, an on-premises
server at your company, or your desktop computer. We assume that the name of your host is
myapexhost.example.com, and that your host is running Linux.

Preparing to install Oracle APEX listener

Before you can install Oracle APEX Listener, you need to create a nonprivileged OS user, and then
download and unzip the APEX installation file.

To prepare for Oracle APEX listener installation

1. Log in to myapexhost.example.com as root.

2. Create a nonprivileged OS user to own the listener installation. The following command
creates a new user named apexuser.

useradd -d /home/apexuser apexuser

The following command assigns a password to the new user.

passwd apexuser;

3. Log in to myapexhost.example.com as apexuser, and download the APEX installation file
from Oracle to your /home/apexuser directory:

• http://www.oracle.com/technetwork/developer-tools/apex/downloads/index.html

• Oracle application Express prior release archives

4. Unzip the file in the /home/apexuser directory.

unzip apex_<version>.zip

Application Express (APEX) 4005

http://www.oracle.com/technetwork/developer-tools/apex/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/apex/downloads/all-archives-099381.html

Amazon Relational Database Service User Guide

After you unzip the file, there is an apex directory in the /home/apexuser directory.

5. While you are still logged into myapexhost.example.com as apexuser, download the
Oracle APEX Listener file from Oracle to your /home/apexuser directory.

Installing and configuring Oracle APEX listener

Before you can use APEX, you need to download the apex.war file, use Java to install Oracle APEX
Listener, and then start the listener.

To install and configure Oracle APEX listener

1. Create a new directory based on Oracle APEX Listener and open the listener file.

Run the following code:

mkdir /home/apexuser/apexlistener
cd /home/apexuser/apexlistener
unzip ../apex_listener.version.zip

2. Run the following code.

java -Dapex.home=./apex -Dapex.images=/home/apexuser/apex/images -Dapex.erase -
jar ./apex.war

3. Enter information for the program prompts following:

• The APEX Listener Administrator user name. The default is adminlistener.

• A password for the APEX Listener Administrator.

• The APEX Listener Manager user name. The default is managerlistener.

• A password for the APEX Listener Administrator.

The program prints a URL that you need to complete the configuration, as follows.

INFO: Please complete configuration at: http://localhost:8080/apex/
listenerConfigure
Database is not yet configured

Application Express (APEX) 4006

Amazon Relational Database Service User Guide

4. Leave Oracle APEX Listener running so that you can use Oracle Application Express. When you
have finished this configuration procedure, you can run the listener in the background.

5. From your web browser, go to the URL provided by the APEX Listener program. The Oracle
Application Express Listener administration window appears. Enter the following information:

• Username – APEX_PUBLIC_USER

• Password – the password for APEX_PUBLIC_USER. This password is the one that you
specified earlier when you configured the APEX repository. For more information, see
Unlocking the public user account on your DB instance.

• Connection type – Basic

• Hostname – the endpoint of your Amazon RDS DB instance, such as
mydb.f9rbfa893tft.us-east-1.rds.amazonaws.com.

• Port – 1521

• SID – the name of the database on your Amazon RDS DB instance, such as mydb.

6. Choose Apply. The APEX administration window appears.

7. Set a password for the APEX admin user. To do this, use SQL*Plus to connect to your DB
instance as the master user, and then run the following commands.

EXEC rdsadmin.rdsadmin_util.grant_apex_admin_role;
grant APEX_ADMINISTRATOR_ROLE to master;
@/home/apexuser/apex/apxchpwd.sql

Replace master with your master user name. When the apxchpwd.sql script prompts you,
enter a new admin password.

8. Return to the APEX administration window in your browser and choose Administration. Next,
choose Application Express Internal Administration. When you are prompted for credentials,
enter the following information:

• User name – admin

• Password – the password you set using the apxchpwd.sql script

Choose Login, and then set a new password for the admin user.

Your listener is now ready for use.

Application Express (APEX) 4007

Amazon Relational Database Service User Guide

Configuring Oracle Rest Data Services (ORDS)

The following topic lists the configuration options for ORDS 21 and 22:

Topics

• Installing and configuring ORDS 21 and lower

• Installing and configuring ORDS 22 and higher

Installing and configuring ORDS 21 and lower

You are now ready to install and configure Oracle Rest Data Services (ORDS) for use with Oracle
APEX. For APEX version 5.0 and later, use ORDS versions 19.1 to 21. To learn how to install ORDS
22 and higher, see Installing and configuring ORDS 22 and higher.

Install the listener on a separate host such as an Amazon EC2 instance, an on-premises server at
your company, or your desktop computer. For the examples in this section, we assume that the
name of your host is myapexhost.example.com, and that your host is running Linux.

 To install and configure ORDS 21 and lower for use with Oracle APEX

1. Go to Oracle REST data services, and examine the Readme. Make sure that you have the
required version of Java installed.

2. Create a new directory for your ORDS installation.

mkdir /home/apexuser/ORDS
cd /home/apexuser/ORDS

3. Download the file ords.version.number.zip from Oracle REST data services.

4. Unzip the file into the /home/apexuser/ORDS directory.

5. If you're installing ORDS in a multitenant database, add the following line to the file /home/
apexuser/ORDS/params/ords_params.properties:

pdb.disable.lockdown=false

6. Grant the master user the required privileges to install ORDS.

After the Amazon RDS APEX option is installed, give the master user the required privileges
to install the ORDS schema. You can do this by connecting to the database and running the
following commands. Replace MASTER_USER with the uppercase name of your master user.

Application Express (APEX) 4008

https://www.oracle.com/database/technologies/appdev/rest-data-services-downloads-212.html
https://www.oracle.com/database/technologies/appdev/rest-data-services-downloads-212.html

Amazon Relational Database Service User Guide

Important

When you enter the user name, use uppercase unless you created the user with a case-
sensitive identifier. For example, if you run CREATE USER myuser or CREATE USER
MYUSER, the data dictionary stores MYUSER. However, if you use double quotes in
CREATE USER "MyUser", the data dictionary stores MyUser. For more information,
see Granting SELECT or EXECUTE privileges to SYS objects.

exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_OBJECTS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_ROLE_PRIVS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_TAB_COLUMNS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_CONS_COLUMNS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_CONSTRAINTS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_OBJECTS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_PROCEDURES', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_TAB_COLUMNS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_TABLES', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_VIEWS', 'MASTER_USER', 'SELECT',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('WPIUTL', 'MASTER_USER', 'EXECUTE',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_SESSION', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_UTILITY', 'MASTER_USER',
 'EXECUTE', true);

Note

These commands apply to ORDS version 19.1 and later.

Application Express (APEX) 4009

Amazon Relational Database Service User Guide

7. Install the ORDS schema using the downloaded ords.war file.

java -jar ords.war install advanced

The program prompts you for the following information. The default values are in
brackets. For more information, see Introduction to Oracle REST data services in the Oracle
documentation.

• Enter the location to store configuration data:

Enter /home/apexuser/ORDS. This is the location of the ORDS configuration files.

• Specify the database connection type to use. Enter number for [1] Basic [2] TNS [3] Custom
URL [1]:

Choose the desired connection type.

• Enter the name of the database server [localhost]: DB_instance_endpoint

Choose the default or enter the correct value.

• Enter the database listener port [1521]: DB_instance_port

Choose the default or enter the correct value.

• Enter 1 to specify the database service name, or 2 to specify the database SID [1]:

Choose 2 to specify the database SID.

• Database SID [xe]

Choose the default or enter the correct value.

• Enter 1 if you want to verify/install Oracle REST Data Services schema or 2 to skip this step
[1]:

Choose 1. This step creates the Oracle REST Data Services proxy user named
ORDS_PUBLIC_USER.

• Enter the database password for ORDS_PUBLIC_USER:

Enter the password, and then confirm it.

• Requires to login with administrator privileges to verify Oracle REST Data Services schema.

Enter the administrator user name: master_userApplication Express (APEX) 4010

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/20.2/aelig/installing-REST-data-services.html#GUID-6F7B4E61-B730-4E73-80B8-F53299123730

Amazon Relational Database Service User Guide

Enter the database password for master_user: master_user_password

Confirm the password: master_user_password

Note

Specify a password other than the prompt shown here as a security best practice.

• Enter the default tablespace for ORDS_METADATA [SYSAUX].

Enter the temporary tablespace for ORDS_METADATA [TEMP].

Enter the default tablespace for ORDS_PUBLIC_USER [USERS].

Enter the temporary tablespace for ORDS_PUBLIC_USER [TEMP].

• Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step. If you're using Oracle
Application Express or migrating from mod_plsql, you must enter 1 [1].

Choose the default.

• Enter the PL/SQL Gateway database user name [APEX_PUBLIC_USER]

Choose the default.

• Enter the database password for APEX_PUBLIC_USER:

Enter the password, and then confirm it.

• Enter 1 to specify passwords for Application Express RESTful Services database users
(APEX_LISTENER, APEX_REST_PUBLIC_USER) or 2 to skip this step [1]:

Choose 2 for APEX 4.1.1.V1; choose 1 for all other APEX versions.

• [Not needed for APEX 4.1.1.v1] Database password for APEX_LISTENER

Enter the password (if required), and then confirm it.

• [Not needed for APEX 4.1.1.v1] Database password for APEX_REST_PUBLIC_USER

Enter the password (if required), and then confirm it.

• Enter a number to select a feature to enable:

Enter 1 to enable all features: SQL Developer Web, REST Enabled SQL, and Database API.
Application Express (APEX) 4011

Amazon Relational Database Service User Guide

• Enter 1 if you wish to start in standalone mode or 2 to exit [1]:

Enter 1.

• Enter the APEX static resources location:

If you unzipped APEX installation files into /home/apexuser, enter /home/apexuser/
apex/images. Otherwise, enter unzip_path/apex/images, where unzip_path is the
directory where you unzipped the file.

• Enter 1 if using HTTP or 2 if using HTTPS [1]:

If you enter 1, specify the HTTP port. If you enter 2, specify the HTTPS port and the SSL
host name. The HTTPS option prompts you to specify how you will provide the certificate:

• Enter 1 to use the self-signed certificate.

• Enter 2 to provide your own certificate. If you enter 2, specify the path for the SSL
certificate and the path for the SSL certificate private key.

8. Set a password for the APEX admin user. To do this, use SQL*Plus to connect to your DB
instance as the master user, and then run the following commands.

EXEC rdsadmin.rdsadmin_util.grant_apex_admin_role;
grant APEX_ADMINISTRATOR_ROLE to master;
@/home/apexuser/apex/apxchpwd.sql

Replace master with your master user name. When the apxchpwd.sql script prompts you,
enter a new admin password.

9. Start the ORDS listener. Run the following code.

java -jar ords.war

The first time you start ORDS, you are prompted to provide the location of the APEX Static
resources. This images folder is located in the /apex/images directory in the installation
directory for APEX.

10. Return to the APEX administration window in your browser and choose Administration. Next,
choose Application Express Internal Administration. When you are prompted for credentials,
enter the following information:

• User name – admin

Application Express (APEX) 4012

Amazon Relational Database Service User Guide

• Password – the password you set using the apxchpwd.sql script

Choose Login, and then set a new password for the admin user.

Your listener is now ready for use.

Installing and configuring ORDS 22 and higher

You are now ready to install and configure Oracle Rest Data Services (ORDS) for use with Oracle
APEX. For the examples in this section, we assume that the name of your separate host is
myapexhost.example.com, and that your host is running Linux. The instructions for ORDS 22
differ from the instructions for previous releases.

To install and configure ORDS 22 and higher for use with Oracle APEX

1. Go to Oracle REST data services, and examine the Readme for the ORDS version that you plan
to download. Make sure that you have the required version of Java installed.

2. Create a new directory for your ORDS installation.

mkdir /home/apexuser/ORDS
cd /home/apexuser/ORDS

3. Download the file ords.version.number.zip or ords-latest.zip from Oracle REST
data services.

4. Unzip the file into the /home/apexuser/ORDS directory.

5. Grant the master user the required privileges to install ORDS.

After the Amazon RDS APEX option is installed, give the master user the required privileges
to install the ORDS schema. You can do this by logging in to the database and running the
following commands. Replace MASTER_USER with the uppercase name of your master user.

Important

When you enter the user name, use uppercase unless you created the user with a case-
sensitive identifier. For example, if you run CREATE USER myuser or CREATE USER
MYUSER, the data dictionary stores MYUSER. However, if you use double quotes in

Application Express (APEX) 4013

http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html

Amazon Relational Database Service User Guide

CREATE USER "MyUser", the data dictionary stores MyUser. For more information,
see Granting SELECT or EXECUTE privileges to SYS objects.

exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_OBJECTS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_ROLE_PRIVS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_TAB_COLUMNS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_CONS_COLUMNS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_CONSTRAINTS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_OBJECTS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_PROCEDURES', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_TAB_COLUMNS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_TABLES', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('USER_VIEWS', 'MASTER_USER', 'SELECT',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('WPIUTL', 'MASTER_USER', 'EXECUTE',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_SESSION', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_UTILITY', 'MASTER_USER',
 'EXECUTE', true);

exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_LOB', 'MASTER_USER', 'EXECUTE',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_ASSERT', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_OUTPUT', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_SCHEDULER', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('HTP', 'MASTER_USER', 'EXECUTE',
 true);

Application Express (APEX) 4014

Amazon Relational Database Service User Guide

exec rdsadmin.rdsadmin_util.grant_sys_object('OWA', 'MASTER_USER', 'EXECUTE',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('WPG_DOCLOAD', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_CRYPTO', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_METADATA', 'MASTER_USER',
 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_SQL', 'MASTER_USER', 'EXECUTE',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('UTL_SMTP', 'MASTER_USER', 'EXECUTE',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBMS_NETWORK_ACL_ADMIN',
 'MASTER_USER', 'EXECUTE', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('SESSION_PRIVS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_USERS', 'MASTER_USER', 'SELECT',
 true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_NETWORK_ACL_PRIVILEGES',
 'MASTER_USER', 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_NETWORK_ACLS', 'MASTER_USER',
 'SELECT', true);
exec rdsadmin.rdsadmin_util.grant_sys_object('DBA_REGISTRY', 'MASTER_USER',
 'SELECT', true);

Note

The preceding commands apply to ORDS 22 and later.

6. Install the ORDS schema using the downloaded ords script. Specify directories to contain
configuration files and log files. Oracle Corporation recommends not placing these directories
inside the directory that contains the ORDS product software.

mkdir -p /home/apexuser/ords_config /home/apexuser/ords_logs

/home/apexuser/ORDS/bin/ords \
 --config /home/apexuser/ords_config \
 install --interactive --log-folder /home/apexuser/ords_logs

For DB instances running the container database (CDB) architecture, use ORDS 23.2 and higher
and pass the --pdb-skip-disable-lockdown argument when installing ORDS.

Application Express (APEX) 4015

Amazon Relational Database Service User Guide

/home/apexuser/ORDS/bin/ords \
 --config /home/apexuser/ords_config \
 install --interactive --log-folder /home/apexuser/ords_logs --pdb-skip-disable-
lockdown

The program prompts you for the following information. The default values are in
brackets. For more information, see Introduction to Oracle REST data services in the Oracle
documentation.

• Choose the type of installation:

Choose 2 to install ORDS schemas in the database and create a database connection pool in
the local ORDS configuration files.

• Specify the database connection type to use. Enter number for [1]
Basic [2] TNS [3] Custom URL:

Choose the desired connection type. This example assumes that you choose 1.

• Enter the name of the database server [localhost]:
DB_instance_endpoint

Choose the default or enter the correct value.

• Enter the database listener port [1521]: DB_instance_port

Choose the default 1521 or enter the correct value.

• Enter the database service name [orcl]:

Enter the database name used by your RDS for Oracle DB instance.

• Provide database user name with administrator privileges

Enter the master user name for your RDS for Oracle DB instance.

• Enter the database password for [username]:

Enter the master user password for your RDS for Oracle DB instance.

• Enter the default tablespace for ORDS_METADATA and ORDS_PUBLIC_USER
[SYSAUX]:

Application Express (APEX) 4016

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/20.2/aelig/installing-REST-data-services.html#GUID-6F7B4E61-B730-4E73-80B8-F53299123730

Amazon Relational Database Service User Guide

• Enter the temporary tablespace for ORDS_METADATA [TEMP]. Enter the
default tablespace for ORDS_PUBLIC_USER [USERS]. Enter the temporary
tablespace for ORDS_PUBLIC_USER [TEMP].

• Enter a number to select additional feature(s) to enable [1]:

• Enter a number to configure and start ORDS in standalone mode [1]:

Choose 2 to skip starting ORDS immediately in standalone mode.

• Enter a number to select the protocol [1] HTTP

• Enter the HTTP port [8080]:

• Enter the APEX static resources location:

Enter the path to APEX installation files (/home/apexuser/apex/images).

7. Set a password for the APEX admin user. To do this, use SQL*Plus to connect to your DB
instance as the master user, and then run the following commands.

EXEC rdsadmin.rdsadmin_util.grant_apex_admin_role;
grant APEX_ADMINISTRATOR_ROLE to master;
@/home/apexuser/apex/apxchpwd.sql

Replace master with your master user name. When the apxchpwd.sql script prompts you,
enter a new admin password.

8. Run ORDS in standalone mode using the ords script with the serve command. For
production deployments, consider using supported Java EE application servers such as Apache
Tomcat or Oracle WebLogic Server. For more information, see Deploying and Monitoring
Oracle REST Data Services in the Oracle Database documentation.

/home/apexuser/ORDS/bin/ords \
 --config /home/apexuser/ords_config serve \
 --port 8193 \
 --apex-images /home/apexuser/apex/images

If ORDS is running but unable to access the APEX installation, you might see the following
error, particularly on non-CDB instances.

The procedure named apex_admin could not be accessed, it may not be declared,
 or the user executing this request may not have been granted execute privilege

Application Express (APEX) 4017

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.1/ordig/deploying-and-monitoring-oracle-rest-data-services.html#GUID-6791F5DF-AC67-4885-BFFA-B80964C17EC9
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.1/ordig/deploying-and-monitoring-oracle-rest-data-services.html#GUID-6791F5DF-AC67-4885-BFFA-B80964C17EC9

Amazon Relational Database Service User Guide

 on the procedure, or a function specified by security.requestValidationFunction
 configuration property has prevented access.

To fix this error, change the request validation function used by ORDS by
running the ords script with the config command. By default, ORDS uses the
ords_util.authorize_plsql_gateway procedure, which is only supported
on CDB instances. For non-CDB instances, you can change this procedure to the
wwv_flow_epg_include_modules.authorize package. See the Oracle Database
documentation and Oracle Support for best practices on configuring the proper request
validation function for your use case.

9. Return to the APEX administration window in your browser and choose Administration. Next,
choose Application Express Internal Administration. When you are prompted for credentials,
enter the following information:

• User name – admin

• Password – the password you set using the apxchpwd.sql script

Choose Login, and then set a new password for the admin user.

Your listener is now ready for use.

Upgrading and removing APEX

To upgrade or remove APEX, follow the instructions in this topic:

Topics

• Upgrading the APEX version

• Removing the APEX option

Upgrading the APEX version

Important

Back up your DB instance before you upgrade APEX. For more information, see Creating
a DB snapshot for a Single-AZ DB instance for Amazon RDS and Testing an Oracle DB
upgrade.

Application Express (APEX) 4018

Amazon Relational Database Service User Guide

To upgrade APEX with your DB instance, do the following:

• Create a new option group for the upgraded version of your DB instance.

• Add the upgraded versions of APEX and APEX-DEV to the new option group. Be sure to
include any other options that your DB instance uses. For more information, see Option group
considerations.

• When you upgrade your DB instance, specify the new option group for your upgraded DB
instance.

After you upgrade your version of APEX, the APEX schema for the previous version might still
exist in your database. If you don't need it anymore, you can drop the old APEX schema from your
database after you upgrade.

If you upgrade the APEX version and RESTful services were not configured in the previous
APEX version, we recommend that you configure RESTful services. For more information, see
Configuring RESTful services for Oracle APEX.

In some cases when you plan to do a major version upgrade of your DB instance, you might find
that you're using an APEX version that isn't compatible with your target database version. In these
cases, you can upgrade your version of APEX before you upgrade your DB instance. Upgrading
APEX first can reduce the amount of time that it takes to upgrade your DB instance.

Note

After upgrading APEX, install and configure a listener for use with the upgraded version.
For instructions, see Setting up Oracle APEX listener.

Removing the APEX option

You can remove the Amazon RDS APEX options from a DB instance. To remove the APEX options
from a DB instance, do one of the following:

• To remove the APEX options from multiple DB instances, remove the APEX options from the
option group they belong to. This change affects all DB instances that use the option group.
When you remove the APEX options from an option group that is attached to multiple DB
instances, a brief outage occurs while all the DB instances are restarted.

For more information, see Removing an option from an option group.

Application Express (APEX) 4019

Amazon Relational Database Service User Guide

• To remove the APEX options from a single DB instance, modify the DB instance and specify
a different option group that doesn't include the APEX options. You can specify the default
(empty) option group, or a different custom option group. When you remove the APEX options, a
brief outage occurs while your DB instance is automatically restarted.

For more information, see Modifying an Amazon RDS DB instance.

When you remove the APEX options from a DB instance, the APEX schema is removed from your
database.

Application Express (APEX) 4020

Amazon Relational Database Service User Guide

Amazon EFS integration

Amazon Elastic File System (Amazon EFS) provides serverless, fully elastic file storage so that you
can share file data without provisioning or managing storage capacity and performance. With
Amazon EFS, you can create a file system and then mount it in your VPC through the NFS versions
4.0 and 4.1 (NFSv4) protocol. Then you can use the EFS file system like any other POSIX-compliant
file system. For general information, see What is Amazon Elastic File System? and the AWS blog
Integrate Amazon RDS for Oracle with Amazon EFS.

Topics

• Overview of Amazon EFS integration

• Configuring network permissions for RDS for Oracle integration with Amazon EFS

• Configuring IAM permissions for RDS for Oracle integration with Amazon EFS

• Adding the EFS_INTEGRATION option

• Configuring Amazon EFS file system permissions

• Transferring files between RDS for Oracle and an Amazon EFS file system

• Removing the EFS_INTEGRATION option

• Troubleshooting Amazon EFS integration

Overview of Amazon EFS integration

With Amazon EFS, you can transfer files between your RDS for Oracle DB instance and an EFS file
system. For example, you can use EFS to support the following use cases:

• Share a file system between applications and multiple database servers.

• Create a shared directory for migration-related files, including transportable tablespace data
files. For more information, see Migrating using Oracle transportable tablespaces.

• Store and share archived redo log files without allocating additional storage space on the server.

• Use Oracle Database utilities such as UTL_FILE to read and write files.

Advantages to Amazon EFS integration

When you choose an EFS file system over alternative data transfer solutions, you get the following
benefits:

Amazon EFS integration 4021

https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://aws.amazon.com/blogs/database/integrate-amazon-rds-for-oracle-with-amazon-efs/

Amazon Relational Database Service User Guide

• You can transfer Oracle Data Pump files between Amazon EFS and your RDS for Oracle DB
instance. You don’t need to copy these files locally because Data Pump imports directly from the
EFS file system. For more information, see Importing data into Oracle on Amazon RDS.

• Data migration is faster than using a database link.

• You avoid allocating storage space on your RDS for Oracle DB instance to hold the files.

• An EFS file systems can automatically scale storage without requiring you to provision it.

• Amazon EFS integration has no minimum fees or setup costs. You pay only for what you use.

• Amazon EFS integration supports two forms of encryption: encryption of data in transit and
encryption at rest. Encryption of data in transit is enabled by default using TLS version 1.2.
You can enable encryption of data at rest when creating an Amazon EFS file system. For more
information, see Encrypting data at rest in the Amazon Elastic File System User Guide.

Requirements for Amazon EFS integration

Make sure that you meet the following requirements:

• Your database must run database version 19.0.0.0.ru-2022-07.rur-2022-07.r1 or higher.

• Your DB instance and your EFS file system must be in the same AWS Region, VPC, and AWS
account. RDS for Oracle doesn't support cross-account and cross-Region access for EFS.

• Your VPC must have both DNS Resolution and DNS Hostnames enabled. For more information,
see DNS attributes in your VPC in the Amazon Virtual Private Cloud User Guide.

• Your EFS file system must use the Standard or Standard-IA storage class.

• If you use a DNS name in the mount command, make sure your VPC configured to use the DNS
server provided by Amazon. Custom DNS servers aren't supported.

• You must use non-RDS solutions to back up your EFS file system. RDS for Oracle doesn't support
automated backups or manual DB snapshots of an EFS file system. For more information, see
Backing up your Amazon EFS file systems.

Configuring network permissions for RDS for Oracle integration with Amazon EFS

For RDS for Oracle to integrate with Amazon EFS, make sure that your DB instance has network
access to an EFS file system. For more information, see Controlling network access to Amazon EFS
file systems for NFS clients in the Amazon Elastic File System User Guide.

Topics

Amazon EFS integration 4022

https://docs.aws.amazon.com/efs/latest/ug/encryption-at-rest.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.aws.amazon.com/efs/latest/ug/efs-backup-solutions.html
https://docs.aws.amazon.com/efs/latest/ug/NFS-access-control-efs.html
https://docs.aws.amazon.com/efs/latest/ug/NFS-access-control-efs.html

Amazon Relational Database Service User Guide

• Controlling network access with security groups

• Controlling network access with file system policies

Controlling network access with security groups

You can control your DB instance access to EFS file systems using network layer security
mechanisms such as VPC security groups. To allow access to an EFS file system for your DB
instance, make sure that your EFS file system meets the following requirements:

• An EFS mount target exists in every Availability Zone used by an RDS for Oracle DB instance.

An EFS mount target provides an IP address for an NFSv4 endpoint at which you can mount an
EFS file system. You mount your file system using its DNS name, which resolves to the IP address
of the EFS mount target in the used by the Availability Zone of your DB instance.

You can configure DB instances in different AZs to use the same EFS file system. For Multi-AZ,
you need a mount point for each AZ in your deployment. You might need to move a DB instance
to a different AZ. For these reasons, we recommend that you create an EFS mount point in each
AZ in your VPC. By default, when you create a new EFS file system using the console, RDS creates
mount targets for all AZs.

• A security group is attached to the mount target.

• The security group has an inbound rule to allow the network subnet or security group of the RDS
for Oracle DB instance on TCP/2049 (Type NFS).

For more information, see Creating Amazon EFS file systems and Creating and managing EFS
mount targets and security groups in the Amazon Elastic File System User Guide.

Controlling network access with file system policies

Amazon EFS integration with RDS for Oracle works with the default (empty) EFS file system policy.
The default policy doesn't use IAM to authenticate. Instead, it grants full access to any anonymous
client that can connect to the file system using a mount target. The default policy is in effect
whenever a user-configured file system policy isn't in effect, including at file system creation. For
more information, see Default EFS file system policy in the Amazon Elastic File System User Guide.

To strengthen access to your EFS file system for all clients, including RDS for Oracle, you can
configure IAM permissions. In this approach, you create a file system policy. For more information,
see Creating file system policies in the Amazon Elastic File System User Guide.

Amazon EFS integration 4023

https://docs.aws.amazon.com/efs/latest/ug/creating-using-create-fs.html#configure-efs-network-access
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs.html
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs.html
https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html#default-filesystempolicy
https://docs.aws.amazon.com/efs/latest/ug/create-file-system-policy.html

Amazon Relational Database Service User Guide

Configuring IAM permissions for RDS for Oracle integration with Amazon EFS

By default, Amazon EFS integration feature doesn't use an IAM role: the USE_IAM_ROLE option
setting is FALSE. To integrate RDS for Oracle with Amazon EFS and an IAM role, your DB instance
must have IAM permissions to access an Amazon EFS file system.

Topics

• Step 1: Create an IAM role for your DB instance and attach your policy

• Step 2: Create a file system policy for your Amazon EFS file system

• Step 3: Associate your IAM role with your RDS for Oracle DB instance

Step 1: Create an IAM role for your DB instance and attach your policy

In this step, you create a role for your RDS for Oracle DB instance to allow Amazon RDS to access
your EFS file system.

Console

To create an IAM role to allow Amazon RDS access to an EFS file system

1. Open the IAM Management Console.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. For AWS service, choose RDS.

5. For Select your use case, choose RDS – Add Role to Database.

6. Choose Next.

7. Don't add any permissions policies. Choose Next.

8. Set Role name to a name for your IAM role, for example rds-efs-integration-role. You
can also add an optional Description value.

9. Choose Create role.

AWS CLI

To limit the service's permissions to a specific resource, we recommend using the aws:SourceArn
and aws:SourceAccount global condition context keys in resource-based trust relationships. This
is the most effective way to protect against the confused deputy problem.

Amazon EFS integration 4024

https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

You might use both global condition context keys and have the aws:SourceArn value contain the
account ID. In this case, the aws:SourceAccount value and the account in the aws:SourceArn
value must use the same account ID when used in the same statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the trust relationship, make sure to use the aws:SourceArn global condition context key with
the full Amazon Resource Name (ARN) of the resources accessing the role.

The following AWS CLI command creates the role named rds-efs-integration-role for this
purpose.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-efs-integration-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": my_account_ID,
 "aws:SourceArn": "arn:aws:rds:Region:my_account_ID:db:dbname"
 }
 }
 }
]
 }'

For Windows:

Amazon EFS integration 4025

Amazon Relational Database Service User Guide

aws iam create-role ^
 --role-name rds-efs-integration-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": my_account_ID,
 "aws:SourceArn": "arn:aws:rds:Region:my_account_ID:db:dbname"
 }
 }
 }
]
 }'

For more information, see Creating a role to delegate permissions to an IAM user in the IAM User
Guide.

Step 2: Create a file system policy for your Amazon EFS file system

In this step, you create a file system policy for your EFS file system.

To create or edit an EFS file system policy

1. Open the EFS Management Console.

2. Choose File Systems.

3. On the File systems page, choose the file system that you want to edit or create a file system
policy for. The details page for that file system is displayed.

4. Choose the File system policy tab.

If the policy is empty, then the default EFS file system policy is in use. For more information,
see Default EFS file system policy in the Amazon Elastic File System User Guide.

5. Choose Edit. The File system policy page appears.

6. In Policy editor, enter a policy such as the following, and then choose Save.

Amazon EFS integration 4026

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://console.aws.amazon.com/efs/home?#home
https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html#default-filesystempolicy

Amazon Relational Database Service User Guide

{
 "Version": "2012-10-17",
 "Id": "ExamplePolicy01",
 "Statement": [
 {
 "Sid": "ExampleStatement01",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/rds-efs-integration-role"
 },
 "Action": [
 "elasticfilesystem:ClientMount",
 "elasticfilesystem:ClientWrite",
 "elasticfilesystem:ClientRootAccess"
],
 "Resource": "arn:aws:elasticfilesystem:us-east-1:123456789012:file-
system/fs-1234567890abcdef0"
 }
]
}

Step 3: Associate your IAM role with your RDS for Oracle DB instance

In this step, you associate your IAM role with your DB instance. Be aware of the following
requirements:

• You must have access to an IAM role with the required Amazon EFS permissions policy attached
to it.

• You can associate only one IAM role with your RDS for Oracle DB instance at a time.

• The status of your instance must be Available.

For more information, see Identity and access management for Amazon EFS in the Amazon Elastic
File System User Guide.

Amazon EFS integration 4027

https://docs.aws.amazon.com/efs/latest/ug/auth-and-access-control.html

Amazon Relational Database Service User Guide

Console

To associate your IAM role with your RDS for Oracle DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. If your database instance is unavailable, choose Actions and then Start. When the instance
status shows Started, go to the next step.

4. Choose the Oracle DB instance name to display its details.

5. On the Connectivity & security tab, scroll down to the Manage IAM roles section at the
bottom of the page.

6. Choose the role to add in the Add IAM roles to this instance section.

7. For Feature, choose EFS_INTEGRATION.

8. Choose Add role.

AWS CLI

The following AWS CLI command adds the role to an Oracle DB instance named mydbinstance.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-instance \
 --db-instance-identifier mydbinstance \
 --feature-name EFS_INTEGRATION \
 --role-arn your-role-arn

For Windows:

aws rds add-role-to-db-instance ^
 --db-instance-identifier mydbinstance ^
 --feature-name EFS_INTEGRATION ^
 --role-arn your-role-arn

Replace your-role-arn with the role ARN that you noted in a previous step. EFS_INTEGRATION
must be specified for the --feature-name option.

Amazon EFS integration 4028

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Adding the EFS_INTEGRATION option

To integrate Amazon RDS for Oracle with Amazon EFS, your DB instance must be associated with
an option group that includes the EFS_INTEGRATION option.

Multiple Oracle DB instances that belong to the same option group share the same EFS file system.
Different DB instances can access the same data, but access can be divided by using different
Oracle directories. For more information see Transferring files between RDS for Oracle and an
Amazon EFS file system.

Console

To configure an option group for Amazon EFS integration

1. Create a new option group or identify an existing option group to which you can add the
EFS_INTEGRATION option.

For information about creating an option group, see Creating an option group.

2. Add the EFS_INTEGRATION option to the option group. You need to specify the EFS_ID file
system ID and set the USE_IAM_ROLE flag.

For more information, see Adding an option to an option group.

3. Associate the option group with your DB instance in either of the following ways:

• Create a new Oracle DB instance and associate the option group with it. For information
about creating a DB instance, see Creating an Amazon RDS DB instance.

• Modify an Oracle DB instance to associate the option group with it. For information about
modifying an Oracle DB instance, see Modifying an Amazon RDS DB instance.

AWS CLI

To configure an option group for EFS integration

1. Create a new option group or identify an existing option group to which you can add the
EFS_INTEGRATION option.

For information about creating an option group, see Creating an option group.

2. Add the EFS_INTEGRATION option to the option group.

Amazon EFS integration 4029

Amazon Relational Database Service User Guide

For example, the following AWS CLI command adds the EFS_INTEGRATION option to an
option group named myoptiongroup.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name myoptiongroup \
 --options "OptionName=EFS_INTEGRATION,OptionSettings=\
 [{Name=EFS_ID,Value=fs-1234567890abcdef0},{Name=USE_IAM_ROLE,Value=TRUE}]"

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name myoptiongroup ^
 --options "OptionName=EFS_INTEGRATION,OptionSettings=^
 [{Name=EFS_ID,Value=fs-1234567890abcdef0},{Name=USE_IAM_ROLE,Value=TRUE}]"

3. Associate the option group with your DB instance in either of the following ways:

• Create a new Oracle DB instance and associate the option group with it. For information
about creating a DB instance, see Creating an Amazon RDS DB instance.

• Modify an Oracle DB instance to associate the option group with it. For information about
modifying an Oracle DB instance, see Modifying an Amazon RDS DB instance.

Configuring Amazon EFS file system permissions

By default, only the root user (UID 0) has read, write, and execute permissions for a newly created
EFS file system. For other users to modify the file system, the root user must explicitly grant
them access. The user for the RDS for Oracle DB instance is in the others category. For more
information, see Working with users, groups, and permissions at the Network File System (NFS)
Level in the Amazon Elastic File System User Guide.

To allow your RDS for Oracle DB instance to read and write files on an EFS file system, do the
following:

• Mount an EFS file system locally on your Amazon EC2 or on-premises instance.

• Configure fine grain permissions.

Amazon EFS integration 4030

https://docs.aws.amazon.com/efs/latest/ug/accessing-fs-nfs-permissions.html
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs-nfs-permissions.html

Amazon Relational Database Service User Guide

For example, to grant other users permissions to write to the EFS file system root, run chmod
777 on this directory. For more information, see Example Amazon EFS file system use cases and
permissions in the Amazon Elastic File System User Guide.

Transferring files between RDS for Oracle and an Amazon EFS file system

To transfer files between an RDS for Oracle instance and an Amazon EFS file system, create at least
one Oracle directory and configure EFS file system permissions to control DB instance access.

Topics

• Creating an Oracle directory

• Transferring data to and from an EFS file system: examples

Creating an Oracle directory

To create an Oracle directory, use the procedure
rdsadmin.rdsadmin_util.create_directory_efs. The procedure has the following
parameters.

Parameter
name

Data
type

DefaultRequiredDescription

p_directo
ry_name

VARCHAR2 – Yes The name of the Oracle directory.

p_path_on
_efs

VARCHAR2 – Yes The path on the EFS file system. The prefix of the
path name uses the pattern /rdsefs-fsid/,
where fsid is a placeholder for your EFS file
system ID.

For example, if your EFS file system is named
fs-1234567890abcdef0 , and you create a
subdirectory on this file system named mydir,
you could specify the following value:

/rdsefs-fs-1234567890abcdef0/mydir

Amazon EFS integration 4031

https://docs.aws.amazon.com/efs/latest/ug/accessing-fs-nfs-permissions.html#accessing-fs-nfs-permissions-ex-scenarios
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs-nfs-permissions.html#accessing-fs-nfs-permissions-ex-scenarios

Amazon Relational Database Service User Guide

Assume that you create a subdirectory named /datapump1 on the EFS file system
fs-1234567890abcdef0. The following example creates an Oracle directory
DATA_PUMP_DIR_EFS that points to the /datapump1 directory on the EFS file system. The file
system path value for the p_path_on_efs parameter is prefixed with the string /rdsefs-.

BEGIN
 rdsadmin.rdsadmin_util.create_directory_efs(
 p_directory_name => 'DATA_PUMP_DIR_EFS',
 p_path_on_efs => '/rdsefs-fs-1234567890abcdef0/datapump1');
END;
/

Transferring data to and from an EFS file system: examples

The following example uses Oracle Data Pump to export the table named MY_TABLE to file
datapump.dmp. This file resides on an EFS file system.

DECLARE
 v_hdnl NUMBER;
BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(operation => 'EXPORT', job_mode => 'TABLE',
 job_name=>null);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'datapump.dmp',
 directory => 'DATA_PUMP_DIR_EFS',
 filetype => dbms_datapump.ku$_file_type_dump_file);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'datapump-exp.log',
 directory => 'DATA_PUMP_DIR_EFS',
 filetype => dbms_datapump.ku$_file_type_log_file);
 DBMS_DATAPUMP.METADATA_FILTER(v_hdnl,'NAME_EXPR','IN (''MY_TABLE'')');
 DBMS_DATAPUMP.START_JOB(v_hdnl);
END;
/

The following example uses Oracle Data Pump to import the table named MY_TABLE from file
datapump.dmp. This file resides on an EFS file system.

DECLARE

Amazon EFS integration 4032

Amazon Relational Database Service User Guide

 v_hdnl NUMBER;
BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(
 operation => 'IMPORT',
 job_mode => 'TABLE',
 job_name => null);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'datapump.dmp',
 directory => 'DATA_PUMP_DIR_EFS',
 filetype => dbms_datapump.ku$_file_type_dump_file);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'datapump-imp.log',
 directory => 'DATA_PUMP_DIR_EFS',
 filetype => dbms_datapump.ku$_file_type_log_file);
 DBMS_DATAPUMP.METADATA_FILTER(v_hdnl,'NAME_EXPR','IN (''MY_TABLE'')');
 DBMS_DATAPUMP.START_JOB(v_hdnl);
END;
/

For more information, see Importing data into Oracle on Amazon RDS.

Removing the EFS_INTEGRATION option

The steps for removing the EFS_INTEGRATION option depend on whether you're removing the
option from multiple DB instances or a single instance.

Number of
DB instances

Action Related information

Multiple Remove the EFS_INTEGRATION option
from the option group to which the DB
instances belong. This change affects all
instances that use the option group.

Removing an option from an
option group

Single Modify the DB instance and specify a
different option group that doesn't include
the EFS_INTEGRATION option. You can
specify the default (empty) option group or a
different custom option group.

Modifying an Amazon RDS DB
instance

Amazon EFS integration 4033

Amazon Relational Database Service User Guide

After you remove the EFS_INTEGRATION option, you can optionally delete the EFS file system
that was connected to your DB instances.

Troubleshooting Amazon EFS integration

Your RDS for Oracle DB instance monitors the connectivity to an Amazon EFS file system. When
monitoring detects an issue, it might try to correct the issue and publish an event in the RDS
console. For more information, see Viewing Amazon RDS events.

Use the information in this section to help you diagnose and fix common issues when you work
with Amazon EFS integration.

Notification Description Action

The EFS for RDS Oracle
instance instance_
name isn't available
on the primary host.
NFS port 2049 of your
EFS isn't reachable.

The DB instance can't
communicate with the EFS
file system.

Make sure of the following:

• The EFS file system exists.

• The security group that is
attached to the EFS mount
target has an inbound rule
to allow the security group
or network subnet of the
RDS for Oracle DB instance
on TCP/2049 (Type NFS).

The EFS isn't
reachable.

An error occurred during
the installation of the
EFS_INTEGRATION option.

Make sure of the following:

• The EFS file system exists.

• The security group that is
attached to the EFS mount
target has an inbound rule
to allow the security group
or network subnet of the
RDS for Oracle DB instance
on TCP/2049 (Type NFS).

• The enableDnsSupport
attribute is turned on for
your VPC.

Amazon EFS integration 4034

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ListEvents.html

Amazon Relational Database Service User Guide

Notification Description Action

• You are using the Amazon
provided DNS server in your
VPC. Amazon EFS integrati
on doesn't work with a
custom DHCP DNS.

The associated role
with your DB instance
wasn't found.

An error occurred during
the installation of the
EFS_INTEGRATION option.

Make sure that you associated
an IAM role with your RDS for
Oracle DB instance.

The associated role
with your DB instance
wasn't found.

An error occurred during
the installation of the
EFS_INTEGRATION option.
RDS for Oracle was restored
from a DB snapshot with
the USE_IAM_ROLE option
setting of TRUE.

Make sure that you associated
an IAM role with your RDS for
Oracle DB instance.

The associated role
with your DB instance
wasn't found.

An error occurred during
the installation of the
EFS_INTEGRATION option.
RDS for Oracle was created
from an all-in-one CloudForm
ation template with the
USE_IAM_ROLE option
setting of TRUE.

As a workaround, complete
the following steps:

1. Create a DB instance with
the IAM role and default
option group.

2. On a subsequent stack
update, add the custom
option group with the
EFS_INTEGRATION
option.

PLS-00302: component
'CREATE_DIRECTORY_
EFS' must be declared

This error can occur when
you're using a version of
RDS for Oracle that doesn't
support Amazon EFS.

Make sure that you are using
RDS for Oracle DB instance
version 19.0.0.0.ru-2022-0
7.rur-2022-07.r1 or higher.

Amazon EFS integration 4035

Amazon Relational Database Service User Guide

Notification Description Action

Read access of your
EFS is denied. Check
your file system
policy.

Your DB instance can't read
the EFS file system.

Make sure that your EFS file
system allows read access
through the IAM role or on
the EFS file system level.

N/A Your DB instance can't write
to the EFS file system.

Take the following steps:

1. Make sure that your EFS
file system is mounted on
an Amazon EC2 instance.

2. Give the others group
write access to your
RDS user. The simplest
technique is to run the
chmod 777 command on
the top directory of the
EFS file system.

Amazon EFS integration 4036

Amazon Relational Database Service User Guide

Oracle Java virtual machine

Amazon RDS supports Oracle Java Virtual Machine (JVM) through the use of the JVM option.
Oracle Java provides a SQL schema and functions that facilitate Oracle Java features in an Oracle
database. For more information, see Introduction to Java in Oracle database in the Oracle
documentation. You can use Oracle JVM with all versions of Oracle Database 21c (21.0.0) and
Oracle Database 19c (19.0.0).

Considerations for Oracle JVM

Java implementation in Amazon RDS has a limited set of permissions. The master user is granted
the RDS_JAVA_ADMIN role, which grants a subset of the privileges granted by the JAVA_ADMIN
role. To list the privileges granted to the RDS_JAVA_ADMIN role, run the following query on your
DB instance:

SELECT * FROM dba_java_policy
 WHERE grantee IN ('RDS_JAVA_ADMIN', 'PUBLIC')
 AND enabled = 'ENABLED'
 ORDER BY type_name, name, grantee;

Prerequisites for Oracle JVM

The following are prerequisites for using Oracle Java:

• Your DB instance must be of a large enough class. Oracle Java isn't supported for the db.t3.small
DB instance classes. For more information, see DB instance classes.

• Your DB instance must have Auto Minor Version Upgrade enabled. This option enables your
DB instance to receive minor DB engine version upgrades automatically when they become
available. Amazon RDS uses this option to update your DB instance to the latest Oracle Patch Set
Update (PSU) or Release Update (RU). For more information, see Modifying an Amazon RDS DB
instance.

Best practices for Oracle JVM

The following are best practices for using Oracle Java:

• For maximum security, use the JVM option with Secure Sockets Layer (SSL). For more
information, see Oracle Secure Sockets Layer.

Java virtual machine (JVM) 4037

https://docs.oracle.com/database/121/JJDEV/chone.htm

Amazon Relational Database Service User Guide

• Configure your DB instance to restrict network access. For more information, see Scenarios for
accessing a DB instance in a VPC and Working with a DB instance in a VPC.

• Update the configuration of your HTTPS endpoints to support TLSv1.2 if you meet the following
conditions:

• You use Oracle Java Virtual Machine (JVM) to connect an HTTPS endpoint over TLSv1 or
TLSv1.1 protocols.

• Your endpoint doesn't support the TLSv1.2 protocol.

• You haven't applied the April 2021 release update to your Oracle DB.

By updating your endpoint configuration, you ensure that the connectivity of the JVM to the
HTTPS endpoint will continue to work. For more information about TLS changes in the Oracle
JRE and JDK, see Oracle JRE and JDK Cryptographic Roadmap.

Adding the Oracle JVM option

The following is the general process for adding the JVM option to a DB instance:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

There is a brief outage while the JVM option is added. After you add the option, you don't need to
restart your DB instance. As soon as the option group is active, Oracle Java is available.

Note

During this outage, password verification functions are disabled briefly. You can also expect
to see events related to password verification functions during the outage. Password
verification functions are enabled again before the Oracle DB instance is available.

To add the JVM option to a DB instance

1. Determine the option group that you want to use. You can create a new option group or use
an existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

Java virtual machine (JVM) 4038

https://java.com/en/jre-jdk-cryptoroadmap.html

Amazon Relational Database Service User Guide

• For Engine, choose the DB engine used by the DB instance (oracle-ee, oracle-se, oracle-se1,
or oracle-se2).

• For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the JVM option to the option group. For more information about adding options, see
Adding an option to an option group.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, apply the option group by modifying the instance and attaching
the new option group. For more information, see Modifying an Amazon RDS DB instance.

4. Grant the required permissions to users.

The Amazon RDS master user has the permissions to use the JVM option by default. If other
users require these permissions, connect to the DB instance as the master user in a SQL client
and grant the permissions to the users.

The following example grants the permissions to use the JVM option to the test_proc user.

create user test_proc identified by password;
CALL dbms_java.grant_permission('TEST_PROC',
 'oracle.aurora.security.JServerPermission', 'LoadClassInPackage.*', '');

Note

Specify a password other than the prompt shown here as a security best practice.

After the user is granted the permissions, the following query should return output.

select * from dba_java_policy where grantee='TEST_PROC';

Java virtual machine (JVM) 4039

Amazon Relational Database Service User Guide

Note

The Oracle user name is case-sensitive, and it usually has all uppercase characters.

Removing the Oracle JVM option

You can remove the JVM option from a DB instance. There is a brief outage while the option is
removed. After you remove the JVM option, you don't need to restart your DB instance.

Warning

Removing the JVM option can result in data loss if the DB instance is using data types
that were enabled as part of the option. Back up your data before proceeding. For more
information, see Backing up, restoring, and exporting data.

To remove the JVM option from a DB instance, do one of the following:

• Remove the JVM option from the option group it belongs to. This change affects all DB instances
that use the option group. For more information, see Removing an option from an option group.

• Modify the DB instance and specify a different option group that doesn't include the JVM option.
This change affects a single DB instance. You can specify the default (empty) option group,
or a different custom option group. For more information, see Modifying an Amazon RDS DB
instance.

Java virtual machine (JVM) 4040

Amazon Relational Database Service User Guide

Oracle Enterprise Manager

Amazon RDS supports Oracle Enterprise Manager (OEM). OEM is the Oracle product line for
integrated management of enterprise information technology.

Amazon RDS supports OEM on Oracle Database 19c non-CDBs or CDBs. The following table
describes the supported OEM options.

Option Option ID Supported OEM releases

OEM Database Express OEM OEM Database Express 19c

OEM Management Agent OEM_AGENT OEM Cloud Control for 13c

Note

You can use OEM Database or OEM Management Agent, but not both.

Enterprise Manager 4041

Amazon Relational Database Service User Guide

Oracle Enterprise Manager Database Express

Amazon RDS supports Oracle Enterprise Manager Database Express (EM Express) through the use
of the OEM option. Amazon RDS supports EM Express for Oracle Database 19c using the CDB or
non-CDB architecture.

EM Express is a web-based database management tool included in your database and is only
available when it is open. It supports key performance management and basic database
administration functions. For more information, see Introduction to Oracle Enterprise Manager
Database Express in the Oracle Database documentation.

Note

EM Express isn't supported on the db.t3.small DB instance class. For more information
about DB instance classes, see RDS for Oracle DB instance classes.

OEM option settings

Amazon RDS supports the following settings for the OEM option.

Option setting Valid values Description

Port An integer value The port on the RDS for
Oracle DB instance that
listens for EM Express. The
default is 5500.

Security Groups — A security group that has
access to Port.

Step 1: Adding the OEM option

The general process for adding the OEM option to a DB instance is the following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with your DB instance.

Enterprise Manager 4042

https://docs.oracle.com/en/database/oracle/oracle-database/19/admqs/getting-started-with-database-administration.html#GUID-BA75AD46-D22E-4914-A31E-C395CD6A2BBA
https://docs.oracle.com/en/database/oracle/oracle-database/19/admqs/getting-started-with-database-administration.html#GUID-BA75AD46-D22E-4914-A31E-C395CD6A2BBA

Amazon Relational Database Service User Guide

When you add the OEM option, a brief outage occurs while your DB instance is automatically
restarted.

To add the OEM option to a DB instance

1. Determine the option group you want to use. You can create a new option group or use an
existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine choose the oracle edition for your DB instance.

b. For Major engine version choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the OEM option to the option group, and configure the option settings. For more
information about adding options, see Adding an option to an option group. For more
information about each setting, see OEM option settings.

Note

If you add the OEM option to an existing option group that is already attached
to one or more DB instances, a brief outage occurs while all the DB instances are
automatically restarted.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, apply the option group by modifying the instance and attaching
the new option group. When you add the OEM option, a brief outage occurs while your DB
instance is automatically restarted. For more information, see Modifying an Amazon RDS DB
instance.

Note

You can also use the AWS CLI to add the OEM option. For examples, see Adding an option
to an option group.

Enterprise Manager 4043

Amazon Relational Database Service User Guide

Step 2: (CDB only) Unlocking the DBSNMP user account

If your DB instance uses the CDB architecture, you must log in to EM Express as DBSNMP. in a CDB,
DBSNMP is a common user. By default, this account is locked. If your DB instance doesn't use the
CDB architecture, skip this step.

To unlock the DBSNMP user account in a CDB instance

1. In SQL*Plus or another Oracle SQL application, log in to your DB instance as your master user.

2. Run the following stored procedure to unlock the DBSNMP account:

EXEC rdsadmin.rdsadmin_util.reset_oem_agent_password('new_password');

If you receive an error stating that the procedure doesn't exist, reboot your CDB instance to
install it automatically. For more information, see Rebooting a DB instance.

Step 3: Accessing EM Express through your browser

When you access EM Express from your web browser, a login window appears that prompts you for
a user name and password.

To access EM Express through your browser

1. Identify the endpoint and EM Express port for your Amazon RDS DB instance. For information
about finding the endpoint for your Amazon RDS DB instance, see Finding the endpoint of
your RDS for Oracle DB instance.

2. Enter a URL in your browser locator bar using the following format.

https://endpoint.rds.amazonaws.com:port/em

For example, if the endpoint for your Amazon RDS DB instance is mydb.a1bcde234fgh.us-
east-1.rds.amazonaws.com, and your EM Express port is 1158, then use the following URL
to access EM Express.

https://mydb.f9rbfa893tft.us-east-1.rds.amazonaws.com:1158/em

3. When prompted for your login details, do one of the following actions, depending on your
database architecture:

Enterprise Manager 4044

Amazon Relational Database Service User Guide

Your database is a non-CDB.

Type the master user name and master password for your DB instance.

Your database is a CDB.

Enter DBSNMP for the user and the DBSNMP password. Leave the Container field empty.

Modifying OEM Database settings

After you enable OEM Database, you can modify the Security Groups setting for the option.

You can't modify the OEM port number after you have associated the option group with a DB
instance. To change the OEM port number for a DB instance, do the following:

1. Create a new option group.

2. Add the OEM option with the new port number to the new option group.

3. Remove the existing option group from the DB instance.

4. Add the new option group to the DB instance.

For more information about how to modify option settings, see Modifying an option setting. For
more information about each setting, see OEM option settings.

Running OEM Database Express tasks

You can use Amazon RDS procedures to run certain OEM Database Express tasks. By running these
procedures, you can do the tasks listed following.

Note

OEM Database Express tasks run asynchronously.

Tasks

• Switching the website front end for OEM Database Express to Adobe Flash

• Switching the website front end for OEM Database Express to Oracle JET

Enterprise Manager 4045

Amazon Relational Database Service User Guide

Switching the website front end for OEM Database Express to Adobe Flash

Note

This task is available only for Oracle Database 19c non-CDBs.

Starting with Oracle Database 19c, Oracle has deprecated the former OEM Database Express user
interface, which was based on Adobe Flash. Instead, OEM Database Express now uses an interface
built with Oracle JET. If you experience difficulties with the new interface, you can switch back to
the deprecated Flash-based interface. Difficulties you might experience with the new interface
include being stuck on a Loading screen after logging in to OEM Database Express. You might also
miss certain features that were present in the Flash-based version of OEM Database Express.

To switch the OEM Database Express website front end to Adobe Flash, run the Amazon RDS
procedure rdsadmin.rdsadmin_oem_tasks.em_express_frontend_to_flash. This
procedure is equivalent to the execemx emx SQL command.

Security best practices discourage the use of Adobe Flash. Although you can revert to the Flash-
based OEM Database Express, we recommend the use of the JET-based OEM Database Express
websites if possible. If you revert to using Adobe Flash and want to switch back to using Oracle JET,
use the rdsadmin.rdsadmin_oem_tasks.em_express_frontend_to_jet procedure. After
an Oracle database upgrade, a newer version of Oracle JET might resolve JET-related issues in OEM
Database Express. For more information about switching to Oracle JET, see Switching the website
front end for OEM Database Express to Oracle JET.

Note

Running this task from the source DB instance for a read replica also causes the read replica
to switch its OEM Database Express website front ends to Adobe Flash.

The following procedure invocation creates a task to switch the OEM Database Express website to
Adobe Flash and returns the ID of the task.

SELECT rdsadmin.rdsadmin_oem_tasks.em_express_frontend_to_flash() as TASK_ID from DUAL;

You can view the result by displaying the task's output file.

Enterprise Manager 4046

Amazon Relational Database Service User Guide

SELECT text FROM table(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-task-
id.log'));

Replace task-id with the task ID returned by the procedure. For more information about the
Amazon RDS procedure rdsadmin.rds_file_util.read_text_file, see Reading files in a DB
instance directory

You can also view the contents of the task's output file in the AWS Management Console by
searching the log entries in the Logs & events section for the task-id.

Switching the website front end for OEM Database Express to Oracle JET

Note

This task is available only for Oracle Database 19c non-CDBs.

To switch the OEM Database Express website front end to Oracle JET, run the Amazon RDS
procedure rdsadmin.rdsadmin_oem_tasks.em_express_frontend_to_jet. This procedure
is equivalent to the execemx omx SQL command.

By default, the OEM Database Express websites for Oracle DB instances running 19c or later use
Oracle JET. If you used the
rdsadmin.rdsadmin_oem_tasks.em_express_frontend_to_flash procedure to switch the
OEM Database Express website front end to Adobe Flash, you can switch back to Oracle JET. To do
this, use the rdsadmin.rdsadmin_oem_tasks.em_express_frontend_to_jet procedure. For
more information about switching to Adobe Flash, see Switching the website front end for OEM
Database Express to Adobe Flash.

Note

Running this task from the source DB instance for a read replica also causes the read replica
to switch its OEM Database Express website front ends to Oracle JET.

The following procedure invocation creates a task to switch the OEM Database Express website to
Oracle JET and returns the ID of the task.

SELECT rdsadmin.rdsadmin_oem_tasks.em_express_frontend_to_jet() as TASK_ID from DUAL;

Enterprise Manager 4047

Amazon Relational Database Service User Guide

You can view the result by displaying the task's output file.

SELECT text FROM table(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-task-
id.log'));

Replace task-id with the task ID returned by the procedure. For more information about the
Amazon RDS procedure rdsadmin.rds_file_util.read_text_file, see Reading files in a DB
instance directory

You can also view the contents of the task's output file in the AWS Management Console by
searching the log entries in the Logs & events section for the task-id.

Removing the OEM Database option

You can remove the OEM option from a DB instance. When you remove the OEM option, a brief
outage occurs while your instance is automatically restarted. Therefore, after you remove the OEM
option, you don't need to restart your DB instance.

To remove the OEM option from a DB instance, do one of the following:

• Remove the OEM option from the option group it belongs to. This change affects all DB
instances that use the option group. For more information, see Removing an option from an
option group.

• Modify the DB instance and specify a different option group that doesn't include the OEM
option. This change affects a single DB instance. You can specify the default (empty) option
group, or a different custom option group. For more information, see Modifying an Amazon RDS
DB instance.

Enterprise Manager 4048

Amazon Relational Database Service User Guide

Oracle Management Agent for Enterprise Manager Cloud Control

Oracle Enterprise Manager (OEM) Management Agent is a software component that monitors
targets running on hosts and communicates that information to the middle-tier Oracle
Management Service (OMS). Amazon RDS supports Management Agent through the use of the
OEM_AGENT option.

For more information, see Overview of Oracle Enterprise Manager cloud control 12c and Overview
of Oracle Enterprise Manager cloud control 13c in the Oracle documentation.

Topics

• Requirements for Management Agent

• OMS host communication prerequisites

• Limitations for Management Agent

• Option settings for Management Agent

• Step1: Adding the Management Agent option to your DB instance

• Step 2: Unlocking the DBSNMP user account

• Step 3: Adding your targets to the Management Agent console

• Administering the Management Agent

• Removing the Management Agent option

Requirements for Management Agent

Following are general requirements for using Management Agent:

• Your DB instance must run Oracle Database 19c (19.0.0.0). You can use either the CDB or non-
CDB architecture.

• You must use an Oracle Management Service (OMS) that is configured to connect to your DB
instance. Note the following OMS requirements:

• Management Agent versions 13.5.0.0.v2 and 13.5.0.0.v3 require OMS version 13.5.0.23.

• Management Agent version 13.5.0.0.v1 requires OMS version 13.5.0.0.

• Management Agent versions 13.4.0.9.v1 and 13.4.0.9.v2 require OMS version 13.4.0.9 or later
and patch 32198287.

• In most cases, you must configure your VPC to allow connections from OMS to your DB instance.
If you aren't familiar with Amazon Virtual Private Cloud (Amazon VPC), we recommend that

Enterprise Manager 4049

http://docs.oracle.com/cd/E24628_01/doc.121/e25353/overview.htm
http://docs.oracle.com/cd/E63000_01/EMCON/overview.htm#EMCON109
http://docs.oracle.com/cd/E63000_01/EMCON/overview.htm#EMCON109

Amazon Relational Database Service User Guide

you complete the steps in Tutorial: Create a VPC for use with a DB instance (IPv4 only) before
continuing.

• You can use Management Agent with Oracle Enterprise Manager Cloud Control for 12c and 13c.
Ensure that you have sufficient storage space for your OEM release:

• At least 8.5 GiB for OEM 13c Release 5

• At least 8.5 GiB for OEM 13c Release 4

• At least 8.5 GiB for OEM 13c Release 3

• At least 5.5 GiB for OEM 13c Release 2

• At least 4.5 GiB OEM 13c Release 1

• At least 2.5 GiB for OEM 12c

• If you're using Management Agent versions OEM_AGENT 13.2.0.0.v3 and 13.3.0.0.v2,
and if you want to use TCPS connectivity, follow the instructions in Configuring third party CA
certificates for communication with target databases in the Oracle documentation. Also, update
the JDK on your OMS by following the instructions in the Oracle document with the Oracle
Doc ID 2241358.1. This step ensures that OMS supports all the cipher suites that the database
supports.

Note

TCPS connectivity between the Management Agent and the DB instance is supported
for Management Agent OEM_AGENT 13.2.0.0.v3, 13.3.0.0.v2, 13.4.0.9.v1, and
higher versions.

OMS host communication prerequisites

Make sure that your OMS host and your Amazon RDS DB instance can communicate. Do the
following:

• To connect from the Management Agent to your OMS host when your OMS host is behind a
firewall, add the IP addresses of your DB instances to the firewall. Make sure the firewall for the
OMS allows the following network traffic:

From the OMS host to your DB instance

Configure a one-way firewall rule that allows traffic from the OMS host to the database
listener port (default 1521) and the OEM Agent port (default 3872).

Enterprise Manager 4050

https://docs.oracle.com/cd/E73210_01/EMSEC/GUID-8337AD48-1A32-4CD5-84F3-256FAE93D043.htm#EMSEC15996
https://docs.oracle.com/cd/E73210_01/EMSEC/GUID-8337AD48-1A32-4CD5-84F3-256FAE93D043.htm#EMSEC15996

Amazon Relational Database Service User Guide

From your DB instance to the OMS host

Configure a one-way firewall rule that allows traffic from the DB instance to the OMS HTTP
port (default 4903).

• To connect from your OMS to the Management Agent, if your OMS has a publicly resolvable
host name, add the OMS address to a security group. Your security group must have inbound
rules that allow access to the DB listener port and the Management Agent port. For an example
of creating a security and adding inbound rules, see Tutorial: Create a VPC for use with a DB
instance (IPv4 only).

• To connect from your OMS to the Management Agent, if your OMS doesn't have a publicly
resolvable host name, use one of the following:

• If your OMS is hosted on an Amazon Elastic Compute Cloud (Amazon EC2) instance in a private
VPC, you can set up VPC peering to connect from OMS to Management Agent. For more
information, see A DB instance in a VPC accessed by an EC2 instance in a different VPC.

• If your OMS is hosted on-premises, you can set up a VPN connection to allow access from OMS
to Management Agent. For more information, see A DB instance in a VPC accessed by a client
application through the internet or VPN connections.

Limitations for Management Agent

Following are some limitations to using Management Agent:

• You can't provide custom Oracle Management Agent images.

• Administrative tasks such as job execution and database patching, that require host credentials,
aren't supported.

• Host metrics and the process list aren't guaranteed to reflect the actual system state. Thus,
you shouldn't use OEM to monitor the root file system or mount point file system. For more
information about monitoring the operating system, see Monitoring OS metrics with Enhanced
Monitoring.

• Autodiscovery isn't supported. You must manually add database targets.

• OMS module availability depends on your database edition. For example, the database
performance diagnosis and tuning module is only available for Oracle Database Enterprise
Edition.

• Management Agent consumes additional memory and computing resources. If you experience
performance problems after enabling the OEM_AGENT option, we recommend that you scale up

Enterprise Manager 4051

https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html

Amazon Relational Database Service User Guide

to a larger DB instance class. For more information, see DB instance classes and Modifying an
Amazon RDS DB instance.

• The user running the OEM_AGENT on the Amazon RDS host doesn't have operating system access
to the alert log. Thus, you can't collect metrics for DB Alert Log and DB Alert Log Error
Status in OEM.

Option settings for Management Agent

Amazon RDS supports the following settings for the Management Agent option.

Option setting RequiredValid values Description

Version (AGENT_VERSION) Yes 13.5.0.0.
v3

13.5.0.0.
v2

13.5.0.0.
v1

13.4.0.9.
v2

13.4.0.9.
v1

13.3.0.0.
v2

13.3.0.0.
v1

13.2.0.0.
v3

13.2.0.0.
v2

The version of the Management Agent
software. The minimum supported
version is 13.1.0.0.v1 .

The AWS CLI option name is
OptionVersion .

Note

In the AWS GovCloud (US)
Regions, 13.1 versions aren't
available.

Enterprise Manager 4052

Amazon Relational Database Service User Guide

Option setting RequiredValid values Description

13.2.0.0.
v1

13.1.0.0.
v1

Port (AGENT_PORT) Yes An integer
value

The port on the DB instance that
listens for the OMS host. The default is
3872. Your OMS host must belong to
a security group that has access to this
port.

The AWS CLI option name is Port.

Security Groups Yes Existing
security
groups

A security group that has access to
Port. Your OMS host must belong to
this security group.

The AWS CLI option name is
VpcSecurityGroupMemberships

 or DBSecurityGroupMem
berships .

OMS_HOST Yes A string
value, for
example
my.exampl
e.oms

The publicly accessible host name or IP
address of the OMS.

The AWS CLI option name is
OMS_HOST.

Enterprise Manager 4053

Amazon Relational Database Service User Guide

Option setting RequiredValid values Description

OMS_PORT Yes An integer
value

The HTTPS upload port on the OMS
Host that listens for the Management
Agent.

To determine the HTTPS upload port,
connect to the OMS host, and run the
following command (which requires
the SYSMAN password):
emctl status oms -details

The AWS CLI option name is
OMS_PORT.

AGENT_REGISTRATION
_PASSWORD

Yes A string
value

The password that the Management
Agent uses to authenticate itself with
the OMS. We recommend that you
create a persistent password in your
OMS before enabling the OEM_AGENT
option. With a persistent password you
can share a single Management Agent
option group among multiple Amazon
RDS databases.

The AWS CLI option name is
AGENT_REGISTRATION_PASSWORD

.

ALLOW_TLS_ONLY No true, false
(default)

A value that configures the OEM Agent
to support only the TLSv1 protocol
while the agent listens as a server.
This setting is no longer supported.
Management Agent versions 13.1.0.0.
v1 and higher support Transport Layer
Security (TLS) by default.

Enterprise Manager 4054

Amazon Relational Database Service User Guide

Option setting RequiredValid values Description

MINIMUM_TLS_VERSION No TLSv1
(default),
TLSv1.2

A value that specifies the minimum
TLS version supported by the OEM
Agent while the agent listens as a
server. Desupported agent versions
only support the TLSv1 setting.

TLS_CIPHER_SUITE No See Option
settings for
Managemen
t Agent.

A value that specifies the TLS cipher
suite used by the OEM Agent while the
agent listens as a server.

The following table lists the TLS cipher suites that the Management Agent option supports.

Cipher suite Agent version supported FedRAMP compliant

TLS_RSA_WITH_AES_128_CBC_SHA All No

TLS_RSA_WITH_AES_128_CBC_SH
A256

13.1.0.0.v1 and higher No

TLS_RSA_WITH_AES_256_CBC_SHA 13.2.0.0.v3 and higher No

TLS_RSA_WITH_AES_256_CBC_SH
A256

13.2.0.0.v3 and higher No

TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA

13.2.0.0.v3 and higher Yes

TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA

13.2.0.0.v3 and higher Yes

TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA256

13.2.0.0.v3 and higher Yes

TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA384

13.2.0.0.v3 and higher Yes

Enterprise Manager 4055

Amazon Relational Database Service User Guide

Step1: Adding the Management Agent option to your DB instance

To add the Management Agent option to your DB instance, do the following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

If you encounter errors, check My Oracle Support documents for information about resolving
specific problems.

After you add the Management Agent option, you don't need to restart your DB instance. As soon
as the option group is active, the OEM Agent is active.

If your OMS host is using an untrusted third-party certificate, Amazon RDS returns the following
error.

You successfully installed the OEM_AGENT option. Your OMS host is using an untrusted
 third party certificate.
Configure your OMS host with the trusted certificates from your third party.

If this error is returned, the Management Agent option isn't enabled until the problem is corrected.
For information about correcting the problem, see the My Oracle Support document 2202569.1.

Console

To add the Management Agent option to your DB instance

1. Determine the option group you want to use. You can create a new option group or use an
existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine choose the oracle edition for your DB instance.

b. For Major engine version choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the OEM_AGENT option to the option group, and configure the option settings. For
more information about adding options, see Adding an option to an option group. For more
information about each setting, see Option settings for Management Agent.

Enterprise Manager 4056

https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocContentDisplay?id=2202569.1

Amazon Relational Database Service User Guide

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

AWS CLI

The following example uses the AWS CLI add-option-to-option-group command to add the
OEM_AGENT option to an option group called myoptiongroup.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name "myoptiongroup" \
 --options
 OptionName=OEM_AGENT,OptionVersion=13.1.0.0.v1,Port=3872,VpcSecurityGroupMemberships=sg-1234567890,OptionSettings=[{Name=OMS_HOST,Value=my.example.oms},
{Name=OMS_PORT,Value=4903},{Name=AGENT_REGISTRATION_PASSWORD,Value=password}] \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name "myoptiongroup" ^
 --options
 OptionName=OEM_AGENT,OptionVersion=13.1.0.0.v1,Port=3872,VpcSecurityGroupMemberships=sg-1234567890,OptionSettings=[{Name=OMS_HOST,Value=my.example.oms},
{Name=OMS_PORT,Value=4903},{Name=AGENT_REGISTRATION_PASSWORD,Value=password}] ^
 --apply-immediately

Step 2: Unlocking the DBSNMP user account

The Management Agent uses the DBSNMP user account to connect to the database and report
issues to Oracle Enterprise Manager. In a CDB, DBSNMP is a common user. This user account is
necessary for both the Management Agent and OEM Database Express. By default, this account is
locked. The procedure for unlocking this account differs depending on whether your database uses
the non-CDB or CDB architecture.

Enterprise Manager 4057

https://docs.aws.amazon.com/cli/latest/reference/rds/add-option-to-option-group.html

Amazon Relational Database Service User Guide

To unlock the DBSNMP user account

1. In SQL*Plus or another Oracle SQL application, log in to your DB instance as your master user.

2. Do either of the following actions, depending on the database architecture:

Your database is a non-CDB.

Run the following SQL statement:

ALTER USER dbsnmp IDENTIFIED BY new_password ACCOUNT UNLOCK;

Your database is a CDB.

Run the following stored procedure to unlock the DBSNMP account:

EXEC rdsadmin.rdsadmin_util.reset_oem_agent_password('new_password');

If you receive an error stating that the procedure doesn't exist, reboot your CDB instance to
install it automatically. For more information, see Rebooting a DB instance.

Step 3: Adding your targets to the Management Agent console

To add a DB instance as a target, make sure you know the endpoint and port. For information
about finding the endpoint for your Amazon RDS DB instance, see Finding the endpoint of your
RDS for Oracle DB instance. If your database uses the CDB architecture, then add the CDB$ROOT
container separately as a target.

To add targets to the Management Agent console

1. In your OMS console, choose Setup, Add Target, Add Targets Manually.

2. Choose Add Targets Declaratively by Specifying Target Monitoring Properties.

3. For Target Type, choose Database Instance.

4. For Monitoring Agent, choose the agent with the identifier that is the same as your RDS DB
instance identifier.

5. Choose Add Manually.

6. Enter the endpoint for your Amazon RDS DB instance, or choose it from the host name list.
Make sure that the specified host name matches the endpoint of the Amazon RDS DB instance.

Enterprise Manager 4058

Amazon Relational Database Service User Guide

7. Specify the following database properties:

• For Target name, enter a name.

• For Database system name, enter a name.

• For Monitor username, enter dbsnmp.

• For Monitor password, enter the password from Step 2: Unlocking the DBSNMP user
account.

• For Role, enter normal.

• For Oracle home path, enter /oracle.

• For Listener Machine name, the agent identifier already appears.

• For Port, enter the database port. The RDS default port is 1521.

• For Database name, enter the name of your database. If your database is a CDB, this name is
RDSCDB.

8. Choose Test Connection.

9. Choose Next. The target database appears in your list of monitored resources.

Administering the Management Agent

You can use Amazon RDS procedures to run certain EMCTL commands on the Management Agent.
By running these procedures, you can do the tasks listed following.

Note

Tasks are executed asynchronously.

Tasks

• Getting the status of the Management Agent

• Restarting the Management Agent

• Listing the targets monitored by the Management Agent

• Listing the collection threads monitored by the Management Agent

• Clearing the Management Agent state

• Making the Management Agent upload its OMS

• Pinging the OMS

Enterprise Manager 4059

Amazon Relational Database Service User Guide

• Viewing the status of an ongoing task

Getting the status of the Management Agent

To get the status of the Management Agent, run the Amazon RDS procedure
rdsadmin.rdsadmin_oem_agent_tasks.get_status_oem_agent. This procedure is
equivalent to the emctl status agent command.

The following procedure creates a task to get the Management Agent's status and returns the ID of
the task.

SELECT rdsadmin.rdsadmin_oem_agent_tasks.get_status_oem_agent() as TASK_ID from DUAL;

To view the result by displaying the task's output file, see Viewing the status of an ongoing task.

Restarting the Management Agent

To restart the Management Agent, run the Amazon RDS procedure
rdsadmin.rdsadmin_oem_agent_tasks.restart_oem_agent. This procedure is equivalent to
running the emctl stop agent and emctl start agent commands.

The following procedure creates a task to restart the Management Agent and returns the ID of the
task.

SELECT rdsadmin.rdsadmin_oem_agent_tasks.restart_oem_agent as TASK_ID from DUAL;

To view the result by displaying the task's output file, see Viewing the status of an ongoing task.

Listing the targets monitored by the Management Agent

To list the targets monitored by the Management Agent, run the Amazon RDS procedure
rdsadmin.rdsadmin_oem_agent_tasks.list_targets_oem_agent. This procedure is
equivalent to running the emctl config agent listtargets command.

The following procedure creates a task to list the targets monitored by the Management Agent and
returns the ID of the task.

SELECT rdsadmin.rdsadmin_oem_agent_tasks.list_targets_oem_agent as TASK_ID from DUAL;

Enterprise Manager 4060

Amazon Relational Database Service User Guide

To view the result by displaying the task's output file, see Viewing the status of an ongoing task.

Listing the collection threads monitored by the Management Agent

To list of all the running, ready, and scheduled collection threads
monitored by the Management Agent, run the Amazon RDS procedure
rdsadmin.rdsadmin_oem_agent_tasks.list_clxn_threads_oem_agent. This procedure is
equivalent to the emctl status agent scheduler command.

The following procedure creates a task to list the collection threads and returns the ID of the task.

SELECT rdsadmin.rdsadmin_oem_agent_tasks.list_clxn_threads_oem_agent() as TASK_ID from
 DUAL;

To view the result by displaying the task's output file, see Viewing the status of an ongoing task.

Clearing the Management Agent state

To clear the Management Agent's state, run the Amazon RDS procedure
rdsadmin.rdsadmin_oem_agent_tasks.clearstate_oem_agent. This procedure is
equivalent to running the emctl clearstate agent command.

The following procedure creates a task that clears the Management Agent's state and returns the
ID of the task.

SELECT rdsadmin.rdsadmin_oem_agent_tasks.clearstate_oem_agent() as TASK_ID from DUAL;

To view the result by displaying the task's output file, see Viewing the status of an ongoing task.

Making the Management Agent upload its OMS

To make the Management Agent upload the Oracle Management Server (OMS) associated with it,
run the Amazon RDS procedure rdsadmin.rdsadmin_oem_agent_tasks.upload_oem_agent.
This procedure is equivalent to running the emclt upload agent command.

The following procedure creates a task that makes the Management Agent upload its associated
OMS and return the ID of the task.

SELECT rdsadmin.rdsadmin_oem_agent_tasks.upload_oem_agent() as TASK_ID from DUAL;

To view the result by displaying the task's output file, see Viewing the status of an ongoing task.

Enterprise Manager 4061

Amazon Relational Database Service User Guide

Pinging the OMS

To ping the Management Agent's OMS, run the Amazon RDS procedure
rdsadmin.rdsadmin_oem_agent_tasks.ping_oms_oem_agent. This procedure is equivalent
to running the emctl pingOMS command.

The following procedure creates a task that pings the Management Agent's OMS and returns the ID
of the task.

SELECT rdsadmin.rdsadmin_oem_agent_tasks.ping_oms_oem_agent() as TASK_ID from DUAL;

To view the result by displaying the task's output file, see Viewing the status of an ongoing task.

Viewing the status of an ongoing task

You can view the status of an ongoing task in a bdump file. The bdump files are located in the /
rdsdbdata/log/trace directory. Each bdump file name is in the following format.

dbtask-task-id.log

When you want to monitor a task, replace task-id with the ID of the task that you want to
monitor.

To view the contents of bdump files, run the Amazon RDS procedure
rdsadmin.rds_file_util.read_text_file. The following query returns the contents of the
dbtask-1546988886389-2444.log bdump file.

SELECT text FROM
 table(rdsadmin.rds_file_util.read_text_file('BDUMP','dbtask-1546988886389-2444.log'));

For more information about the Amazon RDS procedure
rdsadmin.rds_file_util.read_text_file, see Reading files in a DB instance directory.

Removing the Management Agent option

You can remove the OEM Agent from a DB instance. After you remove the OEM Agent, you don't
need to restart your DB instance.

To remove the OEM Agent from a DB instance, do one of the following:

Enterprise Manager 4062

Amazon Relational Database Service User Guide

• Remove the OEM Agent option from the option group it belongs to. This change affects all DB
instances that use the option group. For more information, see Removing an option from an
option group.

• Modify the DB instance and specify a different option group that doesn't include the OEM Agent
option. This change affects a single DB instance. You can specify the default (empty) option
group, or a different custom option group. For more information, see Modifying an Amazon RDS
DB instance.

Enterprise Manager 4063

Amazon Relational Database Service User Guide

Oracle Label Security

Amazon RDS supports Oracle Label Security for the Enterprise Edition of Oracle Database through
the use of the OLS option.

Most database security controls access at the object level. Oracle Label Security provides fine-
grained control of access to individual table rows. For example, you can use Label Security to
enforce regulatory compliance with a policy-based administration model. You can use Label
Security policies to control access to sensitive data, and restrict access to only users with the
appropriate clearance level. For more information, see Introduction to Oracle Label Security in the
Oracle documentation.

Topics

• Requirements for Oracle Label Security

• Considerations when using Oracle Label Security

• Adding the Oracle Label Security option

• Troubleshooting

Requirements for Oracle Label Security

Familiarize yourself with the following requirements for Oracle Label Security:

• Your DB instance must use the Bring Your Own License model. For more information, see RDS for
Oracle licensing options.

• You must have a valid license for Oracle Enterprise Edition with Software Update License and
Support.

• Your Oracle license must include the Label Security option.

Considerations when using Oracle Label Security

To use Oracle Label Security, you create policies that control access to specific rows in your tables.
For more information, see Creating an Oracle Label Security policy in the Oracle documentation.

Consider the following:

• Oracle Label Security is a permanent and persistent option. Because the option is permanent,
you can't remove it from an option group. If you add Oracle Label Security to an option group

Label security 4064

https://docs.oracle.com/database/121/OLSAG/intro.htm#OLSAG001
https://docs.oracle.com/database/121/OLSAG/getstrtd.htm#OLSAG3096

Amazon Relational Database Service User Guide

and associate it with your DB instance, you can later associate a different option group with your
DB instance, but this group must also contain the Oracle Label Security option.

• When you work with Label Security, you perform all actions as the LBAC_DBA role. The master
user for your DB instance is granted the LBAC_DBA role. You can grant the LBAC_DBA role to
other users so that they can administer Label Security policies.

• Make sure to grant access to the OLS_ENFORCEMENT package to any new users who require
access to Oracle Label Security. To grant access to the OLS_ENFORCEMENT package, connect to
the DB instance as the master user and run the following SQL statement:

GRANT ALL ON LBACSYS.OLS_ENFORCEMENT TO username;

• You can configure Label Security through Oracle Enterprise Manager (OEM) Cloud Control.
Amazon RDS supports OEM Cloud Control through the Management Agent option. For more
information, see Oracle Management Agent for Enterprise Manager Cloud Control.

Adding the Oracle Label Security option

The general process for adding the Oracle Label Security option to a DB instance is the following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

Important

Oracle Label Security is a permanent and persistent option.

3. Associate the option group with the DB instance.

After you add the Label Security option, as soon as the option group is active, Label Security is
active.

To add the label security option to a DB instance

1. Determine the option group you want to use. You can create a new option group or use an
existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine, choose oracle-ee.

Label security 4065

Amazon Relational Database Service User Guide

b. For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the OLS option to the option group. For more information about adding options, see
Adding an option to an option group.

Important

If you add Label Security to an existing option group that is already attached to one or
more DB instances, all the DB instances are restarted.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. When you add the Label Security option to an existing DB
instance, a brief outage occurs while your DB instance is automatically restarted. For more
information, see Modifying an Amazon RDS DB instance.

Troubleshooting

The following are issues you might encounter when you use Oracle Label Security.

Issue Troubleshooting suggestions

When you try to create a policy, you see
an error message similar to the following
: insufficient authorization
for the SYSDBA package.

A known issue with Oracle's Label Security feature
prevents users with usernames of 16 or 24
characters from running Label Security commands.
You can create a new user with a different number
of characters, grant LBAC_DBA to the new user, log
in as the new user, and run the OLS commands as
the new user. For additional information, contact
Oracle Support.

Label security 4066

Amazon Relational Database Service User Guide

Oracle Locator

Amazon RDS supports Oracle Locator through the use of the LOCATOR option. Oracle Locator
provides capabilities that are typically required to support internet and wireless service-based
applications and partner-based GIS solutions. Oracle Locator is a limited subset of Oracle Spatial.
For more information, see Oracle Locator in the Oracle documentation.

Important

If you use Oracle Locator, Amazon RDS automatically updates your DB instance to the
latest Oracle PSU if there are security vulnerabilities with a Common Vulnerability Scoring
System (CVSS) score of 9+ or other announced security vulnerabilities.

Supported database releases for Oracle Locator

RDS for Oracle supports Oracle Locator for Oracle Database 19c. Oracle Locator isn't supported
for Oracle Database 21c, but its functionality is available in the Oracle Spatial option. Formerly,
the Spatial option required additional licenses. Oracle Locator represented a subset of Oracle
Spatial features and didn't require additional licenses. In 2019, Oracle announced that all Oracle
Spatial features were included in the Enterprise Edition and Standard Edition 2 licenses without
additional cost. Consequently, the Oracle Spatial option no longer required additional licensing. For
more information, see Machine Learning, Spatial and Graph - No License Required! in the Oracle
Database Insider blog.

Prerequisites for Oracle Locator

The following are prerequisites for using Oracle Locator:

• Your DB instance must be of sufficient class. Oracle Locator is not supported for the db.t3.small
DB instance classes. For more information, see RDS for Oracle DB instance classes.

• Your DB instance must have Auto Minor Version Upgrade enabled. This option enables your DB
instance to receive minor DB engine version upgrades automatically when they become available
and is required for any options that install the Oracle Java Virtual Machine (JVM). Amazon RDS
uses this option to update your DB instance to the latest Oracle Patch Set Update (PSU) or
Release Update (RU). For more information, see Modifying an Amazon RDS DB instance.

Locator 4067

https://docs.oracle.com/database/121/SPATL/sdo_locator.htm#SPATL340
https://blogs.oracle.com/database/post/machine-learning-spatial-and-graph-no-license-required

Amazon Relational Database Service User Guide

Best practices for Oracle Locator

The following are best practices for using Oracle Locator:

• For maximum security, use the LOCATOR option with Secure Sockets Layer (SSL). For more
information, see Oracle Secure Sockets Layer.

• Configure your DB instance to restrict access to your DB instance. For more information, see
Scenarios for accessing a DB instance in a VPC and Working with a DB instance in a VPC.

Adding the Oracle Locator option

The following is the general process for adding the LOCATOR option to a DB instance:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

If Oracle Java Virtual Machine (JVM) is not installed on the DB instance, there is a brief outage
while the LOCATOR option is added. There is no outage if Oracle Java Virtual Machine (JVM) is
already installed on the DB instance. After you add the option, you don't need to restart your DB
instance. As soon as the option group is active, Oracle Locator is available.

Note

During this outage, password verification functions are disabled briefly. You can also expect
to see events related to password verification functions during the outage. Password
verification functions are enabled again before the Oracle DB instance is available.

To add the LOCATOR option to a DB instance

1. Determine the option group that you want to use. You can create a new option group or use
an existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine, choose the oracle edition for your DB instance.

b. For Major engine version, choose the version of your DB instance.

Locator 4068

Amazon Relational Database Service User Guide

For more information, see Creating an option group.

2. Add the LOCATOR option to the option group. For more information about adding options,
see Adding an option to an option group.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

Using Oracle Locator

After you enable the Oracle Locator option, you can begin using it. You should only use Oracle
Locator features. Don't use any Oracle Spatial features unless you have a license for Oracle Spatial.

For a list of features that are supported for Oracle Locator, see Features Included with Locator in
the Oracle documentation.

For a list of features that are not supported for Oracle Locator, see Features Not Included with
Locator in the Oracle documentation.

Removing the Oracle Locator option

After you drop all objects that use data types provided by the LOCATOR option, you can remove
the option from a DB instance. If Oracle Java Virtual Machine (JVM) is not installed on the DB
instance, there is a brief outage while the LOCATOR option is removed. There is no outage if Oracle
Java Virtual Machine (JVM) is already installed on the DB instance. After you remove the LOCATOR
option, you don't need to restart your DB instance.

To drop the LOCATOR option

1. Back up your data.

Locator 4069

https://docs.oracle.com/database/121/SPATL/sdo_locator.htm#GUID-EC6DEA23-8FD7-4109-A0C1-93C0CE3D6FF2__CFACCEEG
https://docs.oracle.com/database/121/SPATL/sdo_locator.htm#GUID-EC6DEA23-8FD7-4109-A0C1-93C0CE3D6FF2__CFABACEA
https://docs.oracle.com/database/121/SPATL/sdo_locator.htm#GUID-EC6DEA23-8FD7-4109-A0C1-93C0CE3D6FF2__CFABACEA

Amazon Relational Database Service User Guide

Warning

If the instance uses data types that were enabled as part of the option, and if you
remove the LOCATOR option, you can lose data. For more information, see Backing up,
restoring, and exporting data.

2. Check whether any existing objects reference data types or features of the LOCATOR option.

If LOCATOR options exist, the instance can get stuck when applying the new option group that
doesn't have the LOCATOR option. You can identify the objects by using the following queries:

SELECT OWNER, SEGMENT_NAME, TABLESPACE_NAME, BYTES/1024/1024 mbytes
FROM DBA_SEGMENTS
WHERE SEGMENT_TYPE LIKE '%TABLE%'
AND (OWNER, SEGMENT_NAME) IN
 (SELECT DISTINCT OWNER, TABLE_NAME
 FROM DBA_TAB_COLUMNS
 WHERE DATA_TYPE='SDO_GEOMETRY'
 AND OWNER <> 'MDSYS')
ORDER BY 1,2,3,4;

SELECT OWNER, TABLE_NAME, COLUMN_NAME
FROM DBA_TAB_COLUMNS
WHERE DATA_TYPE = 'SDO_GEOMETRY'
AND OWNER <> 'MDSYS'
ORDER BY 1,2,3;

3. Drop any objects that reference data types or features of the LOCATOR option.

4. Do one of the following:

• Remove the LOCATOR option from the option group it belongs to. This change affects all DB
instances that use the option group. For more information, see Removing an option from an
option group.

• Modify the DB instance and specify a different option group that doesn't include the
LOCATOR option. This change affects a single DB instance. You can specify the default
(empty) option group, or a different custom option group. For more information, see
Modifying an Amazon RDS DB instance.

Locator 4070

Amazon Relational Database Service User Guide

Oracle native network encryption

Amazon RDS supports Oracle native network encryption (NNE). With the
NATIVE_NETWORK_ENCRYPTION option, you can encrypt data as it moves to and from a DB
instance. Amazon RDS supports NNE for all editions of Oracle Database.

A detailed discussion of Oracle native network encryption is beyond the scope of this guide,
but you should understand the strengths and weaknesses of each algorithm and key before you
decide on a solution for your deployment. For information about the algorithms and keys that are
available through Oracle native network encryption, see Configuring network data encryption in
the Oracle documentation. For more information about AWS security, see the AWS security center.

Note

You can use Native Network Encryption or Secure Sockets Layer, but not both. For more
information, see Oracle Secure Sockets Layer.

Topics

• NATIVE_NETWORK_ENCRYPTION option settings

• Adding the NATIVE_NETWORK_ENCRYPTION option

• Setting NNE values in the sqlnet.ora

• Modifying NATIVE_NETWORK_ENCRYPTION option settings

• Removing the NATIVE_NETWORK_ENCRYPTION option

NATIVE_NETWORK_ENCRYPTION option settings

You can specify encryption requirements on both the server and the client. The DB instance can act
as a client when, for example, it uses a database link to connect to another database. You might
want to avoid forcing encryption on the server side. For example, you might not want to force all
client communications to use encryption because the server requires it. In this case, you can force
encryption on the client side using the SQLNET.*CLIENT options.

Amazon RDS supports the following settings for the NATIVE_NETWORK_ENCRYPTION option.

Native network encryption (NNE) 4071

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/prod/security/network_encrypt/ntwrkencrypt.htm
http://aws.amazon.com/security

Amazon Relational Database Service User Guide

Note

When you use commas to separate values for an option setting, don't put a space after the
comma.

Option setting Valid
values

Default
values

Description

SQLNET.ALLOW_WEAK_
CRYPTO_CLIENTS

TRUE,
FALSE

TRUE The behavior of the server when
a client using a non-secure cipher
attempts to connect to the database. If
TRUE, clients can connect even if they
aren't patched with the July 2021 PSU.

If the setting is FALSE, clients can
connect to the database only when
they are patched with the July 2021
PSU. Before you set SQLNET.AL
LOW_WEAK_CRYPTO_CLIENTS to
FALSE, make sure that the following
conditions are met:

• SQLNET.ENCRYPTION_
TYPES_SERVER and SQLNET.EN
CRYPTION_TYPES_CLIENT have
one matching encryption method
that is not DES, 3DES, or RC4 (all key
lengths).

• SQLNET.CHECKSUM_TY
PES_SERVER and SQLNET.CH
ECKSUM_TYPES_CLIENT have
one matching secure checksumming
method that is not MD5.

• The client is patched with the July
2021 PSU. If the client isn't patched,

Native network encryption (NNE) 4072

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

the client loses the connection and
receives the ORA-12269 error.

Native network encryption (NNE) 4073

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

SQLNET.ALLOW_WEAK_
CRYPTO

TRUE,
FALSE

TRUE The behavior of the server when
a client using a non-secure cipher
attempts to connect to the database.
The following ciphers are considered
not secure:

• DES encryption method (all key
lengths)

• 3DES encryption method (all key
lengths)

• RC4 encryption method (all key
lengths)

• MD5 checksumming method

If the setting is TRUE, clients can
connect when they use the preceding
non-secure ciphers.

If the setting is FALSE, the database
prevents clients from connecting when
they use the preceding non-secure
ciphers. Before you set SQLNET.AL
LOW_WEAK_CRYPTO to FALSE, make
sure that the following conditions are
met:

• SQLNET.ENCRYPTION_
TYPES_SERVER and SQLNET.EN
CRYPTION_TYPES_CLIENT have
one matching encryption method
that is not DES, 3DES, or RC4 (all key
lengths).

Native network encryption (NNE) 4074

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

• SQLNET.CHECKSUM_TY
PES_SERVER and SQLNET.CH
ECKSUM_TYPES_CLIENT have
one matching secure checksumming
method that is not MD5.

• The client is patched with the July
2021 PSU. If the client isn't patched,
the client loses the connection and
receives the ORA-12269 error.

SQLNET.CRYPTO_CHEC
KSUM_CLIENT

Accepted,
Rejected,
Requested

,
Required

RequestedThe data integrity behavior when a DB
instance connects to the client, or a
server acting as a client. When a DB
instance uses a database link, it acts as
a client.

Requested indicates that the client
doesn't require the DB instance to
perform a checksum.

SQLNET.CRYPTO_CHEC
KSUM_SERVER

Accepted,
Rejected,
Requested

,
Required

RequestedThe data integrity behavior when a
client, or a server acting as a client,
connects to the DB instance. When a
DB instance uses a database link, it acts
as a client.

Requested indicates that the DB
instance doesn't require the client to
perform a checksum.

Native network encryption (NNE) 4075

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

SQLNET.CRYPTO_CHEC
KSUM_TYPES_CLIENT

SHA256,
SHA384,
SHA512,
SHA1,
MD5

SHA256,
SHA384,
SHA512

A list of checksum algorithms.

You can specify either one value or a
comma-separated list of values. If you
use a comma, don't insert a space after
the comma; otherwise, you receive an
InvalidParameterValue error.

This parameter and SQLNET.CR
YPTO_CHECKSUM_TYPES_SERVER
must have a common cipher.

SQLNET.CRYPTO_CHEC
KSUM_TYPES_SERVER

SHA256,
SHA384,
SHA512,
SHA1,
MD5

SHA256,
SHA384,
SHA512,
SHA1,
MD5

A list of checksum algorithms.

You can specify either one value or a
comma-separated list of values. If you
use a comma, don't insert a space after
the comma; otherwise, you receive an
InvalidParameterValue error.

This parameter and SQLNET.CR
YPTO_CHECKSUM_TYPES_CLIENT
must have a common cipher.

SQLNET.ENCRYPTION_
CLIENT

Accepted,
Rejected,
Requested

,
Required

RequestedThe encryption behavior of the client
when a client, or a server acting as a
client, connects to the DB instance.
When a DB instance uses a database
link, it acts as a client.

Requested indicates that the client
does not require traffic from the server
to be encrypted.

Native network encryption (NNE) 4076

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

SQLNET.ENCRYPTION_
SERVER

Accepted,
Rejected,
Requested

,
Required

RequestedThe encryption behavior of the server
when a client, or a server acting as a
client, connects to the DB instance.
When a DB instance uses a database
link, it acts as a client.

Requested indicates that the DB
instance does not require traffic from
the client to be encrypted.

Native network encryption (NNE) 4077

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

SQLNET.ENCRYPTION_
TYPES_CLIENT

RC4_256,
AES256,
AES192,
3DES168,
RC4_128,
AES128,
3DES112,
RC4_56,
DES,
RC4_40,
DES40

RC4_256,
AES256,
AES192,
3DES168,
RC4_128,
AES128,
3DES112,
RC4_56,
DES,
RC4_40,
DES40

A list of encryption algorithms used
by the client. The client attempts to
decrypt the server input by trying each
algorithm in order, proceeding until an
algorithm succeeds or the end of the
list is reached.

Amazon RDS uses the following default
list from Oracle. RDS starts with
RC4_256 and proceeds down the list
in order. You can change the order
or limit the algorithms that the DB
instance will accept.

1. RC4_256: RSA RC4 (256-bit key size)

2. AES256: AES (256-bit key size)

3. AES192: AES (192-bit key size)

4. 3DES168: 3-key Triple-DES (112-bit
effective key size)

5. RC4_128: RSA RC4 (128-bit key size)

6. AES128: AES (128-bit key size)

7. 3DES112: 2-key Triple-DES (80-bit
effective key size)

8. RC4_56: RSA RC4 (56-bit key size)

9. DES: Standard DES (56-bit key size)

10.RC4_40: RSA RC4 (40-bit key size)

11.DES40: DES40 (40-bit key size)

You can specify either one value or a
comma-separated list of values. If you
a comma, don't insert a space after

Native network encryption (NNE) 4078

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

the comma; otherwise, you receive an
InvalidParameterValue error.

This parameter and SQLNET.SQ
LNET.ENCRYPTION_TY
PES_SERVER must have a common
cipher.

Native network encryption (NNE) 4079

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

SQLNET.ENCRYPTION_
TYPES_SERVER

RC4_256,
AES256,
AES192,
3DES168,
RC4_128,
AES128,
3DES112,
RC4_56,
DES,
RC4_40,
DES40

RC4_256,
AES256,
AES192,
3DES168,
RC4_128,
AES128,
3DES112,
RC4_56,
DES,
RC4_40,
DES40

A list of encryption algorithms used by
the DB instance. The DB instance uses
each algorithm, in order, to attempt
to decrypt the client input until an
algorithm succeeds or until the end of
the list is reached.

Amazon RDS uses the following default
list from Oracle. You can change the
order or limit the algorithms that the
client will accept.

1. RC4_256: RSA RC4 (256-bit key size)

2. AES256: AES (256-bit key size)

3. AES192: AES (192-bit key size)

4. 3DES168: 3-key Triple-DES (112-bit
effective key size)

5. RC4_128: RSA RC4 (128-bit key size)

6. AES128: AES (128-bit key size)

7. 3DES112: 2-key Triple-DES (80-bit
effective key size)

8. RC4_56: RSA RC4 (56-bit key size)

9. DES: Standard DES (56-bit key size)

10.RC4_40: RSA RC4 (40-bit key size)

11.DES40: DES40 (40-bit key size)

You can specify either one value or a
comma-separated list of values. If you
a comma, don't insert a space after
the comma; otherwise, you receive an
InvalidParameterValue error.

Native network encryption (NNE) 4080

Amazon Relational Database Service User Guide

Option setting Valid
values

Default
values

Description

This parameter and SQLNET.SQ
LNET.ENCRYPTION_TY
PES_SERVER must have a common
cipher.

Adding the NATIVE_NETWORK_ENCRYPTION option

The general process for adding the NATIVE_NETWORK_ENCRYPTION option to a DB instance is the
following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

When the option group is active, NNE is active.

To add the NATIVE_NETWORK_ENCRYPTION option to a DB instance using the AWS
Management Console

1. For Engine, choose the Oracle edition that you want to use. NNE is supported on all editions.

2. For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

3. Add the NATIVE_NETWORK_ENCRYPTION option to the option group. For more information
about adding options, see Adding an option to an option group.

Note

After you add the NATIVE_NETWORK_ENCRYPTION option, you don't need to restart
your DB instances. As soon as the option group is active, NNE is active.

4. Apply the option group to a new or existing DB instance:

Native network encryption (NNE) 4081

Amazon Relational Database Service User Guide

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. After you add the NATIVE_NETWORK_ENCRYPTION
option, you don't need to restart your DB instance. As soon as the option group is active,
NNE is active. For more information, see Modifying an Amazon RDS DB instance.

Setting NNE values in the sqlnet.ora

With Oracle native network encryption, you can set network encryption on the server side and
client side. The client is the computer used to connect to the DB instance. You can specify the
following client settings in the sqlnet.ora:

• SQLNET.ALLOW_WEAK_CRYPTO

• SQLNET.ALLOW_WEAK_CRYPTO_CLIENTS

• SQLNET.CRYPTO_CHECKSUM_CLIENT

• SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

• SQLNET.ENCRYPTION_CLIENT

• SQLNET.ENCRYPTION_TYPES_CLIENT

For information, see Configuring network data encryption and integrity for Oracle servers and
clients in the Oracle documentation.

Sometimes, the DB instance rejects a connection request from an application. For example, a
rejection can occur when the encryption algorithms on the client and on the server don't match. To
test Oracle native network encryption, add the following lines to the sqlnet.ora file on the client:

DIAG_ADR_ENABLED=off
TRACE_DIRECTORY_CLIENT=/tmp
TRACE_FILE_CLIENT=nettrace
TRACE_LEVEL_CLIENT=16

When a connection is attempted, the preceding lines generate a trace file on the client called /
tmp/nettrace*. The trace file contains information about the connection. For more information
about connection-related issues when you are using Oracle Native Network Encryption, see About
negotiating encryption and integrity in the Oracle Database documentation.

Native network encryption (NNE) 4082

http://docs.oracle.com/cd/E11882_01/network.112/e40393/asoconfg.htm
http://docs.oracle.com/cd/E11882_01/network.112/e40393/asoconfg.htm
http://docs.oracle.com/cd/E11882_01/network.112/e40393/asoconfg.htm#autoId12
http://docs.oracle.com/cd/E11882_01/network.112/e40393/asoconfg.htm#autoId12

Amazon Relational Database Service User Guide

Modifying NATIVE_NETWORK_ENCRYPTION option settings

After you enable the NATIVE_NETWORK_ENCRYPTION option, you can modify its settings.
Currently, you can modify NATIVE_NETWORK_ENCRYPTION option settings only with the AWS CLI
or RDS API. You can't use the console. The following example modifies two settings in the option.

aws rds add-option-to-option-group \
 --option-group-name my-option-group \
 --options
 "OptionName=NATIVE_NETWORK_ENCRYPTION,OptionSettings=[{Name=SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER,Value=SHA256},
{Name=SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER,Value=SHA256}]" \
 --apply-immediately

To learn how to modify option settings using the CLI, see AWS CLI. For more information about
each setting, see NATIVE_NETWORK_ENCRYPTION option settings.

Topics

• Modifying CRYPTO_CHECKSUM_* values

• Modifying ALLOW_WEAK_CRYPTO* settings

Modifying CRYPTO_CHECKSUM_* values

If you modify NATIVE_NETWORK_ENCRYPTION option settings, make sure that the following
option settings have at least one common cipher:

• SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER

• SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

The following example shows a scenario in which you modify
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER. The configuration is valid because the
CRYPTO_CHECKSUM_TYPES_CLIENT and CRYPTO_CHECKSUM_TYPES_SERVER both use SHA256.

Option setting Values before modification Values after modificat
ion

SQLNET.CRYPTO_CHEC
KSUM_TYPES_CLIENT

SHA256, SHA384, SHA512 No change

Native network encryption (NNE) 4083

Amazon Relational Database Service User Guide

Option setting Values before modification Values after modificat
ion

SQLNET.CRYPTO_CHEC
KSUM_TYPES_SERVER

SHA256, SHA384, SHA512,
SHA1, MD5

SHA1,MD5, SHA256

For another example, assume that you want to modify
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER from its default setting to SHA1,MD5. In this case,
make sure you set SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT to SHA1 or MD5. These algorithms
aren't included in the default values for SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT.

Modifying ALLOW_WEAK_CRYPTO* settings

To set the SQLNET.ALLOW_WEAK_CRYPTO* options from the default value to FALSE, make sure
that the following conditions are met:

• SQLNET.ENCRYPTION_TYPES_SERVER and SQLNET.ENCRYPTION_TYPES_CLIENT have one
matching secure encryption method. A method is considered secure if it's not DES, 3DES, or RC4
(all key lengths).

• SQLNET.CHECKSUM_TYPES_SERVER and SQLNET.CHECKSUM_TYPES_CLIENT have one
matching secure checksumming method. A method is considered secure if it's not MD5.

• The client is patched with the July 2021 PSU. If the client isn't patched, the client loses the
connection and receives the ORA-12269 error.

The following example shows sample NNE settings. Assume that you want to set
SQLNET.ENCRYPTION_TYPES_SERVER and SQLNET.ENCRYPTION_TYPES_CLIENT to FALSE,
thereby blocking non-secure connections. The checksum option settings meet the prerequisites
because they both have SHA256. However, SQLNET.ENCRYPTION_TYPES_CLIENT and
SQLNET.ENCRYPTION_TYPES_SERVER use the DES, 3DES, and RC4 encryption methods, which
are non-secure. Therefore, to set the SQLNET.ALLOW_WEAK_CRYPTO* options to FALSE, first set
SQLNET.ENCRYPTION_TYPES_SERVER and SQLNET.ENCRYPTION_TYPES_CLIENT to a secure
encryption method such as AES256.

Native network encryption (NNE) 4084

Amazon Relational Database Service User Guide

Option setting Values

SQLNET.CRYPTO_CHEC
KSUM_TYPES_CLIENT

SHA256, SHA384, SHA512

SQLNET.CRYPTO_CHEC
KSUM_TYPES_SERVER

SHA1,MD5,SHA256

SQLNET.ENCRYPTION_
TYPES_CLIENT

RC4_256, 3DES168, DES40

SQLNET.ENCRYPTION_
TYPES_SERVER

RC4_256, 3DES168, DES40

Removing the NATIVE_NETWORK_ENCRYPTION option

You can remove NNE from a DB instance.

To remove the NATIVE_NETWORK_ENCRYPTION option from a DB instance, do one of the
following:

• To remove the option from multiple DB instances, remove the NATIVE_NETWORK_ENCRYPTION
option from the option group they belong to. This change affects all DB instances that use the
option group. After you remove the NATIVE_NETWORK_ENCRYPTION option, you don't need to
restart your DB instances. For more information, see Removing an option from an option group.

• To remove the option from a single DB instance, modify the DB instance and specify a different
option group that doesn't include the NATIVE_NETWORK_ENCRYPTION option. You can specify
the default (empty) option group, or a different custom option group. After you remove the
NATIVE_NETWORK_ENCRYPTION option, you don't need to restart your DB instance. For more
information, see Modifying an Amazon RDS DB instance.

Native network encryption (NNE) 4085

Amazon Relational Database Service User Guide

Oracle OLAP

Amazon RDS supports Oracle OLAP through the use of the OLAP option. This option provides On-
line Analytical Processing (OLAP) for Oracle DB instances. You can use Oracle OLAP to analyze
large amounts of data by creating dimensional objects and cubes in accordance with the OLAP
standard. For more information, see the Oracle documentation.

Important

If you use Oracle OLAP, Amazon RDS automatically updates your DB instance to the latest
Oracle PSU if there are security vulnerabilities with a Common Vulnerability Scoring System
(CVSS) score of 9+ or other announced security vulnerabilities.

Amazon RDS supports Oracle OLAP for the Enterprise Edition of Oracle Database 19c and higher.

Prerequisites for Oracle OLAP

The following are prerequisites for using Oracle OLAP:

• You must have an Oracle OLAP license from Oracle. For more information, see Licensing
Information in the Oracle documentation.

• Your DB instance must be of a sufficient instance class. Oracle OLAP isn't supported for the
db.t3.small DB instance classes. For more information, see RDS for Oracle DB instance classes.

• Your DB instance must have Auto Minor Version Upgrade enabled. This option enables your DB
instance to receive minor DB engine version upgrades automatically when they become available
and is required for any options that install the Oracle Java Virtual Machine (JVM). Amazon RDS
uses this option to update your DB instance to the latest Oracle Patch Set Update (PSU) or
Release Update (RU). For more information, see Modifying an Amazon RDS DB instance.

• Your DB instance must not have a user named OLAPSYS. If it does, the OLAP option installation
fails.

Best practices for Oracle OLAP

The following are best practices for using Oracle OLAP:

• For maximum security, use the OLAP option with Secure Sockets Layer (SSL). For more
information, see Oracle Secure Sockets Layer.

OLAP 4086

https://docs.oracle.com/en/database/oracle/oracle-database/19/olaug/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dblic/Licensing-Information.html#GUID-B6113390-9586-46D7-9008-DCC9EDA45AB4
https://docs.oracle.com/en/database/oracle/oracle-database/19/dblic/Licensing-Information.html#GUID-B6113390-9586-46D7-9008-DCC9EDA45AB4

Amazon Relational Database Service User Guide

• Configure your DB instance to restrict access to your DB instance. For more information, see
Scenarios for accessing a DB instance in a VPC and Working with a DB instance in a VPC.

Adding the Oracle OLAP option

The following is the general process for adding the OLAP option to a DB instance:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

If Oracle Java Virtual Machine (JVM) is not installed on the DB instance, there is a brief outage
while the OLAP option is added. There is no outage if Oracle Java Virtual Machine (JVM) is already
installed on the DB instance. After you add the option, you don't need to restart your DB instance.
As soon as the option group is active, Oracle OLAP is available.

To add the OLAP option to a DB instance

1. Determine the option group that you want to use. You can create a new option group or use
an existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

• For Engine, choose the Oracle edition for your DB instance.

• For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the OLAP option to the option group. For more information about adding options, see
Adding an option to an option group.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, apply the option group by modifying the instance and attaching
the new option group. For more information, see Modifying an Amazon RDS DB instance.

OLAP 4087

Amazon Relational Database Service User Guide

Using Oracle OLAP

After you enable the Oracle OLAP option, you can begin using it. For a list of features that are
supported for Oracle OLAP, see the Oracle documentation.

Removing the Oracle OLAP option

After you drop all objects that use data types provided by the OLAP option, you can remove the
option from a DB instance. If Oracle Java Virtual Machine (JVM) is not installed on the DB instance,
there is a brief outage while the OLAP option is removed. There is no outage if Oracle Java Virtual
Machine (JVM) is already installed on the DB instance. After you remove the OLAP option, you don't
need to restart your DB instance.

To drop the OLAP option

1. Back up your data.

Warning

If the instance uses data types that were enabled as part of the option, and if you
remove the OLAP option, you can lose data. For more information, see Backing up,
restoring, and exporting data.

2. Check whether any existing objects reference data types or features of the OLAP option.

3. Drop any objects that reference data types or features of the OLAP option.

4. Do one of the following:

• Remove the OLAP option from the option group it belongs to. This change affects all DB
instances that use the option group. For more information, see Removing an option from an
option group.

• Modify the DB instance and specify a different option group that doesn't include the OLAP
option. This change affects a single DB instance. You can specify the default (empty) option
group, or a different custom option group. For more information, see Modifying an Amazon
RDS DB instance.

OLAP 4088

https://docs.oracle.com/en/database/oracle/oracle-database/19/olaug/overview.html#GUID-E2056FE4-C623-4D29-B7D8-C4762F941966

Amazon Relational Database Service User Guide

Oracle Secure Sockets Layer

To enable SSL encryption for an RDS for Oracle DB instance, add the Oracle SSL option to the
option group associated with the DB instance. Amazon RDS uses a second port, as required
by Oracle, for SSL connections. This approach allows both clear text and SSL-encrypted
communication to occur at the same time between a DB instance and SQL*Plus. For example, you
can use the port with clear text communication to communicate with other resources inside a VPC
while using the port with SSL-encrypted communication to communicate with resources outside
the VPC.

Note

You can use either SSL or Native Network Encryption (NNE) on the same RDS for Oracle
DB instance, but not both. If you use SSL encryption, make sure to turn off any other
connection encryption. For more information, see Oracle native network encryption.

SSL/TLS and NNE are no longer part of Oracle Advanced Security. In RDS for Oracle, you can use
SSL encryption with all licensed editions of the following database versions:

• Oracle Database 21c (21.0.0)

• Oracle Database 19c (19.0.0)

Topics

• TLS versions for the Oracle SSL option

• Cipher suites for the Oracle SSL option

• FIPS support

• Adding the SSL option

• Configuring SQL*Plus to use SSL with an RDS for Oracle DB instance

• Connecting to an RDS for Oracle DB instance using SSL

• Setting up an SSL connection over JDBC

• Enforcing a DN match with an SSL connection

• Troubleshooting SSL connections

Secure Sockets Layer (SSL) 4089

Amazon Relational Database Service User Guide

TLS versions for the Oracle SSL option

Amazon RDS for Oracle supports Transport Layer Security (TLS) versions 1.0 and 1.2. When you
add a new Oracle SSL option, set SQLNET.SSL_VERSION explicitly to a valid value. The following
values are allowed for this option setting:

• "1.0" – Clients can connect to the DB instance using TLS version 1.0 only. For existing Oracle
SSL options, SQLNET.SSL_VERSION is set to "1.0" automatically. You can change the setting if
necessary.

• "1.2" – Clients can connect to the DB instance using TLS 1.2 only.

• "1.2 or 1.0" – Clients can connect to the DB instance using either TLS 1.2 or 1.0.

Cipher suites for the Oracle SSL option

Amazon RDS for Oracle supports multiple SSL cipher suites. By default, the Oracle SSL option
is configured to use the SSL_RSA_WITH_AES_256_CBC_SHA cipher suite. To specify a different
cipher suite to use over SSL connections, use the SQLNET.CIPHER_SUITE option setting.

You can specify multiple values for SQLNET.CIPHER_SUITE. This technique is useful if you have
database links between your DB instances and decide to update your cipher suites.

The following table summarizes SSL support for RDS for Oracle in all editions of Oracle Database
19c and 21c.

Cipher suite (SQLNET.CIPHER_SUITE) TLS version
support
(SQLNET.S
SL_VERSION)

FIPS support FedRAMP
compliant

SSL_RSA_WITH_AES_256_CBC_SHA (default) 1.0 and 1.2 Yes No

SSL_RSA_WITH_AES_256_CBC_SHA256 1.2 Yes No

SSL_RSA_WITH_AES_256_GCM_SHA384 1.2 Yes No

TLS_ECDHE_RSA_WITH_AES_256_
GCM_SHA384

1.2 Yes Yes

Secure Sockets Layer (SSL) 4090

Amazon Relational Database Service User Guide

Cipher suite (SQLNET.CIPHER_SUITE) TLS version
support
(SQLNET.S
SL_VERSION)

FIPS support FedRAMP
compliant

TLS_ECDHE_RSA_WITH_AES_128_
GCM_SHA256

1.2 Yes Yes

TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA384

1.2 Yes Yes

TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA256

1.2 Yes Yes

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 1.2 Yes Yes

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 1.2 Yes Yes

FIPS support

RDS for Oracle allows you to use the Federal Information Processing Standard (FIPS) standard for
140-2. FIPS 140-2 is a United States government standard that defines cryptographic module
security requirements. You turn on the FIPS standard by setting FIPS.SSLFIPS_140 to TRUE for
the Oracle SSL option. When FIPS 140-2 is configured for SSL, the cryptographic libraries encrypt
data between the client and the RDS for Oracle DB instance.

Clients must use the cipher suite that is FIPS-compliant. When establishing a connection, the client
and RDS for Oracle DB instance negotiate which cipher suite to use when transmitting messages
back and forth. The table in Cipher suites for the Oracle SSL option shows the FIPS-compliant SSL
cipher suites for each TLS version. For more information, see Oracle database FIPS 140-2 settings
in the Oracle Database documentation.

Adding the SSL option

To use SSL, your RDS for Oracle DB instance must be associated with an option group that includes
the SSL option.

Secure Sockets Layer (SSL) 4091

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dbseg/oracle-database-fips-140-settings.html#GUID-DDBEB3F9-B216-44BB-8C18-43B5E468CBBB

Amazon Relational Database Service User Guide

Console

To add the SSL option to an option group

1. Create a new option group or identify an existing option group to which you can add the SSL
option.

For information about creating an option group, see Creating an option group.

2. Add the SSL option to the option group.

If you want to use only FIPS-verified cipher suites for SSL connections, set the option
FIPS.SSLFIPS_140 to TRUE. For information about the FIPS standard, see FIPS support.

For information about adding an option to an option group, see Adding an option to an option
group.

3. Create a new RDS for Oracle DB instance and associate the option group with it, or modify an
RDS for Oracle DB instance to associate the option group with it.

For information about creating an DB instance, see Creating an Amazon RDS DB instance.

For information about modifying an DB instance, see Modifying an Amazon RDS DB instance.

AWS CLI

To add the SSL option to an option group

1. Create a new option group or identify an existing option group to which you can add the SSL
option.

For information about creating an option group, see Creating an option group.

2. Add the SSL option to the option group.

Specify the following option settings:

• Port – The SSL port number

• VpcSecurityGroupMemberships – The VPC security group for which the option is
enabled

• SQLNET.SSL_VERSION – The TLS version that client can use to connect to the DB instance

Secure Sockets Layer (SSL) 4092

Amazon Relational Database Service User Guide

For example, the following AWS CLI command adds the SSL option to an option group named
ora-option-group.

Example

For Linux, macOS, or Unix:

aws rds add-option-to-option-group --option-group-name ora-option-group \
 --options
 'OptionName=SSL,Port=2484,VpcSecurityGroupMemberships="sg-68184619",OptionSettings=[{Name=SQLNET.SSL_VERSION,Value=1.0}]'

For Windows:

aws rds add-option-to-option-group --option-group-name ora-option-group ^
 --options
 'OptionName=SSL,Port=2484,VpcSecurityGroupMemberships="sg-68184619",OptionSettings=[{Name=SQLNET.SSL_VERSION,Value=1.0}]'

3. Create a new RDS for Oracle DB instance and associate the option group with it, or modify an
RDS for Oracle DB instance to associate the option group with it.

For information about creating an DB instance, see Creating an Amazon RDS DB instance.

For information about modifying an DB instance, see Modifying an Amazon RDS DB instance.

Configuring SQL*Plus to use SSL with an RDS for Oracle DB instance

Before you can connect to an RDS for Oracle DB instance that uses the Oracle SSL option, you must
configure SQL*Plus before connecting.

Note

To allow access to the DB instance from the appropriate clients, ensure that your security
groups are configured correctly. For more information, see Controlling access with security
groups. Also, these instructions are for SQL*Plus and other clients that directly use an
Oracle home. For JDBC connections, see Setting up an SSL connection over JDBC.

Secure Sockets Layer (SSL) 4093

Amazon Relational Database Service User Guide

To configure SQL*Plus to use SSL to connect to an RDS for Oracle DB instance

1. Set the ORACLE_HOME environment variable to the location of your Oracle home directory.

The path to your Oracle home directory depends on your installation. The following example
sets the ORACLE_HOME environment variable.

prompt>export ORACLE_HOME=/home/user/app/user/product/19.0.0/dbhome_1

For information about setting Oracle environment variables, see SQL*Plus environment
variables in the Oracle documentation, and also see the Oracle installation guide for your
operating system.

2. Append $ORACLE_HOME/lib to the LD_LIBRARY_PATH environment variable.

The following is an example that sets the LD_LIBRARY_PATH environment variable.

prompt>export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

3. Create a directory for the Oracle wallet at $ORACLE_HOME/ssl_wallet.

The following is an example that creates the Oracle wallet directory.

prompt>mkdir $ORACLE_HOME/ssl_wallet

4. Download the certificate bundle .pem file that works for all AWS Regions and put the file in
the ssl_wallet directory. For information, see Using SSL/TLS to encrypt a connection to a DB
instance or cluster.

5. In the $ORACLE_HOME/network/admin directory, modify or create the tnsnames.ora file
and include the following entry.

net_service_name =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS =
 (PROTOCOL = TCPS)
 (HOST = endpoint)
 (PORT = ssl_port_number)
)
)
 (CONNECT_DATA =

Secure Sockets Layer (SSL) 4094

http://docs.oracle.com/database/121/SQPUG/ch_two.htm#SQPUG331
http://docs.oracle.com/database/121/SQPUG/ch_two.htm#SQPUG331

Amazon Relational Database Service User Guide

 (SID = database_name)
)
 (SECURITY =
 (SSL_SERVER_CERT_DN =
 "C=US,ST=Washington,L=Seattle,O=Amazon.com,OU=RDS,CN=endpoint")
)
)

6. In the same directory, modify or create the sqlnet.ora file and include the following
parameters.

Note

To communicate with entities over a TLS secured connection, Oracle requires a wallet
with the necessary certificates for authentication. You can use Oracle's ORAPKI utility
to create and maintain Oracle wallets, as shown in step 7. For more information, see
Setting up Oracle wallet using ORAPKI in the Oracle documentation.

WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY =
 $ORACLE_HOME/ssl_wallet)))
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 1.0
SSL_CIPHER_SUITES = (SSL_RSA_WITH_AES_256_CBC_SHA)
SSL_SERVER_DN_MATCH = ON

Note

You can set SSL_VERSION to a higher value if your DB instance supports it.

7. Run the following command to create the Oracle wallet.

prompt>orapki wallet create -wallet $ORACLE_HOME/ssl_wallet -auto_login_only

8. Extract each certificate in the .pem bundle file into a separate .pem file using an OS utility.

9. Add each certificate to your wallet using separate orapki commands, replacing
certificate-pem-file with the absolute file name of the .pem file.

prompt>orapki wallet add -wallet $ORACLE_HOME/ssl_wallet -trusted_cert -cert

Secure Sockets Layer (SSL) 4095

https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tsvt/task_SettingUpOracleWalletUsingORAPKI.html

Amazon Relational Database Service User Guide

 certificate-pem-file -auto_login_only

For more information, see Rotating your SSL/TLS certificate.

Connecting to an RDS for Oracle DB instance using SSL

After you configure SQL*Plus to use SSL as described previously, you can connect to the RDS for
Oracle DB instance with the SSL option. Optionally, you can first export the TNS_ADMIN value that
points to the directory that contains the tnsnames.ora and sqlnet.ora files. Doing so ensures that
SQL*Plus can find these files consistently. The following example exports the TNS_ADMIN value.

export TNS_ADMIN = ${ORACLE_HOME}/network/admin

Connect to the DB instance. For example, you can connect using SQL*Plus and a
<net_service_name> in a tnsnames.ora file.

sqlplus mydbuser@net_service_name

You can also connect to the DB instance using SQL*Plus without using a tnsnames.ora file by using
the following command.

sqlplus 'mydbuser@(DESCRIPTION = (ADDRESS = (PROTOCOL = TCPS)(HOST = endpoint) (PORT
 = ssl_port_number))(CONNECT_DATA = (SID = database_name)))'

You can also connect to the RDS for Oracle DB instance without using SSL. For example, the
following command connects to the DB instance through the clear text port without SSL
encryption.

sqlplus 'mydbuser@(DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST = endpoint) (PORT
 = port_number))(CONNECT_DATA = (SID = database_name)))'

If you want to close Transmission Control Protocol (TCP) port access, create a security group with
no IP address ingresses and add it to the instance. This addition closes connections over the TCP
port, while still allowing connections over the SSL port that are specified from IP addresses within
the range permitted by the SSL option security group.

Secure Sockets Layer (SSL) 4096

Amazon Relational Database Service User Guide

Setting up an SSL connection over JDBC

To use an SSL connection over JDBC, you must create a keystore, trust the Amazon RDS root CA
certificate, and use the code snippet specified following.

To create the keystore in JKS format, you can use the following command. For more information
about creating the keystore, see the Creating a keystore in the Oracle documentation. For reference
information, see keytool in the Java Platform, Standard Edition Tools Reference.

keytool -genkey -alias client -validity 365 -keyalg RSA -keystore clientkeystore

Take the following steps to trust the Amazon RDS root CA certificate.

To trust the Amazon RDS root CA certificate

1. Download the certificate bundle .pem file that works for all AWS Regions and put the file in
the ssl_wallet directory.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster.

2. Extract each certificate in the .pem file into a separate file using an OS utility.

3. Convert each certificate to .der format using a separate openssl command, replacing
certificate-pem-file with the name of the certificate .pem file (without the .pem
extension).

openssl x509 -outform der -in certificate-pem-file.pem -out certificate-pem-
file.der

4. Import each certificate into the keystore using the following command.

keytool -import -alias rds-root -keystore clientkeystore.jks -file certificate-pem-
file.der

For more information, see Rotating your SSL/TLS certificate.

5. Confirm that the key store was created successfully.

keytool -list -v -keystore clientkeystore.jks

Secure Sockets Layer (SSL) 4097

https://docs.oracle.com/cd/E35822_01/server.740/es_admin/src/tadm_ssl_jetty_keystore.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

Amazon Relational Database Service User Guide

Enter the keystore password when you are prompted for it.

The following code example shows how to set up the SSL connection using JDBC.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Properties;

public class OracleSslConnectionTest {
 private static final String DB_SERVER_NAME = "dns-name-provided-by-amazon-rds";
 private static final Integer SSL_PORT = "ssl-option-port-configured-in-option-
group";
 private static final String DB_SID = "oracle-sid";
 private static final String DB_USER = "user-name";
 private static final String DB_PASSWORD = "password";
 // This key store has only the prod root ca.
 private static final String KEY_STORE_FILE_PATH = "file-path-to-keystore";
 private static final String KEY_STORE_PASS = "keystore-password";

 public static void main(String[] args) throws SQLException {
 final Properties properties = new Properties();
 final String connectionString = String.format(
 "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=%s)(PORT=
%d))(CONNECT_DATA=(SID=%s)))",
 DB_SERVER_NAME, SSL_PORT, DB_SID);
 properties.put("user", DB_USER);
 properties.put("password", DB_PASSWORD);
 properties.put("oracle.jdbc.J2EE13Compliant", "true");
 properties.put("javax.net.ssl.trustStore", KEY_STORE_FILE_PATH);
 properties.put("javax.net.ssl.trustStoreType", "JKS");
 properties.put("javax.net.ssl.trustStorePassword", KEY_STORE_PASS);
 final Connection connection = DriverManager.getConnection(connectionString,
 properties);
 // If no exception, that means handshake has passed, and an SSL connection can
 be opened
 }
}

Secure Sockets Layer (SSL) 4098

Amazon Relational Database Service User Guide

Note

Specify a password other than the prompt shown here as a security best practice.

Enforcing a DN match with an SSL connection

You can use the Oracle parameter SSL_SERVER_DN_MATCH to enforce that the distinguished name
(DN) for the database server matches its service name. If you enforce the match verifications, then
SSL ensures that the certificate is from the server. If you don't enforce the match verification, then
SSL performs the check but allows the connection, regardless if there is a match. If you do not
enforce the match, you allow the server to potentially fake its identity.

To enforce DN matching, add the DN match property and use the connection string specified
below.

Add the property to the client connection to enforce DN matching.

properties.put("oracle.net.ssl_server_dn_match", "TRUE");

Use the following connection string to enforce DN matching when using SSL.

final String connectionString = String.format(
 "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=%s)(PORT=%d))" +
 "(CONNECT_DATA=(SID=%s))" +
 "(SECURITY = (SSL_SERVER_CERT_DN =
\"C=US,ST=Washington,L=Seattle,O=Amazon.com,OU=RDS,CN=%s\")))",
 DB_SERVER_NAME, SSL_PORT, DB_SID, DB_SERVER_NAME);

Troubleshooting SSL connections

You might query your database and receive the ORA-28860 error.

ORA-28860: Fatal SSL error
28860. 00000 - "Fatal SSL error"
*Cause: An error occurred during the SSL connection to the peer. It is likely that this
 side sent data which the peer rejected.
*Action: Enable tracing to determine the exact cause of this error.

Secure Sockets Layer (SSL) 4099

Amazon Relational Database Service User Guide

This error occurs when the client attempts to connect using a version of TLS that the server doesn't
support. To avoid this error, edit the sqlnet.ora and set SSL_VERSION to the correct TLS version.
For more information, see Oracle Support Document 2748438.1 in My Oracle Support.

Secure Sockets Layer (SSL) 4100

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2748438.1

Amazon Relational Database Service User Guide

Oracle Spatial

Amazon RDS supports Oracle Spatial through the use of the SPATIAL option. Oracle Spatial
provides a SQL schema and functions that facilitate the storage, retrieval, update, and query of
collections of spatial data in an Oracle database. For more information, see Spatial Concepts in
the Oracle documentation. Amazon RDS supports Oracle Spatial in all editions of all supported
releases.

How Spatial Patch Bundles (SPBs) work

Every quarter, RDS for Oracle releases new minor engine versions for every supported
major engine. A Release Update (RU) engine version incorporates bug fixes from Oracle
by including the RU patches for the specified quarter. A Spatial Patch Bundle (SPB)
engine version contains RU patches plus patches specific to Oracle Spatial. For example,
19.0.0.0.ru-2025-01.spb-1.r1 is a minor engine version that contains the RU patches in engine
version 19.0.0.0.ru-2025-01.rur-2025-01.r1 plus Spatial patches. SPBs are supported only for
Oracle Database 19c.

SPBs function in the same way as RUs, although they are named differently. An RU uses
the naming format 19.0.0.0.ru-2025-01.rur-2025-01.r1. An SPB name includes the text
"spb," as in 19.0.0.0.ru-2025-01.spb-1.r1. Typically, an SPB is released 2–3 weeks after its
corresponding quarterly RU. For example, 19.0.0.0.ru-2025-01.spb-1.r1 is released after
19.0.0.0.ru-2025-01.rur-2025-01.r1.

RDS for Oracle has separate paths for automatic minor version upgrades of RUs and SPBs. If your
DB instance uses an RU, then RDS automatically upgrades your instance to an RU. If your DB
instance uses an SPB, then RDS upgrades your instance to an SPB. When you add the Oracle Spatial
option to your DB instance, and you enable automatic upgrades, RDS puts your instance in the
upgrade path for SPBs.

For more information about RUs and SPBs, see Oracle minor version upgrades. For a list of
supported RUs and SPBs for Oracle Database 19c, see Amazon RDS for Oracle Database 19c
(19.0.0.0) in Amazon RDS for Oracle Release Notes.

Prerequisites for Oracle Spatial

The following are prerequisites for using Oracle Spatial:

Spatial 4101

http://docs.oracle.com/database/121/SPATL/spatial-concepts.htm#SPATL010
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html

Amazon Relational Database Service User Guide

• Make sure that your DB instance is of a sufficient instance class. Oracle Spatial isn't supported
for the db.t3.small DB instance classes. For more information, see RDS for Oracle DB instance
classes.

• Make sure that your DB instance has Auto Minor Version Upgrade enabled. This option enables
your DB instance to receive minor DB engine version upgrades automatically when they become
available and is required for any options that install the Oracle Java Virtual Machine (JVM).
Amazon RDS uses this option to update your DB instance to the latest Oracle Patch Set Update
(PSU) or Release Update (RU). For more information, see Modifying an Amazon RDS DB instance.

Best practices for Oracle Spatial

The following are best practices for using Oracle Spatial:

• For maximum security, use the SPATIAL option with Secure Sockets Layer (SSL). For more
information, see Oracle Secure Sockets Layer.

• Configure your DB instance to restrict access to your DB instance. For more information, see
Scenarios for accessing a DB instance in a VPC and Working with a DB instance in a VPC.

Adding the Oracle Spatial option

The following is the general process for adding the SPATIAL option to a DB instance:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

If Oracle Java Virtual Machine (JVM) is not installed on the DB instance, there is a brief outage
while the SPATIAL option is added. There is no outage if Oracle Java Virtual Machine (JVM) is
already installed on the DB instance. After you add the option, you don't need to restart your DB
instance. As soon as the option group is active, Oracle Spatial is available.

Note

During this outage, password verification functions are disabled briefly. You can also expect
to see events related to password verification functions during the outage. Password
verification functions are enabled again before the Oracle DB instance is available.

Spatial 4102

Amazon Relational Database Service User Guide

To add the SPATIAL option to a DB instance

1. Determine the option group that you want to use. You can create a new option group or use
an existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine, choose the Oracle edition for your DB instance.

b. For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the SPATIAL option to the option group. For more information about adding options, see
Adding an option to an option group.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

Removing the Oracle Spatial option

After you drop all objects that use data types provided by the SPATIAL option, you can drop the
option from a DB instance. If Oracle Java Virtual Machine (JVM) is not installed on the DB instance,
there is a brief outage while the SPATIAL option is removed. There is no outage if Oracle Java
Virtual Machine (JVM) is already installed on the DB instance. After you remove the SPATIAL
option, you don't need to restart your DB instance.

To drop the SPATIAL option

1. Back up your data.

Warning

If the instance uses data types that were enabled as part of the option, and if you
remove the SPATIAL option, you can lose data. For more information, see Backing up,
restoring, and exporting data.

Spatial 4103

Amazon Relational Database Service User Guide

2. Check whether any existing objects reference data types or features of the SPATIAL option.

If SPATIAL options exist, the instance can get stuck when applying the new option group that
doesn't have the SPATIAL option. You can identify the objects by using the following queries:

SELECT OWNER, SEGMENT_NAME, TABLESPACE_NAME, BYTES/1024/1024 mbytes
FROM DBA_SEGMENTS
WHERE SEGMENT_TYPE LIKE '%TABLE%'
AND (OWNER, SEGMENT_NAME) IN
 (SELECT DISTINCT OWNER, TABLE_NAME
 FROM DBA_TAB_COLUMNS
 WHERE DATA_TYPE='SDO_GEOMETRY'
 AND OWNER <> 'MDSYS')
ORDER BY 1,2,3,4;

SELECT OWNER, TABLE_NAME, COLUMN_NAME
FROM DBA_TAB_COLUMNS
WHERE DATA_TYPE = 'SDO_GEOMETRY'
AND OWNER <> 'MDSYS'
ORDER BY 1,2,3;

3. Drop any objects that reference data types or features of the SPATIAL option.

4. Do one of the following:

• Remove the SPATIAL option from the option group it belongs to. This change affects all DB
instances that use the option group. For more information, see Removing an option from an
option group.

• Modify the DB instance and specify a different option group that doesn't include the
SPATIAL option. This change affects a single DB instance. You can specify the default
(empty) option group, or a different custom option group. For more information, see
Modifying an Amazon RDS DB instance.

Spatial 4104

Amazon Relational Database Service User Guide

Oracle SQLT

Amazon RDS supports Oracle SQLTXPLAIN (SQLT) through the use of the SQLT option. You can use
SQLT with any edition of Oracle Database 19c and higher.

The Oracle EXPLAIN PLAN statement can determine the execution plan of a SQL statement. It can
verify whether the Oracle optimizer chooses a certain execution plan, such as a nested loops join. It
also helps you understand the optimizer's decisions, such as why it chose a nested loops join over a
hash join. So EXPLAIN PLAN helps you understand the statement's performance.

SQLT is an Oracle utility that produces a report. The report includes object statistics, object
metadata, optimizer-related initialization parameters, and other information that a database
administrator can use to tune a SQL statement for optimal performance. SQLT produces an HTML
report with hyperlinks to all of the sections in the report.

Unlike Automatic Workload Repository or Statspack reports, SQLT works on individual SQL
statements. SQLT is a collection of SQL, PL/SQL, and SQL*Plus files that collect, store, and display
performance data.

Following are the supported Oracle versions for each SQLT version.

SQLT version Oracle Database 21c Oracle Database 19c

2018-07-25.v1 Supported Supported

2018-03-31.v1 Not supported Not supported

2016-04-29.v1 Not supported Not supported

To download SQLT and access instructions for using it:

• Log in to your My Oracle Support account, and open the following documents:

• To download SQLT: Document 215187.1

• For SQLT usage instructions: Document 1614107.1

• For frequently asked questions about SQLT: Document 1454160.1

• For information about reading SQLT output: Document 1456176.1

• For interpreting the Main report: Document 1922234.1

SQLT 4105

https://support.oracle.com/epmos/faces/DocumentDisplay?id=215187.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1614107.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1454160.1
https://support.oracle.com/epmos/main/downloadattachmentprocessor?parent=DOCUMENT&sourceId=1456176.1&attachid=1456176.1:58&clickstream=yes
https://support.oracle.com/epmos/faces/DocumentDisplay?parent=DOCUMENT&sourceId=215187.1&id=1922234.1

Amazon Relational Database Service User Guide

Amazon RDS doesn't support the following SQLT methods:

• XPLORE

• XHUME

Prerequisites for SQLT

The following are prerequisites for using SQLT:

• You must remove users and roles that are required by SQLT, if they exist.

The SQLT option creates the following users and roles on a DB instance:

• SQLTXPLAIN user

• SQLTXADMIN user

• SQLT_USER_ROLE role

If your DB instance has any of these users or roles, log in to the DB instance using a SQL client,
and drop them using the following statements:

DROP USER SQLTXPLAIN CASCADE;
DROP USER SQLTXADMIN CASCADE;
DROP ROLE SQLT_USER_ROLE CASCADE;

• You must remove tablespaces that are required by SQLT, if they exist.

The SQLT option creates the following tablespaces on a DB instance:

• RDS_SQLT_TS

• RDS_TEMP_SQLT_TS

If your DB instance has these tablespaces, log in to the DB instance using a SQL client, and drop
them.

SQLT option settings

SQLT can work with licensed features that are provided by the Oracle Tuning Pack and the
Oracle Diagnostics Pack. The Oracle Tuning Pack includes the SQL Tuning Advisor, and the Oracle
SQLT 4106

Amazon Relational Database Service User Guide

Diagnostics Pack includes the Automatic Workload Repository. The SQLT settings enable or disable
access to these features from SQLT.

Amazon RDS supports the following settings for the SQLT option.

Option setting Valid values Default
value

Description

LICENSE_PACK T, D, N N The Oracle Management Packs that
you want to access with SQLT. Enter
one of the following values:

• T indicates that you have a license
for the Oracle Tuning Pack and
the Oracle Diagnostics Pack, and
you want to access the SQL Tuning
Advisor and Automatic Workload
Repository from SQLT.

• D indicates that you have a license
for the Oracle Diagnostics Pack,
and you want to access the
Automatic Workload Repository
from SQLT.

• N indicates that you don't have a
license for the Oracle Tuning Pack
and the Oracle Diagnostics Pack, or
that you have a license for one or
both of them, but you don't want
SQLT to access them.

Note

Amazon RDS does not provide
licenses for these Oracle
Management Packs. If you
indicate that you want to use
a pack that is not included in

SQLT 4107

Amazon Relational Database Service User Guide

Option setting Valid values Default
value

Description

your DB instance, you can use
SQLT with the DB instance.
However, SQLT can't access
the pack, and the SQLT report
doesn't include the data for
the pack. For example, if you
specify T, but the DB instance
doesn't include the Oracle
Tuning Pack, SQLT works
on the DB instance, but the
report it generates doesn't
contain data related to the
Oracle Tuning Pack.

VERSION 2016-04-2
9.v1

2018-03-3
1.v1

2018-07-2
5.v1

2016-04-2
9.v1

The version of SQLT that you want to
install.

Note

For Oracle Database 19c
and 21c, the only supported
version is 2018-07-25.v1 .
This version is the default for
these releases.

Adding the SQLT option

The following is the general process for adding the SQLT option to a DB instance:

1. Create a new option group, or copy or modify an existing option group.

2. Add the SQLT option to the option group.

3. Associate the option group with the DB instance.

SQLT 4108

Amazon Relational Database Service User Guide

After you add the SQLT option, as soon as the option group is active, SQLT is active.

To add the SQLT option to a DB instance

1. Determine the option group that you want to use. You can create a new option group or use
an existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine, choose the Oracle edition that you want to use. The SQLT option is supported
on all editions.

b. For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the SQLT option to the option group. For more information about adding options, see
Adding an option to an option group.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

4. (Optional) Verify the SQLT installation on each DB instance with the SQLT option.

a. Use a SQL client to connect to the DB instance as the master user.

For information about connecting to an Oracle DB instance using a SQL client, see
Connecting to your Oracle DB instance.

b. Run the following query:

SELECT sqltxplain.sqlt$a.get_param('tool_version') sqlt_version FROM DUAL;

The query returns the current version of the SQLT option on Amazon RDS. 12.1.160429
is an example of a version of SQLT that is available on Amazon RDS.

SQLT 4109

Amazon Relational Database Service User Guide

5. Change the passwords of the users that are created by the SQLT option.

a. Use a SQL client to connect to the DB instance as the master user.

b. Run the following SQL statement to change the password for the SQLTXADMIN user:

ALTER USER SQLTXADMIN IDENTIFIED BY new_password ACCOUNT UNLOCK;

Note

Specify a password other than the prompt shown here as a security best practice.

c. Run the following SQL statement to change the password for the SQLTXPLAIN user:

ALTER USER SQLTXPLAIN IDENTIFIED BY new_password ACCOUNT UNLOCK;

Note

Specify a password other than the prompt shown here as a security best practice.

Note

Upgrading SQLT requires uninstalling an older version of SQLT and then installing the
new version. So, all SQLT metadata can be lost when you upgrade SQLT. A major version
upgrade of a database also uninstalls and re-installs SQLT. An example of a major version
upgrade is an upgrade from Oracle Database 19c to Oracle Database 21c.

Using SQLT

SQLT works with the Oracle SQL*Plus utility.

SQLT 4110

Amazon Relational Database Service User Guide

To use SQLT

1. Download the SQLT .zip file from Document 215187.1 on the My Oracle Support site.

Note

You can't download SQLT 12.1.160429 from the My Oracle Support site. Oracle has
deprecated this older version.

2. Unzip the SQLT .zip file.

3. From a command prompt, change to the sqlt/run directory on your file system.

4. From the command prompt, open SQL*Plus, and connect to the DB instance as the master
user.

For information about connecting to a DB instance using SQL*Plus, see Connecting to your
Oracle DB instance.

5. Get the SQL ID of a SQL statement:

SELECT SQL_ID FROM V$SQL WHERE SQL_TEXT='sql_statement';

Your output is similar to the following:

SQL_ID

chvsmttqjzjkn

6. Analyze a SQL statement with SQLT:

START sqltxtract.sql sql_id sqltxplain_user_password

For example, for the SQL ID chvsmttqjzjkn, enter the following:

SQLT 4111

https://support.oracle.com/epmos/faces/DocumentDisplay?id=215187.1

Amazon Relational Database Service User Guide

START sqltxtract.sql chvsmttqjzjkn sqltxplain_user_password

SQLT generates the HTML report and related resources as a .zip file in the directory from
which the SQLT command was run.

7. (Optional) To enable application users to diagnose SQL statements with SQLT, grant
SQLT_USER_ROLE to each application user with the following statement:

GRANT SQLT_USER_ROLE TO application_user_name;

Note

Oracle does not recommend running SQLT with the SYS user or with users that have
the DBA role. It is a best practice to run SQLT diagnostics using the application user's
account, by granting SQLT_USER_ROLE to the application user.

Upgrading the SQLT option

With Amazon RDS for Oracle, you can upgrade the SQLT option from your existing version to a
higher version. To upgrade the SQLT option, complete steps 1–3 in Using SQLT for the new version
of SQLT. Also, if you granted privileges for the previous version of SQLT in step 7 of that section,
grant the privileges again for the new SQLT version.

Upgrading the SQLT option results in the loss of the older SQLT version's metadata. The older
SQLT version's schema and related objects are dropped, and the newer version of SQLT is installed.
For more information about the changes in the latest SQLT version, see Document 1614201.1 on
the My Oracle Support site.

Note

Version downgrades are not supported.

SQLT 4112

https://support.oracle.com/epmos/faces/DocumentDisplay?parent=DOCUMENT&sourceId=215187.1&id=1614201.1

Amazon Relational Database Service User Guide

Modifying SQLT settings

After you enable SQLT, you can modify the LICENSE_PACK and VERSION settings for the option.

For more information about how to modify option settings, see Modifying an option setting. For
more information about each setting, see SQLT option settings.

Removing the SQLT option

You can remove SQLT from a DB instance.

To remove SQLT from a DB instance, do one of the following:

• To remove SQLT from multiple DB instances, remove the SQLT option from the option group to
which the DB instances belong. This change affects all DB instances that use the option group.
For more information, see Removing an option from an option group.

• To remove SQLT from a single DB instance, modify the DB instance and specify a different option
group that doesn't include the SQLT option. You can specify the default (empty) option group
or a different custom option group. For more information, see Modifying an Amazon RDS DB
instance.

SQLT 4113

Amazon Relational Database Service User Guide

Oracle Statspack

The Oracle Statspack option installs and enables the Oracle Statspack performance statistics
feature. Oracle Statspack is a collection of SQL, PL/SQL, and SQL*Plus scripts that collect, store,
and display performance data. For information about using Oracle Statspack, see Oracle Statspack
in the Oracle documentation.

Note

Oracle Statspack is no longer supported by Oracle and has been replaced by the more
advanced Automatic Workload Repository (AWR). AWR is available only for Oracle
Enterprise Edition customers who have purchased the Diagnostics Pack. You can use Oracle
Statspack with any Oracle DB engine on Amazon RDS. You can't run Oracle Statspack on
Amazon RDS read replicas.

Setting up Oracle Statspack

To run Statspack scripts, you must add the Statspack option.

To set up Oracle Statspack

1. In a SQL client, log in to the Oracle DB with an administrative account.

2. Do either of the following actions, depending on whether Statspack is installed:

• If Statspack is installed, and the PERFSTAT account is associated with Statspack, skip to Step
4.

• If Statspack is not installed, and the PERFSTAT account exists, drop the account as follows:

DROP USER PERFSTAT CASCADE;

Otherwise, attempting to add the Statspack option generates an error and RDS-
Event-0058.

3. Add the Statspack option to an option group. See Adding an option to an option group.

Amazon RDS automatically installs the Statspack scripts on the DB instance and then sets up
the PERFSTAT account.

Statspack 4114

http://docs.oracle.com/cd/E13160_01/wli/docs10gr3/dbtuning/statsApdx.html

Amazon Relational Database Service User Guide

4. Reset the password using the following SQL statement, replacing pwd with your new
password:

ALTER USER PERFSTAT IDENTIFIED BY pwd ACCOUNT UNLOCK;

You can log in using the PERFSTAT user account and run the Statspack scripts.

5. Grant the CREATE JOB privilege to the PERFSTAT account using the following statement:

GRANT CREATE JOB TO PERFSTAT;

6. Ensure that idle wait events in the PERFSTAT.STATS$IDLE_EVENT table are populated.

Because of Oracle Bug 28523746, the idle wait events in PERFSTAT.STATS$IDLE_EVENT may
not be populated. To ensure all idle events are available, run the following statement:

INSERT INTO PERFSTAT.STATS$IDLE_EVENT (EVENT)
SELECT NAME FROM V$EVENT_NAME WHERE WAIT_CLASS='Idle'
MINUS
SELECT EVENT FROM PERFSTAT.STATS$IDLE_EVENT;
COMMIT;

Generating Statspack reports

A Statspack report compares two snapshots.

To generate Statspack reports

1. In a SQL client, log in to the Oracle DB with the PERFSTAT account.

2. Create a snapshot using either of the following techniques:

• Create a Statspack snapshot manually.

• Create a job that takes a Statspack snapshot after a given time interval. For example, the
following job creates a Statspack snapshot every hour:

VARIABLE jn NUMBER;
exec dbms_job.submit(:jn, 'statspack.snap;',SYSDATE,'TRUNC(SYSDATE
+1/24,''HH24'')');
COMMIT;

Statspack 4115

Amazon Relational Database Service User Guide

3. View the snapshots using the following query:

SELECT SNAP_ID, SNAP_TIME FROM STATS$SNAPSHOT ORDER BY 1;

4. Run the Amazon RDS procedure rdsadmin.rds_run_spreport, replacing begin_snap and
end_snap with the snapshot IDs:

exec rdsadmin.rds_run_spreport(begin_snap,end_snap);

For example, the following command creates a report based on the interval between
Statspack snapshots 1 and 2:

exec rdsadmin.rds_run_spreport(1,2);

The file name of the Statspack report includes the number of the two snapshots. For
example, a report file created using Statspack snapshots 1 and 2 would be named
ORCL_spreport_1_2.lst.

5. Monitor the output for errors.

Oracle Statspack performs checks before running the report. Therefore, you could also see
error messages in the command output. For example, you might try to generate a report based
on an invalid range, where the beginning Statspack snapshot value is larger than the ending
value. In this case, the output shows the error message, but the DB engine does not generate
an error file.

exec rdsadmin.rds_run_spreport(2,1);
*
ERROR at line 1:
ORA-20000: Invalid snapshot IDs. Find valid ones in perfstat.stats$snapshot.

If you use an invalid number a Statspack snapshot, the output shows an error. For example, if
you try to generate a report for snapshots 1 and 50, but snapshot 50 doesn't exist, the output
shows an error.

exec rdsadmin.rds_run_spreport(1,50);
*
ERROR at line 1:
ORA-20000: Could not find both snapshot IDs

Statspack 4116

Amazon Relational Database Service User Guide

6. (Optional)

To retrieve the report, call the trace file procedures, as explained in Working with Oracle trace
files.

Alternatively, download the Statspack report from the RDS console. Go to the Log section
of the DB instance details and choose Download. The following example shows trace/
ORCL_spreport_1_2.lst

If an error occurs while generating a report, the DB engine uses the same naming conventions
as for a report but with an extension of .err. For example, if an error occurred while
creating a report using Statspack snapshots 1 and 7, the report file would be named
ORCL_spreport_1_7.err. You can download the error report using the same techniques as
for a standard Snapshot report.

Removing Statspack snapshots

To remove a range of Oracle Statspack snapshots, use the following command:

exec statspack.purge(begin snap, end snap);

Statspack 4117

Amazon Relational Database Service User Guide

Oracle time zone

To change the system time zone used by your Oracle DB instance, use the time zone option.
For example, you might change the time zone of a DB instance to be compatible with an on-
premises environment, or a legacy application. The time zone option changes the time zone at the
host level. Changing the time zone impacts all date columns and values, including SYSDATE and
SYSTIMESTAMP.

The time zone option differs from the rdsadmin_util.alter_db_time_zone command. The
alter_db_time_zone command changes the time zone only for certain data types. The time
zone option changes the time zone for all date columns and values. For more information about
alter_db_time_zone, see Setting the database time zone. For more information about upgrade
considerations, see Time zone considerations.

Restrictions for setting the time zone

The time zone option is a permanent and persistent option. Therefore, you can't do the following:

• Remove the option from an option group after you add the time zone option.

• Remove the option group from a DB instance after you add the group.

• Modify the time zone setting of the option to a different time zone.

Recommendations for setting the time zone

Before you add the time zone option to your production database, we strongly recommend that
you do the following:

• Take a snapshot of your DB instance. If you accidentally set the time zone incorrectly, you must
recover your DB instance to its previous time zone setting. For more information, see Creating a
DB snapshot for a Single-AZ DB instance for Amazon RDS.

• Add the time zone option to a test DB instance. Adding the time zone option can cause problems
with tables that use the system date to add dates or times. We recommend that you analyze your
data and applications on the test instance. This way you can assess the impact of changing the
time zone on your production instance.

If your DB instance uses the default option group, then follow these steps:

1. Take a snapshot of your DB instance.

Time zone 4118

Amazon Relational Database Service User Guide

2. Add the time zone option to your DB instance.

If your DB instance currently uses a nondefault option group, then follow these steps:

1. Take a snapshot of your DB instance.

2. Create a new option group.

3. Add the time zone option to it, along with all other options that are currently associated with
the existing option group.

This prevents the existing options from being uninstalled while enabling the time zone option.

4. Add the option group to your DB instance.

Time zone option settings

Amazon RDS supports the following settings for the time zone option.

Option setting Valid values Description

TIME_ZONE One of the available time
zones. For the full list, see
Available time zones.

The new time zone for your
DB instance.

Adding the time zone option

Complete the following steps to add the time zone option to your DB instance:

1. (Recommended) Take a snapshot of your DB instance.

2. Do one of the following tasks:

• Create a new option group from scratch. For more information, see Creating an option group.

• Copy an existing option group using the AWS CLI or API. For more information, see Copying an
option group.

• Reuse an existing non-default option group. A best practice is to use an option group that isn't
currently associated with any DB instances or snapshots.

3. Add the new option to the option group from the preceding step.

Time zone 4119

Amazon Relational Database Service User Guide

4. If the option group that is currently associated with your DB instance has options enabled, add
these options to your new option group. This strategy prevents the existing options from being
uninstalled while enabling the new option.

5. Add the new option group to your DB instance.

When you add the time zone option, a brief outage occurs while your DB instance is automatically
restarted.

Console

To add the time zone option to an option group and associate it with a DB instance

1. In the RDS console, choose Option groups.

2. Choose the name of the option group to which you want to add the option.

3. Choose Add option.

4. For Option name, choose Timezone, and then configure the option settings.

5. Associate the option group with a new or existing DB instance:

• For a new DB instance, apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, apply the option group by modifying the instance and attaching
the new option group. When you add the new option to an existing DB instance, a brief
outage occurs while your DB instance is automatically restarted. For more information, see
Modifying an Amazon RDS DB instance.

AWS CLI

The following example uses the AWS CLI add-option-to-option-group command to add the
Timezone option and the TIME_ZONE option setting to an option group called myoptiongroup.
The time zone is set to Africa/Cairo.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name "myoptiongroup" \
 --options "OptionName=Timezone,OptionSettings=[{Name=TIME_ZONE,Value=Africa/
Cairo}]" \

Time zone 4120

https://docs.aws.amazon.com/cli/latest/reference/rds/add-option-to-option-group.html

Amazon Relational Database Service User Guide

 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name "myoptiongroup" ^
 --options "OptionName=Timezone,OptionSettings=[{Name=TIME_ZONE,Value=Africa/
Cairo}]" ^
 --apply-immediately

Modifying time zone settings

The time zone option is a permanent and persistent option. You can't remove the option from an
option group after you add it. You can't remove the option group from a DB instance after you
add it. You can't modify the time zone setting of the option to a different time zone. If you set the
time zone incorrectly, restore a snapshot of your DB instance from before you added the time zone
option.

Removing the time zone option

The time zone option is a permanent and persistent option. You can't remove the option from an
option group after you add it. You can't remove the option group from a DB instance after you add
it. To remove the time zone option, restore a snapshot of your DB instance from before you added
the time zone option.

Available time zones

You can use the following values for the time zone option.

Zone Time zone

Africa Africa/Cairo, Africa/Casablanca, Africa/Harare, Africa/Lagos, Africa/Luanda,
Africa/Monrovia, Africa/Nairobi, Africa/Tripoli, Africa/Windhoek

America America/Araguaina, America/Argentina/Buenos_Aires, America/Asuncion,
America/Bogota, America/Caracas, America/Chicago, America/Chihuahua,
America/Cuiaba, America/Denver, America/Detroit, America/Fortaleza,
America/Godthab, America/Guatemala, America/Halifax, America/Lima,
America/Los_Angeles, America/Manaus, America/Matamoros, America/M

Time zone 4121

Amazon Relational Database Service User Guide

Zone Time zone

exico_City, America/Monterrey, America/Montevideo, America/New_York,
America/Phoenix, America/Santiago, America/Sao_Paulo, America/Tijuana,
America/Toronto

Asia Asia/Amman, Asia/Ashgabat, Asia/Baghdad, Asia/Baku, Asia/Bangkok, Asia/
Beirut, Asia/Calcutta, Asia/Damascus, Asia/Dhaka, Asia/Hong_Kong, Asia/
Irkutsk, Asia/Jakarta, Asia/Jerusalem, Asia/Kabul, Asia/Karachi, Asia/Kath
mandu, Asia/Kolkata, Asia/Krasnoyarsk, Asia/Magadan, Asia/Manila, Asia/
Muscat, Asia/Novosibirsk, Asia/Rangoon, Asia/Riyadh, Asia/Seoul, Asia/
Shanghai, Asia/Singapore, Asia/Taipei, Asia/Tehran, Asia/Tokyo, Asia/Ulaa
nbaatar, Asia/Vladivostok, Asia/Yakutsk, Asia/Yerevan

Atlantic Atlantic/Azores, Atlantic/Cape_Verde

Australia Australia/Adelaide, Australia/Brisbane, Australia/Darwin, Australia/Eucla,
Australia/Hobart, Australia/Lord_Howe, Australia/Perth, Australia/Sydney

Brazil Brazil/DeNoronha, Brazil/East

Canada Canada/Newfoundland, Canada/Saskatchewan

Etc Etc/GMT-3

Europe Europe/Amsterdam, Europe/Athens, Europe/Berlin, Europe/Dublin, Europe/
Helsinki, Europe/Kaliningrad, Europe/London, Europe/Madrid, Europe/Mo
scow, Europe/Paris, Europe/Prague, Europe/Rome, Europe/Sarajevo

Pacific Pacific/Apia, Pacific/Auckland, Pacific/Chatham, Pacific/Fiji, Pacific/Guam,
Pacific/Honolulu, Pacific/Kiritimati, Pacific/Marquesas, Pacific/Samoa,
Pacific/Tongatapu, Pacific/Wake

US US/Alaska, US/Central, US/East-Indiana, US/Eastern, US/Pacific

UTC UTC

Time zone 4122

Amazon Relational Database Service User Guide

Oracle time zone file autoupgrade

With the TIMEZONE_FILE_AUTOUPGRADE option, you can upgrade the current time zone file to
the latest version on your RDS for Oracle DB instance.

Topics

• Overview of Oracle time zone files

• Strategies for updating your time zone file

• Downtime during the time zone file update

• Preparing to update the time zone file

• Adding the time zone file autoupgrade option

• Checking your data after the update of the time zone file

Overview of Oracle time zone files

An Oracle Database time zone file stores the following information:

• Offset from Coordinated Universal Time (UTC)

• Transition times for Daylight Saving Time (DST)

• Abbreviations for standard time and DST

Oracle Database supplies multiple versions of time zone files. When you create an Oracle database
in an on-premises environment, you choose the time zone file version. For more information , see
Choosing a Time Zone File in the Oracle Database Globalization Support Guide.

If the rules change for DST, Oracle publishes new time zone files. Oracle releases these new time
zone files independently of the schedule for quarterly Release Updates (RUs) and Release Update
Revisions (RURs). The time zone files reside on the database host in the directory $ORACLE_HOME/
oracore/zoneinfo/. The time zone file names use the format DSTvversion, as in DSTv35.

How the time zone file affects data transfer

In Oracle Database, the TIMESTAMP WITH TIME ZONE data type stores time stamp and time zone
data. Data with the TIMESTAMP WITH TIME ZONE data type uses the rules in the associated time
zone file version. Thus, existing TIMESTAMP WITH TIME ZONE data is affected when you update
the time zone file.

Time zone file autoupgrade 4123

https://docs.oracle.com/en/database/oracle/oracle-database/19/nlspg/datetime-data-types-and-time-zone-support.html#GUID-805AB986-DE12-4FEA-AF56-5AABCD2132DF

Amazon Relational Database Service User Guide

Problems can occur when you transfer data between databases that use different versions of the
time zone file. For example, if you import data from a source database with a higher time zone file
version than the target database, the database issues the ORA-39405 error. Previously, you had to
work around this error by using either of the following techniques:

• Create an RDS for Oracle DB instance with the desired time zone file, export data from your
source database, and then import it into the new database.

• Use AWS DMS or logical replication to migrate your data.

Automatic updates using the TIMEZONE_FILE_AUTOUPGRADE option

When the option group attached to your RDS for Oracle DB instance includes the
TIMEZONE_FILE_AUTOUPGRADE option, RDS updates your time zone files automatically.
By ensuring that your Oracle databases use the same time zone file version, you avoid time-
consuming manual techniques when you move data between different environments. The
TIMEZONE_FILE_AUTOUPGRADE option is supported for both container databases (CDBs) and
non-CDBs.

When you add the TIMEZONE_FILE_AUTOUPGRADE option to your option group, you can choose
whether to add the option immediately or during the maintenance window. After your DB instance
applies the new option, RDS checks whether it can install a newer DSTvversion file. The target
DSTvversion depends on the following:

• The minor engine version that your DB instance is currently running

• The minor engine version to which you want to upgrade your DB instance

For example, your current time zone file version might be DSTv33. When RDS applies the update to
your option group, it might determine that DSTv34 is currently available on your DB instance file
system. RDS will then update your time zone file to DSTv34 automatically.

To find the available DST versions in the supported RDS release updates, look at the patches in
Release notes for Amazon Relational Database Service (Amazon RDS) for Oracle. For example,
version 19.0.0.0.ru-2022-10.rur-2022-10.r1 lists patch 34533061: RDBMS - DSTV39 UPDATE -
TZDATA2022C.

Time zone file autoupgrade 4124

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html#oracle-version-RU-RUR.19.0.0.0.ru-2022-10.rur-2022-10.r1

Amazon Relational Database Service User Guide

Strategies for updating your time zone file

Upgrading your DB engine and adding the TIMEZONE_FILE_AUTOUPGRADE option to an option
group are separate operations. Adding the TIMEZONE_FILE_AUTOUPGRADE option initiates the
update of your time zone file if a more current one is available. You run the following commands
(only relevant options are shown) either immediately or at the next maintenance window:

• Upgrade your DB engine only using the following RDS CLI command:

modify-db-instance --engine-version name ...

• Add the TIMEZONE_FILE_AUTOUPGRADE option only using the following CLI command:

add-option-to-option-group --option-group-name name --options
 OptionName=TIMEZONE_FILE_AUTOUPGRADE ...

• Upgrade your DB engine and add a new option group to your instance using the following CLI
command:

modify-db-instance --engine-version name --option-group-name name ...

Your update strategy depends on whether you want to upgrade your database and time zone file
together or perform just one of these operations. Keep in mind that if you update your option
group and then upgrade your DB engine in separate API operations, it's possible for a time zone file
update to be currently in progress when you upgrade your DB engine.

The examples in this section assume the following:

• You have not yet added TIMEZONE_FILE_AUTOUPGRADE to the option group currently
associated with your DB instance.

• Your DB instance uses database version 19.0.0.0.ru-2019-07.rur-2019-07.r1 and time zone file
DSTv33.

• Your DB instance file system includes file DSTv34.

• Release update 19.0.0.0.ru-2022-10.rur-2022-10.r1 includes DSTv35.

To update your time zone file, you can use the following strategies.

Topics

Time zone file autoupgrade 4125

Amazon Relational Database Service User Guide

• Update the time zone file without upgrading the engine

• Upgrade the time zone file and DB engine version

• Upgrade your DB engine version without updating the time zone file

Update the time zone file without upgrading the engine

In this scenario, your database is using DSTv33, but DSTv34 is available on your DB instance file
system. You want to update the time zone file used by your DB instance from DSTv33 to DSTv34,
but you don't want to upgrade your engine to a new minor version, which includes DSTv35.

In an add-option-to-option-group command, add TIMEZONE_FILE_AUTOUPGRADE to the
option group used by your DB instance. Specify whether to add the option immediately or defer it
to the maintenance window. After applying the TIMEZONE_FILE_AUTOUPGRADE option, RDS does
the following:

1. Checks for a new DST version.

2. Determines that DSTv34 is available on the file system.

3. Updates the time zone file immediately.

Upgrade the time zone file and DB engine version

In this scenario, your database is using DSTv33, but DSTv34 is available on your DB instance file
system. You want to upgrade your DB engine to minor version 19.0.0.0.ru-2022-10.rur-2022-10.r1,
which includes DSTv35, and update your time zone file to DSTv35 during the engine upgrade.
Thus, your goal is to skip DSTv34 and update your time zone files directly to DSTv35.

To upgrade the engine and time zone file together, run modify-db-instance with the --
option-group-name and --engine-version options. You can run the command immediately
or defer it to maintenance window. In --option-group-name, specify an option group that
includes the TIMEZONE_FILE_AUTOUPGRADE option. For example:

aws rds modify-db-instance
 --db-instance-identifier my-instance \
 --engine-version new-version \
 ----option-group-name og-with-timezone-file-autoupgrade \
 --apply-immediately

Time zone file autoupgrade 4126

Amazon Relational Database Service User Guide

RDS begins upgrading your engine to 19.0.0.0.ru-2022-10.rur-2022-10.r1. After applying the
TIMEZONE_FILE_AUTOUPGRADE option, RDS checks for a new DST version, sees that DSTv35 is
available in 19.0.0.0.ru-2022-10.rur-2022-10.r1, and immediately starts the update to DSTv35.

To upgrade your engine immediately and then upgrade your a timezone file, perform the
operations in sequence:

1. Upgrade your DB engine only using the following CLI command:

aws rds modify-db-instance \
 --db-instance-identifier my-instance \
 --engine-version new-version \
 --apply-immediately

2. Add the TIMEZONE_FILE_AUTOUPGRADE option to the option group attached to your instance
using the following CLI command:

aws rds add-option-to-option-group \
 --option-group-name og-in-use-by-your-instance \
 --options OptionName=TIMEZONE_FILE_AUTOUPGRADE \
 --apply-immediately

Upgrade your DB engine version without updating the time zone file

In this scenario, your database is using DSTv33, but DSTv34 is available on your DB instance file
system. You want to upgrade your DB engine to version 19.0.0.0.ru-2022-10.rur-2022-10.r1, which
includes DSTv35, but retain time zone file DSTv33. You might choose this strategy for the following
reasons:

• Your data doesn't use the TIMESTAMP WITH TIME ZONE data type.

• Your data uses the TIMESTAMP WITH TIME ZONE data type, but your data is not affected by
the time zone changes.

• You want to postpone updating the time zone file because you can't tolerate the extra
downtime.

Your strategy depends on which of the following possibilities are true:

Time zone file autoupgrade 4127

Amazon Relational Database Service User Guide

• Your DB instance isn't associated with an option group that includes
TIMEZONE_FILE_AUTOUPGRADE. In your modify-db-instance command, don't specify a new
option group so that RDS doesn't update your time zone file.

• Your DB instance is currently associated with an option group that includes
TIMEZONE_FILE_AUTOUPGRADE. Within a single modify-db-instance command, associate
your DB instance with an option group that doesn't include TIMEZONE_FILE_AUTOUPGRADE and
upgrade your DB engine to 19.0.0.0.ru-2022-10.rur-2022-10.r1.

Downtime during the time zone file update

When RDS updates your time zone file, existing data that uses TIMESTAMP WITH TIME ZONE
might change. In this case, your primary consideration is downtime.

Warning

If you add the TIMEZONE_FILE_AUTOUPGRADE option, your engine upgrade might have
prolonged downtime. Updating time zone data for a large database might take hours or
even days.

The length of the time zone file update depends on factors such as the following:

• The amount of TIMESTAMP WITH TIME ZONE data in your database

• The DB instance configuration

• The DB instance class

• The storage configuration

• The database configuration

• The database parameter settings

Additional downtime can occur when you do the following:

• Add the option to the option group when the DB instance uses an outdated time zone file

• Upgrade the Oracle database engine when the new engine version contains a new version of the
time zone file

Time zone file autoupgrade 4128

Amazon Relational Database Service User Guide

Note

During the time zone file update, RDS for Oracle calls PURGE DBA_RECYCLEBIN.

Preparing to update the time zone file

A time zone file upgrade has two separate phases: prepare and upgrade. While not required, we
strongly recommend that you perform the prepare step. In this step, you find out which data will
be affected by running the PL/SQL procedure DBMS_DST.FIND_AFFECTED_TABLES. For more
information about the prepare window, see Upgrading the Time Zone File and Timestamp with
Time Zone Data in the Oracle Database documentation.

To prepare to update the time zone file

1. Connect to your Oracle database using a SQL client.

2. Determine the current timezone file version used.

SELECT * FROM V$TIMEZONE_FILE;

3. Determine the latest timezone file version available on your DB instance.

SELECT DBMS_DST.GET_LATEST_TIMEZONE_VERSION FROM DUAL;

4. Determine the total size of tables that have columns of type TIMESTAMP WITH LOCAL TIME
ZONE or TIMESTAMP WITH TIME ZONE.

SELECT SUM(BYTES)/1024/1024/1024 "Total_size_w_TSTZ_columns_GB"
FROM DBA_SEGMENTS
WHERE SEGMENT_TYPE LIKE 'TABLE%'
AND (OWNER, SEGMENT_NAME) IN
 (SELECT OWNER, TABLE_NAME
 FROM DBA_TAB_COLUMNS
 WHERE DATA_TYPE LIKE 'TIMESTAMP%TIME ZONE');

5. Determine the names and sizes of segments that have columns of type TIMESTAMP WITH
LOCAL TIME ZONE or TIMESTAMP WITH TIME ZONE.

SELECT OWNER, SEGMENT_NAME, SUM(BYTES)/1024/1024/1024
 "SEGMENT_SIZE_W_TSTZ_COLUMNS_GB"

Time zone file autoupgrade 4129

https://docs.oracle.com/en/database/oracle/oracle-database/19/nlspg/datetime-data-types-and-time-zone-support.html#GUID-B0ACDB2E-4B49-4EB4-B4CC-9260DAE1567A
https://docs.oracle.com/en/database/oracle/oracle-database/19/nlspg/datetime-data-types-and-time-zone-support.html#GUID-B0ACDB2E-4B49-4EB4-B4CC-9260DAE1567A

Amazon Relational Database Service User Guide

FROM DBA_SEGMENTS
WHERE SEGMENT_TYPE LIKE 'TABLE%'
AND (OWNER, SEGMENT_NAME) IN
 (SELECT OWNER, TABLE_NAME
 FROM DBA_TAB_COLUMNS
 WHERE DATA_TYPE LIKE 'TIMESTAMP%TIME ZONE')
GROUP BY OWNER, SEGMENT_NAME;

6. Run the prepare step.

• The procedure DBMS_DST.CREATE_AFFECTED_TABLE creates a table to store any affected
data. You pass the name of this table to the DBMS_DST.FIND_AFFECTED_TABLES
procedure. For more information, see CREATE_AFFECTED_TABLE Procedure in the Oracle
Database documentation.

• This procedure CREATE_ERROR_TABLE creates a table to log errors. For more information,
see CREATE_ERROR_TABLE Procedure in the Oracle Database documentation.

The following example creates the affected data and error tables, and finds all affected tables.

EXEC DBMS_DST.CREATE_ERROR_TABLE('my_error_table')
EXEC DBMS_DST.CREATE_AFFECTED_TABLE('my_affected_table')

EXEC DBMS_DST.BEGIN_PREPARE(new_version);
EXEC DBMS_DST.FIND_AFFECTED_TABLES('my_affected_table', TRUE, 'my_error_table');
EXEC DBMS_DST.END_PREPARE;

SELECT * FROM my_affected_table;
SELECT * FROM my_error_table;

7. Query the affected and error tables.

SELECT * FROM my_affected_table;
SELECT * FROM my_error_table;

Adding the time zone file autoupgrade option

When you add the option to an option group, the option group is in one of the following states:

Time zone file autoupgrade 4130

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_DST.html#GUID-C53BAABA-914A-404C-9CD5-823257BE0B00
https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_DST.html#GUID-6A7EA024-B02D-4486-B1D6-EF6ABF5DE507

Amazon Relational Database Service User Guide

• An existing option group is currently attached to at least one DB instance. When you add the
option, all DB instances that use this option group automatically restart. This causes a brief
outage.

• An existing option group is not attached to any DB instance. You plan to add the option and then
associate the existing option group with existing DB instances or with a new DB instance.

• You create a new option group and add the option. You plan to associate the new option group
with existing DB instances or with a new DB instance.

Console

To add the time zone file autoupgrade option to a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Option groups.

3. Determine the option group you want to use. You can create a new option group or use an
existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine choose the Oracle Database edition for your DB instance.

b. For Major engine version choose the version of your DB instance.

For more information, see Creating an option group.

4. Choose the option group that you want to modify, and then choose Add option.

5. In the Add option window, do the following:

a. Choose TIMEZONE_FILE_AUTOUPGRADE.

b. To enable the option on all associated DB instances as soon as you add it, for Apply
Immediately, choose Yes. If you choose No (the default), the option is enabled for each
associated DB instance during its next maintenance window.

6. When the settings are as you want them, choose Add option.

Time zone file autoupgrade 4131

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

The following example uses the AWS CLI add-option-to-option-group command to add the
TIMEZONE_FILE_AUTOUPGRADE option to an option group called myoptiongroup.

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name "myoptiongroup" \
 --options "OptionName=TIMEZONE_FILE_AUTOUPGRADE" \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name "myoptiongroup" ^
 --options "OptionName=TIMEZONE_FILE_AUTOUPGRADE" ^
 --apply-immediately

Checking your data after the update of the time zone file

We recommend that you check your data after you update the time zone file. During the prepare
step, RDS for Oracle automatically creates the following tables:

• rdsadmin.rds_dst_affected_tables – Lists the tables that contain data affected by the
update

• rdsadmin.rds_dst_error_table – Lists the errors generated during the update

These tables are independent of any tables that you create in the prepare window. To see the
results of the update, query the tables as follows.

SELECT * FROM rdsadmin.rds_dst_affected_tables;
SELECT * FROM rdsadmin.rds_dst_error_table;

For more information about the schema for the affected data and error tables, see
FIND_AFFECTED_TABLES Procedure in the Oracle documentation.

Time zone file autoupgrade 4132

https://docs.aws.amazon.com/cli/latest/reference/rds/add-option-to-option-group.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_DST.html#GUID-1F977505-671C-4D5B-8570-86956F136199

Amazon Relational Database Service User Guide

Oracle Transparent Data Encryption

Amazon RDS supports Oracle Transparent Data Encryption (TDE), a feature of the Oracle Advanced
Security option available in Oracle Enterprise Edition. This feature automatically encrypts data
before it is written to storage and automatically decrypts data when the data is read from storage.
This option is only supported for the Bring Your Own License (BYOL) model.

TDE is useful in scenarios where you need to encrypt sensitive data in case data files and backups
are obtained by a third party. TDE is also useful when you need to comply with security-related
regulations.

A detailed explanation about TDE in Oracle Database is beyond the scope of this guide. For
information, see the following Oracle Database resources:

• Introduction to Transparent Data Encryption in the Oracle Database documentation

• Oracle advanced security in the Oracle Database documentation

• Oracle advanced security Transparent Data Encryption best practices, which is an Oracle
whitepaper

For more information about using TDE with RDS for Oracle, see the following blogs:

• Oracle Database Encryption Options on Amazon RDS

• Migrate a cross-account TDE-enabled Amazon RDS for Oracle DB instance with reduced
downtime using AWS DMS

TDE encryption modes

Oracle Transparent Data Encryption supports two encryption modes: TDE tablespace encryption
and TDE column encryption. TDE tablespace encryption is used to encrypt entire application tables.
TDE column encryption is used to encrypt individual data elements that contain sensitive data. You
can also apply a hybrid encryption solution that uses both TDE tablespace and column encryption.

Note

Amazon RDS manages the Oracle Wallet and TDE master key for the DB instance. You do
not need to set the encryption key using the command ALTER SYSTEM set encryption
key.

Transparent Data Encryption (TDE) 4133

https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/introduction-to-transparent-data-encryption.html#GUID-62AA9447-FDCD-4A4C-B563-32DE04D55952
https://www.oracle.com/security/database-security/
https://www.oracle.com/br/a/tech/docs/technical-resources/twp-transparent-data-encryption-bestpractices.pdf
https://aws.amazon.com/blogs/apn/oracle-database-encryption-options-on-amazon-rds/
https://aws.amazon.com/blogs/database/migrate-a-cross-account-tde-enabled-amazon-rds-for-oracle-db-instance-with-reduced-downtime-using-aws-dms/
https://aws.amazon.com/blogs/database/migrate-a-cross-account-tde-enabled-amazon-rds-for-oracle-db-instance-with-reduced-downtime-using-aws-dms/

Amazon Relational Database Service User Guide

After you enable the TDE option, you can check the status of the Oracle Wallet by using the
following command:

SELECT * FROM v$encryption_wallet;

To create an encrypted tablespace, use the following command:

CREATE TABLESPACE encrypt_ts ENCRYPTION DEFAULT STORAGE (ENCRYPT);

To specify the encryption algorithm, use the following command:

CREATE TABLESPACE encrypt_ts ENCRYPTION USING 'AES256' DEFAULT STORAGE (ENCRYPT);

The previous statements for encrypting a tablespace are the same as you would use on an on-
premises Oracle database.

Restrictions for the TDE option

The TDE option is permanent and persistent. After you associate your DB instance with an option
group that has the TDE option enabled, you can't do the following actions:

• Disable the TDE option in the currently associated option group.

• Associate your DB instance with a different option group that doesn't include the TDE option.

• Share a DB snapshot that uses the TDE option. For more information about sharing DB
snapshots, see Sharing a DB snapshot for Amazon RDS.

For more information about persistent and permanent options, see Persistent and permanent
options.

Determining whether your DB instance is using TDE

You might want to determine whether your DB instance is associated with an option group
that has the TDE option enabled. To view the option group that a DB instance is associated
with, use the RDS console, the describe-db-instance AWS CLI command, or the API operation
DescribeDBInstances.

Adding the TDE option

To add the TDE option to your DB instance, complete the following steps:

Transparent Data Encryption (TDE) 4134

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

1. (Recommended) Take a snapshot of your DB instance.

2. Do one of the following tasks:

• Create a new option group from scratch. For more information, see Creating an option group.

• Copy an existing option group using the AWS CLI or API. For more information, see Copying an
option group.

• Reuse an existing non-default option group. A best practice is to use an option group that isn't
currently associated with any DB instances or snapshots.

3. Add the new option to the option group from the preceding step.

4. If the option group that is currently associated with your DB instance has options enabled, add
these options to your new option group. This strategy prevents the existing options from being
uninstalled while enabling the new option.

5. Add the new option group to your DB instance.

Console

To add the TDE option to an option group and associate it with your DB instance

1. In the RDS console, choose Option groups.

2. Choose the name of the option group to which you want to add the option.

3. Choose Add option.

4. For Option name, choose TDE, and then configure the option settings.

5. Choose Add option.

Important

If you add the TDE option to an option group that is currently attached to one or
more DB instances, a brief outage occurs while all the DB instances are automatically
restarted.

For more information about adding options, see Adding an option to an option group.

6. Associate the option group with a new or existing DB instance:

• For a new DB instance, apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

Transparent Data Encryption (TDE) 4135

Amazon Relational Database Service User Guide

• For an existing DB instance, apply the option group by modifying the instance and attaching
the new option group. The DB instance doesn't restart as part of this operation. For more
information, see Modifying an Amazon RDS DB instance.

AWS CLI

In the following example, you use the AWS CLI add-option-to-option-group command to add the
TDE option to an option group called myoptiongroup. For more information, see Getting started:
Flink 1.13.2 .

For Linux, macOS, or Unix:

aws rds add-option-to-option-group \
 --option-group-name "myoptiongroup" \
 --options "OptionName=TDE" \
 --apply-immediately

For Windows:

aws rds add-option-to-option-group ^
 --option-group-name "myoptiongroup" ^
 --options "OptionName=TDE" ^
 --apply-immediately

Copying your data to a DB instance that doesn't include the TDE option

You can't remove the TDE option from a DB instance or associate it with an option group that
doesn't include the TDE option. To migrate your data to an instance that doesn't include the TDE
option, do the following:

1. Decrypt the data on your DB instance.

2. Copy the data to a new DB instance that is not associated with an option group that has TDE
enabled.

3. Delete your original DB instance.

You can use the same name for the new instance as the previous DB instance.

Transparent Data Encryption (TDE) 4136

https://docs.aws.amazon.com/cli/latest/reference/rds/add-option-to-option-group.html
https://docs.aws.amazon.com/managed-flink/latest/java/earlier.html#getting-started-1-13
https://docs.aws.amazon.com/managed-flink/latest/java/earlier.html#getting-started-1-13

Amazon Relational Database Service User Guide

Considerations when using TDE with Oracle Data Pump

You can use Oracle Data Pump to import or export encrypted dump files. Amazon RDS supports
the password encryption mode (ENCRYPTION_MODE=PASSWORD) for Oracle Data Pump. Amazon
RDS does not support transparent encryption mode (ENCRYPTION_MODE=TRANSPARENT) for
Oracle Data Pump. For more information, see Importing using Oracle Data Pump.

Transparent Data Encryption (TDE) 4137

Amazon Relational Database Service User Guide

Oracle UTL_MAIL

Amazon RDS supports Oracle UTL_MAIL through the use of the UTL_MAIL option and SMTP
servers. You can send email directly from your database by using the UTL_MAIL package. Amazon
RDS supports UTL_MAIL for the following versions of Oracle:

• Oracle Database 21c (21.0.0.0), all versions

• Oracle Database 19c (19.0.0.0), all versions

The following are some limitations to using UTL_MAIL:

• UTL_MAIL does not support Transport Layer Security (TLS) and therefore emails are not
encrypted.

To connect securely to remote SSL/TLS resources by creating and uploading custom Oracle
wallets, follow the instructions in Configuring UTL_HTTP access using certificates and an Oracle
wallet.

The specific certificates that are required for your wallet vary by service. For AWS services, these
can typically be found in the Amazon trust services repository.

• UTL_MAIL does not support authentication with SMTP servers.

• You can only send a single attachment in an email.

• You can't send attachments larger than 32 K.

• You can only use ASCII and Extended Binary Coded Decimal Interchange Code (EBCDIC) character
encodings.

• SMTP port (25) is throttled based on the elastic network interface owner's policies.

When you enable UTL_MAIL, only the master user for your DB instance is granted the execute
privilege. If necessary, the master user can grant the execute privilege to other users so that they
can use UTL_MAIL.

Important

We recommend that you enable Oracle's built-in auditing feature to track the use of
UTL_MAIL procedures.

UTL_MAIL 4138

https://www.amazontrust.com/repository/

Amazon Relational Database Service User Guide

Prerequisites for Oracle UTL_MAIL

The following are prerequisites for using Oracle UTL_MAIL:

• One or more SMTP servers, and the corresponding IP addresses or public or private Domain
Name Server (DNS) names. For more information about private DNS names resolved through a
custom DNS server, see Setting up a custom DNS server.

Adding the Oracle UTL_MAIL option

The general process for adding the Oracle UTL_MAIL option to a DB instance is the following:

1. Create a new option group, or copy or modify an existing option group.

2. Add the option to the option group.

3. Associate the option group with the DB instance.

After you add the UTL_MAIL option, as soon as the option group is active, UTL_MAIL is active.

To add the UTL_MAIL option to a DB instance

1. Determine the option group you want to use. You can create a new option group or use an
existing option group. If you want to use an existing option group, skip to the next step.
Otherwise, create a custom DB option group with the following settings:

a. For Engine, choose the edition of Oracle you want to use.

b. For Major engine version, choose the version of your DB instance.

For more information, see Creating an option group.

2. Add the UTL_MAIL option to the option group. For more information about adding options,
see Adding an option to an option group.

3. Apply the option group to a new or existing DB instance:

• For a new DB instance, you apply the option group when you launch the instance. For more
information, see Creating an Amazon RDS DB instance.

• For an existing DB instance, you apply the option group by modifying the instance and
attaching the new option group. For more information, see Modifying an Amazon RDS DB
instance.

UTL_MAIL 4139

Amazon Relational Database Service User Guide

Using Oracle UTL_MAIL

After you enable the UTL_MAIL option, you must configure the SMTP server before you can begin
using it.

You configure the SMTP server by setting the SMTP_OUT_SERVER parameter to a valid IP address
or public DNS name. For the SMTP_OUT_SERVER parameter, you can specify a comma-separated
list of the addresses of multiple servers. If the first server is unavailable, UTL_MAIL tries the next
server, and so on.

You can set the default SMTP_OUT_SERVER for a DB instance by using a DB parameter group. You
can set the SMTP_OUT_SERVER parameter for a session by running the following code on your
database on your DB instance.

ALTER SESSION SET smtp_out_server = mailserver.domain.com:25;

After the UTL_MAIL option is enabled, and your SMTP_OUT_SERVER is configured, you can
send mail by using the SEND procedure. For more information, see UTL_MAIL in the Oracle
documentation.

Removing the Oracle UTL_MAIL option

You can remove Oracle UTL_MAIL from a DB instance.

To remove UTL_MAIL from a DB instance, do one of the following:

• To remove UTL_MAIL from multiple DB instances, remove the UTL_MAIL option from the option
group they belong to. This change affects all DB instances that use the option group. For more
information, see Removing an option from an option group.

• To remove UTL_MAIL from a single DB instance, modify the DB instance and specify a different
option group that doesn't include the UTL_MAIL option. You can specify the default (empty)
option group, or a different custom option group. For more information, see Modifying an
Amazon RDS DB instance.

Troubleshooting

The following are issues you might encounter when you use UTL_MAIL with Amazon RDS.

UTL_MAIL 4140

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/u_mail.htm#BABFJJBD

Amazon Relational Database Service User Guide

• Throttling. SMTP port (25) is throttled based on the elastic network interface owner's policies. If
you can successfully send email by using UTL_MAIL, and you see the error ORA-29278: SMTP
transient error: 421 Service not available, you are possibly being throttled. If
you experience throttling with email delivery, we recommend that you implement a backoff
algorithm. For more information about backoff algorithms, see Error retries and exponential
backoff in AWS and How to handle a "throttling – Maximum sending rate exceeded" error.

You can request that this throttle be removed. For more information, see How do I remove the
throttle on port 25 from my EC2 instance?.

UTL_MAIL 4141

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://aws.amazon.com/blogs/ses/how-to-handle-a-throttling-maximum-sending-rate-exceeded-error/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-port-25-throttle/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-port-25-throttle/

Amazon Relational Database Service User Guide

Oracle XML DB

Oracle XML DB adds native XML support to your DB instance. With XML DB, you can store and
retrieve structured or unstructured XML and relational data. The XML DB protocol server isn't
supported on RDS for Oracle.

XML DB is preinstalled on Oracle Database 12c and higher. Thus, you don't need to use an option
group to explicitly install XML DB as an additional feature.

To learn how to configure and use XML DB, see Oracle XML DB Developer's Guide in the Oracle
Database documentation.

XML DB 4142

https://docs.oracle.com/en/database/oracle/oracle-database/19/adxdb/

Amazon Relational Database Service User Guide

Upgrading the RDS for Oracle DB engine

When Amazon RDS supports a new version of Oracle Database, you can upgrade your DB instances
to the new version. For information about which Oracle versions are available on Amazon RDS, see
Amazon RDS for Oracle Release Notes.

Important

RDS for Oracle Databases 11g, 12c, and 18c are no longer supported. If you maintain
Oracle Database 11g, 12c, or 18c snapshots, you can upgrade them to a later release. For
more information, see Upgrading an Oracle DB snapshot.

Topics

• Overview of RDS for Oracle engine upgrades

• Oracle major version upgrades

• Oracle minor version upgrades

• Considerations for Oracle database upgrades

• Testing an Oracle DB upgrade

• Upgrading the version of an RDS for Oracle DB instance

• Upgrading an Oracle DB snapshot

Overview of RDS for Oracle engine upgrades

Before upgrading your RDS for Oracle DB instance, familiarize yourself with the following concepts.

Topics

• Major and minor version upgrades

• Support dates and mandatory upgrades for RDS for Oracle

• Oracle engine version management

• Automatic snapshots during engine upgrades

• Oracle upgrades in a Multi-AZ deployment

• Oracle upgrades of read replicas

Upgrading the Oracle DB engine 4143

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html

Amazon Relational Database Service User Guide

Major and minor version upgrades

Major versions are major releases of Oracle Database that occur every 1-2 years. Oracle Database
19c and Oracle Database 21c are major releases.

Every quarter, RDS for Oracle releases new minor engine versions for every supported major
engine. A Release Update (RU) engine version incorporates bug fixes from Oracle by including the
RU patches for the specified quarter. For example, 21.0.0.0.ru-2024-10.rur-2024-10.r1 is a minor
version of Oracle Database 21c that incorporates the October 2024 RU.

A Spatial Patch Bundle (SPB) engine version contains RU patches and patches specific to Oracle
Spatial. For example, 19.0.0.0.ru-2025-01.spb-1.r1 is a minor engine version that contains the
RU patches in engine version 19.0.0.0.ru-2025-01.rur-2025-01.r1 plus Spatial patches. Typically,
RDS for Oracle releases SPBs 2–3 weeks after the corresponding RU. For an explanation of the
differences between RUs and SPBs, see Release Updates (RUs) and Spatial Patch Bundles (SPBs).
For information about supported RUs and SPBs, see Release notes for Amazon Relational Database
Service (Amazon RDS) for Oracle.

RDS for Oracle supports the following upgrades to a DB instance.

Upgrade
type

Application compatibility Upgrade
methods

Sample upgrade path

Major
version

A major version upgrade can
introduce changes that aren't
compatible with existing applicati
ons.

Manual only From Oracle Database
19c to Oracle Database
21c

Minor
version

A minor version upgrade includes
only changes that are backward-
compatible with existing applicati
ons.

Automatic or
manual

From 21.0.0.0.
ru-2023-07.rur-202
2-07.r1 to 21.0.0.0.
ru-2023-10.rur-202
2-10.r1

Important

When you upgrade your DB engine, an outage occurs. The duration of the outage depends
on your engine version and DB instance size.

Overview of Oracle upgrades 4144

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes

Amazon Relational Database Service User Guide

Make sure that you thoroughly test any upgrade to verify that your applications work
correctly before applying the upgrade to your production databases. For more information,
see Testing an Oracle DB upgrade.

Support dates and mandatory upgrades for RDS for Oracle

Database versions of RDS for Oracle have expected support dates. When a major or minor version
of an RDS for Oracle DB engine nears its end-of-support date, RDS begins mandatory upgrades,
also known as forced upgrades. RDS publishes the following information:

• A recommendation for you to begin manually upgrading instances on deprecated versions to
supported versions

• A date after which you can no longer create instances on the unsupported versions

• A date on which RDS begins to upgrade your instances to supported versions automatically
during maintenance windows

• A date on which RDS begins to upgrade your instances to supported versions automatically
outside of maintenance windows

Important

Forced upgrades can have unexpected consequences for AWS CloudFormation stacks. If you
rely on RDS to upgrade your DB instances automatically, you might encounter issues with
AWS CloudFormation.

This section contains the following topics:

Topics

• Support dates for major releases of RDS for Oracle

• Support dates for minor versions of RDS for Oracle

Support dates for major releases of RDS for Oracle

RDS for Oracle major versions remain available at least until the end of support date for the
corresponding Oracle Database release version. You can use the following dates to plan your

Overview of Oracle upgrades 4145

Amazon Relational Database Service User Guide

testing and upgrade cycles. These dates represent the earliest date that an upgrade to a newer
version might be required. If Amazon extends support for an RDS for Oracle version for longer than
originally stated, we plan to update this table to reflect the later date.

Oracle Database major
release version

Expected date for upgrading to a newer version

Oracle Database 19c December 31, 2029 with BYOL Premier Support (fees waived for
Extended Support)

December 31, 2032 with BYOL Extended Support (extra cost) or
an Unlimited License Agreement

December 31, 2029 with License Included (LI)

Oracle Database 21c July 31, 2027 (not available for Extended Support)

RDS notifies you at least 12 months before you need to upgrade to a newer major version. The
notification describes the upgrade process, including the timing of important milestones, the
effect on your DB instances, and recommended actions. We recommend that you thoroughly test
your applications with new RDS for Oracle versions before you upgrade your database to a major
version.

After this advance notification period, an automatic upgrade to the subsequent major version
might be applied to any RDS for Oracle DB instance still running the older version. If so, the
upgrade is started during scheduled maintenance windows.

For more information, see Release Schedule of Current Database Releases in My Oracle Support.

Support dates for minor versions of RDS for Oracle

The following minor versions of Oracle Database 19c are nearing their end-of-support date:

• 19.0.0.0.ru-2019-07.rur-2019-07.r1

• 19.0.0.0.ru-2019-10.rur-2019-10.r1

• 19.0.0.0.ru-2020-01.rur-2020-01.r1

The following minor versions of Oracle Database 21c are nearing their end-of-support date:

Overview of Oracle upgrades 4146

https://support.oracle.com/knowledge/Oracle%20Database%20Products/742060_1.html

Amazon Relational Database Service User Guide

• 21.0.0.0.ru-2022-01.rur-2022-01.r1

• 21.0.0.0.ru-2022-04.rur-2022-04.r1

• 21.0.0.0.ru-2022-07.rur-2022-07.r1

• 21.0.0.0.ru-2022-10.rur-2022-10.r1

• 21.0.0.0.ru-2023-01.rur-2023-01.r1

• 21.0.0.0.ru-2023-01.rur-2023-01.r2

The following table shows a schedule of the mandatory minor version upgrades for the preceding
deprecated versions.

Date Action for deprecated versions

07/02/25 You can no longer create DB instances running deprecated versions. Either
upgrade your DB instances manually to the latest release update (RU) or
wait for RDS to upgrade them automatically.

08/01/25 –
09/15/25

RDS force upgrades DB instances in the scheduled maintenance window to
the latest RU. RDS also upgrades any instances restored from snapshots of
the deprecated versions.

09/15/25 RDS begins to force upgrade DB instances to the latest RU regardless of
the scheduled maintenance window. The force upgrades proceed until all
instances are running supported minor versions.

If you don't want RDS to automatically upgrade your instances running deprecated versions, do the
following:

• Upgrade your Oracle Database 19c and 21c minor versions manually to the latest RU or
to any RU that isn't scheduled for mandatory upgrades. For example, you can upgrade
21.0.0.0.ru-2023-01.rur-2023-01.r2 to 21.0.0.0.ru-2023-04.rur-2023-04.r2, or upgrade
19.0.0.0.ru-2019-07.rur-2019-07.r1 to 19.0.0.0.ru-2025-01.rur-2025-01.r2.

• Upgrade DB snapshots that use deprecated minor versions, and then restore the snapshots.

For more information about minor versions, see Release notes for Amazon Relational Database
Service (Amazon RDS) for Oracle.

Overview of Oracle upgrades 4147

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html

Amazon Relational Database Service User Guide

Oracle engine version management

With DB engine version management, you control when and how the database engine is patched
and upgraded. You get the flexibility to maintain compatibility with database engine patch
versions. You can also test new patch versions of RDS for Oracle to ensure they work with your
application before deploying them in production. In addition, you upgrade the versions on your
own terms and timelines.

Note

Amazon RDS periodically aggregates official Oracle database patches using an Amazon
RDS-specific DB engine version. To see a list of which Oracle patches are contained in an
Amazon RDS Oracle-specific engine version, go to Amazon RDS for Oracle Release Notes.

Automatic snapshots during engine upgrades

During upgrades of an Oracle DB instance, snapshots offer protection against upgrade issues. If the
backup retention period for your DB instance is greater than 0, Amazon RDS takes the following DB
snapshots during the upgrade:

1. A snapshot of the DB instance before any upgrade changes have been made. If the upgrade fails,
you can restore this snapshot to create a DB instance running the old version.

2. A snapshot of the DB instance after the upgrade completes.

Note

To change your backup retention period, see Modifying an Amazon RDS DB instance.

After an upgrade, you can't revert to the previous engine version. However, you can create a new
Oracle DB instance by restoring the pre-upgrade snapshot.

Oracle upgrades in a Multi-AZ deployment

If your DB instance is in a Multi-AZ deployment, Amazon RDS upgrades both the primary and
standby replicas. If no operating system updates are required, the primary and standby upgrades
occur simultaneously. The instances are not available until the upgrade completes.

Overview of Oracle upgrades 4148

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html

Amazon Relational Database Service User Guide

If operating system updates are required in a Multi-AZ deployment, Amazon RDS applies the
updates when you request the database upgrade. Amazon RDS performs the following steps:

1. Updates the operating system on the current standby DB instance.

2. Fails over the primary DB instance to the standby DB instance.

3. Upgrades the database version on the new primary DB instance, which was formerly the standby
instance. The primary database is unavailable during the upgrade.

4. Updates the operating system on the new standby DB instance, which was formerly the primary
DB instance.

5. Upgrades the database version on the new standby DB instance.

6. Fails over the new primary DB instance back to the original primary DB instance, and the new
standby DB instance back to the original standby DB instance. Thus, Amazon RDS returns the
replication configuration to its original state.

Oracle upgrades of read replicas

The Oracle DB engine version of the source DB instance and all of its read replicas must be the
same. Amazon RDS performs the upgrade in the following stages:

1. Upgrades the source DB instance. The read replicas are available during this stage.

2. Upgrades the read replicas in parallel, regardless of the replica maintenance windows. The
source DB is available during this stage.

For major version upgrades of cross-Region read replicas, Amazon RDS performs additional actions:

• Generates an option group for the target version automatically

• Copies all options and option settings from the original option group to the new option group

• Associates the upgraded cross-Region read replica with the new option group

Oracle major version upgrades

To perform a major version upgrade, modify the DB instance manually. Major version upgrades
don't occur automatically.

Major version upgrades 4149

Amazon Relational Database Service User Guide

Important

Make sure that you thoroughly test any upgrade to verify that your applications work
correctly before applying the upgrade to your production databases. For more information,
see Testing an Oracle DB upgrade.

Topics

• Supported versions for major upgrades

• Supported instance classes for major upgrades

• Gathering statistics before major upgrades

• Allowing major upgrades

Supported versions for major upgrades

Amazon RDS supports the following major version upgrades.

Current version Upgrade supported

19.0.0.0 using the CDB architecture 21.0.0.0

A major version upgrade of Oracle Database must upgrade to a Release Update (RU) that was
released in the same month or later. Major version downgrades aren't supported for any Oracle
Database versions.

Supported instance classes for major upgrades

Your current Oracle DB instance might run on a DB instance class that isn't supported for the
version to which you are upgrading. In this case, before you upgrade, migrate the DB instance to
a supported DB instance class. For more information about the supported DB instance classes for
each version and edition of Amazon RDS for Oracle, see DB instance classes.

Gathering statistics before major upgrades

Before you perform a major version upgrade, Oracle recommends that you gather optimizer
statistics on the DB instance that you are upgrading. This action can reduce DB instance downtime
during the upgrade.

Major version upgrades 4150

Amazon Relational Database Service User Guide

To gather optimizer statistics, connect to the DB instance as the master user, and run the
DBMS_STATS.GATHER_DICTIONARY_STATS procedure, as in the following example.

EXEC DBMS_STATS.GATHER_DICTIONARY_STATS;

For more information, see GATHER_DICTIONARY_STATS Procedure in the Oracle documentation.

Allowing major upgrades

A major engine version upgrade might be incompatible with your application. The upgrade is
irreversible. If you specify a major version for the EngineVersion parameter that is different from
the current major version, you must allow major version upgrades.

If you upgrade a major version using the CLI command modify-db-instance, specify --allow-
major-version-upgrade. This setting isn't persistent, so you must specify --allow-major-
version-upgrade whenever you perform a major upgrade. This parameter has no impact on
upgrades of minor engine versions. For more information, see Upgrading a DB instance engine
version.

If you upgrade a major version using the console, you don't need to choose an option to allow the
upgrade. Instead, the console displays a warning that major upgrades are irreversible.

Oracle minor version upgrades

In RDS for Oracle, a minor version upgrade is an update to a major DB engine version. In
RDS, a minor engine version is either a Release Update (RU) or Spatial Patch Bundle (SPB).
For example, if your DB instance runs major version Oracle Database 21c and minor version
21.0.0.0.ru-2024-10.rur-2024-10.r1, you can upgrade your DB engine to minor version
21.0.0.0.ru-2025-01.rur-2025-01.r1. RDS for Oracle doesn't support minor version downgrades.

You can upgrade your DB engine to a minor version manually or automatically. To learn how
to upgrade manually, see Manually upgrading the engine version. To learn how to configure
automatic upgrades, see Automatically upgrading the minor engine version. Whether you upgrade
manually or automatically, a minor version upgrade entails downtime. Consider this downtime
when you plan your upgrades.

Minor version upgrades 4151

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/DBMS_STATS.html?source=%3Aso%3Atw%3Aor%3Aawr%3Aodv%3A%3A#GUID-867989C7-ADFC-4464-8981-437CEA7F331E
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

Important

Make sure that you thoroughly test any upgrade to verify that your applications work
correctly before applying the upgrade to your production databases. For more information,
see Testing an Oracle DB upgrade.

Topics

• Release Updates (RUs) and Spatial Patch Bundles (SPBs)

• Turning on automatic minor version upgrades for Oracle

• Notification of automatic minor version upgrades in RDS for Oracle

• When RDS schedules automatic minor version upgrades in RDS for Oracle

• Managing an automatic minor version upgrade in RDS for Oracle

Release Updates (RUs) and Spatial Patch Bundles (SPBs)

In RDS, a release update (RU) is a quarterly minor engine version that includes security fixes,
bug fixes, and new features for Oracle Database. A Spatial Patch Bundle (SPB) is an RU
engine version that includes patches designed for the Oracle Spatial option. For example,
the SPB named 19.0.0.0.ru-2025-01.spb-1.r1 includes all patches in the corresponding RU
19.0.0.0.ru-2025-01.rur-2025-01.r1 plus patches specific to Spatial. SPBs are supported only for
Oracle Database 19c.

When your instance is configured for automatic minor version upgrades, RUs and SPBs are on
separate upgrade paths. Typically, an SPB is released 2–3 weeks after its corresponding RU. The
following table shows sample minor versions for Oracle Database 19c.

Standard RU upgrade path SPB upgrade path

19.0.0.0.ru-2025-01.rur-2025-01.r1 19.0.0.0.ru-2025-01.spb-1.r1

19.0.0.0.ru-2025-04.rur-2025-04.r1 19.0.0.0.ru-2025-04.spb-1.r1

19.0.0.0.ru-2025-07.rur-2025-07.r1 19.0.0.0.ru-2025-07.spb-1.r1

19.0.0.0.ru-2025-10.rur-2025-10.r1 19.0.0.0.ru-2025-10.spb-1.r1

Minor version upgrades 4152

Amazon Relational Database Service User Guide

If your DB instance is configured for automatic upgrades, your instance is on the upgrade
path corresponding to your current version. For example, if your DB instance runs version
19.0.0.0.ru-2025-01.rur-2025-01.r1, then when 19.0.0.0.ru-2025-04.rur-2025-04.r1 is
released, your instance automatically upgrades to this RU. Similarly, if your DB instance runs
19.0.0.0.ru-2025-01.spb-1.r1, then when 19.0.0.0.ru-2025-04.spb-1.r1 is released, your instance
automatically upgrades to this SPB. An instance running 19.0.0.0.ru-2025-01.rur-2025-01.r1,
which is an RU, won't automatically upgrade to 19.0.0.0.ru-2025-04.spb-1.r1, which is an SPB on a
separate upgrade path.

You can upgrade your DB instance to SPBs even if your instance doesn't use Spatial, but the
Spatial patches apply only to Oracle Spatial. You can upgrade manually from an RU to an
SPB at the same engine version or higher. For example, you can upgrade your instance from
19.0.0.0.ru-2025-01.rur-2025-01.r1 to either of the following engine versions:

• 19.0.0.0.ru-2025-01.spb-1.r1

• 19.0.0.0.ru-2025-04.spb-1.r1

You can upgrade your instance from an SPB to an RU only if the RU is a higher engine
version. For example, you can upgrade from SPB version 19.0.0.0.ru-2025-04.spb-1.r1 to
a higher RU version 19.0.0.0.ru-2025-07.rur-2025-07.r1 but not to the same RU version
19.0.0.0.ru-2025-04.rur-2025-04.r1.

If your DB instance is configured for automatic minor version upgrades, and you manually upgrade
from an RU to an SPB or from an SPB to an RU, your automatic upgrade path changes. Suppose
that you manually upgrade from RU version 19.0.0.0.ru-2025-01.rur-2025-01.r1 to SPB version
19.0.0.0.ru-2025-01.spb-1.r1. Your next automatic minor version upgrade will be to SPB version
19.0.0.0.ru-2025-04.spb-1.r1.

Because SPBs function as RUs, the RDS APIs for upgrading your instance to RUs and SPBs are
identical. The following commands demonstrate upgrading to an RU and to an SPB.

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --engine-version 19.0.0.0.ru-2025-01.rur-2025-01.r1

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --engine-version 19.0.0.0.ru-2025-01.spb-1.r1

Minor version upgrades 4153

Amazon Relational Database Service User Guide

For more information about the Oracle Spatial option, see How Spatial Patch Bundles (SPBs) work.
For supported RUs and SPBs for Oracle Database 19c, see Amazon RDS for Oracle Database 19c
(19.0.0.0).

Turning on automatic minor version upgrades for Oracle

In an automatic minor version upgrade, RDS applies the latest available minor version to your
Oracle database without manual intervention. An Amazon RDS for Oracle DB instance schedules
your upgrade during the next maintenance window in the following circumstances:

• Your DB instance has the Auto minor version upgrade option turned on.

• Your DB instance isn't already running the latest minor DB engine version.

• Your DB instance doesn't already have a pending upgrade scheduled.

To learn how to turn on automatic upgrades, see Automatically upgrading the minor engine
version.

Notification of automatic minor version upgrades in RDS for Oracle

RDS publishes an advance notice before it begins scheduling automatic upgrades. You can find the
notification in the Maintenance & backups tab of the database details page. The message has the
following format:

An automatic minor version upgrade to engine version will become available
 on availability-date and will be applied during a subsequent maintenance window.

The availability-date in the advance notice is the date when RDS starts scheduling upgrades
for DB instances in your AWS Region. It is not the date on which the upgrade of your DB instance is
scheduled to occur. For example, if the availability-date is March 1, on this date RDS might
schedule your upgrade for April 14.

You can also get the upgrade availability date by using the describe-pending-maintenance-
actions command in the AWS CLI, as shown in the following example:

aws rds describe-pending-maintenance-actions

{
 "PendingMaintenanceActions": [

Minor version upgrades 4154

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html

Amazon Relational Database Service User Guide

 {
 "ResourceIdentifier": "arn:aws:rds:us-east-1:123456789012:db:orclinst1",
 "PendingMaintenanceActionDetails": [
 {
 "Action": "db-upgrade",
 "Description": "Automatic minor version upgrade to
 21.0.0.0.ru-2024-07.rur-2024-07.r1",
 "CurrentApplyDate": "2024-12-02T08:10:00Z",
 "OptInStatus": "next-maintenance"
 }
]
 }, ...

The following table describes your options for each type of pending maintenance action message.

Pending maintenance
action message

When message
appears

Eligible to
be applied
at the next
maintenance
window?

Eligible to
be applied
immediate
ly?

Eligible
to have
the opt-in
undone?

An automatic minor
version upgrade to
engine-version will
become available on
availability-date
and should be applied
during a subsequent
maintenance window.

4-6 weeks
before automatic
upgrades are
scheduled.

Yes Yes Yes

Automatic minor version
upgrade to engine-ve
rsion

On or after
availabil
ity-date .
RDS automatic
ally applies this
upgrade in the
next maintenance
window of the DB
instance.

Yes Yes No

Minor version upgrades 4155

Amazon Relational Database Service User Guide

For more information about describe-pending-maintenance-actions, see the AWS CLI Command
Reference.

When RDS schedules automatic minor version upgrades in RDS for Oracle

When the availability date for automatic upgrades arrives, RDS begins scheduling upgrades. For
most AWS Regions, RDS schedules your upgrade to the latest quarterly RU approximately four to
six weeks after the availability date. The scheduled date varies depending on the AWS Region and
other factors. For more information about RUs and RURs, see Amazon RDS for Oracle Release Notes.

When RDS schedules the upgrade, the following notification appears in the Maintenance &
backups tab of the database details page:

Automatic minor version upgrade to engine-version

The preceding message indicates that RDS has scheduled the upgrade of your DB engine in the
next maintenance window.

Sometimes a new minor version becomes available before RDS applies a previous minor version.
For example, your instance is running minor-version-1 when both minor-version-2 and
minor-version-3 are available as upgrade targets. In this situation, to avoid unnecessary
downtime for your DB instances, RDS schedules the automatic minor version upgrade to the most
recent version, skipping the upgrade to the previous version. In this example, RDS upgrades your
instance from minor-version-1 directly to minor-version-3.

To ensure certain frequency of minor version upgrades, you can upgrade your instances manually
instead of using the automatic upgrade mechanism. To schedule an upgrade for the next
maintenance window, specify --no-apply-immediately when you upgrade to a minor version
using modify-db-instance. To upgrade immediately, specify --apply-immediately instead.
For more information, see Manually upgrading the engine version.

Managing an automatic minor version upgrade in RDS for Oracle

When a new minor version becomes available, you can upgrade your DB instance to this version
manually. The following example upgrades the DB instance named orclinst1 immediately:

aws rds apply-pending-maintenance-action \
 --resource-identifier arn:aws:rds:us-east-1:123456789012:db:orclinst1 \
 --apply-action db-upgrade \

Minor version upgrades 4156

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html

Amazon Relational Database Service User Guide

 --opt-in-type immediate

To opt out of an automatic minor version upgrade that hasn't been scheduled yet, set --opt-in-
type to undo-opt-in, as in the following example:

aws rds apply-pending-maintenance-action \
 --resource-identifier arn:aws:rds:us-east-1:123456789012:db:orclinst1 \
 --apply-action db-upgrade \
 --opt-in-type undo-opt-in

If RDS has already scheduled an upgrade for your DB instance, you can't use apply-pending-
maintenance-action to cancel it. But you can modify your DB instance and turn off the
automatic minor upgrade feature, which then unschedules the upgrade.

To learn how to turn off automatic minor version upgrades, see Automatically upgrading the minor
engine version. For more information about apply-pending-maintenance-action, see the AWS CLI
Command Reference.

Considerations for Oracle database upgrades

Before you upgrade your Oracle instance, review the following information.

Topics

• Oracle Multitenant considerations

• Option group considerations

• Parameter group considerations

• Time zone considerations

• Spatial Patch Bundle (SPB) considerations

Oracle Multitenant considerations

The following table describes the Oracle Database architectures supported in different releases.

Oracle Database release RDS support status Architecture

Oracle Database 21c Supported CDB only

Upgrade considerations 4157

https://docs.aws.amazon.com/cli/latest/reference/rds/apply-pending-maintenance-action.html

Amazon Relational Database Service User Guide

Oracle Database release RDS support status Architecture

Oracle Database 19c Supported CDB or non-CDB

The following table describes supported and unsupported upgrade paths.

Upgrade path Supported?

CDB to CDB Yes

Non-CDB to CDB No, but you can convert a non-CDB to a CDB
and then upgrade it

CDB to non-CDB No

For more information about Oracle Multitenant in RDS for Oracle, see Single-tenant configuration
of the CDB architecture.

Option group considerations

If your DB instance uses a custom option group, sometimes Amazon RDS can't automatically assign
a new option group. For example, this situation occurs when you upgrade to a new major version.
In such cases, specify a new option group when you upgrade. We recommend that you create a new
option group, and add the same options to it as in your existing custom option group.

For more information, see Creating an option group or Copying an option group.

If your DB instance uses a custom option group that contains the APEX option, you can sometimes
reduce the upgrade time. To do this, upgrade your version of APEX at the same time as your DB
instance. For more information, see Upgrading the APEX version.

Parameter group considerations

If your DB instance uses a custom parameter group, sometimes Amazon RDS can't automatically
assign your DB instance a new parameter group. For example, this situation occurs when you
upgrade to a new major version. In such cases, make sure to specify a new parameter group
when you upgrade. We recommend that you create a new parameter group, and configure the
parameters as in your existing custom parameter group.

Upgrade considerations 4158

Amazon Relational Database Service User Guide

For more information, see Creating a DB parameter group in Amazon RDS or Copying a DB
parameter group in Amazon RDS.

Time zone considerations

You can use the time zone option to change the system time zone used by your Oracle DB instance.
For example, you might change the time zone of a DB instance to be compatible with an on-
premises environment, or a legacy application. The time zone option changes the time zone at the
host level. Amazon RDS for Oracle updates the system time zone automatically throughout the
year. For more information about the system time zone, see Oracle time zone.

When you create an Oracle DB instance, the database automatically sets the database time zone.
The database time zone is also known as the Daylight Saving Time (DST) time zone. The database
time zone is distinct from the system time zone.

Between Oracle Database releases, patch sets or individual patches may include new DST versions.
These patches reflect the changes in transition rules for various time zone regions. For example, a
government might change when DST takes effect. Changes to DST rules may affect existing data of
the TIMESTAMP WITH TIME ZONE data type.

If you upgrade an RDS for Oracle DB instance, Amazon RDS doesn't upgrade the database
time zone file automatically. To upgrade the time zone file automatically, you can include the
TIMEZONE_FILE_AUTOUPGRADE option in the option group associated with your DB instance
during or after the engine version upgrade. For more information, see Oracle time zone file
autoupgrade.

Alternatively, to upgrade the database time zone file manually, create a new Oracle DB instance
that has the desired DST patch. However, we recommend that you upgrade the database time zone
file using the TIMEZONE_FILE_AUTOUPGRADE option.

After upgrading the time zone file, migrate the data from your current instance to the new
instance. You can migrate data using several techniques, including the following:

• AWS Database Migration Service

• Oracle GoldenGate

• Oracle Data Pump

• Original Export/Import (desupported for general use)

Upgrade considerations 4159

Amazon Relational Database Service User Guide

Note

When you migrate data using Oracle Data Pump, the utility raises the error ORA-39405
when the target time zone version is lower than the source time zone version.

For more information, see TIMESTAMP WITH TIMEZONE restrictions in the Oracle documentation.

Spatial Patch Bundle (SPB) considerations

In RDS for Oracle, release update (RU) is a minor engine version that includes security fixes,
bug fixes, and new features for Oracle Database. A Spatial Patch Bundle (SPB) is minor engine
version that also includes patches designed for the Oracle Spatial option. For example,
19.0.0.0.ru-2025-01.spb-1.r1 is a minor engine version that contains the RU patches in engine
version 19.0.0.0.ru-2025-01.rur-2025-01.r1 plus Spatial patches.

When you upgrade your database to SPBs, consider the following:

• SPBs are supported only for Oracle Database 19c.

• Typically, an SPB is released 2–3 weeks after its corresponding quarterly RU.

• You can upgrade your DB instance to an SPB even if the instance doesn't use the Oracle Spatial
option, but the Spatial patches in the engine version apply only to Oracle Spatial. You can create
a new instance on an SPB and install the Oracle Spatial option later.

• If you enable automatic minor version upgrade for your DB instance, your upgrade path
depends on whether your instance currently uses an SPB or RU. If your instance uses an SPB,
RDS automatically upgrades your instance to the latest SPB. If your instance uses an RU, RDS
automatically upgrades your instance to the latest RU.

• You can manually upgrade your DB instance from an RU to an SPB only if the SPB is the same
engine version or higher as your current RU.

• You can manually upgrade your DB instance from an SPB to an RU only if the RU is a higher
version.

Testing an Oracle DB upgrade

Before you upgrade your DB instance to a major version, thoroughly test your database and all
applications that access the database for compatibility with the new version. We recommend that
you use the following procedure.

Testing an upgrade 4160

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/oracle-data-pump-overview.html#GUID-9B6C92EE-860E-43DD-9728-735B17B9DA89

Amazon Relational Database Service User Guide

To test a major version upgrade

1. Review the Oracle upgrade documentation for the new version of the database engine to
see if there are compatibility issues that might affect your database or applications. For more
information, see Database Upgrade Guide in the Oracle documentation.

2. If your DB instance uses a custom option group, create a new option group compatible with
the new version you are upgrading to. For more information, see Option group considerations.

3. If your DB instance uses a custom parameter group, create a new parameter group compatible
with the new version you are upgrading to. For more information, see Parameter group
considerations.

4. Create a DB snapshot of the DB instance to be upgraded. For more information, see Creating a
DB snapshot for a Single-AZ DB instance for Amazon RDS.

5. Restore the DB snapshot to create a new test DB instance. For more information, see Restoring
to a DB instance.

6. Modify this new test DB instance to upgrade it to the new version, by using one of the
following methods:

• Console

• AWS CLI

• RDS API

7. Perform testing:

• Run as many of your quality assurance tests against the upgraded DB instance as needed to
ensure that your database and application work correctly with the new version.

• Implement any new tests needed to evaluate the impact of any compatibility issues that you
identified in step 1.

• Test all stored procedures, functions, and triggers.

• Direct test versions of your applications to the upgraded DB instance. Verify that the
applications work correctly with the new version.

• Evaluate the storage used by the upgraded instance to determine if the upgrade requires
additional storage. You might need to choose a larger instance class to support the new
version in production. For more information, see DB instance classes.

8. If all tests pass, upgrade your production DB instance. We recommend that you confirm that
the DB instance working correctly before allowing write operations to the DB instance.

Testing an upgrade 4161

https://docs.oracle.com/database/121/UPGRD/toc.htm

Amazon Relational Database Service User Guide

Upgrading the version of an RDS for Oracle DB instance

To manually upgrade the DB engine version of an RDS for Oracle DB instance,use the AWS
Management Console, the AWS CLI, or the RDS API. For general information about database
upgrades in RDS, see Upgrading the version of an RDS for Oracle DB instance. To get valid upgrade
targets, use the AWS CLI describe-db-engine-versions command.

Console

To upgrade the engine version of an RDS for Oracle DB instance by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
upgrade.

3. Choose Modify.

4. For DB engine version, choose a higher database version.

5. Choose Continue and check the summary of modifications. Make sure that you understand the
implications of a database version upgrade. You can't convert an upgraded DB instance back to
the previous version. Make sure you have tested both your database and your application with
the new version before continuing.

6. Decide when to schedule your DB instance upgrade. To apply the changes immediately,
choose Apply immediately. Choosing this option can cause an outage in some cases. For more
information, see Using the schedule modifications setting.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB instance
to save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To upgrade the engine version of an RDS for Oracle DB instance, you can use the CLI modify-db-
instance command. Specify the following parameters:

• --db-instance-identifier – the name of the RDS for Oracle DB instance.

• --engine-version – the version number of the database engine to upgrade to.

Upgrading an RDS for Oracle DB instance 4162

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

For information about valid engine versions, use the AWS CLI describe-db-engine-versions
command.

• --allow-major-version-upgrade – to upgrade the DB engine version.

• --no-apply-immediately – to apply changes during the next maintenance window. To apply
changes immediately, use --apply-immediately.

Example

The following example upgrades a CDB instance named myorainst from its
current version of 19.0.0.0.ru-2024-01.rur-2024-01.r1 to version
21.0.0.0.ru-2024-04.rur-2024-04.r1.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier myorainst \
 --engine-version 21.0.0.0.ru-2024-04.rur-2024-04.r1 \
 --allow-major-version-upgrade \
 --no-apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier myorainst ^
 --engine-version 21.0.0.0.ru-2024-04.rur-2024-04.r1 ^
 --allow-major-version-upgrade ^
 --no-apply-immediately

RDS API

To upgrade an RDS for Oracle DB instance, use the ModifyDBInstance action. Specify the following
parameters:

• DBInstanceIdentifier – the name of the DB instance, for example myorainst.

• EngineVersion – the version number of the database engine to upgrade to. For information
about valid engine versions, use the DescribeDBEngineVersions operation.

• AllowMajorVersionUpgrade – whether to allow a major version upgrade. To do so, set the
value to true.

Upgrading an RDS for Oracle DB instance 4163

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBEngineVersions.html

Amazon Relational Database Service User Guide

• ApplyImmediately – whether to apply changes immediately or during the next maintenance
window. To apply changes immediately, set the value to true. To apply changes during the next
maintenance window, set the value to false.

Upgrading an Oracle DB snapshot

Upgrading your Oracle DB snapshots in Amazon RDS ensures that your database remains secure,
compatible, and fully supported. As older Oracle versions reach the end of patch support, you
can upgrade any manual DB snapshots tied to these versions to avoid potential vulnerabilities or
service limitations. For more information, see Oracle engine version management.

Amazon RDS supports upgrading snapshots in all AWS Regions.

Console

To upgrade an Oracle DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots, and then select the DB snapshot that you want to
upgrade.

3. For Actions, choose Upgrade snapshot. The Upgrade snapshot page appears.

4. Choose the New engine version to upgrade the snapshot to.

5. (Optional) For Option group, choose the option group for the upgraded DB snapshot. The
same option group considerations apply when upgrading a DB snapshot as when upgrading a
DB instance. For more information, see Option group considerations.

6. Choose Save changes to save your changes.

During the upgrade process, all snapshot actions are disabled for this DB snapshot. Also, the
DB snapshot status changes from available to upgrading, and then changes to active upon
completion. If the DB snapshot can't be upgraded because of snapshot corruption issues, the
status changes to unavailable. You can't recover the snapshot from this state.

Note

If the DB snapshot upgrade fails, the snapshot is rolled back to the original state with
the original version.

Upgrading an Oracle DB snapshot 4164

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To upgrade an Oracle DB snapshot by using the AWS CLI, call the modify-db-snapshot command
with the following parameters:

• --db-snapshot-identifier – The name of the DB snapshot.

• --engine-version – The version to upgrade the snapshot to.

You might also need to include the following parameter. The same option group considerations
apply when upgrading a DB snapshot as when upgrading a DB instance. For more information, see
Option group considerations.

• --option-group-name – The option group for the upgraded DB snapshot.

Example

The following example upgrades a DB snapshot.

For Linux, macOS, or Unix:

aws rds modify-db-snapshot \
 --db-snapshot-identifier mydbsnapshot \
 --engine-version 19.0.0.0.ru-2020-10.rur-2020-10.r1 \
 --option-group-name default:oracle-se2-19

For Windows:

aws rds modify-db-snapshot ^
 --db-snapshot-identifier mydbsnapshot ^
 --engine-version 19.0.0.0.ru-2020-10.rur-2020-10.r1 ^
 --option-group-name default:oracle-se2-19

RDS API

To upgrade an Oracle DB snapshot by using the Amazon RDS API, call the ModifyDBSnapshot
operation with the following parameters:

• DBSnapshotIdentifier – The name of the DB snapshot.

• EngineVersion – The version to upgrade the snapshot to.

Upgrading an Oracle DB snapshot 4165

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBSnapshot.html

Amazon Relational Database Service User Guide

You might also need to include the OptionGroupName parameter. The same option group
considerations apply when upgrading a DB snapshot as when upgrading a DB instance. For more
information, see Option group considerations.

Upgrading an Oracle DB snapshot 4166

Amazon Relational Database Service User Guide

Using third-party software with your RDS for Oracle DB
instance

You can host an RDS for Oracle DB instance that supports tools and third-party software.

Topics

• Using Oracle GoldenGate with Amazon RDS for Oracle

• Using the Oracle Repository Creation Utility on RDS for Oracle

• Configuring Oracle Connection Manager on an Amazon EC2 instance

• Installing a Siebel database on Oracle on Amazon RDS

Tools and third-party software for Oracle 4167

Amazon Relational Database Service User Guide

Using Oracle GoldenGate with Amazon RDS for Oracle

Oracle GoldenGate collects, replicates, and manages transactional data between databases. It is
a log-based change data capture (CDC) and replication software package used with databases for
online transaction processing (OLTP) systems. Oracle GoldenGate creates trail files that contain the
most recent changed data from the source database. It then pushes these files to the server, where
a process converts the trail file into standard SQL to be applied to the target database.

Oracle GoldenGate with RDS for Oracle supports the following features:

• Active-Active database replication

• Disaster recovery

• Data protection

• In-Region and cross-Region replication

• Zero-downtime migration and upgrades

• Data replication between an RDS for Oracle DB instance and a non-Oracle database

Note

For a list of supported databases, see Oracle Fusion Middleware Supported System
Configurations in the Oracle documentation.

You can use Oracle GoldenGate with RDS for Oracle to upgrade to major versions of Oracle
Database. For example, you can use Oracle GoldenGate to upgrade from an Oracle Database 11g
on-premises database to Oracle Database 19c on an Amazon RDS DB instance.

Topics

• Supported versions and licensing options for Oracle GoldenGate

• Requirements and limitations for Oracle GoldenGate

• Oracle GoldenGate architecture

• Setting up Oracle GoldenGate

• Working with the EXTRACT and REPLICAT utilities of Oracle GoldenGate

• Monitoring Oracle GoldenGate

• Troubleshooting Oracle GoldenGate

Using Oracle GoldenGate 4168

https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

Amazon Relational Database Service User Guide

Supported versions and licensing options for Oracle GoldenGate

You can use Standard Edition 2 (SE2) or Enterprise Edition (EE) of RDS for Oracle with Oracle
GoldenGate version 12c and higher. You can use the following Oracle GoldenGate features:

• Oracle GoldenGate Remote Capture (extract) is supported.

• Capture (extract) is supported on RDS for Oracle DB instances that use the traditional non-CDB
database architecture. Oracle GoldenGate Remote PDB capture is supported on CDBs running
Oracle Database 21c or Oracle Database 19c version 19.0.0.0.ru-2024-04.rur-2024-04.r1 or
higher.

• Oracle GoldenGate Remote Delivery (replicat) is supported on RDS for Oracle DB instances that
use either the non-CDB or CDB architectures. Remote Delivery supports Integrated Replicat,
Parallel Replicat, Coordinated Replicat, and classic Replicat.

• RDS for Oracle supports the Classic and Microservices architectures of Oracle GoldenGate.

• Oracle GoldenGate DDL and Sequence value replication is supported when using Integrated
capture mode.

You are responsible for managing Oracle GoldenGate licensing (BYOL) for use with Amazon RDS in
all AWS Regions. For more information, see RDS for Oracle licensing options.

Requirements and limitations for Oracle GoldenGate

When you're working with Oracle GoldenGate and RDS for Oracle, consider the following
requirements and limitations:

• You're responsible for setting up and managing Oracle GoldenGate for use with RDS for Oracle.

• You're responsible for setting up an Oracle GoldenGate version that is certified with the source
and the target databases. For more information, see Oracle Fusion Middleware Supported
System Configurations in the Oracle documentation.

• You can use Oracle GoldenGate on many different AWS environments for many different use
cases. If you have a support-related issue relating to Oracle GoldenGate, contact Oracle Support
Services.

• You can use Oracle GoldenGate on RDS for Oracle DB instances that use Oracle Transparent
Data Encryption (TDE). To maintain the integrity of replicated data, configure encryption on
the Oracle GoldenGate hub using Amazon EBS encrypted volumes or trail file encryption. Also
configure encryption for data sent between the Oracle GoldenGate hub and the source and

Using Oracle GoldenGate 4169

https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

Amazon Relational Database Service User Guide

target database instances. RDS for Oracle DB instances support encryption with Oracle Secure
Sockets Layer or Oracle native network encryption.

Oracle GoldenGate architecture

The Oracle GoldenGate architecture for use with Amazon RDS consists of the following decoupled
modules:

Source database

Your source database can be either an on-premises Oracle database, an Oracle database on an
Amazon EC2 instance, or an Oracle database on an Amazon RDS DB instance.

Oracle GoldenGate hub

An Oracle GoldenGate hub moves transaction information from the source database to the
target database. Your hub can be either of the following:

• An Amazon EC2 instance with Oracle Database and Oracle GoldenGate installed

• An on-premises Oracle installation

You can have more than one Amazon EC2 hub. We recommend that you use two hubs if you use
Oracle GoldenGate for cross-Region replication.

Target database

Your target database can be on either an Amazon RDS DB instance, an Amazon EC2 instance, or
an on-premises location.

The following sections describe common scenarios for Oracle GoldenGate on Amazon RDS.

Topics

• On-premises source database and Oracle GoldenGate hub

• On-premises source database and Amazon EC2 hub

• Amazon RDS source database and Amazon EC2 hub

• Amazon EC2 source database and Amazon EC2 hub

• Amazon EC2 hubs in different AWS Regions

Using Oracle GoldenGate 4170

Amazon Relational Database Service User Guide

On-premises source database and Oracle GoldenGate hub

In this scenario, an on-premises Oracle source database and on-premises Oracle GoldenGate hub
provides data to a target Amazon RDS DB instance.

On-premises source database and Amazon EC2 hub

In this scenario, an on-premises Oracle database acts as the source database. It's connected to an
Amazon EC2 instance hub. This hub provides data to a target RDS for Oracle DB instance.

Amazon RDS source database and Amazon EC2 hub

In this scenario, an RDS for Oracle DB instance acts as the source database. It's connected to an
Amazon EC2 instance hub. This hub provides data to a target RDS for Oracle DB instance.

Using Oracle GoldenGate 4171

Amazon Relational Database Service User Guide

Amazon EC2 source database and Amazon EC2 hub

In this scenario, an Oracle database on an Amazon EC2 instance acts as the source database. It's
connected to an Amazon EC2 instance hub. This hub provides data to a target RDS for Oracle DB
instance.

Amazon EC2 hubs in different AWS Regions

In this scenario, an Oracle database on an Amazon RDS DB instance is connected to an Amazon EC2
instance hub in the same AWS Region. The hub is connected to an Amazon EC2 instance hub in a

Using Oracle GoldenGate 4172

Amazon Relational Database Service User Guide

different AWS Region. This second hub provides data to the target RDS for Oracle DB instance in
the same AWS Region as the second Amazon EC2 instance hub.

Note

Any issues that affect running Oracle GoldenGate on an on-premises environment also
affect running Oracle GoldenGate on AWS. We strongly recommend that you monitor the
Oracle GoldenGate hub to ensure that EXTRACT and REPLICAT are resumed if a failover
occurs. Because the Oracle GoldenGate hub is run on an Amazon EC2 instance, Amazon
RDS does not manage the Oracle GoldenGate hub and cannot ensure that it is running.

Setting up Oracle GoldenGate

To set up Oracle GoldenGate using Amazon RDS, configure the hub on an Amazon EC2 instance,
and then configure the source and target databases. The following sections give an example of
how to set up Oracle GoldenGate for use with Amazon RDS for Oracle.

Topics

• Setting up an Oracle GoldenGate hub on Amazon EC2

• Setting up a source database for use with Oracle GoldenGate on Amazon RDS

• Setting up a target database for use with Oracle GoldenGate on Amazon RDS

Using Oracle GoldenGate 4173

Amazon Relational Database Service User Guide

Setting up an Oracle GoldenGate hub on Amazon EC2

To create an Oracle GoldenGate hub on an Amazon EC2 instance, you first create an Amazon EC2
instance with a full client installation of Oracle RDBMS. The Amazon EC2 instance must also have
Oracle GoldenGate software installed. The Oracle GoldenGate software versions depend on the
source and target database versions. For more information about installing Oracle GoldenGate, see
the Oracle GoldenGate documentation.

The Amazon EC2 instance that serves as the Oracle GoldenGate hub stores and processes the
transaction information from the source database into trail files. To support this process, make sure
that you meet the following requirements:

• You have allocated enough storage for the trail files.

• The Amazon EC2 instance has enough processing power to manage the amount of data.

• The EC2 instance has enough memory to store the transaction information before it's written to
the trail file.

To set up an Oracle GoldenGate classic architecture hub on an Amazon EC2 instance

1. Create subdirectories in the Oracle GoldenGate directory.

In the Amazon EC2 command line shell, start ggsci, the Oracle GoldenGate command
interpreter. The CREATE SUBDIRS command creates subdirectories under the /gg directory
for parameter, report, and checkpoint files.

prompt$ cd /gg
prompt$./ggsci

GGSCI> CREATE SUBDIRS

2. Configure the mgr.prm file.

The following example adds lines to the $GGHOME/dirprm/mgr.prm file.

PORT 8199
PurgeOldExtracts ./dirdat/*, UseCheckpoints, MINKEEPDAYS 5

3. Start the manager.

The following example starts ggsci and runs the start mgr command.

Using Oracle GoldenGate 4174

https://docs.oracle.com/en/middleware/goldengate/core/index.html

Amazon Relational Database Service User Guide

GGSCI> start mgr

The Oracle GoldenGate hub is now ready for use.

Setting up a source database for use with Oracle GoldenGate on Amazon RDS

Complete the following tasks to set up a source database for use with Oracle GoldenGate.

Setup steps

• Step 1: Turn on supplemental logging on the source database

• Step 2: Set the ENABLE_GOLDENGATE_REPLICATION initialization parameter to true

• Step 3: Set the log retention period on the source database

• Step 4: Create an Oracle GoldenGate user account on the source database

• Step 5: Grant user account privileges on the source database

• Step 6: Add a TNS alias for the source database

Step 1: Turn on supplemental logging on the source database

To turn on the minimum database-level supplemental logging, run the following PL/SQL
procedure:

EXEC rdsadmin.rdsadmin_util.alter_supplemental_logging(p_action => 'ADD')

Step 2: Set the ENABLE_GOLDENGATE_REPLICATION initialization parameter to true

When you set the ENABLE_GOLDENGATE_REPLICATION initialization parameter to true, it allows
database services to support logical replication. If your source database is on an Amazon RDS
DB instance, make sure that you have a parameter group assigned to the DB instance with the
ENABLE_GOLDENGATE_REPLICATION initialization parameter set to true. For more information
about the ENABLE_GOLDENGATE_REPLICATION initialization parameter, see the Oracle Database
documentation.

Step 3: Set the log retention period on the source database

Make sure that you configure the source database to retain archived redo logs. Consider the
following guidelines:

Using Oracle GoldenGate 4175

https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/ENABLE_GOLDENGATE_REPLICATION.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/ENABLE_GOLDENGATE_REPLICATION.html

Amazon Relational Database Service User Guide

• Specify the duration for log retention in hours. The minimum value is one hour.

• Set the duration to exceed any potential downtime of the source DB instance, any potential
period of communication, and any potential period of networking issues for the source instance.
Such a duration lets Oracle GoldenGate recover logs from the source instance as needed.

• Ensure that you have sufficient storage on your instance for the files.

For example, set the retention period for archived redo logs to 24 hours.

EXEC rdsadmin.rdsadmin_util.set_configuration('archivelog retention hours',24)

If you don't have log retention enabled, or if the retention value is too small, you receive an error
message similar to the following.

2022-03-06 06:17:27 ERROR OGG-00446 error 2 (No such file or directory)
opening redo log /rdsdbdata/db/GGTEST3_A/onlinelog/o1_mf_2_9k4bp1n6_.log for sequence
 1306
Not able to establish initial position for begin time 2022-03-06 06:16:55.

Because your DB instance retains your archived redo logs, make sure that you have sufficient space
for the files. To see how much space you have used in the last num_hours hours, run the following
query, replacing num_hours with the number of hours.

SELECT SUM(BLOCKS * BLOCK_SIZE) BYTES FROM V$ARCHIVED_LOG
 WHERE NEXT_TIME>=SYSDATE-num_hours/24 AND DEST_ID=1;

Step 4: Create an Oracle GoldenGate user account on the source database

Oracle GoldenGate runs as a database user and requires the appropriate database privileges
to access the redo and archived redo logs for the source database. To provide these, create a
user account on the source database. For more information about the permissions for an Oracle
GoldenGate user account, see the Oracle documentation.

The following statements create a user account named oggadm1.

CREATE TABLESPACE administrator;
CREATE USER oggadm1 IDENTIFIED BY "password"
 DEFAULT TABLESPACE ADMINISTRATOR TEMPORARY TABLESPACE TEMP;

Using Oracle GoldenGate 4176

https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-79122058-27B0-4FB6-B3DC-B7D1B67EB053

Amazon Relational Database Service User Guide

ALTER USER oggadm1 QUOTA UNLIMITED ON administrator;

Note

Specify a password other than the prompt shown here as a security best practice.

Step 5: Grant user account privileges on the source database

In this task, you grant necessary account privileges for database users on your source database.

To grant account privileges on the source database

1. Grant the necessary privileges to the Oracle GoldenGate user account using the SQL command
grant and the rdsadmin.rdsadmin_util procedure grant_sys_object. The following
statements grant privileges to a user named oggadm1.

GRANT CREATE SESSION, ALTER SESSION TO oggadm1;
GRANT RESOURCE TO oggadm1;
GRANT SELECT ANY DICTIONARY TO oggadm1;
GRANT FLASHBACK ANY TABLE TO oggadm1;
GRANT SELECT ANY TABLE TO oggadm1;
GRANT SELECT_CATALOG_ROLE TO rds_master_user_name WITH ADMIN OPTION;
EXEC rdsadmin.rdsadmin_util.grant_sys_object ('DBA_CLUSTERS', 'OGGADM1');
GRANT EXECUTE ON DBMS_FLASHBACK TO oggadm1;
GRANT SELECT ON SYS.V_$DATABASE TO oggadm1;
GRANT ALTER ANY TABLE TO oggadm1;

2. Grant the privileges needed by a user account to be an Oracle GoldenGate administrator. Run
the following PL/SQL program.

EXEC rdsadmin.rdsadmin_dbms_goldengate_auth.grant_admin_privilege (
 grantee => 'OGGADM1',
 privilege_type => 'capture',
 grant_select_privileges => true,
 do_grants => TRUE);

To revoke privileges, use the procedure revoke_admin_privilege in the same package.

Using Oracle GoldenGate 4177

Amazon Relational Database Service User Guide

Step 6: Add a TNS alias for the source database

Add the following entry to $ORACLE_HOME/network/admin/tnsnames.ora in the Oracle home
to be used by the EXTRACT process. For more information on the tnsnames.ora file, see the
Oracle documentation.

OGGSOURCE=
 (DESCRIPTION=
 (ENABLE=BROKEN)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=goldengate-source.abcdef12345.us-
west-2.rds.amazonaws.com)(PORT=8200)))
 (CONNECT_DATA=(SERVICE_NAME=ORCL))
)

Setting up a target database for use with Oracle GoldenGate on Amazon RDS

In this task, you set up a target DB instance for use with Oracle GoldenGate.

Setup steps

• Step 1: Set the ENABLE_GOLDENGATE_REPLICATION initialization parameter to true

• Step 2: Create an Oracle GoldenGate user account on the target database

• Step 3: Grant account privileges on the target database

• Step 4: Add a TNS alias for the target database

Step 1: Set the ENABLE_GOLDENGATE_REPLICATION initialization parameter to true

When you set the ENABLE_GOLDENGATE_REPLICATION initialization parameter is to true, it
allows database services to support logical replication. If your source database is on an Amazon
RDS DB instance, make sure that you have a parameter group assigned to the DB instance with the
ENABLE_GOLDENGATE_REPLICATION initialization parameter set to true. For more information
about the ENABLE_GOLDENGATE_REPLICATION initialization parameter, see the Oracle Database
documentation.

Step 2: Create an Oracle GoldenGate user account on the target database

Oracle GoldenGate runs as a database user and requires the appropriate database privileges. To
make sure it has these privileges, create a user account on the target database.

The following statement creates a user named oggadm1.

Using Oracle GoldenGate 4178

https://docs.oracle.com/en/database/oracle/oracle-database/19/netrf/local-naming-parameters-in-tns-ora-file.html#GUID-7F967CE5-5498-427C-9390-4A5C6767ADAA
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/ENABLE_GOLDENGATE_REPLICATION.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/ENABLE_GOLDENGATE_REPLICATION.html

Amazon Relational Database Service User Guide

CREATE TABLESPSACE administrator;
CREATE USER oggadm1 IDENTIFIED BY "password"
 DEFAULT TABLESPACE administrator
 TEMPORARY TABLESPACE temp;
ALTER USER oggadm1 QUOTA UNLIMITED ON administrator;

Note

Specify a password other than the prompt shown here as a security best practice.

Step 3: Grant account privileges on the target database

In this task, you grant necessary account privileges for database users on your target database.

To grant account privileges on the target database

1. Grant necessary privileges to the Oracle GoldenGate user account on the target database. In
the following example, you grant privileges to oggadm1.

GRANT CREATE SESSION TO oggadm1;
GRANT ALTER SESSION TO oggadm1;
GRANT CREATE CLUSTER TO oggadm1;
GRANT CREATE INDEXTYPE TO oggadm1;
GRANT CREATE OPERATOR TO oggadm1;
GRANT CREATE PROCEDURE TO oggadm1;
GRANT CREATE SEQUENCE TO oggadm1;
GRANT CREATE TABLE TO oggadm1;
GRANT CREATE TRIGGER TO oggadm1;
GRANT CREATE TYPE TO oggadm1;
GRANT SELECT ANY DICTIONARY TO oggadm1;
GRANT CREATE ANY TABLE TO oggadm1;
GRANT ALTER ANY TABLE TO oggadm1;
GRANT LOCK ANY TABLE TO oggadm1;
GRANT SELECT ANY TABLE TO oggadm1;
GRANT INSERT ANY TABLE TO oggadm1;
GRANT UPDATE ANY TABLE TO oggadm1;
GRANT DELETE ANY TABLE TO oggadm1;

2. Grant the privileges needed by a user account to be an Oracle GoldenGate administrator. Run
the following PL/SQL program.

Using Oracle GoldenGate 4179

Amazon Relational Database Service User Guide

EXEC rdsadmin.rdsadmin_dbms_goldengate_auth.grant_admin_privilege (
 grantee => 'OGGADM1',
 privilege_type => 'apply',
 grant_select_privileges => true,
 do_grants => TRUE);

To revoke privileges, use the procedure revoke_admin_privilege in the same package.

Step 4: Add a TNS alias for the target database

Add the following entry to $ORACLE_HOME/network/admin/tnsnames.ora in the Oracle home
to be used by the REPLICAT process. For Oracle Multitenant databases, make sure that the TNS
alias points to the service name of the PDB. For more information on the tnsnames.ora file, see
the Oracle documentation.

OGGTARGET=
 (DESCRIPTION=
 (ENABLE=BROKEN)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=goldengate-target.abcdef12345.us-
west-2.rds.amazonaws.com)(PORT=8200)))
 (CONNECT_DATA=(SERVICE_NAME=ORCL))
)

Working with the EXTRACT and REPLICAT utilities of Oracle GoldenGate

The Oracle GoldenGate utilities EXTRACT and REPLICAT work together to keep the source and
target databases in sync via incremental transaction replication using trail files. All changes
that occur on the source database are automatically detected by EXTRACT, then formatted and
transferred to trail files on the Oracle GoldenGate on-premises or Amazon EC2 instance hub. After
initial load is completed, the data is read from these files and replicated to the target database by
the REPLICAT utility.

Running the Oracle GoldenGate EXTRACT utility

The EXTRACT utility retrieves, converts, and outputs data from the source database to trail files.
The basic process is as follows:

1. EXTRACT queues transaction details to memory or to temporary disk storage.

Using Oracle GoldenGate 4180

https://docs.oracle.com/en/database/oracle/oracle-database/19/netrf/local-naming-parameters-in-tns-ora-file.html#GUID-7F967CE5-5498-427C-9390-4A5C6767ADAA

Amazon Relational Database Service User Guide

2. The source database commits the transaction.

3. EXTRACT writes the transaction details to a trail file.

4. The trail file routes these details to the Oracle GoldenGate on-premises or the Amazon EC2
instance hub and then to the target database.

The following steps start the EXTRACT utility, capture the data from EXAMPLE.TABLE in source
database OGGSOURCE, and create the trail files.

To run the EXTRACT utility

1. Configure the EXTRACT parameter file on the Oracle GoldenGate hub (on-premises or Amazon
EC2 instance). The following listing shows an example EXTRACT parameter file named
$GGHOME/dirprm/eabc.prm.

EXTRACT EABC

USERID oggadm1@OGGSOURCE, PASSWORD "my-password"
EXTTRAIL /path/to/goldengate/dirdat/ab

IGNOREREPLICATES
GETAPPLOPS
TRANLOGOPTIONS EXCLUDEUSER OGGADM1

TABLE EXAMPLE.TABLE;

2. On the Oracle GoldenGate hub, log in to the source database and launch the Oracle
GoldenGate command line interface ggsci. The following example shows the format for
logging in.

dblogin oggadm1@OGGSOURCE

3. Add transaction data to turn on supplemental logging for the database table.

add trandata EXAMPLE.TABLE

4. Using the ggsci command line, enable the EXTRACT utility using the following commands.

add extract EABC tranlog, INTEGRATED tranlog, begin now
add exttrail /path/to/goldengate/dirdat/ab
 extract EABC,

Using Oracle GoldenGate 4181

Amazon Relational Database Service User Guide

 MEGABYTES 100

5. Register the EXTRACT utility with the database so that the archive logs are not deleted. This
task allows you to recover old, uncommitted transactions if necessary. To register the EXTRACT
utility with the database, use the following command.

register EXTRACT EABC, DATABASE

6. Start the EXTRACT utility with the following command.

start EABC

Running the Oracle GoldenGate REPLICAT utility

The REPLICAT utility "pushes" transaction information in the trail files to the target database.

The following steps enable and start the REPLICAT utility so that it can replicate the captured data
to the table EXAMPLE.TABLE in target database OGGTARGET.

To run the REPLICATE utility

1. Configure the REPLICAT parameter file on the Oracle GoldenGate hub (on-premises or EC2
instance). The following listing shows an example REPLICAT parameter file named $GGHOME/
dirprm/rabc.prm.

REPLICAT RABC

USERID oggadm1@OGGTARGET, password "my-password"

ASSUMETARGETDEFS
MAP EXAMPLE.TABLE, TARGET EXAMPLE.TABLE;

Note

Specify a password other than the prompt shown here as a security best practice.

2. Log in to the target database and launch the Oracle GoldenGate command line interface
(ggsci). The following example shows the format for logging in.

Using Oracle GoldenGate 4182

Amazon Relational Database Service User Guide

dblogin userid oggadm1@OGGTARGET

3. Using the ggsci command line, add a checkpoint table. The user indicated should be the
Oracle GoldenGate user account, not the target table schema owner. The following example
creates a checkpoint table named gg_checkpoint.

add checkpointtable oggadm1.oggchkpt

4. To enable the REPLICAT utility, use the following command.

add replicat RABC EXTTRAIL /path/to/goldengate/dirdat/ab CHECKPOINTTABLE
 oggadm1.oggchkpt

5. Start the REPLICAT utility by using the following command.

start RABC

Monitoring Oracle GoldenGate

When you use Oracle GoldenGate for replication, make sure that the Oracle GoldenGate process is
up and running and the source and target databases are synchronized. You can use the following
monitoring tools:

• Amazon CloudWatch is a monitoring service that is used in this pattern to monitor GoldenGate
error logs.

• Amazon SNS is a message notification service that is used in this pattern to send email
notifications.

For detailed instructions, see Monitor Oracle GoldenGate logs by using Amazon CloudWatch.

Troubleshooting Oracle GoldenGate

This section explains the most common issues when using Oracle GoldenGate with Amazon RDS for
Oracle.

Topics

• Error opening an online redo log

Using Oracle GoldenGate 4183

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/monitor-oracle-goldengate-logs-by-using-amazon-cloudwatch.html

Amazon Relational Database Service User Guide

• Oracle GoldenGate appears to be properly configured but replication is not working

• Integrated REPLICAT slow due to query on SYS."_DBA_APPLY_CDR_INFO"

Error opening an online redo log

Make sure that you configure your databases to retain archived redo logs. Consider the following
guidelines:

• Specify the duration for log retention in hours. The minimum value is one hour.

• Set the duration to exceed any potential downtime of the source DB instance, any potential
period of communication, and any potential period of networking issues for the source DB
instance. Such a duration lets Oracle GoldenGate recover logs from the source DB instance as
needed.

• Ensure that you have sufficient storage on your instance for the files.

If you don't have log retention enabled, or if the retention value is too small, you receive an error
message similar to the following.

2022-03-06 06:17:27 ERROR OGG-00446 error 2 (No such file or directory)
opening redo log /rdsdbdata/db/GGTEST3_A/onlinelog/o1_mf_2_9k4bp1n6_.log for sequence
 1306
Not able to establish initial position for begin time 2022-03-06 06:16:55.

Oracle GoldenGate appears to be properly configured but replication is not working

For pre-existing tables, you must specify the SCN that Oracle GoldenGate works from.

To fix this issue

1. Log in to the source database and launch the Oracle GoldenGate command line interface
(ggsci). The following example shows the format for logging in.

dblogin userid oggadm1@OGGSOURCE

2. Using the ggsci command line, set up the start SCN for the EXTRACT process. The following
example sets the SCN to 223274 for the EXTRACT.

ALTER EXTRACT EABC SCN 223274

Using Oracle GoldenGate 4184

Amazon Relational Database Service User Guide

start EABC

3. Log in to the target database. The following example shows the format for logging in.

dblogin userid oggadm1@OGGTARGET

4. Using the ggsci command line, set up the start SCN for the REPLICAT process. The following
example sets the SCN to 223274 for the REPLICAT.

start RABC atcsn 223274

Integrated REPLICAT slow due to query on SYS."_DBA_APPLY_CDR_INFO"

Oracle GoldenGate Conflict Detection and Resolution (CDR) provides basic conflict resolution
routines. For example, CDR can resolve a unique conflict for an INSERT statement.

When CDR resolves a collision, it can insert records into the exception table
_DBA_APPLY_CDR_INFO temporarily. Integrated REPLICAT deletes these records later. In a
rare scenario, the integrated REPLICAT can process a large number of collisions, but a new
integrated REPLICAT does not replace it. Instead of being removed, the existing rows in
_DBA_APPLY_CDR_INFO are orphaned. Any new integrated REPLICAT processes slow down
because they are querying orphaned rows in _DBA_APPLY_CDR_INFO.

To remove all rows from _DBA_APPLY_CDR_INFO, use the Amazon RDS procedure
rdsadmin.rdsadmin_util.truncate_apply$_cdr_info. This procedure is released as part of
the October 2020 release and patch update. The procedure is available in the following database
versions:

• Version 21.0.0.0.ru-2022-01.rur-2022-01.r1 and higher

• Version 19.0.0.0.ru-2020-10.rur-2020-10.r1 and higher

The following example truncates the table _DBA_APPLY_CDR_INFO.

SET SERVEROUTPUT ON SIZE 2000
EXEC rdsadmin.rdsadmin_util.truncate_apply$_cdr_info;

Using Oracle GoldenGate 4185

https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-21-0.html#oracle-version-RU-RUR.21.0.0.0.ru-2022-01.rur-2022-01.r1
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/oracle-version-19-0.html#oracle-version-RU-RUR.19.0.0.0.ru-2020-10.rur-2020-10.r1

Amazon Relational Database Service User Guide

Using the Oracle Repository Creation Utility on RDS for Oracle

You can use Amazon RDS to host an RDS for Oracle DB instance that holds the schemas to support
your Oracle Fusion Middleware components. Before you can use Fusion Middleware components,
create and populate schemas for them in your database. You create and populate the schemas by
using the Oracle Repository Creation Utility (RCU).

Supported versions and licensing options for RCU

Amazon RDS supports Oracle Repository Creation Utility (RCU) version 12c only. You can use the
RCU in the following configurations:

• RCU 12c with Oracle Database 21c

• RCU 12c with Oracle Database 19c

Before you can use RCU, make sure that you do the following:

• Obtain a license for Oracle Fusion Middleware.

• Follow the Oracle licensing guidelines for the Oracle database that hosts the repository. For
more information, see Oracle Fusion Middleware Licensing Information User Manual in the
Oracle documentation.

Fusion MiddleWare supports repositories on Oracle Database Enterprise Edition and Standard
Edition 2. Oracle recommends Enterprise Edition for production installations that require
partitioning and installations that require online index rebuild.

Before you create your RDS for Oracle instance, confirm the Oracle database version that you
need to support the components that you want to deploy. To find the requirements for the
Fusion Middleware components and versions you want to deploy, use the Certification Matrix. For
more information, see Oracle Fusion Middleware Supported System Configurations in the Oracle
documentation.

Amazon RDS supports Oracle database version upgrades as needed. For more information, see
Upgrading a DB instance engine version.

Requirements and limitations for RCU

To use RCU, you need an Amazon VPC. Your Amazon RDS DB instance must be available only to
your Fusion Middleware components, and not to the public Internet. Thus, host your Amazon RDS

Using the Oracle Repository Creation Utility 4186

https://docs.oracle.com/en/middleware/fusion-middleware/fmwlc/
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Amazon Relational Database Service User Guide

DB instance in a private subnet, which provides greater security. You also need an RDS for Oracle
DB instance. For more information, see Creating and connecting to an Oracle DB instance.

You can store the schemas for any Fusion Middleware components in your Amazon RDS DB
instance. The following schemas have been verified to install correctly:

• Analytics (ACTIVITIES)

• Audit Services (IAU)

• Audit Services Append (IAU_APPEND)

• Audit Services Viewer (IAU_VIEWER)

• Discussions (DISCUSSIONS)

• Metadata Services (MDS)

• Oracle Business Intelligence (BIPLATFORM)

• Oracle Platform Security Services (OPSS)

• Portal and Services (WEBCENTER)

• Portlet Producers (PORTLET)

• Service Table (STB)

• SOA Infrastructure (SOAINFRA)

• User Messaging Service (UCSUMS)

• WebLogic Services (WLS)

Guidelines for using RCU

The following are some recommendations for working with your DB instance in this scenario:

• We recommend that you use Multi-AZ for production workloads. For more information about
working with multiple Availability Zones, see Regions, Availability Zones, and Local Zones.

• For additional security, Oracle recommends that you use Transparent Data Encryption (TDE)
to encrypt your data at rest. If you have an Enterprise Edition license that includes the
Advanced Security Option, you can enable encryption at rest by using the TDE option. For more
information, see Oracle Transparent Data Encryption.

Amazon RDS also provides an encryption at rest option for all database editions. For more
information, see Encrypting Amazon RDS resources.

Using the Oracle Repository Creation Utility 4187

Amazon Relational Database Service User Guide

• Configure your VPC Security Groups to allow communication between your application servers
and your Amazon RDS DB instance. The application servers that host the Fusion Middleware
components can be on Amazon EC2 or on-premises.

Running RCU

To create and populate the schemas to support your Fusion Middleware components, use the
Oracle Repository Creation Utility (RCU). You can run RCU in different ways.

Topics

• Running RCU using the command line in one step

• Running RCU using the command line in multiple steps

• Running RCU in interactive mode

Running RCU using the command line in one step

If you don't need to edit any of your schemas before populating them, you can run RCU in a single
step. Otherwise, see the following section for running RCU in multiple steps.

You can run the RCU in silent mode by using the command-line parameter -silent. When you run
RCU in silent mode, you can avoid entering passwords on the command line by creating a text file
containing the passwords. Create a text file with the password for dbUser on the first line, and the
password for each component on subsequent lines. You specify the name of the password file as
the last parameter to the RCU command.

Example

The following example creates and populates schemas for the SOA Infrastructure component (and
its dependencies) in a single step.

For Linux, macOS, or Unix:

export ORACLE_HOME=/u01/app/oracle/product/12.2.1.0/fmw
export JAVA_HOME=/usr/java/jdk1.8.0_65
${ORACLE_HOME}/oracle_common/bin/rcu \
-silent \
-createRepository \
-connectString ${dbhost}:${dbport}:${dbname} \
-dbUser ${dbuser} \

Using the Oracle Repository Creation Utility 4188

Amazon Relational Database Service User Guide

-dbRole Normal \
-honorOMF \
-schemaPrefix ${SCHEMA_PREFIX} \
-component MDS \
-component STB \
-component OPSS \
-component IAU \
-component IAU_APPEND \
-component IAU_VIEWER \
-component UCSUMS \
-component WLS \
-component SOAINFRA \
-f < /tmp/passwordfile.txt

For more information, see Running Repository Creation Utility from the command line in the
Oracle documentation.

Running RCU using the command line in multiple steps

To manually edit your schema scripts, run RCU in multiple steps:

1. Run RCU in Prepare Scripts for System Load mode by using the -generateScript command-
line parameter to create the scripts for your schemas.

2. Manually edit and run the generated script script_systemLoad.sql.

3. Run RCU again in Perform Product Load mode by using the -dataLoad command-line
parameter to populate the schemas.

4. Run the generated cleanup script script_postDataLoad.sql.

To run RCU in silent mode, specify the command-line parameter -silent. When you run RCU
in silent mode, you can avoid typing passwords on the command line by creating a text file
containing the passwords. Create a text file with the password for dbUser on the first line, and the
password for each component on subsequent lines. Specify the name of the password file as the
last parameter to the RCU command.

Example

The following example creates schema scripts for the SOA Infrastructure component and its
dependencies.

For Linux, macOS, or Unix:

Using the Oracle Repository Creation Utility 4189

https://docs.oracle.com/middleware/1221/core/RCUUG/GUID-0D3A2959-7CC8-4001-997E-718ADF04C5F2.htm#RCUUG248

Amazon Relational Database Service User Guide

export ORACLE_HOME=/u01/app/oracle/product/12.2.1.0/fmw
export JAVA_HOME=/usr/java/jdk1.8.0_65
${ORACLE_HOME}/oracle_common/bin/rcu \
-silent \
-generateScript \
-connectString ${dbhost}:${dbport}:${dbname} \
-dbUser ${dbuser} \
-dbRole Normal \
-honorOMF \
[-encryptTablespace true] \
-schemaPrefix ${SCHEMA_PREFIX} \
-component MDS \
-component STB \
-component OPSS \
-component IAU \
-component IAU_APPEND \
-component IAU_VIEWER \
-component UCSUMS \
-component WLS \
-component SOAINFRA \
-scriptLocation /tmp/rcuscripts \
-f < /tmp/passwordfile.txt

Now you can edit the generated script, connect to your Oracle DB instance, and run the script. The
generated script is named script_systemLoad.sql. For information about connecting to your
Oracle DB instance, see Step 3: Connect your SQL client to an Oracle DB instance.

The following example populates the schemas for the SOA Infrastructure component (and its
dependencies).

For Linux, macOS, or Unix:

export JAVA_HOME=/usr/java/jdk1.8.0_65
${ORACLE_HOME}/oracle_common/bin/rcu \
-silent \
-dataLoad \
-connectString ${dbhost}:${dbport}:${dbname} \
-dbUser ${dbuser} \
-dbRole Normal \
-honorOMF \
-schemaPrefix ${SCHEMA_PREFIX} \
-component MDS \

Using the Oracle Repository Creation Utility 4190

Amazon Relational Database Service User Guide

-component STB \
-component OPSS \
-component IAU \
-component IAU_APPEND \
-component IAU_VIEWER \
-component UCSUMS \
-component WLS \
-component SOAINFRA \
-f < /tmp/passwordfile.txt

To finish, you connect to your Oracle DB instance, and run the clean-up script. The script is named
script_postDataLoad.sql.

For more information, see Running Repository Creation Utility from the command line in the
Oracle documentation.

Running RCU in interactive mode

To use the RCU graphical user interface, run RCU in interactive mode. Include the -interactive
parameter and omit the -silent parameter. For more information, see Understanding Repository
Creation Utility screens in the Oracle documentation.

Example

The following example starts RCU in interactive mode and pre-populates the connection
information.

For Linux, macOS, or Unix:

export ORACLE_HOME=/u01/app/oracle/product/12.2.1.0/fmw
export JAVA_HOME=/usr/java/jdk1.8.0_65
${ORACLE_HOME}/oracle_common/bin/rcu \
-interactive \
-createRepository \
-connectString ${dbhost}:${dbport}:${dbname} \
-dbUser ${dbuser} \
-dbRole Normal

Troubleshooting RCU

Be mindful of the following issues.

Using the Oracle Repository Creation Utility 4191

https://docs.oracle.com/middleware/1221/core/RCUUG/GUID-0D3A2959-7CC8-4001-997E-718ADF04C5F2.htm#RCUUG248
https://docs.oracle.com/middleware/1213/core/RCUUG/rcu_screens.htm#RCUUG143
https://docs.oracle.com/middleware/1213/core/RCUUG/rcu_screens.htm#RCUUG143

Amazon Relational Database Service User Guide

Topics

• Oracle Managed Files (OMF)

• Object privileges

• Enterprise Scheduler Service

Oracle Managed Files (OMF)

Amazon RDS uses OMF data files to simplify storage management. You can customize tablespace
attributes, such as size and extent management. However, if you specify a data file name when you
run RCU, the tablespace code fails with ORA-20900. You can use RCU with OMF in the following
ways:

• In RCU 12.2.1.0 and later, use the -honorOMF command-line parameter.

• In RCU 12.1.0.3 and later, use multiple steps and edit the generated script. For more information,
see Running RCU using the command line in multiple steps.

Object privileges

Because Amazon RDS is a managed service, you don't have full SYSDBA access to your RDS for
Oracle DB instance. However, RCU 12c supports users with lower privileges. In most cases, the
master user privilege is sufficient to create repositories.

The master account can directly grant privileges that it has already been granted WITH GRANT
OPTION. In some cases, when you attempt to grant SYS object privileges, the RCU might fail with
ORA-01031. You can retry and run the rdsadmin_util.grant_sys_object stored procedure,
as shown in the following example:

BEGIN
 rdsadmin.rdsadmin_util.grant_sys_object('GV_$SESSION','MY_DBA','SELECT');
END;
/

If you attempt to grant SYS privileges on the object SCHEMA_VERSION_REGISTRY, the operation
might fail with ORA-20199: Error in rdsadmin_util.grant_sys_object. You can qualify
the table SCHEMA_VERSION_REGISTRY$ and the view SCHEMA_VERSION_REGISTRY with the
schema owner name, which is SYSTEM, and retry the operation. Or, you can create a synonym. Log
in as the master user and run the following statements:

Using the Oracle Repository Creation Utility 4192

Amazon Relational Database Service User Guide

CREATE OR REPLACE VIEW SYSTEM.SCHEMA_VERSION_REGISTRY
 AS SELECT * FROM SYSTEM.SCHEMA_VERSION_REGISTRY$;
CREATE OR REPLACE PUBLIC SYNONYM SCHEMA_VERSION_REGISTRY FOR
 SYSTEM.SCHEMA_VERSION_REGISTRY;
CREATE OR REPLACE PUBLIC SYNONYM SCHEMA_VERSION_REGISTRY$ FOR SCHEMA_VERSION_REGISTRY;

Enterprise Scheduler Service

When you use the RCU to drop an Enterprise Scheduler Service repository, the RCU might fail with
Error: Component drop check failed.

Using the Oracle Repository Creation Utility 4193

Amazon Relational Database Service User Guide

Configuring Oracle Connection Manager on an Amazon EC2 instance

Oracle Connection Manager (CMAN) is a proxy server that forwards connection requests to
database servers or other proxy servers. You can use CMAN to configure the following:

Access control

You can create rules that filter out user-specified client requests and accept others.

Session multiplexing

You can funnel multiple client sessions through a network connection to a shared server
destination.

Typically, CMAN resides on a host separate from the database server and client hosts. For more
information, see Configuring Oracle Connection Manager in the Oracle Database documentation.

Topics

• Supported versions and licensing options for CMAN

• Requirements and limitations for CMAN

• Configuring CMAN

Supported versions and licensing options for CMAN

CMAN supports the Enterprise Edition of all versions of Oracle Database that Amazon RDS
supports. For more information, see RDS for Oracle releases.

You can install Oracle Connection Manager on a separate host from the host where Oracle
Database is installed. You don't need a separate license for the host that runs CMAN.

Requirements and limitations for CMAN

To provide a fully managed experience, Amazon RDS restricts access to the operating system. You
can't modify database parameters that require operating system access. Thus, Amazon RDS doesn't
support features of CMAN that require you to log in to the operating system.

Configuring CMAN

When you configure CMAN, you perform most of the work outside of your RDS for Oracle
database.

Configuring CMAN 4194

https://docs.oracle.com/en/database/oracle/oracle-database/19/netag/configuring-oracle-connection-manager.html#GUID-AF8A511E-9AE6-4F4D-8E58-F28BC53F64E4

Amazon Relational Database Service User Guide

Topics

• Step 1: Configure CMAN on an Amazon EC2 instance in the same VPC as the RDS for Oracle
instance

• Step 2: Configure database parameters for CMAN

• Step 3: Associate your DB instance with the parameter group

Step 1: Configure CMAN on an Amazon EC2 instance in the same VPC as the RDS for Oracle
instance

To learn how to set up CMAN, follow the detailed instructions in the blog post Configuring and
using Oracle Connection Manager on Amazon EC2 for Amazon RDS for Oracle.

Step 2: Configure database parameters for CMAN

For CMAN features such as Traffic Director Mode and session multiplexing, set REMOTE_LISTENER
parameter to the address of CMAN instance in a DB parameter group. Consider the following
scenario:

• The CMAN instance resides on a host with IP address 10.0.159.100 and uses port 1521.

• The databases orcla, orclb, and orclc reside on separate RDS for Oracle DB instances.

The following table shows how to set the REMOTE_LISTENER value. The LOCAL_LISTENER value
is set automatically by Amazon RDS.

DB
instance
name

DB instance
IP

Local listener value (set
automatically)

Remote listener value (set
by user)

orcla 10.0.159.
200

(address=
 (protocol=tcp)
 (host=10.0.159.200)
 (port=1521)
)

10.0.159.100:1521

orclb 10.0.159.
300

(address=
 (protocol=tcp)
 (host=10.0.159.300)

10.0.159.100:1521

Configuring CMAN 4195

https://aws.amazon.com/blogs/database/configuring-and-using-oracle-connection-manager-on-amazon-ec2-for-amazon-rds-for-oracle/
https://aws.amazon.com/blogs/database/configuring-and-using-oracle-connection-manager-on-amazon-ec2-for-amazon-rds-for-oracle/

Amazon Relational Database Service User Guide

DB
instance
name

DB instance
IP

Local listener value (set
automatically)

Remote listener value (set
by user)

 (port=1521)
)

orclc 10.0.159.
400

(address=
 (protocol=tcp)
 (host=10.0.159.400)
 (port=1521)
)

10.0.159.100:1521

Step 3: Associate your DB instance with the parameter group

Create or modify your DB instance to use the parameter group that you configured in Step 2:
Configure database parameters for CMAN. For more information, see Associating a DB parameter
group with a DB instance in Amazon RDS.

Configuring CMAN 4196

Amazon Relational Database Service User Guide

Installing a Siebel database on Oracle on Amazon RDS

You can use Amazon RDS to host a Siebel Database on an Oracle DB instance. The Siebel Database
is part of the Siebel Customer Relationship Management (CRM) application architecture. For an
illustration, see Generic architecture of Siebel business application.

Use the following topic to help set up a Siebel Database on an Oracle DB instance on Amazon RDS.
You can also find out how to use Amazon Web Services to support the other components required
by the Siebel CRM application architecture.

Note

To install a Siebel Database on Oracle on Amazon RDS, you need to use the master user
account. You don't need SYSDBA privilege; master user privilege is sufficient. For more
information, see Master user account privileges.

Licensing and versions

To install a Siebel Database on Amazon RDS, you must use your own Oracle Database license, and
your own Siebel license. You must have the appropriate Oracle Database license (with Software
Update License and Support) for the DB instance class and Oracle Database edition. For more
information, see RDS for Oracle licensing options.

Oracle Database Enterprise Edition is the only edition certified by Siebel for this scenario. Amazon
RDS supports Siebel CRM version 15.0 or 16.0.

Amazon RDS supports database version upgrades. For more information, see Upgrading a DB
instance engine version.

Before you begin

Before you begin, you need an Amazon VPC. Because your Amazon RDS DB instance needs to be
available only to your Siebel Enterprise Server, and not to the public Internet, your Amazon RDS
DB instance is hosted in a private subnet, providing greater security. For information about how
to create an Amazon VPC for use with Siebel CRM, see Creating and connecting to an Oracle DB
instance.

Before you begin, you also need an Oracle DB instance. For information about how to create an
Oracle DB instance for use with Siebel CRM, see Creating an Amazon RDS DB instance.

Installing a Siebel database on Oracle on Amazon RDS 4197

https://docs.oracle.com/cd/E63029_01/books/PerformTun/performtun_archinfra.htm#i1043361

Amazon Relational Database Service User Guide

Installing and configuring a Siebel database

After you create your Oracle DB instance, you can install your Siebel Database. You install the
database by creating table owner and administrator accounts, installing stored procedures and
functions, and then running the Siebel Database Configuration Wizard. For more information, see
Installing the Siebel database on the RDBMS.

To run the Siebel Database Configuration Wizard, you need to use the master user account. You
don't need SYSDBA privilege; master user privilege is sufficient. For more information, see Master
user account privileges.

Using other Amazon RDS features with a Siebel database

After you create your Oracle DB instance, you can use additional Amazon RDS features to help you
customize your Siebel Database.

Collecting statistics with the Oracle Statspack option

You can add features to your DB instance through the use of options in DB option groups. When
you created your Oracle DB instance, you used the default DB option group. If you want to add
features to your database, you can create a new option group for your DB instance.

If you want to collect performance statistics on your Siebel Database, you can add the Oracle
Statspack feature. For more information, see Oracle Statspack.

Some option changes are applied immediately, and some option changes are applied during the
next maintenance window for the DB instance. For more information, see Working with option
groups. After you create a customized option group, modify your DB instance to attach it. For more
information, see Modifying an Amazon RDS DB instance.

Performance tuning with parameters

You manage your DB engine configuration through the use of parameters in a DB parameter group.
When you created your Oracle DB instance, you used the default DB parameter group. If you want
to customize your database configuration, you can create a new parameter group for your DB
instance.

When you change a parameter, depending on the type of the parameter, the changes are applied
either immediately or after you manually reboot the DB instance. For more information, see
Parameter groups for Amazon RDS. After you create a customized parameter group, modify your
DB instance to attach it. For more information, see Modifying an Amazon RDS DB instance.

Installing a Siebel database on Oracle on Amazon RDS 4198

https://docs.oracle.com/cd/E63029_01/books/SiebInstWIN/SiebInstCOM_ConfigDB.html
https://docs.oracle.com/cd/E63029_01/books/SiebInstWIN/SiebInstCOM_ConfigDB.html

Amazon Relational Database Service User Guide

To optimize your Oracle DB instance for Siebel CRM, you can customize certain parameters. The
following table shows some recommended parameter settings. For more information about
performance tuning Siebel CRM, see Siebel CRM Performance Tuning Guide.

Parameter
name

Default value Guidance for optimal Siebel CRM performance

_always_s
emi_join

CHOOSE OFF

_b_tree_b
itmap_pla
ns

TRUE FALSE

_like_wit
h_bind_as
_equality

FALSE TRUE

_no_or_ex
pansion

FALSE FALSE

_optimize
r_join_se
l_sanity_
check

TRUE TRUE

_optimize
r_max_per
mutations

2000 100

_optimize
r_sortmer
ge_join_e
nabled

TRUE FALSE

_partitio
n_view_en
abled

TRUE FALSE

Installing a Siebel database on Oracle on Amazon RDS 4199

https://docs.oracle.com/cd/E63029_01/books/PerformTun/toc.htm

Amazon Relational Database Service User Guide

Parameter
name

Default value Guidance for optimal Siebel CRM performance

open_curs
ors

300 At least 2000.

Creating snapshots

After you create your Siebel Database, you can copy the database by using the snapshot features
of Amazon RDS. For more information, see Creating a DB snapshot for a Single-AZ DB instance for
Amazon RDS and Restoring to a DB instance.

Support for other Siebel CRM components

In addition to your Siebel Database, you can also use Amazon Web Services to support the other
components of your Siebel CRM application architecture. You can find more information about the
support provided by Amazon AWS for additional Siebel CRM components in the following table.

Siebel CRM component Amazon AWS Support

Siebel Enterprise

(with one or more Siebel Servers)

You can host your Siebel Servers on Amazon Elastic
Compute Cloud (Amazon EC2) instances. You can use
Amazon EC2 to launch as many or as few virtual servers
as you need. Using Amazon EC2, you can scale up or
down easily to handle changes in requirements. For
more information, see What is Amazon EC2?

You can put your servers in the same VPC with your DB
instance and use the VPC security group to access the
database. For more information, see Working with a DB
instance in a VPC.

Web Servers

(with Siebel Web Server Extensions)

You can install multiple Web Servers on multiple EC2
instances. You can then use Elastic Load Balancing to
distribute incoming traffic among the instances. For
more information, see What is Elastic Load Balancing?

Installing a Siebel database on Oracle on Amazon RDS 4200

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/elastic-load-balancing.html

Amazon Relational Database Service User Guide

Siebel CRM component Amazon AWS Support

Siebel Gateway Name Server You can host your Siebel Gateway Name Server on an
EC2 instance. You can then put your server in the same
VPC with the DB instance and use the VPC security
group to access the database. For more information, see
Working with a DB instance in a VPC.

Installing a Siebel database on Oracle on Amazon RDS 4201

Amazon Relational Database Service User Guide

Oracle Database engine release notes

Updates to your Amazon RDS for Oracle DB instances keep them current. If you apply updates, you
can be confident that your DB instance is running a version of the database software that has been
tested by both Oracle and Amazon. We don't support applying one-off patches to individual RDS
for Oracle DB instances.

You can specify any currently supported Oracle Database version when you create a new DB
instance. You can specify the major version, such as Oracle Database 19c, and any supported
minor version for the specified major version. If no version is specified, Amazon RDS defaults
to a supported version, typically the most recent version. If a major version is specified but a
minor version is not, Amazon RDS defaults to a recent release of the major version that you have
specified. To see a list of supported versions and defaults for newly created DB instances, use the
describe-db-engine-versions AWS CLI command.

For details about the Oracle Database versions that Amazon RDS supports, see the Amazon RDS for
Oracle Release Notes.

Oracle Database engine releases 4202

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL

Amazon RDS supports DB instances running several versions of PostgreSQL. For a list of available
versions, see Available PostgreSQL database versions.

You can create DB instances and DB snapshots, point-in-time restores and backups. DB instances
running PostgreSQL support Multi-AZ deployments, read replicas, Provisioned IOPS, and can be
created inside a virtual private cloud (VPC). You can also use Secure Socket Layer (SSL) to connect
to a DB instance running PostgreSQL.

Before creating a DB instance, make sure to complete the steps in Setting up your Amazon RDS
environment.

You can use any standard SQL client application to run commands for the instance from your
client computer. Such applications include pgAdmin, a popular Open Source administration and
development tool for PostgreSQL, or psql, a command line utility that is part of a PostgreSQL
installation. To deliver a managed service experience, Amazon RDS doesn't provide host access to
DB instances. Also, it restricts access to certain system procedures and tables that require advanced
privileges. Amazon RDS supports access to databases on a DB instance using any standard SQL
client application. Amazon RDS doesn't allow direct host access to a DB instance by using Telnet or
Secure Shell (SSH).

Amazon RDS for PostgreSQL is compliant with many industry standards. For example, you can
use Amazon RDS for PostgreSQL databases to build HIPAA-compliant applications and to store
healthcare-related information. This includes storage for protected health information (PHI) under
a completed Business Associate Agreement (BAA) with AWS. Amazon RDS for PostgreSQL also
meets Federal Risk and Authorization Management Program (FedRAMP) security requirements.
Amazon RDS for PostgreSQL has received a FedRAMP Joint Authorization Board (JAB) Provisional
Authority to Operate (P-ATO) at the FedRAMP HIGH Baseline within the AWS GovCloud (US)
Regions. For more information on supported compliance standards, see AWS cloud compliance.

To import PostgreSQL data into a DB instance, follow the information in the Importing data into
PostgreSQL on Amazon RDS section.

Important

If you encounter an issue with your RDS for PostgreSQL DB instance, your AWS support
agent might need more information about the health of your databases. The goal is to
ensure that AWS Support gets the required information as soon as possible.

4203

https://aws.amazon.com/compliance/

Amazon Relational Database Service User Guide

You can use PG Collector to help gather valuable database information in a consolidated
HTML file. For more information on PG Collector, how to run it, and how to download the
HTML report, see PG Collector.
Upon successful completion, and unless otherwise noted, the script returns output in a
readable HTML format. The script is designed to exclude any data or security details from
the HTML that might compromise your business. It also makes no modifications to your
database or its environment. However, if you find any information in the HTML that you are
uncomfortable sharing, feel free to remove the problematic information before uploading
the HTML. When the HTML is acceptable, upload it using the attachments section in the
case details of your support case.

Topics

• Common management tasks for Amazon RDS for PostgreSQL

• Working with the Database Preview environment

• Available PostgreSQL database versions

• Understanding the RDS for PostgreSQL incremental release process

• Supported PostgreSQL extension versions

• Working with PostgreSQL features supported by Amazon RDS for PostgreSQL

• Connecting to a DB instance running the PostgreSQL database engine

• Securing connections to RDS for PostgreSQL with SSL/TLS

• Using Kerberos authentication with Amazon RDS for PostgreSQL

• Using a custom DNS server for outbound network access

• Upgrades of the RDS for PostgreSQL DB engine

• Upgrading a PostgreSQL DB snapshot engine version

• Working with read replicas for Amazon RDS for PostgreSQL

• Improving query performance for RDS for PostgreSQL with Amazon RDS Optimized Reads

• Importing data into PostgreSQL on Amazon RDS

• Exporting data from an RDS for PostgreSQL DB instance to Amazon S3

• Invoking an AWS Lambda function from an RDS for PostgreSQL DB instance

• Common DBA tasks for Amazon RDS for PostgreSQL

• Tuning with wait events for RDS for PostgreSQL

4204

https://github.com/awslabs/pg-collector

Amazon Relational Database Service User Guide

• Tuning RDS for PostgreSQL with Amazon DevOps Guru proactive insights

• Using PostgreSQL extensions with Amazon RDS for PostgreSQL

• Working with the supported foreign data wrappers for Amazon RDS for PostgreSQL

• Working with Trusted Language Extensions for PostgreSQL

Common management tasks for Amazon RDS for PostgreSQL

The following are the common management tasks you perform with an Amazon RDS for
PostgreSQL DB instance, with links to relevant documentation for each task.

Task area Relevant documentation

Setting up Amazon RDS for first-time use

Before you can create your DB instance, make sure to complete
a few prerequisites. For example, DB instances are created by
default with a firewall that prevents access to it. So you need
to create a security group with the correct IP addresses and
network configuration to access the DB instance.

Setting up your Amazon RDS
environment

Understanding Amazon RDS DB instances

If you are creating a DB instance for production purposes, you
should understand how instance classes, storage types, and
Provisioned IOPS work in Amazon RDS.

DB instance classes

Amazon RDS storage types

Provisioned IOPS SSD storage

Finding available PostgreSQL versions

Amazon RDS supports several versions of PostgreSQL.

Available PostgreSQL
database versions

Setting up high availability and failover support

A production DB instance should use Multi-AZ deploymen
ts. Multi-AZ deployments provide increased availability, data
durability, and fault tolerance for DB instances.

Configuring and managing
a Multi-AZ deployment for
Amazon RDS

Understanding the Amazon Virtual Private Cloud (VPC)
network

Working with a DB instance in
a VPC

Common management tasks 4205

Amazon Relational Database Service User Guide

Task area Relevant documentation

If your AWS account has a default VPC, then your DB instance
is automatically created inside the default VPC. In some cases,
your account might not have a default VPC, and you might
want the DB instance in a VPC. In these cases, create the VPC
and subnet groups before you create the DB instance.

Importing data into Amazon RDS PostgreSQL

You can use several different tools to import data into your
PostgreSQL DB instance on Amazon RDS.

Importing data into
PostgreSQL on Amazon RDS

Setting up read-only read replicas (primary and standbys)

RDS for PostgreSQL supports read replicas in both the same
AWS Region and in a different AWS Region from the primary
instance.

Working with DB instance
read replicas

Working with read replicas for
Amazon RDS for PostgreSQL

Creating a read replica in a
different AWS Region

Understanding security groups

By default, DB instances are created with a firewall that
prevents access to them. To provide access through that
firewall, you edit the inbound rules for the VPC security group
associated with the VPC hosting the DB instance.

Controlling access with
security groups

Setting up parameter groups and features

To change the default parameters for your DB instance,
create a custom DB parameter group and change settings to
that. If you do this before creating your DB instance, you can
choose your custom DB parameter group when you create the
instance.

Parameter groups for Amazon
RDS

Common management tasks 4206

Amazon Relational Database Service User Guide

Task area Relevant documentation

Connecting to your PostgreSQL DB instance

After creating a security group and associating it to a DB
instance, you can connect to the DB instance using any
standard SQL client application such as psql or pgAdmin.

Connecting to a DB instance
running the PostgreSQL
database engine

Using SSL with a PostgreSQL
DB instance

Backing up and restoring your DB instance

You can configure your DB instance to take automated
backups, or take manual snapshots, and then restore instances
from the backups or snapshots.

Backing up, restoring, and
exporting data

Monitoring the activity and performance of your DB instance

You can monitor a PostgreSQL DB instance by using CloudWatc
h Amazon RDS metrics, events, and enhanced monitoring.

Viewing metrics in the
Amazon RDS console

Viewing Amazon RDS events

Upgrading the PostgreSQL database version

You can do both major and minor version upgrades for your
PostgreSQL DB instance.

Upgrades of the RDS for
PostgreSQL DB engine

Choosing a major version
for an RDS for PostgreSQL
upgrade

Working with log files

You can access the log files for your PostgreSQL DB instance.

RDS for PostgreSQL database
log files

Understanding the best practices for PostgreSQL DB
instances

Find some of the best practices for working with PostgreSQL
on Amazon RDS.

Best practices for working
with PostgreSQL

Following is a list of other sections in this guide that can help you understand and use important
features of RDS for PostgreSQL:

Common management tasks 4207

Amazon Relational Database Service User Guide

• Understanding PostgreSQL roles and permissions

• Controlling user access to the PostgreSQL database

• Working with parameters on your RDS for PostgreSQL DB instance

• Understanding logging mechanisms supported by RDS for PostgreSQL

• Working with PostgreSQL autovacuum on Amazon RDS for PostgreSQL

• Using a custom DNS server for outbound network access

Common management tasks 4208

Amazon Relational Database Service User Guide

Working with the Database Preview environment

The PostgreSQL community continuously releases new PostgreSQL version and extensions,
including beta versions. This gives PostgreSQL users the opportunity to try out a new PostgreSQL
version early. To learn more about the PostgreSQL community beta release process, see Beta
Information in the PostgreSQL documentation. Similarly, Amazon RDS makes certain PostgreSQL
beta versions available as Preview releases. This allows you to create DB instances using the
Preview version and test out its features in the Database Preview Environment.

RDS for PostgreSQL DB instances in the Database Preview Environment are functionally similar to
other RDS for PostgreSQL instances. However, you can't use a Preview version for production.

Keep in mind the following important limitations:

• All DB instances are deleted 60 days after you create them, along with any backups and
snapshots.

• You can only create a DB instance in a virtual private cloud (VPC) based on the Amazon VPC
service.

• You can only use General Purpose SSD and Provisioned IOPS SSD storage.

• You can't get help from AWS Support with DB instances. Instead, you can post your questions to
the AWS‐managed Q&A community, AWS re:Post.

• You can't copy a snapshot of a DB instance to a production environment.

The following options are supported by the Preview.

• You can create DB instances using M6i, R6i, M6g, M5, T3, R6g, and R5 instance types only. For
more information about RDS instance classes, see DB instance classes.

• You can use both single-AZ and multi-AZ deployments.

• You can use standard PostgreSQL dump and load functions to export databases from or import
databases to the Database Preview Environment.

Topics

• Features not supported in the Database Preview environment

• PostgreSQL version 17 in the Database Preview environment

• Creating a new DB instance in the Database Preview environment

Working with the Database Preview environment 4209

https://www.postgresql.org/developer/beta/
https://www.postgresql.org/developer/beta/
https://repost.aws/tags/TAsibBK6ZeQYihN9as4S_psg/amazon-relational-database-service

Amazon Relational Database Service User Guide

Features not supported in the Database Preview environment

The following features aren't available in the Database Preview environment:

• Cross-Region snapshot copy

• Cross-Region read replicas

PostgreSQL version 17 in the Database Preview environment

Note

This is preview documentation for Amazon RDS PostgreSQL version 17. It is subject to
change.

PostgreSQL version 17.0 is now available in the Amazon RDS Database Preview environment.
PostgreSQL version 17.0 contains several improvements that are described in the following
PostgreSQL documentation, PostgreSQL 17 Released!

For information on the Database Preview Environment, see the section called “Working with the
Database Preview environment”. To access the Preview Environment from the console, select
https://console.aws.amazon.com/rds-preview/.

Creating a new DB instance in the Database Preview environment

Use the following procedure to create a DB instance in the preview environment.

To create a DB instance in the Database Preview environment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Dashboard from the navigation pane.

3. In the Dashboard page, locate the Database Preview Environment section on the Dashboard
page, as shown in the following image.

Features not supported in the Database Preview environment 4210

https://www.postgresql.org/docs/17/release-17.html
https://console.aws.amazon.com/rds-preview/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

You can navigate directly to the Database Preview environment. Before you can proceed, you
must acknowledge and accept the limitations.

Creating a new DB instance in the Database Preview environment 4211

https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#

Amazon Relational Database Service User Guide

4. To create the RDS for PostgreSQL DB instance, follow the same process as that for creating any
Amazon RDS DB instance. For more information, see the Console procedure in Creating a DB
instance.

To create an instance in the Database Preview Environment using the RDS API or the AWS CLI, use
the following endpoint.

rds-preview.us-east-2.amazonaws.com

Creating a new DB instance in the Database Preview environment 4212

Amazon Relational Database Service User Guide

Available PostgreSQL database versions

Amazon RDS supports DB instances running several editions of PostgreSQL. You can specify any
currently available PostgreSQL version when creating a new DB instance. You can specify the major
version (such as PostgreSQL 14), and any available minor version for the specified major version.
If no version is specified, Amazon RDS defaults to an available version, typically the most recent
version. If a major version is specified but a minor version is not, Amazon RDS defaults to a recent
release of the major version you have specified.

To see a list of available versions, as well as defaults for newly created DB instances, use the
describe-db-engine-versions AWS CLI command. For example, to display the default
PostgreSQL engine version, use the following command:

aws rds describe-db-engine-versions --default-only --engine postgres

For details about the PostgreSQL versions that are supported on Amazon RDS, see the Amazon RDS
for PostgreSQL Release Notes.

If you aren't ready to manually upgrade to a new major engine version before the RDS end of
standard support date, Amazon RDS will automatically enroll your databases in Amazon RDS
Extended Support after the RDS end of standard support date. Then, you can continue to run RDS
for PostgreSQL version 11 and higher. For more information, see Amazon RDS Extended Support
with Amazon RDS and Amazon RDS pricing.

Deprecated versions for Amazon RDS for PostgreSQL

Note the following deprecated versions:

• RDS for PostgreSQL 10 was deprecated in February 2023.

• RDS for PostgreSQL 9.6 was deprecated in March 2022.

• RDS for PostgreSQL 9.5 was deprecated in March 2021.

To learn more about deprecation policy for RDS for PostgreSQL, see Amazon RDS FAQs. For more
information about PostgreSQL versions, see Versioning Policy in the PostgreSQL documentation.

PostgreSQL versions 4213

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/Welcome.html
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/rds/faqs/
https://www.postgresql.org/support/versioning/

Amazon Relational Database Service User Guide

Understanding the RDS for PostgreSQL incremental release
process

RDS for PostgreSQL delivers security fixes, performance improvements, and new features through
incremental releases while maintaining minor version compatibility. These releases are labeled as
R1, R2, R3, and so on.

Release version naming convention

• R1 is the initial release of a minor version. It occasionally includes new features, extensions, or
upgrades to existing extensions.

• Subsequent release versions (R2, R3, and later) include:

• Security updates

• Performance improvements

• Bug fixes

• Extension updates

Advantages of RDS for PostgreSQL incremental release process

The incremental release process provides the following advantages:

• Quick adoption of new PostgreSQL community releases while separately managing RDS-specific
enhancements through subsequent releases. This streamlines the release process and ensures
faster delivery of critical updates.

• Access to bug fixes, new features, security updates, and extension updates while maintaining
compatibility with the PostgreSQL minor version.

Managing release updates

Amazon RDS notifies you about new incremental releases through pending maintenance actions in
the AWS Management Console. You can update your database using one of these methods:

• Enable automatic updates during scheduled maintenance windows.

• Apply updates manually through pending maintenance actions.

RDS for PostgreSQL release process 4214

Amazon Relational Database Service User Guide

• Use Blue/Green deployments with physical replication to minimize downtime. For more
information, see Blue/Green Deployments support minor version upgrade for RDS for
PostgreSQL.

Before updating your database, consider the following key points:

• Database reboots are required for updates unless you use Blue/Green deployments with physical
replication.

• Some incremental releases are mandatory, particularly those that include security fixes.

For more information about updating your Amazon RDS DB instance instance, see PostgreSQL
trusted extensions and apply-pending-maintenance-action.

Managing release updates 4215

https://docs.aws.amazon.com/https://aws.amazon.com/about-aws/whats-new/2024/11/rds-blue-green-deployments-upgrade-rds-postgresql/
https://docs.aws.amazon.com/https://aws.amazon.com/about-aws/whats-new/2024/11/rds-blue-green-deployments-upgrade-rds-postgresql/
https://docs.aws.amazon.com/https://docs.aws.amazon.com/cli/latest/reference/rds/apply-pending-maintenance-action.html

Amazon Relational Database Service User Guide

Supported PostgreSQL extension versions

RDS for PostgreSQL supports many PostgreSQL extensions. The PostgreSQL community
sometimes refers to these as modules. Extensions expand on the functionality provided by the
PostgreSQL engine. You can find a list of extensions supported by Amazon RDS in the default DB
parameter group for that PostgreSQL version. You can also see the current extensions list using
psql by showing the rds.extensions parameter as in the following example.

SHOW rds.extensions;

Note

Parameters added in a minor version release might display inaccurately when using the
rds.extensions parameter in psql.

As of RDS for PostgreSQL 13, certain extensions can be installed by database users other than the
rds_superuser. These are known as trusted extensions. To learn more, see PostgreSQL trusted
extensions.

Certain versions of RDS for PostgreSQL support the rds.allowed_extensions parameter.
This parameter lets an rds_superuser limit the extensions that can be installed in the RDS
for PostgreSQL DB instance. For more information, see Restricting installation of PostgreSQL
extensions.

For lists of PostgreSQL extensions and versions that are supported by each available RDS for
PostgreSQL version, see PostgreSQL extensions supported on Amazon RDS in Amazon RDS for
PostgreSQL Release Notes.

Restricting installation of PostgreSQL extensions

You can restrict which extensions can be installed on a PostgreSQL DB instance. By default, this
parameter isn't set, so any supported extension can be added if the user has permissions to do
so. To do so, set the rds.allowed_extensions parameter to a string of comma-separated
extension names. By adding a list of extensions to this parameter, you explicitly identify the
extensions that your RDS for PostgreSQL DB instance can use. Only these extensions can then be
installed in the PostgreSQL DB instance.

PostgreSQL extension versions 4216

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html

Amazon Relational Database Service User Guide

The default string for the rds.allowed_extensions parameter is '*', which means
that any extension available for the engine version can be installed. Changing the
rds.allowed_extensions parameter does not require a database restart because it's a dynamic
parameter.

The PostgreSQL DB instance engine must be one of the following versions for you to use the
rds.allowed_extensions parameter:

• All PostgreSQL 16 versions

• PostgreSQL 15 and all higher versions

• PostgreSQL 14 and all higher versions

• PostgreSQL 13.3 and higher minor versions

• PostgreSQL 12.7 and higher minor versions

To see which extension installations are allowed, use the following psql command.

postgres=> SHOW rds.allowed_extensions;
 rds.allowed_extensions

 *

If an extension was installed prior to it being left out of the list in the rds.allowed_extensions
parameter, the extension can still be used normally, and commands such as ALTER EXTENSION
and DROP EXTENSION will continue to work. However, after an extension is restricted, CREATE
EXTENSION commands for the restricted extension will fail.

Installation of extension dependencies with CREATE EXTENSION CASCADE are also restricted. The
extension and its dependencies must be specified in rds.allowed_extensions. If an extension
dependency installation fails, the entire CREATE EXTENSION CASCADE statement will fail.

If an extension is not included with the rds.allowed_extensions parameter, you will see an
error such as the following if you try to install it.

ERROR: permission denied to create extension "extension-name"
HINT: This extension is not specified in "rds.allowed_extensions".

Restricting installation of PostgreSQL extensions 4217

Amazon Relational Database Service User Guide

PostgreSQL trusted extensions

To install most PostgreSQL extensions requires rds_superuser privileges. PostgreSQL 13
introduced trusted extensions, which reduce the need to grant rds_superuser privileges to
regular users. With this feature, users can install many extensions if they have the CREATE privilege
on the current database instead of requiring the rds_superuser role. For more information, see
the SQL CREATE EXTENSION command in the PostgreSQL documentation.

The following lists the extensions that can be installed by a user who has the CREATE privilege on
the current database and do not require the rds_superuser role:

• bool_plperl

• btree_gin

• btree_gist

• citext

• cube

• dict_int

• fuzzystrmatch

• hstore

• intarray

• isn

• jsonb_plperl

• ltree

• pg_trgm

• pgcrypto

• plperl

• plpgsql

• pltcl

• tablefunc

• tsm_system_rows

• tsm_system_time

• unaccent

• uuid-ossp

PostgreSQL trusted extensions 4218

https://www.postgresql.org/docs/current/sql-createextension.html
http://www.postgresql.org/docs/current/btree-gin.html
http://www.postgresql.org/docs/current/btree-gist.html
http://www.postgresql.org/docs/current/citext.html
http://www.postgresql.org/docs/current/cube.html
http://www.postgresql.org/docs/current/dict-int.html
http://www.postgresql.org/docs/current/fuzzystrmatch.html
http://www.postgresql.org/docs/current/hstore.html
http://www.postgresql.org/docs/current/intarray.html
http://www.postgresql.org/docs/current/isn.html
http://www.postgresql.org/docs/current/ltree.html
http://www.postgresql.org/docs/current/pgtrgm.html
http://www.postgresql.org/docs/current/pgcrypto.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/pltcl-overview.html
http://www.postgresql.org/docs/current/tablefunc.html
https://www.postgresql.org/docs/current/tsm-system-rows.html
https://www.postgresql.org/docs/current/tsm-system-time.html
http://www.postgresql.org/docs/current/unaccent.html
http://www.postgresql.org/docs/current/uuid-ossp.html

Amazon Relational Database Service User Guide

For lists of PostgreSQL extensions and versions that are supported by each available RDS for
PostgreSQL version, see PostgreSQL extensions supported on Amazon RDS in Amazon RDS for
PostgreSQL Release Notes.

PostgreSQL trusted extensions 4219

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html

Amazon Relational Database Service User Guide

Working with PostgreSQL features supported by Amazon RDS
for PostgreSQL

Amazon RDS for PostgreSQL supports many of the most common PostgreSQL features. For
example, PostgreSQL has an autovacuum feature that performs routine maintenance on the
database. The autovacuum feature is active by default. Although you can turn off this feature, we
highly recommend that you keep it on. Understanding this feature and what you can do to make
sure it works as it should is a basic task of any DBA. For more information about the autovacuum,
see Working with PostgreSQL autovacuum on Amazon RDS for PostgreSQL. To learn more about
other common DBA tasks, Common DBA tasks for Amazon RDS for PostgreSQL.

RDS for PostgreSQL also supports extensions that add important functionality to the DB instance.
For example, you can use the PostGIS extension to work with spatial data, or use the pg_cron
extension to schedule maintenance from within the instance. For more information about
PostgreSQL extensions, see Using PostgreSQL extensions with Amazon RDS for PostgreSQL.

Foreign data wrappers are a specific type of extension designed to let your RDS for PostgreSQL DB
instance work with other commercial databases or data types. For more information about foreign
data wrappers supported by RDS for PostgreSQL, see Working with the supported foreign data
wrappers for Amazon RDS for PostgreSQL.

Following, you can find information about some other features supported by RDS for PostgreSQL.

Topics

• Custom data types and enumerations with RDS for PostgreSQL

• Event triggers for RDS for PostgreSQL

• Huge pages for RDS for PostgreSQL

• Performing logical replication for Amazon RDS for PostgreSQL

• RAM disk for the stats_temp_directory

• Tablespaces for RDS for PostgreSQL

• RDS for PostgreSQL collations for EBCDIC and other mainframe migrations

• Managing logical slot synchronization for RDS for PostgreSQL

PostgreSQL features 4220

Amazon Relational Database Service User Guide

Custom data types and enumerations with RDS for PostgreSQL

PostgreSQL supports creating custom data types and working with enumerations. For more
information about creating and working with enumerations and other data types, see Enumerated
types in the PostgreSQL documentation.

The following is an example of creating a type as an enumeration and then inserting values into a
table.

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'purple');
CREATE TYPE
CREATE TABLE t1 (colors rainbow);
CREATE TABLE
INSERT INTO t1 VALUES ('red'), ('orange');
INSERT 0 2
SELECT * from t1;
colors

red
orange
(2 rows)
postgres=> ALTER TYPE rainbow RENAME VALUE 'red' TO 'crimson';
ALTER TYPE
postgres=> SELECT * from t1;
colors

crimson
orange
(2 rows)

Event triggers for RDS for PostgreSQL

All current PostgreSQL versions support event triggers, and so do all available versions of RDS for
PostgreSQL. You can use the main user account (default, postgres) to create, modify, rename,
and delete event triggers. Event triggers are at the DB instance level, so they can apply to all
databases on an instance.

For example, the following code creates an event trigger that prints the current user at the end of
every data definition language (DDL) command.

CREATE OR REPLACE FUNCTION raise_notice_func()

Custom data types and enumerations 4221

https://www.postgresql.org/docs/14/datatype-enum.html
https://www.postgresql.org/docs/14/datatype-enum.html

Amazon Relational Database Service User Guide

 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
BEGIN
 RAISE NOTICE 'In trigger function: %', current_user;
END;
$$;

CREATE EVENT TRIGGER event_trigger_1
 ON ddl_command_end
EXECUTE PROCEDURE raise_notice_func();

For more information about PostgreSQL event triggers, see Event triggers in the PostgreSQL
documentation.

There are several limitations to using PostgreSQL event triggers on Amazon RDS. These include the
following:

• You can't create event triggers on read replicas. You can, however, create event triggers on a read
replica source. The event triggers are then copied to the read replica. The event triggers on the
read replica don't fire on the read replica when changes are pushed from the source. However, if
the read replica is promoted, the existing event triggers fire when database operations occur.

• To perform a major version upgrade to a PostgreSQL DB instance that uses event triggers, make
sure to delete the event triggers before you upgrade the instance.

Huge pages for RDS for PostgreSQL

Huge pages are a memory management feature that reduces overhead when a DB instance is
working with large contiguous chunks of memory, such as that used by shared buffers. This
PostgreSQL feature is supported by all currently available RDS for PostgreSQL versions. You
allocate huge pages for your application by using calls to mmap or SYSV shared memory. RDS for
PostgreSQL supports both 4-KB and 2-MB page sizes.

You can turn huge pages on or off by changing the value of the huge_pages parameter. The
feature is turned on by default for all the DB instance classes other than micro, small, and medium
DB instance classes.

RDS for PostgreSQL uses huge pages based on the available shared memory. If the DB instance
can't use huge pages due to shared memory constraints, Amazon RDS prevents the DB instance

Huge pages 4222

https://www.postgresql.org/docs/current/static/event-triggers.html

Amazon Relational Database Service User Guide

from starting. In this case, Amazon RDS sets the status of the DB instance to an incompatible
parameters state. If this occurs, you can set the huge_pages parameter to off to allow Amazon
RDS to start the DB instance.

The shared_buffers parameter is key to setting the shared memory pool that is required
for using huge pages. The default value for the shared_buffers parameter uses a database
parameters macro. This macro sets a percentage of the total 8 KB pages available for the DB
instance's memory. When you use huge pages, those pages are located with the huge pages.
Amazon RDS puts a DB instance into an incompatible parameters state if the shared memory
parameters are set to require more than 90 percent of the DB instance memory.

To learn more about PostgreSQL memory management, see Resource Consumption in the
PostgreSQL documentation.

Performing logical replication for Amazon RDS for PostgreSQL

Starting with version 10.4, RDS for PostgreSQL supports the publication and subscription SQL
syntax that was introduced in PostgreSQL 10. To learn more, see Logical replication in the
PostgreSQL documentation.

Note

In addition to the native PostgreSQL logical replication feature introduced in PostgreSQL
10, RDS for PostgreSQL also supports the pglogical extension. For more information, see
Using pglogical to synchronize data across instances.

Following, you can find information about setting up logical replication for an RDS for PostgreSQL
DB instance.

Topics

• Understanding logical replication and logical decoding

• Working with logical replication slots

Understanding logical replication and logical decoding

RDS for PostgreSQL supports the streaming of write-ahead log (WAL) changes using PostgreSQL's
logical replication slots. It also supports using logical decoding. You can set up logical replication

Performing logical replication 4223

https://www.postgresql.org/docs/current/static/runtime-config-resource.html
https://www.postgresql.org/docs/current/logical-replication.html

Amazon Relational Database Service User Guide

slots on your instance and stream database changes through these slots to a client such as
pg_recvlogical. You create logical replication slots at the database level, and they support
replication connections to a single database.

The most common clients for PostgreSQL logical replication are AWS Database Migration Service
or a custom-managed host on an Amazon EC2 instance. The logical replication slot has no
information about the receiver of the stream. Also, there's no requirement that the target be a
replica database. If you set up a logical replication slot and don't read from the slot, data can be
written and quickly fill up your DB instance's storage.

You turn on PostgreSQL logical replication and logical decoding for Amazon RDS with a parameter,
a replication connection type, and a security role. The client for logical decoding can be any client
that can establish a replication connection to a database on a PostgreSQL DB instance.

To turn on logical decoding for an RDS for PostgreSQL DB instance

1. Make sure that the user account that you're using has these roles:

• The rds_superuser role so you can turn on logical replication

• The rds_replication role to grant permissions to manage logical slots and to stream
data using logical slots

2. Set the rds.logical_replication static parameter to 1. As part of applying
this parameter, also set the parameters wal_level, max_wal_senders,
max_replication_slots, and max_connections. These parameter changes can increase
WAL generation, so set the rds.logical_replication parameter only when you are using
logical slots.

3. Reboot the DB instance for the static rds.logical_replication parameter to take effect.

4. Create a logical replication slot as explained in the next section. This process requires that
you specify a decoding plugin. Currently, RDS for PostgreSQL supports the test_decoding and
wal2json output plugins that ship with PostgreSQL.

For more information on PostgreSQL logical decoding, see the PostgreSQL documentation.

Working with logical replication slots

You can use SQL commands to work with logical slots. For example, the following command
creates a logical slot named test_slot using the default PostgreSQL output plugin
test_decoding.

Performing logical replication 4224

https://www.postgresql.org/docs/current/static/logicaldecoding-explanation.html

Amazon Relational Database Service User Guide

SELECT * FROM pg_create_logical_replication_slot('test_slot', 'test_decoding');
slot_name | xlog_position
-----------------+---------------
regression_slot | 0/16B1970
(1 row)

To list logical slots, use the following command.

SELECT * FROM pg_replication_slots;

To drop a logical slot, use the following command.

SELECT pg_drop_replication_slot('test_slot');
pg_drop_replication_slot

(1 row)

For more examples on working with logical replication slots, see Logical decoding examples in the
PostgreSQL documentation.

After you create the logical replication slot, you can start streaming. The following example shows
how logical decoding is controlled over the streaming replication protocol. This example uses the
program pg_recvlogical, which is included in the PostgreSQL distribution. Doing this requires that
client authentication is set up to allow replication connections.

pg_recvlogical -d postgres --slot test_slot -U postgres
 --host -instance-name.111122223333.aws-region.rds.amazonaws.com
 -f - --start

To see the contents of the pg_replication_origin_status view, query the
pg_show_replication_origin_status function.

SELECT * FROM pg_show_replication_origin_status();
local_id | external_id | remote_lsn | local_lsn
----------+-------------+------------+-----------
(0 rows)

Performing logical replication 4225

https://www.postgresql.org/docs/9.5/static/logicaldecoding-example.html

Amazon Relational Database Service User Guide

RAM disk for the stats_temp_directory

You can use the RDS for PostgreSQL parameter rds.pg_stat_ramdisk_size to specify the
system memory allocated to a RAM disk for storing the PostgreSQL stats_temp_directory. The
RAM disk parameter is only available in RDS for PostgreSQL version 14 and lower versions.

Under certain workloads, setting this parameter can improve performance and decrease I/O
requirements. For more information about the stats_temp_directory, see the PostgreSQL
documentation..

To set up a RAM disk for your stats_temp_directory, set the rds.pg_stat_ramdisk_size
parameter to an integer literal value in the parameter group used by your DB instance. This
parameter denotes MB, so you must use an integer value. Expressions, formulas, and functions
aren't valid for the rds.pg_stat_ramdisk_size parameter. Be sure to reboot the DB instance so
that the change takes effect. For information about setting parameters, see Parameter groups for
Amazon RDS.

For example, the following AWS CLI command sets the RAM disk parameter to 256 MB.

aws rds modify-db-parameter-group \
 --db-parameter-group-name pg-95-ramdisk-testing \
 --parameters "ParameterName=rds.pg_stat_ramdisk_size, ParameterValue=256,
 ApplyMethod=pending-reboot"

After you reboot, run the following command to see the status of the stats_temp_directory.

postgres=> SHOW stats_temp_directory;

The command should return the following.

stats_temp_directory

/rdsdbramdisk/pg_stat_tmp
(1 row)

Tablespaces for RDS for PostgreSQL

RDS for PostgreSQL supports tablespaces for compatibility. Because all storage is on a single
logical volume, you can't use tablespaces for I/O splitting or isolation. Our benchmarks and
experience indicate that a single logical volume is the best setup for most use cases.

RAM disk for the stats_temp_directory 4226

https://www.postgresql.org/docs/current/static/runtime-config-statistics.html#GUC-STATS-TEMP-DIRECTORY
https://www.postgresql.org/docs/current/static/runtime-config-statistics.html#GUC-STATS-TEMP-DIRECTORY

Amazon Relational Database Service User Guide

To create and use tablespaces with your RDS for PostgreSQL DB instance requires the
rds_superuser role. Your RDS for PostgreSQL DB instance's main user account (default name,
postgres) is a member of this role. For more information, see Understanding PostgreSQL roles
and permissions.

If you specify a file name when you create a tablespace, the path prefix is /rdsdbdata/db/
base/tablespace. The following example places tablespace files in /rdsdbdata/db/base/
tablespace/data. This example assumes that a dbadmin user (role) exists and that it's been
granted the rds_superuser role needed to work with tablespaces.

postgres=> CREATE TABLESPACE act_data
 OWNER dbadmin
 LOCATION '/data';
CREATE TABLESPACE

To learn more about PostgreSQL tablespaces, see Tablespaces in the PostgreSQL documentation.

RDS for PostgreSQL collations for EBCDIC and other mainframe
migrations

RDS for PostgreSQL versions 10 and higher include ICU version 60.2, which is based on Unicode
10.0 and includes collations from the Unicode Common Locale Data Repository, CLDR 32.
These software internationalization libraries ensure that character encodings are presented in a
consistent way, regardless of operating system or platform. For more information about Unicode
CLDR-32, see the CLDR 32 Release Note on the Unicode CLDR website. You can learn more about
the internationalization components for Unicode (ICU) at the ICU Technical Committee (ICU-TC)
website. For information about ICU-60, see Download ICU 60.

Starting with version 14.3, RDS for PostgreSQL also includes collations that help with data
integration and conversion from EBCDIC-based systems. The extended binary coded decimal
interchange code or EBCDIC encoding is commonly used by mainframe operating systems. These
Amazon RDS-provided collations are narrowly defined to sort only those Unicode characters that
directly map to EBCDIC code pages. The characters are sorted in EBCDIC code-point order to allow
for data validation after conversion. These collations don't include denormalized forms, nor do
they include Unicode characters that don't directly map to a character on the source EBCDIC code
page.

The character mappings between EBCDIC code pages and Unicode code points are based on tables
published by IBM. The complete set is available from IBM as a compressed file for download. RDS

Collations for EBCDIC and other mainframe migrations 4227

https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://cldr.unicode.org/index/downloads/cldr-32
https://icu.unicode.org/home
https://icu.unicode.org/download/60
http://download.boulder.ibm.com/ibmdl/pub/software/dw/java/cdctables.zip

Amazon Relational Database Service User Guide

for PostgreSQL used these mappings with tools provided by the ICU to create the collations listed
in the tables in this section. The collation names include a language and country as required by
the ICU. However, EBCDIC code pages don't specify languages, and some EBCDIC code pages cover
multiple countries. That means that the language and country portion of the collation names in
the table are arbitrary, and they don't need to match the current locale. In other words, the code
page number is the most important part of the collation name in this table. You can use any of the
collations listed in the following tables in any RDS for PostgreSQL database.

• Unicode to EBCDIC collations table – Some mainframe data migration tools internally use LATIN1
or LATIN9 to encode and process data. Such tools use round-trip schemes to preserve data
integrity and support reverse conversion. The collations in this table can be used by tools that
process data using LATIN1 encoding, which doesn't require special handling.

• Unicode to LATIN9 collations table – You can use these collations in any RDS for PostgreSQL
database.

In the following table, you find collations available in RDS for PostgreSQL that map EBCDIC
code pages to Unicode code points. We recommend that you use the collations in this table for
application development that requires sorting based on the ordering of IBM code pages.

PostgreSQL collation name Description of code-page mapping and sort
order

da-DK-cp277-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 277 (per conversion tables)
are sorted in IBM CP 277 code point order

de-DE-cp273-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 273 (per conversion tables)
are sorted in IBM CP 273 code point order

en-GB-cp285-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 285 (per conversion tables)
are sorted in IBM CP 285 code point order

Collations for EBCDIC and other mainframe migrations 4228

Amazon Relational Database Service User Guide

PostgreSQL collation name Description of code-page mapping and sort
order

en-US-cp037-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 037 (per conversion tables)
are sorted in IBM CP 37 code point order

es-ES-cp284-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 284 (per conversion tables)
are sorted in IBM CP 284 code point order

fi-FI-cp278-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 278 (per conversion tables)
are sorted in IBM CP 278 code point order

fr-FR-cp297-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 297 (per conversion tables)
are sorted in IBM CP 297 code point order

it-IT-cp280-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 280 (per conversion tables)
are sorted in IBM CP 280 code point order

nl-BE-cp500-x-icu Unicode characters that directly map to IBM
EBCDIC Code Page 500 (per conversion tables)
are sorted in IBM CP 500 code point order

Amazon RDS provides a set of additional collations that sort Unicode code points that map to
LATIN9 characters using the tables published by IBM, in the order of the original code points
according to the EBCDIC code page of the source data.

PostgreSQL collation name Description of code-page mapping and sort
order

da-DK-cp1142m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1142 (per conversion

Collations for EBCDIC and other mainframe migrations 4229

Amazon Relational Database Service User Guide

PostgreSQL collation name Description of code-page mapping and sort
order

tables) are sorted in IBM CP 1142 code point
order

de-DE-cp1141m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1141 (per conversion
tables) are sorted in IBM CP 1141 code point
order

en-GB-cp1146m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1146 (per conversion
tables) are sorted in IBM CP 1146 code point
order

en-US-cp1140m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1140 (per conversion
tables) are sorted in IBM CP 1140 code point
order

es-ES-cp1145m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1145 (per conversion
tables) are sorted in IBM CP 1145 code point
order

fi-FI-cp1143m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1143 (per conversion
tables) are sorted in IBM CP 1143 code point
order

Collations for EBCDIC and other mainframe migrations 4230

Amazon Relational Database Service User Guide

PostgreSQL collation name Description of code-page mapping and sort
order

fr-FR-cp1147m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1147 (per conversion
tables) are sorted in IBM CP 1147 code point
order

it-IT-cp1144m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1144 (per conversion
tables) are sorted in IBM CP 1144 code point
order

nl-BE-cp1148m-x-icu Unicode characters that map to LATIN9
characters originally converted from IBM
EBCDIC Code Page 1148 (per conversion
tables) are sorted in IBM CP 1148 code point
order

In the following, you can find an example of using an RDS for PostgreSQL collation.

db1=> SELECT pg_import_system_collations('pg_catalog');
 pg_import_system_collations

 36
db1=> SELECT '¤' < 'a' col1;
 col1

 t
db1=> SELECT '¤' < 'a' COLLATE "da-DK-cp277-x-icu" col1;
 col1

 f

We recommend that you use the collations in the Unicode to EBCDIC collations table and in the
Unicode to LATIN9 collations table for application development that requires sorting based on the

Collations for EBCDIC and other mainframe migrations 4231

Amazon Relational Database Service User Guide

ordering of IBM code pages. The following collations (suffixed with the letter “b”) are also visible
in pg_collation, but are intended for use by mainframe data integration and migration tools at
AWS that map code pages with specific code point shifts and require special handling in collation.
In other words, the following collations aren't recommended for use.

• da-DK-277b-x-icu

• da-DK-1142b-x-icu

• de-DE-cp273b-x-icu

• de-DE-cp1141b-x-icu

• en-GB-cp1146b-x-icu

• en-GB-cp285b-x-icu

• en-US-cp037b-x-icu

• en-US-cp1140b-x-icu

• es-ES-cp1145b-x-icu

• es-ES-cp284b-x-icu

• fi-FI-cp1143b-x-icu

• fr-FR-cp1147b-x-icu

• fr-FR-cp297b-x-icu

• it-IT-cp1144b-x-icu

• it-IT-cp280b-x-icu

• nl-BE-cp1148b-x-icu

• nl-BE-cp500b-x-icu

To learn more about migrating applications from mainframe environments to AWS, see What is
AWS Mainframe Modernization?.

For more information about managing collations in PostgreSQL, see Collation Support in the
PostgreSQL documentation.

Managing logical slot synchronization for RDS for PostgreSQL

Starting in community PostgreSQL 17, a new feature to automatically synchronize logical
replication slots from primary to standby servers has been introduced through the parameter

Managing logical slot synchronization 4232

https://docs.aws.amazon.com/m2/latest/userguide/what-is-m2.html
https://docs.aws.amazon.com/m2/latest/userguide/what-is-m2.html
https://www.postgresql.org/docs/current/collation.html

Amazon Relational Database Service User Guide

sync_replication_slots or the related function pg_sync_replication_slots(), which
manually synchronizes slots on execution.

These features are available starting with RDS for PostgreSQL 17. A typical setup will have a
primary instance and its read replica, as well as a logical replication subscriber to the primary.

Ensure the subscription is created with the failover option set to true:

CREATE SUBSCRIPTION subname CONNECTION 'host=...' PUBLICATION pubname WITH (failover =
 true);

This creates a logical slot on the publisher with failover enabled.

postgres=> SELECT slot_name, slot_type, failover FROM pg_catalog.pg_replication_slots;
 slot_name | slot_type | failover
-----------+-----------+----------
 subname | logical | t
(1 row)

By enabling slot synchronization, all of the failover logical replication slots on the primary are
automatically created on the physical standbys and are synced periodically. Ensure the following
values have been set through parameter groups:

• rds.logical_replication must be 1 to enable logical replication

• hot_standby_feedback must be 1 on the standby

• rds.logical_slot_sync_dbname on the standby must be set to a valid database name

The parameter's default value is postgres. If the logical publishing instance has the postgres
database, the default parameter does not need to be changed.

• synchronized_standby_slots on the primary must be set to the physical replication slot of
the standby intended to be in-sync

• sync_replication_slots must be 1 to enable automatic synchronization

With a failover-enabled subscription slot and the above parameter values, when a standby is
promoted, the subscriber can alter its subscription to this newly promoted instance and continue
logical replication seamlessly.

Managing logical slot synchronization 4233

Amazon Relational Database Service User Guide

Connecting to a DB instance running the PostgreSQL database
engine

After Amazon RDS provisions your DB instance, you can use any standard SQL client application to
connect to the instance. Before you can connect, the DB instance must be available and accessible.
Whether you can connect to the instance from outside the VPC depends on how you created the
Amazon RDS DB instance:

• If you created your DB instance as public, devices and Amazon EC2 instances outside the VPC can
connect to your database.

• If you created your DB instance as private, only Amazon EC2 instances and devices inside the
Amazon VPC can connect to your database.

To check whether your DB instance is public or private, use the AWS Management Console to
view the Connectivity & security tab for your instance. Under Security, you can find the "Publicly
accessible" value, with No for private, Yes for public.

To learn more about different Amazon RDS and Amazon VPC configurations and how they affect
accessibility, see Scenarios for accessing a DB instance in a VPC.

Contents

• Installing the psql client

• Finding the connection information for an RDS for PostgreSQL DB instance

• Using pgAdmin to connect to a RDS for PostgreSQL DB instance

• Using psql to connect to your RDS for PostgreSQL DB instance

• Connecting to RDS for PostgreSQL with the Amazon Web Services (AWS) JDBC Driver

• Connecting to RDS for PostgreSQL with the Amazon Web Services (AWS) Python Driver

• Troubleshooting connections to your RDS for PostgreSQL instance

• Error – FATAL: database name does not exist

• Error – Could not connect to server: Connection timed out

• Errors with security group access rules

Connecting to a PostgreSQL instance 4234

Amazon Relational Database Service User Guide

Installing the psql client

To connect to your DB instance from an EC2 instance, you can install a PostgreSQL client on
the EC2 instance. To install the latest version of the psql client on Amazon Linux 2023, run the
following command:

sudo dnf install postgresql

To install the latest version of the psql client on Amazon Linux 2, run the following command:

sudo yum install -y postgresql

To install the latest version of the psql client on Ubuntu, run the following command:

sudo apt install -y postgresql-client

Finding the connection information for an RDS for PostgreSQL DB
instance

If the DB instance is available and accessible, you can connect by providing the following
information to the SQL client application:

• The DB instance endpoint, which serves as the host name (DNS name) for the instance.

• The port on which the DB instance is listening. For PostgreSQL, the default port is 5432.

• The user name and password for the DB instance. The default 'master username' for PostgreSQL
is postgres.

• The name and password of the database (DB name).

You can obtain these details by using the AWS Management Console, the AWS CLI describe-db-
instances command, or the Amazon RDS API DescribeDBInstances operation.

To find the endpoint, port number, and DB name using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Open the RDS console and then choose Databases to display a list of your DB instances.

Installing the psql client 4235

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. Choose the PostgreSQL DB instance name to display its details.

4. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You need
both the endpoint and the port number to connect to the DB instance.

5. On the Configuration tab, note the DB name. If you created a database when you created the
RDS for PostgreSQL instance, you see the name listed under DB name. If you didn't create a
database, the DB name displays a dash (‐).

Finding the connection information 4236

Amazon Relational Database Service User Guide

Following are two ways to connect to a PostgreSQL DB instance. The first example uses pgAdmin,
a popular open-source administration and development tool for PostgreSQL. The second example
uses psql, a command line utility that is part of a PostgreSQL installation.

Using pgAdmin to connect to a RDS for PostgreSQL DB instance

You can use the open-source tool pgAdmin to connect to your RDS for PostgreSQL DB instance.
You can download and install pgAdmin from http://www.pgadmin.org/ without having a local
instance of PostgreSQL on your client computer.

To connect to your RDS for PostgreSQL DB instance using pgAdmin

1. Launch the pgAdmin application on your client computer.

2. On the Dashboard tab, choose Add New Server.

3. In the Create - Server dialog box, type a name on the General tab to identify the server in
pgAdmin.

4. On the Connection tab, type the following information from your DB instance:

• For Host, type the endpoint, for example mypostgresql.c6c8dntfzzhgv0.us-
east-2.rds.amazonaws.com.

Using pgAdmin to connect to a RDS for PostgreSQL DB instance 4237

http://www.pgadmin.org/

Amazon Relational Database Service User Guide

• For Port, type the assigned port.

• For Username, type the user name that you entered when you created the DB instance (if
you changed the 'master username' from the default, postgres).

• For Password, type the password that you entered when you created the DB instance.

5. Choose Save.

If you have any problems connecting, see Troubleshooting connections to your RDS for
PostgreSQL instance.

6. To access a database in the pgAdmin browser, expand Servers, the DB instance, and
Databases. Choose the DB instance's database name.

Using pgAdmin to connect to a RDS for PostgreSQL DB instance 4238

Amazon Relational Database Service User Guide

7. To open a panel where you can enter SQL commands, choose Tools, Query Tool.

Using psql to connect to your RDS for PostgreSQL DB instance

You can use a local instance of the psql command line utility to connect to a RDS for PostgreSQL
DB instance. You need either PostgreSQL or the psql client installed on your client computer.

You can download the PostgreSQL client from the PostgreSQL website. Follow the instructions
specific to your operating system version to install psql.

To connect to your RDS for PostgreSQL DB instance using psql, you need to provide host (DNS)
information, access credentials, and the name of the database.

Use one of the following formats to connect to your RDS for PostgreSQL DB instance. When you
connect, you're prompted for a password. For batch jobs or scripts, use the --no-password
option. This option is set for the entire session.

Using psql to connect to your RDS for PostgreSQL DB instance 4239

https://www.postgresql.org/download/

Amazon Relational Database Service User Guide

Note

A connection attempt with --no-password fails when the server requires password
authentication and a password is not available from other sources. For more information,
see the psql documentation.

If this is the first time you are connecting to this DB instance, or if you didn't yet create a database
for this RDS for PostgreSQL instance, you can connect to the postgres database using the 'master
username' and password.

For Unix, use the following format.

psql \
 --host=<DB instance endpoint> \
 --port=<port> \
 --username=<master username> \
 --password \
 --dbname=<database name>

For Windows, use the following format.

psql ^
 --host=<DB instance endpoint> ^
 --port=<port> ^
 --username=<master username> ^
 --password ^
 --dbname=<database name>

For example, the following command connects to a database called mypgdb on a PostgreSQL DB
instance called mypostgresql using fictitious credentials.

psql --host=mypostgresql.c6c8mwvfdgv0.us-west-2.rds.amazonaws.com --port=5432 --
username=awsuser --password --dbname=mypgdb

Using psql to connect to your RDS for PostgreSQL DB instance 4240

https://www.postgresql.org/docs/13/app-psql.html

Amazon Relational Database Service User Guide

Connecting to RDS for PostgreSQL with the Amazon Web Services
(AWS) JDBC Driver

The Amazon Web Services (AWS) JDBC Driver is designed as an advanced JDBC wrapper. This
wrapper is complementary to and extends the functionality of an existing JDBC driver. The driver is
drop-in compatible with the community pgJDBC driver.

To install the AWS JDBC Driver, append the AWS JDBC Driver .jar file (located in the application
CLASSPATH), and keep references to the respective community driver. Update the respective
connection URL prefix as follows:

• jdbc:postgresql:// to jdbc:aws-wrapper:postgresql://

For more information about the AWS JDBC Driver and complete instructions for using it, see the
Amazon Web Services (AWS) JDBC Driver GitHub repository.

Connecting to RDS for PostgreSQL with the Amazon Web Services
(AWS) Python Driver

The Amazon Web Services (AWS) Python Driver is designed as an advanced Python wrapper.
This wrapper is complementary to and extends the functionality of the open-source Psycopg
driver. The AWS Python Driver supports Python versions 3.8 and higher. You can install the aws-
advanced-python-wrapper package using the pip command, along with the psycopg open-
source packages.

For more information about the AWS Python Driver and complete instructions for using it, see the
Amazon Web Services (AWS) Python Driver GitHub repository.

Troubleshooting connections to your RDS for PostgreSQL instance

Topics

• Error – FATAL: database name does not exist

• Error – Could not connect to server: Connection timed out

• Errors with security group access rules

Connecting to RDS for PostgreSQL with the AWS JDBC Driver 4241

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/awslabs/aws-advanced-python-wrapper

Amazon Relational Database Service User Guide

Error – FATAL: database name does not exist

If when trying to connect you receive an error like FATAL: database name does not exist,
try using the default database name postgres for the --dbname option.

Error – Could not connect to server: Connection timed out

If you can't connect to the DB instance, the most common error is Could not connect to
server: Connection timed out. If you receive this error, check the following:

• Check that the host name used is the DB instance endpoint and that the port number used is
correct.

• Make sure that the DB instance's public accessibility is set to Yes to allow external connections.
To modify the Public access setting, see Modifying an Amazon RDS DB instance.

• Make sure that the user connecting to the database has CONNECT access to it. You can use the
following query to provide connect access to the database.

GRANT CONNECT ON DATABASE database name TO username;

• Check that the security group assigned to the DB instance has rules to allow access through any
firewall your connection might go through. For example, if the DB instance was created using the
default port of 5432, your company might have firewall rules blocking connections to that port
from external company devices.

To fix this, modify the DB instance to use a different port. Also, make sure that the security group
applied to the DB instance allows connections to the new port. To modify the Database port
setting, see Modifying an Amazon RDS DB instance.

• Check whether the port you're attempting to use is already occupied by a local instance of
PostgreSQL or another service running on your computer. For example, if you have a local
PostgreSQL database running on the same port (default is 5432), it might prevent a successful
connection to the RDS for PostgreSQL DB instance. Make sure that the port is free, or try
connecting with a different port number if possible.

• See also Errors with security group access rules.

Troubleshooting connections to your RDS for PostgreSQL instance 4242

Amazon Relational Database Service User Guide

Errors with security group access rules

By far the most common connection problem is with the security group's access rules assigned
to the DB instance. If you used the default security group when you created the DB instance, the
security group likely didn't have access rules that allow you to access the instance.

For the connection to work, the security group you assigned to the DB instance at its creation must
allow access to the DB instance. For example, if the DB instance was created in a VPC, it must have
a VPC security group that authorizes connections. Check if the DB instance was created using a
security group that doesn't authorize connections from the device or Amazon EC2 instance where
the application is running.

You can add or edit an inbound rule in the security group. For Source, choosing My IP allows access
to the DB instance from the IP address detected in your browser. For more information, see Provide
access to your DB instance in your VPC by creating a security group.

Alternatively, if the DB instance was created outside of a VPC, it must have a database security
group that authorizes those connections.

For more information about Amazon RDS security groups, see Controlling access with security
groups.

Troubleshooting connections to your RDS for PostgreSQL instance 4243

Amazon Relational Database Service User Guide

Securing connections to RDS for PostgreSQL with SSL/TLS

RDS for PostgreSQL supports Secure Socket Layer (SSL) encryption for PostgreSQL DB instances.
Using SSL, you can encrypt a PostgreSQL connection between your applications and your
PostgreSQL DB instances. You can also force all connections to your PostgreSQL DB instance to use
SSL. RDS for PostgreSQL also supports Transport Layer Security (TLS), the successor protocol to
SSL.

To learn more about Amazon RDS and data protection, including encrypting connections using
SSL/TLS, see Data protection in Amazon RDS.

Topics

• Using SSL with a PostgreSQL DB instance

• Updating applications to connect to PostgreSQL DB instances using new SSL/TLS certificates

Using SSL with a PostgreSQL DB instance

Amazon RDS supports Secure Socket Layer (SSL) encryption for PostgreSQL DB instances. Using
SSL, you can encrypt a PostgreSQL connection between your applications and your PostgreSQL DB
instances. By default, RDS for PostgreSQL uses and expects all clients to connect using SSL/TLS,
but you can also require it. RDS for PostgreSQL supports Transport Layer Security (TLS) versions
1.1, 1.2, and 1.3.

For general information about SSL support and PostgreSQL databases, see SSL support in the
PostgreSQL documentation. For information about using an SSL connection over JDBC, see
Configuring the client in the PostgreSQL documentation.

SSL support is available in all AWS Regions for PostgreSQL. Amazon RDS creates an SSL certificate
for your PostgreSQL DB instance when the instance is created. If you enable SSL certificate
verification, then the SSL certificate includes the DB instance endpoint as the Common Name (CN)
for the SSL certificate to guard against spoofing attacks.

Topics

• Connecting to a PostgreSQL DB instance over SSL

• Requiring an SSL connection to a PostgreSQL DB instance

• Determining the SSL connection status

• SSL cipher suites in RDS for PostgreSQL

Securing connections with SSL/TLS 4244

https://www.postgresql.org/docs/11/libpq-ssl.html
https://jdbc.postgresql.org/documentation/head/ssl-client.html

Amazon Relational Database Service User Guide

Connecting to a PostgreSQL DB instance over SSL

To connect to a PostgreSQL DB instance over SSL

1. Download the certificate.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster.

2. Connect to your PostgreSQL DB instance over SSL.

When you connect using SSL, your client can choose whether to verify the certificate chain.
If your connection parameters specify sslmode=verify-ca or sslmode=verify-full,
then your client requires the RDS CA certificates to be in their trust store or referenced in the
connection URL. This requirement is to verify the certificate chain that signs your database
certificate.

When a client, such as psql or JDBC, is configured with SSL support, the client first tries to
connect to the database with SSL by default. If the client can't connect with SSL, it reverts to
connecting without SSL. The default sslmode mode used is different between libpq-based
clients (such as psql) and JDBC. The libpq-based and JDBC clients default to prefer.

Use the sslrootcert parameter to reference the certificate, for example
sslrootcert=rds-ssl-ca-cert.pem.

The following is an example of using psql to connect to a PostgreSQL DB instance using SSL with
certificate verification.

$ psql "host=db-name.555555555555.ap-southeast-1.rds.amazonaws.com
 port=5432 dbname=testDB user=testuser sslrootcert=rds-ca-rsa2048-g1.pem
 sslmode=verify-full"

Requiring an SSL connection to a PostgreSQL DB instance

You can require that connections to your PostgreSQL DB instance use SSL by using the
rds.force_ssl parameter. The rds.force_ssl parameter default value is 1 (on) for RDS for
PostgreSQL version 15 and later. For all other RDS for PostgreSQL major versions 14 and older, the
default value of this parameter is 0 (off). You can set the rds.force_ssl parameter to 1 (on) to
require SSL/TLS for connections to your DB cluster. You can set the rds.force_ssl parameter to
1 (on) to require SSL for connections to your DB instance.

Using SSL with a PostgreSQL DB instance 4245

Amazon Relational Database Service User Guide

To change the value of this parameter, you need to create a custom DB parameter group. You then
change the value for rds.force_ssl in your custom DB parameter group to 1 to turn on this
feature. If you prepare the custom DB parameter group before creating your RDS for PostgreSQL
DB instance you can choose it (instead of a default parameter group) during the creation process.
If you do this after your RDS for PostgreSQL DB instance is already running, you need to reboot
the instance so that your instance uses the custom parameter group. For more information, see
Parameter groups for Amazon RDS.

When the rds.force_ssl feature is active on your DB instance, connection attempts that aren't
using SSL are rejected with the following message:

$ psql -h db-name.555555555555.ap-southeast-1.rds.amazonaws.com port=5432 dbname=testDB
 user=testuser
psql: error: FATAL: no pg_hba.conf entry for host "w.x.y.z", user "testuser", database
 "testDB", SSL off

Determining the SSL connection status

The encrypted status of your connection is shown in the logon banner when you connect to the DB
instance:

Password for user master:
psql (10.3)
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.
postgres=>

You can also load the sslinfo extension and then call the ssl_is_used() function to determine
if SSL is being used. The function returns t if the connection is using SSL, otherwise it returns f.

postgres=> CREATE EXTENSION sslinfo;
CREATE EXTENSION
postgres=> SELECT ssl_is_used();
ssl_is_used

t
(1 row)

For more detailed information, you can use the following query to get information from
pg_settings:

Using SSL with a PostgreSQL DB instance 4246

Amazon Relational Database Service User Guide

SELECT name as "Parameter name", setting as value, short_desc FROM pg_settings WHERE
 name LIKE '%ssl%';
 Parameter name | value |
 short_desc
--+---
+---
 ssl | on |
 Enables SSL connections.
 ssl_ca_file | /rdsdbdata/rds-metadata/ca-cert.pem |
 Location of the SSL certificate authority file.
 ssl_cert_file | /rdsdbdata/rds-metadata/server-cert.pem |
 Location of the SSL server certificate file.
 ssl_ciphers | HIGH:!aNULL:!3DES |
 Sets the list of allowed SSL ciphers.
 ssl_crl_file | |
 Location of the SSL certificate revocation list file.
 ssl_dh_params_file | |
 Location of the SSL DH parameters file.
 ssl_ecdh_curve | prime256v1 |
 Sets the curve to use for ECDH.
 ssl_key_file | /rdsdbdata/rds-metadata/server-key.pem |
 Location of the SSL server private key file.
 ssl_library | OpenSSL |
 Name of the SSL library.
 ssl_max_protocol_version | |
 Sets the maximum SSL/TLS protocol version to use.
 ssl_min_protocol_version | TLSv1.2 |
 Sets the minimum SSL/TLS protocol version to use.
 ssl_passphrase_command | |
 Command to obtain passphrases for SSL.
 ssl_passphrase_command_supports_reload | off |
 Also use ssl_passphrase_command during server reload.
 ssl_prefer_server_ciphers | on |
 Give priority to server ciphersuite order.
(14 rows)

You can also collect all the information about your RDS for PostgreSQL DB instance's SSL usage by
process, client, and application by using the following query:

SELECT datname as "Database name", usename as "User name", ssl, client_addr,
 application_name, backend_type
 FROM pg_stat_ssl
 JOIN pg_stat_activity

Using SSL with a PostgreSQL DB instance 4247

Amazon Relational Database Service User Guide

 ON pg_stat_ssl.pid = pg_stat_activity.pid
 ORDER BY ssl;
 Database name | User name | ssl | client_addr | application_name |
 backend_type
---------------+-----------+-----+----------------+------------------------
+------------------------------
 | | f | | | autovacuum
 launcher
 | rdsadmin | f | | | logical
 replication launcher
 | | f | | | background
 writer
 | | f | | |
 checkpointer
 | | f | | | walwriter
 rdsadmin | rdsadmin | t | 127.0.0.1 | | client
 backend
 rdsadmin | rdsadmin | t | 127.0.0.1 | PostgreSQL JDBC Driver | client
 backend
 postgres | postgres | t | 204.246.162.36 | psql | client
 backend
(8 rows)

To identify the cipher used for your SSL connection, you can query as follows:

postgres=> SELECT ssl_cipher();
ssl_cipher

DHE-RSA-AES256-SHA
(1 row)

To learn more about the sslmode option, see Database connection control functions in the
PostgreSQL documentation.

SSL cipher suites in RDS for PostgreSQL

The PostgreSQL configuration parameter ssl_ciphers specifies the categories of cipher suites that
are allowed for SSL connections to the database when using TLS 1.2 and lower.

In RDS for PostgreSQL 16 and later, you can modify the ssl_ciphers parameter to use specific
values from the allowlisted cipher suites. This is a dynamic parameter that doesn't require a

Using SSL with a PostgreSQL DB instance 4248

https://www.postgresql.org/docs/11/libpq-connect.html#LIBPQ-CONNECT-SSLMODE
https://www.postgresql.org/docs/current/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SSL

Amazon Relational Database Service User Guide

database instance reboot. To view the allowlisted cipher suites, use either the Amazon RDS console
or the following AWS CLI command:

aws rds describe-db-parameters --db-parameter-group-name <your-parameter-group> --
region <region> --endpoint-url <endpoint-url> --output json | jq '.Parameters[] |
 select(.ParameterName == "ssl_ciphers")'

The following table lists both the default cipher suites and the allowed cipher suites for versions
that support custom configurations.

PostgreSQL engine version Default ssl_cipher suite
values

Allowlisted custom ssl_ciphe
r suite values

17 HIGH:!aNULL:!3DES TLS_ECDHE_RSA_WITH
_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH
_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH
_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WI
TH_AES_256_GCM_SHA
384

TLS_ECDHE_ECDSA_WI
TH_AES_128_GCM_SHA
256

16 HIGH:!aNULL:!3DES TLS_ECDHE_RSA_WITH
_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH
_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH
_AES_128_GCM_SHA256

Using SSL with a PostgreSQL DB instance 4249

Amazon Relational Database Service User Guide

PostgreSQL engine version Default ssl_cipher suite
values

Allowlisted custom ssl_ciphe
r suite values

TLS_ECDHE_ECDSA_WI
TH_AES_256_GCM_SHA
384

TLS_ECDHE_ECDSA_WI
TH_AES_128_GCM_SHA
256

15 HIGH:!aNULL:!3DES Custom ssl_ciphers isn't
supported

14 HIGH:!aNULL:!3DES Custom ssl_ciphers isn't
supported

13 HIGH:!aNULL:!3DES Custom ssl_ciphers isn't
supported

12 HIGH:!aNULL:!3DES Custom ssl_ciphers isn't
supported

11.4 and higher minor
versions

HIGH:MEDIUM:+3DES:!
aNULL:!RC4

Custom ssl_ciphers isn't
supported

11.1, 11.2 HIGH:MEDIUM:+3DES:!
aNULL

Custom ssl_ciphers isn't
supported

10.9 and higher minor
versions

HIGH:MEDIUM:+3DES:!
aNULL:!RC4

Custom ssl_ciphers isn't
supported

10.7 and lower minor versions HIGH:MEDIUM:+3DES:!
aNULL

Custom ssl_ciphers isn't
supported

To configure all instance connections to use the
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 cipher suite, modify your parameter group as
shown in the following example:

Using SSL with a PostgreSQL DB instance 4250

Amazon Relational Database Service User Guide

aws rds modify-db-parameter-group --db-parameter-group-name <your-parameter-group> --
parameters
 "ParameterName='ssl_ciphers',ParameterValue='TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384',ApplyMethod=immediate"

This example uses an ECDSA cipher, which requires your instance to use a certificate authority
with elliptic curve cryptography (ECC) to establish a connection. For information about certificate
authorities provided by Amazon RDS, see Certificate authorities.

You can verify the ciphers in use through the methods described in Determining the SSL
connection status.

Ciphers may have different names depending on the context:

• The allowlisted ciphers that you can configure in your parameter group are referred to with their
IANA names.

• The sslinfo and psql logon banner refer to ciphers using their OpenSSL names.

By default, the value of ssl_max_protocol_version in RDS for PostgreSQL 16 and later is
TLS v1.3. You must set the value of this parameter to TLS v1.2 as TLS v1.3 doesn't use the cipher
configurations specified in the ssl_ciphers parameter. When you set the value as TLS v1.2,
connections use only the ciphers that you define in ssl_ciphers.

aws rds modify-db-parameter-group --db-parameter-group-name <your-parameter-group> --
parameters
 "ParameterName='ssl_max_protocol_version',ParameterValue='TLSv1.2',ApplyMethod=immediate"

To ensure database connections use SSL, set the rds.force_ssl parameter to 1 in your
parameter group. For more information about parameters and parameter groups, see Parameter
groups for Amazon RDS.

Updating applications to connect to PostgreSQL DB instances using
new SSL/TLS certificates

Certificates used for Secure Socket Layer or Transport Layer Security (SSL/TLS) typically have a
set lifetime. When service providers update their Certificate Authority (CA) certificates, clients
must update their applications to use the new certificates. Following, you can find information
about how to determine if your client applications use SSL/TLS to connect to your Amazon RDS for

Updating applications to use new SSL/TLS certificates 4251

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/singWithRDS.SSL.html#UsingWithRDS.SSL.RegionCertificateAuthorities
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Concepts.General.SSL.html#PostgreSQL.Concepts.General.SSL.Status
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Concepts.General.SSL.html#PostgreSQL.Concepts.General.SSL.Status
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

Amazon Relational Database Service User Guide

PostgreSQL DB instance. You also find information about how to check if those applications verify
the server certificate when they connect.

Note

A client application that's configured to verify the server certificate before SSL/TLS
connection must have a valid CA certificate in the client's trust store. Update the client trust
store when necessary for new certificates.

After you update your CA certificates in the client application trust stores, you can rotate
the certificates on your DB instances. We strongly recommend testing these procedures in a
nonproduction environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate. For more
information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
instance or cluster. For information about using SSL/TLS with PostgreSQL DB instances, see Using
SSL with a PostgreSQL DB instance.

Topics

• Determining whether applications are connecting to PostgreSQL DB instances using SSL

• Determining whether a client requires certificate verification in order to connect

• Updating your application trust store

• Using SSL/TLS connections for different types of applications

Determining whether applications are connecting to PostgreSQL DB instances
using SSL

Check the DB instance configuration for the value of the rds.force_ssl parameter. By default,
the rds.force_ssl parameter is set to 0 (off) for DB instances using PostgreSQL versions before
version 15. By default, rds.force_ssl is set to 1 (on) for DB instances using PostgreSQL version
15 and later major versions. If the rds.force_ssl parameter is set to 1 (on), clients are required
to use SSL/TLS for connections. For more information about parameter groups, see Parameter
groups for Amazon RDS.

Updating applications to use new SSL/TLS certificates 4252

Amazon Relational Database Service User Guide

If you are using RDS PostgreSQL version 9.5 or later major version and rds.force_ssl is not set
to 1 (on), query the pg_stat_ssl view to check connections using SSL. For example, the following
query returns only SSL connections and information about the clients using SSL.

SELECT datname, usename, ssl, client_addr
 FROM pg_stat_ssl INNER JOIN pg_stat_activity ON pg_stat_ssl.pid =
 pg_stat_activity.pid
 WHERE ssl is true and usename<>'rdsadmin';

Only rows using SSL/TLS connections are displayed with information about the connection. The
following is sample output.

 datname | usename | ssl | client_addr
----------+---------+-----+-------------
 benchdb | pgadmin | t | 53.95.6.13
 postgres | pgadmin | t | 53.95.6.13
(2 rows)

This query displays only the current connections at the time of the query. The absence of results
doesn't indicate that no applications are using SSL connections. Other SSL connections might be
established at a different time.

Determining whether a client requires certificate verification in order to connect

When a client, such as psql or JDBC, is configured with SSL support, the client first tries to connect
to the database with SSL by default. If the client can't connect with SSL, it reverts to connecting
without SSL. The default sslmode mode used for both libpq-based clients (such as psql) and JDBC
is set to prefer. The certificate on the server is verified only when sslrootcert is provided with
sslmode set to verify-ca or verify-full. An error is thrown if the certificate is invalid.

Use PGSSLROOTCERT to verify the certificate with the PGSSLMODE environment variable, with
PGSSLMODE set to verify-ca or verify-full.

PGSSLMODE=verify-full PGSSLROOTCERT=/fullpath/ssl-cert.pem psql -h
 pgdbidentifier.cxxxxxxxx.us-east-2.rds.amazonaws.com -U masteruser -d postgres

Use the sslrootcert argument to verify the certificate with sslmode in connection string
format, with sslmode set to verify-ca or verify-full to verify the certificate.

Updating applications to use new SSL/TLS certificates 4253

Amazon Relational Database Service User Guide

psql "host=pgdbidentifier.cxxxxxxxx.us-east-2.rds.amazonaws.com sslmode=verify-full
 sslrootcert=/full/path/ssl-cert.pem user=masteruser dbname=postgres"

For example, in the preceding case, if you are using an invalid root certificate, then you see an error
similar to the following on your client.

psql: SSL error: certificate verify failed

Updating your application trust store

For information about updating the trust store for PostgreSQL applications, see Secure TCP/IP
connections with SSL in the PostgreSQL documentation.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB instance or cluster.

For sample scripts that import certificates, see Sample script for importing certificates into your
trust store.

Note

When you update the trust store, you can retain older certificates in addition to adding the
new certificates.

Using SSL/TLS connections for different types of applications

The following provides information about using SSL/TLS connections for different types of
applications:

• psql

The client is invoked from the command line by specifying options either as a connection
string or as environment variables. For SSL/TLS connections, the relevant options are sslmode
(environment variable PGSSLMODE), sslrootcert (environment variable PGSSLROOTCERT).

For the complete list of options, see Parameter key words in the PostgreSQL documentation.
For the complete list of environment variables, see Environment variables in the PostgreSQL
documentation.

Updating applications to use new SSL/TLS certificates 4254

https://www.postgresql.org/docs/current/ssl-tcp.html
https://www.postgresql.org/docs/current/ssl-tcp.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/current/libpq-envars.html

Amazon Relational Database Service User Guide

• pgAdmin

This browser-based client is a more user-friendly interface for connecting to a PostgreSQL
database.

For information about configuring connections, see the pgAdmin documentation.

• JDBC

JDBC enables database connections with Java applications.

For general information about connecting to a PostgreSQL database with JDBC, see
Connecting to the database in the PostgreSQL JDBC driver documentation. For information
about connecting with SSL/TLS, see Configuring the client in the PostgreSQL JDBC driver
documentation.

• Python

A popular Python library for connecting to PostgreSQL databases is psycopg2.

For information about using psycopg2, see the psycopg2 documentation. For a short tutorial on
how to connect to a PostgreSQL database, see Psycopg2 tutorial. You can find information about
the options the connect command accepts in The psycopg2 module content.

Important

After you have determined that your database connections use SSL/TLS and have updated
your application trust store, you can update your database to use the rds-ca-rsa2048-g1
certificates. For instructions, see step 3 in Updating your CA certificate by modifying your
DB instance or cluster.

Updating applications to use new SSL/TLS certificates 4255

https://www.pgadmin.org/docs/pgadmin4/latest/server_dialog.html
https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database
https://jdbc.postgresql.org/documentation/ssl/#configuring-the-client
https://pypi.org/project/psycopg2/
https://wiki.postgresql.org/wiki/Psycopg2_Tutorial
http://initd.org/psycopg/docs/module.html#module-psycopg2

Amazon Relational Database Service User Guide

Using Kerberos authentication with Amazon RDS for
PostgreSQL

You can use Kerberos to authenticate users when they connect to your DB instance running
PostgreSQL. To do so, configure your DB instance to use AWS Directory Service for Microsoft Active
Directory for Kerberos authentication. AWS Directory Service for Microsoft Active Directory is also
called AWS Managed Microsoft AD. It's a feature available with AWS Directory Service. To learn
more, see What is AWS Directory Service? in the AWS Directory Service Administration Guide.

To start, create an AWS Managed Microsoft AD directory to store user credentials. Then, provide
to your PostgreSQL DB instance the Active Directory's domain and other information. When users
authenticate with the PostgreSQL DB instance, authentication requests are forwarded to the AWS
Managed Microsoft AD directory.

Keeping all of your credentials in the same directory can save you time and effort. You have a
centralized location for storing and managing credentials for multiple DB instances. Using a
directory can also improve your overall security profile.

In addition, you can access credentials from your own on-premises Microsoft Active Directory. To do
so, create a trusting domain relationship so that the AWS Managed Microsoft AD directory trusts
your on-premises Microsoft Active Directory. In this way, your users can access your PostgreSQL
instances with the same Windows single sign-on (SSO) experience as when they access workloads
in your on-premises network.

A database can use password authentication or password authentication with either Kerberos
or AWS Identity and Access Management (IAM) authentication. For more information about IAM
authentication, see IAM database authentication for MariaDB, MySQL, and PostgreSQL.

Topics

• Region and version availability

• Overview of Kerberos authentication for PostgreSQL DB instances

• Setting up Kerberos authentication for PostgreSQL DB instances

• Managing an RDS for PostgreSQL DB instance in an Active Directory domain

• Connecting to PostgreSQL with Kerberos authentication

Using Kerberos authentication 4256

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/what_is.html

Amazon Relational Database Service User Guide

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability of RDS for PostgreSQL with
Kerberos authentication, see Supported Regions and DB engines for Kerberos authentication in
Amazon RDS.

Overview of Kerberos authentication for PostgreSQL DB instances

To set up Kerberos authentication for a PostgreSQL DB instance, take the following steps,
described in more detail later:

1. Use AWS Managed Microsoft AD to create an AWS Managed Microsoft AD directory. You can
use the AWS Management Console, the AWS CLI, or the AWS Directory Service API to create the
directory. Make sure to open the relevant outbound ports on the directory security group so that
the directory can communicate with the instance.

2. Create a role that provides Amazon RDS access to make calls to your AWS Managed Microsoft
AD directory. To do so, create an AWS Identity and Access Management (IAM) role that uses the
managed IAM policy AmazonRDSDirectoryServiceAccess.

For the IAM role to allow access, the AWS Security Token Service (AWS STS) endpoint must
be activated in the correct AWS Region for your AWS account. AWS STS endpoints are active
by default in all AWS Regions, and you can use them without any further actions. For more
information, see Activating and deactivating AWS STS in an AWS Region in the IAM User Guide.

3. Create and configure users in the AWS Managed Microsoft AD directory using the Microsoft
Active Directory tools. For more information about creating users in your Active Directory,
see Manage users and groups in AWS Managed Microsoft AD in the AWS Directory Service
Administration Guide.

4. If you plan to locate the directory and the DB instance in different AWS accounts or virtual
private clouds (VPCs), configure VPC peering. For more information, see What is VPC peering? in
the Amazon VPC Peering Guide.

5. Create or modify a PostgreSQL DB instance either from the console, CLI, or RDS API using one of
the following methods:

• Creating an Amazon RDS DB instance

• Modifying an Amazon RDS DB instance

• Restoring to a DB instance

Region and version availability 4257

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html

Amazon Relational Database Service User Guide

• Restoring a DB instance to a specified time for Amazon RDS

You can locate the instance in the same Amazon Virtual Private Cloud (VPC) as the directory or
in a different AWS account or VPC. When you create or modify the PostgreSQL DB instance, do
the following:

• Provide the domain identifier (d-* identifier) that was generated when you created your
directory.

• Provide the name of the IAM role that you created.

• Ensure that the DB instance security group can receive inbound traffic from the directory
security group.

6. Use the RDS master user credentials to connect to the PostgreSQL DB instance. Create the
user in PostgreSQL to be identified externally. Externally identified users can log in to the
PostgreSQL DB instance using Kerberos authentication.

Setting up Kerberos authentication for PostgreSQL DB instances

You use AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) to set
up Kerberos authentication for a PostgreSQL DB instance. To set up Kerberos authentication, take
the following steps.

Topics

• Step 1: Create a directory using AWS Managed Microsoft AD

• Step 2: (Optional) Create a trust relationship between your on-premises Active Directory and
AWS Directory Service

• Step 3: Create an IAM role for Amazon RDS to access the AWS Directory Service

• Step 4: Create and configure users

• Step 5: Enable cross-VPC traffic between the directory and the DB instance

• Step 6: Create or modify a PostgreSQL DB instance

• Step 7: Create PostgreSQL users for your Kerberos principals

• Step 8: Configure a PostgreSQL client

Setting up 4258

Amazon Relational Database Service User Guide

Step 1: Create a directory using AWS Managed Microsoft AD

AWS Directory Service creates a fully managed Active Directory in the AWS Cloud. When you create
an AWS Managed Microsoft AD directory, AWS Directory Service creates two domain controllers
and DNS servers for you. The directory servers are created in different subnets in a VPC. This
redundancy helps make sure that your directory remains accessible even if a failure occurs.

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the
following tasks on your behalf:

• Sets up an Active Directory within your VPC.

• Creates a directory administrator account with the user name Admin and the specified password.
You use this account to manage your directory.

Important

Make sure to save this password. AWS Directory Service doesn't store this password, and
it can't be retrieved or reset.

• Creates a security group for the directory controllers. The security group must permit
communication with the PostgreSQL DB instance.

When you launch AWS Directory Service for Microsoft Active Directory, AWS creates an
Organizational Unit (OU) that contains all of your directory's objects. This OU, which has the
NetBIOS name that you entered when you created your directory, is located in the domain root.
The domain root is owned and managed by AWS.

The Admin account that was created with your AWS Managed Microsoft AD directory has
permissions for the most common administrative activities for your OU:

• Create, update, or delete users

• Add resources to your domain such as file or print servers, and then assign permissions for those
resources to users in your OU

• Create additional OUs and containers

• Delegate authority

• Restore deleted objects from the Active Directory Recycle Bin

Setting up 4259

Amazon Relational Database Service User Guide

• Run Active Directory and Domain Name Service (DNS) modules for Windows PowerShell on the
Active Directory Web Service

The Admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders)

• View DNS event logs

• View security event logs

To create a directory with AWS Managed Microsoft AD

1. In the AWS Directory Service console navigation pane, choose Directories, and then choose
Set up directory.

2. Choose AWS Managed Microsoft AD. AWS Managed Microsoft AD is the only option currently
supported for use with Amazon RDS.

3. Choose Next.

4. On the Enter directory information page, provide the following information:

Edition

Choose the edition that meets your requirements.

Directory DNS name

The fully qualified name for the directory, such as corp.example.com.

Directory NetBIOS name

An optional short name for the directory, such as CORP.

Directory description

An optional description for the directory.

Admin password

The password for the directory administrator. The directory creation process creates an
administrator account with the user name Admin and this password.

Setting up 4260

https://console.aws.amazon.com/directoryservicev2/

Amazon Relational Database Service User Guide

The directory administrator password can't include the word "admin." The password is case-
sensitive and must be 8–64 characters in length. It must also contain at least one character
from three of the following four categories:

• Lowercase letters (a–z)

• Uppercase letters (A–Z)

• Numbers (0–9)

• Nonalphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

Confirm password

Retype the administrator password.

Important

Make sure that you save this password. AWS Directory Service doesn't store this
password, and it can't be retrieved or reset.

5. Choose Next.

6. On the Choose VPC and subnets page, provide the following information:

VPC

Choose the VPC for the directory. You can create the PostgreSQL DB instance in this same
VPC or in a different VPC.

Subnets

Choose the subnets for the directory servers. The two subnets must be in different
Availability Zones.

7. Choose Next.

8. Review the directory information. If changes are needed, choose Previous and make the
changes. When the information is correct, choose Create directory.

Setting up 4261

Amazon Relational Database Service User Guide

It takes several minutes for the directory to be created. When it has been successfully created, the
Status value changes to Active.

To see information about your directory, choose the directory ID in the directory listing. Make a
note of the Directory ID value. You need this value when you create or modify your PostgreSQL DB
instance.

Setting up 4262

Amazon Relational Database Service User Guide

Step 2: (Optional) Create a trust relationship between your on-premises Active
Directory and AWS Directory Service

If you don't plan to use your own on-premises Microsoft Active Directory, skip to Step 3: Create an
IAM role for Amazon RDS to access the AWS Directory Service.

To get Kerberos authentication using your on-premises Active Directory, you need to create a
trusting domain relationship using a forest trust between your on-premises Microsoft Active
Directory and the AWS Managed Microsoft AD directory (created in Step 1: Create a directory
using AWS Managed Microsoft AD). The trust can be one-way, where the AWS Managed Microsoft

Setting up 4263

Amazon Relational Database Service User Guide

AD directory trusts the on-premises Microsoft Active Directory. The trust can also be two-way,
where both Active Directories trust each other. For more information about setting up trusts
using AWS Directory Service, see When to create a trust relationship in the AWS Directory Service
Administration Guide.

Note

If you use an on-premises Microsoft Active Directory, Windows clients connect
using the domain name of the AWS Directory Service in the endpoint rather than
rds.amazonaws.com. To learn more, see Connecting to PostgreSQL with Kerberos
authentication.

Make sure that your on-premises Microsoft Active Directory domain name includes a DNS suffix
routing that corresponds to the newly created trust relationship. The following screenshot shows
an example.

Step 3: Create an IAM role for Amazon RDS to access the AWS Directory Service

For Amazon RDS to call AWS Directory Service for you, your AWS account needs an IAM role that
uses the managed IAM policy AmazonRDSDirectoryServiceAccess. This role allows Amazon
RDS to make calls to AWS Directory Service.

When you create a DB instance using the AWS Management Console and your console user account
has the iam:CreateRole permission, the console creates the needed IAM role automatically. In
this case, the role name is rds-directoryservice-kerberos-access-role. Otherwise, you
must create the IAM role manually. When you create this IAM role, choose Directory Service,
and attach the AWS managed policy AmazonRDSDirectoryServiceAccess to it.

Setting up 4264

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_setup_trust.html

Amazon Relational Database Service User Guide

For more information about creating IAM roles for a service, see Creating a role to delegate
permissions to an AWS service in the IAM User Guide.

Note

The IAM role used for Windows Authentication for RDS for Microsoft SQL Server can't be
used for Amazon RDS for PostgreSQL.

As an alternative to using the AmazonRDSDirectoryServiceAccess managed policy, you can
create policies with the required permissions. In this case, the IAM role must have the following IAM
trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role must also have the following IAM role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",
 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"

Setting up 4265

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For opt-in AWS Regions, use Region-specific service principals in IAM role trust policies. When you
create a trust policy for services in these Regions, specify the Region code in the service principal.

The following example shows a trust policy that includes Region-specific service principals:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.REGION-CODE.amazonaws.com",
 "rds.REGION-CODE.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Replace REGION-CODE with the code for your specific Region. For example, use the following
service principals for the Asia Pacific (Melbourne) Region:

"Service": [
 "directoryservice.rds.ap-southeast-4.amazonaws.com",
 "rds.ap-southeast-4.amazonaws.com"
]

Step 4: Create and configure users

You can create users by using the Active Directory Users and Computers tool. This is one of the
Active Directory Domain Services and Active Directory Lightweight Directory Services tools. For

Setting up 4266

Amazon Relational Database Service User Guide

more information, see Add Users and Computers to the Active Directory domain in the Microsoft
documentation. In this case, users are individuals or other entities, such as their computers that are
part of the domain and whose identities are being maintained in the directory.

To create users in an AWS Directory Service directory, you must be connected to a Windows-based
Amazon EC2 instance that's a member of the AWS Directory Service directory. At the same time,
you must be logged in as a user that has privileges to create users. For more information, see
Create a user in the AWS Directory Service Administration Guide.

Step 5: Enable cross-VPC traffic between the directory and the DB instance

If you plan to locate the directory and the DB instance in the same VPC, skip this step and move on
to Step 6: Create or modify a PostgreSQL DB instance.

If you plan to locate the directory and the DB instance in different VPCs, configure cross-VPC traffic
using VPC peering or AWS Transit Gateway.

The following procedure enables traffic between VPCs using VPC peering. Follow the instructions in
What is VPC peering? in the Amazon Virtual Private Cloud Peering Guide.

To enable cross-VPC traffic using VPC peering

1. Set up appropriate VPC routing rules to ensure that network traffic can flow both ways.

2. Ensure that the DB instance security group can receive inbound traffic from the directory
security group.

3. Ensure that there is no network access control list (ACL) rule to block traffic.

If a different AWS account owns the directory, you must share the directory.

To share the directory between AWS accounts

1. Start sharing the directory with the AWS account that the DB instance will be created in by
following the instructions in Tutorial: Sharing your AWS Managed Microsoft AD directory for
seamless EC2 Domain-join in the AWS Directory Service Administration Guide.

2. Sign in to the AWS Directory Service console using the account for the DB instance, and ensure
that the domain has the SHARED status before proceeding.

3. While signed into the AWS Directory Service console using the account for the DB instance,
note the Directory ID value. You use this directory ID to join the DB instance to the domain.

Setting up 4267

https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/create-an-active-directory-server#add-users-and-computers-to-the-active-directory-domain
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups_create_user.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html

Amazon Relational Database Service User Guide

Step 6: Create or modify a PostgreSQL DB instance

Create or modify a PostgreSQL DB instance for use with your directory. You can use the console,
CLI, or RDS API to associate a DB instance with a directory. You can do this in one of the following
ways:

• Create a new PostgreSQL DB instance using the console, the create-db-instance CLI command,
or the CreateDBInstance RDS API operation. For instructions, see Creating an Amazon RDS DB
instance.

• Modify an existing PostgreSQL DB instance using the console, the modify-db-instance CLI
command, or the ModifyDBInstance RDS API operation. For instructions, see Modifying an
Amazon RDS DB instance.

• Restore a PostgreSQL DB instance from a DB snapshot using the console, the restore-db-
instance-from-db-snapshot CLI command, or the RestoreDBInstanceFromDBSnapshot RDS API
operation. For instructions, see Restoring to a DB instance.

• Restore a PostgreSQL DB instance to a point-in-time using the console, the restore-db-instance-
to-point-in-time CLI command, or the RestoreDBInstanceToPointInTime RDS API operation. For
instructions, see Restoring a DB instance to a specified time for Amazon RDS.

Kerberos authentication is only supported for PostgreSQL DB instances in a VPC. The DB instance
can be in the same VPC as the directory, or in a different VPC. The DB instance must use a
security group that allows ingress and egress within the directory's VPC so the DB instance can
communicate with the directory.

Console

When you use the console to create, modify, or restore a DB instance, choose Password and
Kerberos authentication in the Database authentication section. Then choose Browse Directory.
Select the directory or choose Create a new directory to use the Directory Service.

Setting up 4268

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

AWS CLI

When you use the AWS CLI, the following parameters are required for the DB instance to be able to
use the directory that you created:

• For the --domain parameter, use the domain identifier ("d-*" identifier) generated when you
created the directory.

• For the --domain-iam-role-name parameter, use the role you created that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess.

For example, the following CLI command modifies a DB instance to use a directory.

aws rds modify-db-instance --db-instance-identifier mydbinstance --domain d-Directory-
ID --domain-iam-role-name role-name

Important

If you modify a DB instance to enable Kerberos authentication, reboot the DB instance after
making the change.

Step 7: Create PostgreSQL users for your Kerberos principals

At this point, your RDS for PostgreSQL DB instance is joined to the AWS Managed Microsoft AD
domain. The users that you created in the directory in Step 4: Create and configure users need

Setting up 4269

Amazon Relational Database Service User Guide

to be set up as PostgreSQL database users and granted privileges to login to the database. You
do that by signing in as the database user with rds_superuser privileges. For example, if you
accepted the defaults when you created your RDS for PostgreSQL DB instance, you use postgres,
as shown in the following steps.

To create PostgreSQL database users for Kerberos principals

1. Use psql to connect to your RDS for PostgreSQL DB instance endpoint using psql. The
following example uses the default postgres account for the rds_superuser role.

psql --host=cluster-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password

2. Create a database user name for each Kerberos principal (Active Directory username) that you
want to have access to the database. Use the canonical username (identity) as defined in the
Active Directory instance, that is, a lower-case alias (username in Active Directory) and the
upper-case name of the Active Directory domain for that user name. The Active Directory user
name is an externally authenticated user, so use quotes around the name as shown following.

postgres=> CREATE USER "username@CORP.EXAMPLE.COM" WITH LOGIN;
CREATE ROLE

3. Grant the rds_ad role to the database user.

postgres=> GRANT rds_ad TO "username@CORP.EXAMPLE.COM";
GRANT ROLE

After you finish creating all the PostgreSQL users for your Active Directory user identities, users can
access the RDS for PostgreSQL DB instance by using their Kerberos credentials.

It's required that the database users who authenticate using Kerberos are doing so from client
machines that are members of the Active Directory domain.

Database users that have been granted the rds_ad role can't also have the rds_iam role. This
also applies to nested memberships. For more information, see IAM database authentication for
MariaDB, MySQL, and PostgreSQL.

Step 8: Configure a PostgreSQL client

To configure a PostgreSQL client, take the following steps:

Setting up 4270

Amazon Relational Database Service User Guide

• Create a krb5.conf file (or equivalent) to point to the domain.

• Verify that traffic can flow between the client host and AWS Directory Service. Use a network
utility such as Netcat for the following:

• Verify traffic over DNS for port 53.

• Verify traffic over TCP/UDP for port 53 and for Kerberos, which includes ports 88 and 464 for
AWS Directory Service.

• Verify that traffic can flow between the client host and the DB instance over the database port.
For example, use psql to connect and access the database.

The following is sample krb5.conf content for AWS Managed Microsoft AD.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

The following is sample krb5.conf content for an on-premises Microsoft Active Directory.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
 ONPREM.COM = {
 kdc = onprem.com
 admin_server = onprem.com
 }
[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .onprem.com = ONPREM.COM
 onprem.com = ONPREM.COM

Setting up 4271

Amazon Relational Database Service User Guide

 .rds.amazonaws.com = EXAMPLE.COM
 .amazonaws.com.cn = EXAMPLE.COM
 .amazon.com = EXAMPLE.COM

Managing an RDS for PostgreSQL DB instance in an Active Directory
domain

You can use the console, the CLI, or the RDS API to manage your DB instance and its relationship
with your Microsoft Active Directory. For example, you can associate an Active Directory to enable
Kerberos authentication. You can also remove the association for an Active Directory to disable
Kerberos authentication. You can also move a DB instance to be externally authenticated by one
Microsoft Active Directory to another.

For example, using the CLI, you can do the following:

• To reattempt enabling Kerberos authentication for a failed membership, use the modify-db-
instance CLI command. Specify the current membership's directory ID for the --domain option.

• To disable Kerberos authentication on a DB instance, use the modify-db-instance CLI command.
Specify none for the --domain option.

• To move a DB instance from one domain to another, use the modify-db-instance CLI command.
Specify the domain identifier of the new domain for the --domain option.

Understanding Domain membership

After you create or modify your DB instance, it becomes a member of the domain. You can view
the status of the domain membership in the console or by running the describe-db-instances CLI
command. The status of the DB instance can be one of the following:

• kerberos-enabled – The DB instance has Kerberos authentication enabled.

• enabling-kerberos – AWS is in the process of enabling Kerberos authentication on this DB
instance.

• pending-enable-kerberos – Enabling Kerberos authentication is pending on this DB
instance.

• pending-maintenance-enable-kerberos – AWS will attempt to enable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• pending-disable-kerberos – Disabling Kerberos authentication is pending on this DB
instance.

Managing an RDS for PostgreSQL DB instance in an Active Directory domain 4272

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• pending-maintenance-disable-kerberos – AWS will attempt to disable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• enable-kerberos-failed – A configuration problem prevented AWS from enabling Kerberos
authentication on the DB instance. Correct the configuration problem before reissuing the
command to modify the DB instance.

• disabling-kerberos – AWS is in the process of disabling Kerberos authentication on this DB
instance.

A request to enable Kerberos authentication can fail because of a network connectivity issue or an
incorrect IAM role. In some cases, the attempt to enable Kerberos authentication might fail when
you create or modify a DB instance. If so, make sure that you are using the correct IAM role, then
modify the DB instance to join the domain.

Note

Only Kerberos authentication with RDS for PostgreSQL sends traffic to the domain's
DNS servers. All other DNS requests are treated as outbound network access on your DB
instances running PostgreSQL. For more information about outbound network access with
RDS for PostgreSQL, see Using a custom DNS server for outbound network access.

Connecting to PostgreSQL with Kerberos authentication

You can connect to PostgreSQL with Kerberos authentication with the pgAdmin interface or with
a command-line interface such as psql. For more information about connecting, see Connecting
to a DB instance running the PostgreSQL database engine . For information about obtaining the
endpoint, port number, and other details needed for connection, see Connect to a PostgreSQL DB
instance.

pgAdmin

To use pgAdmin to connect to PostgreSQL with Kerberos authentication, take the following steps:

1. Launch the pgAdmin application on your client computer.

2. On the Dashboard tab, choose Add New Server.

3. In the Create - Server dialog box, enter a name on the General tab to identify the server in
pgAdmin.

Connecting with Kerberos authentication 4273

Amazon Relational Database Service User Guide

4. On the Connection tab, enter the following information from your RDS for PostgreSQL
database.

• For Host, enter the endpoint for the RDS for PostgreSQL DB instance. An endpoint looks
similar to the following:

RDS-DB-instance.111122223333.aws-region.rds.amazonaws.com

To connect to an on-premises Microsoft Active Directory from a Windows client, you use the
domain name of the AWS Managed Active Directory instead of rds.amazonaws.com in the
host endpoint. For example, suppose that the domain name for the AWS Managed Active
Directory is corp.example.com. Then for Host, the endpoint would be specified as follows:

RDS-DB-instance.111122223333.aws-region.corp.example.com

• For Port, enter the assigned port.

• For Maintenance database, enter the name of the initial database to which the client will
connect.

• For Username, enter the user name that you entered for Kerberos authentication in Step 7:
Create PostgreSQL users for your Kerberos principals .

5. Choose Save.

Psql

To use psql to connect to PostgreSQL with Kerberos authentication, take the following steps:

1. At a command prompt, run the following command.

kinit username

Replace username with the user name. At the prompt, enter the password stored in the
Microsoft Active Directory for the user.

2. If the PostgreSQL DB instance is using a publicly accessible VPC, put IP address for your DB
instance endpoint in your /etc/hosts file on the EC2 client. For example, the following
commands obtain the IP address and then put it in the /etc/hosts file.

% dig +short PostgreSQL-endpoint.AWS-Region.rds.amazonaws.com
;; Truncated, retrying in TCP mode.

Connecting with Kerberos authentication 4274

Amazon Relational Database Service User Guide

ec2-34-210-197-118.AWS-Region.compute.amazonaws.com.
34.210.197.118

% echo " 34.210.197.118 PostgreSQL-endpoint.AWS-Region.rds.amazonaws.com" >> /etc/
hosts

If you're using an on-premises Microsoft Active Directory from a Windows client, then
you need to connect using a specialized endpoint. Instead of using the Amazon domain
rds.amazonaws.com in the host endpoint, use the domain name of the AWS Managed Active
Directory.

For example, suppose that the domain name for your AWS Managed Active Directory
is corp.example.com. Then use the format PostgreSQL-endpoint.AWS-
Region.corp.example.com for the endpoint and put it in the /etc/hosts file.

% echo " 34.210.197.118 PostgreSQL-endpoint.AWS-Region.corp.example.com" >> /etc/
hosts

3. Use the following psql command to log in to a PostgreSQL DB instance that is integrated with
Active Directory.

psql -U username@CORP.EXAMPLE.COM -p 5432 -h PostgreSQL-endpoint.AWS-
Region.rds.amazonaws.com postgres

To log in to the PostgreSQL DB cluster from a Windows client using an on-premises Active
Directory, use the following psql command with the domain name from the previous step
(corp.example.com):

psql -U username@CORP.EXAMPLE.COM -p 5432 -h PostgreSQL-endpoint.AWS-
Region.corp.example.com postgres

Connecting with Kerberos authentication 4275

Amazon Relational Database Service User Guide

Using a custom DNS server for outbound network access

RDS for PostgreSQL supports outbound network access on your DB instances and allows Domain
Name Service (DNS) resolution from a custom DNS server owned by the customer. You can resolve
only fully qualified domain names from your RDS for PostgreSQL DB instance through your custom
DNS server.

Topics

• Turning on custom DNS resolution

• Turning off custom DNS resolution

• Setting up a custom DNS server

Turning on custom DNS resolution

To turn on DNS resolution in your customer VPC, first associate a custom DB parameter group to
your RDS for PostgreSQL instance. Then turn on the rds.custom_dns_resolution parameter
by setting it to 1, and then restart the DB instance for the changes to take place.

Turning off custom DNS resolution

To turn off DNS resolution in your customer VPC, first turn off the rds.custom_dns_resolution
parameter of your custom DB parameter group by setting it to 0. Then restart the DB instance for
the changes to take place.

Setting up a custom DNS server

After you set up your custom DNS name server, it takes up to 30 minutes to propagate the changes
to your DB instance. After the changes are propagated to your DB instance, all outbound network
traffic requiring a DNS lookup queries your DNS server over port 53.

Note

If you don't set up a custom DNS server and rds.custom_dns_resolution is set to
1, hosts are resolved using an Amazon Route 53 private zone. For more information, see
Working with private hosted zones.

Using a custom DNS server for outbound network access 4276

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

Amazon Relational Database Service User Guide

To set up a custom DNS server for your RDS for PostgreSQL DB instance

1. From the Dynamic Host Configuration Protocol (DHCP) options set attached to your VPC, set
the domain-name-servers option to the IP address of your DNS name server. For more
information, see DHCP options sets.

Note

The domain-name-servers option accepts up to four values, but your Amazon RDS
DB instance uses only the first value.

2. Ensure that your DNS server can resolve all lookup queries, including public DNS names,
Amazon EC2 private DNS names, and customer-specific DNS names. If the outbound network
traffic contains any DNS lookups that your DNS server can't handle, your DNS server must have
appropriate upstream DNS providers configured.

3. Configure your DNS server to produce User Datagram Protocol (UDP) responses of 512 bytes
or less.

4. Configure your DNS server to produce Transmission Control Protocol (TCP) responses of 1,024
bytes or less.

5. Configure your DNS server to allow inbound traffic from your Amazon RDS DB instances over
port 53. If your DNS server is in an Amazon VPC, the VPC must have a security group that
contains inbound rules that allow UDP and TCP traffic on port 53. If your DNS server is not
in an Amazon VPC, it must have appropriate firewall settings to allow UDP and TCP inbound
traffic on port 53.

For more information, see Security groups for your VPC and Adding and removing rules.

6. Configure the VPC of your Amazon RDS DB instance to allow outbound traffic over port 53.
Your VPC must have a security group that contains outbound rules that allow UDP and TCP
traffic on port 53.

For more information, see Security groups for your VPC and Adding and removing rules in the
Amazon VPC User Guide.

7. Make sure that the routing path between the Amazon RDS DB instance and the DNS server is
configured correctly to allow DNS traffic.

Setting up a custom DNS server 4277

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#AddRemoveRules
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#AddRemoveRules

Amazon Relational Database Service User Guide

Also, if the Amazon RDS DB instance and the DNS server are not in the same VPC, make sure
that a peering connection is set up between them. For more information, see What is VPC
peering? in Amazon VPC Peering Guide.

Setting up a custom DNS server 4278

https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html

Amazon Relational Database Service User Guide

Upgrades of the RDS for PostgreSQL DB engine

There are two types of upgrades that you can manage for your PostgreSQL database:

• Operating system updates – Occasionally, Amazon RDS might need to update the underlying
operating system of your database to apply security fixes or OS changes. You can decide when
Amazon RDS applies OS updates by using the RDS console, AWS Command Line Interface (AWS
CLI), or RDS API. For more information about OS updates, see Applying updates to a DB instance.

• Database engine upgrades – When Amazon RDS supports a new version of a database engine,
you can upgrade your databases to the new version.

A database in this context is an RDS for PostgreSQL DB instance or Multi-AZ DB cluster.

There are two kinds of engine upgrades for PostgreSQL databases: major version upgrades and
minor version upgrades.

Major version upgrades

Major version upgrades can contain database changes that are not backward-compatible with
existing applications. As a result, you must manually perform major version upgrades of your
databases. You can initiate a major version upgrade by modifying your DB instance or Multi-AZ
DB cluster. Before you perform a major version upgrade, we recommend that you follow the
steps described in Choosing a major version for an RDS for PostgreSQL upgrade.

Amazon RDS handles Multi-AZ major version upgrades in the following ways:

• Multi-AZ DB instance deployment – Amazon RDS simultaneously upgrades the primary and
any standby instances. Your database might not be available for several minutes while the
upgrade completes.

• Multi-AZ DB cluster deployment – Amazon RDS simultaneously upgrades the reader and
writer instances. Your database might not be available for several minutes while the upgrade
completes.

If you upgrade a DB instance that has in-Region read replicas, Amazon RDS upgrades the
replicas along with the primary DB instance.

Amazon RDS doesn't upgrade Multi-AZ DB cluster read replicas. If you perform a major version
upgrade of a Multi-AZ DB cluster, then the replication state of its read replicas changes to
terminated. You must manually delete and recreate the read replicas after the upgrade
completes.

Upgrades of the PostgreSQL DB engine 4279

Amazon Relational Database Service User Guide

Tip

You can minimize the downtime required for a major version upgrade by using a
blue/green deployment. For more information, see Using Blue/Green Deployments for
database updates.

Minor version upgrades

In contrast, minor version upgrades include only changes that are backward-compatible with
existing applications. You can initiate a minor version upgrade manually by modifying your
database. Or, you can enable the Auto minor version upgrade option when you create or
modify a database. Doing so means that Amazon RDS automatically upgrades your database
after testing and approving the new version.

Amazon RDS handles Multi-AZ minor version upgrades in the following ways:

• Multi-AZ DB instance deployment – Amazon RDS simultaneously upgrades the primary and
any standby instances. Your database might not be available for several minutes while the
upgrade completes.

• Multi-AZ DB cluster deployment – Amazon RDS upgrades the reader DB instances one at
a time. Then, one of the reader DB instances switches to be the new writer DB instance.
Amazon RDS then upgrades the old writer instance (which is now a reader instance). Multi-
AZ DB clusters typically reduce the downtime of minor version upgrades to approximately
35 seconds. When used with RDS Proxy, they can further reduce downtime to one second or
less. For more information, see Amazon RDS Proxy. Alternately, you can use an open source
database proxy such as ProxySQL, PgBouncer, or the AWS Advanced JDBC Wrapper Driver.

If your database has read replicas, you must first upgrade all of the read replicas before you
upgrade the source instance or cluster.

For more information, see Automatic minor version upgrades for RDS for PostgreSQL. For
information about manually performing a minor version upgrade, see Manually upgrading the
engine version.

For more information about database engine versions and the policy for deprecating database
engine versions, see Database Engine Versions in the Amazon RDS FAQs.

Topics

Upgrades of the PostgreSQL DB engine 4280

https://aws.amazon.com/blogs/database/achieve-one-second-or-less-of-downtime-with-proxysql-when-upgrading-amazon-rds-multi-az-deployments-with-two-readable-standbys/
https://aws.amazon.com/blogs/database/fast-switchovers-with-pgbouncer-on-amazon-rds-multi-az-deployments-with-two-readable-standbys-for-postgresql/
https://aws.amazon.com/blogs/database/achieve-one-second-or-less-downtime-with-the-advanced-jdbc-wrapper-driver-when-upgrading-amazon-rds-multi-az-db-clusters/
https://aws.amazon.com/rds/faqs/#Database_Engine_Versions

Amazon Relational Database Service User Guide

• Considerations for PostgreSQL upgrades

• Finding valid upgrade targets

• PostgreSQL version numbers

• RDS version numbers in RDS for PostgreSQL

• Choosing a major version for an RDS for PostgreSQL upgrade

• How to perform a major version upgrade for RDS for PostgreSQL

• Automatic minor version upgrades for RDS for PostgreSQL

• Upgrading PostgreSQL extensions in RDS for PostgreSQL databases

Considerations for PostgreSQL upgrades

To safely upgrade your databases, Amazon RDS uses the pg_upgrade utility described in the
PostgreSQL documentation

If your backup retention period is greater than 0, Amazon RDS takes two DB snapshots during the
upgrade process. The first DB snapshot is of the database before any upgrade changes have been
made. If the upgrade fails for your databases, you can restore this snapshot to create a database
running the old version. The second DB snapshot is taken after the upgrade completes. These DB
snapshots are deleted automatically once the backup retention period expires.

Note

Amazon RDS takes DB snapshots during the upgrade process only if you have set the
backup retention period for your database to a number greater than 0. To change the
backup retention period for a DB instance, see the section called “Modifying a DB instance”.
You can't configure a custom backup retention period for a Multi-AZ DB cluster.

When you perform a major version upgrade of a DB instance, any in-Region read replicas are
also automatically upgraded. After the upgrade workflow starts, the read replicas wait for the
pg_upgrade to complete successfully on the primary DB instance. Then the primary DB instance
upgrade waits for the read replica upgrades to complete. You experience an outage until the
upgrade is complete. When you perform a major version upgrade of a Multi-AZ DB cluster, the
replication state of its read replicas changes to terminated.

Considerations 4281

https://www.postgresql.org/docs/current/pgupgrade.html

Amazon Relational Database Service User Guide

After an upgrade is complete, you can't revert to the previous version of the DB engine. If you want
to return to the previous version, restore the DB snapshot that was taken before the upgrade to
create a new database.

Finding valid upgrade targets

When you use the AWS Management Console to upgrade a database, it shows the valid upgrade
targets for the database. You can also use the following AWS CLI command to identify the valid
upgrade targets for a database:

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine postgres \
 --engine-version version-number \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For Windows:

aws rds describe-db-engine-versions ^
 --engine postgres ^
 --engine-version version-number ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For example, to identify the valid upgrade targets for a PostgreSQL version 16.1 database, run the
following AWS CLI command:

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine postgres \
 --engine-version 16.1 \
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

For Windows:

aws rds describe-db-engine-versions ^

Finding valid upgrade targets 4282

Amazon Relational Database Service User Guide

 --engine postgres ^
 --engine-version 16.1 ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

PostgreSQL version numbers

The version numbering sequence for the PostgreSQL database engine is as follows:

• For PostgreSQL versions 10 and higher, the engine version number is in the form major.minor.
The major version number is the integer part of the version number. The minor version number is
the fractional part of the version number.

A major version upgrade increases the integer part of the version number, such as upgrading
from 10.minor to 11.minor.

• For PostgreSQL versions lower than 10, the engine version number is in the form
major.major.minor. The major engine version number is both the integer and the first fractional
part of the version number. For example, 9.6 is a major version. The minor version number is the
third part of the version number. For example, for version 9.6.12, the 12 is the minor version
number.

A major version upgrade increases the major part of the version number. For example, an
upgrade from 9.6.12 to 11.14 is a major version upgrade, where 9.6 and 11 are the major version
numbers.

For information about RDS Extended Support version numbering, see Amazon RDS Extended
Support version naming.

RDS version numbers in RDS for PostgreSQL

RDS version numbers use the major.minor.patch naming scheme. An RDS patch version
includes important bug fixes added to a minor version after its release. For information about RDS
Extended Support version numbering, see Amazon RDS Extended Support version naming.

To identify the Amazon RDS version number of your database, you must first create the
rds_tools extension by using the following command:

CREATE EXTENSION rds_tools;

PostgreSQL version numbers 4283

Amazon Relational Database Service User Guide

Starting with the release of PostgreSQL version 15.2-R2, you can find out the RDS version number
of your RDS for PostgreSQL database with the following SQL query:

postgres=> SELECT rds_tools.rds_version();

For example, querying an RDS for PostgreSQL 15.2 database returns the following:

rds_version

 15.2.R2
(1 row)

Choosing a major version for an RDS for PostgreSQL upgrade

Major version upgrades can contain changes that are not backward-compatible with previous
versions of the database. New functionality can cause your existing applications to stop working
correctly. For this reason, Amazon RDS doesn't apply major version upgrades automatically.
To perform a major version upgrade, you modify your database manually. Make sure that you
thoroughly test any upgrade to verify that your applications work correctly before applying the
upgrade to your production databases. When you do a PostgreSQL major version upgrade, we
recommend that you follow the steps described in How to perform a major version upgrade for
RDS for PostgreSQL.

When you upgrade a PostgreSQL Single-AZ DB instance or Multi-AZ DB instance deployment to
its next major version, any read replicas associated with the database are also upgraded to that
next major version. In some cases, you can skip to a higher major version when upgrading. If your
upgrade skips a major version, the read replicas are also upgraded to that target major version.
Upgrades to version 11 that skip other major versions have certain limitations. You can find the
details in the steps described in How to perform a major version upgrade for RDS for PostgreSQL.

Most PostgreSQL extensions aren't upgraded during a PostgreSQL engine upgrade. These must
be upgraded separately. For more information, see Upgrading PostgreSQL extensions in RDS for
PostgreSQL databases.

You can find out which major versions are available for your RDS for PostgreSQL database by
running the following AWS CLI query:

Choosing a major version upgrade 4284

Amazon Relational Database Service User Guide

aws rds describe-db-engine-versions --engine postgres --engine-version your-version
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" --
output text

The following table summarizes the results of this query for all available versions. An asterisk
(*) on the version number means that version is no longer supported. If your current version is
unsupported, we recommend that you upgrade to the newest minor version upgrade target or to
one of the other available upgrade targets for that version.

Current source version Upgrade targets

17.4 None

17.3 17.4

17.2 17.4, 17.3

17.1 17.4, 17.3 , 17.2

16.8 17.4

16.7 17.4, 17.3

16.8

16.6 17.4, 17.3 , 17.2

16.8, 16.7

16.5 17.4, 17.3, 17.2, 17.1

16.8, 16.7, 16.6

16.4 17.4, 17.3, 17.2, 17.1

16.8, 16.7, 16.6, 16.5

16.3 17.4, 17.3, 17.2, 17.1

16.8, 16.7, 16.6, 16.5, 16.4

Choosing a major version upgrade 4285

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164

Amazon Relational Database Service User Guide

Current source version Upgrade targets

16.2 17.4, 17.3, 17.2, 17.1

16.8, 16.7, 16.6, 16.5, 16.4, 16.3

16.1 17.4, 17.3, 17.2, 17.1

16.8, 16.7, 16.6, 16.5, 16.4, 16.3, 16.2

15.12 17.4

16.8

15.11 17.3

16.8, 16.7

15.12

15.10 17.2

16.8, 16.7, 16.6

15.12, 15.11

15.9 17.1

16.8, 16.7, 16.6, 16.5

15.12, 15.11, 15.10

15.8 16.8, 16.7, 16.6, 16.5, 16.4

15.12, 15.11, 15.10, 15.9

15.7 16.8, 16.7, 16.6, 16.5, 16.4, 16.3

15.12, 15.11, 15.10, 15.9, 15.8

15.6 16.8, 16.7, 16.6, 16.5, 16.4, 16.3, 16.2

15.12, 15.11, 15.10, 15.9, 15.8, 15.7

Choosing a major version upgrade 4286

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157

Amazon Relational Database Service User Guide

Current source version Upgrade targets

15.5 16.8, 16.7, 16.6, 16.5, 16.4, 16.3, 16.2, 16.1

15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6

15.4 16.8, 16.7, 16.6, 16.5, 16.4, 16.3, 16.2, 16.1

15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5

15.3* 16.8, 16.7, 16.6, 16.5, 16.4, 16.3, 16.2, 16.1

15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

15.2* 16.8, 16.7, 16.6, 16.5, 16.4, 16.3, 16.2, 16.1

15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17 17.4

16.8

15.12

14.16 17.3

16.7

15.12, 15.11

14.17

14.15 17.2

16.6

15.12, 15.11, 15.10

14.17, 14.16

Choosing a major version upgrade 4287

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version174
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version168
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version167
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416

Amazon Relational Database Service User Guide

Current source version Upgrade targets

14.14 17.1

16.5

15.12, 15.11, 15.10, 15.9

14.17, 14.16, 14.15

14.13 16.4

15.12, 15.11, 15.10, 15.9, 15.8

14.17, 14.16, 14.15, 14.14

14.12 16.3

15.12, 15.11, 15.10, 15.9, 15.8, 15.7

14.17, 14.16, 14.15, 14.14, 14.13

14.11 16.2

15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6

14.17, 14.16, 14.15, 14.14, 14.13, 14.12

14.10 16.1

15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5

14.17, 14.16, 14.15, 14.14, 14.13, 14.12, 14.11

14.9 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10

Choosing a major version upgrade 4288

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410

Amazon Relational Database Service User Guide

Current source version Upgrade targets

14.8* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

14.7.* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

14.6* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

14.5* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

14.4* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

14.3* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

Choosing a major version upgrade 4289

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149

Amazon Relational Database Service User Guide

Current source version Upgrade targets

14.2* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

14.1* 15.12, 15.11, 15.10, 15.9, 15.8, 15.7, 15.6,
15.5, 15.4

14.17, 14.16, 14.15, 14.14, 14.13, 14.12,
14.11, 14.10, 14.9

13.20 17.4

16.8

15.12

14.17

13.19 17.3

16.7

15.11

14.17, 14.16

13.20

13.18 16.6

15.10

14.17, 14.15

13.20, 13.19

Choosing a major version upgrade 4290

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1512
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1511
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version173
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319

Amazon Relational Database Service User Guide

Current source version Upgrade targets

13.17 16.5

15.9

14.17, 14.15, 14.14

13.20, 13.19, 13.18

13.16 16.4

15.8

14.17, 14.15, 14.14, 14.13

13.20, 13.19, 13.18, 13.17

13.15 16.3

15.8, 15.7

14.17, 14.15, 14.14, 14.13, 14.12

13.20, 13.19, 13.18, 13.17, 13.16

13.14 16.2

15.6

14.17, 14.15, 14.14, 14.13, 14.12, 14.11

13.20, 13.19, 13.18, 13.17, 13.16, 13.15

13.13 16.1

15.5

14.17, 14.15, 14.14, 14.13, 14.12, 14.11, 14.10

13.20, 13.19, 13.18, 13.17, 13.16, 13.15, 13.14

Choosing a major version upgrade 4291

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314

Amazon Relational Database Service User Guide

Current source version Upgrade targets

13.12 15.4

14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.15,
13.14, 13.13

13.11 15.3

14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.15,
13.14, 13.13, 13.12

13.10* 15.2

14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.12, 13.11

13.9* 14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.12, 13.11

13.8* 14.17, 14.1514.14, 14.13, 14.12, 14.11, 14.10,
14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.12, 13.11

Choosing a major version upgrade 4292

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1416
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311

Amazon Relational Database Service User Guide

Current source version Upgrade targets

13.7* 14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.11

13.6* 14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.11

13.5* 14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.11

13.4* 14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.11

13.3* 14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.11

13.2*, 13.1* 14.17, 14.15, 14.14, 14.13, 14.12, 14.11,
14.10, 14.9

13.20, 13.19, 13.18, 13.17, 13.16, 13.14,
13.13, 13.11

Choosing a major version upgrade 4293

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1417
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1320
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1319
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311

Amazon Relational Database Service User Guide

Current source version Upgrade targets

12.22 17.2

16.6

15.10

14.15

13.18

12.21 17.1

16.5

15.9

14.14

13.18, 13.17

12.22

12.20 16.4

15.8

14.13

13.18, 13.17, 13.16

12.22, 12.21

12.19 16.3

15.7

14.12

13.18, 13.17, 13.16, 13.15

12.22, 12.21, 12.20

Choosing a major version upgrade 4294

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version172
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version166
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1510
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1415
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version171
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version165
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version159
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1414
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version164
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version158
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1413
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version163
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version157
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1412
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220

Amazon Relational Database Service User Guide

Current source version Upgrade targets

12.18 16.2

15.6

14.11

13.18, 13.17, 13.16, 13.15, 13.14

12.22, 12.21, 12.20, 12.19

12.17 16.1

15.5

14.10

13.18, 13.17, 13.16, 13.15, 13.14, 13.13

12.22, 12.21, 12.20, 12.19, 12.18

12.16 15.4

14.9

13.18, 13.17, 13.16, 13.15, 13.14, 13.13, 13.12

12.22, 12.21, 12.20, 12.19, 12.18, 12.17

12.15 15.3

14.8

13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.2012.19, 12.18, 12.17, 12.16

Choosing a major version upgrade 4295

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version162
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version156
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1411
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version154
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version153
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version148
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216

Amazon Relational Database Service User Guide

Current source version Upgrade targets

12.14* 15.2

14.7

13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

12.13* 14.6

13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

12.12* 14.5

13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

12.11* 14.4

13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

Choosing a major version upgrade 4296

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version152
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version147
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215

Amazon Relational Database Service User Guide

Current source version Upgrade targets

12.10* 14.2

13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

12.9* 14.1

13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

12.8* 13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

12.7* 13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

12.6*, 12.5*, 12.4*, 12.3*, 12.2* 13.18, 13.17, 13.16, 13.15, 13.14, 13.13,
13.12, 13.11

12.22, 12.21, 12.20, 12.19, 12.18, 12.17,
12.16, 12.15

Choosing a major version upgrade 4297

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version149
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1318
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1317
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1316
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1315
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1314
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1312
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1311
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1222
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1221
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1220
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1219
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1218
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1216
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1215

Amazon Relational Database Service User Guide

Current source version Upgrade targets

11.22 16.1

15.5

14.10

13.13

12.17

11.22-RDS.20240418

* This version is no longer supported.

How to perform a major version upgrade for RDS for PostgreSQL

We recommend the following process when performing a major version upgrade on an Amazon
RDS for PostgreSQL database:

1. Have a version-compatible parameter group ready – If you are using a custom parameter
group, you have two options. You can specify a default parameter group for the new DB engine
version. Or you can create your own custom parameter group for the new DB engine version. For
more information, see the section called “Parameter groups” and the section called “DB cluster
parameter groups”.

2. Check for unsupported database classes – Check that your database's instance class is
compatible with the PostgreSQL version you are upgrading to. For more information, see
Supported DB engines for DB instance classes.

3. Check for unsupported usage:

• Prepared transactions – Commit or roll back all open prepared transactions before
attempting an upgrade.

You can use the following query to verify that there are no open prepared transactions on
your database.

SELECT count(*) FROM pg_catalog.pg_prepared_xacts;

How to perform a major version upgrade 4298

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version161
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version155
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1410
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1313
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version1217
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html#postgresql-versions-version11.22-rds.20240418

Amazon Relational Database Service User Guide

• Reg* data types – Remove all uses of the reg* data types before attempting an upgrade.
Except for regtype and regclass, you can't upgrade the reg* data types. The pg_upgrade
utility can't persist this data type, which is used by Amazon RDS to do the upgrade.

To verify that there are no uses of unsupported reg* data types, use the following query for
each database.

SELECT count(*) FROM pg_catalog.pg_class c, pg_catalog.pg_namespace n,
 pg_catalog.pg_attribute a
 WHERE c.oid = a.attrelid
 AND NOT a.attisdropped
 AND a.atttypid IN ('pg_catalog.regproc'::pg_catalog.regtype,
 'pg_catalog.regprocedure'::pg_catalog.regtype,
 'pg_catalog.regoper'::pg_catalog.regtype,
 'pg_catalog.regoperator'::pg_catalog.regtype,
 'pg_catalog.regconfig'::pg_catalog.regtype,
 'pg_catalog.regdictionary'::pg_catalog.regtype)
 AND c.relnamespace = n.oid
 AND n.nspname NOT IN ('pg_catalog', 'information_schema');

4. Check for invalid databases:

• Ensure there are no invalid databases. The datconnlimit column in the pg_database
catalog includes a value of -2 to mark databases as invalid that were interrupted during a
DROP DATABASE operation.

Use the following query to check for invalid databases:

SELECT datname FROM pg_database WHERE datconnlimit = - 2;

• The previous query returns invalid database names. You can use DROP DATABASE
invalid_db_name; to drop invalid databases. You can also use the following command to
drop invalid databases:

SELECT 'DROP DATABASE ' || quote_ident(datname) || ';' FROM pg_database WHERE
 datconnlimit = -2 \gexec

For more information about invalid databases, see Understanding the behavior of autovacuum
with invalid databases.

How to perform a major version upgrade 4299

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/appendix.postgresql.commondbatasks.autovacuumbehavior.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/appendix.postgresql.commondbatasks.autovacuumbehavior.html

Amazon Relational Database Service User Guide

5. Handle logical replication slots – An upgrade can't occur if the database has any logical
replication slots. Logical replication slots are typically used for AWS DMS migration and for
replicating tables from the database to data lakes, BI tools, and other targets. Before upgrading,
make sure that you know the purpose of any logical replication slots that are in use, and confirm
that it's okay to delete them. If the logical replication slots are still being used, you shouldn't
delete them, and you can't proceed with the upgrade.

If the logical replication slots aren't needed, you can delete them using the following SQL:

SELECT * FROM pg_replication_slots WHERE slot_type NOT LIKE 'physical';
SELECT pg_drop_replication_slot(slot_name);

Logical replication setups that use the pglogical extension also need to have slots dropped
for a successful major version upgrade. For information about how to identify and drop slots
created using the pglogical extension, see Managing logical replication slots for RDS for
PostgreSQL.

6. Handle read replicas – An upgrade of a Single-AZ DB instance or Multi-AZ DB instance
deployment also upgrades the in-Region read replicas along with the primary DB instance.
Amazon RDS doesn't upgrade Multi-AZ DB cluster read replicas.

You can't upgrade read replicas separately. If you could, it could lead to situations where the
primary and replica databases have different PostgreSQL major versions. However, read replica
upgrades might increase downtime on the primary DB instance. To prevent a read replica
upgrade, promote the replica to a standalone instance or delete it before starting the upgrade
process.

The upgrade process recreates the read replica's parameter group based on the read replica's
current parameter group. You can apply a custom parameter group to a read replica only after
the upgrade completes by modifying the read replica. For more information about read replicas,
see Working with read replicas for Amazon RDS for PostgreSQL.

7. Perform a backup – We recommend that you perform a backup before performing the major
version upgrade so that you have a known restore point for your database. If your backup
retention period is greater than 0, the upgrade process creates DB snapshots of your database
before and after upgrading. To change your backup retention period, see Modifying an Amazon
RDS DB instance and the section called “Modifying a Multi-AZ DB cluster”.

To perform a backup manually, see the section called “Creating a DB snapshot for a Single-AZ
DB instance” and the section called “Creating a Multi-AZ DB cluster snapshot”.

How to perform a major version upgrade 4300

Amazon Relational Database Service User Guide

8. Upgrade certain extensions before a major version upgrade – If you plan to skip a major
version with the upgrade, you need to update certain extensions before performing the major
version upgrade. For example, upgrading from versions 9.5.x or 9.6.x to version 11.x skips a
major version. The extensions to update include PostGIS and related extensions for processing
spatial data.

• address_standardizer

• address_standardizer_data_us

• postgis_raster

• postgis_tiger_geocoder

• postgis_topology

You cannot directly upgrade to PostgreSQL version 17 if you are using rdkit version 4.6.0
and lower, and PostgreSQL version 16 and lower, due to rdkit incompatibility. Below are the
upgrade options:

• If you are on PostgreSQL version 13 and lower, you need to perform a major version upgrade
to version 14.14 and higher 14 versions, 15.9 and higher 15 versions, or 16.5 and higher 16
versions first, and then perform the version upgrade to PostgreSQL 17.

• If you are on PostgreSQL version 14, 15, or 16, you need to perform a minor version upgrade
to 14.14 and higher 14 versions, 15.9 and higher 15 versions, or 16.5 and higher 16 versions,
and then upgrade to PostgreSQL version 17.

Run the following command for each extension that you're using:

ALTER EXTENSION PostgreSQL-extension UPDATE TO 'new-version';

For more information, see Upgrading PostgreSQL extensions in RDS for PostgreSQL databases.
To learn more about upgrading PostGIS, see Step 6: Upgrade the PostGIS extension.

9. Drop certain extensions before the major version upgrade – An upgrade that skips a major
version to version 11.x doesn't support updating the pgRouting extension. Upgrading
from versions 9.4.x, 9.5.x, or 9.6.x to versions 11.x skips a major version. It's safe to drop the
pgRouting extension and then reinstall it to a compatible version after the upgrade. For the
extension versions you can update to, see Supported PostgreSQL extension versions.

The tsearch2 and chkpass extensions are no longer supported for PostgreSQL versions 11 or
later. If you are upgrading to version 11.x, drop the tsearch2, and chkpass extensions before
the upgrade.

How to perform a major version upgrade 4301

Amazon Relational Database Service User Guide

10.Drop unknown data types – Drop unknown data types depending on the target version.

PostgreSQL version 10 stopped supporting the unknown data type. If a version 9.6 database
uses the unknown data type, an upgrade to a version 10 shows an error message such as the
following:

Database instance is in a state that cannot be upgraded: PreUpgrade checks failed:
The instance could not be upgraded because the 'unknown' data type is used in user
 tables.
Please remove all usages of the 'unknown' data type and try again."

To find the unknown data type in your database so you can remove the offending column or
change it to a supported data type, use the following SQL:

SELECT DISTINCT data_type FROM information_schema.columns WHERE data_type ILIKE
 'unknown';

11.Perform an upgrade dry run – We highly recommend testing a major version upgrade on a
duplicate of your production database before attempting the upgrade on your production
database. You can monitor the execution plans on the duplicate test database for any possible
execution plan regressions and to evaluate its performance. To create a duplicate test instance,
you can either restore your database from a recent snapshot or do a point-in-time restore of
your database to its latest restorable time.

For more information, see the section called “Restoring from a snapshot” or the section called
“Point-in-time recovery”. For Multi-AZ DB clusters, see the section called “Restoring from a
snapshot to a Multi-AZ DB cluster” or the section called “Restoring a Multi-AZ DB cluster to a
specified time”.

For details on performing the upgrade, see the section called “Manually upgrading the engine
version”.

In upgrading a version 9.6 database to version 10, be aware that PostgreSQL 10 enables parallel
queries by default. You can test the impact of parallelism before the upgrade by changing the
max_parallel_workers_per_gather parameter on your test database to 2.

How to perform a major version upgrade 4302

Amazon Relational Database Service User Guide

Note

The default value for max_parallel_workers_per_gather parameter in the
default.postgresql10 DB parameter group is 2.

For more information, see Parallel Query in the PostgreSQL documentation. To disable
parallelism on version 10, set the max_parallel_workers_per_gather parameter to 0.

During the major version upgrade, the public and template1 databases and the public
schema in every database are temporarily renamed. These objects appear in the logs with their
original name and a random string appended. The string is appended so that custom settings
such as locale and owner are preserved during the major version upgrade. After the upgrade
completes, the objects are renamed back to their original names.

Note

During the major version upgrade process, you can't do a point-in-time restore of your
DB instance or Multi-AZ DB cluster. After Amazon RDS performs the upgrade, it takes
an automatic backup of the database. You can perform a point-in-time restore to
times before the upgrade began and after the automatic backup of your database has
completed.

12.If an upgrade fails with precheck procedure errors, resolve the issues – During the major
version upgrade process, Amazon RDS for PostgreSQL first runs a precheck procedure to identify
any issues that might cause the upgrade to fail. The precheck procedure checks all potential
incompatible conditions across all databases in the instance.

If the precheck encounters an issue, it creates a log event indicating the upgrade precheck failed.
The precheck process details are in an upgrade log named pg_upgrade_precheck.log for
all the databases of a database. Amazon RDS appends a timestamp to the file name. For more
information about viewing logs, see Monitoring Amazon RDS log files.

If a read replica upgrade fails at precheck, replication on the failed read replica is broken and
the read replica is put in the terminated state. Delete the read replica and recreate a new read
replica based on the upgraded primary DB instance.

How to perform a major version upgrade 4303

https://www.postgresql.org/docs/10/parallel-query.html

Amazon Relational Database Service User Guide

Resolve all of the issues identified in the precheck log and then retry the major version upgrade.
The following is an example of a precheck log.

--
Upgrade could not be run on Wed Apr 4 18:30:52 2018

The instance could not be upgraded from 9.6.11 to 10.6 for the following reasons.
Please take appropriate action on databases that have usage incompatible with the
 requested major engine version upgrade and try the upgrade again.

* There are uncommitted prepared transactions. Please commit or rollback all prepared
 transactions.* One or more role names start with 'pg_'. Rename all role names that
 start with 'pg_'.

* The following issues in the database 'my"million$"db' need to be corrected before
 upgrading:** The ["line","reg*"] data types are used in user tables. Remove all
 usage of these data types.
** The database name contains characters that are not supported by RDS for
 PostgreSQL. Rename the database.
** The database has extensions installed that are not supported on the target
 database version. Drop the following extensions from your database: ["tsearch2"].

* The following issues in the database 'mydb' need to be corrected before
 upgrading:** The database has views or materialized views that depend on
 'pg_stat_activity'. Drop the views.

13.If a read replica upgrade fails while upgrading the database, resolve the issue – A failed
read replica is placed in the incompatible-restore state and replication is terminated on
the database. Delete the read replica and recreate a new read replica based on the upgraded
primary DB instance.

Note

Amazon RDS doesn't upgrade read replicas for Multi-AZ DB clusters. If you perform a
major version upgrade on a Multi-AZ DB cluster, then the replication state of its read
replicas changes to terminated.

A read replica upgrade might fail for the following reasons:

• It was unable to catch up with the primary DB instance even after a wait time.

How to perform a major version upgrade 4304

Amazon Relational Database Service User Guide

• It was in a terminal or incompatible lifecycle state such as storage-full, incompatible-restore,
and so on.

• When the primary DB instance upgrade started, there was a separate minor version upgrade
running on the read replica.

• The read replica used incompatible parameters.

• The read replica was unable to communicate with the primary DB instance to synchronize the
data folder.

14.Upgrade your production database – When the dry-run major version upgrade is successful,
you should be able to upgrade your production database with confidence. For more information,
see Manually upgrading the engine version.

15.Run the ANALYZE operation to refresh the pg_statistic table. You should do this for every
database on all your PostgreSQL databases. Optimizer statistics aren't transferred during a
major version upgrade, so you need to regenerate all statistics to avoid performance issues. Run
the command without any parameters to generate statistics for all regular tables in the current
database, as follows:

ANALYZE VERBOSE;

The VERBOSE flag is optional, but using it shows you the progress. For more information, see
ANALYZE in the PostgreSQL documentation.

Note

Run ANALYZE on your system after the upgrade to avoid performance issues.

After the major version upgrade is complete, we recommend the following:

• A PostgreSQL upgrade doesn't upgrade any PostgreSQL extensions. To upgrade extensions, see
Upgrading PostgreSQL extensions in RDS for PostgreSQL databases.

• Optionally, use Amazon RDS to view two logs that the pg_upgrade utility produces. These
are pg_upgrade_internal.log and pg_upgrade_server.log. Amazon RDS appends a
timestamp to the file name for these logs. You can view these logs as you can any other log. For
more information, see Monitoring Amazon RDS log files.

How to perform a major version upgrade 4305

https://www.postgresql.org/docs/10/sql-analyze.html

Amazon Relational Database Service User Guide

You can also upload the upgrade logs to Amazon CloudWatch Logs. For more information, see
Publishing PostgreSQL logs to Amazon CloudWatch Logs.

• To verify that everything works as expected, test your application on the upgraded database
with a similar workload. After the upgrade is verified, you can delete this test instance.

Automatic minor version upgrades for RDS for PostgreSQL

If you enable the Auto minor version upgrade option when creating or modifying a DB instance or
Multi-AZ DB cluster, you can have your database automatically upgraded.

For each RDS for PostgreSQL major version, one minor version is designated by RDS as the
automatic upgrade version. After a minor version has been tested and approved by Amazon
RDS, the minor version upgrade occurs automatically during your maintenance window. RDS
doesn't automatically set newer released minor versions as the automatic upgrade version. Before
RDS designates a newer automatic upgrade version, several criteria are considered, such as the
following:

• Known security issues

• Bugs in the PostgreSQL community version

• Overall fleet stability since the minor version was released

You can use the following AWS CLI command to determine the current automatic minor upgrade
target version for a specified PostgreSQL minor version in a specific AWS Region.

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine postgres \
--engine-version minor-version \
--region region \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output text

For Windows:

aws rds describe-db-engine-versions ^
--engine postgres ^

Automatic minor version upgrades 4306

Amazon Relational Database Service User Guide

--engine-version minor-version ^
--region region ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output text

For example, the following AWS CLI command determines the automatic minor upgrade target for
PostgreSQL minor version 16.1 in the US East (Ohio) AWS Region (us-east-2).

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
--engine postgres \
--engine-version 16.1 \
--region us-east-2 \
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" \
--output table

For Windows:

aws rds describe-db-engine-versions ^
--engine postgres ^
--engine-version 16.1 ^
--region us-east-2 ^
--query "DBEngineVersions[*].ValidUpgradeTarget[*].
{AutoUpgrade:AutoUpgrade,EngineVersion:EngineVersion}" ^
--output table

Your output is similar to the following.

| DescribeDBEngineVersions |
+--------------+-----------------+
| AutoUpgrade | EngineVersion |
+--------------+-----------------+
False	16.2
True	16.3
False	16.4
False	16.5
False	16.6
False	17.1

Automatic minor version upgrades 4307

Amazon Relational Database Service User Guide

| False | 17.2 |
+--------------+-----------------+

In this example, the AutoUpgrade value is True for PostgreSQL version 16.3. So, the automatic
minor upgrade target is PostgreSQL version 16.3, which is highlighted in the output.

A PostgreSQL database is automatically upgraded during your maintenance window if the
following criteria are met:

• The database has the Auto minor version upgrade option enabled.

• The database is running a minor DB engine version that is less than the current automatic
upgrade minor version.

For more information, see Automatically upgrading the minor engine version.

Note

A PostgreSQL upgrade doesn't upgrade PostgreSQL extensions. To upgrade extensions, see
Upgrading PostgreSQL extensions in RDS for PostgreSQL databases.

Upgrading PostgreSQL extensions in RDS for PostgreSQL databases

A PostgreSQL engine upgrade doesn't upgrade most PostgreSQL extensions. To update an
extension after a version upgrade, use the ALTER EXTENSION UPDATE command.

Note

For information about updating the PostGIS extension, see Managing spatial data with the
PostGIS extension (Step 6: Upgrade the PostGIS extension).
To update the pg_repack extension, drop the extension and then create the new version
in the upgraded database. For more information, see pg_repack installation in the
pg_repack documentation.

To upgrade an extension, use the following command.

ALTER EXTENSION extension_name UPDATE TO 'new_version';

Upgrading PostgreSQL extensions 4308

https://reorg.github.io/pg_repack/

Amazon Relational Database Service User Guide

For the list of supported versions of PostgreSQL extensions, see Supported PostgreSQL extension
versions.

To list your currently installed extensions, use the PostgreSQL pg_extension catalog in the
following command.

SELECT * FROM pg_extension;

To view a list of the specific extension versions that are available for your installation, use the
PostgreSQL pg_available_extension_versions view in the following command.

SELECT * FROM pg_available_extension_versions;

Upgrading PostgreSQL extensions 4309

https://www.postgresql.org/docs/current/catalog-pg-extension.html
https://www.postgresql.org/docs/current/view-pg-available-extension-versions.html

Amazon Relational Database Service User Guide

Upgrading a PostgreSQL DB snapshot engine version

With Amazon RDS, you can create a storage volume DB snapshot of your PostgreSQL DB instance.
When you create a DB snapshot, the snapshot is based on the engine version used by your Amazon
RDS instance. You can upgrade the engine version for your DB snapshots.

After restoring a DB snapshot upgraded to a new engine version, make sure to test that the
upgrade was successful. For more information about a major version upgrade, see Upgrades of
the RDS for PostgreSQL DB engine. To learn how to restore a DB snapshot, see Restoring to a DB
instance.

You can upgrade manual DB snapshots that are either encrypted or not encrypted.

To view the available engine versions for your RDS for PostgreSQL DB snapshot, use the following
AWS CLI example.

aws rds describe-db-engine-versions --engine postgres --engine-version example-
engine-version --query "DBEngineVersions[*].ValidUpgradeTarget[*].
{EngineVersion:EngineVersion}" --output text --include-all

For more information about available engine versions for RDS for PostgreSQL DB snapshots, see
Choosing a major version for an RDS for PostgreSQL upgrade.

Note

You can't upgrade automated DB snapshots that are created during the automated backup
process.

Console

To upgrade a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the snapshot that you want to upgrade.

4. For Actions, choose Upgrade snapshot. The Upgrade snapshot page appears.

Upgrading a PostgreSQL DB snapshot engine version 4310

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Choose the New engine version to upgrade to.

6. Choose Save changes to upgrade the snapshot.

During the upgrade process, all snapshot actions are disabled for this DB snapshot. Also, the
DB snapshot status changes from available to upgrading, and then changes to active upon
completion. If the DB snapshot can't be upgraded because of snapshot corruption issues, the
status changes to unavailable. You can't recover the snapshot from this state.

Note

If the DB snapshot upgrade fails, the snapshot is rolled back to the original state with
the original version.

AWS CLI

To upgrade a DB snapshot to a new database engine version, use the AWS CLI modify-db-snapshot
command.

Parameters

• --db-snapshot-identifier – The identifier of the DB snapshot to upgrade. The identifier
must be a unique Amazon Resource Name (ARN). For more information, see Amazon Resource
Names (ARNs) in Amazon RDS.

• --engine-version – The engine version to upgrade the DB snapshot to.

Example

For Linux, macOS, or Unix:

aws rds modify-db-snapshot \
 --db-snapshot-identifier my_db_snapshot \
 --engine-version new_version

For Windows:

aws rds modify-db-snapshot ^
 --db-snapshot-identifier my_db_snapshot ^

Upgrading a PostgreSQL DB snapshot engine version 4311

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-snapshot.html

Amazon Relational Database Service User Guide

 --engine-version new_version

RDS API

To upgrade a DB snapshot to a new database engine version, call the Amazon RDS API
ModifyDBSnapshot operation.

• DBSnapshotIdentifier – The identifier of the DB snapshot to upgrade. The identifier must
be a unique Amazon Resource Name (ARN). For more information, see Amazon Resource Names
(ARNs) in Amazon RDS.

• EngineVersion – The engine version to upgrade the DB snapshot to.

Upgrading a PostgreSQL DB snapshot engine version 4312

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBSnapshot.html

Amazon Relational Database Service User Guide

Working with read replicas for Amazon RDS for PostgreSQL

You can scale reads for your Amazon RDS for PostgreSQL DB instances by adding read replicas
to the instances. As with other Amazon RDS database engines, RDS for PostgreSQL uses native
replication mechanisms of PostgreSQL to keep read replicas up to date with changes on the source
DB. For general information about read replicas and Amazon RDS, see Working with DB instance
read replicas.

Following, you can find information specific to working with read replicas with RDS for PostgreSQL.

Logical decoding on a read replica

RDS for PostgreSQL supports logical replication from standbys with PostgreSQL 16.1. This allows
you to create logical decoding from a read-only standby that reduces the load on the primary DB
instance. You can achieve higher-availability for your applications that need to synchronize data
across multiple systems. This feature boosts the performance of your data warehouse and data
analytics.

Also, replication slots on a given standby persist the promotion of that standby to a primary. This
means that in the event of a primary DB instance failover or the promotion of a standby to be
the new primary, the replication slots will persist and the former standby subscribers will not be
affected.

To create logical decoding on a read replica

1. Turn on logical replication – To create logical decoding on a standby, you must turn on logical
replication on your source DB instance and its physical replica. For more information, see Read
replica configuration with PostgreSQL.

• To turn on logical replication for a newly created RDS for PostgreSQL DB
instance – Create a new DB custom parameter group and set the static parameter
rds.logical_replication to 1. Then, associate this DB parameter group with the
Source DB instance and its physical read replica. For more information, see Associating a DB
parameter group with a DB instance in Amazon RDS.

• To turn on logical replication for an existing RDS for PostgreSQL DB instance – Modify the
DB custom parameter group of the source DB instance and its physical read replica to set the
static parameter rds.logical_replication to 1. For more information, see Modifying
parameters in a DB parameter group in Amazon RDS.

Working with read replicas for RDS for PostgreSQL 4313

Amazon Relational Database Service User Guide

Note

You must reboot the DB instance to apply these parameter changes.

You can use the following query to verify the values for wal_level and
rds.logical_replication on the source DB instance and its physical read replica.

Postgres=>SELECT name,setting FROM pg_settings WHERE name IN
 ('wal_level','rds.logical_replication');

 name | setting
-------------------------+---------
 rds.logical_replication | on
 wal_level | logical
(2 rows)

2. Create a table in the source database – Connect to the database in your source DB instance.
For more information, see Connecting to a DB instance running the PostgreSQL database
engine.

Use the following queries to create table in your source database and to insert values:

Postgres=>CREATE TABLE LR_test (a int PRIMARY KEY);
CREATE TABLE

Postgres=>INSERT INTO LR_test VALUES (generate_series(1,10000));
INSERT 0 10000

3. Create a publication for the source table – Use the following query to create a publication for
the table on the source DB instance.

Postgres=>CREATE PUBLICATION testpub FOR TABLE LR_test;
CREATE PUBLICATION

Use a SELECT query to verify the details of the publication that was created on both the source
DB instance and the physical read replica instance.

Logical decoding on a read replica 4314

Amazon Relational Database Service User Guide

Postgres=>SELECT * from pg_publication;

oid | pubname | pubowner | puballtables | pubinsert | pubupdate | pubdelete |
 pubtruncate | pubviaroot
-------+---------+----------+--------------+-----------+-----------+-----------
+-------------+------------
 16429 | testpub | 16413 | f | t | t | t | t
 | f
(1 row)

4. Create a subscription from logical replica instance – Create another RDS for PostgreSQL DB
instance as the logical replica instance. Make sure that VPC is setup correctly to ensure that
this logical replica instance can access the physical read replica instance. For more information,
see Amazon VPC and Amazon RDS. If your source DB instance is idle, connectivity issues might
occur and the primary doesn't send the data to standby.

Postgres=>CREATE SUBSCRIPTION testsub CONNECTION 'host=Physical replica host name
 port=port
 dbname=source_db_name user=user password=password'
 PUBLICATION testpub;
NOTICE: created replication slot "testsub" on publisher
CREATE SUBSCRIPTION

Postgres=>CREATE TABLE LR_test (a int PRIMARY KEY);
CREATE TABLE

Use a SELECT query to verify the details of the subscription on the logical replica instance.

Postgres=>SELECT oid,subname,subenabled,subslotname,subpublications FROM
 pg_subscription;

oid | subname | subenabled | subslotname | subpublications
-------+---------+------------+-------------+-----------------
 16429 | testsub | t | testsub | {testpub}
(1 row)
postgres=> select count(*) from LR_test;
 count

 10000
(1 row)

Logical decoding on a read replica 4315

Amazon Relational Database Service User Guide

5. Inspect logical replication slot state – You can only see the physical replication slot on your
source DB instance.

Postgres=>select slot_name, slot_type, confirmed_flush_lsn from
 pg_replication_slots;

slot_name | slot_type | confirmed_flush_lsn
---+-----------+---------------------
 rds_us_west_2_db_dhqfsmo5wbbjqrn3m6b6ivdhu4 | physical |
(1 row)

However, on your read replica instance, you can see the logical replication slot and the
confirmed_flush_lsn value changes as the application actively consumes logical changes.

Postgres=>select slot_name, slot_type, confirmed_flush_lsn from
 pg_replication_slots;

slot_name | slot_type | confirmed_flush_lsn
-----------+-----------+---------------------
 testsub | logical | 0/500002F0
(1 row)

Postgres=>select slot_name, slot_type, confirmed_flush_lsn from
 pg_replication_slots;

slot_name | slot_type | confirmed_flush_lsn
-----------+-----------+---------------------
 testsub | logical | 0/5413F5C0
(1 row)

Read replica limitations with PostgreSQL

The following are limitations for PostgreSQL read replicas:

• PostgreSQL read replicas are read-only. Although a read replica isn't a writeable DB instance, you
can promote it to become a standalone RDS for PostgreSQL DB instance. However, the process
isn't reversible.

Read replica limitations with PostgreSQL 4316

Amazon Relational Database Service User Guide

• You can't create a read replica from another read replica if your RDS for PostgreSQL DB instance
is running a PostgreSQL version earlier than 14.1. RDS for PostgreSQL supports cascading read
replicas on RDS for PostgreSQL version 14.1 and higher releases only. For more information, see
Using cascading read replicas with RDS for PostgreSQL.

• If you promote a PostgreSQL read replica, it becomes a writable DB instance. It stops receiving
write-ahead log (WAL) files from a source DB instance, and it's no longer a read-only instance.
You can create new read replicas from the promoted DB instance as you do for any RDS for
PostgreSQL DB instance. For more information, see Promoting a read replica to be a standalone
DB instance.

• If you promote a PostgreSQL read replica from within a replication chain (a series of cascading
read replicas), any existing downstream read replicas continue receiving WAL files from the
promoted instance automatically. For more information, see Using cascading read replicas with
RDS for PostgreSQL.

• If no user transactions are running on the source DB instance, the associated PostgreSQL
read replica reports a replication lag of up to five minutes. The replica lag is calculated as
currentTime - lastCommitedTransactionTimestamp, which means that when no
transactions are being processed, the value of replica lag increases for a period of time until
the write-ahead log (WAL) segment switches. By default RDS for PostgreSQL switches the WAL
segment every 5 minutes, which results in a transaction record and a decrease in the reported
lag.

• You can't turn on automated backups for PostgreSQL read replicas for RDS for PostgreSQL
versions earlier than 14.1. Automated backups for read replicas are supported for RDS for
PostgreSQL 14.1 and higher versions only. For RDS for PostgreSQL 13 and earlier versions, create
a snapshot from a read replica if you want a backup of it.

• Point-in-time recovery (PITR) isn't supported for read replicas. You can use PITR with a primary
(writer) instance only, not a read replica. To learn more, see Restoring a DB instance to a specified
time for Amazon RDS.

• Read replicas for PostgreSQL versions 12 and lower automatically reboot during the 60-90 day
maintenance window to apply password rotation. If the replica loses connection to the source
before the scheduled reboot, it still reboots to resume replication. For PostgreSQL versions 13
and higher, read replicas might experience brief replication disconnections and reconnections
during the password rotation process.

Read replica limitations with PostgreSQL 4317

Amazon Relational Database Service User Guide

Read replica configuration with PostgreSQL

RDS for PostgreSQL uses PostgreSQL native streaming replication to create a read-only copy of
a source DB instance. This read replica DB instance is an asynchronously created physical replica
of the source DB instance. It's created by a special connection that transmits write ahead log
(WAL) data from the source DB instance to the read replica. For more information, see Streaming
Replication in the PostgreSQL documentation.

PostgreSQL asynchronously streams database changes to this secure connection as they're made
on the source DB instance. You can encrypt communications from your client applications to the
source DB instance or any read replicas by setting the ssl parameter to 1. For more information,
see Using SSL with a PostgreSQL DB instance .

PostgreSQL uses a replication role to perform streaming replication. The role is privileged, but you
can't use it to modify any data. PostgreSQL uses a single process for handling replication.

You can create a PostgreSQL read replica without affecting operations or users of the source DB
instance. Amazon RDS sets the necessary parameters and permissions for you, on the source DB
instance and the read replica, without affecting the service. A snapshot is taken of the source DB
instance, and this snapshot is used to create the read replica. If you delete the read replica at some
point in the future, no outage occurs.

You can create up to 15 read replicas from one source DB instance within the same Region. As of
RDS for PostgreSQL 14.1, you can also create up to three levels of read replica in a chain (cascade)
from a source DB instance. For more information, see Using cascading read replicas with RDS for
PostgreSQL. In all cases, the source DB instance needs to have automated backups configured. You
do this by setting the backup retention period on your DB instance to any value other than 0. For
more information, see Creating a read replica.

You can create read replicas for your RDS for PostgreSQL DB instance in the same AWS Region as
your source DB instance. This is known as in-Region replication. You can also create read replicas
in different AWS Regions than the source DB instance. This is known as cross-Region replication.
For more information about setting up cross-Region read replicas, see Creating a read replica in a
different AWS Region. The various mechanisms supporting the replication process for in-Region
and cross-Region differ slightly depending on the RDS for PostgreSQL version as explained in How
streaming replication works for different RDS for PostgreSQL versions.

Read replica configuration with PostgreSQL 4318

https://www.postgresql.org/docs/14/warm-standby.html#STREAMING-REPLICATION
https://www.postgresql.org/docs/14/warm-standby.html#STREAMING-REPLICATION

Amazon Relational Database Service User Guide

For replication to operate effectively, each read replica should have the same amount of compute
and storage resources as the source DB instance. If you scale the source DB instance, be sure to also
scale the read replicas.

Amazon RDS overrides any incompatible parameters on a read replica if they prevent the read
replica from starting. For example, suppose that the max_connections parameter value is
higher on the source DB instance than on the read replica. In that case, Amazon RDS updates the
parameter on the read replica to be the same value as that on the source DB instance.

RDS for PostgreSQL read replicas have access to external databases that are available through
foreign data wrappers (FDWs) on the source DB instance. For example, suppose that your RDS for
PostgreSQL DB instance is using the mysql_fdw wrapper to access data from RDS for MySQL.
If so, your read replicas can also access that data. Other supported FDWs include oracle_fdw,
postgres_fdw, and tds_fdw. For more information, see Working with the supported foreign data
wrappers for Amazon RDS for PostgreSQL.

Using RDS for PostgreSQL read replicas with Multi-AZ configurations

You can create a read replica from a single-AZ or Multi-AZ DB instance. You can use Multi-AZ
deployments to improve the durability and availability of critical data, with a standby replica. A
standby replica is a dedicated read replica that can assume the workload if the source DB fails over.
You can't use your standby replica to serve read traffic. However, you can create read replicas from
high-traffic Multi-AZ DB instances to offload read-only queries. To learn more about Multi-AZ
deployments, see Multi-AZ DB instance deployments for Amazon RDS.

If the source DB instance of a Multi-AZ deployment fails over to a standby, the associated read
replicas switch to using the standby (now primary) as their replication source. The read replicas
might need to restart, depending on the RDS for PostgreSQL version, as follows:

• PostgreSQL 13 and higher versions – Restarting isn't required. The read replicas are
automatically synchronized with the new primary. However, in some cases your client application
might cache Domain Name Service (DNS) details for your read replicas. If so, set the time-to-live
(TTL) value to less than 30 seconds. Doing this prevents the read replica from holding on to a
stale IP address (and thus, prevents it from synchronizing with the new primary). To learn more
about this and other best practices, see Amazon RDS basic operational guidelines.

• PostgreSQL 12 and all earlier versions – The read replicas restart automatically after a fail
over to the standby replica because the standby (now primary) has a different IP address and a
different instance name. Restarting synchronizes the read replica with the new primary.

Read replica configuration with PostgreSQL 4319

Amazon Relational Database Service User Guide

To learn more about failover, see Failing over a Multi-AZ DB instance for Amazon RDS. To learn
more about how read replicas work in a Multi-AZ deployment, see Working with DB instance read
replicas.

To provide failover support for a read replica, you can create the read replica as a Multi-AZ DB
instance so that Amazon RDS creates a standby of your replica in another Availability Zone (AZ).
Creating your read replica as a Multi-AZ DB instance is independent of whether the source database
is a Multi-AZ DB instance.

Using cascading read replicas with RDS for PostgreSQL

As of version 14.1, RDS for PostgreSQL supports cascading read replicas. With cascading read
replicas, you can scale reads without adding overhead to your source RDS for PostgreSQL DB
instance. Updates to the WAL log aren't sent by the source DB instance to each read replica.
Instead, each read replica in a cascading series sends WAL log updates to the next read replica in
the series. This reduces the burden on the source DB instance.

With cascading read replicas, your RDS for PostgreSQL DB instance sends WAL data to the first
read replica in the chain. That read replica then sends WAL data to the second replica in the chain,
and so on. The end result is that all read replicas in the chain have the changes from the RDS for
PostgreSQL DB instance, but without the overhead solely on the source DB instance.

You can create a series of up to three read replicas in a chain from a source RDS for PostgreSQL DB
instance. For example, suppose that you have an RDS for PostgreSQL 14.1 DB instance, rpg-db-
main. You can do the following:

• Starting with rpg-db-main, create the first read replica in the chain, read-replica-1.

• Next, from read-replica-1, create the next read replica in the chain, read-replica-2.

• Finally, from read-replica-2, create the third read replica in the chain, read-replica-3.

You can't create another read replica beyond this third cascading read replica in the series for rpg-
db-main. A complete series of instances from an RDS for PostgreSQL source DB instance through
to the end of a series of cascading read replicas can consist of at most four DB instances.

For cascading read replicas to work, turn on automatic backups on your RDS for PostgreSQL.
Create the read replica first and then turn on automatic backups on the RDS for PostgreSQL DB
instance. The process is the same as for other Amazon RDS DB engines. For more information, see
Creating a read replica.

Using cascading read replicas 4320

Amazon Relational Database Service User Guide

As with any read replica, you can promote a read replica that's part of a cascade. Promoting a
read replica from within a chain of read replicas removes that replica from the chain. For example,
suppose that you want to move some of the workload off of your rpg-db-main DB instance to a
new instance for use by the accounting department only. Assuming the chain of three read replicas
from the example, you decide to promote read-replica-2. The chain is affected as follows:

• Promoting read-replica-2 removes it from the replication chain.

• It is now a full read/write DB instance.

• It continues replicating to read-replica-3, just as it was doing before promotion.

• Your rpg-db-main continues replicating to read-replica-1.

For more information about promoting read replicas, see Promoting a read replica to be a
standalone DB instance.

Note

For cascading read replicas, RDS for PostgreSQL supports 15 read replicas for each source
DB instance at first level of replication, and 5 read replicas for each source DB instance at
the second and third level of replication.

Creating cross-Region cascading read replicas with RDS for PostgreSQL

RDS for PostgreSQL supports cross-Region cascading read replicas. You can create a cross-Region
replica from the source DB instance, and then create same-Region replicas from it. You can also
create a same-Region replica from the source DB instance, and then create cross-Region replicas
from it.

Create a cross-Region replica and then create same-Region replicas

You can use an RDS for PostgreSQL DB instance with version 14.1 or higher, rpg-db-main, to do
the following:

1. Start with rpg-db-main (US-EAST-1), create the first cross-Region read replica in the chain,
read-replica-1 (US-WEST-2).

2. Using the first cross-Region read-replica-1 (US-WEST-2), create the second read replica in
the chain, read-replica-2 (US-WEST-2).

Creating cross-Region cascading read replicas 4321

Amazon Relational Database Service User Guide

3. Using read-replica-2, create the third read replica in the chain, read-replica-3 (US-
WEST-2).

Create a same-Region replica and then create cross-Region replicas

You can use an RDS for PostgreSQL DB instance with version 14.1 or higher, rpg-db-main, to do
the following:

1. Starting with rpg-db-main (US-EAST-1), create the first read replica in the chain, read-
replica-1 (US-EAST-1).

2. Using read-replica-1 (US-EAST-1), create the first cross-Region read replica in the chain,
read-replica-2 (US-WEST-2).

3. Using read-replica-2 (US-WEST-2), create the third read replica in the chain, read-
replica-3 (US-WEST-2).

Limitations in creating cross-Region read replicas

• A cross-Region cascading chain of database replicas can span a maximum of two Regions, with a
maximum of four levels. The four levels include the database source and three read replicas.

Advantages of using cascading read replicas

• Improved read scalability – By distributing read queries across multiple replicas, cascading
replication helps balance the load. This improves performance, especially in read-heavy
applications, by reducing the strain on the writer database.

• Geographical distribution – Cascading replicas can be located in different geographic locations.
This reduces latency for users located far from the primary database and provides a local read
replica, enhancing performance and user experience.

• High availability and disaster recovery – In the event of a primary server failure, replicas can
be promoted to primary, ensuring continuity. cascading replication further enhances this by
providing multiple layers of failover options, improving the overall resilience of the system.

• Flexibility and modular growth – As the system grows, new replicas can be added at different
levels without major reconfiguration of the primary database. This modular approach allows for
scalable and manageable growth of the replication setup.

Creating cross-Region cascading read replicas 4322

Amazon Relational Database Service User Guide

Best practice for using cross-Region read replicas

• Before promoting a replica, create additional replicas. This will save time, and provide efficient
handling of the workload.

How streaming replication works for different RDS for PostgreSQL
versions

As discussed in Read replica configuration with PostgreSQL, RDS for PostgreSQL uses PostgreSQL's
native streaming replication protocol to send WAL data from the source DB instance. It sends
source WAL data to read replicas for both in-Region and cross-Region read replicas. With version
9.4, PostgreSQL introduced physical replication slots as a supporting mechanism for the replication
process.

A physical replication slot prevents a source DB instance from removing WAL data before it's
consumed by all read replicas. Each read replica has its own physical slot on the source DB instance.
The slot keeps track of the oldest WAL (by logical sequence number, LSN) that might be needed by
the replica. After all slots and DB connections have progressed beyond a given WAL (LSN), that LSN
becomes a candidate for removal at the next checkpoint.

Amazon RDS uses Amazon S3 to archive WAL data. For in-Region read replicas, you can use this
archived data to recover the read replica when necessary. An example of when you might do so is if
the connection between source DB and read replica is interrupted for any reason.

In the following table, you can find a summary of differences between PostgreSQL versions and the
supporting mechanisms for in-Region and cross-Region used by RDS for PostgreSQL.

Version In-Region Cross-Region

PostgreSQL 14.1 and higher
versions

• Replication slots

• Amazon S3 archive

• Replication slots

PostgreSQL 13 and lower
versions

• Amazon S3 archive • Replication slots

For more information, see Monitoring and tuning the replication process.

How replication works for different RDS for PostgreSQL versions 4323

Amazon Relational Database Service User Guide

Understanding the parameters that control PostgreSQL replication

The following parameters affect the replication process and determine how well read replicas stay
up to date with the source DB instance:

max_wal_senders

The max_wal_senders parameter specifies the maximum number of connections that the
source DB instance can support at the same time over the streaming replication protocol.

The default value varies for RDS for PostgreSQL versions:

• For versions 13, 14, and 15, the default value is 20.

• For versions 16 and above, the default value is 35.

This parameter should be set to slightly higher than the actual number of read replicas. If this
parameter is set too low for the number of read replicas, replication stops.

For more information, see max_wal_senders in the PostgreSQL documentation.

Note

max_wal_senders is a static parameter that requires a DB instance reboot for changes
to take effect.

wal_keep_segments

The wal_keep_segments parameter specifies the number of write-ahead log (WAL) files that
the source DB instance keeps in the pg_wal directory. The default setting is 32.

If wal_keep_segments isn't set to a large enough value for your deployment, a read replica
can fall so far behind that streaming replication stops. If that happens, Amazon RDS generates
a replication error and begins recovery on the read replica. It does so by replaying the source
DB instance's archived WAL data from Amazon S3. This recovery process continues until the
read replica has caught up enough to continue streaming replication. You can see this process
in action as captured by the PostgreSQL log in Example: How a read replica recovers from
replication interruptions.

How replication works for different RDS for PostgreSQL versions 4324

https://www.postgresql.org/docs/devel/runtime-config-replication.html#GUC-MAX-WAL-SENDERS

Amazon Relational Database Service User Guide

Note

In PostgreSQL version 13, the wal_keep_segments parameter is named
wal_keep_size. It serves the same purpose as wal_keep_segments, but its
default value is in megabytes (MB) (2048 MB) rather than the number of files. For
more information, see wal_keep_segments and wal_keep_size in the PostgreSQL
documentation.

max_slot_wal_keep_size

The max_slot_wal_keep_size parameter controls the quantity of WAL data that the RDS
for PostgreSQL DB instance retains in the pg_wal directory to serve slots. This parameter is
used for configurations that use replication slots. The default value for this parameter is -1,
meaning that there's no limit to how much WAL data is kept on the source DB instance. For
information about monitoring your replication slots, see Monitoring replication slots for your
RDS for PostgreSQL DB instance.

For more information about this parameter, see max_slot_wal_keep_size in the PostgreSQL
documentation.

Whenever the stream that provides WAL data to a read replica is interrupted, PostgreSQL switches
into recovery mode. It restores the read replica by using archived WAL data from Amazon S3 or by
using the WAL data associated with the replication slot. When this process is complete, PostgreSQL
re-establishes streaming replication.

Example: How a read replica recovers from replication interruptions

In the following example, you find the log details that demonstrate the recovery process for a read
replica. The example is from an RDS for PostgreSQL DB instance running PostgreSQL version 12.9
in the same AWS Region as the source DB, so replication slots aren't used. The recovery process is
the same for other RDS for PostgreSQL DB instances running PostgreSQL earlier than version 14.1
with in-Region read replicas.

When the read replica lost contact with the source DB instance, Amazon RDS records the issue in
the log as FATAL: could not receive data from WAL stream message, along with the
ERROR: requested WAL segment ... has already been removed. As shown in the bold
line, Amazon RDS recovers the replica by replaying an archived WAL file.

How replication works for different RDS for PostgreSQL versions 4325

https://www.postgresql.org/docs/12/runtime-config-replication.html#GUC-WAL-KEEP-SEGMENTS
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-WAL-KEEP-SIZE
https://www.postgresql.org/docs/devel/runtime-config-replication.html#GUC-MAX-SLOT-WAL-KEEP-SIZE

Amazon Relational Database Service User Guide

2014-11-07 19:01:10 UTC::@:[23180]:DEBUG: switched WAL source from archive to stream
 after failure
2014-11-07 19:01:10 UTC::@:[11575]:LOG: started streaming WAL from primary at 1A/
D3000000 on timeline 1
2014-11-07 19:01:10 UTC::@:[11575]:FATAL: could not receive data from WAL stream:
ERROR: requested WAL segment 000000010000001A000000D3 has already been removed
2014-11-07 19:01:10 UTC::@:[23180]:DEBUG: could not restore file "00000002.history"
 from archive: return code 0
2014-11-07 19:01:15 UTC::@:[23180]:DEBUG: switched WAL source from stream to archive
 after failure recovering 000000010000001A000000D3
2014-11-07 19:01:16 UTC::@:[23180]:LOG: restored log file "000000010000001A000000D3"
 from archive

When Amazon RDS replays enough archived WAL data on the replica to catch up, streaming to the
read replica begins again. When streaming resumes, Amazon RDS writes an entry to the log file
similar to the following.

2014-11-07 19:41:36 UTC::@:[24714]:LOG:started streaming WAL from primary at 1B/
B6000000 on timeline 1

Setting the parameters that control shared memory

The parameters you set determine the size of shared memory for tracking transaction IDs, locks,
and prepared transactions. The shared memory structure of a standby instance must be equal
or greater than that of a primary instance. This ensures that the former doesn't run out of shared
memory during recovery. If the parameter values on the replica are less than the parameter values
on the primary, Amazon RDS will automatically adjust the replica parameters and restart the
engine.

The parameters affected are:

• max_connections

• max_worker_processes

• max_wal_senders

• max_prepared_transactions

• max_locks_per_transaction

How replication works for different RDS for PostgreSQL versions 4326

Amazon Relational Database Service User Guide

To avoid RDS reboots of replicas due to insufficient memory, we recommend applying the
parameter changes as a rolling reboot to each replica. You must apply the following rules, when
you set the parameters:

• Increasing the parameter values:

• You should always increase the parameter values of all the read replicas first, and perform a
rolling reboot of all replicas. Then, apply the parameter changes on the primary instance and
reboot.

• Decreasing the parameter values:

• You should first decrease the parameter values of the primary instance and perform a reboot.
Then, apply the parameter changes to all the associated read replicas and perform a rolling
reboot.

Monitoring and tuning the replication process

We strongly recommend that you routinely monitor your RDS for PostgreSQL DB instance and read
replicas. You need to ensure that your read replicas are keeping up with changes on the source
DB instance. Amazon RDS transparently recovers your read replicas when interruptions to the
replication process occur. However, it's best to avoid needing to recover at all. Recovering using
replication slots is faster than using the Amazon S3 archive, but any recovery process can affect
read performance.

To determine how well your read replicas are keeping up with the source DB instance, you can do
the following:

• Check the amount of ReplicaLag between source DB instance and replicas. Replica lag is the
amount of time, in seconds, that a read replica lags behind its source DB instance. This metric
reports the result of the following query.

SELECT extract(epoch from now() - pg_last_xact_replay_timestamp()) AS "ReplicaLag";

Replica lag is an indication of how well a read replica is keeping up with the source DB instance.
It's the amount of latency between the source DB instance and a specific read instance. A high
value for replica lag can indicate a mismatch between the DB instance classes or storage types
(or both) used by the source DB instance and its read replicas. The DB instance class and storage
types for DB source instance and all read replicas should be the same.

Monitoring and tuning the replication process 4327

Amazon Relational Database Service User Guide

Replica lag can also be the result of intermittent connection issues. You can monitor replication
lag in Amazon CloudWatch by viewing the Amazon RDS ReplicaLag metric. To learn more
about ReplicaLag and other metrics for Amazon RDS, see Amazon CloudWatch metrics for
Amazon RDS.

• Check the PostgreSQL log for information you can use to adjust your settings. At every
checkpoint, the PostgreSQL log captures the number of recycled transaction log files, as shown
in the following example.

2014-11-07 19:59:35 UTC::@:[26820]:LOG: checkpoint complete: wrote 376 buffers
 (0.2%);
0 transaction log file(s) added, 0 removed, 1 recycled; write=35.681 s, sync=0.013 s,
 total=35.703 s;
sync files=10, longest=0.013 s, average=0.001 s

You can use this information to figure out how many transaction files are being recycled in a
given time period. You can then change the setting for wal_keep_segments if necessary. For
example, suppose that the PostgreSQL log at checkpoint complete shows 35 recycled for
a 5-minute interval. In this case, the wal_keep_segments default value of 32 isn't sufficient to
keep pace with the streaming activity, so you should increase the value of this parameter.

• Use Amazon CloudWatch to monitor metrics that can predict replication issues.
Rather than analyzing the PostgreSQL log directly, you can use Amazon CloudWatch
to check metrics that have been collected. For example, you can check the value of the
TransactionLogsGeneration metric to see how much WAL data is being generated by the
source DB instance. In some cases, the workload on your DB instance might generate a large
amount of WAL data. If so, you might need to change the DB instance class for your source DB
instance and read replicas. Using an instance class with high (10 Gbps) network performance can
reduce replica lag.

Monitoring replication slots for your RDS for PostgreSQL DB instance

All versions of RDS for PostgreSQL use replication slots for cross-Region read replicas. RDS for
PostgreSQL 14.1 and higher versions use replication slots for in-Region read replicas. In-region
read replicas also use Amazon S3 to archive WAL data. In other words, if your DB instance and read
replicas are running PostgreSQL 14.1 or higher, replication slots and Amazon S3 archives are both
available for recovering the read replica. Recovering a read replica using its replication slot is faster

Monitoring and tuning the replication process 4328

Amazon Relational Database Service User Guide

than recovering from Amazon S3 archive. So, we recommend that you monitor the replication slots
and related metrics.

You can view the replication slots on your RDS for PostgreSQL DB instances by querying the
pg_replication_slots view, as follows.

postgres=> SELECT * FROM pg_replication_slots;
slot_name | plugin | slot_type | datoid | database | temporary |
 active | active_pid | xmin | catalog_xmin | restart_lsn | confirmed_flush_lsn |
 wal_status | safe_wal_size | two_phase
---------------------------+--------+-----------+--------+----------+-----------
+--------+------------+------+--------------+-------------+---------------------
+------------+---------------+-----------
rds_us_west_1_db_555555555 | | physical | | | f | t
 | 13194 | | | 23/D8000060 | | reserved |
 | f
(1 row)

The wal_status of reserved value means that the amount of WAL data held by the slot is
within the bounds of the max_wal_size parameter. In other words, the replication slot is properly
sized. Other possible status values are as follows:

• extended – The slot exceeds the max_wal_size setting, but the WAL data is retained.

• unreserved – The slot no longer has the all required WAL data. Some of it will be removed at
the next checkpoint.

• lost – Some required WAL data has been removed. The slot is no longer usable.

The unreserved and lost states of the wal_status are seen only when
max_slot_wal_keep_size is non-negative.

The pg_replication_slots view shows you the current state of your replication slots. To assess
the performance of your replication slots, you can use Amazon CloudWatch and monitor the
following metrics:

• OldestReplicationSlotLag – Shows the amount of Write-Ahead Log (WAL) data on the
source that hasn't been consumed by the most lagging replica.

• TransactionLogsDiskUsage – Shows how much storage is being used for WAL data. When a
read replica lags significantly, the value of this metric can increase substantially.

Monitoring and tuning the replication process 4329

Amazon Relational Database Service User Guide

To learn more about using Amazon CloudWatch and its metrics for RDS for PostgreSQL, see
Monitoring Amazon RDS metrics with Amazon CloudWatch. For more information about
monitoring streaming replication on your RDS for PostgreSQL DB instances, see Best practices for
Amazon RDS PostgreSQL replication on the AWS Database Blog.

Troubleshooting for RDS for PostgreSQL read replica

Following, you can find troubleshooting ideas for some common RDS for PostgreSQL read replica
issues.

Terminate the query that causes the read replica lag

Transactions either in active or idle in transaction state that are running for a long time in the
database might interfere with the WAL replication process, thereby increasing the replication
lag. Therefore, be sure to monitor the runtime of these transactions with the PostgreSQL
pg_stat_activity view.

Run a query on the primary instance similar to the following to find the process ID (PID) of the
query that's running for a long time:

SELECT datname, pid,usename, client_addr, backend_start,
xact_start, current_timestamp - xact_start AS xact_runtime, state,
backend_xmin FROM pg_stat_activity WHERE state='active';

SELECT now() - state_change as idle_in_transaction_duration, now() - xact_start as
 xact_duration,*
FROM pg_stat_activity
WHERE state = 'idle in transaction'
AND xact_start is not null
ORDER BY 1 DESC;

After identifying the PID of the query, you can choose to end the query.

Run a query on the primary instance similar to the following to terminate the query that's
running for a long time:

SELECT pg_terminate_backend(PID);

Troubleshooting for RDS for PostgreSQL read replica 4330

https://aws.amazon.com/blogs/database/best-practices-for-amazon-rds-postgresql-replication/
https://aws.amazon.com/blogs/database/best-practices-for-amazon-rds-postgresql-replication/

Amazon Relational Database Service User Guide

Troubleshooting for RDS for PostgreSQL read replica 4331

Amazon Relational Database Service User Guide

Improving query performance for RDS for PostgreSQL with
Amazon RDS Optimized Reads

You can achieve faster query processing for RDS for PostgreSQL with Amazon RDS Optimized
Reads. An RDS for PostgreSQL DB instance or Multi-AZ DB cluster that uses RDS Optimized Reads
can achieve up to 50% faster query processing compared to one that doesn't use it.

Topics

• Overview of RDS Optimized Reads in PostgreSQL

• Use cases for RDS Optimized Reads

• Best practices for RDS Optimized Reads

• Using RDS Optimized Reads

• Monitoring DB instances that use RDS Optimized Reads

• Limitations for RDS Optimized Reads in PostgreSQL

Overview of RDS Optimized Reads in PostgreSQL

Optimized Reads is available by default on RDS for PostgreSQL versions 15.2 and higher, 14.7
and higher, and 13.10 and higher when using NVMe-based DB instance classes. For hardware
specifications that indicate which instances use NVMe, see Hardware specifications for DB instance
classes.

When you use an RDS for PostgreSQL DB instance or Multi-AZ DB cluster that has RDS Optimized
Reads turned on, it achieves up to 50% faster query performance using the local Non-Volatile
Memory Express (NVMe) based solid state drive (SSD) block-level storage. You can achieve faster
query processing by placing the temporary tables that are generated by PostgreSQL on the local
storage, which reduces the traffic to Elastic Block Storage (EBS) over the network.

In PostgreSQL, temporary objects are assigned to a temporary namespace that drops automatically
at the end of the session. The temporary namespace while dropping removes any objects that are
session-dependent, including schema-qualified objects, such as tables, functions, operators, or
even extensions.

In RDS for PostgreSQL, the temp_tablespaces parameter is configured for this temporary work
area where the temporary objects are stored.

The following queries return the name of the tablespace and its location.

Improving query performance with RDS Optimized Reads 4332

Amazon Relational Database Service User Guide

postgres=> show temp_tablespaces;
temp_tablespaces

rds_temp_tablespace
(1 row)

The rds_temp_tablespace is a tablespace configured by RDS that points to the NVMe local
storage. You can always switch back to Amazon EBS storage by modifying this parameter
in the Parameter group using the AWS Management Console to point to any tablespace
other than rds_temp_tablespace. For more information, see Modifying parameters in a DB
parameter group in Amazon RDS. You can also use the SET command to modify the value of
the temp_tablespaces parameter to pg_default at the session level using SET command.
Modifying the parameter redirects the temporary work area to Amazon EBS. Switching back
to Amazon EBS helps when the local storage for your RDS instance or cluster isn't sufficient to
perform a specific SQL operation.

postgres=> SET temp_tablespaces TO 'pg_default';
SET

postgres=> show temp_tablespaces;

 temp_tablespaces

 pg_default

Use cases for RDS Optimized Reads

The following are some use cases that can benefit from Optimized Reads:

• Analytical queries that include Common Table Expressions (CTEs), derived tables, and grouping
operations.

• Read replicas that handle the unoptimized queries for an application.

• On-demand or dynamic reporting queries with complex operations such as GROUP BY and
ORDER BY that can't always use appropriate indexes.

• Other workloads that use internal temporary tables.

• CREATE INDEX or REINDEX operations for sorting.

Use cases 4333

Amazon Relational Database Service User Guide

Best practices for RDS Optimized Reads

Use the following best practices for RDS Optimized Reads:

• Add retry logic for read-only queries in case they fail because the instance store is full during the
execution.

• Monitor the storage space available on the instance store with the CloudWatch metric
FreeLocalStorage. If the instance store is reaching its limit because of the workload on the DB
instance or Multi-AZ DB cluster, modify it to use a larger DB instance class.

Using RDS Optimized Reads

When you provision an RDS for PostgreSQL DB instance with one of the NVMe based DB instance
classes in a Single-AZ DB instance deployment, Multi-AZ DB instance deployment, or Multi-AZ DB
cluster deployment, the DB instance automatically uses RDS Optimized Reads.

For more information about Multi-AZ deployment, see Configuring and managing a Multi-AZ
deployment for Amazon RDS.

To turn on RDS Optimized Reads, do one of the following:

• Create an RDS for PostgreSQL DB instance or Multi-AZ DB cluster using one of the NVMe based
DB instance classes. For more information, see Creating an Amazon RDS DB instance.

• Modify an existing RDS for PostgreSQL DB instance or Multi-AZ DB cluster to use one of the
NVMe based DB instance classes. For more information, see Modifying an Amazon RDS DB
instance.

RDS Optimized Reads is available in all AWS Regions where one or more of the DB instance classes
with local NVMe SSD storage are supported. For more information, see DB instance classes.

To switch back to a non-optimized reads RDS instance, modify the DB instance class of your RDS
instance or cluster to the similar instance class that only supports EBS storage for your database
workloads. For example, if the current DB instance class is db.r6gd.4xlarge, choose db.r6g.4xlarge
to switch back. For more information, see Modifying an Amazon RDS DB instance.

Best practices 4334

Amazon Relational Database Service User Guide

Monitoring DB instances that use RDS Optimized Reads

You can monitor DB instances that use RDS Optimized Reads using the following CloudWatch
metrics:

• FreeLocalStorage

• ReadIOPSLocalStorage

• ReadLatencyLocalStorage

• ReadThroughputLocalStorage

• WriteIOPSLocalStorage

• WriteLatencyLocalStorage

• WriteThroughputLocalStorage

These metrics provide data about available instance store storage, IOPS, and throughput. For more
information about these metrics, see Amazon CloudWatch instance-level metrics for Amazon RDS.

To monitor current usage of your local storage, lo in to your database and run the following query:

SELECT
 spcname AS "Name",
 pg_catalog.pg_size_pretty(pg_catalog.pg_tablespace_size(oid)) AS "size"
FROM
 pg_catalog.pg_tablespace
WHERE
 spcname IN ('rds_temp_tablespace');

For more information about the temporary files and their usage, see Managing temporary files
with PostgreSQL.

Limitations for RDS Optimized Reads in PostgreSQL

The following limitation apply to RDS Optimized Reads in PostgreSQL:

• Transactions can fail when the instance store is full.

Monitoring 4335

Amazon Relational Database Service User Guide

Importing data into PostgreSQL on Amazon RDS

Suppose that you have an existing PostgreSQL deployment that you want to move to Amazon
RDS. The complexity of your task depends on the size of your database and the types of database
objects that you're transferring. For example, consider a database that contains datasets on the
order of gigabytes, along with stored procedures and triggers. Such a database is going to be more
complicated than a simple database with only a few megabytes of test data and no triggers or
stored procedures.

We recommend that you use native PostgreSQL database migration tools under the following
conditions:

• You have a homogeneous migration, where you are migrating from a database with the same
database engine as the target database.

• You are migrating an entire database.

• The native tools allow you to migrate your system with minimal downtime.

In most other cases, performing a database migration using AWS Database Migration Service (AWS
DMS) is the best approach. AWS DMS can migrate databases without downtime and, for many
database engines, continue ongoing replication until you are ready to switch over to the target
database. You can migrate to either the same database engine or a different database engine using
AWS DMS. If you are migrating to a different database engine than your source database, you can
use the AWS Schema Conversion Tool (AWS SCT). You use AWS SCT to migrate schema objects that
are not migrated by AWS DMS. For more information about AWS DMS, see What is AWS Database
Migration Service?

Modify your DB parameter group to include the following settings for your import only. You should
test the parameter settings to find the most efficient settings for your DB instance size. You also
need to revert back to production values for these parameters after your import completes.

Modify your DB instance settings to the following:

• Disable DB instance backups (set backup_retention to 0).

• Disable Multi-AZ.

Modify your DB parameter group to include the following settings. You should only use these
settings when importing data. You should test the parameter settings to find the most efficient

Importing data into PostgreSQL 4336

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Relational Database Service User Guide

settings for your DB instance size. You also need to revert back to production values for these
parameters after your import completes.

Parameter Recommended value
when importing

Description

maintenan
ce_work_mem

524288, 1048576,
2097152, or
4194304 (in KB).
These settings are
comparable to 512
MB, 1 GB, 2 GB, and 4
GB.

The value for this setting depends on the
size of your host. This parameter is used
during CREATE INDEX statements and each
parallel command can use this much memory.
Calculate the best value so that you don't set
this value so high that you run out of memory.

max_wal_size 256 (for version 9.6),
4096 (for versions 10
and higher)

Maximum size to let the WAL grow during
automatic checkpoints. Increasing this
parameter can increase the amount of time
needed for crash recovery. This parameter
replaces checkpoint_segments for
PostgreSQL 9.6 and later.

For PostgreSQL version 9.6, this value is in
16 MB units. For later versions, the value is in
1 MB units. For example, in version 9.6, 128
means 128 chunks that are each 16 MB in size.
In version 12.4, 2048 means 2048 chunks that
are each 1 MB in size.

checkpoin
t_timeout

1800 The value for this setting allows for less
frequent WAL rotation.

synchrono
us_commit

Off Disable this setting to speed up writes.
Turning this parameter off can increase the
risk of data loss in the event of a server crash
(do not turn off FSYNC).

wal_buffers 8192 This is value is in 8 KB units. This again helps
your WAL generation speed

Importing data into PostgreSQL 4337

Amazon Relational Database Service User Guide

Parameter Recommended value
when importing

Description

autovacuum 0 Disable the PostgreSQL auto vacuum
parameter while you are loading data so that
it doesn't use resources

Use the pg_dump -Fc (compressed) or pg_restore -j (parallel) commands with these settings.

Note

The PostgreSQL command pg_dumpall requires super_user permissions that are not
granted when you create a DB instance, so it cannot be used for importing data.

Topics

• Importing a PostgreSQL database from an Amazon EC2 instance

• Using the \copy command to import data to a table on a PostgreSQL DB instance

• Importing data from Amazon S3 into an RDS for PostgreSQL DB instance

• Transporting PostgreSQL databases between DB instances

Importing a PostgreSQL database from an Amazon EC2 instance

If you have data in a PostgreSQL server on an Amazon EC2 instance and want to move it to a
PostgreSQL DB instance, you can follow this process to migrate the data.

1. Create a file using pg_dump that contains the data to be loaded

2. Create the target DB instance

3. Use psql to create the database on the DB instance and load the data

4. Create a DB snapshot of the DB instance

The following sections provide more details on each step listed above.

Importing a PostgreSQL database from an Amazon EC2 instance 4338

Amazon Relational Database Service User Guide

Step 1: Create a file using pg_dump that contains the data to load

The pg_dump utility uses the COPY command to create a schema and data dump of a PostgreSQL
database. The dump script generated by pg_dump loads data into a database with the same name
and recreates the tables, indexes, and foreign keys. You can use the pg_restore command and
the -d parameter to restore the data to a database with a different name.

Before you create the data dump, you should query the tables to be dumped to get a row count so
you can confirm the count on the target DB instance.

The following command creates a dump file called mydb2dump.sql for a database called mydb2.

prompt>pg_dump dbname=mydb2 -f mydb2dump.sql

Step 2: Create the target DB instance

Create the target PostgreSQL DB instance using either the Amazon RDS console, AWS CLI, or
API. Create the instance with the backup retention setting set to 0 and disable Multi-AZ. Doing
so allows faster data import. You must create a database on the instance before you can dump
the data. The database can have the same name as the database that is contained the dumped
data. Alternatively, you can create a database with a different name. In this case, you use the
pg_restore command and the -d parameter to restore the data into the newly named database.

For example, the following commands can be used to dump, restore, and rename a database.

pg_dump -Fc -v -h [endpoint of instance] -U [master username] [database]
 > [database].dump
createdb [new database name]
pg_restore -v -h [endpoint of instance] -U [master username] -d [new database
 name] [database].dump

Step 3: Use psql to create the database on the DB instance and load data

You can use the same connection you used to run the pg_dump command to connect to the target
DB instance and recreate the database. Using psql, you can use the master user name and master
password to create the database on the DB instance

The following example uses psql and a dump file named mydb2dump.sql to create a database
called mydb2 on a PostgreSQL DB instance called mypginstance:

Importing a PostgreSQL database from an Amazon EC2 instance 4339

Amazon Relational Database Service User Guide

For Linux, macOS, or Unix:

psql \
 -f mydb2dump.sql \
 --host mypginstance.555555555555.aws-region.rds.amazonaws.com \
 --port 8199 \
 --username myawsuser \
 --password password \
 --dbname mydb2

For Windows:

psql ^
 -f mydb2dump.sql ^
 --host mypginstance.555555555555.aws-region.rds.amazonaws.com ^
 --port 8199 ^
 --username myawsuser ^
 --password password ^
 --dbname mydb2

Note

Specify a password other than the prompt shown here as a security best practice.

Step 4: Create a DB snapshot of the DB instance

Once you have verified that the data was loaded into your DB instance, we recommend that you
create a DB snapshot of the target PostgreSQL DB instance. DB snapshots are complete backups
of your DB instance that can be used to restore your DB instance to a known state. A DB snapshot
taken immediately after the load protects you from having to load the data again in case of a
mishap. You can also use such a snapshot to seed new DB instances. For information about creating
a DB snapshot, see Creating a DB snapshot for a Single-AZ DB instance for Amazon RDS.

Using the \copy command to import data to a table on a PostgreSQL
DB instance

The PostgreSQL \copy command is a meta-command available from the psql interactive client
tool. You can use \copy to import data into a table on your RDS for PostgreSQL DB instance. To

Using the \copy command to import data to a table on a PostgreSQL DB instance 4340

Amazon Relational Database Service User Guide

use the \copy command, you need to first create the table structure on the target DB instance so
that \copy has a destination for the data being copied.

You can use \copy to load data from a comma-separated values (CSV) file, such as one that's been
exported and saved to your client workstation.

To import the CSV data to the target RDS for PostgreSQL DB instance, first connect to the target
DB instance using psql.

psql --host=db-instance.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=target-db

You then run \copy command with the following parameters to identify the target for the data
and its format.

• target_table – The name of the table that should receive the data being copied from the CSV
file.

• column_list – Column specifications for the table.

• 'filename' – The complete path to the CSV file on your local workstation.

 \copy target_table from '/path/to/local/filename.csv' WITH DELIMITER ',' CSV;

If your CSV file has column heading information, you can use this version of the command and
parameters.

\copy target_table (column-1, column-2, column-3, ...)
 from '/path/to/local/filename.csv' WITH DELIMITER ',' CSV HEADER;

If the \copy command fails, PostgreSQL outputs error messages.

Creating a new DB instance in the Database Preview environment using psql command with the
\copy meta-command as shown in the following examples. This example uses source-table as the
source table name, source-table.csv as the .csv file, and target-db as the target database:

For Linux, macOS, or Unix:

$psql target-db \
 -U <admin user> \

Using the \copy command to import data to a table on a PostgreSQL DB instance 4341

Amazon Relational Database Service User Guide

 -p <port> \
 -h <DB instance name> \
 -c "\copy source-table from 'source-table.csv' with DELIMITER ','"

For Windows:

$psql target-db ^
 -U <admin user> ^
 -p <port> ^
 -h <DB instance name> ^
 -c "\copy source-table from 'source-table.csv' with DELIMITER ','"

For complete details about the \copy command, see the psql page in the PostgreSQL
documentation, in the Meta-Commands section.

Importing data from Amazon S3 into an RDS for PostgreSQL DB
instance

You can import data that's been stored using Amazon Simple Storage Service into a table on
an RDS for PostgreSQL DB instance. To do this, you first install the RDS for PostgreSQL aws_s3
extension. This extension provides the functions that you use to import data from an Amazon S3
bucket. A bucket is an Amazon S3 container for objects and files. The data can be in a comma-
separate value (CSV) file, a text file, or a compressed (gzip) file. Following, you can learn how to
install the extension and how to import data from Amazon S3 into a table.

Your database must be running PostgreSQL version 10.7 or higher to import from Amazon S3 into
RDS for PostgreSQL.

If you don't have data stored on Amazon S3, you need to first create a bucket and store the data.
For more information, see the following topics in the Amazon Simple Storage Service User Guide.

• Create a bucket

• Add an object to a bucket

Cross-account import from Amazon S3 is supported. For more information, see Granting cross-
account permissions in the Amazon Simple Storage Service User Guide.

You can use the customer managed key for encryption while importing data from S3. For more
information, see KMS keys stored in AWS KMS in the Amazon Simple Storage Service User Guide.

Importing data from Amazon S3 into RDS for PostgreSQL 4342

http://www.postgresql.org/docs/current/static/app-psql.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/GetStartedWithS3.html#creating-bucket
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/GetStartedWithS3.html#uploading-an-object-bucket
https://docs.aws.amazon.com/AmazonS3/latest/gsg/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/UsingKMSEncryption.html

Amazon Relational Database Service User Guide

Topics

• Installing the aws_s3 extension

• Overview of importing data from Amazon S3 data

• Setting up access to an Amazon S3 bucket

• Importing data from Amazon S3 to your RDS for PostgreSQL DB instance

• Function reference

Installing the aws_s3 extension

Before you can use Amazon S3 with your RDS for PostgreSQL DB instance, you need to install the
aws_s3 extension. This extension provides functions for importing data from an Amazon S3. It
also provides functions for exporting data from an RDS for PostgreSQL DB instance to an Amazon
S3 bucket. For more information, see Exporting data from an RDS for PostgreSQL DB instance to
Amazon S3. The aws_s3 extension depends on some of the helper functions in the aws_commons
extension, which is installed automatically when needed.

To install the aws_s3 extension

1. Use psql (or pgAdmin) to connect to the RDS for PostgreSQL DB instance as a user that has
rds_superuser privileges. If you kept the default name during the setup process, you
connect as postgres.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password

2. To install the extension, run the following command.

postgres=> CREATE EXTENSION aws_s3 CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

3. To verify that the extension is installed, you can use the psql \dx metacommand.

postgres=> \dx
 List of installed extensions
 Name | Version | Schema | Description
-------------+---------+------------+---
 aws_commons | 1.2 | public | Common data types across AWS services

Importing data from Amazon S3 into RDS for PostgreSQL 4343

Amazon Relational Database Service User Guide

 aws_s3 | 1.1 | public | AWS S3 extension for importing data from S3
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(3 rows)

The functions for importing data from Amazon S3 and exporting data to Amazon S3 are now
available to use.

Overview of importing data from Amazon S3 data

To import S3 data into Amazon RDS

First, gather the details that you need to supply to the function. These include the name of the
table on your RDS for PostgreSQL DB instance, and the bucket name, file path, file type, and
AWS Region where the Amazon S3 data is stored. For more information, see View an object in the
Amazon Simple Storage Service User Guide.

Note

Multi part data import from Amazon S3 isn't currently supported.

1. Get the name of the table into which the aws_s3.table_import_from_s3 function is to
import the data. As an example, the following command creates a table t1 that can be used in
later steps.

postgres=> CREATE TABLE t1
 (col1 varchar(80),
 col2 varchar(80),
 col3 varchar(80));

2. Get the details about the Amazon S3 bucket and the data to import. To do this, open the
Amazon S3 console at https://console.aws.amazon.com/s3/, and choose Buckets. Find the
bucket containing your data in the list. Choose the bucket, open its Object overview page, and
then choose Properties.

Make a note of the bucket name, path, the AWS Region, and file type. You need the Amazon
Resource Name (ARN) later, to set up access to Amazon S3 through an IAM role. For more more
information, see Setting up access to an Amazon S3 bucket. The image following shows an
example.

Importing data from Amazon S3 into RDS for PostgreSQL 4344

https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html
https://console.aws.amazon.com/s3/

Amazon Relational Database Service User Guide

3. You can verify the path to the data on the Amazon S3 bucket by using the AWS CLI command
aws s3 cp. If the information is correct, this command downloads a copy of the Amazon S3
file.

aws s3 cp s3://amzn-s3-demo-bucket/sample_file_path ./

4. Set up permissions on your RDS for PostgreSQL DB instance to allow access to the file on the
Amazon S3 bucket. To do so, you use either an AWS Identity and Access Management (IAM)
role or security credentials. For more information, see Setting up access to an Amazon S3
bucket.

5. Supply the path and other Amazon S3 object details gathered (see step 2) to the
create_s3_uri function to construct an Amazon S3 URI object. To learn more about this
function, see aws_commons.create_s3_uri. The following is an example of constructing this
object during a psql session.

postgres=> SELECT aws_commons.create_s3_uri(
 'docs-lab-store-for-rpg',
 'versions_and_jdks_listing.csv',
 'us-west-1'
) AS s3_uri \gset

Importing data from Amazon S3 into RDS for PostgreSQL 4345

Amazon Relational Database Service User Guide

In the next step, you pass this object (aws_commons._s3_uri_1) to the
aws_s3.table_import_from_s3 function to import the data to the table.

6. Invoke the aws_s3.table_import_from_s3 function to import the data from Amazon S3
into your table. For reference information, see aws_s3.table_import_from_s3. For examples,
see Importing data from Amazon S3 to your RDS for PostgreSQL DB instance.

Setting up access to an Amazon S3 bucket

To import data from an Amazon S3 file, give the RDS for PostgreSQL DB instance permission to
access the Amazon S3 bucket containing the file. You provide access to an Amazon S3 bucket in
one of two ways, as described in the following topics.

Topics

• Using an IAM role to access an Amazon S3 bucket

• Using security credentials to access an Amazon S3 bucket

• Troubleshooting access to Amazon S3

Using an IAM role to access an Amazon S3 bucket

Before you load data from an Amazon S3 file, give your RDS for PostgreSQL DB instance
permission to access the Amazon S3 bucket the file is in. This way, you don't have to manage
additional credential information or provide it in the aws_s3.table_import_from_s3 function call.

To do this, create an IAM policy that provides access to the Amazon S3 bucket. Create an IAM role
and attach the policy to the role. Then assign the IAM role to your DB instance.

To give an RDS for PostgreSQL DB instance access to Amazon S3 through an IAM role

1. Create an IAM policy.

This policy provides the bucket and object permissions that allow your RDS for PostgreSQL DB
instance to access Amazon S3.

Include in the policy the following required actions to allow the transfer of files from an
Amazon S3 bucket to Amazon RDS:

• s3:GetObject

Importing data from Amazon S3 into RDS for PostgreSQL 4346

Amazon Relational Database Service User Guide

• s3:ListBucket

Include in the policy the following resources to identify the Amazon S3 bucket and objects in
the bucket. This shows the Amazon Resource Name (ARN) format for accessing Amazon S3.

• arn:aws:s3:::amzn-s3-demo-bucket

• arn:aws:s3:::amzn-s3-demo-bucket/*

For more information on creating an IAM policy for RDS for PostgreSQL, see Creating and
using an IAM policy for IAM database access. See also Tutorial: Create and attach your first
customer managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named rds-s3-import-policy with
these options. It grants access to a bucket named amzn-s3-demo-bucket.

Note

Make a note of the Amazon Resource Name (ARN) of the policy returned by this
command. You need the ARN in a subsequent step when you attach the policy to an
IAM role.

Example

For Linux, macOS, or Unix:

aws iam create-policy \
 --policy-name rds-s3-import-policy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3import",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [

Importing data from Amazon S3 into RDS for PostgreSQL 4347

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Relational Database Service User Guide

 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }'

For Windows:

aws iam create-policy ^
 --policy-name rds-s3-import-policy ^
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3import",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }'

2. Create an IAM role.

You do this so Amazon RDS can assume this IAM role to access your Amazon S3 buckets. For
more information, see Creating a role to delegate permissions to an IAM user in the IAM User
Guide.

We recommend using the aws:SourceArn and aws:SourceAccount global condition
context keys in resource-based policies to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

If you use both global condition context keys and the aws:SourceArn value contains the
account ID, the aws:SourceAccount value and the account in the aws:SourceArn value
must use the same account ID when used in the same policy statement.

Importing data from Amazon S3 into RDS for PostgreSQL 4348

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the policy, be sure to use the aws:SourceArn global condition context key with the full
ARN of the resource. The following example shows how to do so using the AWS CLI command
to create a role named rds-s3-import-role.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-import-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }
 }
 }
]
 }'

For Windows:

aws iam create-role ^
 --role-name rds-s3-import-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [

Importing data from Amazon S3 into RDS for PostgreSQL 4349

Amazon Relational Database Service User Guide

 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }
 }
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created in the previous step to the role
named rds-s3-import-role Replace your-policy-arn with the policy ARN that you
noted in an earlier step.

Example

For Linux, macOS, or Unix:

aws iam attach-role-policy \
 --policy-arn your-policy-arn \
 --role-name rds-s3-import-role

For Windows:

aws iam attach-role-policy ^
 --policy-arn your-policy-arn ^
 --role-name rds-s3-import-role

4. Add the IAM role to the DB instance.

You do so by using the AWS Management Console or AWS CLI, as described following.

Importing data from Amazon S3 into RDS for PostgreSQL 4350

Amazon Relational Database Service User Guide

Console

To add an IAM role for a PostgreSQL DB instance using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the PostgreSQL DB instance name to display its details.

3. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add
under Add IAM roles to this instance .

4. Under Feature, choose s3Import.

5. Choose Add role.

AWS CLI

To add an IAM role for a PostgreSQL DB instance using the CLI

• Use the following command to add the role to the PostgreSQL DB instance named my-db-
instance. Replace your-role-arn with the role ARN that you noted in a previous step. Use
s3Import for the value of the --feature-name option.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-instance \
 --db-instance-identifier my-db-instance \
 --feature-name s3Import \
 --role-arn your-role-arn \
 --region your-region

For Windows:

aws rds add-role-to-db-instance ^
 --db-instance-identifier my-db-instance ^
 --feature-name s3Import ^
 --role-arn your-role-arn ^
 --region your-region

Importing data from Amazon S3 into RDS for PostgreSQL 4351

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

RDS API

To add an IAM role for a PostgreSQL DB instance using the Amazon RDS API, call the
AddRoleToDBInstance operation.

Using security credentials to access an Amazon S3 bucket

If you prefer, you can use security credentials to provide access to an Amazon S3 bucket instead
of providing access with an IAM role. You do so by specifying the credentials parameter in the
aws_s3.table_import_from_s3 function call.

The credentials parameter is a structure of type aws_commons._aws_credentials_1, which
contains AWS credentials. Use the aws_commons.create_aws_credentials function to set the access
key and secret key in an aws_commons._aws_credentials_1 structure, as shown following.

postgres=> SELECT aws_commons.create_aws_credentials(
 'sample_access_key', 'sample_secret_key', '')
AS creds \gset

After creating the aws_commons._aws_credentials_1 structure, use the
aws_s3.table_import_from_s3 function with the credentials parameter to import the data, as
shown following.

postgres=> SELECT aws_s3.table_import_from_s3(
 't', '', '(format csv)',
 :'s3_uri',
 :'creds'
);

Or you can include the aws_commons.create_aws_credentials function call inline within the
aws_s3.table_import_from_s3 function call.

postgres=> SELECT aws_s3.table_import_from_s3(
 't', '', '(format csv)',
 :'s3_uri',
 aws_commons.create_aws_credentials('sample_access_key', 'sample_secret_key', '')
);

Importing data from Amazon S3 into RDS for PostgreSQL 4352

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBInstance.html

Amazon Relational Database Service User Guide

Troubleshooting access to Amazon S3

If you encounter connection problems when attempting to import data from Amazon S3, see the
following for recommendations:

• Troubleshooting Amazon RDS identity and access

• Troubleshooting Amazon S3 in the Amazon Simple Storage Service User Guide

• Troubleshooting Amazon S3 and IAM in the IAM User Guide

Importing data from Amazon S3 to your RDS for PostgreSQL DB instance

You import data from your Amazon S3 bucket by using the table_import_from_s3 function of
the aws_s3 extension. For reference information, see aws_s3.table_import_from_s3.

Note

The following examples use the IAM role method to allow access to the Amazon S3 bucket.
Thus, the aws_s3.table_import_from_s3 function calls don't include credential
parameters.

The following shows a typical example.

postgres=> SELECT aws_s3.table_import_from_s3(
 't1',
 '',
 '(format csv)',
 :'s3_uri'
);

The parameters are the following:

• t1 – The name for the table in the PostgreSQL DB instance to copy the data into.

• '' – An optional list of columns in the database table. You can use this parameter to indicate
which columns of the S3 data go in which table columns. If no columns are specified, all the
columns are copied to the table. For an example of using a column list, see Importing an Amazon
S3 file that uses a custom delimiter.

Importing data from Amazon S3 into RDS for PostgreSQL 4353

https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_iam-s3.html

Amazon Relational Database Service User Guide

• (format csv) – PostgreSQL COPY arguments. The copy process uses the arguments and
format of the PostgreSQL COPY command to import the data. Choices for format include
comma-separated value (CSV) as shown in this example, text, and binary. The default is text.

• s3_uri – A structure that contains the information identifying the Amazon S3 file. For an
example of using the aws_commons.create_s3_uri function to create an s3_uri structure, see
Overview of importing data from Amazon S3 data.

For more information about this function, see aws_s3.table_import_from_s3.

The aws_s3.table_import_from_s3 function returns text. To specify other kinds of files for
import from an Amazon S3 bucket, see one of the following examples.

Note

Importing 0 bytes file will cause an error.

Topics

• Importing an Amazon S3 file that uses a custom delimiter

• Importing an Amazon S3 compressed (gzip) file

• Importing an encoded Amazon S3 file

Importing an Amazon S3 file that uses a custom delimiter

The following example shows how to import a file that uses a custom delimiter. It also shows how
to control where to put the data in the database table using the column_list parameter of the
aws_s3.table_import_from_s3 function.

For this example, assume that the following information is organized into pipe-delimited columns
in the Amazon S3 file.

1|foo1|bar1|elephant1
2|foo2|bar2|elephant2
3|foo3|bar3|elephant3
4|foo4|bar4|elephant4
...

Importing data from Amazon S3 into RDS for PostgreSQL 4354

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Relational Database Service User Guide

To import a file that uses a custom delimiter

1. Create a table in the database for the imported data.

postgres=> CREATE TABLE test (a text, b text, c text, d text, e text);

2. Use the following form of the aws_s3.table_import_from_s3 function to import data from the
Amazon S3 file.

You can include the aws_commons.create_s3_uri function call inline within the
aws_s3.table_import_from_s3 function call to specify the file.

postgres=> SELECT aws_s3.table_import_from_s3(
 'test',
 'a,b,d,e',
 'DELIMITER ''|''',
 aws_commons.create_s3_uri('amzn-s3-demo-bucket', 'pipeDelimitedSampleFile', 'us-
east-2')
);

The data is now in the table in the following columns.

postgres=> SELECT * FROM test;
a | b | c | d | e
---+------+---+---+------+-----------
1 | foo1 | | bar1 | elephant1
2 | foo2 | | bar2 | elephant2
3 | foo3 | | bar3 | elephant3
4 | foo4 | | bar4 | elephant4

Importing an Amazon S3 compressed (gzip) file

The following example shows how to import a file from Amazon S3 that is compressed with gzip.
The file that you import needs to have the following Amazon S3 metadata:

• Key: Content-Encoding

• Value: gzip

Importing data from Amazon S3 into RDS for PostgreSQL 4355

Amazon Relational Database Service User Guide

If you upload the file using the AWS Management Console, the metadata is typically applied by the
system. For information about uploading files to Amazon S3 using the AWS Management Console,
the AWS CLI, or the API, see Uploading objects in the Amazon Simple Storage Service User Guide.

For more information about Amazon S3 metadata and details about system-provided metadata,
see Editing object metadata in the Amazon S3 console in the Amazon Simple Storage Service User
Guide.

Import the gzip file into your RDS for PostgreSQL DB instance as shown following.

postgres=> CREATE TABLE test_gzip(id int, a text, b text, c text, d text);
postgres=> SELECT aws_s3.table_import_from_s3(
 'test_gzip', '', '(format csv)',
 'amzn-s3-demo-bucket', 'test-data.gz', 'us-east-2'
);

Importing an encoded Amazon S3 file

The following example shows how to import a file from Amazon S3 that has Windows-1252
encoding.

postgres=> SELECT aws_s3.table_import_from_s3(
 'test_table', '', 'encoding ''WIN1252''',
 aws_commons.create_s3_uri('amzn-s3-demo-bucket', 'SampleFile', 'us-east-2')
);

Function reference

Functions

• aws_s3.table_import_from_s3

• aws_commons.create_s3_uri

• aws_commons.create_aws_credentials

aws_s3.table_import_from_s3

Imports Amazon S3 data into an Amazon RDS table. The aws_s3 extension provides the
aws_s3.table_import_from_s3 function. The return value is text.

Importing data from Amazon S3 into RDS for PostgreSQL 4356

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-object-metadata.html

Amazon Relational Database Service User Guide

Syntax

The required parameters are table_name, column_list and options. These identify the
database table and specify how the data is copied into the table.

You can also use the following parameters:

• The s3_info parameter specifies the Amazon S3 file to import. When you use this parameter,
access to Amazon S3 is provided by an IAM role for the PostgreSQL DB instance.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 s3_info aws_commons._s3_uri_1
)

• The credentials parameter specifies the credentials to access Amazon S3. When you use this
parameter, you don't use an IAM role.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 s3_info aws_commons._s3_uri_1,
 credentials aws_commons._aws_credentials_1
)

Parameters

table_name

A required text string containing the name of the PostgreSQL database table to import the data
into.

column_list

A required text string containing an optional list of the PostgreSQL database table columns in
which to copy the data. If the string is empty, all columns of the table are used. For an example,
see Importing an Amazon S3 file that uses a custom delimiter.

Importing data from Amazon S3 into RDS for PostgreSQL 4357

Amazon Relational Database Service User Guide

options

A required text string containing arguments for the PostgreSQL COPY command. These
arguments specify how the data is to be copied into the PostgreSQL table. For more details, see
the PostgreSQL COPY documentation.

s3_info

An aws_commons._s3_uri_1 composite type containing the following information about the
S3 object:

• bucket – The name of the Amazon S3 bucket containing the file.

• file_path – The Amazon S3 file name including the path of the file.

• region – The AWS Region that the file is in. For a listing of AWS Region names and
associated values, see Regions, Availability Zones, and Local Zones.

credentials

An aws_commons._aws_credentials_1 composite type containing the following credentials
to use for the import operation:

• Access key

• Secret key

• Session token

For information about creating an aws_commons._aws_credentials_1 composite structure,
see aws_commons.create_aws_credentials.

Alternate syntax

To help with testing, you can use an expanded set of parameters instead of the s3_info
and credentials parameters. Following are additional syntax variations for the
aws_s3.table_import_from_s3 function:

• Instead of using the s3_info parameter to identify an Amazon S3 file, use the combination
of the bucket, file_path, and region parameters. With this form of the function, access to
Amazon S3 is provided by an IAM role on the PostgreSQL DB instance.

aws_s3.table_import_from_s3 (
 table_name text,

Importing data from Amazon S3 into RDS for PostgreSQL 4358

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Relational Database Service User Guide

 column_list text,
 options text,
 bucket text,
 file_path text,
 region text
)

• Instead of using the credentials parameter to specify Amazon S3 access, use the combination
of the access_key, session_key, and session_token parameters.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 bucket text,
 file_path text,
 region text,
 access_key text,
 secret_key text,
 session_token text
)

Alternate parameters

bucket

A text string containing the name of the Amazon S3 bucket that contains the file.

file_path

A text string containing the Amazon S3 file name including the path of the file.

region

A text string identifying the AWS Region location of the file. For a listing of AWS Region names
and associated values, see Regions, Availability Zones, and Local Zones.

access_key

A text string containing the access key to use for the import operation. The default is NULL.

secret_key

A text string containing the secret key to use for the import operation. The default is NULL.

Importing data from Amazon S3 into RDS for PostgreSQL 4359

Amazon Relational Database Service User Guide

session_token

(Optional) A text string containing the session key to use for the import operation. The default
is NULL.

aws_commons.create_s3_uri

Creates an aws_commons._s3_uri_1 structure to hold Amazon S3 file information. Use the
results of the aws_commons.create_s3_uri function in the s3_info parameter of the
aws_s3.table_import_from_s3 function.

Syntax

aws_commons.create_s3_uri(
 bucket text,
 file_path text,
 region text
)

Parameters

bucket

A required text string containing the Amazon S3 bucket name for the file.

file_path

A required text string containing the Amazon S3 file name including the path of the file.

region

A required text string containing the AWS Region that the file is in. For a listing of AWS Region
names and associated values, see Regions, Availability Zones, and Local Zones.

aws_commons.create_aws_credentials

Sets an access key and secret key in an aws_commons._aws_credentials_1 structure. Use
the results of the aws_commons.create_aws_credentials function in the credentials
parameter of the aws_s3.table_import_from_s3 function.

Syntax

aws_commons.create_aws_credentials(

Importing data from Amazon S3 into RDS for PostgreSQL 4360

Amazon Relational Database Service User Guide

 access_key text,
 secret_key text,
 session_token text
)

Parameters

access_key

A required text string containing the access key to use for importing an Amazon S3 file. The
default is NULL.

secret_key

A required text string containing the secret key to use for importing an Amazon S3 file. The
default is NULL.

session_token

An optional text string containing the session token to use for importing an Amazon S3 file.
The default is NULL. If you provide an optional session_token, you can use temporary
credentials.

Transporting PostgreSQL databases between DB instances

By using PostgreSQL transportable databases for Amazon RDS, you can move a PostgreSQL
database between two DB instances. This is a very fast way to migrate large databases between
different DB instances. To use this approach, your DB instances must both run the same major
version of PostgreSQL.

This capability requires that you install the pg_transport extension on both the source and the
destination DB instance. The pg_transport extension provides a physical transport mechanism
that moves the database files with minimal processing. This mechanism moves data much faster
than traditional dump and load processes, with less downtime.

Note

PostgreSQL transportable databases are available in RDS for PostgreSQL 11.5 and higher,
and RDS for PostgreSQL version 10.10 and higher.

Transporting PostgreSQL databases between DB instances 4361

Amazon Relational Database Service User Guide

To transport a PostgreSQL DB instance from one RDS for PostgreSQL DB instance to another,
you first set up the source and destination instances as detailed in Setting up a DB instance for
transport. You can then transport the database by using the function described in Transporting a
PostgreSQL database.

Topics

• What happens during database transport

• Limitations for using PostgreSQL transportable databases

• Setting up to transport a PostgreSQL database

• Transporting a PostgreSQL database to the destination from the source

• Transportable databases function reference

• Transportable databases parameter reference

What happens during database transport

The PostgreSQL transportable databases feature uses a pull model to import the database
from the source DB instance to the destination. The transport.import_from_server
function creates the in-transit database on the destination DB instance. The in-transit database is
inaccessible on the destination DB instance for the duration of the transport.

When transport begins, all current sessions on the source database are ended. Any databases other
than the source database on the source DB instance aren't affected by the transport.

The source database is put into a special read-only mode. While it's in this mode, you can connect
to the source database and run read-only queries. However, write-enabled queries and some other
types of commands are blocked. Only the specific source database that is being transported is
affected by these restrictions.

During transport, you can't restore the destination DB instance to a point in time. This is because
the transport isn't transactional and doesn't use the PostgreSQL write-ahead log to record
changes. If the destination DB instance has automatic backups enabled, a backup is automatically
taken after transport completes. Point-in-time restores are available for times after the backup
finishes.

If the transport fails, the pg_transport extension attempts to undo all changes to the source and
destination DB instances. This includes removing the destination's partially transported database.

Transporting PostgreSQL databases between DB instances 4362

Amazon Relational Database Service User Guide

Depending on the type of failure, the source database might continue to reject write-enabled
queries. If this happens, use the following command to allow write-enabled queries.

ALTER DATABASE db-name SET default_transaction_read_only = false;

Limitations for using PostgreSQL transportable databases

Transportable databases have the following limitations:

• Read replicas – You can't use transportable databases on read replicas or parent instances of
read replicas.

• Unsupported column types – You can't use the reg data types in any database tables that you
plan to transport with this method. These types depend on system catalog object IDs (OIDs),
which often change during transport.

• Tablespaces – All source database objects must be in the default pg_default tablespace.

• Compatibility – Both the source and destination DB instances must run the same major version
of PostgreSQL.

• Extensions – The source DB instance can have only the pg_transport installed.

• Roles and ACLs – The source database's access privileges and ownership information aren't
carried over to the destination database. All database objects are created and owned by the local
destination user of the transport.

• Concurrent transports – A single DB instance can support up to 32 concurrent transports,
including both imports and exports, if worker processes have been configured properly.

• RDS for PostgreSQL DB instances only – PostgreSQL transportable databases are supported on
RDS for PostgreSQL DB instances only. You can't use it with on-premises databases or databases
running on Amazon EC2.

Setting up to transport a PostgreSQL database

Before you begin, make sure that your RDS for PostgreSQL DB instances meet the following
requirements:

• The RDS for PostgreSQL DB instances for source and destination must run the same version of
PostgreSQL.

• The destination DB can't have a database of the same name as the source DB that you want to
transport.

Transporting PostgreSQL databases between DB instances 4363

Amazon Relational Database Service User Guide

• The account you use to run the transport needs rds_superuser privileges on both the source
DB and the destination DB.

• The security group for the source DB instance must allow inbound access from the destination
DB instance. This might already be the case if your source and destination DB instances are
located in the VPC. For more information about security groups, see Controlling access with
security groups.

Transporting databases from a source DB instance to a destination DB instance requires several
changes to the DB parameter group associated with each instance. That means that you must
create a custom DB parameter group for the source DB instance and create a custom DB parameter
group for the destination DB instance.

Note

If your DB instances are already configured using custom DB parameter groups, you can
start with step 2 in the following procedure.

To configure the custom DB group parameters for transporting databases

For the following steps, use an account that has rds_superuser privileges.

1. If the source and destination DB instances use a default DB parameter group, you need to
create a custom DB parameter group using the appropriate version for your instances. You do
this so you can change values for several parameters. For more information, see Parameter
groups for Amazon RDS.

2. In the custom DB parameter group, change values for the following parameters:

• shared_preload_libraries – Add pg_transport to the list of libraries.

• pg_transport.num_workers – The default value is 3. Increase or reduce this value as
needed for your database. For a 200 GB database, we recommend no larger than 8. Keep in
mind that if you increase the default value for this parameter, you should also increase the
value of max_worker_processes.

• pg_transport.work_mem – The default value is either 128 MB or 256 MB, depending on
the PostgreSQL version. The default setting can typically be left unchanged.

• max_worker_processes – The value of this parameter needs to be set using the following
calculation:

Transporting PostgreSQL databases between DB instances 4364

Amazon Relational Database Service User Guide

(3 * pg_transport.num_workers) + 9

This value is required on the destination to handle various background worker processes
involved in the transport. To learn more about max_worker_processes, see Resource
Consumption in the PostgreSQL documentation.

For more information about pg_transport parameters, see Transportable databases
parameter reference .

3. Reboot the source RDS for PostgreSQL DB instance and the destination instance so that the
settings for the parameters take effect.

4. Connect to your RDS for PostgreSQL source DB instance.

psql --host=source-instance.111122223333.aws-region.rds.amazonaws.com --port=5432
 --username=postgres --password

5. Remove extraneous extensions from the public schema of the DB instance. Only the
pg_transport extension is allowed during the actual transport operation.

6. Install the pg_transport extension as follows:

postgres=> CREATE EXTENSION pg_transport;
CREATE EXTENSION

7. Connect to your RDS for PostgreSQL destination DB instance. Remove any extraneous
extensions, and then install the pg_transport extension.

postgres=> CREATE EXTENSION pg_transport;
CREATE EXTENSION

Transporting a PostgreSQL database to the destination from the source

After you complete the process described in Setting up to transport a PostgreSQL database, you
can start the transport. To do so, run the transport.import_from_server function on the
destination DB instance. In the syntax following you can find the function parameters.

SELECT transport.import_from_server(
 'source-db-instance-endpoint',

Transporting PostgreSQL databases between DB instances 4365

https://www.postgresql.org/docs/current/runtime-config-resource.html
https://www.postgresql.org/docs/current/runtime-config-resource.html

Amazon Relational Database Service User Guide

 source-db-instance-port,
 'source-db-instance-user',
 'source-user-password',
 'source-database-name',
 'destination-user-password',
 false);

The false value shown in the example tells the function that this is not a dry run. To test your
transport setup, you can specify true for the dry_run option when you call the function, as
shown following:

postgres=> SELECT transport.import_from_server(
 'docs-lab-source-db.666666666666aws-region.rds.amazonaws.com', 5432,
 'postgres', '********', 'labdb', '******', true);
INFO: Starting dry-run of import of database "labdb".
INFO: Created connections to remote database (took 0.03 seconds).
INFO: Checked remote cluster compatibility (took 0.05 seconds).
INFO: Dry-run complete (took 0.08 seconds total).
 import_from_server

(1 row)

The INFO lines are output because the pg_transport.timing parameter is set to its default
value, true. Set the dry_run to false when you run the command and the source database is
imported to the destination, as shown following:

INFO: Starting import of database "labdb".
INFO: Created connections to remote database (took 0.02 seconds).
INFO: Marked remote database as read only (took 0.13 seconds).
INFO: Checked remote cluster compatibility (took 0.03 seconds).
INFO: Signaled creation of PITR blackout window (took 2.01 seconds).
INFO: Applied remote database schema pre-data (took 0.50 seconds).
INFO: Created connections to local cluster (took 0.01 seconds).
INFO: Locked down destination database (took 0.00 seconds).
INFO: Completed transfer of database files (took 0.24 seconds).
INFO: Completed clean up (took 1.02 seconds).
INFO: Physical transport complete (took 3.97 seconds total).
import_from_server

(1 row)

Transporting PostgreSQL databases between DB instances 4366

Amazon Relational Database Service User Guide

This function requires that you provide database user passwords. Thus, we recommend that you
change the passwords of the user roles you used after transport is complete. Or, you can use SQL
bind variables to create temporary user roles. Use these temporary roles for the transport and then
discard the roles afterwards.

If your transport isn't successful, you might see an error message similar to the following:

pg_transport.num_workers=8 25% of files transported failed to download file data

The "failed to download file data" error message indicates that the number of worker processes
isn't set correctly for the size of the database. You might need to increase or decrease the value set
for pg_transport.num_workers. Each failure reports the percentage of completion, so you can
see the impact of your changes. For example, changing the setting from 8 to 4 in one case resulted
in the following:

pg_transport.num_workers=4 75% of files transported failed to download file data

Keep in mind that the max_worker_processes parameter is also taken into account during the
transport process. In other words, you might need to modify both pg_transport.num_workers
and max_worker_processes to successfully transport the database. The example shown finally
worked when the pg_transport.num_workers was set to 2:

pg_transport.num_workers=2 100% of files transported

For more information about the transport.import_from_server function and its parameters,
see Transportable databases function reference.

Transportable databases function reference

The transport.import_from_server function transports a PostgreSQL database by importing
it from a source DB instance to a destination DB instance. It does this by using a physical database
connection transport mechanism.

Before starting the transport, this function verifies that the source and the destination DB
instances are the same version and are compatible for the migration. It also confirms that the
destination DB instance has enough space for the source.

Syntax

Transporting PostgreSQL databases between DB instances 4367

Amazon Relational Database Service User Guide

transport.import_from_server(
 host text,
 port int,
 username text,
 password text,
 database text,
 local_password text,
 dry_run bool
)

Return Value

None.

Parameters

You can find descriptions of the transport.import_from_server function parameters in the
following table.

Parameter Description

host The endpoint of the source DB instance.

port An integer representing the port of the source DB instance.

PostgreSQL DB instances often use port 5432.

username The user of the source DB instance. This user must be a member of the
rds_superuser role.

password The user password of the source DB instance.

database The name of the database in the source DB instance to transport.

local_pas
sword

The local password of the current user for the destination DB instance. This user
must be a member of the rds_superuser role.

dry_run An optional Boolean value specifying whether to perform a dry run. The default
is false, which means the transport proceeds.
To confirm compatibility between the source and destination DB instances
without performing the actual transport, set dry_run to true.

Transporting PostgreSQL databases between DB instances 4368

Amazon Relational Database Service User Guide

Example

For an example, see Transporting a PostgreSQL database to the destination from the source.

Transportable databases parameter reference

Several parameters control the behavior of the pg_transport extension. Following, you can find
descriptions of these parameters.

pg_transport.num_workers

The number of workers to use for the transport process. The default is 3. Valid values are 1–32.
Even the largest database transports typically require fewer than 8 workers. The value of this
setting on the destination DB instance is used by both destination and source during transport.

pg_transport.timing

Specifies whether to report timing information during the transport. The default is true,
meaning that timing information is reported. We recommend that you leave this parameter
set to true so you can monitor progress. For example output, see Transporting a PostgreSQL
database to the destination from the source.

pg_transport.work_mem

The maximum amount of memory to allocate for each worker. The default is 131072 kilobytes
(KB) or 262144 KB (256 MB), depending on the PostgreSQL version. The minimum value is 64
megabytes (65536 KB). Valid values are in kilobytes (KBs) as binary base-2 units, where 1 KB =
1024 bytes.

The transport might use less memory than is specified in this parameter. Even large database
transports typically require less than 256 MB (262144 KB) of memory per worker.

Transporting PostgreSQL databases between DB instances 4369

Amazon Relational Database Service User Guide

Exporting data from an RDS for PostgreSQL DB instance to
Amazon S3

You can query data from an RDS for PostgreSQL DB instance and export it directly into files stored
in an Amazon S3 bucket. To do this, you first install the RDS for PostgreSQL aws_s3 extension.
This extension provides you with the functions that you use to export the results of queries to
Amazon S3. Following, you can find out how to install the extension and how to export data to
Amazon S3.

Note

Cross-account export to Amazon S3 isn't supported.

All currently available versions of RDS for PostgreSQL support exporting data to Amazon Simple
Storage Service. For detailed version information, see Amazon RDS for PostgreSQL updates in the
Amazon RDS for PostgreSQL Release Notes.

If you don't have a bucket set up for your export, see the following topics the Amazon Simple
Storage Service User Guide.

• Setting up Amazon S3

• Creating a bucket

By default, the data exported from RDS for PostgreSQL to Amazon S3 uses server-side encryption
with an AWS managed key. If you are using bucket encryption, the Amazon S3 bucket must be
encrypted with an AWS Key Management Service (AWS KMS) key (SSE-KMS). Currently, buckets
encrypted with Amazon S3 managed keys (SSE-S3) are not supported.

Note

You can save DB snapshot data to Amazon S3 using the AWS Management Console, AWS
CLI, or Amazon RDS API. For more information, see Exporting DB snapshot data to Amazon
S3 for Amazon RDS.

Topics

Exporting PostgreSQL data to Amazon S3 4370

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-versions.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/setting-up-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Relational Database Service User Guide

• Installing the aws_s3 extension

• Overview of exporting data to Amazon S3

• Specifying the Amazon S3 file path to export to

• Setting up access to an Amazon S3 bucket

• Exporting query data using the aws_s3.query_export_to_s3 function

• Function reference

• Troubleshooting access to Amazon S3

Installing the aws_s3 extension

Before you can use Amazon Simple Storage Service with your RDS for PostgreSQL DB instance, you
need to install the aws_s3 extension. This extension provides functions for exporting data from an
RDS for PostgreSQL DB instance to an Amazon S3 bucket. It also provides functions for importing
data from an Amazon S3. For more information, see Importing data from Amazon S3 into an RDS
for PostgreSQL DB instance. The aws_s3 extension depends on some of the helper functions in the
aws_commons extension, which is installed automatically when needed.

To install the aws_s3 extension

1. Use psql (or pgAdmin) to connect to the RDS for PostgreSQL DB instance as a user that has
rds_superuser privileges. If you kept the default name during the setup process, you
connect as postgres.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password

2. To install the extension, run the following command.

postgres=> CREATE EXTENSION aws_s3 CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

3. To verify that the extension is installed, you can use the psql \dx metacommand.

postgres=> \dx
 List of installed extensions
 Name | Version | Schema | Description
-------------+---------+------------+---

Installing the extension 4371

Amazon Relational Database Service User Guide

 aws_commons | 1.2 | public | Common data types across AWS services
 aws_s3 | 1.1 | public | AWS S3 extension for importing data from S3
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(3 rows)

The functions for importing data from Amazon S3 and exporting data to Amazon S3 are now
available to use.

Verify that your RDS for PostgreSQL version supports exports to Amazon S3

You can verify that your RDS for PostgreSQL version supports export to Amazon S3 by using the
describe-db-engine-versions command. The following example verifies support for version
10.14.

aws rds describe-db-engine-versions --region us-east-1
--engine postgres --engine-version 10.14 | grep s3Export

If the output includes the string "s3Export", then the engine supports Amazon S3 exports.
Otherwise, the engine doesn't support them.

Overview of exporting data to Amazon S3

To export data stored in an RDS for PostgreSQL database to an Amazon S3 bucket, use the
following procedure.

To export RDS for PostgreSQL data to S3

1. Identify an Amazon S3 file path to use for exporting data. For details about this process, see
Specifying the Amazon S3 file path to export to.

2. Provide permission to access the Amazon S3 bucket.

To export data to an Amazon S3 file, give the RDS for PostgreSQL DB instance permission
to access the Amazon S3 bucket that the export will use for storage. Doing this includes the
following steps:

1. Create an IAM policy that provides access to an Amazon S3 bucket that you want to export
to.

2. Create an IAM role.

3. Attach the policy you created to the role you created.

Overview of exporting to S3 4372

Amazon Relational Database Service User Guide

4. Add this IAM role to your DB instance.

For details about this process, see Setting up access to an Amazon S3 bucket.

3. Identify a database query to get the data. Export the query data by calling the
aws_s3.query_export_to_s3 function.

After you complete the preceding preparation tasks, use the aws_s3.query_export_to_s3
function to export query results to Amazon S3. For details about this process, see Exporting
query data using the aws_s3.query_export_to_s3 function.

Specifying the Amazon S3 file path to export to

Specify the following information to identify the location in Amazon S3 where you want to export
data to:

• Bucket name – A bucket is a container for Amazon S3 objects or files.

For more information on storing data with Amazon S3, see Creating a bucket and Working with
objects in the Amazon Simple Storage Service User Guide.

• File path – The file path identifies where the export is stored in the Amazon S3 bucket. The file
path consists of the following:

• An optional path prefix that identifies a virtual folder path.

• A file prefix that identifies one or more files to be stored. Larger exports are stored in multiple
files, each with a maximum size of approximately 6 GB. The additional file names have the
same file prefix but with _partXX appended. The XX represents 2, then 3, and so on.

For example, a file path with an exports folder and a query-1-export file prefix is /
exports/query-1-export.

• AWS Region (optional) – The AWS Region where the Amazon S3 bucket is located. If you don't
specify an AWS Region value, then Amazon RDS saves your files into Amazon S3 in the same
AWS Region as the exporting DB instance.

Note

Currently, the AWS Region must be the same as the region of the exporting DB instance.

Specifying the Amazon S3 file path to export to 4373

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-downloading-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-downloading-objects.html

Amazon Relational Database Service User Guide

For a listing of AWS Region names and associated values, see Regions, Availability Zones, and
Local Zones.

To hold the Amazon S3 file information about where the export is to be stored, you can use the
aws_commons.create_s3_uri function to create an aws_commons._s3_uri_1 composite structure
as follows.

psql=> SELECT aws_commons.create_s3_uri(
 'amzn-s3-demo-bucket',
 'sample-filepath',
 'us-west-2'
) AS s3_uri_1 \gset

You later provide this s3_uri_1 value as a parameter in the call to the aws_s3.query_export_to_s3
function. For examples, see Exporting query data using the aws_s3.query_export_to_s3 function.

Setting up access to an Amazon S3 bucket

To export data to Amazon S3, give your PostgreSQL DB instance permission to access the Amazon
S3 bucket that the files are to go in.

To do this, use the following procedure.

To give a PostgreSQL DB instance access to Amazon S3 through an IAM role

1. Create an IAM policy.

This policy provides the bucket and object permissions that allow your PostgreSQL DB instance
to access Amazon S3.

As part of creating this policy, take the following steps:

a. Include in the policy the following required actions to allow the transfer of files from your
PostgreSQL DB instance to an Amazon S3 bucket:

• s3:PutObject

• s3:AbortMultipartUpload

Setting up access to an Amazon S3 bucket 4374

Amazon Relational Database Service User Guide

b. Include the Amazon Resource Name (ARN) that identifies the Amazon S3 bucket and
objects in the bucket. The ARN format for accessing Amazon S3 is: arn:aws:s3:::amzn-
s3-demo-bucket/*

For more information on creating an IAM policy for Amazon RDS for PostgreSQL, see Creating
and using an IAM policy for IAM database access. See also Tutorial: Create and attach your first
customer managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named rds-s3-export-policy with
these options. It grants access to a bucket named amzn-s3-demo-bucket.

Warning

We recommend that you set up your database within a private VPC that has endpoint
policies configured for accessing specific buckets. For more information, see Using
endpoint policies for Amazon S3 in the Amazon VPC User Guide.
We strongly recommend that you do not create a policy with all-resource access.
This access can pose a threat for data security. If you create a policy that gives
S3:PutObject access to all resources using "Resource":"*", then a user with
export privileges can export data to all buckets in your account. In addition, the user
can export data to any publicly writable bucket within your AWS Region.

After you create the policy, note the Amazon Resource Name (ARN) of the policy. You need the
ARN for a subsequent step when you attach the policy to an IAM role.

aws iam create-policy --policy-name rds-s3-export-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3export",
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation",
 "s3:AbortMultipartUpload"
],

Setting up access to an Amazon S3 bucket 4375

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3

Amazon Relational Database Service User Guide

 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }'

2. Create an IAM role.

You do this so Amazon RDS can assume this IAM role on your behalf to access your Amazon S3
buckets. For more information, see Creating a role to delegate permissions to an IAM user in
the IAM User Guide.

We recommend using the aws:SourceArn and aws:SourceAccount global condition
context keys in resource-based policies to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

If you use both global condition context keys and the aws:SourceArn value contains the
account ID, the aws:SourceAccount value and the account in the aws:SourceArn value
must use the same account ID when used in the same policy statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the policy, be sure to use the aws:SourceArn global condition context key with the full
ARN of the resource. The following example shows how to do so using the AWS CLI command
to create a role named rds-s3-export-role.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-export-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Setting up access to an Amazon S3 bucket 4376

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Relational Database Service User Guide

 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }
 }
 }
]
 }'

For Windows:

aws iam create-role ^
 --role-name rds-s3-export-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }
 }
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created earlier to the role named rds-
s3-export-role. Replace your-policy-arn with the policy ARN that you noted in an
earlier step.

Setting up access to an Amazon S3 bucket 4377

Amazon Relational Database Service User Guide

aws iam attach-role-policy --policy-arn your-policy-arn --role-name rds-s3-
export-role

4. Add the IAM role to the DB instance. You do so by using the AWS Management Console or AWS
CLI, as described following.

Console

To add an IAM role for a PostgreSQL DB instance using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the PostgreSQL DB instance name to display its details.

3. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add
under Add IAM roles to this instance.

4. Under Feature, choose s3Export.

5. Choose Add role.

AWS CLI

To add an IAM role for a PostgreSQL DB instance using the CLI

• Use the following command to add the role to the PostgreSQL DB instance named my-db-
instance. Replace your-role-arn with the role ARN that you noted in a previous step. Use
s3Export for the value of the --feature-name option.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-instance \
 --db-instance-identifier my-db-instance \
 --feature-name s3Export \
 --role-arn your-role-arn \
 --region your-region

For Windows:

Setting up access to an Amazon S3 bucket 4378

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

aws rds add-role-to-db-instance ^
 --db-instance-identifier my-db-instance ^
 --feature-name s3Export ^
 --role-arn your-role-arn ^
 --region your-region

Exporting query data using the aws_s3.query_export_to_s3 function

Export your PostgreSQL data to Amazon S3 by calling the aws_s3.query_export_to_s3 function.

Topics

• Prerequisites

• Calling aws_s3.query_export_to_s3

• Exporting to a CSV file that uses a custom delimiter

• Exporting to a binary file with encoding

Prerequisites

Before you use the aws_s3.query_export_to_s3 function, be sure to complete the following
prerequisites:

• Install the required PostgreSQL extensions as described in Overview of exporting data to
Amazon S3.

• Determine where to export your data to Amazon S3 as described in Specifying the Amazon S3
file path to export to.

• Make sure that the DB instance has export access to Amazon S3 as described in Setting up access
to an Amazon S3 bucket.

The examples following use a database table called sample_table. These examples export the
data into a bucket called amzn-s3-demo-bucket. The example table and data are created with
the following SQL statements in psql.

psql=> CREATE TABLE sample_table (bid bigint PRIMARY KEY, name varchar(80));
psql=> INSERT INTO sample_table (bid,name) VALUES (1, 'Monday'), (2,'Tuesday'), (3,
 'Wednesday');

Exporting query data using the aws_s3.query_export_to_s3 function 4379

Amazon Relational Database Service User Guide

Calling aws_s3.query_export_to_s3

The following shows the basic ways of calling the aws_s3.query_export_to_s3 function.

These examples use the variable s3_uri_1 to identify a structure that contains the information
identifying the Amazon S3 file. Use the aws_commons.create_s3_uri function to create the
structure.

psql=> SELECT aws_commons.create_s3_uri(
 'amzn-s3-demo-bucket',
 'sample-filepath',
 'us-west-2'
) AS s3_uri_1 \gset

Although the parameters vary for the following two aws_s3.query_export_to_s3 function
calls, the results are the same for these examples. All rows of the sample_table table are
exported into a bucket called amzn-s3-demo-bucket.

psql=> SELECT * FROM aws_s3.query_export_to_s3('SELECT * FROM
 sample_table', :'s3_uri_1');

psql=> SELECT * FROM aws_s3.query_export_to_s3('SELECT * FROM
 sample_table', :'s3_uri_1', options :='format text');

The parameters are described as follows:

• 'SELECT * FROM sample_table' – The first parameter is a required text string containing an
SQL query. The PostgreSQL engine runs this query. The results of the query are copied to the S3
bucket identified in other parameters.

• :'s3_uri_1' – This parameter is a structure that identifies the Amazon S3 file. This example
uses a variable to identify the previously created structure. You can instead create the
structure by including the aws_commons.create_s3_uri function call inline within the
aws_s3.query_export_to_s3 function call as follows.

SELECT * from aws_s3.query_export_to_s3('select * from sample_table',
 aws_commons.create_s3_uri('amzn-s3-demo-bucket', 'sample-filepath', 'us-west-2')
);

Exporting query data using the aws_s3.query_export_to_s3 function 4380

Amazon Relational Database Service User Guide

• options :='format text' – The options parameter is an optional text string containing
PostgreSQL COPY arguments. The copy process uses the arguments and format of the
PostgreSQL COPY command.

If the file specified doesn't exist in the Amazon S3 bucket, it's created. If the file already exists, it's
overwritten. The syntax for accessing the exported data in Amazon S3 is the following.

s3-region://bucket-name[/path-prefix]/file-prefix

Larger exports are stored in multiple files, each with a maximum size of approximately 6 GB. The
additional file names have the same file prefix but with _partXX appended. The XX represents 2,
then 3, and so on. For example, suppose that you specify the path where you store data files as the
following.

s3-us-west-2://amzn-s3-demo-bucket/my-prefix

If the export has to create three data files, the Amazon S3 bucket contains the following data files.

s3-us-west-2://amzn-s3-demo-bucket/my-prefix
s3-us-west-2://amzn-s3-demo-bucket/my-prefix_part2
s3-us-west-2://amzn-s3-demo-bucket/my-prefix_part3

For the full reference for this function and additional ways to call it, see
aws_s3.query_export_to_s3. For more about accessing files in Amazon S3, see View an object in the
Amazon Simple Storage Service User Guide.

Exporting to a CSV file that uses a custom delimiter

The following example shows how to call the aws_s3.query_export_to_s3 function to export
data to a file that uses a custom delimiter. The example uses arguments of the PostgreSQL COPY
command to specify the comma-separated value (CSV) format and a colon (:) delimiter.

SELECT * from aws_s3.query_export_to_s3('select * from basic_test', :'s3_uri_1',
 options :='format csv, delimiter $$:$$');

Exporting to a binary file with encoding

The following example shows how to call the aws_s3.query_export_to_s3 function to export data
to a binary file that has Windows-1253 encoding.

Exporting query data using the aws_s3.query_export_to_s3 function 4381

https://www.postgresql.org/docs/current/sql-copy.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html
https://www.postgresql.org/docs/current/sql-copy.html

Amazon Relational Database Service User Guide

SELECT * from aws_s3.query_export_to_s3('select * from basic_test', :'s3_uri_1',
 options :='format binary, encoding WIN1253');

Function reference

Functions

• aws_s3.query_export_to_s3

• aws_commons.create_s3_uri

aws_s3.query_export_to_s3

Exports a PostgreSQL query result to an Amazon S3 bucket. The aws_s3 extension provides the
aws_s3.query_export_to_s3 function.

The two required parameters are query and s3_info. These define the query to be exported and
identify the Amazon S3 bucket to export to. An optional parameter called options provides for
defining various export parameters. For examples of using the aws_s3.query_export_to_s3
function, see Exporting query data using the aws_s3.query_export_to_s3 function.

Syntax

aws_s3.query_export_to_s3(
 query text,
 s3_info aws_commons._s3_uri_1,
 options text,
 kms_key text
)

Input parameters

query

A required text string containing an SQL query that the PostgreSQL engine runs. The results of
this query are copied to an S3 bucket identified in the s3_info parameter.

s3_info

An aws_commons._s3_uri_1 composite type containing the following information about the
S3 object:

• bucket – The name of the Amazon S3 bucket to contain the file.

Function reference 4382

Amazon Relational Database Service User Guide

• file_path – The Amazon S3 file name and path.

• region – The AWS Region that the bucket is in. For a listing of AWS Region names and
associated values, see Regions, Availability Zones, and Local Zones.

Currently, this value must be the same AWS Region as that of the exporting DB instance. The
default is the AWS Region of the exporting DB instance.

To create an aws_commons._s3_uri_1 composite structure, see the
aws_commons.create_s3_uri function.

options

An optional text string containing arguments for the PostgreSQL COPY command. These
arguments specify how the data is to be copied when exported. For more details, see the
PostgreSQL COPY documentation.

Alternate input parameters

To help with testing, you can use an expanded set of parameters instead of the s3_info
parameter. Following are additional syntax variations for the aws_s3.query_export_to_s3
function.

Instead of using the s3_info parameter to identify an Amazon S3 file, use the combination of the
bucket, file_path, and region parameters.

aws_s3.query_export_to_s3(
 query text,
 bucket text,
 file_path text,
 region text,
 options text,
)

query

A required text string containing an SQL query that the PostgreSQL engine runs. The results of
this query are copied to an S3 bucket identified in the s3_info parameter.

bucket

A required text string containing the name of the Amazon S3 bucket that contains the file.

Function reference 4383

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Relational Database Service User Guide

file_path

A required text string containing the Amazon S3 file name including the path of the file.

region

An optional text string containing the AWS Region that the bucket is in. For a listing of AWS
Region names and associated values, see Regions, Availability Zones, and Local Zones.

Currently, this value must be the same AWS Region as that of the exporting DB instance. The
default is the AWS Region of the exporting DB instance.

options

An optional text string containing arguments for the PostgreSQL COPY command. These
arguments specify how the data is to be copied when exported. For more details, see the
PostgreSQL COPY documentation.

Output parameters

aws_s3.query_export_to_s3(
 OUT rows_uploaded bigint,
 OUT files_uploaded bigint,
 OUT bytes_uploaded bigint
)

rows_uploaded

The number of table rows that were successfully uploaded to Amazon S3 for the given query.

files_uploaded

The number of files uploaded to Amazon S3. Files are created in sizes of approximately 6 GB.
Each additional file created has _partXX appended to the name. The XX represents 2, then 3,
and so on as needed.

bytes_uploaded

The total number of bytes uploaded to Amazon S3.

Function reference 4384

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Relational Database Service User Guide

Examples

psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'amzn-s3-
demo-bucket', 'sample-filepath');
psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'amzn-s3-
demo-bucket', 'sample-filepath','us-west-2');
psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'amzn-s3-
demo-bucket', 'sample-filepath','us-west-2','format text');

aws_commons.create_s3_uri

Creates an aws_commons._s3_uri_1 structure to hold Amazon S3 file information. You use
the results of the aws_commons.create_s3_uri function in the s3_info parameter of the
aws_s3.query_export_to_s3 function. For an example of using the aws_commons.create_s3_uri
function, see Specifying the Amazon S3 file path to export to.

Syntax

aws_commons.create_s3_uri(
 bucket text,
 file_path text,
 region text
)

Input parameters

bucket

A required text string containing the Amazon S3 bucket name for the file.

file_path

A required text string containing the Amazon S3 file name including the path of the file.

region

A required text string containing the AWS Region that the file is in. For a listing of AWS Region
names and associated values, see Regions, Availability Zones, and Local Zones.

Function reference 4385

Amazon Relational Database Service User Guide

Troubleshooting access to Amazon S3

If you encounter connection problems when attempting to export data to Amazon S3, first confirm
that the outbound access rules for the VPC security group associated with your DB instance permit
network connectivity. Specifically, the security group must have a rule that allows the DB instance
to send TCP traffic to port 443 and to any IPv4 addresses (0.0.0.0/0). For more information, see
Provide access to your DB instance in your VPC by creating a security group.

See also the following for recommendations:

• Troubleshooting Amazon RDS identity and access

• Troubleshooting Amazon S3 in the Amazon Simple Storage Service User Guide

• Troubleshooting Amazon S3 and IAM in the IAM User Guide

Troubleshooting access to Amazon S3 4386

https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_iam-s3.html

Amazon Relational Database Service User Guide

Invoking an AWS Lambda function from an RDS for PostgreSQL
DB instance

AWS Lambda is an event-driven compute service that lets you run code without provisioning or
managing servers. It's available for use with many AWS services, including RDS for PostgreSQL. For
example, you can use Lambda functions to process event notifications from a database, or to load
data from files whenever a new file is uploaded to Amazon S3. To learn more about Lambda, see
What is AWS Lambda? in the AWS Lambda Developer Guide.

Note

Invoking an AWS Lambda function is supported in these RDS for PostgreSQL versions:

• All PostgreSQL 17 versions

• All PostgreSQL 16 versions

• All PostgreSQL 15 versions

• PostgreSQL 14.1 and higher minor versions

• PostgreSQL 13.2 and higher minor versions

• PostgreSQL 12.6 and higher minor versions

Setting up RDS for PostgreSQL to work with Lambda functions is a multi-step process involving
AWS Lambda, IAM, your VPC, and your RDS for PostgreSQL DB instance. Following, you can find
summaries of the necessary steps.

For more information about Lambda functions, see Getting started with Lambda and AWS Lambda
foundations in the AWS Lambda Developer Guide.

Topics

• Step 1: Configure your RDS for PostgreSQL DB instance for outbound connections to AWS
Lambda

• Step 2: Configure IAM for your RDS for PostgreSQL DB instance and AWS Lambda

• Step 3: Install the aws_lambda extension for an RDS for PostgreSQL DB instance

• Step 4: Use Lambda helper functions with your RDS for PostgreSQL DB instance (Optional)

• Step 5: Invoke a Lambda function from your RDS for PostgreSQL DB instance

Invoking a Lambda function from RDS for PostgreSQL 4387

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-foundation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-foundation.html

Amazon Relational Database Service User Guide

• Step 6: Grant other users permission to invoke Lambda functions

• Examples: Invoking Lambda functions from your RDS for PostgreSQL DB instance

• Lambda function error messages

• AWS Lambda function and parameter reference

Step 1: Configure your RDS for PostgreSQL DB instance for outbound
connections to AWS Lambda

Lambda functions always run inside an Amazon VPC that's owned by the AWS Lambda service.
Lambda applies network access and security rules to this VPC and it maintains and monitors the
VPC automatically. Your RDS for PostgreSQL DB instance sends network traffic to the Lambda
service's VPC. How you configure this depends on whether your DB instance is public or private.

• Public RDS for PostgreSQL DB instance – A DB instance is public if it's located in a public subnet
on your VPC, and if the instance's "PubliclyAccessible" property is true. To find the value of
this property, you can use the describe-db-instances AWS CLI command. Or, you can use the
AWS Management Console to open the Connectivity & security tab and check that Publicly
accessible is Yes. To verify that the instance is in the public subnet of your VPC, you can use the
AWS Management Console or the AWS CLI.

To set up access to Lambda, you use the AWS Management Console or the AWS CLI to create an
outbound rule on your VPC's security group. The outbound rule specifies that TCP can use port
443 to send packets to any IPv4 addresses (0.0.0.0/0).

• Private RDS for PostgreSQL DB instance – In this case, the instance's "PubliclyAccessible"
property is false or it's in a private subnet. To allow the instance to work with Lambda, you can
use a Network Address Translation) NAT gateway. For more information, see NAT gateways. Or,
you can configure your VPC with a VPC endpoint for Lambda. For more information, see VPC
endpoints in the Amazon VPC User Guide. The endpoint responds to calls made by your RDS for
PostgreSQL DB instance to your Lambda functions. The VPC endpoint uses its own private DNS
resolution. RDS for PostgreSQL can't use the Lambda VPC endpoint until you change the value of
the rds.custom_dns_resolution from its default value of 0 (not enabled) to 1. To do so:

• Create a custom DB parameter group.

• Change the value of the rds.custom_dns_resolution parameter from its default of 0 to 1.

• Modify your DB instance to use your custom DB parameter group.

• Reboot the instance to have the modified parameter take effect.

Step 1: Configure outbound connections 4388

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Relational Database Service User Guide

Your VPC can now interact with the AWS Lambda VPC at the network level. Next, you configure the
permissions using IAM.

Step 2: Configure IAM for your RDS for PostgreSQL DB instance and
AWS Lambda

Invoking Lambda functions from your RDS for PostgreSQL DB instance requires certain privileges.
To configure the necessary privileges, we recommend that you create an IAM policy that allows
invoking Lambda functions, assign that policy to a role, and then apply the role to your DB
instance. This approach gives the DB instance privileges to invoke the specified Lambda function on
your behalf. The following steps show you how to do this using the AWS CLI.

To configure IAM permissions for using your Amazon RDS instance with Lambda

1. Use the create-policy AWS CLI command to create an IAM policy that allows your RDS for
PostgreSQL DB instance to invoke the specified Lambda function. (The statement ID (Sid) is an
optional description for your policy statement and has no effect on usage.) This policy gives
your DB instance the minimum permissions needed to invoke the specified Lambda function.

aws iam create-policy --policy-name rds-lambda-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToExampleFunction",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:aws-region:444455556666:function:my-function"
 }
]
}'

Alternatively, you can use the predefined AWSLambdaRole policy that allows you to invoke any
of your Lambda functions. For more information, see Identity-based IAM policies for Lambda

2. Use the create-role AWS CLI command to create an IAM role that the policy can assume at
runtime.

aws iam create-role --role-name rds-lambda-role --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {

Step 2: Configure IAM for your instance and Lambda 4389

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html#access-policy-examples-aws-managed
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-role.html

Amazon Relational Database Service User Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

3. Apply the policy to the role by using the attach-role-policy AWS CLI command.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::444455556666:policy/rds-lambda-policy \
 --role-name rds-lambda-role --region aws-region

4. Apply the role to your RDS for PostgreSQL DB instance by using the add-role-to-db-instance
AWS CLI command. This last step allows your DB instance's database users to invoke Lambda
functions.

aws rds add-role-to-db-instance \
 --db-instance-identifier my-instance-name \
 --feature-name Lambda \
 --role-arn arn:aws:iam::444455556666:role/rds-lambda-role \
 --region aws-region

With the VPC and the IAM configurations complete, you can now install the aws_lambda
extension. (Note that you can install the extension at any time, but until you set up the correct VPC
support and IAM privileges, the aws_lambda extension adds nothing to your RDS for PostgreSQL
DB instance's capabilities.)

Step 3: Install the aws_lambda extension for an RDS for PostgreSQL DB
instance

To use AWS Lambda with your RDS for PostgreSQL DB instance, add the aws_lambda PostgreSQL
extension to your RDS for PostgreSQL DB instance. This extension provides your RDS for
PostgreSQL DB instance with the ability to call Lambda functions from PostgreSQL.

Step 3: Install the extension 4390

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-role-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/add-role-to-db-instance.html

Amazon Relational Database Service User Guide

To install the aws_lambda extension in your RDS for PostgreSQL DB instance

Use the PostgreSQL psql command-line or the pgAdmin tool to connect to your RDS for
PostgreSQL DB instance.

1. Connect to your RDS for PostgreSQL DB instance as a user with rds_superuser privileges.
The default postgres user is shown in the example.

psql -h instance.444455556666.aws-region.rds.amazonaws.com -U postgres -p 5432

2. Install the aws_lambda extension. The aws_commons extension is also required. It provides
helper functions to aws_lambda and many other Aurora extensions for PostgreSQL. If it's
not already on your RDS for PostgreSQLDB instance, it's installed with aws_lambda as shown
following.

CREATE EXTENSION IF NOT EXISTS aws_lambda CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

The aws_lambda extension is installed in your DB instance. You can now create convenience
structures for invoking your Lambda functions.

Step 4: Use Lambda helper functions with your RDS for PostgreSQL DB
instance (Optional)

You can use the helper functions in the aws_commons extension to prepare entities that you can
more easily invoke from PostgreSQL. To do this, you need to have the following information about
your Lambda functions:

• Function name – The name, Amazon Resource Name (ARN), version, or alias of the Lambda
function. The IAM policy created in Step 2: Configure IAM for your instance and Lambda requires
the ARN, so we recommend that you use your function's ARN.

• AWS Region – (Optional) The AWS Region where the Lambda function is located if it's not in the
same Region as your RDS for PostgreSQL DB instance.

To hold the Lambda function name information, you use the
aws_commons.create_lambda_function_arn function. This helper function creates an

Step 4: Use Lambda helper functions 4391

Amazon Relational Database Service User Guide

aws_commons._lambda_function_arn_1 composite structure with the details needed by the
invoke function. Following, you can find three alternative approaches to setting up this composite
structure.

SELECT aws_commons.create_lambda_function_arn(
 'my-function',
 'aws-region'
) AS aws_lambda_arn_1 \gset

SELECT aws_commons.create_lambda_function_arn(
 '111122223333:function:my-function',
 'aws-region'
) AS lambda_partial_arn_1 \gset

SELECT aws_commons.create_lambda_function_arn(
 'arn:aws:lambda:aws-region:111122223333:function:my-function'
) AS lambda_arn_1 \gset

Any of these values can be used in calls to the aws_lambda.invoke function. For examples, see Step
5: Invoke a Lambda function from your RDS for PostgreSQL DB instance.

Step 5: Invoke a Lambda function from your RDS for PostgreSQL DB
instance

The aws_lambda.invoke function behaves synchronously or asynchronously, depending on the
invocation_type. The two alternatives for this parameter are RequestResponse (the default)
and Event, as follows.

• RequestResponse – This invocation type is synchronous. It's the default behavior when the call
is made without specifying an invocation type. The response payload includes the results of the
aws_lambda.invoke function. Use this invocation type when your workflow requires receiving
results from the Lambda function before proceeding.

• Event – This invocation type is asynchronous. The response doesn't include a payload containing
results. Use this invocation type when your workflow doesn't need a result from the Lambda
function to continue processing.

Step 5: Invoke a Lambda function 4392

Amazon Relational Database Service User Guide

As a simple test of your setup, you can connect to your DB instance using psql and invoke an
example function from the command line. Suppose that you have one of the basic functions set up
on your Lambda service, such as the simple Python function shown in the following screenshot.

To invoke an example function

1. Connect to your DB instance using psql or pgAdmin.

psql -h instance.444455556666.aws-region.rds.amazonaws.com -U postgres -p 5432

2. Invoke the function using its ARN.

SELECT * from
 aws_lambda.invoke(aws_commons.create_lambda_function_arn('arn:aws:lambda:aws-
region:444455556666:function:simple', 'us-west-1'), '{"body": "Hello from
 Postgres!"}'::json);

The response looks as follows.

status_code | payload |
 executed_version | log_result
-------------+---
+------------------+------------
 200 | {"statusCode": 200, "body": "\"Hello from Lambda!\""} | $LATEST
 |
(1 row)

If your invocation attempt doesn't succeed, see Lambda function error messages .

Step 5: Invoke a Lambda function 4393

Amazon Relational Database Service User Guide

Step 6: Grant other users permission to invoke Lambda functions

At this point in the procedures, only you as rds_superuser can invoke your Lambda functions. To
allow other users to invoke any functions that you create, you need to grant them permission.

To grant others permission to invoke Lambda functions

1. Connect to your DB instance using psql or pgAdmin.

psql -h instance.444455556666.aws-region.rds.amazonaws.com -U postgres -p 5432

2. Run the following SQL commands:

postgres=> GRANT USAGE ON SCHEMA aws_lambda TO db_username;
GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA aws_lambda TO db_username;

Examples: Invoking Lambda functions from your RDS for PostgreSQL
DB instance

Following, you can find several examples of calling the aws_lambda.invoke function. Most of the
examples use the composite structure aws_lambda_arn_1 that you create in Step 4: Use Lambda
helper functions with your RDS for PostgreSQL DB instance (Optional) to simplify passing the
function details. For an example of asynchronous invocation, see Example: Asynchronous (Event)
invocation of Lambda functions. All the other examples listed use synchronous invocation.

To learn more about Lambda invocation types, see Invoking Lambda functions in the
AWS Lambda Developer Guide. For more information about aws_lambda_arn_1, see
aws_commons.create_lambda_function_arn.

Examples list

• Example: Synchronous (RequestResponse) invocation of Lambda functions

• Example: Asynchronous (Event) invocation of Lambda functions

• Example: Capturing the Lambda execution log in a function response

• Example: Including client context in a Lambda function

• Example: Invoking a specific version of a Lambda function

Step 6: Grant users permissions 4394

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html

Amazon Relational Database Service User Guide

Example: Synchronous (RequestResponse) invocation of Lambda functions

Following are two examples of a synchronous Lambda function invocation. The results of these
aws_lambda.invoke function calls are the same.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json);

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'RequestResponse');

The parameters are described as follows:

• :'aws_lambda_arn_1' – This parameter identifies the composite structure created in Step
4: Use Lambda helper functions with your RDS for PostgreSQL DB instance (Optional), with the
aws_commons.create_lambda_function_arn helper function. You can also create this
structure inline within your aws_lambda.invoke call as follows.

SELECT * FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-function',
 'aws-region'),
'{"body": "Hello from Postgres!"}'::json
);

• '{"body": "Hello from PostgreSQL!"}'::json – The JSON payload to pass to the
Lambda function.

• 'RequestResponse' – The Lambda invocation type.

Example: Asynchronous (Event) invocation of Lambda functions

Following is an example of an asynchronous Lambda function invocation. The Event invocation
type schedules the Lambda function invocation with the specified input payload and returns
immediately. Use the Event invocation type in certain workflows that don't depend on the results
of the Lambda function.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'Event');

Examples: Invoking Lambda functions 4395

Amazon Relational Database Service User Guide

Example: Capturing the Lambda execution log in a function response

You can include the last 4 KB of the execution log in the function response by using the log_type
parameter in your aws_lambda.invoke function call. By default, this parameter is set to None,
but you can specify Tail to capture the results of the Lambda execution log in the response, as
shown following.

SELECT *, select convert_from(decode(log_result, 'base64'), 'utf-8') as log FROM
 aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from Postgres!"}'::json,
 'RequestResponse', 'Tail');

Set the aws_lambda.invoke function's log_type parameter to Tail to include the execution log in
the response. The default value for the log_type parameter is None.

The log_result that's returned is a base64 encoded string. You can decode the contents using a
combination of the decode and convert_from PostgreSQL functions.

For more information about log_type, see aws_lambda.invoke.

Example: Including client context in a Lambda function

The aws_lambda.invoke function has a context parameter that you can use to pass
information separate from the payload, as shown following.

SELECT *, convert_from(decode(log_result, 'base64'), 'utf-8') as log FROM
 aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from Postgres!"}'::json,
 'RequestResponse', 'Tail');

To include client context, use a JSON object for the aws_lambda.invoke function's context
parameter.

For more information about the context parameter, see the aws_lambda.invoke reference.

Example: Invoking a specific version of a Lambda function

You can specify a particular version of a Lambda function by including the qualifier parameter
with the aws_lambda.invoke call. Following, you can find an example that does this using
'custom_version' as an alias for the version.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'RequestResponse', 'None', NULL, 'custom_version');

Examples: Invoking Lambda functions 4396

Amazon Relational Database Service User Guide

You can also supply a Lambda function qualifier with the function name details instead, as follows.

SELECT * FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-
function:custom_version', 'us-west-2'),
'{"body": "Hello from Postgres!"}'::json);

For more information about qualifier and other parameters, see the aws_lambda.invoke
reference.

Lambda function error messages

In the following list you can find information about error messages, with possible causes and
solutions.

• VPC configuration issues

VPC configuration issues can raise the following error messages when trying to connect:

ERROR: invoke API failed
DETAIL: AWS Lambda client returned 'Unable to connect to endpoint'.
CONTEXT: SQL function "invoke" statement 1

A common cause for this error is improperly configured VPC security group. Make sure you have
an outbound rule for TCP open on port 443 of your VPC security group so that your VPC can
connect to the Lambda VPC.

If your DB instance is private, check the private DNS setup for your VPC. Make sure that you set
the rds.custom_dns_resolution parameter to 1 and setup AWS PrivateLink as outlined
in Step 1: Configure your RDS for PostgreSQL DB instance for outbound connections to AWS
Lambda. For more information, see Interface VPC endpoints (AWS PrivateLink).

• Lack of permissions needed to invoke Lambda functions

If you see either of the following error messages, the user (role) invoking the function doesn't
have proper permissions.

ERROR: permission denied for schema aws_lambda

ERROR: permission denied for function invoke

Lambda function error messages 4397

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-private-dns

Amazon Relational Database Service User Guide

A user (role) must be given specific grants to invoke Lambda functions. For more information, see
Step 6: Grant other users permission to invoke Lambda functions.

• Improper handling of errors in your Lambda functions

If a Lambda function throws an exception during request processing, aws_lambda.invoke fails
with a PostgreSQL error such as the following.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json);
ERROR: lambda invocation failed
DETAIL: "arn:aws:lambda:us-west-2:555555555555:function:my-function" returned error
 "Unhandled", details: "<Error details string>".

Be sure to handle errors in your Lambda functions or in your PostgreSQL application.

AWS Lambda function and parameter reference

Following is the reference for the functions and parameters to use for invoking Lambda with RDS
for PostgreSQL.

Functions and parameters

• aws_lambda.invoke

• aws_commons.create_lambda_function_arn

• aws_lambda parameters

aws_lambda.invoke

Runs a Lambda function for an RDS for PostgreSQL DB instance.

For more details about invoking Lambda functions, see also Invoke in the AWS Lambda Developer
Guide.

Syntax

JSON

aws_lambda.invoke(

Lambda function and parameter reference 4398

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon Relational Database Service User Guide

IN function_name TEXT,
IN payload JSON,
IN region TEXT DEFAULT NULL,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSON DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSON,
OUT executed_version TEXT,
OUT log_result TEXT)

aws_lambda.invoke(
IN function_name aws_commons._lambda_function_arn_1,
IN payload JSON,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSON DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSON,
OUT executed_version TEXT,
OUT log_result TEXT)

JSONB

aws_lambda.invoke(
IN function_name TEXT,
IN payload JSONB,
IN region TEXT DEFAULT NULL,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSONB DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSONB,
OUT executed_version TEXT,
OUT log_result TEXT)

aws_lambda.invoke(
IN function_name aws_commons._lambda_function_arn_1,
IN payload JSONB,

Lambda function and parameter reference 4399

Amazon Relational Database Service User Guide

IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSONB DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSONB,
OUT executed_version TEXT,
OUT log_result TEXT
)

Input parameters

function_name

The identifying name of the Lambda function. The value can be the function name, an ARN, or
a partial ARN. For a listing of possible formats, see Lambda function name formats in the AWS
Lambda Developer Guide.

payload

The input for the Lambda function. The format can be JSON or JSONB. For more information,
see JSON Types in the PostgreSQL documentation.

region

(Optional) The Lambda Region for the function. By default, RDS resolves the AWS Region from
the full ARN in the function_name or it uses the RDS for PostgreSQL DB instance Region. If
this Region value conflicts with the one provided in the function_name ARN, an error is raised.

invocation_type

The invocation type of the Lambda function. The value is case-sensitive. Possible values include
the following:

• RequestResponse – The default. This type of invocation for a Lambda function is
synchronous and returns a response payload in the result. Use the RequestResponse
invocation type when your workflow depends on receiving the Lambda function result
immediately.

• Event – This type of invocation for a Lambda function is asynchronous and returns
immediately without a returned payload. Use the Event invocation type when you don't need
results of the Lambda function before your workflow moves on.

• DryRun – This type of invocation tests access without running the Lambda function.

Lambda function and parameter reference 4400

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://www.postgresql.org/docs/current/datatype-json.html

Amazon Relational Database Service User Guide

log_type

The type of Lambda log to return in the log_result output parameter. The value is case-
sensitive. Possible values include the following:

• Tail – The returned log_result output parameter will include the last 4 KB of the execution
log.

• None – No Lambda log information is returned.

context

Client context in JSON or JSONB format. Fields to use include than custom and env.

qualifier

A qualifier that identifies a Lambda function's version to be invoked. If this value conflicts with
one provided in the function_name ARN, an error is raised.

Output parameters

status_code

An HTTP status response code. For more information, see Lambda Invoke response elements in
the AWS Lambda Developer Guide.

payload

The information returned from the Lambda function that ran. The format is in JSON or JSONB.

executed_version

The version of the Lambda function that ran.

log_result

The execution log information returned if the log_type value is Tail when the Lambda
function was invoked. The result contains the last 4 KB of the execution log encoded in Base64.

aws_commons.create_lambda_function_arn

Creates an aws_commons._lambda_function_arn_1 structure to hold Lambda function name
information. You can use the results of the aws_commons.create_lambda_function_arn
function in the function_name parameter of the aws_lambda.invoke aws_lambda.invoke
function.

Lambda function and parameter reference 4401

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_ResponseElements

Amazon Relational Database Service User Guide

Syntax

aws_commons.create_lambda_function_arn(
 function_name TEXT,
 region TEXT DEFAULT NULL
)
 RETURNS aws_commons._lambda_function_arn_1

Input parameters

function_name

A required text string containing the Lambda function name. The value can be a function name,
a partial ARN, or a full ARN.

region

An optional text string containing the AWS Region that the Lambda function is in. For a listing
of Region names and associated values, see Regions, Availability Zones, and Local Zones.

aws_lambda parameters

In this table, you can find parameters associated with the aws_lambda function.

Parameter Description

aws_lambda.connect
_timeout_ms

This is a dynamic parameter and it sets the maximum wait time
while connecting to AWS Lambda. The default values is 1000.
Allowed values for this parameter are 1 - 900000.

aws_lambda.request
_timeout_ms

This is a dynamic parameter and it sets the maximum wait time
while waiting for response from AWS Lambda. The default
values is 3000. Allowed values for this parameter are 1 -
900000.

aws_lambda.endpoin
t_override

Specifies the endpoint that can be used to connect to AWS
Lambda. An empty string selects the default AWS Lambda
endpoint for the region. You must restart the database for this
static parameter change to take effect.

Lambda function and parameter reference 4402

Amazon Relational Database Service User Guide

Lambda function and parameter reference 4403

Amazon Relational Database Service User Guide

Common DBA tasks for Amazon RDS for PostgreSQL

Database administrators (DBAs) perform a variety of tasks when administering an Amazon RDS for
PostgreSQL DB instance. If you're a DBA already familiar with PostgreSQL, you need to be aware
of some of the important differences between running PostgreSQL on your hardware and RDS for
PostgreSQL. For example, because it's a managed service, Amazon RDS doesn't allow shell access
to your DB instances. That means that you don't have direct access to pg_hba.conf and other
configuration files. For RDS for PostgreSQL, changes that are typically made to the PostgreSQL
configuration file of an on-premises instance are made to a custom DB parameter group associated
with the RDS for PostgreSQL DB instance. For more information, see Parameter groups for Amazon
RDS.

You also can't access log files in the same way that you do with an on-premises PostgreSQL
instance. To learn more about logging, see RDS for PostgreSQL database log files.

As another example, you don't have access to the PostgreSQL superuser account. On RDS
for PostgreSQL, the rds_superuser role is the most highly privileged role, and it's granted
to postgres at set up time. Whether you're familiar with using PostgreSQL on-premises or
completely new to RDS for PostgreSQL, we recommend that you understand the rds_superuser
role, and how to work with roles, users, groups, and permissions. For more information, see
Understanding PostgreSQL roles and permissions.

Following are some common DBA tasks for RDS for PostgreSQL.

Topics

• Collations supported in RDS for PostgreSQL

• Understanding PostgreSQL roles and permissions

• Working with PostgreSQL autovacuum on Amazon RDS for PostgreSQL

• Working with logging mechanisms supported by RDS for PostgreSQL

• Managing temporary files with PostgreSQL

• Using pgBadger for log analysis with PostgreSQL

• Using PGSnapper for monitoring PostgreSQL

• Working with parameters on your RDS for PostgreSQL DB instance

Common DBA tasks for RDS for PostgreSQL 4404

Amazon Relational Database Service User Guide

Collations supported in RDS for PostgreSQL

Collations are set of rules that determine how character strings stored in the database are sorted
and compared. Collations play a fundamental role in the computer system and are included as part
of the operating system. Collations change over time when new characters are added to languages
or when ordering rules change.

Collation libraries define specific rules and algorithms for a collation. The most popular collation
libraries used within PostgreSQL are GNU C (glibc) and Internationalization components for
Unicode (ICU). By default, RDS for PostgreSQL uses the glibc collation that includes unicode
character sort orders for multi-byte character sequences.

When you create a new DB instance in RDS for PostgreSQL , it checks the operating system
for the available collation. The PostgreSQL parameters of the CREATE DATABASE command
LC_COLLATE and LC_CTYPE are used to specify a collation, which stands as the default collation in
that database. Alternatively, you can also use the LOCALE parameter in CREATE DATABASE to set
these parameters. This determines the default collation for character strings in the database and
the rules for classifying characters as letters, numbers, or symbols. You can also choose a collation
to use on a column, index, or on a query.

RDS for PostgreSQL depends on the glibc library in the operating system for collation support. RDS
for PostgreSQL instance is periodically updated with the latest versions of the operating system.
These updates sometimes include a newer version of the glibc library. Rarely, newer versions
of glibc change the sort order or collation of some characters, which can cause the data to sort
differently or produce invalid index entries. If you discover sort order issues for collation during an
update, you might need to rebuild the indexes.

To reduce the possible impacts of the glibc updates, RDS for PostgreSQL now includes an
independent default collation library. This collation library is available in RDS for PostgreSQL
14.6, 13.9, 12.13, 11.18, 10.23 and newer minor version releases. It is compatible with glibc
2.26-59.amzn2, and provides sort order stability to prevent incorrect query results.

Understanding PostgreSQL roles and permissions

When you create an RDS for PostgreSQL DB instance using the AWS Management Console, an
administrator account is created at the same time. By default, its name is postgres, as shown in
the following screenshot:

Collations supported in RDS for PostgreSQL 4405

Amazon Relational Database Service User Guide

You can choose another name rather than accept the default (postgres). If you do, the name you
choose must start with a letter and be between 1 and 16 alphanumeric characters. For simplicity's
sake, we refer to this main user account by its default value (postgres) throughout this guide.

If you use the create-db-instance AWS CLI rather than the AWS Management Console, you
create the name by passing it with the master-username parameter in the command. For more
information, see Creating an Amazon RDS DB instance.

Whether you use the AWS Management Console, the AWS CLI, or the Amazon RDS API, and
whether you use the default postgres name or choose a different name, this first database user
account is a member of the rds_superuser group and has rds_superuser privileges.

Topics

• Understanding the rds_superuser role

• Controlling user access to the PostgreSQL database

• Delegating and controlling user password management

• Using SCRAM for PostgreSQL password encryption

Understanding the rds_superuser role

In PostgreSQL, a role can define a user, a group, or a set of specific permissions granted to a
group or user for various objects in the database. PostgreSQL commands to CREATE USER and
CREATE GROUP have been replaced by the more general, CREATE ROLE with specific properties to
distinguish database users. A database user can be thought of as a role with the LOGIN privilege.

Understanding PostgreSQL roles and permissions 4406

Amazon Relational Database Service User Guide

Note

The CREATE USER and CREATE GROUP commands can still be used. For more information,
see Database Roles in the PostgreSQL documentation.

The postgres user is the most highly privileged database user on your RDS for PostgreSQL DB
instance. It has the characteristics defined by the following CREATE ROLE statement.

CREATE ROLE postgres WITH LOGIN NOSUPERUSER INHERIT CREATEDB CREATEROLE NOREPLICATION
 VALID UNTIL 'infinity'

The properties NOSUPERUSER, NOREPLICATION, INHERIT, and VALID UNTIL 'infinity' are
the default options for CREATE ROLE, unless otherwise specified.

By default, postgres has privileges granted to the rds_superuser role, and permissions
to create roles and databases. The rds_superuser role allows the postgres user to do the
following:

• Add extensions that are available for use with Amazon RDS. For more information, see Working
with PostgreSQL features supported by Amazon RDS for PostgreSQL

• Create roles for users and grant privileges to users. For more information, see CREATE ROLE and
GRANT in the PostgreSQL documentation.

• Create databases. For more information, see CREATE DATABASE in the PostgreSQL
documentation.

• Grant rds_superuser privileges to user roles that don't have these privileges, and revoke
privileges as needed. We recommend that you grant this role only to those users who perform
superuser tasks. In other words, you can grant this role to database administrators (DBAs) or
system administrators.

• Grant (and revoke) the rds_replication role to database users that don't have the
rds_superuser role.

• Grant (and revoke) the rds_password role to database users that don't have the
rds_superuser role.

• Obtain status information about all database connections by using the pg_stat_activity
view. When needed, rds_superuser can stop any connections by using
pg_terminate_backend or pg_cancel_backend.

Understanding PostgreSQL roles and permissions 4407

https://www.postgresql.org/docs/current/user-manag.html
https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/14/sql-grant.html
https://www.postgresql.org/docs/14/sql-createdatabase.html

Amazon Relational Database Service User Guide

In the CREATE ROLE postgres... statement, you can see that the postgres user role
specifically disallows PostgreSQL superuser permissions. RDS for PostgreSQL is a managed
service, so you can't access the host OS, and you can't connect using the PostgreSQL superuser
account. Many of the tasks that require superuser access on a stand-alone PostgreSQL are
managed automatically by Amazon RDS.

For more information about granting privileges, see GRANT in the PostgreSQL documentation.

The rds_superuser role is one of several predefined roles in an RDS for PostgreSQL DB instance.

Note

In PostgreSQL 13 and earlier releases, predefined roles are known as default roles.

In the following list, you find some of the other predefined roles that are created automatically for
a new RDS for PostgreSQL DB instance. Predefined roles and their privileges can't be changed. You
can't drop, rename, or modify privileges for these predefined roles. Attempting to do so results in
an error.

• rds_password – A role that can change passwords and set up password constraints for database
users. The rds_superuser role is granted with this role by default, and can grant the role to
database users. For more information, see Controlling user access to the PostgreSQL database.

• For RDS for PostgreSQL versions older than 14, rds_password role can change passwords
and set up password constraints for database users and users with rds_superuser role. From
RDS for PostgreSQL version 14 and later, rds_password role can change passwords and set
up password constraints only for database users. Only users with rds_superuser role can
perform these actions on other users with rds_superuser role.

• rdsadmin – A role that's created to handle many of the management tasks that the
administrator with superuser privileges would perform on a standalone PostgreSQL database.
This role is used internally by RDS for PostgreSQL for many management tasks.

• rdstopmgr – A role that's used internally by Amazon RDS to support Multi-AZ deployments.

• rds_reserved – A role that's used internally by Amazon RDS to reserve database connections.

To see all predefined roles, you can connect to your RDS for PostgreSQL DB instance and use the
psql \du metacommand. The output looks as follows:

Understanding PostgreSQL roles and permissions 4408

http://www.postgresql.org/docs/current/sql-grant.html

Amazon Relational Database Service User Guide

List of roles
 Role name | Attributes | Member of
--------------+-----------------------------------+------------------------------------
postgres | Create role, Create DB +| {rds_superuser}
 | Password valid until infinity |
rds_superuser | Cannot login | {pg_monitor,pg_signal_backend,
 | +| rds_replication,rds_password}
...

In the output, you can see that rds_superuser isn't a database user role (it can't login), but it has
the privileges of many other roles. You can also see that database user postgres is a member of
the rds_superuser role. As mentioned previously, postgres is the default value in the Amazon
RDS console's Create database page. If you chose another name, that name is shown in the list of
roles instead.

Controlling user access to the PostgreSQL database

New databases in PostgreSQL are always created with a default set of privileges in the database's
public schema that allow all database users and roles to create objects. These privileges allow
database users to connect to the database, for example, and create temporary tables while
connected.

To better control user access to the databases instances that you create on your RDS for
PostgreSQL DB instance, we recommend that you revoke these default public privileges. After
doing so, you then grant specific privileges for database users on a more granular basis, as shown
in the following procedure.

To set up roles and privileges for a new database instance

Suppose you're setting up a database on a newly created RDS for PostgreSQL DB instance for use
by several researchers, all of whom need read-write access to the database.

1. Use psql (or pgAdmin) to connect to your RDS for PostgreSQL DB instance:

psql --host=your-db-instance.666666666666.aws-region.rds.amazonaws.com --port=5432
 --username=postgres --password

When prompted, enter your password. The psql client connects and displays the default
administrative connection database, postgres=>, as the prompt.

2. To prevent database users from creating objects in the public schema, do the following:

Understanding PostgreSQL roles and permissions 4409

Amazon Relational Database Service User Guide

postgres=> REVOKE CREATE ON SCHEMA public FROM PUBLIC;
REVOKE

3. Next, you create a new database instance:

postgres=> CREATE DATABASE lab_db;
CREATE DATABASE

4. Revoke all privileges from the PUBLIC schema on this new database.

postgres=> REVOKE ALL ON DATABASE lab_db FROM public;
REVOKE

5. Create a role for database users.

postgres=> CREATE ROLE lab_tech;
CREATE ROLE

6. Give database users that have this role the ability to connect to the database.

postgres=> GRANT CONNECT ON DATABASE lab_db TO lab_tech;
GRANT

7. Grant all users with the lab_tech role all privileges on this database.

postgres=> GRANT ALL PRIVILEGES ON DATABASE lab_db TO lab_tech;
GRANT

8. Create database users, as follows:

postgres=> CREATE ROLE lab_user1 LOGIN PASSWORD 'change_me';
CREATE ROLE
postgres=> CREATE ROLE lab_user2 LOGIN PASSWORD 'change_me';
CREATE ROLE

9. Grant these two users the privileges associated with the lab_tech role:

postgres=> GRANT lab_tech TO lab_user1;
GRANT ROLE
postgres=> GRANT lab_tech TO lab_user2;
GRANT ROLE

Understanding PostgreSQL roles and permissions 4410

Amazon Relational Database Service User Guide

At this point, lab_user1 and lab_user2 can connect to the lab_db database. This example
doesn't follow best practices for enterprise usage, which might include creating multiple database
instances, different schemas, and granting limited permissions. For more complete information and
additional scenarios, see Managing PostgreSQL Users and Roles.

For more information about privileges in PostgreSQL databases, see the GRANT command in the
PostgreSQL documentation.

Delegating and controlling user password management

As a DBA, you might want to delegate the management of user passwords. Or, you might want to
prevent database users from changing their passwords or reconfiguring password constraints, such
as password lifetime. To ensure that only the database users that you choose can change password
settings, you can turn on the restricted password management feature. When you activate this
feature, only those database users that have been granted the rds_password role can manage
passwords.

Note

To use restricted password management, your RDS for PostgreSQL DB instance must be
running PostgreSQL 10.6 or higher.

By default, this feature is off, as shown in the following:

postgres=> SHOW rds.restrict_password_commands;
 rds.restrict_password_commands

 off
(1 row)

To turn on this feature, you use a custom parameter group and change the setting for
rds.restrict_password_commands to 1. Be sure to reboot your RDS for PostgreSQL DB
instance so that the setting takes effect.

With this feature active, rds_password privileges are needed for the following SQL commands:

CREATE ROLE myrole WITH PASSWORD 'mypassword';
CREATE ROLE myrole WITH PASSWORD 'mypassword' VALID UNTIL '2023-01-01';

Understanding PostgreSQL roles and permissions 4411

https://aws.amazon.com/blogs/database/managing-postgresql-users-and-roles/
https://www.postgresql.org/docs/current/static/sql-grant.html

Amazon Relational Database Service User Guide

ALTER ROLE myrole WITH PASSWORD 'mypassword' VALID UNTIL '2023-01-01';
ALTER ROLE myrole WITH PASSWORD 'mypassword';
ALTER ROLE myrole VALID UNTIL '2023-01-01';
ALTER ROLE myrole RENAME TO myrole2;

Renaming a role (ALTER ROLE myrole RENAME TO newname) is also restricted if the password
uses the MD5 hashing algorithm.

With this feature active, attempting any of these SQL commands without the rds_password role
permissions generates the following error:

ERROR: must be a member of rds_password to alter passwords

We recommend that you grant the rds_password to only a few roles that you use solely for
password management. If you grant rds_password privileges to database users that don't have
rds_superuser privileges, you need to also grant them the CREATEROLE attribute.

Make sure that you verify password requirements such as expiration and needed complexity on the
client side. If you use your own client-side utility for password related changes, the utility needs to
be a member of rds_password and have CREATE ROLE privileges.

Using SCRAM for PostgreSQL password encryption

The Salted Challenge Response Authentication Mechanism (SCRAM) is an alternative to PostgreSQL's
default message digest (MD5) algorithm for encrypting passwords. The SCRAM authentication
mechanism is considered more secure than MD5. To learn more about these two different
approaches to securing passwords, see Password Authentication in the PostgreSQL documentation.

We recommend that you use SCRAM rather than MD5 as the password encryption scheme for your
RDS for PostgreSQL DB instance. It's a cryptographic challenge-response mechanism that uses the
scram-sha-256 algorithm for password authentication and encryption.

You might need to update libraries for your client applications to support SCRAM. For example,
JDBC versions before 42.2.0 don't support SCRAM. For more information, see PostgreSQL JDBC
Driver in the PostgreSQL JDBC Driver documentation. For a list of other PostgreSQL drivers and
SCRAM support, see List of drivers in the PostgreSQL documentation.

RDS for PostgreSQL version 13.1 and higher support scram-sha-256. These versions also let you
configure your DB instance to require SCRAM, as discussed in the following procedures.

Understanding PostgreSQL roles and permissions 4412

https://www.postgresql.org/docs/14/auth-password.html
https://jdbc.postgresql.org/changelogs/2018-01-17-42.2.0-release/
https://jdbc.postgresql.org/changelogs/2018-01-17-42.2.0-release/
https://wiki.postgresql.org/wiki/List_of_drivers

Amazon Relational Database Service User Guide

Setting up RDS for PostgreSQL DB instance to require SCRAM

you can require the RDS for PostgreSQL DB instance to accept only passwords that use the scram-
sha-256 algorithm.

Important

For existing RDS Proxies with PostgreSQL databases, if you modify the database
authentication to use SCRAM only, the proxy becomes unavailable for up to 60 seconds. To
avoid the issue, do one of the following:

• Ensure that the database allows both SCRAM and MD5 authentication.

• To use only SCRAM authentication, create a new proxy, migrate your application traffic to
the new proxy, then delete the proxy previously associated with the database.

Before making changes to your system, be sure you understand the complete process, as follows:

• Get information about all roles and password encryption for all database users.

• Double-check the parameter settings for your RDS for PostgreSQL DB instance for the
parameters that control password encryption.

• If your RDS for PostgreSQL DB instance uses a default parameter group, you need to create a
custom DB parameter group and apply it to your RDS for PostgreSQL DB instance so that you
can modify parameters when needed. If your RDS for PostgreSQL DB instance uses a custom
parameter group, you can modify the necessary parameters later in the process, as needed.

• Change the password_encryption parameter to scram-sha-256.

• Notify all database users that they need to update their passwords. Do the same for your
postgres account. The new passwords are encrypted and stored using the scram-sha-256
algorithm.

• Verify that all passwords are encrypted using as the type of encryption.

• If all passwords use scram-sha-256, you can change the
rds.accepted_password_auth_method parameter from md5+scram to scram-sha-256.

Understanding PostgreSQL roles and permissions 4413

Amazon Relational Database Service User Guide

Warning

After you change rds.accepted_password_auth_method to scram-sha-256 alone, any
users (roles) with md5–encrypted passwords can't connect.

Getting ready to require SCRAM for your RDS for PostgreSQL DB instance

Before making any changes to your RDS for PostgreSQL DB instance, check all existing database
user accounts. Also, check the type of encryption used for passwords. You can do these tasks
by using the rds_tools extension. To see which PostgreSQL versions support rds_tools, see
Extension versions for Amazon RDS for PostgreSQL.

To get a list of database users (roles) and password encryption methods

1. Use psql to connect to your RDS for PostgreSQL DB instance, as shown in the following.

psql --host=db-name.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password

2. Install the rds_tools extension.

postgres=> CREATE EXTENSION rds_tools;
CREATE EXTENSION

3. Get a listing of roles and encryption.

postgres=> SELECT * FROM
 rds_tools.role_password_encryption_type();

You see output similar to the following.

 rolname | encryption_type
----------------------+-----------------
 pg_monitor |
 pg_read_all_settings |
 pg_read_all_stats |
 pg_stat_scan_tables |
 pg_signal_backend |
 lab_tester | md5
 user_465 | md5

Understanding PostgreSQL roles and permissions 4414

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html

Amazon Relational Database Service User Guide

 postgres | md5
(8 rows)

Creating a custom DB parameter group

Note

If your RDS for PostgreSQL DB instance already uses a custom parameter group, you don't
need to create a new one.

For an overview of parameter groups for Amazon RDS, see Working with parameters on your RDS
for PostgreSQL DB instance.

The password encryption type used for passwords is set in one parameter,
password_encryption. The encryption that the RDS for PostgreSQL DB instance allows is set in
another parameter, rds.accepted_password_auth_method. Changing either of these from the
default values requires that you create a custom DB parameter group and apply it to your instance.

You can also use the AWS Management Console or the RDS API to create a custom DB parameter
group. For more information, see

You can now associate the custom parameter group with your DB instance.

To create a custom DB parameter group

1. Use the create-db-parameter-group CLI command to create the custom DB parameter
group. This example uses postgres13 as the source for this custom parameter group.

For Linux, macOS, or Unix:

aws rds create-db-parameter-group --db-parameter-group-name 'docs-lab-scram-
passwords' \
 --db-parameter-group-family postgres13 --description 'Custom parameter group for
 SCRAM'

For Windows:

aws rds create-db-parameter-group --db-parameter-group-name "docs-lab-scram-
passwords" ^

Understanding PostgreSQL roles and permissions 4415

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Relational Database Service User Guide

 --db-parameter-group-family postgres13 --description "Custom DB parameter group
 for SCRAM"

2. Use the modify-db-instance CLI command to apply this custom parameter group to your
RDS for PostgreSQL DB cluster.

For Linux, macOS, or Unix:

aws rds modify-db-instance --db-instance-identifier 'your-instance-name' \
 --db-parameter-group-name "docs-lab-scram-passwords

For Windows:

aws rds modify-db-instance --db-instance-identifier "your-instance-name" ^
 --db-parameter-group-name "docs-lab-scram-passwords

To resynchronize your RDS for PostgreSQL DB instance with your custom DB parameter group,
you need to reboot the primary and all other instances of the cluster. To minimize impact to
your users, schedule this to occur during your regular maintenance window.

Configuring password encryption to use SCRAM

The password encryption mechanism used by an RDS for PostgreSQL DB instance is set in the DB
parameter group in the password_encryption parameter. Allowed values are unset, md5, or
scram-sha-256. The default value depends on the RDS for PostgreSQL version, as follows:

• RDS for PostgreSQL 14 and above – Default is scram-sha-256

• RDS for PostgreSQL 13 – Default is md5

With a custom DB parameter group attached to your RDS for PostgreSQL DB instance, you can
modify values for the password encryption parameter.

Understanding PostgreSQL roles and permissions 4416

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

To change password encryption setting to scram-sha-256

• Change the value of password encryption to scram-sha-256, as shown following. The change
can be applied immediately because the parameter is dynamic, so a restart isn't required for
the change to take effect.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group --db-parameter-group-name \
 'docs-lab-scram-passwords' --parameters
 'ParameterName=password_encryption,ParameterValue=scram-
sha-256,ApplyMethod=immediate'

For Windows:

aws rds modify-db-parameter-group --db-parameter-group-name ^
 "docs-lab-scram-passwords" --parameters
 "ParameterName=password_encryption,ParameterValue=scram-
sha-256,ApplyMethod=immediate"

Migrating passwords for user roles to SCRAM

You can migrate passwords for user roles to SCRAM as described following.

To migrate database user (role) passwords from MD5 to SCRAM

1. Log in as the administrator user (default user name, postgres) as shown following.

psql --host=db-name.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password

2. Check the setting of the password_encryption parameter on your RDS for PostgreSQL DB
instance by using the following command.

postgres=> SHOW password_encryption;
 password_encryption

 md5
 (1 row)

Understanding PostgreSQL roles and permissions 4417

Amazon Relational Database Service User Guide

3. Change the value of this parameter to scram-sha-256. This is a dynamic parameter, so you
don't need to reboot the instance after making this change. Check the value again to make
sure that it's now set to scram-sha-256, as follows.

postgres=> SHOW password_encryption;
 password_encryption

 scram-sha-256
 (1 row)

4. Notify all database users to change their passwords. Be sure to also change your own password
for account postgres (the database user with rds_superuser privileges).

labdb=> ALTER ROLE postgres WITH LOGIN PASSWORD 'change_me';
ALTER ROLE

5. Repeat the process for all databases on your RDS for PostgreSQL DB instance.

Changing parameter to require SCRAM

This is the final step in the process. After you make the change in the following procedure, any user
accounts (roles) that still use md5 encryption for passwords can't log in to the RDS for PostgreSQL
DB instance.

The rds.accepted_password_auth_method specifies the encryption method that the RDS for
PostgreSQL DB instance accepts for a user password during the login process. The default value
is md5+scram, meaning that either method is accepted. In the following image, you can find the
default setting for this parameter.

The allowed values for this parameter are md5+scram or scram alone. Changing this parameter
value to scram makes this a requirement.

Understanding PostgreSQL roles and permissions 4418

Amazon Relational Database Service User Guide

To change the parameter value to require SCRAM authentication for passwords

1. Verify that all database user passwords for all databases on your RDS for PostgreSQL DB
instance use scram-sha-256 for password encryption. To do so, query rds_tools for the
role (user) and encryption type, as follows.

postgres=> SELECT * FROM rds_tools.role_password_encryption_type();
 rolname | encryption_type
 ----------------------+-----------------
 pg_monitor |
 pg_read_all_settings |
 pg_read_all_stats |
 pg_stat_scan_tables |
 pg_signal_backend |
 lab_tester | scram-sha-256
 user_465 | scram-sha-256
 postgres | scram-sha-256
 (rows)

2. Repeat the query across all DB instances in your RDS for PostgreSQL DB instance.

If all passwords use scram-sha-256, you can proceed.

3. Change the value of the accepted password authentication to scram-sha-256, as follows.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group --db-parameter-group-name 'docs-lab-scram-
passwords' \
 --parameters
 'ParameterName=rds.accepted_password_auth_method,ParameterValue=scram,ApplyMethod=immediate'

For Windows:

aws rds modify-db-parameter-group --db-parameter-group-name "docs-lab-scram-
passwords" ^
 --parameters
 "ParameterName=rds.accepted_password_auth_method,ParameterValue=scram,ApplyMethod=immediate"

Understanding PostgreSQL roles and permissions 4419

Amazon Relational Database Service User Guide

Working with PostgreSQL autovacuum on Amazon RDS for PostgreSQL

We strongly recommend that you use the autovacuum feature to maintain the health of your
PostgreSQL DB instance. Autovacuum automates the start of the VACUUM and the ANALYZE
commands. It checks for tables with a large number of inserted, updated, or deleted tuples. After
this check, it reclaims storage by removing obsolete data or tuples from the PostgreSQL database.

By default, autovacuum is turned on for the RDS for PostgreSQL DB instances that you create using
any of the default PostgreSQL DB parameter groups. Other configuration parameters associated
with the autovacuum feature are also set by default. Because these defaults are somewhat generic,
you can benefit from tuning some of the parameters associated with the autovacuum feature for
your specific workload.

Following, you can find more information about the autovacuum and how to tune some of its
parameters on your RDS for PostgreSQL DB instance. For high-level information, see Best practices
for working with PostgreSQL.

Topics

• Allocating memory for autovacuum

• Reducing the likelihood of transaction ID wraparound

• Determining if the tables in your database need vacuuming

• Determining which tables are currently eligible for autovacuum

• Determining if autovacuum is currently running and for how long

• Performing a manual vacuum freeze

• Reindexing a table when autovacuum is running

• Managing autovacuum with large indexes

• Other parameters that affect autovacuum

• Setting table-level autovacuum parameters

• Logging autovacuum and vacuum activities

• Understanding the behavior of autovacuum with invalid databases

• Identify and resolve aggressive vacuum blockers in RDS for PostgreSQL

Working with PostgreSQL autovacuum 4420

Amazon Relational Database Service User Guide

Allocating memory for autovacuum

One of the most important parameters influencing autovacuum performance is the
autovacuum_work_mem parameter. In RDS for PostgreSQL versions 14 and prior,
the autovacuum_work_mem parameter is set to -1, indicating that the setting of
maintenance_work_mem is used instead. For all other versions, autovacuum_work_mem is
determined by GREATEST({DBInstanceClassMemory/32768}, 65536).

Manual vacuum operations always use the maintenance_work_mem setting, with a default
setting of GREATEST({DBInstanceClassMemory/63963136*1024}, 65536), and it can also
be adjusted at the session level using the SET command for more targeted manual VACUUM
operations.

The autovacuum_work_mem determines memory for autovacuum to hold identifiers of dead
tuples (pg_stat_all_tables.n_dead_tup) for vacuuming indexes.

When doing calculations to determine the autovacuum_work_mem parameter's value, be aware of
the following:

• If you set the parameter too low, the vacuum process might have to scan the table multiple
times to complete its work. Such multiple scans can have a negative impact on performance.
For larger instances, setting maintenance_work_mem or autovacuum_work_mem to at least
1 GB can improve the performance of vacuuming tables with a high number of dead tuples.
However, in PostgreSQL versions 16 and prior, vacuum’s memory usage is capped at 1 GB, which
is sufficient to process approximately 179 million dead tuples in a single pass. If a table has more
dead tuples than this, vacuum will need to make multiple passes through the table's indexes,
significantly increasing the time required. Starting with PostgreSQL version 17, there isn't a limit
of 1 GB, and autovacuum can process more than 179 million tuples by using radix trees.

A tuple identifier is 6 bytes in size. To estimate the memory needed for vacuuming an index of
a table, query pg_stat_all_tables.n_dead_tup to find the number of dead tuples, then
multiply this number by 6 to determine the memory required for vacuuming the index in a single
pass. You may use the following query:

SELECT
 relname AS table_name,
 n_dead_tup,
 pg_size_pretty(n_dead_tup * 6) AS estimated_memory
FROM

Working with PostgreSQL autovacuum 4421

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-AUTOVACUUM-WORK-MEM

Amazon Relational Database Service User Guide

 pg_stat_all_tables
WHERE
 relname = 'name_of_the_table';

• The autovacuum_work_mem parameter works in conjunction with the
autovacuum_max_workers parameter. Each worker among autovacuum_max_workers
can use the memory that you allocate. If you have many small tables, allocate more
autovacuum_max_workers and less autovacuum_work_mem. If you have large tables (larger
than 100 GB), allocate more memory and fewer worker processes. You need to have enough
memory allocated to succeed on your biggest table. Thus, make sure that the combination of
worker processes and memory equals the total memory that you want to allocate.

Reducing the likelihood of transaction ID wraparound

In some cases, parameter group settings related to autovacuum might not be aggressive enough
to prevent transaction ID wraparound. To address this, RDS for PostgreSQL provides a mechanism
that adapts the autovacuum parameter values automatically. Adaptive autovacuum is a feature
for RDS for PostgreSQL. A detailed explanation of TransactionID wraparound is found in the
PostgreSQL documentation.

Adaptive autovacuum is turned on by default for RDS for PostgreSQL instances with the
dynamic parameter rds.adaptive_autovacuum set to ON. We strongly recommend that
you keep this turned on. However, to turn off adaptive autovacuum parameter tuning, set the
rds.adaptive_autovacuum parameter to 0 or OFF.

Transaction ID wraparound is still possible even when Amazon RDS Amazon RDS tunes the
autovacuum parameters. We encourage you to implement an Amazon CloudWatch alarm for
transaction ID wraparound. For more information, see the post Implement an early warning system
for transaction ID wraparound in RDS for PostgreSQL on the AWS Database Blog.

With adaptive autovacuum parameter tuning turned on, Amazon RDS begins adjusting
autovacuum parameters when the CloudWatch metric MaximumUsedTransactionIDs reaches
the value of the autovacuum_freeze_max_age parameter or 500,000,000, whichever is greater.

Amazon RDS continues to adjust parameters for autovacuum if a table continues to trend toward
transaction ID wraparound. Each of these adjustments dedicates more resources to autovacuum to
avoid wraparound. Amazon RDS updates the following autovacuum-related parameters:

• autovacuum_vacuum_cost_delay

Working with PostgreSQL autovacuum 4422

https://www.postgresql.org/docs/current/static/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/
https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-DELAY

Amazon Relational Database Service User Guide

• autovacuum_vacuum_cost_limit

• autovacuum_work_mem

• autovacuum_naptime

RDS modifies these parameters only if the new value makes autovacuum more aggressive. The
parameters are modified in memory on the DB instance. The values in the parameter group aren't
changed. To view the current in-memory settings, use the PostgreSQL SHOW SQL command.

When Amazon RDS modifies any of these autovacuum parameters, it generates an event for the
affected DB instance. This event is visible on the AWS Management Console and through the
Amazon RDS API. After the MaximumUsedTransactionIDs CloudWatch metric returns below the
threshold, Amazon RDS resets the autovacuum-related parameters in memory back to the values
specified in the parameter group. It then generates another event corresponding to this change.

Determining if the tables in your database need vacuuming

You can use the following query to show the number of unfrozen transactions in a database.
The datfrozenxid column of a database's pg_database row is a lower bound on the normal
transaction IDs appearing in that database. This column is the minimum of the per-table
relfrozenxid values within the database.

SELECT datname, age(datfrozenxid) FROM pg_database ORDER BY age(datfrozenxid) desc
 limit 20;

For example, the results of running the preceding query might be the following.

datname | age
mydb | 1771757888
template0 | 1721757888
template1 | 1721757888
rdsadmin | 1694008527
postgres | 1693881061
(5 rows)

When the age of a database reaches 2 billion transaction IDs, transaction ID (XID) wraparound
occurs and the database becomes read-only. You can use this query to produce a metric and run
a few times a day. By default, autovacuum is set to keep the age of transactions to no more than
200,000,000 (autovacuum_freeze_max_age).

Working with PostgreSQL autovacuum 4423

https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-LIMIT
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-AUTOVACUUM-WORK-MEM
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-NAPTIME
https://www.postgresql.org/docs/current/sql-show.html
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-FREEZE-MAX-AGE

Amazon Relational Database Service User Guide

A sample monitoring strategy might look like this:

• Set the autovacuum_freeze_max_age value to 200 million transactions.

• If a table reaches 500 million unfrozen transactions, that triggers a low-severity alarm. This isn't
an unreasonable value, but it can indicate that autovacuum isn't keeping up.

• If a table ages to 1 billion, this should be treated as an alarm to take action on. In general, you
want to keep ages closer to autovacuum_freeze_max_age for performance reasons. We
recommend that you investigate using the recommendations that follow.

• If a table reaches 1.5 billion unvacuumed transactions, that triggers a high-severity alarm.
Depending on how quickly your database uses transaction IDs, this alarm can indicate that the
system is running out of time to run autovacuum. In this case, we recommend that you resolve
this immediately.

If a table is constantly breaching these thresholds, modify your autovacuum parameters further. By
default, using VACUUM manually (which has cost-based delays disabled) is more aggressive than
using the default autovacuum, but it is also more intrusive to the system as a whole.

We recommend the following:

• Be aware and turn on a monitoring mechanism so that you are aware of the age of your oldest
transactions.

For information on creating a process that warns you about transaction ID wraparound, see the
AWS Database Blog post Implement an early warning system for transaction ID wraparound in
Amazon RDS for PostgreSQL.

• For busier tables, perform a manual vacuum freeze regularly during a maintenance window, in
addition to relying on autovacuum. For information on performing a manual vacuum freeze, see
Performing a manual vacuum freeze.

Determining which tables are currently eligible for autovacuum

Often, it is one or two tables in need of vacuuming. Tables whose relfrozenxid value is greater
than the number of transactions in autovacuum_freeze_max_age are always targeted by
autovacuum. Otherwise, if the number of tuples made obsolete since the last VACUUM exceeds the
vacuum threshold, the table is vacuumed.

The autovacuum threshold is defined as:

Working with PostgreSQL autovacuum 4424

https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/
https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/
https://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM

Amazon Relational Database Service User Guide

Vacuum-threshold = vacuum-base-threshold + vacuum-scale-factor * number-of-tuples

where the vacuum base threshold is autovacuum_vacuum_threshold, the vacuum
scale factor is autovacuum_vacuum_scale_factor, and the number of tuples is
pg_class.reltuples.

While you are connected to your database, run the following query to see a list of tables that
autovacuum sees as eligible for vacuuming.

WITH vbt AS (SELECT setting AS autovacuum_vacuum_threshold FROM
pg_settings WHERE name = 'autovacuum_vacuum_threshold'),
vsf AS (SELECT setting AS autovacuum_vacuum_scale_factor FROM
pg_settings WHERE name = 'autovacuum_vacuum_scale_factor'),
fma AS (SELECT setting AS autovacuum_freeze_max_age FROM pg_settings WHERE name =
 'autovacuum_freeze_max_age'),
sto AS (select opt_oid, split_part(setting, '=', 1) as param,
split_part(setting, '=', 2) as value from (select oid opt_oid, unnest(reloptions)
 setting from pg_class) opt)
SELECT '"'||ns.nspname||'"."'||c.relname||'"' as relation,
pg_size_pretty(pg_table_size(c.oid)) as table_size,
age(relfrozenxid) as xid_age,
coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
 autovacuum_freeze_max_age,
(coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) * c.reltuples)
AS autovacuum_vacuum_tuples, n_dead_tup as dead_tuples FROM
pg_class c join pg_namespace ns on ns.oid = c.relnamespace
join pg_stat_all_tables stat on stat.relid = c.oid join vbt on (1=1) join vsf on (1=1)
 join fma on (1=1)
left join sto cvbt on cvbt.param = 'autovacuum_vacuum_threshold' and c.oid =
 cvbt.opt_oid
left join sto cvsf on cvsf.param = 'autovacuum_vacuum_scale_factor' and c.oid =
 cvsf.opt_oid
left join sto cfma on cfma.param = 'autovacuum_freeze_max_age' and c.oid = cfma.opt_oid
WHERE c.relkind = 'r' and nspname <> 'pg_catalog'
AND (age(relfrozenxid) >= coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
OR coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) *
c.reltuples <= n_dead_tup)
ORDER BY age(relfrozenxid) DESC LIMIT 50;

Working with PostgreSQL autovacuum 4425

Amazon Relational Database Service User Guide

Determining if autovacuum is currently running and for how long

If you need to manually vacuum a table, make sure to determine if autovacuum is currently
running. If it is, you might need to adjust parameters to make it run more efficiently, or turn off
autovacuum temporarily so that you can manually run VACUUM.

Use the following query to determine if autovacuum is running, how long it has been running, and
if it is waiting on another session.

SELECT datname, usename, pid, state, wait_event, current_timestamp - xact_start AS
 xact_runtime, query
FROM pg_stat_activity
WHERE upper(query) LIKE '%VACUUM%'
ORDER BY xact_start;

After running the query, you should see output similar to the following.

 datname | usename | pid | state | wait_event | xact_runtime | query
 --------+----------+-------+--------+------------+-------------------------
+--
 mydb | rdsadmin | 16473 | active | | 33 days 16:32:11.600656 |
 autovacuum: VACUUM ANALYZE public.mytable1 (to prevent wraparound)
 mydb | rdsadmin | 22553 | active | | 14 days 09:15:34.073141 |
 autovacuum: VACUUM ANALYZE public.mytable2 (to prevent wraparound)
 mydb | rdsadmin | 41909 | active | | 3 days 02:43:54.203349 |
 autovacuum: VACUUM ANALYZE public.mytable3
 mydb | rdsadmin | 618 | active | | 00:00:00 |
 SELECT datname, usename, pid, state, wait_event, current_timestamp - xact_start AS
 xact_runtime, query+
 | | | | | | FROM
 pg_stat_activity
 +
 | | | | | | WHERE
 query like '%VACUUM%'
 +
 | | | | | | ORDER BY
 xact_start;
 +

Working with PostgreSQL autovacuum 4426

Amazon Relational Database Service User Guide

Several issues can cause a long-running autovacuum session (that is, multiple days long). The most
common issue is that your maintenance_work_mem parameter value is set too low for the size of
the table or rate of updates.

We recommend that you use the following formula to set the maintenance_work_mem parameter
value.

GREATEST({DBInstanceClassMemory/63963136*1024},65536)

Short running autovacuum sessions can also indicate problems:

• It can indicate that there aren't enough autovacuum_max_workers for your workload. In this
case, you need to indicate the number of workers.

• It can indicate that there is an index corruption (autovacuum crashes and restarts on the same
relation but makes no progress). In this case, run a manual vacuum freeze verbose table
to see the exact cause.

Performing a manual vacuum freeze

You might want to perform a manual vacuum on a table that has a vacuum process already
running. This is useful if you have identified a table with an age approaching 2 billion transactions
(or above any threshold you are monitoring).

The following steps are guidelines, with several variations to the process. For example, during
testing, suppose that you find that the maintenance_work_mem parameter value is set too
small and that you need to take immediate action on a table. However, perhaps you don't want
to bounce the instance at the moment. Using the queries in previous sections, you determine
which table is the problem and notice a long running autovacuum session. You know that you
need to change the maintenance_work_mem parameter setting, but you also need to take
immediate action and vacuum the table in question. The following procedure shows what to do in
this situation.

To manually perform a vacuum freeze

1. Open two sessions to the database containing the table you want to vacuum. For the second
session, use "screen" or another utility that maintains the session if your connection is
dropped.

2. In session one, get the process ID (PID) of the autovacuum session running on the table.

Working with PostgreSQL autovacuum 4427

https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM

Amazon Relational Database Service User Guide

Run the following query to get the PID of the autovacuum session.

SELECT datname, usename, pid, current_timestamp - xact_start
AS xact_runtime, query
FROM pg_stat_activity WHERE upper(query) LIKE '%VACUUM%' ORDER BY
xact_start;

3. In session two, calculate the amount of memory that you need for this operation. In this
example, we determine that we can afford to use up to 2 GB of memory for this operation, so
we set maintenance_work_mem for the current session to 2 GB.

SET maintenance_work_mem='2 GB';
SET

4. In session two, issue a vacuum freeze verbose command for the table. The verbose setting
is useful because, although there is no progress report for this in PostgreSQL currently, you can
see activity.

\timing on
Timing is on.
vacuum freeze verbose pgbench_branches;

INFO: vacuuming "public.pgbench_branches"
INFO: index "pgbench_branches_pkey" now contains 50 row versions in 2 pages
DETAIL: 0 index row versions were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.00s/0.00u sec elapsed 0.00 sec.
INFO: index "pgbench_branches_test_index" now contains 50 row versions in 2 pages
DETAIL: 0 index row versions were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.00s/0.00u sec elapsed 0.00 sec.
INFO: "pgbench_branches": found 0 removable, 50 nonremovable row versions
 in 43 out of 43 pages
DETAIL: 0 dead row versions cannot be removed yet.
There were 9347 unused item pointers.
0 pages are entirely empty.
CPU 0.00s/0.00u sec elapsed 0.00 sec.
VACUUM
Time: 2.765 ms

Working with PostgreSQL autovacuum 4428

https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM

Amazon Relational Database Service User Guide

5. In session one, if autovacuum was blocking the vacuum session, pg_stat_activity shows
that waiting is T for your vacuum session. In this case, end the autovacuum process as follows.

SELECT pg_terminate_backend('the_pid');

Note

Some lower versions of Amazon RDS can't terminate an autovacuum process
using the preceding command and fail with the following error: ERROR: 42501:
must be a superuser to terminate superuser process LOCATION:
pg_terminate_backend, signalfuncs.c:227.

At this point, your session begins. Autovacuum restarts immediately because this table is
probably the highest on its list of work.

6. Initiate your vacuum freeze verbose command in session two, and then end the
autovacuum process in session one.

Reindexing a table when autovacuum is running

If an index has become corrupt, autovacuum continues to process the table and fails. If you
attempt a manual vacuum in this situation, you receive an error message like the following.

postgres=> vacuum freeze pgbench_branches;
ERROR: index "pgbench_branches_test_index" contains unexpected
 zero page at block 30521
HINT: Please REINDEX it.

When the index is corrupted and autovacuum is attempting to run on the table, you contend with
an already running autovacuum session. When you issue a REINDEX command, you take out an
exclusive lock on the table. Write operations are blocked, and also read operations that use that
specific index.

To reindex a table when autovacuum is running on the table

1. Open two sessions to the database containing the table that you want to vacuum. For the
second session, use "screen" or another utility that maintains the session if your connection is
dropped.

Working with PostgreSQL autovacuum 4429

https://www.postgresql.org/docs/current/static/sql-reindex.html

Amazon Relational Database Service User Guide

2. In session one, get the PID of the autovacuum session running on the table.

Run the following query to get the PID of the autovacuum session.

SELECT datname, usename, pid, current_timestamp - xact_start
AS xact_runtime, query
FROM pg_stat_activity WHERE upper(query) like '%VACUUM%' ORDER BY
xact_start;

3. In session two, issue the reindex command.

\timing on
Timing is on.
reindex index pgbench_branches_test_index;
REINDEX
 Time: 9.966 ms

4. In session one, if autovacuum was blocking the process, you see in pg_stat_activity that
waiting is "T" for your vacuum session. In this case, you end the autovacuum process.

SELECT pg_terminate_backend('the_pid');

At this point, your session begins. It's important to note that autovacuum restarts immediately
because this table is probably the highest on its list of work.

5. Initiate your command in session two, and then end the autovacuum process in session 1.

Managing autovacuum with large indexes

As part of its operation, autovacuum performs several vacuum phases while running on a table.
Before the table is cleaned up, all of its indexes are first vacuumed. When removing multiple large
indexes, this phase consumes a significant amount of time and resources. Therefore, as a best
practice, be sure to control the number of indexes on a table and eliminate unused indexes.

For this process, first check the overall index size. Then, determine if there are potentially unused
indexes that can be removed as shown in the following examples.

To check the size of the table and its indexes

postgres=> select pg_size_pretty(pg_relation_size('pgbench_accounts'));
pg_size_pretty

Working with PostgreSQL autovacuum 4430

https://www.postgresql.org/docs/current/progress-reporting.html#VACUUM-PHASES

Amazon Relational Database Service User Guide

6404 MB
(1 row)

postgres=> select pg_size_pretty(pg_indexes_size('pgbench_accounts'));
pg_size_pretty
11 GB
(1 row)

In this example, the size of indexes is larger than the table. This difference can cause performance
issues as the indexes are bloated or unused, which impacts the autovacuum as well as insert
operations.

To check for unused indexes

Using the pg_stat_user_indexes view, you can check how frequently an index is used with the
idx_scan column. In the following example, the unused indexes have the idx_scan value of 0.

postgres=> select * from pg_stat_user_indexes where relname = 'pgbench_accounts' order
 by idx_scan desc;

relid | indexrelid | schemaname | relname | indexrelname | idx_scan
 | idx_tup_read | idx_tup_fetch
-------+------------+------------+------------------+-----------------------+----------
+--------------+---------------
16433 | 16454 | public | pgbench_accounts | index_f | 6
 | 6 | 0
16433 | 16450 | public | pgbench_accounts | index_b | 3
 | 199999 | 0
16433 | 16447 | public | pgbench_accounts | pgbench_accounts_pkey | 0
 | 0 | 0
16433 | 16452 | public | pgbench_accounts | index_d | 0
 | 0 | 0
16433 | 16453 | public | pgbench_accounts | index_e | 0
 | 0 | 0
16433 | 16451 | public | pgbench_accounts | index_c | 0
 | 0 | 0
16433 | 16449 | public | pgbench_accounts | index_a | 0
 | 0 | 0
(7 rows)

Working with PostgreSQL autovacuum 4431

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ALL-INDEXES-VIEW

Amazon Relational Database Service User Guide

postgres=> select schemaname, relname, indexrelname, idx_scan from pg_stat_user_indexes
 where relname = 'pgbench_accounts' order by idx_scan desc;

schemaname | relname | indexrelname | idx_scan
------------+------------------+-----------------------+----------
public | pgbench_accounts | index_f | 6
public | pgbench_accounts | index_b | 3
public | pgbench_accounts | pgbench_accounts_pkey | 0
public | pgbench_accounts | index_d | 0
public | pgbench_accounts | index_e | 0
public | pgbench_accounts | index_c | 0
public | pgbench_accounts | index_a | 0
(7 rows)

Note

These statistics are incremental from the time that the statistics are reset. Suppose you
have an index that is only used at the end of a business quarter or just for a specific
report. It's possible that this index hasn't been used since the statistics were reset. For
more information, see Statistics Functions. Indexes that are used to enforce uniqueness
won't have scans performed and shouldn't be identified as unused indexes. To identify the
unused indexes, you should have in-depth knowledge of the application and its queries.

To check when the stats were last reset for a database, use pg_stat_database

postgres=> select datname, stats_reset from pg_stat_database where datname =
 'postgres';

datname | stats_reset
----------+-------------------------------
postgres | 2022-11-17 08:58:11.427224+00
(1 row)

Vacuuming a table as quickly as possible

RDS for PostgreSQL 12 and higher

Working with PostgreSQL autovacuum 4432

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-STATS-FUNCTIONS
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-VIEW

Amazon Relational Database Service User Guide

If you have too many indexes in a large table, your DB instance could be nearing transaction ID
wraparound (XID), which is when the XID counter wraps around to zero. Left unchecked, this
situation could result in data loss. However, you can quickly vacuum the table without cleaning up
the indexes. In RDS for PostgreSQL 12 and higher, you can use VACUUM with the INDEX_CLEANUP
clause.

postgres=> VACUUM (INDEX_CLEANUP FALSE, VERBOSE TRUE) pgbench_accounts;

INFO: vacuuming "public.pgbench_accounts"
INFO: table "pgbench_accounts": found 0 removable, 8 nonremovable row versions in 1 out
 of 819673 pages
DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 7517
Skipped 0 pages due to buffer pins, 0 frozen pages.
CPU: user: 0.01 s, system: 0.00 s, elapsed: 0.01 s.

If an autovacuum session is already running, you must terminate it to begin the manual VACUUM.
For information on performing a manual vacuum freeze, see Performing a manual vacuum freeze

Note

Skipping index cleanup regularly causes index bloat, which degrades scan performance.
The index retains dead rows, and the table retains dead line pointers. As a result,
pg_stat_all_tables.n_dead_tup increases until autovacuum or a manual VACUUM
with index cleanup runs. As a best practice, use this procedure only to prevent transaction
ID wraparound.

RDS for PostgreSQL 11 and older

However, in RDS for PostgreSQL 11 and lower versions, the only way to allow vacuum to complete
faster is to reduce the number of indexes on a table. Dropping an index can affect query plans. We
recommend that you drop unused indexes first, then drop the indexes when XID wraparound is
very near. After the vacuum process completes, you can recreate these indexes.

Other parameters that affect autovacuum

The following query shows the values of some of the parameters that directly affect
autovacuum and its behavior. The autovacuum parameters are described fully in the PostgreSQL
documentation.

Working with PostgreSQL autovacuum 4433

https://www.postgresql.org/docs/current/sql-vacuum.html
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html

Amazon Relational Database Service User Guide

SELECT name, setting, unit, short_desc
FROM pg_settings
WHERE name IN (
'autovacuum_max_workers',
'autovacuum_analyze_scale_factor',
'autovacuum_naptime',
'autovacuum_analyze_threshold',
'autovacuum_analyze_scale_factor',
'autovacuum_vacuum_threshold',
'autovacuum_vacuum_scale_factor',
'autovacuum_vacuum_threshold',
'autovacuum_vacuum_cost_delay',
'autovacuum_vacuum_cost_limit',
'vacuum_cost_limit',
'autovacuum_freeze_max_age',
'maintenance_work_mem',
'vacuum_freeze_min_age');

While these all affect autovacuum, some of the most important ones are:

• maintenance_work_mem

• autovacuum_freeze_max_age

• autovacuum_max_workers

• autovacuum_vacuum_cost_delay

• autovacuum_vacuum_cost_limit

Setting table-level autovacuum parameters

You can set autovacuum-related storage parameters at a table level, which can be better than
altering the behavior of the entire database. For large tables, you might need to set aggressive
settings and you might not want to make autovacuum behave that way for all tables.

The following query shows which tables currently have table-level options in place.

SELECT relname, reloptions
FROM pg_class
WHERE reloptions IS NOT null;

Working with PostgreSQL autovacuum 4434

https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE_WORK_MEM
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-FREEZE-MAX-AGE
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-MAX-WORKERS
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-DELAY
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-LIMIT
https://www.postgresql.org/docs/current/static/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS

Amazon Relational Database Service User Guide

An example where this might be useful is on tables that are much larger than the rest of your
tables. Suppose that you have one 300-GB table and 30 other tables less than 1 GB. In this case,
you might set some specific parameters for your large table so you don't alter the behavior of your
entire system.

ALTER TABLE mytable set (autovacuum_vacuum_cost_delay=0);

Doing this turns off the cost-based autovacuum delay for this table at the expense
of more resource usage on your system. Normally, autovacuum pauses for
autovacuum_vacuum_cost_delay each time autovacuum_cost_limit is reached. For more
details, see the PostgreSQL documentation about cost-based vacuuming.

Logging autovacuum and vacuum activities

Information about autovacuum activities is sent to the postgresql.log based on the level
specified in the rds.force_autovacuum_logging_level parameter. Following are the values
allowed for this parameter and the PostgreSQL versions for which that value is the default setting:

• disabled (PostgreSQL 10, PostgreSQL 9.6)

• debug5, debug4, debug3, debug2, debug1

• info (PostgreSQL 12, PostgreSQL 11)

• notice

• warning (PostgreSQL 13 and above)

• error, log, fatal, panic

The rds.force_autovacuum_logging_level works with the
log_autovacuum_min_duration parameter. The log_autovacuum_min_duration
parameter's value is the threshold (in milliseconds) above which autovacuum
actions get logged. A setting of -1 logs nothing, while a setting of 0 logs all
actions. As with rds.force_autovacuum_logging_level, default values for
log_autovacuum_min_duration are version dependent, as follows:

• 10000 ms – PostgreSQL 14, PostgreSQL 13, PostgreSQL 12, and PostgreSQL 11

• (empty) – No default value for PostgreSQL 10 and PostgreSQL 9.6

Working with PostgreSQL autovacuum 4435

https://www.postgresql.org/docs/current/static/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-VACUUM-COST

Amazon Relational Database Service User Guide

We recommend that you set rds.force_autovacuum_logging_level to WARNING. We also
recommend that you set log_autovacuum_min_duration to a value from 1000 to 5000.
A setting of 5000 logs activity that takes longer than 5,000 milliseconds. Any setting other
than -1 also logs messages if the autovacuum action is skipped because of a conflicting lock or
concurrently dropped relations. For more information, see Automatic Vacuuming in the PostgreSQL
documentation.

To troubleshoot issues, you can change the rds.force_autovacuum_logging_level
parameter to one of the debug levels, from debug1 up to debug5 for the most verbose
information. We recommend that you use debug settings for short periods of time and for
troubleshooting purposes only. To learn more, see When to log in the PostgreSQL documentation.

Note

PostgreSQL allows the rds_superuser account to view autovacuum sessions in
pg_stat_activity. For example, you can identify and end an autovacuum session that
is blocking a command from running, or running slower than a manually issued vacuum
command.

Understanding the behavior of autovacuum with invalid databases

A new value -2 is introduced into the datconnlimit column in the pg_database catalog to
indicate databases that have been interrupted in the middle of the DROP DATABASE operation as
invalid.

This new value is available from the following RDS for PostgreSQL versions:

• 15.4 and all higher versions

• 14.9 and higher versions

• 13.12 and higher versions

• 12.16 and higher versions

• 11.21 and higher versions

Invalid databases do not affect autovacuum's ability to freeze functionality for valid databases.
Autovacuum ignores invalid databases. Consequently, regular vacuum operations will continue to
function properly and efficiently for all valid databases in your PostgreSQL environment.

Working with PostgreSQL autovacuum 4436

https://www.postgresql.org/docs/current/runtime-config-autovacuum.html
https://www.postgresql.org/docs/current/static/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHEN

Amazon Relational Database Service User Guide

Topics

• Monitoring transaction ID

• Adjusting the monitoring query

• Resolving invalid database issue

Monitoring transaction ID

The age(datfrozenxid) function is commonly used to monitor the transaction ID (XID) age of
databases to prevent transaction ID wraparound.

Since invalid databases are excluded from autovacuum, their transaction ID (XID) counter can
reach the maximum value of 2 billion, wrap around to - 2 billion, and continue this cycle
indefinitely. A typical query to monitor Transaction ID wraparound might look like:

SELECT max(age(datfrozenxid)) FROM pg_database;

However, with the introduction of the -2 value for datconnlimit, invalid databases can
skew the results of this query. Since these databases are not valid and should not be part of
regular maintenance checks, they can cause false positives, leading you to believe that the
age(datfrozenxid) is higher than it actually is.

Adjusting the monitoring query

To ensure accurate monitoring, you should adjust your monitoring query to exclude invalid
databases. Follow this recommended query:

SELECT
 max(age(datfrozenxid))
FROM
 pg_database
WHERE
 datconnlimit <> -2;

This query ensures that only valid databases are considered in the age(datfrozenxid)
calculation, providing a true reflection of the transaction ID age across your PostgreSQL
environment.

Working with PostgreSQL autovacuum 4437

Amazon Relational Database Service User Guide

Resolving invalid database issue

When attempting to connect to an invalid database, you may encounter an error message similar
to the following:

postgres=> \c db1
connection to server at "mydb.xxxxxxxxxx.us-west-2.rds.amazonaws.com" (xx.xx.xx.xxx),
 port xxxx failed: FATAL: cannot connect to invalid database "db1"
HINT: Use DROP DATABASE to drop invalid databases.
Previous connection kept

Additionally, if the log_min_messages parameter is set to DEBUG2 or higher, you may notice the
following log entries indicating that the autovacuum process is skipping the invalid database:

2024-07-30 05:59:00 UTC::@:[32000]:DEBUG: autovacuum: skipping invalid database "db6"
2024-07-30 05:59:00 UTC::@:[32000]:DEBUG: autovacuum: skipping invalid database "db1"

To resolve the issue, follow the HINT provided during the connection attempt. Connect to any valid
database using your RDS master account or a database account with the rds_superuser role, and
drop invalid database(s).

SELECT
 'DROP DATABASE ' || quote_ident(datname) || ';'
FROM
 pg_database
WHERE
 datconnlimit = -2 \gexec

Identify and resolve aggressive vacuum blockers in RDS for PostgreSQL

In PostgreSQL, vacuuming is vital for ensuring database health as it reclaims storage and prevents
transaction ID wraparound issues. However, there are times when vacuuming can be prevented

Working with PostgreSQL autovacuum 4438

https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Amazon Relational Database Service User Guide

from operating as desired, which can result in performance degradation, storage bloat, and even
impact availability of your DB instance by transaction ID wraparound. Therefore, identifying
and resolving these issues are essential for optimal database performance and availability. Read
Understanding autovacuum in Amazon RDS for PostgreSQL environments to learn more about
autovacuum.

The postgres_get_av_diag() function helps identify issues that either prevent or delay
the aggressive vacuum progress. Suggestions are provided, which may include commands to
resolve the issue where it is identifiable or guidance for further diagnostics where the issue is
not identifiable. Aggressive vacuum blockers are reported when the age exceeds RDS' adaptive
autovacuum threshold of 500 million transaction IDs.

What is the age of the transaction ID?

The age() function for transaction IDs calculates the number of transactions that have occurred
since the oldest unfrozen transaction ID for a database (pg_database.datfrozenxid) or table
(pg_class.relfrozenxid). This value indicates database activity since the last aggressive
vacuum operation and highlights the likely workload for upcoming VACUUM processes.

What is an aggressive vacuum?

An aggressive VACUUM operation conducts a comprehensive scan of all pages within a table,
including those typically skipped during regular VACUUMs. This thorough scan aims to "freeze"
transaction IDs approaching their maximum age, effectively preventing a situation known as
transaction ID wraparound.

For postgres_get_av_diag() to report blockers, the blocker must be at least 500 million
transactions old.

Topics

• Installing autovacuum monitoring and diagnostic tools in RDS for PostgreSQL

• Functions of postgres_get_av_diag() in RDS for PostgreSQL

• Resolving identifiable vacuum blockers in RDS for PostgreSQL

• Resolving unidentifiable vacuum blockers in RDS for PostgreSQL

• Resolving vacuum performance issues in RDS for PostgreSQL

• Explanation of the NOTICE messages in RDS for PostgreSQL

Working with PostgreSQL autovacuum 4439

https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Amazon Relational Database Service User Guide

Installing autovacuum monitoring and diagnostic tools in RDS for PostgreSQL

The postgres_get_av_diag() function is currently available in the following RDS for
PostgreSQL versions:

• 17.2 and higher 17 versions

• 16.7 and higher 16 versions

• 15.11 and higher 15 versions

• 14.16 and higher 14 versions

• 13.19 and higher 13 versions

In order to use postgres_get_av_diag(), create the rds_tools extension.

postgres=> CREATE EXTENSION rds_tools ;
CREATE EXTENSION

Verify that the extension is installed.

postgres=> \dx rds_tools
 List of installed extensions
 Name | Version | Schema | Description
 ----------+---------+-----------
+--
 rds_tools | 1.8 | rds_tools | miscellaneous administrative functions for RDS
 PostgreSQL
 1 row

Verify that the function is created.

postgres=> SELECT
 proname function_name,
 pronamespace::regnamespace function_schema,
 proowner::regrole function_owner
FROM
 pg_proc
WHERE
 proname = 'postgres_get_av_diag';
 function_name | function_schema | function_owner
----------------------+-----------------+----------------

Working with PostgreSQL autovacuum 4440

Amazon Relational Database Service User Guide

 postgres_get_av_diag | rds_tools | rds_superuser
(1 row)

Functions of postgres_get_av_diag() in RDS for PostgreSQL

The postgres_get_av_diag() function retrieves diagnostic information about autovacuum
processes that are blocking or lagging behind in a RDS for PostgreSQL database. The query
needs to be executed in the database with the oldest transaction ID for accurate results. For more
information about using the database with the oldest transaction ID, see Not connected to the
database with the age of oldest transaction ID

SELECT
 blocker,
 DATABASE,
 blocker_identifier,
 wait_event,
 TO_CHAR(autovacuum_lagging_by, 'FM9,999,999,999') AS autovacuum_lagging_by,
 suggestion,
 suggested_action
FROM (
 SELECT
 *
 FROM
 rds_tools.postgres_get_av_diag ()
 ORDER BY
 autovacuum_lagging_by DESC) q;

The postgres_get_av_diag() function returns a table with the following information:

blocker

Specifies the category of database activity that is blocking the vacuum.

• Active statement

• Idle in transaction

• Prepared transaction

• Logical replication slot

• Read replica with physical replication slot

• Read replica with streaming replication

• Temporary tables

Working with PostgreSQL autovacuum 4441

Amazon Relational Database Service User Guide

database

Specifies the name of the database where applicable and supported. This is the database in
which the activity is ongoing and blocking or will block the autovacuum. This is the database
you are required to connect to and take action.

blocker_identifier

Specifies the identifier of the activity that is blocking or will block the autovacuum. The
identifier can be a process ID along with a SQL statement, a prepared transaction, an IP address
of a read replica, and the name of the replication slot, either logical or physical.

wait_event

Specifies the wait event of the blocking session and is applicable for the following blockers:

• Active statement

• Idle in transaction

autovacum_lagging_by

Specifies the number of transactions that autovacuum is lagging behind in its backlog work per
category.

suggestion

Specifies suggestions to resolve the blocker. These instructions include the name of the
database in which the activity exists where applicable, the Process ID (PID) of the session where
applicable, and the action to be taken.

suggested_action

Suggests the action that needs to be taken to resolve the blocker.

Resolving identifiable vacuum blockers in RDS for PostgreSQL

Autovacuum performs aggressive vacuums and lowers the age of transaction IDs to below the
threshold specified by the autovacuum_freeze_max_age parameter of your RDS instance. You
can track this age using the Amazon CloudWatch metric MaximumUsedTransactionIDs.

To find the setting of autovacuum_freeze_max_age (which has a default of 200 million
transaction IDs) for your Amazon RDS instance, you can use the following query:

SELECT

Working with PostgreSQL autovacuum 4442

Amazon Relational Database Service User Guide

 TO_CHAR(setting::bigint, 'FM9,999,999,999') autovacuum_freeze_max_age
FROM
 pg_settings
WHERE
 name = 'autovacuum_freeze_max_age';

Note that postgres_get_av_diag() only checks for aggressive vacuum blockers when
the age exceeds Amazon RDS’ adaptive autovacuum threshold of 500 million transaction IDs.
For postgres_get_av_diag() to detect blockers, the blocker must be at least 500 million
transactions old.

The postgres_get_av_diag() function identifies the following types of blockers:

Topics

• Active statement

• Idle in transaction

• Prepared transaction

• Logical replication slot

• Read replicas

• Temporary tables

Active statement

In PostgreSQL, an active statement is an SQL statement that is currently being executed by the
database. This includes queries, transactions, or any operations in progress. When monitoring via
pg_stat_activity, the state column indicates that the process with the corresponding PID is
active.

The postgres_get_av_diag() function displays output similar to the following when it
identifies a statement that is an active statement.

blocker | Active statement
database | my_database
blocker_identifier | SELECT pg_sleep(20000);
wait_event | Timeout:PgSleep
autovacuum_lagging_by | 568,600,871
suggestion | Connect to database "my_database", review carefully and you
 may consider terminating the process using suggested_action. For more information, see
 Working with PostgreSQL autovacuum in the Amazon RDS User Guide.

Working with PostgreSQL autovacuum 4443

Amazon Relational Database Service User Guide

suggested_action | {"SELECT pg_terminate_backend (29621);"}

Suggested action

Following the guidance in the suggestion column, the user can connect to the database
where the active statement is present and, as specified in the suggested_action column,
it's advisable to carefully review the option to terminate the session. If termination is safe, you
may use the pg_terminate_backend() function to terminate the session. This action can be
performed by an administrator (such as the RDS master account) or a user with the required
pg_terminate_backend() privilege.

Warning

A terminated session will undo (ROLLBACK) changes it made. Depending on your
requirements, you may want to rerun the statement. However, it is recommended to do so
only after the autovacuum process has finished its aggressive vacuum operation.

Idle in transaction

An idle in transaction statement refers to any session that has opened an explicit transaction (such
as by issuing a BEGIN statement), performed some work, and is now waiting for the client to either
pass more work or signal the end of the transaction by issuing a COMMIT, ROLLBACK, or END (which
would result in an implicit COMMIT).

The postgres_get_av_diag() function displays output similar to the following when it
identifies an idle in transaction statement as a blocker.

blocker | idle in transaction
database | my_database
blocker_identifier | INSERT INTO tt SELECT * FROM tt;
wait_event | Client:ClientRead
autovacuum_lagging_by | 1,237,201,759
suggestion | Connect to database "my_database", review carefully and you
 may consider terminating the process using suggested_action. For more information, see
 Working with PostgreSQL autovacuum in the Amazon RDS User Guide.
suggested_action | {"SELECT pg_terminate_backend (28438);"}

Suggested action

Working with PostgreSQL autovacuum 4444

Amazon Relational Database Service User Guide

As indicated in the suggestion column, you can connect to the database where the idle in
transaction session is present and terminate the session using the pg_terminate_backend()
function. The user can be your admin (RDS master account) user or a user with the
pg_terminate_backend() privilege.

Warning

A terminated session will undo (ROLLBACK) changes it made. Depending on your
requirements, you may want to rerun the statement. However, it is recommended to do so
only after the autovacuum process has finished its aggressive vacuum operation.

Prepared transaction

PostgreSQL allows transactions that are part of a two-phase commit strategy called prepared
transactions. These are enabled by setting the max_prepared_transactions parameter to a
non-zero value. Prepared transactions are designed to ensure that a transaction is durable and
remains available even after database crashes, restarts, or client disconnections. Like regular
transactions, they are assigned a transaction ID and can affect the autovacuum. If left in a prepared
state, autovacuum cannot perform freeezing and it can lead to transaction ID wraparound.

When transactions are left prepared indefinitely without being resolved by a transaction manager,
they become orphaned prepared transactions. The only way to fix this is to either commit or
rollback the transaction using the COMMIT PREPARED or ROLLBACK PREPARED commands,
respectively.

Note

Be aware that a backup taken during a prepared transaction will still contain that
transaction after restoration. Refer to the following information about how to locate and
close such transactions.

The postgres_get_av_diag() function displays the following output when it identifies a
blocker that is a prepared transaction.

blocker | Prepared transaction
database | my_database

Working with PostgreSQL autovacuum 4445

https://www.postgresql.org/docs/current/sql-prepare-transaction.html
https://www.postgresql.org/docs/current/sql-prepare-transaction.html

Amazon Relational Database Service User Guide

blocker_identifier | myptx
wait_event | Not applicable
autovacuum_lagging_by | 1,805,802,632
suggestion | Connect to database "my_database" and consider either COMMIT
 or ROLLBACK the prepared transaction using suggested_action. For more information, see
 Working with PostgreSQL autovacuum in the Amazon RDS User Guide.
suggested_action | {"COMMIT PREPARED 'myptx';",[OR],"ROLLBACK PREPARED 'myptx';"}

Suggested action

As mentioned in the suggestion column, connect to the database where the prepared transaction
is located. Based on the suggested_action column, carefully review whether to perform either
COMMIT or ROLLBACK, and the the appropiate the action.

To monitor prepared transactions in general, PostgreSQL offers a catalog view called
pg_prepared_xacts. You can use the following query to find prepared transactions.

SELECT
 gid,
 prepared,
 owner,
 database,
 transaction AS oldest_xmin
FROM
 pg_prepared_xacts
ORDER BY
 age(transaction) DESC;

Logical replication slot

The purpose of a replication slot is to hold unconsumed changes until they are replicated to a
target server. For more information, see PostgreSQL's Logical replication.

There are two types of logical replication slots.

Inactive logical replication slots

When replication is terminated, unconsumed transaction logs can't be removed, and the replication
slot becomes inactive. Although an inactive logical replication slot isn't currently used by a
subscriber, it remains on the server, leading to the retention of WAL files and preventing the
removal of old transaction logs. This can increase disk usage and specifically block autovacuum

Working with PostgreSQL autovacuum 4446

https://www.postgresql.org/docs/current/logical-replication.html

Amazon Relational Database Service User Guide

from cleaning up internal catalog tables, as the system must preserve LSN information from being
overwritten. If not addressed, this can result in catalog bloat, performance degradation, and an
increased risk of wraparound vacuum, potentially causing transaction downtime.

Active but slow logical replication slots

Sometimes removal of dead tuples of catalog is delayed due to the performance degradation of
logical replication. This delay in replication slows down updating the catalog_xmin and can lead
to catalog bloat and wraparound vacuum.

The postgres_get_av_diag() function displays output similar to the following when it finds a
logical replication slot as a blocker.

blocker | Logical replication slot
database | my_database
blocker_identifier | slot1
wait_event | Not applicable
autovacuum_lagging_by | 1,940,103,068
suggestion | Ensure replication is active and resolve any lag for the slot
 if active. If inactive, consider dropping it using the command in suggested_action.
 For more information, see Working with PostgreSQL autovacuum in the Amazon RDS User
 Guide.
suggested_action | {"SELECT pg_drop_replication_slot('slot1') FROM
 pg_replication_slots WHERE active = 'f';"}

Suggested action

To resolve this problem, check the replication configuration for issues with the target schema or
data that might be terminating the apply process. The most common reasons are the following:

• Missing columns

• Incompatible data type

• Data mismatch

• Missing table

If the problem is related to infrastructure issues:

• Network issues - How do I resolve issues with an Amazon RDS DB in an incompatible network
state?.

Working with PostgreSQL autovacuum 4447

https://repost.aws/knowledge-center/rds-incompatible-network
https://repost.aws/knowledge-center/rds-incompatible-network

Amazon Relational Database Service User Guide

• Database or DB instance is not available due to the following reasons:

• Replica instance is out of storage - Review Amazon RDS DB instances run out of storage for
information about adding storage.

• Incompatible-parameters - Review How can I fix an Amazon RDS DB instance that is stuck in
the incompatible-parameters status? for more information about how you can resolve the
issue.

If your instance is outside the AWS network or on AWS EC2, consult your administrator on how to
resolve the availability or infrastructure-related issues.

Dropping the inactive slot

Warning

Caution: Before dropping a replication slot, carefully ensure that it has no ongoing
replication, is inactive, and is in an unrecoverable state. Dropping a slot prematurely could
disrupt replication or cause data loss.

After confirming that the replication slot is no longer needed, drop it to allow autovacuum to
continue. The condition active = 'f' ensures that only an inactive slot is dropped.

SELECT pg_drop_replication_slot('slot1') WHERE active ='f'

Read replicas

When the hot_standby_feedback setting is enabled for Amazon RDS read replicas, it prevents
autovacuum on the primary database from removing dead rows that might still be needed by
queries running on the read replica. This affects all types of physical read replicas including those
managed with or without replication slots. This behavior is necessary because queries running
on the standby replica require those rows to remain available on the primary preventing query
conflicts and cancellations.

Read replica with physical replication slot

Read replicas with physical replication slots significantly enhance the reliability and stability of
replication in RDS for PostgreSQL. These slots ensure the primary database retains essential Write-

Working with PostgreSQL autovacuum 4448

https://repost.aws/knowledge-center/rds-out-of-storage
https://repost.aws/knowledge-center/rds-incompatible-parameters
https://repost.aws/knowledge-center/rds-incompatible-parameters
https://www.postgresql.org/docs/current/hot-standby.html#HOT-STANDBY-CONFLICT
https://www.postgresql.org/docs/current/hot-standby.html#HOT-STANDBY-CONFLICT

Amazon Relational Database Service User Guide

Ahead Log files until the replica processes them, maintaining data consistency even during network
disruptions.

Beginning with RDS for PostgreSQL version 14, all replicas utilize replication slots. In earlier
versions, only cross-Region replicas used replication slots.

The postgres_get_av_diag() function displays output similar to the following when it finds a
read replica with physical replication slot as the blocker.

blocker | Read replica with physical replication slot
database |
blocker_identifier | rds_us_west_2_db_xxxxxxxxxxxxxxxxxxxxx
wait_event | Not applicable
autovacuum_lagging_by | 554,080,689
suggestion | Run the following query on the replica
 "rds_us_west_2_db_xxxxxxxxxxxxxxxxxxxx" to find the long running query:

 | SELECT * FROM pg_catalog.pg_stat_activity WHERE
 backend_xmin::text::bigint = 757989377;

 | Review carefully and you may consdier terminating the query on
 read replica using suggested_action. For more information, see Working with PostgreSQL
 autovacuum in the Amazon RDS User Guide. +
 |
suggested_action | {"SELECT pg_terminate_backend(pid) FROM
 pg_catalog.pg_stat_activity WHERE backend_xmin::text::bigint = 757989377;","
 +
 | [OR]

 +
 | ","Disable hot_standby_feedback","

 +
 | [OR]

 +
 | ","Delete the read replica if not needed"}

Read replica with streaming replication

Amazon RDS allows setting up read replicas without a physical replication slot in older versions,
up to version 13. This approach reduces overhead by allowing the primary to recycle WAL files
more aggressively, which is advantageous in environments with limited disk space and can tolerate

Working with PostgreSQL autovacuum 4449

Amazon Relational Database Service User Guide

occasional ReplicaLag. However, without a slot, the standby must remain in sync to avoid missing
WAL files. Amazon RDS uses archived WAL files to help the replica catch up if it falls behind, but
this process requires careful monitoring and can be slow.

The postgres_get_av_diag() function displays output similar to the following when it finds a
streaming read replica as the blocker.

blocker | Read replica with streaming replication slot
database | Not applicable
blocker_identifier | xx.x.x.xxx/xx
wait_event | Not applicable
autovacuum_lagging_by | 610,146,760
suggestion | Run the following query on the replica "xx.x.x.xxx" to find the
 long running query:
 +
 | SELECT * FROM pg_catalog.pg_stat_activity WHERE
 backend_xmin::text::bigint = 348319343;

 +
 | Review carefully and you may consdier terminating the query on
 read replica using suggested_action. For more information, see Working with PostgreSQL
 autovacuum in the Amazon RDS User Guide. +
 |
suggested_action | {"SELECT pg_terminate_backend(pid) FROM
 pg_catalog.pg_stat_activity WHERE backend_xmin::text::bigint = 348319343;","

 +
 | [OR]

 +
 | ","Disable hot_standby_feedback","

 +
 | [OR]

 +
 | ","Delete the read replica if not needed"}

Suggested action

As recommended in the suggested_action column, carefully review these options to unblock
autovacuum.

Working with PostgreSQL autovacuum 4450

Amazon Relational Database Service User Guide

• Terminate the query – Following the guidance in the suggestion column, you can connect
to the read replica, as specified in the suggested_action column, it's advisable to carefully
review the option to terminate the session. If termination is deemed safe, you may use
the pg_terminate_backend() function to terminate the session. This action can be
performed by an administrator (such as the RDS master account) or a user with the required
pg_terminate_backend() privilege.

You may run the following SQL command on the read replica to terminate the query that is
preventing the vacuum on the primary from cleaning up old rows. The value of backend_xmin
is reported in the function’s output:

SELECT
 pg_terminate_backend(pid)
FROM
 pg_catalog.pg_stat_activity
WHERE
 backend_xmin::text::bigint = backend_xmin;

• Disable hot standby feedback – Consider disabling the hot_standby_feedback parameter if
it's causing significant vacuum delays.

The hot_standby_feedback parameter allows a read replica to inform the primary about
its query activity, preventing the primary from vacuuming tables or rows that are in use on the
standby. While this ensures query stability on the standby, it can significantly delay vacuuming
on the primary. Disabling this feature allows the primary to proceed with vacuuming without
waiting for the standby to catch up. However, this can lead to query cancellations or failures on
the standby if it attempts to access rows that have been vacuumed by the primary.

• Delete the read replica if not needed – If the read replica is no longer necessary, you can
delete it. This will remove the associated replication overhead and allow the primary to recycle
transaction logs without being held back by the replica.

Temporary tables

Temporary tables, created using the TEMPORARY keyword, reside in the temp schema, for example
pg_temp_xxx, and are only accessible to the session that created them. Temporary tables are
dropped when the session ends. However, these tables are invisible to PostgreSQL's autovacuum
process, and must be manually vacuumed by the session that created them. Trying to vacuum the
temp table from another session has no effect.

Working with PostgreSQL autovacuum 4451

https://www.postgresql.org/docs/current/sql-createtable.html

Amazon Relational Database Service User Guide

In unusual circumstances, a temporary table exists without an active session owning it. If the
owning session ends unexpectedly due to a fatal crash, network issue, or similar event, the
temporary table might not be cleaned up, leaving it behind as an "orphaned" table. When the
PostgreSQL autovacuum process detects an orphaned temporary table, it logs the following
message:

LOG: autovacuum: found orphan temp table \"%s\".\"%s\" in database \"%s\"

The postgres_get_av_diag() function displays output similar to the following when it
identifies a temporary table as a blocker. For the function to correctly show the output related to
temporary tables, it needs to be executed within the same database where those tables exist.

blocker | Temporary table
database | my_database
blocker_identifier | pg_temp_14.ttemp
wait_event | Not applicable
autovacuum_lagging_by | 1,805,802,632
suggestion | Connect to database "my_database". Review carefully, you
 may consider dropping temporary table using command in suggested_action. For more
 information, see Working with PostgreSQL autovacuum in the Amazon RDS User Guide.
suggested_action | {"DROP TABLE ttemp;"}

Suggested action

Follow the instructions provided in the suggestion column of the output to identify and remove
the temporary table that is preventing autovacuum from running. Use the following command to
drop the temporary table reported by postgres_get_av_diag(). Replace the table name based
on the output provided by the postgres_get_av_diag() function.

DROP TABLE my_temp_schema.my_temp_table;

The following query can be used to identify temporary tables:

SELECT
 oid,
 relname,
 relnamespace::regnamespace,
 age(relfrozenxid)
FROM

Working with PostgreSQL autovacuum 4452

Amazon Relational Database Service User Guide

 pg_class
WHERE
relpersistence = 't'
ORDER BY
 age(relfrozenxid) DESC;

Resolving unidentifiable vacuum blockers in RDS for PostgreSQL

This section explores additional reasons that can prevent vacuuming from making progress. These
issues are currently not directly identifiable by the postgres_get_av_diag() function.

Topics

• Invalid pages

• Index inconsistency

• Exceptionally high transaction rate

Invalid pages

An invalid page error occurs when PostgreSQL detects a mismatch in a page’s checksum while
accessing that page. The contents are unreadable, preventing autovacuum from freezing tuples.
This effectively stops the cleanup process. The following error is written into PostgreSQL’s log:

WARNING: page verification failed, calculated checksum YYYYY but expected XXXX
ERROR: invalid page in block ZZZZZ of relation base/XXXXX/XXXXX
CONTEXT: automatic vacuum of table myschema.mytable

Determine the object type

ERROR: invalid page in block 4305910 of relation base/16403/186752608
WARNING: page verification failed, calculated checksum 50065 but expected 60033

From the error message, the path base/16403/186752608 provides the following information:

• "base" is the directory name under the PostgreSQL data directory.

• "16403" is the database OID, which you can look up in the pg_database system catalog.

• "186752608" is the relfilenode, which you can use to look up the schema and object name in
the pg_class system catalog.

Working with PostgreSQL autovacuum 4453

Amazon Relational Database Service User Guide

By checking the output of the following query in the impacted database, you can determine the
object type. The following query retrieves object information for oid: 186752608. Replace the OID
with the one relevant to the error you encountered.

SELECT
 relname AS object_name,
 relkind AS object_type,
 nspname AS schema_name
FROM
 pg_class c
 JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE
 c.oid = 186752608;

For more information, see the PostgreSQL documentation pg_class for all the supported object
types, noted by the relkind column in pg_class.

Guidance

The most effective solution for this issue depends on the configuration of your specific Amazon
RDS instance and the type of data impacted by the inconsistent page.

If the object type is an index:

Rebuilding the index is recommended.

• Using the CONCURRENTLY option – Prior to PostgreSQL version 12, rebuilding an index required
an exclusive table lock, restricting access to the table. With PostgreSQL version 12, and later
versions, the CONCURRENTLY option allows for row-level locking, significantly improving the
table's availability. Following is the command:

REINDEX INDEX ix_name CONCURRENTLY;

While CONCURRENTLY is less disruptive, it can be slower on busy tables. Consider building the
index during low-traffic periods if possible.

For more information, see the PostgreSQL REINDEX documentation.

• Using the INDEX_CLEANUP FALSE option – If the indexes are large and estimated to require
a significant amount of time to finish, you can unblock autovacuum by executing a manual

Working with PostgreSQL autovacuum 4454

https://www.postgresql.org/docs/current/catalog-pg-class.html
https://www.postgresql.org/docs/current/sql-reindex.html

Amazon Relational Database Service User Guide

VACUUM FREEZE while excluding indexes. This functionality is available in PostgreSQL version
12 and later versions.

Bypassing indexes will allow you to skip the vacuum process of the inconsistent index and
mitigate the wraparound issue. However, this will not resolve the underlying invalid page
problem. To fully address and resolve the invalid page issue, you will still need to rebuild the
index.

If the object type is a materialized view:

If an invalid page error occurs on a materialized view, login to the impacted database and refresh it
to resolve the invalid page:

Refresh the materialized view:

REFRESH MATERIALIZED VIEW schema_name.materialized_view_name;

If refreshing fails, try recreating:

DROP MATERIALIZED VIEW schema_name.materialized_view_name;
CREATE MATERIALIZED VIEW schema_name.materialized_view_name AS query;

Refreshing or recreating the materialized view restores it without impacting the underlying table
data.

For all other object types:

For all other object types, reach out to AWS support.

Index inconsistency

A logically inconsistent index can prevent autovacuum from making progress. The following errors
or similar errors are logged during either the vacuum phase of the index or when the index is
accessed by SQL statements.

ERROR: right sibling's left-link doesn't match:block 5 links to 10 instead of expected
 2 in index ix_name

ERROR: failed to re-find parent key in index "XXXXXXXXXX" for deletion target page XXX

Working with PostgreSQL autovacuum 4455

Amazon Relational Database Service User Guide

CONTEXT: while vacuuming index index_name of relation schema.table

Guidance

Rebuild the index or skip indexes using INDEX_CLEANUP on manual VACUUM FREEZE. For
information about how to rebuild the index, see If the object type is an index.

• Using the CONCURRENTLY option – Prior to PostgreSQL version 12, rebuilding an index
required an exclusive table lock, restricting access to the table. With PostgreSQL version 12, and
later versions, the CONCURRENTLY option allows for row-level locking, significantly improving
the table's availability. Following is the command:

REINDEX INDEX ix_name CONCURRENTLY;

While CONCURRENTLY is less disruptive, it can be slower on busy tables. Consider building the
index during low-traffic periods if possible. For more information, see REINDEX in PostgreSQL
documentation.

• Using the INDEX_CLEANUP FALSE option – If the indexes are large and estimated to require
a significant amount of time to finish, you can unblock autovacuum by executing a manual
VACUUM FREEZE while excluding indexes. This functionality is available in PostgreSQL version 12
and later versions.

Bypassing indexes will allow you to skip the vacuum process of the inconsistent index and
mitigate the wraparound issue. However, this will not resolve the underlying invalid page
problem. To fully address and resolve the invalid page issue, you will still need to rebuild the
index.

Exceptionally high transaction rate

In PostgreSQL, high transaction rates can significantly impact autovacuum's performance, leading
to slower cleanup of dead tuples and increased risk of transaction ID wraparound. You can monitor
the transaction rate by measuring the difference in max(age(datfrozenxid)) between two time
periods, typically per second. Additionally, you can use the following counter metrics from RDS
Performance Insights to measure the transaction rate (the sum of xact_commit and xact_rollback)
which is the total number of transactions.

Working with PostgreSQL autovacuum 4456

https://www.postgresql.org/docs/current/sql-reindex.html

Amazon Relational Database Service User Guide

Counter Type Unit Metric

xact_commit Transactions Commits per second db.Transactions.xa
ct_commit

xact_rollback Transactions Rollbacks per second db.Transactions.xa
ct_rollback

A rapid increase indicates a high transaction load, which can overwhelm autovacuum, causing
bloat, lock contention, and potential performance issues. This can negatively impact the
autovacuum process in a couple of ways:

• Table Activity: The specific table being vacuumed could be experiencing a high volume of
transactions, causing delays.

• System Resources The overall system might be overloaded, making it difficult for autovacuum to
access the necessary resources to function efficiently.

Consider the following strategies for allowing autovacuum to operate more effectively and keep up
with its tasks:

1. Reduce the transaction rate if possible. Consider to batch or group similar transactions where
feasible.

2. Target frequently updated tables with manual VACUUM FREEZE operation nightly, weekly, or
biweekly during off-peak hours.

3. Consider scaling up your instance class to allocate more system resources to handle the high
transaction volume and autovacuum.

Resolving vacuum performance issues in RDS for PostgreSQL

This section discusses factors that often contribute to slower vacuum performance and how to
address these issues.

Topics

• Vacuum large indexes

• Too many tables or databases to vacuum

Working with PostgreSQL autovacuum 4457

Amazon Relational Database Service User Guide

• Aggressive vacuum (to prevent wraparound) is running

Vacuum large indexes

VACUUM operates through sequential phases: initialization, heap scanning, index and heap
vacuuming, index cleanup, heap truncation, and final cleanup. During the heap scan, the process
prunes pages, defragments and freezes them. After completing the heap scan, VACUUM cleans
indexes, returns empty pages to the operating system, and performs final cleanup tasks like
vacuuming the free space map and updating statistics.

Index vacuuming may require multiple passes when maintenance_work_mem (or
autovacuum_work_mem) is insufficient to process the index. In PostgreSQL 16 and earlier, a 1 GB
memory limit for storing dead tuple IDs often forced multiple passes on large indexes. PostgreSQL
17 introduces TidStore, which dynamically allocates memory instead of using a single-allocation
array. This removes the 1 GB constraint, uses memory more efficiently, and reduces the need for
multiple index scans per each index.

Large indexes may still require multiple passes in PostgreSQL 17 if available memory can't
accommodate the entire index processing at once. Typically, larger indexes contain more dead
tuples that require multiple passes.

Detecting slow vacuum operations

The postgres_get_av_diag() function can detect when vacuum operations are running slowly
due to insufficient memory. For more information on this function, see Installing autovacuum
monitoring and diagnostic tools in RDS for PostgreSQL.

The postgres_get_av_diag() function issues the following notices when the available memory
is not enough to complete the index vacuuming in a single pass.

rds_tools 1.8

NOTICE: Your database is currently running aggressive vacuum to prevent wraparound and
 it might be slow.

NOTICE: The current setting of autovacuum_work_mem is "XXX" and might not be
 sufficient. Consider increasing the setting, and if necessary, scaling up the Amazon
 RDS instance class for more memory.
 Additionally, review the possibility of manual vacuum with exclusion of indexes
 using (VACUUM (INDEX_CLEANUP FALSE, VERBOSE TRUE) table_name;).

Working with PostgreSQL autovacuum 4458

Amazon Relational Database Service User Guide

rds_tools 1.9

NOTICE: Your database is currently running aggressive vacuum to prevent wraparound and
 it might be slow.

NOTICE: The current setting of autovacuum_work_mem is XX might not be sufficient.
 Consider increasing the setting to XXX, and if necessary, scaling up the RDS instance
 class for more
 memory. The suggested value is an estimate based on the current number of dead
 tuples for the table being vacuumed, which might not fully reflect the latest state.
 Additionally, review the possibility of manual
 vacuum with exclusion of indexes using (VACUUM (INDEX_CLEANUP FALSE, VERBOSE
 TRUE) table_name;). For more information, see
 Working with PostgreSQL autovacuum in the Amazon Amazon RDS User Guide
 .

Note

The postgres_get_av_diag() function relies on pg_stat_all_tables.n_dead_tup
for estimating the amount of memory required for index vacuuming.

When the postgres_get_av_diag() function identifies a slow vacuum operation that requires
multiple index scans due to insufficient autovacuum_work_mem, it will generate the following
message:

NOTICE: Your vacuum is performing multiple index scans due to insufficient
 autovacuum_work_mem:XXX for index vacuuming.
 For more information, see Working with PostgreSQL autovacuum in the Amazon
 Amazon RDS User Guide.

Guidance

You can apply the following workarounds using manual VACUUM FREEZE to speed up freezing the
table.

Increase the memory for vacuuming

As suggested by the postgres_get_av_diag() function, it's advisable to increase the
autovacuum_work_mem parameter to address potential memory constraints at the instance level.

Working with PostgreSQL autovacuum 4459

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html

Amazon Relational Database Service User Guide

While autovacuum_work_mem is a dynamic parameter, it's important to note that for the new
memory setting to take effect, the autovacuum daemon needs to restart its workers. To accomplish
this:

1. Confirm that the new setting is in place.

2. Terminate the processes currently running autovacuum.

This approach ensures that the adjusted memory allocation is applied to new autovacuum
operations.

For more immediate results, consider manually performing a VACUUM FREEZE operation with an
increased maintenance_work_mem setting within your session:

SET maintenance_work_mem TO '1GB';
VACUUM FREEZE VERBOSE table_name;

If you're using Amazon RDS and find that you need additional memory to support higher values
for maintenance_work_mem or autovacuum_work_mem, consider upgrading to an instance
class with more memory. This can provide the necessary resources to enhance both manual and
automatic vacuum operations, leading to improved overall vacuum and database performance.

Disable INDEX_CLEANUP

Manual VACUUM in PostgreSQL version 12 and later allows skipping the index cleanup phase, while
emergency autovacuum in PostgreSQL version 14 and later does this automatically based on the
vacuum_failsafe_age parameter.

Warning

Skipping index cleanup can lead to index bloat and negatively impact query performance.
To mitigate this, consider reindexing or vacuuming affected indexes during a maintenance
window.

For additional guidance on handling large indexes, refer to the documentation on Managing
autovacuum with large indexes .

Parallel index vacuuming

Working with PostgreSQL autovacuum 4460

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-VACUUM-FAILSAFE-AGE

Amazon Relational Database Service User Guide

Starting with PostgreSQL 13, indexes can be vacuumed and cleaned in parallel by default using
manual VACUUM, with one vacuum worker process assigned to each index. However, for PostgreSQL
to determine if a vacuum operation qualifies for parallel execution, specific criteria must be met:

• There must be at least two indexes.

• The max_parallel_maintenance_workers parameter should be set to at least 2.

• The index size must exceed the min_parallel_index_scan_size limit, which defaults to
512KB.

You can adjust the max_parallel_maintenance_workers setting based on the number of
vCPUs available on your Amazon RDS instance and the number of indexes on the table to optimize
vacuuming turnaround time.

For more information, see Parallel vacuuming in Amazon RDS for PostgreSQL and Amazon Aurora
PostgreSQL.

Too many tables or databases to vacuum

As mentioned in PostgreSQL's The Autovacuum Daemon documentation, the autovacuum daemon
operates through multiple processes. This includes a persistent autovacuum launcher responsible
for starting autovacuum worker processes for each database within the system. The launcher
schedules these workers to initiate approximately every autovacuum_naptime seconds per
database.

With 'N' databases, a new worker begins roughly every [autovacuum_naptime/N seconds].
However, the total number of concurrent workers is limited by the autovacuum_max_workers
setting. If the number of databases or tables requiring vacuuming exceeds this limit, the next
database or table will be processed as soon as a worker becomes available.

When many large tables or databases require vacuuming concurrently, all available autovacuum
workers can become occupied for an extended duration, delaying maintenance on other tables and
databases. In environments with high transaction rates, this bottleneck can quickly escalate and
potentially lead to wraparound vacuum issues within your Amazon RDS instance.

When postgres_get_av_diag() detects a high number of tables or databases, it provides the
following recommendation:

NOTICE: Your database is currently running aggressive vacuum to prevent wraparound and
 it might be slow.

Working with PostgreSQL autovacuum 4461

https://aws.amazon.com/blogs/database/parallel-vacuuming-in-amazon-rds-for-postgresql-and-amazon-aurora-postgresql/
https://aws.amazon.com/blogs/database/parallel-vacuuming-in-amazon-rds-for-postgresql-and-amazon-aurora-postgresql/
https://www.postgresql.org/docs/current/routine-vacuuming.html#AUTOVACUUM'

Amazon Relational Database Service User Guide

NOTICE: The current setting of autovacuum_max_workers:3 might not be sufficient.
 Consider increasing the setting and, if necessary, consider scaling up the Amazon RDS
 instance class for more workers.

Guidance

Increase autovacuum_max_workers

To expedite the vacuuming, we recommend adjusting the autovacuum_max_workers parameter
to allow more concurrent autovacuum workers. If performance bottlenecks persist, consider scaling
up your Amazon RDS instance to a class with more vCPUs, which can further improve the parallel
processing capabilities.

Aggressive vacuum (to prevent wraparound) is running

The age of the database (MaximumUsedTransactionIDs) in PostgreSQL only decreases when an
aggressive vacuum (to prevent wraparound) is successfully completed. Until this vacuum finishes,
the age will continue to increase depending on the transaction rate.

The postgres_get_av_diag() function generates the following NOTICE when it detects an
aggressive vacuum. However, it only triggers this output after the vacuum has been active for at
least two minutes.

NOTICE: Your database is currently running aggressive vacuum to prevent wraparound,
 monitor autovacuum performance.

For more information about aggressive vacuum, see When an aggressive vacuum is already
running.

You can verify if an aggressive vacuum is in progress with the following query:

SELECT
 a.xact_start AS start_time,
 v.datname "database",
 a.query,
 a.wait_event,
 v.pid,
 v.phase,
 v.relid::regclass,
 pg_size_pretty(pg_relation_size(v.relid)) AS heap_size,

Working with PostgreSQL autovacuum 4462

Amazon Relational Database Service User Guide

 (
 SELECT
 string_agg(pg_size_pretty(pg_relation_size(i.indexrelid)) || ':' ||
 i.indexrelid::regclass || chr(10), ', ')
 FROM
 pg_index i
 WHERE
 i.indrelid = v.relid
) AS index_sizes,
 trunc(v.heap_blks_scanned * 100 / NULLIF(v.heap_blks_total, 0)) AS step1_scan_pct,
 v.index_vacuum_count || '/' || (
 SELECT
 count(*)
 FROM
 pg_index i
 WHERE
 i.indrelid = v.relid
) AS step2_vacuum_indexes,
 trunc(v.heap_blks_vacuumed * 100 / NULLIF(v.heap_blks_total, 0)) AS
 step3_vacuum_pct,
 age(CURRENT_TIMESTAMP, a.xact_start) AS total_time_spent_sofar
FROM
 pg_stat_activity a
 INNER JOIN pg_stat_progress_vacuum v ON v.pid = a.pid;

You can determine if it's an aggressive vacuum (to prevent wraparound) by checking the query
column in the output. The phrase "to prevent wraparound" indicates that it is an aggressive
vacuum.

query | autovacuum: VACUUM public.t3 (to prevent wraparound)

For example, suppose you have a blocker at transaction age 1 billion and a table requiring an
aggressive vacuum to prevent wraparound at the same transaction age. Additionally, there's
another blocker at transaction age 750 million. After clearing the blocker at transaction age 1
billion, the transaction age won't immediately drop to 750 million. It will remain high until the
table needing the aggressive vacuum or any transaction with an age over 750 million is completed.
During this period, the transaction age of your PostgreSQL cluster will continue to rise. Once the
vacuum process is completed, the transaction age will drop to 750 million but will start increasing
again until further vacuuming is finished. This cycle will continue as long as these conditions
persist, until the transaction age eventually drops to the level configured for your Amazon RDS
instance, specified by autovacuum_freeze_max_age.

Working with PostgreSQL autovacuum 4463

Amazon Relational Database Service User Guide

Explanation of the NOTICE messages in RDS for PostgreSQL

The postgres_get_av_diag() function provides the following NOTICE messages:

When the age has not reached the monitoring threshold yet

The monitoring threshold for postgres_get_av_diag() to identify blockers is 500 million
transactions by default. If postgres_get_av_diag() generates the following NOTICE, it
indicates that the transaction age has not yet reached this threshold.

NOTICE: postgres_get_av_diag() checks for blockers that prevent aggressive vacuums
 only, it does so only after exceeding dvb_threshold which is 500,000,000 and age of
 this PostgreSQL cluster is currently at 2.

Not connected to the database with the age of oldest transaction ID

The postgres_get_av_diag() function provides the most accurate output when connected
to the database with the oldest transaction ID age. The database with the oldest transaction ID
age reported by postgres_get_av_diag() will be different than “my_database” in your case.
If you are not connected to the correct database, the following NOTICE is generated:

NOTICE: You are not connected to the database with the age of oldest transaction
 ID. Connect to my_database database and run postgres_get_av_diag() for accurate
 reporting.

Connecting to the database with the oldest transaction age is important for the following
reasons:

• Identifying temporary table blockers: Because the metadata for temporary tables is specific
to each database, they are typically found in the database where they are created. However,
if a temporary table happens to be the top blocker and resides in the database with the
oldest transaction, this could be misleading. Connecting to the correct database ensures the
accurate identification of the temporary table blocker.

• Diagnosing slow vacuums: The index metadata and table count information are database-
specific and necessary for diagnosing slow vacuum issues.

Database with oldest transaction by age is on an rdsadmin or template0 database

In certain cases, the rdsadmin or template0 databases may be identified as the database
with the oldest transaction ID age. If this happens, postgres_get_av_diag() will issue the
following NOTICE:

Working with PostgreSQL autovacuum 4464

Amazon Relational Database Service User Guide

NOTICE: The database with the age of oldest transaction ID is rdsadmin or template0,
 reach out to support if the reported blocker is in rdsadmin or template0.

Verify that the listed blocker is not originating from either of these two databases. If the
blocker is reported to be present in either rdsadmin or template0, contact support as these
databases are not user-accessible and require intervention.

It is highly unlikely for either the rdsadmin or template0 database to contain a top blocker.

When an aggressive vacuum is already running

The postgres_get_av_diag() function is designed to report when an aggressive vacuum
process is running, but it only triggers this output after the vacuum has been active for at least
1 minute. This intentional delay helps reduce the chances of false positives. By waiting, the
function ensures that only effective, significant vacuums are reported, leading to more accurate
and reliable monitoring of vacuum activity.

The postgres_get_av_diag() function generates the following NOTICE when it detects one
or more aggressive vacuums in progress.

NOTICE: Your database is currently running aggressive vacuum to prevent wraparound,
 monitor autovacuum performance.

As indicated in the NOTICE, continue to monitor the performance of vacuum. For more
information about aggressive vacuum see Aggressive vacuum (to prevent wraparound) is
running

When autovacuum is off

The postgres_get_av_diag() function generates the following NOTICE if autovacuum is
disabled on your database instance:

NOTICE: Autovacuum is OFF, we strongly recommend to enable it, no restart is
 necessary.

Autovacuum is a critical feature of your RDS for PostgreSQL DB instance that ensures smooth
database operation. It automatically removes old row versions, reclaims storage space, and
prevents table bloat, helping to keep tables and indexes efficient for optimal performance.
Additionally, it protects against transaction ID wraparound, which can halt transactions on
your Amazon RDS instance. Disabling autovacuum can lead to long-term declines in database

Working with PostgreSQL autovacuum 4465

Amazon Relational Database Service User Guide

performance and stability. We suggest you to keep it on all the times. For more information, see
Understanding autovacuum in RDS for PostgreSQL environments.

Note

Turning off autovacuum doesn't stop aggressive vacuums. These will still occur once
your tables hit the autovacuum_freeze_max_age threshold.

The number of transactions remaining is critically low

The postgres_get_av_diag() function generates the following NOTICE when a wraparound
vacuum is imminent. This NOTICE is issued when your Amazon RDS instance is 100 million
transactions away from potentially rejecting new transactions.

WARNING: Number of transactions remaining is critically low, resolve issues with
 autovacuum or perform manual VACUUM FREEZE before your instance stops accepting
 transactions.

Your immediate action is required to avoid database downtime. You should closely monitor
your vacuuming operations and consider manually initiating a VACUUM FREEZE on the affected
database to prevent transaction failures.

Working with logging mechanisms supported by RDS for PostgreSQL

There are several parameters, extensions, and other configurable items that you can set to log
activities that occur on your PostgreSQL DB instance. These include the following:

• The log_statement parameter can be used to log user activity in your PostgreSQL database.
To learn more about RDS for PostgreSQL logging and how to monitor the logs, see RDS for
PostgreSQL database log files.

• The rds.force_admin_logging_level parameter logs actions by the Amazon RDS internal
user (rdsadmin) in the databases on the DB instance. It writes the output to the PostgreSQL error
log. Allowed values are disabled, debug5, debug4, debug3, debug2, debug1, info, notice,
warning, error, log, fatal, and panic. The default value is disabled.

• The rds.force_autovacuum_logging_level parameter can be set to capture various
autovacuum operations in the PostgreSQL error log. For more information, see Logging
autovacuum and vacuum activities.

Logging mechanisms 4466

https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/

Amazon Relational Database Service User Guide

• The PostgreSQL Audit (pgAudit) extension can be installed and configured to capture activities at
the session level or at the object level. For more information, see Using pgAudit to log database
activity.

• The log_fdw extension makes it possible for you to access the database engine log using SQL.
For more information, see Using the log_fdw extension to access the DB log using SQL.

• The pg_stat_statements library is specified as the default for the
shared_preload_libraries parameter in RDS for PostgreSQL version 10 and higher. It's this
library that you can use to analyze running queries. Be sure that pg_stat_statements is set in
your DB parameter group. For more information about monitoring your RDS for PostgreSQL DB
instance using the information that this library provides, see SQL statistics for RDS PostgreSQL.

• The log_hostname parameter captures to the log the hostname of each client connection.
For RDS for PostgreSQL version 12 and higher versions, this parameter is set to off by default.
If you turn it on, be sure to monitor session connection times. When turned on, the service
uses the domain name system (DNS) reverse lookup request to get the hostname of the client
that's making the connection and add it to the PostgreSQL log. This has a noticeable impact
during session connection. We recommend that you turn on this parameter for troubleshooting
purposes only.

In general terms, the point of logging is so that the DBA can monitor, tune performance, and
troubleshoot. Many of the logs are uploaded automatically to Amazon CloudWatch or Performance
Insights. Here, they're sorted and grouped to provide complete metrics for your DB instance. To
learn more about Amazon RDS monitoring and metrics, see Monitoring metrics in an Amazon RDS
instance.

Managing temporary files with PostgreSQL

In PostgreSQL, a complex query might perform several sort or hash operations at the same
time, with each operation using instance memory to store results up to the value specified in the
work_mem parameter. When the instance memory is not sufficient, temporary files are created to
store the results. These are written to disk to complete the query execution. Later, these files are
automatically removed after the query completes. In RDS for PostgreSQL, these files are stored in
Amazon EBS on the data volume. For more information, see Amazon RDS DB instance storage. You
can monitor the FreeStorageSpace metric published in CloudWatch to make sure that your DB
instance has enough free storage space. For more information, see FreeStorageSpace .

Managing temporary files with PostgreSQL 4467

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://repost.aws/knowledge-center/storage-full-rds-cloudwatch-alarm

Amazon Relational Database Service User Guide

We recommend using Amazon RDS Optimized Read instances for workloads involving multiple
concurrent queries that increase the usage of temporary files. These instances use local Non-
Volatile Memory Express (NVMe) based solid state drive (SSD) block-level storage to place the
temporary files. For more information, see Improving query performance for RDS for PostgreSQL
with Amazon RDS Optimized Reads.

You can use the following parameters and functions to manage the temporary files in your
instance.

• temp_file_limit – This parameter cancels any query exceeding the size of temp_files in KB.
This limit prevents any query from running endlessly and consuming disk space with temporary
files. You can estimate the value using the results from the log_temp_files parameter. As a
best practice, examine the workload behavior and set the limit according to the estimation. The
following example shows how a query is canceled when it exceeds the limit.

postgres=>select * from pgbench_accounts, pg_class, big_table;

ERROR: temporary file size exceeds temp_file_limit (64kB)

• log_temp_files – This parameter sends messages to the postgresql.log when the temporary
files of a session are removed. This parameter produces logs after a query successfully
completes. Therefore, it might not help in troubleshooting active, long-running queries.

The following example shows that when the query successfully completes, the entries are logged
in the postgresql.log file while the temporary files are cleaned up.

2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:LOG:
 temporary file: path "base/pgsql_tmp/pgsql_tmp31236.5", size 140353536
2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:STATEMENT:
 select a.aid from pgbench_accounts a, pgbench_accounts b where a.bid=b.bid order by
 a.bid limit 10;
2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:LOG:
 temporary file: path "base/pgsql_tmp/pgsql_tmp31236.4", size 180428800
2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:STATEMENT:
 select a.aid from pgbench_accounts a, pgbench_accounts b where a.bid=b.bid order by
 a.bid limit 10;

Managing temporary files with PostgreSQL 4468

https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-DISK
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-TEMP-FILES

Amazon Relational Database Service User Guide

• pg_ls_tmpdir – This function that is available from RDS for PostgreSQL 13 and above provides
visibility into the current temporary file usage. The completed query doesn't appear in the
results of the function. In the following example, you can view the results of this function.

postgres=>select * from pg_ls_tmpdir();

 name | size | modification
-----------------+------------+------------------------
 pgsql_tmp8355.1 | 1072250880 | 2023-02-06 22:54:56+00
 pgsql_tmp8351.0 | 1072250880 | 2023-02-06 22:54:43+00
 pgsql_tmp8327.0 | 1072250880 | 2023-02-06 22:54:56+00
 pgsql_tmp8351.1 | 703168512 | 2023-02-06 22:54:56+00
 pgsql_tmp8355.0 | 1072250880 | 2023-02-06 22:54:00+00
 pgsql_tmp8328.1 | 835031040 | 2023-02-06 22:54:56+00
 pgsql_tmp8328.0 | 1072250880 | 2023-02-06 22:54:40+00
(7 rows)

postgres=>select query from pg_stat_activity where pid = 8355;

query
--
select a.aid from pgbench_accounts a, pgbench_accounts b where a.bid=b.bid order by
 a.bid
(1 row)

The file name includes the processing ID (PID) of the session that generated the temporary file.
A more advanced query, such as in the following example, performs a sum of the temporary files
for each PID.

postgres=>select replace(left(name, strpos(name, '.')-1),'pgsql_tmp','') as pid,
 count(*), sum(size) from pg_ls_tmpdir() group by pid;

 pid | count | sum
------+-------------------
 8355 | 2 | 2144501760

Managing temporary files with PostgreSQL 4469

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADMIN-GENFILE

Amazon Relational Database Service User Guide

 8351 | 2 | 2090770432
 8327 | 1 | 1072250880
 8328 | 2 | 2144501760
(4 rows)

• pg_stat_statements – If you activate the pg_stat_statements parameter, then you can view
the average temporary file usage per call. You can identify the query_id of the query and use it
to examine the temporary file usage as shown in the following example.

postgres=>select queryid from pg_stat_statements where query like 'select a.aid from
 pgbench%';

 queryid

 -7170349228837045701
(1 row)

postgres=>select queryid, substr(query,1,25), calls, temp_blks_read/calls
 temp_blks_read_per_call, temp_blks_written/calls temp_blks_written_per_call from
 pg_stat_statements where queryid = -7170349228837045701;

 queryid | substr | calls | temp_blks_read_per_call |
 temp_blks_written_per_call
----------------------+---------------------------+-------+-------------------------
+----------------------------
 -7170349228837045701 | select a.aid from pgbench | 50 | 239226 |
 388678
(1 row)

• Performance Insights – In the Performance Insights dashboard, you can view temporary
file usage by turning on the metrics temp_bytes and temp_files. Then, you can see the
average of both of these metrics and see how they correspond to the query workload. The
view within Performance Insights doesn't show specifically the queries that are generating
the temporary files. However, when you combine Performance Insights with the query shown
for pg_ls_tmpdir, you can troubleshoot, analyze, and determine the changes in your query
workload.

Managing temporary files with PostgreSQL 4470

https://www.postgresql.org/docs/current/pgstatstatements.html
https://aws.amazon.com/rds/performance-insights/

Amazon Relational Database Service User Guide

For more information about how to analyze metrics and queries with Performance Insights, see
Analyzing metrics with the Performance Insights dashboard.

For an example of viewing temporary file usage with Performance Insights, see Viewing
temporary file usage with Performance Insights

Viewing temporary file usage with Performance Insights

You can use Performance Insights to view temporary file usage by turning on the metrics
temp_bytes and temp_files. The view in Performance Insights doesn't show the specific queries
that generate temporary files, however, when you combine Performance Insights with the query
shown for pg_ls_tmpdir, you can troubleshoot, analyze, and determine the changes in your
query workload.

1. In the Performance Insights dashboard, choose Manage Metrics.

2. Choose Database metrics, and select the temp_bytes and temp_files metrics as shown in the
following image.

Managing temporary files with PostgreSQL 4471

Amazon Relational Database Service User Guide

3. In the Top SQL tab, choose the Preferences icon.

4. In the Preferences window, turn on the following statistics to appear in the Top SQLtab and
choose Continue.

• Temp writes/sec

• Temp reads/sec

• Tmp blk write/call

• Tmp blk read/call

Managing temporary files with PostgreSQL 4472

Amazon Relational Database Service User Guide

5. The temporary file is broken out when combined with the query shown for pg_ls_tmpdir, as
shown in the following example.

The IO:BufFileRead and IO:BufFileWrite events occur when the top queries in your
workload often create temporary files. You can use Performance Insights to identify top queries
waiting on IO:BufFileRead and IO:BufFileWrite by reviewing Average Active Session (AAS)
in Database Load and Top SQL sections.

For more information on how to analyze top queries and load by wait event with Performance
Insights, see Overview of the Top SQL tab. You should identify and tune the queries that cause
increase in temporary file usage and related wait events. For more information on these wait
events and remediation, see IO:BufFileRead and IO:BufFileWrite.

Note

The work_mem parameter controls when the sort operation runs out of memory and results
are written into temporary files. We recommend that you don't change the setting of this
parameter higher than the default value because it would permit every database session
to consume more memory. Also, a single session that performs complex joins and sorts can
perform parallel operations in which each operation consumes memory.

Managing temporary files with PostgreSQL 4473

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/wait-event.iobuffile.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM

Amazon Relational Database Service User Guide

As a best practice, when you have a large report with multiple joins and sorts, set this
parameter at the session level by using the SET work_mem command. Then the change is
only applied to the current session and doesn't change the value globally.

Using pgBadger for log analysis with PostgreSQL

You can use a log analyzer such as pgBadger to analyze PostgreSQL logs. The pgBadger
documentation states that the %l pattern (the log line for the session or process) should be a
part of the prefix. However, if you provide the current RDS log_line_prefix as a parameter to
pgBadger it should still produce a report.

For example, the following command correctly formats an Amazon RDS for PostgreSQL log file
dated 2014-02-04 using pgBadger.

./pgbadger -f stderr -p '%t:%r:%u@%d:[%p]:' postgresql.log.2014-02-04-00

Using PGSnapper for monitoring PostgreSQL

You can use PGSnapper to assist with periodic collection of Amazon RDS for PostgreSQL
performance-related statistics and metrics. For more information, see Monitor Amazon RDS for
PostgreSQL performance using PGSnapper.

Working with parameters on your RDS for PostgreSQL DB instance

In some cases, you might create an RDS for PostgreSQL DB instance without specifying a custom
parameter group. If so, your DB instance is created using the default parameter group for
the version of PostgreSQL that you choose. For example, suppose that you create an RDS for
PostgreSQL DB instance using PostgreSQL 13.3. In this case, the DB instance is created using the
values in the parameter group for PostgreSQL 13 releases, default.postgres13.

You can also create your own custom DB parameter group. You need to do this if you want to
modify any settings for the RDS for PostgreSQL DB instance from their default values. To learn
how, see Parameter groups for Amazon RDS.

You can track the settings on your RDS for PostgreSQL DB instance in several different ways. You
can use the AWS Management Console, the AWS CLI, or the Amazon RDS API. You can also query
the values from the PostgreSQL pg_settings table of your instance, as shown following.

Using pgBadger for log analysis with PostgreSQL 4474

http://dalibo.github.io/pgbadger/
https://aws.amazon.com/blogs/database/monitor-amazon-rds-for-postgresql-and-amazon-aurora-postgresql-performance-using-pgsnapper/
https://aws.amazon.com/blogs/database/monitor-amazon-rds-for-postgresql-and-amazon-aurora-postgresql-performance-using-pgsnapper/

Amazon Relational Database Service User Guide

SELECT name, setting, boot_val, reset_val, unit
 FROM pg_settings
 ORDER BY name;

To learn more about the values returned from this query, see pg_settings in the PostgreSQL
documentation.

Be especially careful when changing the settings for max_connections and shared_buffers
on your RDS for PostgreSQL DB instance. For example, suppose that you modify settings for
max_connections or shared_buffers and you use values that are too high for your actual
workload. In this case, your RDS for PostgreSQL DB instance won't start. If this happens, you see an
error such as the following in the postgres.log.

2018-09-18 21:13:15 UTC::@:[8097]:FATAL: could not map anonymous shared memory: Cannot
 allocate memory
2018-09-18 21:13:15 UTC::@:[8097]:HINT: This error usually means that PostgreSQL's
 request for a shared memory segment
exceeded available memory or swap space. To reduce the request size (currently
 3514134274048 bytes), reduce
PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or
 max_connections.

However, you can't change any values of the settings contained in the default RDS for PostgreSQL
DB parameter groups. To change settings for any parameters, first create a custom DB parameter
group. Then change the settings in that custom group, and then apply the custom parameter
group to your RDS for PostgreSQL DB instance. To learn more, see Parameter groups for Amazon
RDS.

There are two types of parameters in RDS for PostgreSQL.

• Static parameters – Static parameters require that the RDS for PostgreSQL DB instance be
rebooted after a change so that the new value can take effect.

• Dynamic parameters – Dynamic parameters don't require a reboot after changing their settings.

Working with parameters 4475

https://www.postgresql.org/docs/current/view-pg-settings.html

Amazon Relational Database Service User Guide

Note

If your RDS for PostgreSQL DB instance is using your own custom DB parameter group, you
can change the values of dynamic parameters on the running DB instance. You can do this
by using the AWS Management Console, the AWS CLI, or the Amazon RDS API.

If you have privileges to do so, you can also change parameter values by using the ALTER
DATABASE, ALTER ROLE, and SET commands.

Working with parameters 4476

Amazon Relational Database Service User Guide

RDS for PostgreSQL DB instance parameter list

The following table lists some (but not all) parameters available in an RDS for PostgreSQL DB
instance. To view all available parameters, you use the describe-db-parameters AWS CLI command.
For example, to get the list of all parameters available in the default parameter group for RDS for
PostgreSQL version 13, run the following.

aws rds describe-db-parameters --db-parameter-group-name default.postgres13

You can also use the Console. Choose Parameter groups from the Amazon RDS menu, and then
choose the parameter group from those available in your AWS Region.

Parameter name Apply_Typ
e

Description

application_name Dynamic Sets the application name to be reported in
statistics and logs.

archive_command Dynamic Sets the shell command that will be called to
archive a WAL file.

array_nulls Dynamic Enables input of NULL elements in arrays.

authentication_tim
eout

Dynamic Sets the maximum allowed time to complete
client authentication.

autovacuum Dynamic Starts the autovacuum subprocess.

autovacuum_analyze
_scale_factor

Dynamic Number of tuple inserts, updates, or deletes
before analyze as a fraction of reltuples.

autovacuum_analyze
_threshold

Dynamic Minimum number of tuple inserts, updates, or
deletes before analyze.

autovacuum_freeze_
max_age

Static Age at which to autovacuum a table to prevent
transaction ID wraparound.

autovacuum_naptime Dynamic Time to sleep between autovacuum runs.

Working with parameters 4477

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

autovacuum_max_wor
kers

Static Sets the maximum number of simultaneously
running autovacuum worker processes.

autovacuum_vacuum_
cost_delay

Dynamic Vacuum cost delay, in milliseconds, for autovacuu
m.

autovacuum_vacuum_
cost_limit

Dynamic Vacuum cost amount available before napping,
for autovacuum.

autovacuum_vacuum_
scale_factor

Dynamic Number of tuple updates or deletes before
vacuum as a fraction of reltuples.

autovacuum_vacuum_
threshold

Dynamic Minimum number of tuple updates or deletes
before vacuum.

backslash_quote Dynamic Sets whether a backslash (\) is allowed in string
literals.

bgwriter_delay Dynamic Background writer sleep time between rounds.

bgwriter_lru_maxpa
ges

Dynamic Background writer maximum number of LRU
pages to flush per round.

bgwriter_lru_multi
plier

Dynamic Multiple of the average buffer usage to free per
round.

bytea_output Dynamic Sets the output format for bytes.

check_function_bod
ies

Dynamic Checks function bodies during CREATE
FUNCTION.

checkpoint_complet
ion_target

Dynamic Time spent flushing dirty buffers during
checkpoint, as a fraction of the checkpoint
interval.

Working with parameters 4478

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

checkpoint_segments Dynamic Sets the maximum distance in log segments
between automatic write-ahead log (WAL)
checkpoints.

checkpoint_timeout Dynamic Sets the maximum time between automatic WAL
checkpoints.

checkpoint_warning Dynamic Enables warnings if checkpoint segments are
filled more frequently than this.

client_connection_
check_interval

Dynamic Sets the time interval between checks for
disconnection while running queries.

client_encoding Dynamic Sets the client's character set encoding.

client_min_messages Dynamic Sets the message levels that are sent to the client.

commit_delay Dynamic Sets the delay in microseconds between transacti
on commit and flushing WAL to disk.

commit_siblings Dynamic Sets the minimum concurrent open transactions
before performing commit_delay.

constraint_exclusion Dynamic Enables the planner to use constraints to
optimize queries.

cpu_index_tuple_cost Dynamic Sets the planner's estimate of the cost of
processing each index entry during an index scan.

cpu_operator_cost Dynamic Sets the planner's estimate of the cost of
processing each operator or function call.

cpu_tuple_cost Dynamic Sets the planner's estimate of the cost of
processing each tuple (row).

cursor_tuple_fract
ion

Dynamic Sets the planner's estimate of the fraction of a
cursor's rows that will be retrieved.

Working with parameters 4479

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

datestyle Dynamic Sets the display format for date and time values.

deadlock_timeout Dynamic Sets the time to wait on a lock before checking
for deadlock.

debug_pretty_print Dynamic Indents parse and plan tree displays.

debug_print_parse Dynamic Logs each query's parse tree.

debug_print_plan Dynamic Logs each query's execution plan.

debug_print_rewrit
ten

Dynamic Logs each query's rewritten parse tree.

default_statistics
_target

Dynamic Sets the default statistics target.

default_tablespace Dynamic Sets the default tablespace to create tables and
indexes in.

default_transactio
n_deferrable

Dynamic Sets the default deferrable status of new
transactions.

default_transactio
n_isolation

Dynamic Sets the transaction isolation level of each new
transaction.

default_transactio
n_read_only

Dynamic Sets the default read-only status of new transacti
ons.

default_with_oids Dynamic Creates new tables with object IDs (OIDs) by
default.

effective_cache_size Dynamic Sets the planner's assumption about the size of
the disk cache.

effective_io_concu
rrency

Dynamic Number of simultaneous requests that can be
handled efficiently by the disk subsystem.

Working with parameters 4480

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

enable_bitmapscan Dynamic Enables the planner's use of bitmap-scan plans.

enable_hashagg Dynamic Enables the planner's use of hashed aggregation
plans.

enable_hashjoin Dynamic Enables the planner's use of hash join plans.

enable_indexscan Dynamic Enables the planner's use of index-scan plans.

enable_material Dynamic Enables the planner's use of materialization.

enable_mergejoin Dynamic Enables the planner's use of merge join plans.

enable_nestloop Dynamic Enables the planner's use of nested-loop join
plans.

enable_seqscan Dynamic Enables the planner's use of sequential-scan
plans.

enable_sort Dynamic Enables the planner's use of explicit sort steps.

enable_tidscan Dynamic Enables the planner's use of TID scan plans.

escape_string_warn
ing

Dynamic Warns about backslash (\) escapes in ordinary
string literals.

extra_float_digits Dynamic Sets the number of digits displayed for floating-
point values.

from_collapse_limit Dynamic Sets the FROM-list size beyond which subqueries
are not collapsed.

fsync Dynamic Forces synchronization of updates to disk.

full_page_writes Dynamic Writes full pages to WAL when first modified
after a checkpoint.

geqo Dynamic Enables genetic query optimization.

Working with parameters 4481

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

geqo_effort Dynamic GEQO: effort is used to set the default for other
GEQO parameters.

geqo_generations Dynamic GEQO: number of iterations of the algorithm.

geqo_pool_size Dynamic GEQO: number of individuals in the population.

geqo_seed Dynamic GEQO: seed for random path selection.

geqo_selection_bias Dynamic GEQO: selective pressure within the population.

geqo_threshold Dynamic Sets the threshold of FROM items beyond which
GEQO is used.

gin_fuzzy_search_l
imit

Dynamic Sets the maximum allowed result for exact search
by GIN.

hot_standby_feedback Dynamic Determines whether a hot standby sends
feedback messages to the primary or upstream
standby.

intervalstyle Dynamic Sets the display format for interval values.

join_collapse_limit Dynamic Sets the FROM-list size beyond which JOIN
constructs are not flattened.

lc_messages Dynamic Sets the language in which messages are
displayed.

lc_monetary Dynamic Sets the locale for formatting monetary amounts.

lc_numeric Dynamic Sets the locale for formatting numbers.

lc_time Dynamic Sets the locale for formatting date and time
values.

Working with parameters 4482

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

log_autovacuum_min
_duration

Dynamic Sets the minimum running time above which
autovacuum actions will be logged.

log_checkpoints Dynamic Logs each checkpoint.

log_connections Dynamic Logs each successful connection.

log_disconnections Dynamic Logs end of a session, including duration.

log_duration Dynamic Logs the duration of each completed SQL
statement.

log_error_verbosity Dynamic Sets the verbosity of logged messages.

log_executor_stats Dynamic Writes executor performance statistics to the
server log.

log_filename Dynamic Sets the file name pattern for log files.

log_file_mode Dynamic Sets file permissions for log files. Default value is
0644.

log_hostname Dynamic Logs the host name in the connection logs. As of
PostgreSQL 12 and later versions, this parameter
is 'off' by default. When turned on, the connectio
n uses DNS reverse-lookup to get the hostname
that gets captured to the connection logs. If you
turn on this parameter, you should monitor the
impact that it has on the time it takes to establish
connections.

log_line_prefix Dynamic Controls information prefixed to each log line.

log_lock_waits Dynamic Logs long lock waits.

log_min_duration_s
tatement

Dynamic Sets the minimum running time above which
statements will be logged.

Working with parameters 4483

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

log_min_error_stat
ement

Dynamic Causes all statements generating an error at or
above this level to be logged.

log_min_messages Dynamic Sets the message levels that are logged.

log_parser_stats Dynamic Writes parser performance statistics to the server
log.

log_planner_stats Dynamic Writes planner performance statistics to the
server log.

log_rotation_age Dynamic Automatic log file rotation will occur after N
minutes.

log_rotation_size Dynamic Automatic log file rotation will occur after N
kilobytes.

log_statement Dynamic Sets the type of statements logged.

log_statement_stats Dynamic Writes cumulative performance statistics to the
server log.

log_temp_files Dynamic Logs the use of temporary files larger than this
number of kilobytes.

log_timezone Dynamic Sets the time zone to use in log messages.

log_truncate_on_ro
tation

Dynamic Truncate existing log files of same name during
log rotation.

logging_collector Static Start a subprocess to capture stderr output and/
or csvlogs into log files.

maintenance_work_mem Dynamic Sets the maximum memory to be used for
maintenance operations.

Working with parameters 4484

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

max_connections Static Sets the maximum number of concurrent
connections.

max_files_per_proc
ess

Static Sets the maximum number of simultaneously
open files for each server process.

max_locks_per_tran
saction

Static Sets the maximum number of locks per transacti
on.

max_pred_locks_per
_transaction

Static Sets the maximum number of predicate locks per
transaction.

max_prepared_trans
actions

Static Sets the maximum number of simultaneously
prepared transactions.

max_stack_depth Dynamic Sets the maximum stack depth, in kilobytes.

max_standby_archiv
e_delay

Dynamic Sets the maximum delay before canceling queries
when a hot standby server is processing archived
WAL data.

max_standby_stream
ing_delay

Dynamic Sets the maximum delay before canceling queries
when a hot standby server is processing streamed
WAL data.

Working with parameters 4485

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

max_wal_size Dynamic Sets the WAL size (MB) that triggers a checkpoint.

• For RDS for PostgreSQL 15 and earlier versions,
it is 2 GB.

• For RDS for PostgreSQL 16 and later versions,
RDS for PostgreSQL automatically configure
s based on the allocated storage size of your
instance:

• 6 GB for instances with allocated storage 100
GB and more.

• 2 GB for instances with allocated storage less
than 100 GB.

Use the following command on your Amazon
RDS for PostgreSQL DB instance to see its current
value:

SHOW max_wal_size;

min_wal_size Dynamic Sets the minimum size to shrink the WAL to. For
PostgreSQL version 9.6 and earlier, min_wal_s
ize is in units of 16 MB. For PostgreSQL version
10 and later, min_wal_size is in units of 1 MB.

quote_all_identifi
ers

Dynamic Adds quotes (") to all identifiers when generating
SQL fragments.

random_page_cost Dynamic Sets the planner's estimate of the cost of a non-
sequentially fetched disk page. This parameter
has no value unless query plan management
(QPM) is turned on. When QPM is on, the default
value for this parameter 4.

Working with parameters 4486

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

rds.adaptive_autov
acuum

Dynamic Automatically tunes the autovacuum parameter
s whenever the transaction ID thresholds are
exceeded.

rds.force_ssl Dynamic Requires the use of SSL connections. The default
value is set to 1 (on) for RDS for PostgreSQL
version 15. All other RDS for PostgreSQL major
version 14 and older have the default value set to
0 (off).

rds.local_volume_s
pill_enabled

Static Enables writing logical spill files to the local
volume.

rds.log_retention_
period

Dynamic Sets log retention such that Amazon RDS deletes
PostgreSQL logs that are older than n minutes.

rds.rds_superuser_
reserved_connectio
ns

Static Sets the number of connection slots reserved for
rds_superusers. This parameter is only available
in versions 15 and earlier. For more information,
see the PostgreSQL documentation reserved_
connections.

rds.replica_identi
ty_full

Dynamic When you set this parameter to on, it overrides
the replica identity setting to FULL for all
database tables. This means all column values are
written to the write ahead log (WAL), regardless
of your REPLICA IDENTITY FULL settings.

Note

Turning on this parameter may increase
your database instance IOPS due to the
additional WAL logging.

Working with parameters 4487

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-RESERVED-CONNECTIONS
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-RESERVED-CONNECTIONS

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

rds.restrict_passw
ord_commands

Static Restricts who can manage passwords to
users with the rds_password role. Set this
parameter to 1 to enable password restriction.
The default is 0.

search_path Dynamic Sets the schema search order for names that are
not schema-qualified.

seq_page_cost Dynamic Sets the planner's estimate of the cost of a
sequentially fetched disk page.

session_replicatio
n_role

Dynamic Sets the sessions behavior for triggers and rewrite
rules.

shared_buffers Static Sets the number of shared memory buffers used
by the server.

shared_preload_lib
raries

Static Lists the shared libraries to preload into the RDS
for PostgreSQL DB instance. Supported values
include auto_explain, orafce, pgaudit, pglogical
, pg_bigm, pg_cron, pg_hint_plan, pg_prewar
m, pg_similarity, pg_stat_statements, pg_tle,
pg_transport, plprofiler, and plrust.

ssl Dynamic Enables SSL connections.

sql_inheritance Dynamic Causes subtables to be included by default in
various commands.

ssl_renegotiation_
limit

Dynamic Sets the amount of traffic to send and receive
before renegotiating the encryption keys.

standard_conformin
g_strings

Dynamic Causes ... strings to treat backslashes literally.

Working with parameters 4488

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

statement_timeout Dynamic Sets the maximum allowed duration of any
statement.

synchronize_seqscans Dynamic Enables synchronized sequential scans.

synchronous_commit Dynamic Sets the current transactions synchronization
level.

tcp_keepalives_count Dynamic Maximum number of TCP keepalive retransmits.

tcp_keepalives_idle Dynamic Time between issuing TCP keepalives.

tcp_keepalives_int
erval

Dynamic Time between TCP keepalive retransmits.

temp_buffers Dynamic Sets the maximum number of temporary buffers
used by each session.

temp_file_limit Dynamic Sets the maximum size in KB to which the
temporary files can grow.

temp_tablespaces Dynamic Sets the tablespaces to use for temporary tables
and sort files.

Working with parameters 4489

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

timezone Dynamic Sets the time zone for displaying and interpreting
time stamps.

The Internet Assigned Numbers Authority (IANA)
publishes new time zones at https://www.iana.o
rg/time-zones several times a year. Every time
RDS releases a new minor maintenance release
of PostgreSQL, it ships with the latest time zone
data at the time of the release. When you use
the latest RDS for PostgreSQL versions, you have
recent time zone data from RDS. To ensure that
your DB instance has recent time zone data, we
recommend upgrading to a higher DB engine
version. You can't modify the time zone tables in
PostgreSQL DB instances manually. RDS doesn't
modify or reset the time zone data of running DB
instances. New time zone data is installed only
when you perform a database engine version
upgrade.

track_activities Dynamic Collects information about running commands.

track_activity_que
ry_size

Static Sets the size reserved for pg_stat_activity.c
urrent_query, in bytes.

track_counts Dynamic Collects statistics on database activity.

track_functions Dynamic Collects function-level statistics on database
activity.

track_io_timing Dynamic Collects timing statistics on database I/O activity.

transaction_deferr
able

Dynamic Indicates whether to defer a read-only serializa
ble transaction until it can be started with no
possible serialization failures.

Working with parameters 4490

https://www.iana.org/time-zones
https://www.iana.org/time-zones

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

transaction_isolat
ion

Dynamic Sets the current transactions isolation level.

transaction_read_o
nly

Dynamic Sets the current transactions read-only status.

transform_null_equ
als

Dynamic Treats expr=NULL as expr IS NULL.

update_process_title Dynamic Updates the process title to show the active SQL
command.

vacuum_cost_delay Dynamic Vacuum cost delay in milliseconds.

vacuum_cost_limit Dynamic Vacuum cost amount available before napping.

vacuum_cost_page_d
irty

Dynamic Vacuum cost for a page dirtied by vacuum.

vacuum_cost_page_hit Dynamic Vacuum cost for a page found in the buffer cache.

vacuum_cost_page_m
iss

Dynamic Vacuum cost for a page not found in the buffer
cache.

vacuum_defer_clean
up_age

Dynamic Number of transactions by which vacuum and hot
cleanup should be deferred, if any.

vacuum_freeze_min_
age

Dynamic Minimum age at which vacuum should freeze a
table row.

vacuum_freeze_tabl
e_age

Dynamic Age at which vacuum should scan a whole table
to freeze tuples.

wal_buffers Static Sets the number of disk-page buffers in shared
memory for WAL.

wal_writer_delay Dynamic WAL writer sleep time between WAL flushes.

Working with parameters 4491

Amazon Relational Database Service User Guide

Parameter name Apply_Typ
e

Description

work_mem Dynamic Sets the maximum memory to be used for query
workspaces.

xmlbinary Dynamic Sets how binary values are to be encoded in XML.

xmloption Dynamic Sets whether XML data in implicit parsing and
serialization operations is to be considered as
documents or content fragments.

Amazon RDS uses the default PostgreSQL units for all parameters. The following table shows the
PostgreSQL default unit for each parameter.

Parameter name Unit

archive_timeout s

authentication_timeout s

autovacuum_naptime s

autovacuum_vacuum_cost_delay ms

bgwriter_delay ms

checkpoint_timeout s

checkpoint_warning s

deadlock_timeout ms

effective_cache_size 8 KB

lock_timeout ms

log_autovacuum_min_duration ms

Working with parameters 4492

Amazon Relational Database Service User Guide

Parameter name Unit

log_min_duration_statement ms

log_rotation_age minutes

log_rotation_size KB

log_temp_files KB

maintenance_work_mem KB

max_stack_depth KB

max_standby_archive_delay ms

max_standby_streaming_delay ms

post_auth_delay s

pre_auth_delay s

segment_size 8 KB

shared_buffers 8 KB

statement_timeout ms

ssl_renegotiation_limit KB

tcp_keepalives_idle s

tcp_keepalives_interval s

temp_file_limit KB

work_mem KB

temp_buffers 8 KB

vacuum_cost_delay ms

Working with parameters 4493

Amazon Relational Database Service User Guide

Parameter name Unit

wal_buffers 8 KB

wal_receiver_timeout ms

wal_segment_size B

wal_sender_timeout ms

wal_writer_delay ms

wal_receiver_status_interval s

Working with parameters 4494

Amazon Relational Database Service User Guide

Tuning with wait events for RDS for PostgreSQL

Wait events are an important tuning tool for RDS for PostgreSQL. When you can find out
why sessions are waiting for resources and what they are doing, you're better able to reduce
bottlenecks. You can use the information in this section to find possible causes and corrective
actions. This section also discusses basic PostgreSQL tuning concepts.

The wait events in this section are specific to RDS for PostgreSQL.

Topics

• Essential concepts for RDS for PostgreSQL tuning

• RDS for PostgreSQL wait events

• Client:ClientRead

• Client:ClientWrite

• CPU

• IO:BufFileRead and IO:BufFileWrite

• IO:DataFileRead

• IO:WALWrite

• Lock:advisory

• Lock:extend

• Lock:Relation

• Lock:transactionid

• Lock:tuple

• LWLock:BufferMapping (LWLock:buffer_mapping)

• LWLock:BufferIO (IPC:BufferIO)

• LWLock:buffer_content (BufferContent)

• LWLock:lock_manager (LWLock:lockmanager)

• Timeout:PgSleep

• Timeout:VacuumDelay

Tuning with wait events for RDS for PostgreSQL 4495

Amazon Relational Database Service User Guide

Essential concepts for RDS for PostgreSQL tuning

Before you tune your RDS for PostgreSQL database, make sure to learn what wait events are and
why they occur. Also review the basic memory and disk architecture of RDS for PostgreSQL. For a
helpful architecture diagram, see the PostgreSQL wikibook.

Topics

• RDS for PostgreSQL wait events

• RDS for PostgreSQL memory

• RDS for PostgreSQL processes

RDS for PostgreSQL wait events

A wait event is an indication that the session is waiting for a resource. For example, the wait event
Client:ClientRead occurs when RDS for PostgreSQL is waiting to receive data from the client.
Sessions typically wait for resources such as the following.

• Single-threaded access to a buffer, for example, when a session is attempting to modify a buffer

• A row that is currently locked by another session

• A data file read

• A log file write

For example, to satisfy a query, the session might perform a full table scan. If the data isn't
already in memory, the session waits for the disk I/O to complete. When the buffers are read into
memory, the session might need to wait because other sessions are accessing the same buffers.
The database records the waits by using a predefined wait event. These events are grouped into
categories.

By itself, a single wait event doesn't indicate a performance problem. For example, if requested
data isn't in memory, reading data from disk is necessary. If one session locks a row for an update,
another session waits for the row to be unlocked so that it can update it. A commit requires waiting
for the write to a log file to complete. Waits are integral to the normal functioning of a database.

On the other hand, large numbers of wait events typically show a performance problem. In such
cases, you can use wait event data to determine where sessions are spending time. For example, if
a report that typically runs in minutes now takes hours to run, you can identify the wait events that

Essential concepts for RDS for PostgreSQL tuning 4496

https://en.wikibooks.org/wiki/PostgreSQL/Architecture

Amazon Relational Database Service User Guide

contribute the most to total wait time. If you can determine the causes of the top wait events, you
can sometimes make changes that improve performance. For example, if your session is waiting on
a row that has been locked by another session, you can end the locking session.

RDS for PostgreSQL memory

RDS for PostgreSQL memory is divided into shared and local.

Topics

• Shared memory in RDS for PostgreSQL

• Local memory in RDS for PostgreSQL

Shared memory in RDS for PostgreSQL

RDS for PostgreSQL allocates shared memory when the instance starts. Shared memory is divided
into multiple subareas. The following sections provide descriptions of the most important ones.

Topics

• Shared buffers

• Write ahead log (WAL) buffers

Shared buffers

The shared buffer pool is an RDS for PostgreSQL memory area that holds all pages that are or were
being used by application connections. A page is the memory version of a disk block. The shared
buffer pool caches the data blocks read from disk. The pool reduces the need to reread data from
disk, making the database operate more efficiently.

Every table and index is stored as an array of pages of a fixed size. Each block contains multiple
tuples, which correspond to rows. A tuple can be stored in any page.

The shared buffer pool has finite memory. If a new request requires a page that isn't in
memory, and no more memory exists, RDS for PostgreSQL evicts a less frequently used page to
accommodate the request. The eviction policy is implemented by a clock sweep algorithm.

The shared_buffers parameter determines how much memory the server dedicates to caching
data. The default value is set to {DBInstanceClassMemory/32768} bytes, based on the
available memory for the DB instance.

Essential concepts for RDS for PostgreSQL tuning 4497

Amazon Relational Database Service User Guide

Write ahead log (WAL) buffers

A write-ahead log (WAL) buffer holds transaction data that RDS for PostgreSQL later writes to
persistent storage. Using the WAL mechanism, RDS for PostgreSQL can do the following:

• Recover data after a failure

• Reduce disk I/O by avoiding frequent writes to disk

When a client changes data, RDS for PostgreSQL writes the changes to the WAL buffer. When the
client issues a COMMIT, the WAL writer process writes transaction data to the WAL file.

The wal_level parameter determines how much information is written to the WAL, with possible
values such as minimal, replica, and logical.

Local memory in RDS for PostgreSQL

Every backend process allocates local memory for query processing.

Topics

• Work memory area

• Maintenance work memory area

• Temporary buffer area

Work memory area

The work memory area holds temporary data for queries that performs sorts and hashes. For
example, a query with an ORDER BY clause performs a sort. Queries use hash tables in hash joins
and aggregations.

The work_mem parameter the amount of memory to be used by internal sort operations and hash
tables before writing to temporary disk files, measured in megabytes. The default value is 4 MB.
Multiple sessions can run simultaneously, and each session can run maintenance operations in
parallel. For this reason, the total work memory used can be multiples of the work_mem setting.

Maintenance work memory area

The maintenance work memory area caches data for maintenance operations. These operations
include vacuuming, creating an index, and adding foreign keys.

Essential concepts for RDS for PostgreSQL tuning 4498

Amazon Relational Database Service User Guide

The maintenance_work_mem parameter specifies the maximum amount of memory to be used
by maintenance operations, measured in megabytes. The default value is 64 MB. A database
session can only run one maintenance operation at a time.

Temporary buffer area

The temporary buffer area caches temporary tables for each database session.

Each session allocates temporary buffers as needed up to the limit you specify. When the session
ends, the server clears the buffers.

The temp_buffers parameter sets the maximum number of temporary buffers used by each
session, measured in megabytes. The default value is 8 MB. Before the first use of temporary tables
within a session, you can change the temp_buffers value.

RDS for PostgreSQL processes

RDS for PostgreSQL uses multiple processes.

Topics

• Postmaster process

• Backend processes

• Background processes

Postmaster process

The postmaster process is the first process started when you start RDS for PostgreSQL. The
postmaster process has the following primary responsibilities:

• Fork and monitor background processes

• Receive authentication requests from client processes, and authenticate them before allowing
the database to service requests

Backend processes

If the postmaster authenticates a client request, the postmaster forks a new backend process, also
called a postgres process. One client process connects to exactly one backend process. The client
process and the backend process communicate directly without intervention by the postmaster
process.

Essential concepts for RDS for PostgreSQL tuning 4499

Amazon Relational Database Service User Guide

Background processes

The postmaster process forks several processes that perform different backend tasks. Some of the
more important include the following:

• WAL writer

RDS for PostgreSQL writes data in the WAL (write ahead logging) buffer to the log files. The
principle of write ahead logging is that the database can't write changes to the data files until
after the database writes log records describing those changes to disk. The WAL mechanism
reduces disk I/O, and allows RDS for PostgreSQL to use the logs to recover the database after a
failure.

• Background writer

This process periodically write dirty (modified) pages from the memory buffers to the data files.
A page becomes dirty when a backend process modifies it in memory.

• Autovacuum daemon

The daemon consists of the following:

• The autovacuum launcher

• The autovacuum worker processes

When autovacuum is turned on, it checks for tables that have had a large number of inserted,
updated, or deleted tuples. The daemon has the following responsibilities:

• Recover or reuse disk space occupied by updated or deleted rows

• Update statistics used by the planner

• Protect against loss of old data because of transaction ID wraparound

The autovacuum feature automates the execution of VACUUM and ANALYZE commands. VACUUM
has the following variants: standard and full. Standard vacuum runs in parallel with other
database operations. VACUUM FULL requires an exclusive lock on the table it is working on. Thus,
it can't run in parallel with operations that access the same table. VACUUM creates a substantial
amount of I/O traffic, which can cause poor performance for other active sessions.

Essential concepts for RDS for PostgreSQL tuning 4500

Amazon Relational Database Service User Guide

RDS for PostgreSQL wait events

The following table lists the wait events for RDS for PostgreSQL that most commonly indicate
performance problems, and summarizes the most common causes and corrective actions..

Wait event Definition

Client:ClientRead This event occurs when RDS for PostgreSQL is
waiting to receive data from the client.

Client:ClientWrite This event occurs when RDS for PostgreSQL is
waiting to write data to the client.

CPU This event occurs when a thread is active in CPU or
is waiting for CPU.

IO:BufFileRead and IO:BufFileWrite These events occur when RDS for PostgreSQL
creates temporary files.

IO:DataFileRead This event occurs when a connection waits on a
backend process to read a required page from
storage because the page isn't available in shared
memory.

IO:WALWrite This event occurs when RDS for PostgreSQL is
waiting for the write-ahead log (WAL) buffers to
be written to a WAL file.

Lock:advisory This event occurs when a PostgreSQL application
uses a lock to coordinate activity across multiple
sessions.

Lock:extend This event occurs when a backend process is
waiting to lock a relation to extend it while
another process has a lock on that relation for the
same purpose.

RDS for PostgreSQL wait events 4501

Amazon Relational Database Service User Guide

Wait event Definition

Lock:Relation This event occurs when a query is waiting to
acquire a lock on a table or view that's currently
locked by another transaction.

Lock:transactionid This event occurs when a transaction is waiting for
a row-level lock.

Lock:tuple This event occurs when a backend process is
waiting to acquire a lock on a tuple.

LWLock:BufferMapping (LWLock:b
uffer_mapping)

This event occurs when a session is waiting to
associate a data block with a buffer in the shared
buffer pool.

LWLock:BufferIO (IPC:BufferIO) This event occurs when RDS for PostgreSQL is
waiting for other processes to finish their input/
output (I/O) operations when concurrently trying
to access a page.

LWLock:buffer_content (BufferContent) This event occurs when a session is waiting to read
or write a data page in memory while another
session has that page locked for writing.

LWLock:lock_manager (LWLock:l
ockmanager)

This event occurs when the RDS for PostgreSQL
engine maintains the shared lock's memory area
to allocate, check, and deallocate a lock when a
fast path lock isn't possible.

Timeout:PgSleep This event occurs when a server process has called
the pg_sleep function and is waiting for the
sleep timeout to expire.

Timeout:VacuumDelay This event indicates that the vacuum process is
sleeping because the estimated cost limit has
been reached.

RDS for PostgreSQL wait events 4502

Amazon Relational Database Service User Guide

Client:ClientRead

The Client:ClientRead event occurs when RDS for PostgreSQL is waiting to receive data from
the client.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for RDS for PostgreSQL version 10 and higher.

Context

An RDS for PostgreSQL DB instance is waiting to receive data from the client. The RDS for
PostgreSQL DB instance must receive the data from the client before it can send more data
to the client. The time that the instance waits before receiving data from the client is a
Client:ClientRead event.

Likely causes of increased waits

Common causes for the Client:ClientRead event to appear in top waits include the following:

Increased network latency

There might be increased network latency between the RDS for PostgreSQL DB instance and
client. Higher network latency increases the time required for DB instance to receive data from
the client.

Increased load on the client

There might be CPU pressure or network saturation on the client. An increase in load on the
client can delay transmission of data from the client to the RDS for PostgreSQL DB instance.

Excessive network round trips

A large number of network round trips between the RDS for PostgreSQL DB instance and the
client can delay transmission of data from the client to the RDS for PostgreSQL DB instance.

Client:ClientRead 4503

Amazon Relational Database Service User Guide

Large copy operation

During a copy operation, the data is transferred from the client's file system to the RDS
for PostgreSQL DB instance. Sending a large amount of data to the DB instance can delay
transmission of data from the client to the DB instance.

Idle client connection

When a client connects to the RDS for PostgreSQL DB instance in an idle in transaction
state, the DB instance might wait for the client to send more data or issue a command. A
connection in this state can lead to an increase in Client:ClientRead events.

PgBouncer used for connection pooling

PgBouncer has a low-level network configuration setting called pkt_buf, which is set to 4,096
by default. If the workload is sending query packets larger than 4,096 bytes through PgBouncer,
we recommend increasing the pkt_buf setting to 8,192. If the new setting doesn't decrease
the number of Client:ClientRead events, we recommend increasing the pkt_buf setting
to larger values, such as 16,384 or 32,768. If the query text is large, the larger setting can be
particularly helpful.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Place the clients in the same Availability Zone and VPC subnet as the instance

• Scale your client

• Use current generation instances

• Increase network bandwidth

• Monitor maximums for network performance

• Monitor for transactions in the "idle in transaction" state

Place the clients in the same Availability Zone and VPC subnet as the instance

To reduce network latency and increase network throughput, place clients in the same Availability
Zone and virtual private cloud (VPC) subnet as the RDS for PostgreSQL DB instance. Make sure that
the clients are as geographically close to the DB instance as possible.

Client:ClientRead 4504

Amazon Relational Database Service User Guide

Scale your client

Using Amazon CloudWatch or other host metrics, determine if your client is currently constrained
by CPU or network bandwidth, or both. If the client is constrained, scale your client accordingly.

Use current generation instances

In some cases, you might not be using a DB instance class that supports jumbo frames. If you're
running your application on Amazon EC2, consider using a current generation instance for the
client. Also, configure the maximum transmission unit (MTU) on the client operating system. This
technique might reduce the number of network round trips and increase network throughput. For
more information, see Jumbo frames (9001 MTU) in the Amazon EC2 User Guide.

For information about DB instance classes, see DB instance classes. To determine the DB instance
class that is equivalent to an Amazon EC2 instance type, place db. before the Amazon EC2
instance type name. For example, the r5.8xlarge Amazon EC2 instance is equivalent to the
db.r5.8xlarge DB instance class.

Increase network bandwidth

Use NetworkReceiveThroughput and NetworkTransmitThroughput Amazon CloudWatch
metrics to monitor incoming and outgoing network traffic on the DB instance. These metrics can
help you to determine if network bandwidth is sufficient for your workload.

If your network bandwidth isn't enough, increase it. If the AWS client or your DB instance is
reaching the network bandwidth limits, the only way to increase the bandwidth is to increase your
DB instance size. For more information, see DB instance class types.

For more information about CloudWatch metrics, see Amazon CloudWatch metrics for Amazon
RDS.

Monitor maximums for network performance

If you are using Amazon EC2 clients, Amazon EC2 provides maximums for network performance
metrics, including aggregate inbound and outbound network bandwidth. It also provides
connection tracking to ensure that packets are returned as expected and link-local services access
for services such as the Domain Name System (DNS). To monitor these maximums, use a current
enhanced networking driver and monitor network performance for your client.

For more information, see Monitor network performance for your Amazon EC2 instance in the
Amazon EC2 User Guide and Monitor network performance for your Amazon EC2 instance in the
Amazon EC2 User Guide.

Client:ClientRead 4505

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-network-performance-ena.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/monitoring-network-performance-ena.html

Amazon Relational Database Service User Guide

Monitor for transactions in the "idle in transaction" state

Check whether you have an increasing number of idle in transaction connections. To do this,
monitor the state column in the pg_stat_activity table. You might be able to identify the
connection source by running a query similar to the following.

select client_addr, state, count(1) from pg_stat_activity
where state like 'idle in transaction%'
group by 1,2
order by 3 desc

Client:ClientWrite

The Client:ClientWrite event occurs when RDS for PostgreSQL is waiting to write data to the
client.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for RDS for PostgreSQL version 10 and higher.

Context

A client process must read all of the data received from an RDS for PostgreSQL DB cluster before
the cluster can send more data. The time that the cluster waits before sending more data to the
client is a Client:ClientWrite event.

Reduced network throughput between the RDS for PostgreSQL DB instance and the client can
cause this event. CPU pressure and network saturation on the client can also cause this event.
CPU pressure is when the CPU is fully utilized and there are tasks waiting for CPU time. Network
saturation is when the network between the database and client is carrying more data than it can
handle.

Client:ClientWrite 4506

Amazon Relational Database Service User Guide

Likely causes of increased waits

Common causes for the Client:ClientWrite event to appear in top waits include the following:

Increased network latency

There might be increased network latency between the RDS for PostgreSQL DB instance and
client. Higher network latency increases the time required for the client to receive the data.

Increased load on the client

There might be CPU pressure or network saturation on the client. An increase in load on the
client delays the reception of data from the RDS for PostgreSQL DB instance.

Large volume of data sent to the client

The RDS for PostgreSQL DB instance might be sending a large amount of data to the client. A
client might not be able to receive the data as fast as the cluster is sending it. Activities such as
a copy of a large table can result in an increase in Client:ClientWrite events.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Place the clients in the same Availability Zone and VPC subnet as the cluster

• Use current generation instances

• Reduce the amount of data sent to the client

• Scale your client

Place the clients in the same Availability Zone and VPC subnet as the cluster

To reduce network latency and increase network throughput, place clients in the same Availability
Zone and virtual private cloud (VPC) subnet as the RDS for PostgreSQL DB instance.

Use current generation instances

In some cases, you might not be using a DB instance class that supports jumbo frames. If you're
running your application on Amazon EC2, consider using a current generation instance for the
client. Also, configure the maximum transmission unit (MTU) on the client operating system. This

Client:ClientWrite 4507

Amazon Relational Database Service User Guide

technique might reduce the number of network round trips and increase network throughput. For
more information, see Jumbo frames (9001 MTU) in the Amazon EC2 User Guide.

For information about DB instance classes, see DB instance classes. To determine the DB instance
class that is equivalent to an Amazon EC2 instance type, place db. before the Amazon EC2
instance type name. For example, the r5.8xlarge Amazon EC2 instance is equivalent to the
db.r5.8xlarge DB instance class.

Reduce the amount of data sent to the client

When possible, adjust your application to reduce the amount of data that the RDS for PostgreSQL
DB instance sends to the client. Making such adjustments relieves CPU and network contention on
the client.

Scale your client

Using Amazon CloudWatch or other host metrics, determine if your client is currently constrained
by CPU or network bandwidth, or both. If the client is constrained, scale your client accordingly.

CPU

This event occurs when a thread is active in CPU or is waiting for CPU.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is relevant for all all versions of RDS for PostgreSQL.

Context

The central processing unit (CPU) is the component of a computer that runs instructions. For
example, CPU instructions perform arithmetic operations and exchange data in memory. If a
query increases the number of instructions that it performs through the database engine, the time

CPU 4508

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances

Amazon Relational Database Service User Guide

spent running the query increases. CPU scheduling is giving CPU time to a process. Scheduling is
orchestrated by the kernel of the operating system.

Topics

• How to tell when this wait occurs

• DBLoadCPU metric

• os.cpuUtilization metrics

• Likely cause of CPU scheduling

How to tell when this wait occurs

This CPU wait event indicates that a backend process is active in CPU or is waiting for CPU. You
know that it's occurring when a query shows the following information:

• The pg_stat_activity.state column has the value active.

• The wait_event_type and wait_event columns in pg_stat_activity are both null.

To see the backend processes that are using or waiting on CPU, run the following query.

SELECT *
FROM pg_stat_activity
WHERE state = 'active'
AND wait_event_type IS NULL
AND wait_event IS NULL;

DBLoadCPU metric

The Performance Insights metric for CPU is DBLoadCPU. The value for DBLoadCPU can differ from
the value for the Amazon CloudWatch metric CPUUtilization. The latter metric is collected from
the HyperVisor for a database instance.

os.cpuUtilization metrics

Performance Insights operating-system metrics provide detailed information about CPU utilization.
For example, you can display the following metrics:

• os.cpuUtilization.nice.avg

• os.cpuUtilization.total.avg

CPU 4509

Amazon Relational Database Service User Guide

• os.cpuUtilization.wait.avg

• os.cpuUtilization.idle.avg

Performance Insights reports the CPU usage by the database engine as
os.cpuUtilization.nice.avg.

Likely cause of CPU scheduling

The operating system (OS) kernel handles scheduling for the CPU. When the CPU is active, a
process might need to wait to get scheduled. The CPU is active while it's performing computations.
It's also active while it has an idle thread that it's not running, that is, an idle thread that's waiting
on memory I/O. This type of I/O dominates the typical database workload.

Processes are likely to wait to get scheduled on a CPU when the following conditions are met:

• The CloudWatch CPUUtilization metric is near 100 percent.

• The average load is greater than the number of vCPUs, indicating a heavy load. You can find the
loadAverageMinute metric in the OS metrics section in Performance Insights.

Likely causes of increased waits

When the CPU wait event occurs more than normal, possibly indicating a performance problem,
typical causes include the following.

Topics

• Likely causes of sudden spikes

• Likely causes of long-term high frequency

• Corner cases

Likely causes of sudden spikes

The most likely causes of sudden spikes are as follows:

• Your application has opened too many simultaneous connections to the database. This scenario
is known as a "connection storm."

• Your application workload changed in any of the following ways:

• New queries

CPU 4510

Amazon Relational Database Service User Guide

• An increase in the size of your dataset

• Index maintenance or creation

• New functions

• New operators

• An increase in parallel query execution

• Your query execution plans have changed. In some cases, a change can cause an increase in
buffers. For example, the query is now using a sequential scan when it previously used an index.
In this case, the queries need more CPU to accomplish the same goal.

Likely causes of long-term high frequency

The most likely causes of events that recur over a long period:

• Too many backend processes are running concurrently on CPU. These processes can be parallel
workers.

• Queries are performing suboptimally because they need a large number of buffers.

Corner cases

If none of the likely causes turn out to be actual causes, the following situations might be
occurring:

• The CPU is swapping processes in and out.

• The CPU might be managing page table entries if the huge pages feature has been turned off.
This memory management feature is turned on by default for all DB instance classes other than
micro, small, and medium DB instance classes. For more information, see Huge pages for RDS for
PostgreSQL .

Actions

If the CPU wait event dominates database activity, it doesn't necessarily indicate a performance
problem. Respond to this event only when performance degrades.

Topics

• Investigate whether the database is causing the CPU increase

• Determine whether the number of connections increased

CPU 4511

Amazon Relational Database Service User Guide

• Respond to workload changes

Investigate whether the database is causing the CPU increase

Examine the os.cpuUtilization.nice.avg metric in Performance Insights. If this value is far
less than the CPU usage, nondatabase processes are the main contributor to CPU.

Determine whether the number of connections increased

Examine the DatabaseConnections metric in Amazon CloudWatch. Your action depends on
whether the number increased or decreased during the period of increased CPU wait events.

The connections increased

If the number of connections went up, compare the number of backend processes consuming CPU
to the number of vCPUs. The following scenarios are possible:

• The number of backend processes consuming CPU is less than the number of vCPUs.

In this case, the number of connections isn't an issue. However, you might still try to reduce CPU
utilization.

• The number of backend processes consuming CPU is greater than the number of vCPUs.

In this case, consider the following options:

• Decrease the number of backend processes connected to your database. For example,
implement a connection pooling solution such as RDS Proxy. To learn more, see Amazon RDS
Proxy.

• Upgrade your instance size to get a higher number of vCPUs.

• Redirect some read-only workloads to reader nodes, if applicable.

The connections didn't increase

Examine the blks_hit metrics in Performance Insights. Look for a correlation between an
increase in blks_hit and CPU usage. The following scenarios are possible:

• CPU usage and blks_hit are correlated.

In this case, find the top SQL statements that are linked to the CPU usage, and look for plan
changes. You can use either of the following techniques:

CPU 4512

Amazon Relational Database Service User Guide

• Explain the plans manually and compare them to the expected execution plan.

• Look for an increase in block hits per second and local block hits per second. In the Top SQL
section of Performance Insights dashboard, choose Preferences.

• CPU usage and blks_hit aren't correlated.

In this case, determine whether any of the following occurs:

• The application is rapidly connecting to and disconnecting from the database.

Diagnose this behavior by turning on log_connections and log_disconnections,
then analyzing the PostgreSQL logs. Consider using the pgbadger log analyzer. For more
information, see https://github.com/darold/pgbadger.

• The OS is overloaded.

In this case, Performance Insights shows that backend processes are consuming CPU for a
longer time than usual. Look for evidence in the Performance Insights os.cpuUtilization
metrics or the CloudWatch CPUUtilization metric. If the operating system is overloaded,
look at Enhanced Monitoring metrics to diagnose further. Specifically, look at the process list
and the percentage of CPU consumed by each process.

• Top SQL statements are consuming too much CPU.

Examine statements that are linked to the CPU usage to see whether they can use less
CPU. Run an EXPLAIN command, and focus on the plan nodes that have the most impact.
Consider using a PostgreSQL execution plan visualizer. To try out this tool, see http://
explain.dalibo.com/.

Respond to workload changes

If your workload has changed, look for the following types of changes:

New queries

Check whether the new queries are expected. If so, ensure that their execution plans and the
number of executions per second are expected.

An increase in the size of the data set

Determine whether partitioning, if it's not already implemented, might help. This strategy
might reduce the number of pages that a query needs to retrieve.

CPU 4513

https://github.com/darold/pgbadger
http://explain.dalibo.com/
http://explain.dalibo.com/

Amazon Relational Database Service User Guide

Index maintenance or creation

Check whether the schedule for the maintenance is expected. A best practice is to schedule
maintenance activities outside of peak activities.

New functions

Check whether these functions perform as expected during testing. Specifically, check whether
the number of executions per second is expected.

New operators

Check whether they perform as expected during the testing.

An increase in running parallel queries

Determine whether any of the following situations has occurred:

• The relations or indexes involved have suddenly grown in size so that they differ significantly
from min_parallel_table_scan_size or min_parallel_index_scan_size.

• Recent changes have been made to parallel_setup_cost or parallel_tuple_cost.

• Recent changes have been made to max_parallel_workers or
max_parallel_workers_per_gather.

IO:BufFileRead and IO:BufFileWrite

The IO:BufFileRead and IO:BufFileWrite events occur when RDS for PostgreSQL creates
temporary files. When operations require more memory than the working memory parameters
currently define, they write temporary data to persistent storage. This operation is sometimes
called "spilling to disk."

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

IO:BufFileRead and IO:BufFileWrite 4514

Amazon Relational Database Service User Guide

Context

IO:BufFileRead and IO:BufFileWrite relate to the work memory area and maintenance work
memory area. For more information about these local memory areas, see Resource Consumption in
the PostgreSQL documentation.

The default value for work_mem is 4 MB. If one session performs operations in parallel, each worker
handling the parallelism uses 4 MB of memory. For this reason, set work_mem carefully. If you
increase the value too much, a database running many sessions might consume too much memory.
If you set the value too low, RDS for PostgreSQL creates temporary files in local storage. The disk I/
O for these temporary files can reduce performance.

If you observe the following sequence of events, your database might be generating temporary
files:

1. Sudden and sharp decreases in availability

2. Fast recovery for the free space

You might also see a "chainsaw" pattern. This pattern can indicate that your database is creating
small files constantly.

Likely causes of increased waits

In general, these wait events are caused by operations that consume more memory than the
work_mem or maintenance_work_mem parameters allocate. To compensate, the operations write
to temporary files. Common causes for the IO:BufFileRead and IO:BufFileWrite events
include the following:

Queries that need more memory than exists in the work memory area

Queries with the following characteristics use the work memory area:

• Hash joins

• ORDER BY clause

• GROUP BY clause

• DISTINCT

• Window functions

• CREATE TABLE AS SELECT

• Materialized view refresh

IO:BufFileRead and IO:BufFileWrite 4515

https://www.postgresql.org/docs/current/runtime-config-resource.html

Amazon Relational Database Service User Guide

Statements that need more memory than exists in the maintenance work memory area

The following statements use the maintenance work memory area:

• CREATE INDEX

• CLUSTER

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Identify the problem

• Examine your join queries

• Examine your ORDER BY and GROUP BY queries

• Avoid using the DISTINCT operation

• Consider using window functions instead of GROUP BY functions

• Investigate materialized views and CTAS statements

• Use pg_repack when you rebuild indexes

• Increase maintenance_work_mem when you cluster tables

• Tune memory to prevent IO:BufFileRead and IO:BufFileWrite

Identify the problem

Assume a situation in which Performance Insights isn't turned on and you suspect that
IO:BufFileRead and IO:BufFileWrite are occurring more frequently than is normal. To
identify the source of the problem, you can set the log_temp_files parameter to log all
queries that generate more than your specified threshold KB of temporary files. By default,
log_temp_files is set to -1, which turns off this logging feature. If you set this parameter
to 0, RDS for PostgreSQL logs all temporary files. If you set it to is 1024, RDS for PostgreSQL
logs all queries that produce temporary files larger than 1 MB. For more information about
log_temp_files, see Error Reporting and Logging in the PostgreSQL documentation.

Examine your join queries

It's likely that your query uses joins. For example, the following query joins four tables.

IO:BufFileRead and IO:BufFileWrite 4516

https://www.postgresql.org/docs/current/runtime-config-logging.html

Amazon Relational Database Service User Guide

SELECT *
 FROM "order"
 INNER JOIN order_item
 ON (order.id = order_item.order_id)
 INNER JOIN customer
 ON (customer.id = order.customer_id)
 INNER JOIN customer_address
 ON (customer_address.customer_id = customer.id AND
 order.customer_address_id = customer_address.id)
 WHERE customer.id = 1234567890;

A possible cause of spikes in temporary file usage is a problem in the query itself. For example, a
broken clause might not filter the joins properly. Consider the second inner join in the following
example.

SELECT *
 FROM "order"
 INNER JOIN order_item
 ON (order.id = order_item.order_id)
 INNER JOIN customer
 ON (customer.id = customer.id)
 INNER JOIN customer_address
 ON (customer_address.customer_id = customer.id AND
 order.customer_address_id = customer_address.id)
 WHERE customer.id = 1234567890;

The preceding query mistakenly joins customer.id to customer.id, generating a Cartesian
product between every customer and every order. This type of accidental join generates large
temporary files. Depending on the size of the tables, a Cartesian query can even fill up storage.
Your application might have Cartesian joins when the following conditions are met:

• You see large, sharp decreases in storage availability, followed by fast recovery.

• No indexes are being created.

• No CREATE TABLE FROM SELECT statements are being issued.

• No materialized views are being refreshed.

To see whether the tables are being joined using the proper keys, inspect your query and object-
relational mapping directives. Bear in mind that certain queries of your application are not called
all the time, and some queries are dynamically generated.

IO:BufFileRead and IO:BufFileWrite 4517

Amazon Relational Database Service User Guide

Examine your ORDER BY and GROUP BY queries

In some cases, an ORDER BY clause can result in excessive temporary files. Consider the following
guidelines:

• Only include columns in an ORDER BY clause when they need to be ordered. This guideline is
especially important for queries that return thousands of rows and specify many columns in the
ORDER BY clause.

• Considering creating indexes to accelerate ORDER BY clauses when they match columns that
have the same ascending or descending order. Partial indexes are preferable because they are
smaller. Smaller indexes are read and traversed more quickly.

• If you create indexes for columns that can accept null values, consider whether you want the null
values stored at the end or at the beginning of the indexes.

If possible, reduce the number of rows that need to be ordered by filtering the result set. If you
use WITH clause statements or subqueries, remember that an inner query generates a result set
and passes it to the outside query. The more rows that a query can filter out, the less ordering
the query needs to do.

• If you don't need to obtain the full result set, use the LIMIT clause. For example, if you only
want the top five rows, a query using the LIMIT clause doesn't keep generating results. In this
way, the query requires less memory and temporary files.

A query that uses a GROUP BY clause can also require temporary files. GROUP BY queries
summarize values by using functions such as the following:

• COUNT

• AVG

• MIN

• MAX

• SUM

• STDDEV

To tune GROUP BY queries, follow the recommendations for ORDER BY queries.

IO:BufFileRead and IO:BufFileWrite 4518

Amazon Relational Database Service User Guide

Avoid using the DISTINCT operation

If possible, avoid using the DISTINCT operation to remove duplicated rows. The more unnecessary
and duplicated rows that your query returns, the more expensive the DISTINCT operation
becomes. If possible, add filters in the WHERE clause even if you use the same filters for different
tables. Filtering the query and joining correctly improves your performance and reduces resource
use. It also prevents incorrect reports and results.

If you need to use DISTINCT for multiple rows of a same table, consider creating a composite
index. Grouping multiple columns in an index can improve the time to evaluate distinct rows. Also,
if you use RDS for PostgreSQL version 10 or higher, you can correlate statistics among multiple
columns by using the CREATE STATISTICS command.

Consider using window functions instead of GROUP BY functions

Using GROUP BY, you change the result set, and then retrieve the aggregated result. Using window
functions, you aggregate data without changing the result set. A window function uses the OVER
clause to perform calculations across the sets defined by the query, correlating one row with
another. You can use all the GROUP BY functions in window functions, but also use functions such
as the following:

• RANK

• ARRAY_AGG

• ROW_NUMBER

• LAG

• LEAD

To minimize the number of temporary files generated by a window function, remove duplications
for the same result set when you need two distinct aggregations. Consider the following query.

SELECT sum(salary) OVER (PARTITION BY dept ORDER BY salary DESC) as sum_salary
 , avg(salary) OVER (PARTITION BY dept ORDER BY salary ASC) as avg_salary
 FROM empsalary;

You can rewrite the query with the WINDOW clause as follows.

SELECT sum(salary) OVER w as sum_salary

IO:BufFileRead and IO:BufFileWrite 4519

Amazon Relational Database Service User Guide

 , avg(salary) OVER w as_avg_salary
 FROM empsalary
 WINDOW w AS (PARTITION BY dept ORDER BY salary DESC);

By default, the RDS for PostgreSQL execution planner consolidates similar nodes so that it doesn't
duplicate operations. However, by using an explicit declaration for the window block, you can
maintain the query more easily. You might also improve performance by preventing duplication.

Investigate materialized views and CTAS statements

When a materialized view refreshes, it runs a query. This query can contain an operation such
as GROUP BY, ORDER BY, or DISTINCT. During a refresh, you might observe large numbers of
temporary files and the wait events IO:BufFileWrite and IO:BufFileRead. Similarly, when
you create a table based on a SELECT statement, the CREATE TABLE statement runs a query. To
reduce the temporary files needed, optimize the query.

Use pg_repack when you rebuild indexes

When you create an index, the engine orders the result set. As tables grow in size, and as values
in the indexed column become more diverse, the temporary files require more space. In most
cases, you can't prevent the creation of temporary files for large tables without modifying the
maintenance work memory area. For more information about maintenance_work_mem, see
https://www.postgresql.org/docs/current/runtime-config-resource.html in the PostgreSQL
documentation.

A possible workaround when recreating a large index is to use the pg_repack extension. For more
information, see Reorganize tables in PostgreSQL databases with minimal locks in the pg_repack
documentation. For information about setting up the extension in your RDS for PostgreSQL DB
instance, see Reducing bloat in tables and indexes with the pg_repack extension.

Increase maintenance_work_mem when you cluster tables

The CLUSTER command clusters the table specified by table_name based on an existing index
specified by index_name. RDS for PostgreSQL physically recreates the table to match the order of a
given index.

When magnetic storage was prevalent, clustering was common because storage throughput was
limited. Now that SSD-based storage is common, clustering is less popular. However, if you cluster
tables, you can still increase performance slightly depending on the table size, index, query, and so
on.

IO:BufFileRead and IO:BufFileWrite 4520

https://www.postgresql.org/docs/current/runtime-config-resource.html
https://reorg.github.io/pg_repack/

Amazon Relational Database Service User Guide

If you run the CLUSTER command and observe the wait events IO:BufFileWrite and
IO:BufFileRead, tune maintenance_work_mem. Increase the memory size to a fairly large
amount. A high value means that the engine can use more memory for the clustering operation.

Tune memory to prevent IO:BufFileRead and IO:BufFileWrite

In some situations, you need to tune memory. Your goal is to balance memory across the following
areas of consumption using the appropriate parameters, as follows.

• The work_mem value

• The memory remaining after discounting the shared_buffers value

• The maximum connections opened and in use, which is limited by max_connections

For more information about tuning memory, see Resource Consumption in the PostgreSQL
documentation.

Increase the size of the work memory area

In some situations, your only option is to increase the memory used by your session. If your queries
are correctly written and are using the correct keys for joins, consider increasing the work_mem
value.

To find out how many temporary files a query generates, set log_temp_files to 0. If you
increase the work_mem value to the maximum value identified in the logs, you prevent the query
from generating temporary files. However, work_mem sets the maximum per plan node for each
connection or parallel worker. If the database has 5,000 connections, and if each one uses 256 MiB
memory, the engine needs 1.2 TiB of RAM. Thus, your instance might run out of memory.

Reserve sufficient memory for the shared buffer pool

Your database uses memory areas such as the shared buffer pool, not just the work memory area.
Consider the requirements of these additional memory areas before you increase work_mem.

For example, assume that your RDS for PostgreSQL instance class is db.r5.2xlarge. This class has 64
GiB of memory. By default, 25 percent of the memory is reserved for the shared buffer pool. After
you subtract the amount allocated to the shared memory area, 16,384 MB remains. Don't allocate
the remaining memory exclusively to the work memory area because the operating system and the
engine also require memory.

IO:BufFileRead and IO:BufFileWrite 4521

https://www.postgresql.org/docs/current/runtime-config-resource.html

Amazon Relational Database Service User Guide

The memory that you can allocate to work_mem depends on the instance class. If you use a larger
instance class, more memory is available. However, in the preceding example, you can't use more
than 16 GiB. Otherwise, your instance becomes unavailable when it runs out of memory. To recover
the instance from the unavailable state, the RDS for PostgreSQL automation services automatically
restart.

Manage the number of connections

Suppose that your database instance has 5,000 simultaneous connections. Each connection uses
at least 4 MiB of work_mem. The high memory consumption of the connections is likely to degrade
performance. In response, you have the following options:

• Upgrade to a larger instance class.

• Decrease the number of simultaneous database connections by using a connection proxy or
pooler.

For proxies, consider Amazon RDS Proxy, pgBouncer, or a connection pooler based on your
application. This solution alleviates the CPU load. It also reduces the risk when all connections
require the work memory area. When fewer database connections exist, you can increase
the value of work_mem. In this way, you reduce the occurrence of the IO:BufFileRead and
IO:BufFileWrite wait events. Also, the queries waiting for the work memory area speed up
significantly.

IO:DataFileRead

The IO:DataFileRead event occurs when a connection waits on a backend process to read a
required page from storage because the page isn't available in shared memory.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

IO:DataFileRead 4522

Amazon Relational Database Service User Guide

Context

All queries and data manipulation (DML) operations access pages in the buffer pool. Statements
that can induce reads include SELECT, UPDATE, and DELETE. For example, an UPDATE can read
pages from tables or indexes. If the page being requested or updated isn't in the shared buffer
pool, this read can lead to the IO:DataFileRead event.

Because the shared buffer pool is finite, it can fill up. In this case, requests for pages that aren't
in memory force the database to read blocks from disk. If the IO:DataFileRead event occurs
frequently, your shared buffer pool might be too small to accommodate your workload. This
problem is acute for SELECT queries that read a large number of rows that don't fit in the buffer
pool. For more information about the buffer pool, see Resource Consumption in the PostgreSQL
documentation.

Likely causes of increased waits

Common causes for the IO:DataFileRead event include the following:

Connection spikes

You might find multiple connections generating the same number of IO:DataFileRead wait
events. In this case, a spike (sudden and large increase) in IO:DataFileRead events can occur.

SELECT and DML statements performing sequential scans

Your application might be performing a new operation. Or an existing operation might change
because of a new execution plan. In such cases, look for tables (particularly large tables) that
have a greater seq_scan value. Find them by querying pg_stat_user_tables. To track
queries that are generating more read operations, use the extension pg_stat_statements.

CTAS and CREATE INDEX for large data sets

A CTAS is a CREATE TABLE AS SELECT statement. If you run a CTAS using a large data set as
a source, or create an index on a large table, the IO:DataFileRead event can occur. When you
create an index, the database might need to read the entire object using a sequential scan. A
CTAS generates IO:DataFile reads when pages aren't in memory.

Multiple vacuum workers running at the same time

Vacuum workers can be triggered manually or automatically. We recommend adopting an
aggressive vacuum strategy. However, when a table has many updated or deleted rows,

IO:DataFileRead 4523

https://www.postgresql.org/docs/current/runtime-config-resource.html

Amazon Relational Database Service User Guide

the IO:DataFileRead waits increase. After space is reclaimed, the vacuum time spent on
IO:DataFileRead decreases.

Ingesting large amounts of data

When your application ingests large amounts of data, ANALYZE operations might occur more
often. The ANALYZE process can be triggered by an autovacuum launcher or invoked manually.

The ANALYZE operation reads a subset of the table. The number of pages that must be scanned
is calculated by multiplying 30 by the default_statistics_target value. For more
information, see the PostgreSQL documentation. The default_statistics_target
parameter accepts values between 1 and 10,000, where the default is 100.

Resource starvation

If instance network bandwidth or CPU are consumed, the IO:DataFileRead event might
occur more frequently.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Check predicate filters for queries that generate waits

• Minimize the effect of maintenance operations

• Respond to high numbers of connections

Check predicate filters for queries that generate waits

Assume that you identify specific queries that are generating IO:DataFileRead wait events. You
might identify them using the following techniques:

• Performance Insights

• Catalog views such as the one provided by the extension pg_stat_statements

• The catalog view pg_stat_all_tables, if it periodically shows an increased number of
physical reads

• The pg_statio_all_tables view, if it shows that _read counters are increasing

IO:DataFileRead 4524

https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET

Amazon Relational Database Service User Guide

We recommend that you determine which filters are used in the predicate (WHERE clause) of these
queries. Follow these guidelines:

• Run the EXPLAIN command. In the output, identify which types of scans are used. A sequential
scan doesn't necessarily indicate a problem. Queries that use sequential scans naturally produce
more IO:DataFileRead events when compared to queries that use filters.

Find out whether the column listed in the WHERE clause is indexed. If not, consider creating
an index for this column. This approach avoids the sequential scans and reduces the
IO:DataFileRead events. If a query has restrictive filters and still produces sequential scans,
evaluate whether the proper indexes are being used.

• Find out whether the query is accessing a very large table. In some cases, partitioning a table can
improve performance, allowing the query to only read necessary partitions.

• Examine the cardinality (total number of rows) from your join operations. Note how restrictive
the values are that you're passing in the filters for your WHERE clause. If possible, tune your query
to reduce the number of rows that are passed in each step of the plan.

Minimize the effect of maintenance operations

Maintenance operations such as VACUUM and ANALYZE are important. We recommend that you
don't turn them off because you find IO:DataFileRead wait events related to these maintenance
operations. The following approaches can minimize the effect of these operations:

• Run maintenance operations manually during off-peak hours. This technique prevents the
database from reaching the threshold for automatic operations.

• For very large tables, consider partitioning the table. This technique reduces the overhead of
maintenance operations. The database only accesses the partitions that require maintenance.

• When you ingest large amounts of data, consider disabling the autoanalyze feature.

The autovacuum feature is automatically triggered for a table when the following formula is true.

pg_stat_user_tables.n_dead_tup > (pg_class.reltuples x autovacuum_vacuum_scale_factor)
 + autovacuum_vacuum_threshold

The view pg_stat_user_tables and catalog pg_class have multiple rows. One row can
correspond to one row in your table. This formula assumes that the reltuples are for a
specific table. The parameters autovacuum_vacuum_scale_factor (0.20 by default) and

IO:DataFileRead 4525

Amazon Relational Database Service User Guide

autovacuum_vacuum_threshold (50 tuples by default) are usually set globally for the whole
instance. However, you can set different values for a specific table.

Topics

• Find tables consuming space unnecessarily

• Find indexes consuming space unnecessarily

• Find tables that are eligible to be autovacuumed

Find tables consuming space unnecessarily

To find tables consuming space unnecessarily, you can use functions from the PostgreSQL
pgstattuple extension. This extension (module) is available by default on all RDS for PostgreSQL
DB instances and can be instantiated on the instance with the following command.

CREATE EXTENSION pgstattuple;

For more information about this extension, see pgstattuple in the PostgreSQL documentation.

You can check for table and index bloat in your application. For more information, see Diagnosing
table and index bloat.

Find indexes consuming space unnecessarily

To find bloated indexes and estimate the amount of space consumed unnecessarily on the tables
for which you have read privileges, you can run the following query.

-- WARNING: rows with is_na = 't' are known to have bad statistics ("name" type is not
 supported).
-- This query is compatible with PostgreSQL 8.2 and later.

SELECT current_database(), nspname AS schemaname, tblname, idxname,
 bs*(relpages)::bigint AS real_size,
 bs*(relpages-est_pages)::bigint AS extra_size,
 100 * (relpages-est_pages)::float / relpages AS extra_ratio,
 fillfactor, bs*(relpages-est_pages_ff) AS bloat_size,
 100 * (relpages-est_pages_ff)::float / relpages AS bloat_ratio,
 is_na
 -- , 100-(sub.pst).avg_leaf_density, est_pages, index_tuple_hdr_bm,
 -- maxalign, pagehdr, nulldatawidth, nulldatahdrwidth, sub.reltuples, sub.relpages
 -- (DEBUG INFO)
FROM (

IO:DataFileRead 4526

https://www.postgresql.org/docs/current/pgstattuple.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.diag-table-ind-bloat.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.diag-table-ind-bloat.html

Amazon Relational Database Service User Guide

 SELECT coalesce(1 +
 ceil(reltuples/floor((bs-pageopqdata-pagehdr)/(4+nulldatahdrwidth)::float)), 0
 -- ItemIdData size + computed avg size of a tuple (nulldatahdrwidth)
) AS est_pages,
 coalesce(1 +
 ceil(reltuples/floor((bs-pageopqdata-pagehdr)*fillfactor/
(100*(4+nulldatahdrwidth)::float))), 0
) AS est_pages_ff,
 bs, nspname, table_oid, tblname, idxname, relpages, fillfactor, is_na
 -- , stattuple.pgstatindex(quote_ident(nspname)||'.'||quote_ident(idxname)) AS
 pst,
 -- index_tuple_hdr_bm, maxalign, pagehdr, nulldatawidth, nulldatahdrwidth,
 reltuples
 -- (DEBUG INFO)
 FROM (
 SELECT maxalign, bs, nspname, tblname, idxname, reltuples, relpages, relam,
 table_oid, fillfactor,
 (index_tuple_hdr_bm +
 maxalign - CASE -- Add padding to the index tuple header to align on MAXALIGN
 WHEN index_tuple_hdr_bm%maxalign = 0 THEN maxalign
 ELSE index_tuple_hdr_bm%maxalign
 END
 + nulldatawidth + maxalign - CASE -- Add padding to the data to align on
 MAXALIGN
 WHEN nulldatawidth = 0 THEN 0
 WHEN nulldatawidth::integer%maxalign = 0 THEN maxalign
 ELSE nulldatawidth::integer%maxalign
 END
)::numeric AS nulldatahdrwidth, pagehdr, pageopqdata, is_na
 -- , index_tuple_hdr_bm, nulldatawidth -- (DEBUG INFO)
 FROM (
 SELECT
 i.nspname, i.tblname, i.idxname, i.reltuples, i.relpages, i.relam, a.attrelid
 AS table_oid,
 current_setting('block_size')::numeric AS bs, fillfactor,
 CASE -- MAXALIGN: 4 on 32bits, 8 on 64bits (and mingw32 ?)
 WHEN version() ~ 'mingw32' OR version() ~ '64-bit|x86_64|ppc64|ia64|amd64'
 THEN 8
 ELSE 4
 END AS maxalign,
 /* per page header, fixed size: 20 for 7.X, 24 for others */
 24 AS pagehdr,
 /* per page btree opaque data */
 16 AS pageopqdata,

IO:DataFileRead 4527

Amazon Relational Database Service User Guide

 /* per tuple header: add IndexAttributeBitMapData if some cols are null-able */
 CASE WHEN max(coalesce(s.null_frac,0)) = 0
 THEN 2 -- IndexTupleData size
 ELSE 2 + ((32 + 8 - 1) / 8)
 -- IndexTupleData size + IndexAttributeBitMapData size (max num filed per
 index + 8 - 1 /8)
 END AS index_tuple_hdr_bm,
 /* data len: we remove null values save space using it fractionnal part from
 stats */
 sum((1-coalesce(s.null_frac, 0)) * coalesce(s.avg_width, 1024)) AS
 nulldatawidth,
 max(CASE WHEN a.atttypid = 'pg_catalog.name'::regtype THEN 1 ELSE 0 END) > 0
 AS is_na
 FROM pg_attribute AS a
 JOIN (
 SELECT nspname, tbl.relname AS tblname, idx.relname AS idxname,
 idx.reltuples, idx.relpages, idx.relam,
 indrelid, indexrelid, indkey::smallint[] AS attnum,
 coalesce(substring(
 array_to_string(idx.reloptions, ' ')
 from 'fillfactor=([0-9]+)')::smallint, 90) AS fillfactor
 FROM pg_index
 JOIN pg_class idx ON idx.oid=pg_index.indexrelid
 JOIN pg_class tbl ON tbl.oid=pg_index.indrelid
 JOIN pg_namespace ON pg_namespace.oid = idx.relnamespace
 WHERE pg_index.indisvalid AND tbl.relkind = 'r' AND idx.relpages > 0
) AS i ON a.attrelid = i.indexrelid
 JOIN pg_stats AS s ON s.schemaname = i.nspname
 AND ((s.tablename = i.tblname AND s.attname =
 pg_catalog.pg_get_indexdef(a.attrelid, a.attnum, TRUE))
 -- stats from tbl
 OR (s.tablename = i.idxname AND s.attname = a.attname))
 -- stats from functional cols
 JOIN pg_type AS t ON a.atttypid = t.oid
 WHERE a.attnum > 0
 GROUP BY 1, 2, 3, 4, 5, 6, 7, 8, 9
) AS s1
) AS s2
 JOIN pg_am am ON s2.relam = am.oid WHERE am.amname = 'btree'
) AS sub
-- WHERE NOT is_na
ORDER BY 2,3,4;

IO:DataFileRead 4528

Amazon Relational Database Service User Guide

Find tables that are eligible to be autovacuumed

To find tables that are eligible to be autovacuumed, run the following query.

--This query shows tables that need vacuuming and are eligible candidates.
--The following query lists all tables that are due to be processed by autovacuum.
-- During normal operation, this query should return very little.
WITH vbt AS (SELECT setting AS autovacuum_vacuum_threshold
 FROM pg_settings WHERE name = 'autovacuum_vacuum_threshold')
 , vsf AS (SELECT setting AS autovacuum_vacuum_scale_factor
 FROM pg_settings WHERE name = 'autovacuum_vacuum_scale_factor')
 , fma AS (SELECT setting AS autovacuum_freeze_max_age
 FROM pg_settings WHERE name = 'autovacuum_freeze_max_age')
 , sto AS (SELECT opt_oid, split_part(setting, '=', 1) as param,
 split_part(setting, '=', 2) as value
 FROM (SELECT oid opt_oid, unnest(reloptions) setting FROM pg_class) opt)
SELECT
 '"'||ns.nspname||'"."'||c.relname||'"' as relation
 , pg_size_pretty(pg_table_size(c.oid)) as table_size
 , age(relfrozenxid) as xid_age
 , coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
 autovacuum_freeze_max_age
 , (coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
 coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) *
 c.reltuples)
 as autovacuum_vacuum_tuples
 , n_dead_tup as dead_tuples
FROM pg_class c
JOIN pg_namespace ns ON ns.oid = c.relnamespace
JOIN pg_stat_all_tables stat ON stat.relid = c.oid
JOIN vbt on (1=1)
JOIN vsf ON (1=1)
JOIN fma on (1=1)
LEFT JOIN sto cvbt ON cvbt.param = 'autovacuum_vacuum_threshold' AND c.oid =
 cvbt.opt_oid
LEFT JOIN sto cvsf ON cvsf.param = 'autovacuum_vacuum_scale_factor' AND c.oid =
 cvsf.opt_oid
LEFT JOIN sto cfma ON cfma.param = 'autovacuum_freeze_max_age' AND c.oid = cfma.opt_oid
WHERE c.relkind = 'r'
AND nspname <> 'pg_catalog'
AND (
 age(relfrozenxid) >= coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
 or
 coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +

IO:DataFileRead 4529

Amazon Relational Database Service User Guide

 coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) * c.reltuples
 <= n_dead_tup
 -- or 1 = 1
)
ORDER BY age(relfrozenxid) DESC;

Respond to high numbers of connections

When you monitor Amazon CloudWatch, you might find that the DatabaseConnections
metric spikes. This increase indicates an increased number of connections to your database. We
recommend the following approach:

• Limit the number of connections that the application can open with each instance. If your
application has an embedded connection pool feature, set a reasonable number of connections.
Base the number on what the vCPUs in your instance can parallelize effectively.

If your application doesn't use a connection pool feature, considering using Amazon RDS Proxy
or an alternative. This approach lets your application open multiple connections with the load
balancer. The balancer can then open a restricted number of connections with the database. As
fewer connections are running in parallel, your DB instance performs less context switching in
the kernel. Queries should progress faster, leading to fewer wait events. For more information,
see Amazon RDS Proxy.

• Whenever possible, take advantage of read replicas for RDS for PostgreSQL. When your
application runs a read-only operation, send these requests to the read replica(s). This technique
reduces the I/O pressure on the primary (writer) node.

• Consider scaling up your DB instance. A higher-capacity instance class gives more memory, which
gives RDS for PostgreSQL a larger shared buffer pool to hold pages. The larger size also gives the
DB instance more vCPUs to handle connections. More vCPUs are particularly helpful when the
operations that are generating IO:DataFileRead wait events are writes.

IO:WALWrite

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

IO:WALWrite 4530

Amazon Relational Database Service User Guide

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL 10 and higher.

Context

Activity in the database that's generating write-ahead log data fills up the WAL buffers first
and then writes to disk, asynchronously. The wait event IO:WALWrite is generated when the
SQL session is waiting for the WAL data to complete writing to disk so that it can release the
transaction's COMMIT call.

Likely causes of increased waits

If this wait event occurs often, you should review your workload and the type of updates that your
workload performs and their frequency. In particular, look for the following types of activity.

Heavy DML activity

Changing data in database tables doesn't happen instantaneously. An insert to one table
might need to wait for an insert or an update to the same table from another client. The data
manipulation language (DML) statements for changing data values (INSERT, UPDATE, DELETE,
COMMIT, ROLLBACK TRANSACTION) can result in contention that causes the write-ahead logfile
to be waiting for the buffers to be flushed. This situation is captured in the following Amazon
RDS Performance Insights metrics that indicate heavy DML activity.

• tup_inserted

• tup_updated

• tup_deleted

• xact_rollback

• xact_commit

For more information about these metrics, see Performance Insights counters for Amazon RDS
for PostgreSQL.

IO:WALWrite 4531

Amazon Relational Database Service User Guide

Frequent checkpoint activity

Frequent checkpoints contribute to a higher number of WAL files. In RDS for PostgreSQL, full
page writes are always "on." Full page writes help protect against data loss. However, when
checkpointing occurs too frequently, the system can suffer overall performance issues. This
is especially true on systems with heavy DML activity. In some cases, you might find error
messages in your postgresql.log stating that “checkpoints are occurring too frequently."

We recommend that when tuning checkpoints, you carefully balance performance against
expected time need to recover in the event of an abnormal shutdown.

Actions

We recommend the following actions to reduce the numbers of this wait event.

Topics

• Reduce the number of commits

• Monitor your checkpoints

• Scale up IO

• Dedicated log volume (DLV)

Reduce the number of commits

To reduce the number of commits, you can combine statements into transaction blocks. Use
Amazon RDS Performance Insights to examine the type of queries being run. You can also move
large maintenance operations to off-peak hours. For example, create indexes or use pg_repack
operations during non-production hours.

Monitor your checkpoints

There are two parameters that you can monitor to see how frequently your RDS for PostgreSQL DB
instance is writing to the WAL file for checkpoints.

• log_checkpoints – This parameter is set to "on" by default. It causes a message to get sent
to the PostgreSQL log for each checkpoint. These log messages include the number of buffers
written, the time spent writing them, and the number of WAL files added, removed, or recycled
for the given checkpoint.

IO:WALWrite 4532

Amazon Relational Database Service User Guide

For more information about this parameter, see Error Reporting and Logging in the PostgreSQL
documentation.

• checkpoint_warning – This parameter sets a threshold value (in seconds) for checkpoint
frequency above which a warning is generated. By default, this parameter isn't set in RDS
for PostgreSQL. You can set the value of this parameter to get a warning when the database
changes in your RDS for PostgreSQL DB instance are written at a rate for which the WAL
files are not sized to handle. For example, say you set this parameter to 30. If your RDS for
PostgreSQL instance needs to write changes more often than every 30 seconds, the warning that
"checkpoints are occurring too frequently" is sent to the PostgreSQL log. This can indicate that
your max_wal_size value should be increased.

For more information, see Write Ahead Log in the PostgreSQL documentation.

Scale up IO

This type of input/output (IO) wait event can remediated by scaling the input/output operations
per second (IOPs) to provide faster IO. Scaling IO is preferable to scaling CPU, because scaling
CPU can result in even more IO contention because the increased CPU can handle more work and
thus make the IO bottleneck even worse. In general, we recommend that you consider tuning your
workload before performing scaling operations.

Dedicated log volume (DLV)

You can use a dedicated log volume (DLV) for a DB instance that uses Provisioned IOPS (PIOPS)
storage by using the Amazon RDS console, AWS CLI, or Amazon RDS API. A DLV moves PostgreSQL
database transaction logs to a storage volume that's separate from the volume containing the
database tables. For more information, see Dedicated log volume (DLV).

Lock:advisory

The Lock:advisory event occurs when a PostgreSQL application uses a lock to coordinate
activity across multiple sessions.

Topics

• Relevant engine versions

• Context

• Causes

Lock:advisory 4533

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-CHECKPOINTS
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-CHECKPOINTS

Amazon Relational Database Service User Guide

• Actions

Relevant engine versions

This wait event information is relevant for RDS for PostgreSQL versions 9.6 and higher.

Context

PostgreSQL advisory locks are application-level, cooperative locks explicitly locked and unlocked
by the user's application code. An application can use PostgreSQL advisory locks to coordinate
activity across multiple sessions. Unlike regular, object- or row-level locks, the application has full
control over the lifetime of the lock. For more information, see Advisory Locks in the PostgreSQL
documentation.

Advisory locks can be released before a transaction ends or be held by a session across
transactions. This isn't true for implicit, system-enforced locks, such as an access-exclusive lock on a
table acquired by a CREATE INDEX statement.

For a description of the functions used to acquire (lock) and release (unlock) advisory locks, see
Advisory Lock Functions in the PostgreSQL documentation.

Advisory locks are implemented on top of the regular PostgreSQL locking system and are visible in
the pg_locks system view.

Causes

This lock type is exclusively controlled by an application explicitly using it. Advisory locks that are
acquired for each row as part of a query can cause a spike in locks or a long-term buildup.

These effects happen when the query is run in a way that acquires locks on more rows than are
returned by the query. The application must eventually release every lock, but if locks are acquired
on rows that aren't returned, the application can't find all of the locks.

The following example is from Advisory Locks in the PostgreSQL documentation.

SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100;

In this example, the LIMIT clause can only stop the query's output after the rows have already
been internally selected and their ID values locked. This can happen suddenly when a growing

Lock:advisory 4534

https://www.postgresql.org/docs/12/explicit-locking.html#ADVISORY-LOCKS
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADVISORY-LOCKS
https://www.postgresql.org/docs/12/explicit-locking.html#ADVISORY-LOCKS

Amazon Relational Database Service User Guide

data volume causes the planner to choose a different execution plan that wasn't tested
during development. The buildup in this case happens because the application explicitly calls
pg_advisory_unlock for every ID value that was locked. However, in this case it can't find the
set of locks acquired on rows that weren't returned. Because the locks are acquired on the session
level, they aren't released automatically at the end of the transaction.

Another possible cause for spikes in blocked lock attempts is unintended conflicts. In these
conflicts, unrelated parts of the application share the same lock ID space by mistake.

Actions

Review application usage of advisory locks and detail where and when in the application flow each
type of advisory lock is acquired and released.

Determine whether a session is acquiring too many locks or a long-running session isn't releasing
locks early enough, leading to a slow buildup of locks. You can correct a slow buildup of session-
level locks by ending the session using pg_terminate_backend(pid).

A client waiting for an advisory lock appears in pg_stat_activity with
wait_event_type=Lock and wait_event=advisory. You can obtain specific lock values by
querying the pg_locks system view for the same pid, looking for locktype=advisory and
granted=f.

You can then identify the blocking session by querying pg_locks for the same advisory lock
having granted=t, as shown in the following example.

SELECT blocked_locks.pid AS blocked_pid,
 blocking_locks.pid AS blocking_pid,
 blocked_activity.usename AS blocked_user,
 blocking_activity.usename AS blocking_user,
 now() - blocked_activity.xact_start AS blocked_transaction_duration,
 now() - blocking_activity.xact_start AS blocking_transaction_duration,
 concat(blocked_activity.wait_event_type,':',blocked_activity.wait_event) AS
 blocked_wait_event,
 concat(blocking_activity.wait_event_type,':',blocking_activity.wait_event) AS
 blocking_wait_event,
 blocked_activity.state AS blocked_state,
 blocking_activity.state AS blocking_state,
 blocked_locks.locktype AS blocked_locktype,
 blocking_locks.locktype AS blocking_locktype,
 blocked_activity.query AS blocked_statement,

Lock:advisory 4535

Amazon Relational Database Service User Guide

 blocking_activity.query AS blocking_statement
 FROM pg_catalog.pg_locks blocked_locks
 JOIN pg_catalog.pg_stat_activity blocked_activity ON blocked_activity.pid =
 blocked_locks.pid
 JOIN pg_catalog.pg_locks blocking_locks
 ON blocking_locks.locktype = blocked_locks.locktype
 AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_locks.DATABASE
 AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation
 AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
 AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple
 AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid
 AND blocking_locks.transactionid IS NOT DISTINCT FROM
 blocked_locks.transactionid
 AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid
 AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid
 AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid
 AND blocking_locks.pid != blocked_locks.pid
 JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid =
 blocking_locks.pid
 WHERE NOT blocked_locks.GRANTED;

All of the advisory lock API functions have two sets of arguments, either one bigint argument or
two integer arguments:

• For the API functions with one bigint argument, the upper 32 bits are in pg_locks.classid
and the lower 32 bits are in pg_locks.objid.

• For the API functions with two integer arguments, the first argument is pg_locks.classid
and the second argument is pg_locks.objid.

The pg_locks.objsubid value indicates which API form was used: 1 means one bigint
argument; 2 means two integer arguments.

Lock:extend

The Lock:extend event occurs when a backend process is waiting to lock a relation to extend it
while another process has a lock on that relation for the same purpose.

Topics

• Supported engine versions

• Context

Lock:extend 4536

Amazon Relational Database Service User Guide

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

Context

The event Lock:extend indicates that a backend process is waiting to extend a relation that
another backend process holds a lock on while it's extending that relation. Because only one
process at a time can extend a relation, the system generates a Lock:extend wait event. INSERT,
COPY, and UPDATE operations can generate this event.

Likely causes of increased waits

When the Lock:extend event appears more than normal, possibly indicating a performance
problem, typical causes include the following:

Surge in concurrent inserts or updates to the same table

There might be an increase in the number of concurrent sessions with queries that insert into or
update the same table.

Insufficient network bandwidth

The network bandwidth on the DB instance might be insufficient for the storage
communication needs of the current workload. This can contribute to storage latency that
causes an increase in Lock:extend events.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Reduce concurrent inserts and updates to the same relation

• Increase network bandwidth

Lock:extend 4537

Amazon Relational Database Service User Guide

Reduce concurrent inserts and updates to the same relation

First, determine whether there's an increase in tup_inserted and tup_updated metrics and an
accompanying increase in this wait event. If so, check which relations are in high contention for
insert and update operations. To determine this, query the pg_stat_all_tables view for the
values in n_tup_ins and n_tup_upd fields. For information about the pg_stat_all_tables
view, see pg_stat_all_tables in the PostgreSQL documentation.

To get more information about blocking and blocked queries, query pg_stat_activity as in the
following example:

SELECT
 blocked.pid,
 blocked.usename,
 blocked.query,
 blocking.pid AS blocking_id,
 blocking.query AS blocking_query,
 blocking.wait_event AS blocking_wait_event,
 blocking.wait_event_type AS blocking_wait_event_type
FROM pg_stat_activity AS blocked
JOIN pg_stat_activity AS blocking ON blocking.pid = ANY(pg_blocking_pids(blocked.pid))
where
blocked.wait_event = 'extend'
and blocked.wait_event_type = 'Lock';

 pid | usename | query | blocking_id |
 blocking_query | blocking_wait_event |
 blocking_wait_event_type
 ------+----------+------------------------------+-------------
+--
+---------------------+--------------------------
 7143 | myuser | insert into tab1 values (1); | 4600 | INSERT INTO tab1 (a)
 SELECT s FROM generate_series(1,1000000) s; | DataFileExtend | IO

After you identify relations that contribute to increase Lock:extend events, use the following
techniques to reduce the contention:

• Find out whether you can use partitioning to reduce contention for the same table. Separating
inserted or updated tuples into different partitions can reduce contention. For information about
partitioning, see Managing PostgreSQL partitions with the pg_partman extension.

Lock:extend 4538

https://www.postgresql.org/docs/13/monitoring-stats.html#MONITORING-PG-STAT-ALL-TABLES-VIEW

Amazon Relational Database Service User Guide

• If the wait event is mainly due to update activity, consider reducing the relation's fillfactor
value. This can reduce requests for new blocks during the update. The fillfactor is a storage
parameter for a table that determines the maximum amount of space for packing a table page.
It's expressed as a percentage of the total space for a page. For more information about the
fillfactor parameter, see CREATE TABLE in the PostgreSQL documentation.

Important

We highly recommend that you test your system if you change the fillfactor because
changing this value can negatively impact performance, depending on your workload.

Increase network bandwidth

To see whether there's an increase in write latency, check the WriteLatency metric in
CloudWatch. If there is, use the WriteThroughput and ReadThroughput Amazon CloudWatch
metrics to monitor the storage related traffic on the DB instance. These metrics can help you to
determine if network bandwidth is sufficient for the storage activity of your workload.

If your network bandwidth isn't enough, increase it. If your DB instance is reaching the network
bandwidth limits, the only way to increase the bandwidth is to increase your DB instance size.

For more information about CloudWatch metrics, see Amazon CloudWatch instance-level metrics
for Amazon RDS. For information about network performance for each DB instance class, see
Amazon CloudWatch instance-level metrics for Amazon RDS.

Lock:Relation

The Lock:Relation event occurs when a query is waiting to acquire a lock on a table or view
(relation) that's currently locked by another transaction.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Lock:Relation 4539

https://www.postgresql.org/docs/13/sql-createtable.html

Amazon Relational Database Service User Guide

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

Context

Most PostgreSQL commands implicitly use locks to control concurrent access to data in tables. You
can also use these locks explicitly in your application code with the LOCK command. Many lock
modes aren't compatible with each other, and they can block transactions when they're trying to
access the same object. When this happens, RDS for PostgreSQL generates a Lock:Relation
event. Some common examples are the following:

• Exclusive locks such as ACCESS EXCLUSIVE can block all concurrent access. Data definition
language (DDL) operations such as DROP TABLE, TRUNCATE, VACUUM FULL, and CLUSTER
acquire ACCESS EXCLUSIVE locks implicitly. ACCESS EXCLUSIVE is also the default lock mode
for LOCK TABLE statements that don't specify a mode explicitly.

• Using CREATE INDEX (without CONCURRENT) on a table conflicts with data manipulation
language (DML) statements UPDATE, DELETE, and INSERT, which acquire ROW EXCLUSIVE
locks.

For more information about table-level locks and conflicting lock modes, see Explicit Locking in the
PostgreSQL documentation.

Blocking queries and transactions typically unblock in one of the following ways:

• Blocking query – The application can cancel the query or the user can end the process. The
engine can also force the query to end because of a session's statement-timeout or a deadlock
detection mechanism.

• Blocking transaction – A transaction stops blocking when it runs a ROLLBACK or COMMIT
statement. Rollbacks also happen automatically when sessions are disconnected by a client or
by network issues, or are ended. Sessions can be ended when the database engine is shut down,
when the system is out of memory, and so forth.

Likely causes of increased waits

When the Lock:Relation event occurs more frequently than normal, it can indicate a
performance issue. Typical causes include the following:

Lock:Relation 4540

https://www.postgresql.org/docs/13/explicit-locking.html

Amazon Relational Database Service User Guide

Increased concurrent sessions with conflicting table locks

There might be an increase in the number of concurrent sessions with queries that lock the
same table with conflicting locking modes.

Maintenance operations

Health maintenance operations such as VACUUM and ANALYZE can significantly increase the
number of conflicting locks. VACUUM FULL acquires an ACCESS EXCLUSIVE lock, and ANALYSE
acquires a SHARE UPDATE EXCLUSIVE lock. Both types of locks can cause a Lock:Relation
wait event. Application data maintenance operations such as refreshing a materialized view can
also increase blocked queries and transactions.

Locks on reader instances

There might be a conflict between the relation locks held by the writer and readers. Currently,
only ACCESS EXCLUSIVE relation locks are replicated to reader instances. However, the
ACCESS EXCLUSIVE relation lock will conflict with any ACCESS SHARE relation locks held by
the reader. This can cause an increase in lock relation wait events on the reader.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Reduce the impact of blocking SQL statements

• Minimize the effect of maintenance operations

Reduce the impact of blocking SQL statements

To reduce the impact of blocking SQL statements, modify your application code where possible.
Following are two common techniques for reducing blocks:

• Use the NOWAIT option – Some SQL commands, such as SELECT and LOCK statements, support
this option. The NOWAIT directive cancels the lock-requesting query if the lock can't be acquired
immediately. This technique can help prevent a blocking session from causing a pile-up of
blocked sessions behind it.

For example: Assume that transaction A is waiting on a lock held by transaction B. Now, if B
requests a lock on a table that’s locked by transaction C, transaction A might be blocked until

Lock:Relation 4541

Amazon Relational Database Service User Guide

transaction C completes. But if transaction B uses a NOWAIT when it requests the lock on C, it can
fail fast and ensure that transaction A doesn't have to wait indefinitely.

• Use SET lock_timeout – Set a lock_timeout value to limit the time a SQL statement
waits to acquire a lock on a relation. If the lock isn't acquired within the timeout specified, the
transaction requesting the lock is cancelled. Set this value at the session level.

Minimize the effect of maintenance operations

Maintenance operations such as VACUUM and ANALYZE are important. We recommend that you
don't turn them off because you find Lock:Relation wait events related to these maintenance
operations. The following approaches can minimize the effect of these operations:

• Run maintenance operations manually during off-peak hours.

• To reduce Lock:Relation waits caused by autovacuum tasks, perform any needed autovacuum
tuning. For information about tuning autovacuum, see Working with PostgreSQL autovacuum
on Amazon RDS in the Amazon RDS User Guide.

Lock:transactionid

The Lock:transactionid event occurs when a transaction is waiting for a row-level lock.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

Context

The event Lock:transactionid occurs when a transaction is trying to acquire a row-level lock
that has already been granted to a transaction that is running at the same time. The session that

Lock:transactionid 4542

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html

Amazon Relational Database Service User Guide

shows the Lock:transactionid wait event is blocked because of this lock. After the blocking
transaction ends in either a COMMIT or ROLLBACK statement, the blocked transaction can proceed.

The multiversion concurrency control semantics of RDS for PostgreSQL guarantee that readers
don't block writers and writers don't block readers. For row-level conflicts to occur, blocking and
blocked transactions must issue conflicting statements of the following types:

• UPDATE

• SELECT … FOR UPDATE

• SELECT … FOR KEY SHARE

The statement SELECT … FOR KEY SHARE is a special case. The database uses the clause FOR
KEY SHARE to optimize the performance of referential integrity. A row-level lock on a row can
block INSERT, UPDATE, and DELETE commands on other tables that reference the row.

Likely causes of increased waits

When this event appears more than normal, the cause is typically UPDATE, SELECT … FOR
UPDATE, or SELECT … FOR KEY SHARE statements combined with the following conditions.

Topics

• High concurrency

• Idle in transaction

• Long-running transactions

High concurrency

RDS for PostgreSQL can use granular row-level locking semantics. The probability of row-level
conflicts increases when the following conditions are met:

• A highly concurrent workload contends for the same rows.

• Concurrency increases.

Idle in transaction

Sometimes the pg_stat_activity.state column shows the value idle in transaction.
This value appears for sessions that have started a transaction, but haven't yet issued a COMMIT

Lock:transactionid 4543

Amazon Relational Database Service User Guide

or ROLLBACK. If the pg_stat_activity.state value isn't active, the query shown in
pg_stat_activity is the most recent one to finish running. The blocking session isn't actively
processing a query because an open transaction is holding a lock.

If an idle transaction acquired a row-level lock, it might be preventing other sessions from
acquiring it. This condition leads to frequent occurrence of the wait event Lock:transactionid.
To diagnose the issue, examine the output from pg_stat_activity and pg_locks.

Long-running transactions

Transactions that run for a long time get locks for a long time. These long-held locks can block
other transactions from running.

Actions

Row-locking is a conflict among UPDATE, SELECT … FOR UPDATE, or SELECT … FOR KEY
SHARE statements. Before attempting a solution, find out when these statements are running on
the same row. Use this information to choose a strategy described in the following sections.

Topics

• Respond to high concurrency

• Respond to idle transactions

• Respond to long-running transactions

Respond to high concurrency

If concurrency is the issue, try one of the following techniques:

• Lower the concurrency in the application. For example, decrease the number of active sessions.

• Implement a connection pool. To learn how to pool connections with RDS Proxy, see Amazon
RDS Proxy.

• Design the application or data model to avoid contending UPDATE and SELECT … FOR UPDATE
statements. You can also decrease the number of foreign keys accessed by SELECT … FOR KEY
SHARE statements.

Respond to idle transactions

If pg_stat_activity.state shows idle in transaction, use the following strategies:

Lock:transactionid 4544

Amazon Relational Database Service User Guide

• Turn on autocommit wherever possible. This approach prevents transactions from blocking other
transactions while waiting for a COMMIT or ROLLBACK.

• Search for code paths that are missing COMMIT, ROLLBACK, or END.

• Make sure that the exception handling logic in your application always has a path to a valid end
of transaction.

• Make sure that your application processes query results after ending the transaction with
COMMIT or ROLLBACK.

Respond to long-running transactions

If long-running transactions are causing the frequent occurrence of Lock:transactionid, try the
following strategies:

• Keep row locks out of long-running transactions.

• Limit the length of queries by implementing autocommit whenever possible.

Lock:tuple

The Lock:tuple event occurs when a backend process is waiting to acquire a lock on a tuple.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

Context

The event Lock:tuple indicates that a backend is waiting to acquire a lock on a tuple while
another backend holds a conflicting lock on the same tuple. The following table illustrates a
scenario in which sessions generate the Lock:tuple event.

Lock:tuple 4545

Amazon Relational Database Service User Guide

Time Session 1 Session 2 Session 3

t1 Starts a transaction.

t2 Updates row 1.

t3 Updates row 1. The session
acquires an exclusive lock on
the tuple and then waits for
session 1 to release the lock
by committing or rolling
back.

t4 Updates row 1. The session
waits for session 2 to release
the exclusive lock on the tuple.

Or you can simulate this wait event by using the benchmarking tool pgbench. Configure a high
number of concurrent sessions to update the same row in a table with a custom SQL file.

To learn more about conflicting lock modes, see Explicit Locking in the PostgreSQL documentation.
To learn more about pgbench, see pgbench in the PostgreSQL documentation.

Likely causes of increased waits

When this event appears more than normal, possibly indicating a performance problem, typical
causes include the following:

• A high number of concurrent sessions are trying to acquire a conflicting lock for the same tuple
by running UPDATE or DELETE statements.

• Highly concurrent sessions are running a SELECT statement using the FOR UPDATE or FOR NO
KEY UPDATE lock modes.

• Various factors drive application or connection pools to open more sessions to execute the
same operations. As new sessions are trying to modify the same rows, DB load can spike, and
Lock:tuple can appear.

For more information, see Row-Level Locks in the PostgreSQL documentation.

Lock:tuple 4546

https://www.postgresql.org/docs/current/explicit-locking.html
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-ROWS

Amazon Relational Database Service User Guide

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Investigate your application logic

• Find the blocker session

• Reduce concurrency when it is high

• Troubleshoot bottlenecks

Investigate your application logic

Find out whether a blocker session has been in the idle in transaction state for long
time. If so, consider ending the blocker session as a short-term solution. You can use the
pg_terminate_backend function. For more information about this function, see Server Signaling
Functions in the PostgreSQL documentation.

For a long-term solution, do the following:

• Adjust the application logic.

• Use the idle_in_transaction_session_timeout parameter. This parameter ends any
session with an open transaction that has been idle for longer than the specified amount of time.
For more information, see Client Connection Defaults in the PostgreSQL documentation.

• Use autocommit as much as possible. For more information, see SET AUTOCOMMIT in the
PostgreSQL documentation.

Find the blocker session

While the Lock:tuple wait event is occurring, identify the blocker and blocked session by finding
out which locks depend on one another. For more information, see Lock dependency information
in the PostgreSQL wiki.

The following example queries all sessions, filtering on tuple and ordering by wait_time.

SELECT blocked_locks.pid AS blocked_pid,
 blocking_locks.pid AS blocking_pid,
 blocked_activity.usename AS blocked_user,

Lock:tuple 4547

https://www.postgresql.org/docs/13/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL
https://www.postgresql.org/docs/13/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-IDLE-IN-TRANSACTION-SESSION-TIMEOUT
https://www.postgresql.org/docs/current/ecpg-sql-set-autocommit.html
https://wiki.postgresql.org/wiki/Lock_dependency_information

Amazon Relational Database Service User Guide

 blocking_activity.usename AS blocking_user,
 now() - blocked_activity.xact_start AS blocked_transaction_duration,
 now() - blocking_activity.xact_start AS blocking_transaction_duration,
 concat(blocked_activity.wait_event_type,':',blocked_activity.wait_event) AS
 blocked_wait_event,
 concat(blocking_activity.wait_event_type,':',blocking_activity.wait_event) AS
 blocking_wait_event,
 blocked_activity.state AS blocked_state,
 blocking_activity.state AS blocking_state,
 blocked_locks.locktype AS blocked_locktype,
 blocking_locks.locktype AS blocking_locktype,
 blocked_activity.query AS blocked_statement,
 blocking_activity.query AS blocking_statement
 FROM pg_catalog.pg_locks blocked_locks
 JOIN pg_catalog.pg_stat_activity blocked_activity ON blocked_activity.pid =
 blocked_locks.pid
 JOIN pg_catalog.pg_locks blocking_locks
 ON blocking_locks.locktype = blocked_locks.locktype
 AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_locks.DATABASE
 AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation
 AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
 AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple
 AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid
 AND blocking_locks.transactionid IS NOT DISTINCT FROM
 blocked_locks.transactionid
 AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid
 AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid
 AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid
 AND blocking_locks.pid != blocked_locks.pid
 JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid =
 blocking_locks.pid
 WHERE NOT blocked_locks.GRANTED;

Reduce concurrency when it is high

The Lock:tuple event might occur constantly, especially in a busy workload time. In this
situation, consider reducing the high concurrency for very busy rows. Often, just a few rows control
a queue or the Boolean logic, which makes these rows very busy.

You can reduce concurrency by using different approaches based in the business requirement,
application logic, and workload type. For example, you can do the following:

• Redesign your table and data logic to reduce high concurrency.

Lock:tuple 4548

Amazon Relational Database Service User Guide

• Change the application logic to reduce high concurrency at the row level.

• Leverage and redesign queries with row-level locks.

• Use the NOWAIT clause with retry operations.

• Consider using optimistic and hybrid-locking logic concurrency control.

• Consider changing the database isolation level.

Troubleshoot bottlenecks

The Lock:tuple can occur with bottlenecks such as CPU starvation or maximum usage of Amazon
EBS bandwidth. To reduce bottlenecks, consider the following approaches:

• Scale up your instance class type.

• Optimize resource-intensive queries.

• Change the application logic.

• Archive data that is rarely accessed.

LWLock:BufferMapping (LWLock:buffer_mapping)

This event occurs when a session is waiting to associate a data block with a buffer in the shared
buffer pool.

Note

This event is named LWLock:BufferMapping for RDS for PostgreSQL version 13 and
higher versions. For RDS for PostgreSQL version 12 and older versions, this event is named
LWLock:buffer_mapping.

Topics

• Supported engine versions

• Context

• Causes

• Actions

LWLock:BufferMapping (LWLock:buffer_mapping) 4549

Amazon Relational Database Service User Guide

Supported engine versions

This wait event information is relevant for RDS for PostgreSQL version 9.6 and higher.

Context

The shared buffer pool is a PostgreSQL memory area that holds all pages that are or were being
used by processes. When a process needs a page, it reads the page into the shared buffer pool. The
shared_buffers parameter sets the shared buffer size and reserves a memory area to store the
table and index pages. If you change this parameter, make sure to restart the database. .

The LWLock:buffer_mapping wait event occurs in the following scenarios:

• A process searches the buffer table for a page and acquires a shared buffer mapping lock.

• A process loads a page into the buffer pool and acquires an exclusive buffer mapping lock.

• A process removes a page from the pool and acquires an exclusive buffer mapping lock.

Causes

When this event appears more than normal, possibly indicating a performance problem, the
database is paging in and out of the shared buffer pool. Typical causes include the following:

• Large queries

• Bloated indexes and tables

• Full table scans

• A shared pool size that is smaller than the working set

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Monitor buffer-related metrics

• Assess your indexing strategy

• Reduce the number of buffers that must be allocated quickly

LWLock:BufferMapping (LWLock:buffer_mapping) 4550

Amazon Relational Database Service User Guide

Monitor buffer-related metrics

When LWLock:buffer_mapping waits spike, investigate the buffer hit ratio. You can use these
metrics to get a better understanding of what is happening in the buffer cache. Examine the
following metrics:

blks_hit

This Performance Insights counter metric indicates the number of blocks that were retrieved
from the shared buffer pool. After the LWLock:buffer_mapping wait event appears, you
might observe a spike in blks_hit.

blks_read

This Performance Insights counter metric indicates the number of blocks that required I/O to be
read into the shared buffer pool. You might observe a spike in blks_read in the lead-up to the
LWLock:buffer_mapping wait event.

Assess your indexing strategy

To confirm that your indexing strategy is not degrading performance, check the following:

Index bloat

Ensure that index and table bloat aren't leading to unnecessary pages being read into the
shared buffer. If your tables contain unused rows, consider archiving the data and removing the
rows from the tables. You can then rebuild the indexes for the resized tables.

Indexes for frequently used queries

To determine whether you have the optimal indexes, monitor DB engine metrics in Performance
Insights. The tup_returned metric shows the number of rows read. The tup_fetched metric
shows the number of rows returned to the client. If tup_returned is significantly larger than
tup_fetched, the data might not be properly indexed. Also, your table statistics might not be
current.

Reduce the number of buffers that must be allocated quickly

To reduce the LWLock:buffer_mapping wait events, try to reduce the number of buffers that
must be allocated quickly. One strategy is to perform smaller batch operations. You might be able
to achieve smaller batches by partitioning your tables.

LWLock:BufferMapping (LWLock:buffer_mapping) 4551

Amazon Relational Database Service User Guide

LWLock:BufferIO (IPC:BufferIO)

The LWLock:BufferIO event occurs when RDS for PostgreSQL is waiting for other processes to
finish their input/output (I/O) operations when concurrently trying to access a page. Its purpose is
for the same page to be read into the shared buffer.

Topics

• Relevant engine versions

• Context

• Causes

• Actions

Relevant engine versions

This wait event information is relevant for all RDS for PostgreSQL versions. For RDS for PostgreSQL
12 and earlier versions this wait event is named as lwlock:buffer_io whereas in RDS for PostgreSQL
13 version it is named as lwlock:bufferio. From RDS for PostgreSQL 14 version BufferIO wait event
moved from LWLock to IPC wait event type (IPC:BufferIO).

Context

Each shared buffer has an I/O lock that is associated with the LWLock:BufferIO wait event, each
time a block (or a page) has to be retrieved outside the shared buffer pool.

This lock is used to handle multiple sessions that all require access to the same block. This block
has to be read from outside the shared buffer pool, defined by the shared_buffers parameter.

As soon as the page is read inside the shared buffer pool, the LWLock:BufferIO lock is released.

Note

The LWLock:BufferIO wait event precedes the IO:DataFileRead wait event. The
IO:DataFileRead wait event occurs while data is being read from storage.

For more information on lightweight locks, see Locking Overview.

LWLock:BufferIO (IPC:BufferIO) 4552

https://github.com/postgres/postgres/blob/65dc30ced64cd17f3800ff1b73ab1d358e92efd8/src/backend/storage/lmgr/README#L20

Amazon Relational Database Service User Guide

Causes

Common causes for the LWLock:BufferIO event to appear in top waits include the following:

• Multiple backends or connections trying to access the same page that's also pending an I/O
operation

• The ratio between the size of the shared buffer pool (defined by the shared_buffers
parameter) and the number of buffers needed by the current workload

• The size of the shared buffer pool not being well balanced with the number of pages being
evicted by other operations

• Large or bloated indexes that require the engine to read more pages than necessary into the
shared buffer pool

• Lack of indexes that forces the DB engine to read more pages from the tables than necessary

• Checkpoints occurring too frequently or needing to flush too many modified pages

• Sudden spikes for database connections trying to perform operations on the same page

Actions

We recommend different actions depending on the causes of your wait event:

• Observe Amazon CloudWatch metrics for correlation between sharp decreases in the
BufferCacheHitRatio and LWLock:BufferIO wait events. This effect can mean that you
have a small shared buffers setting. You might need to increase it or scale up your DB instance
class. You can split your workload into more reader nodes.

• Tune max_wal_size and checkpoint_timeout based on your workload peak time if you see
LWLock:BufferIO coinciding with BufferCacheHitRatio metric dips. Then identify which
query might be causing it.

• Verify whether you have unused indexes, then remove them.

• Use partitioned tables (which also have partitioned indexes). Doing this helps to keep index
reordering low and reduces its impact.

• Avoid indexing columns unnecessarily.

• Prevent sudden database connection spikes by using a connection pool.

• Restrict the maximum number of connections to the database as a best practice.

LWLock:BufferIO (IPC:BufferIO) 4553

Amazon Relational Database Service User Guide

LWLock:buffer_content (BufferContent)

The LWLock:buffer_content event occurs when a session is waiting to read or write a data page
in memory while another session has that page locked for writing. In RDS for PostgreSQL 13 and
higher, this wait event is called BufferContent.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

Context

To read or manipulate data, PostgreSQL accesses it through shared memory buffers. To read
from the buffer, a process gets a lightweight lock (LWLock) on the buffer content in shared mode.
To write to the buffer, it gets that lock in exclusive mode. Shared locks allow other processes to
concurrently acquire shared locks on that content. Exclusive locks prevent other processes from
getting any type of lock on it.

The LWLock:buffer_content (BufferContent) event indicates that multiple processes are
attempting to get a lock on contents of a specific buffer.

Likely causes of increased waits

When the LWLock:buffer_content (BufferContent) event appears more than normal,
possibly indicating a performance problem, typical causes include the following:

Increased concurrent updates to the same data

There might be an increase in the number of concurrent sessions with queries that update the
same buffer content. This contention can be more pronounced on tables with a lot of indexes.

LWLock:buffer_content (BufferContent) 4554

Amazon Relational Database Service User Guide

Workload data is not in memory

When data that the active workload is processing is not in memory, these wait events can
increase. This effect is because processes holding locks can keep them longer while they
perform disk I/O operations.

Excessive use of foreign key constraints

Foreign key constraints can increase the amount of time a process holds onto a buffer content
lock. This effect is because read operations require a shared buffer content lock on the
referenced key while that key is being updated.

Actions

We recommend different actions depending on the causes of your wait event. You might identify
LWLock:buffer_content (BufferContent) events by using Amazon RDS Performance Insights
or by querying the view pg_stat_activity.

Topics

• Improve in-memory efficiency

• Reduce usage of foreign key constraints

• Remove unused indexes

• Increase the cache size when using sequences

Improve in-memory efficiency

To increase the chance that active workload data is in memory, partition tables or scale up your
instance class. For information about DB instance classes, see DB instance classes.

Reduce usage of foreign key constraints

Investigate workloads experiencing high numbers of LWLock:buffer_content
(BufferContent) wait events for usage of foreign key constraints. Remove unnecessary foreign
key constraints.

Remove unused indexes

For workloads experiencing high numbers of LWLock:buffer_content (BufferContent) wait
events, identify unused indexes and remove them.

LWLock:buffer_content (BufferContent) 4555

Amazon Relational Database Service User Guide

Increase the cache size when using sequences

If your tables uses sequences, increase the cache size to remove contention on sequence pages
and index pages. Each sequence is a single page in shared memory. The pre-defined cache is per
connection. This might not be enough to handle the workload when many concurrent sessions are
getting a sequence value.

LWLock:lock_manager (LWLock:lockmanager)

This event occurs when the RDS for PostgreSQL engine maintains the shared lock's memory area to
allocate, check, and deallocate a lock when a fast path lock isn't possible.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is relevant for RDS for PostgreSQL version 9.6 and higher.
For RDS for PostgreSQL releases older than version 13, the name of this wait event is
LWLock:lock_manager. For RDS for PostgreSQL version 13 and higher, the name of this wait
event is LWLock:lockmanager.

Context

When you issue a SQL statement, RDS for PostgreSQL records locks to protect the structure, data,
and integrity of your database during concurrent operations. The engine can achieve this goal
using a fast path lock or a path lock that isn't fast. A path lock that isn't fast is more expensive and
creates more overhead than a fast path lock.

Fast path locking

To reduce the overhead of locks that are taken and released frequently, but that rarely conflict,
backend processes can use fast path locking. The database uses this mechanism for locks that meet
the following criteria:

LWLock:lock_manager (LWLock:lockmanager) 4556

Amazon Relational Database Service User Guide

• They use the DEFAULT lock method.

• They represent a lock on a database relation rather than a shared relation.

• They are weak locks that are unlikely to conflict.

• The engine can quickly verify that no conflicting locks can possibly exist.

The engine can't use fast path locking when either of the following conditions is true:

• The lock doesn't meet the preceding criteria.

• No more slots are available for the backend process.

To tune your queries for fast-path locking, you can use the following query.

SELECT count(*), pid, mode, fastpath
 FROM pg_locks
 WHERE fastpath IS NOT NULL
 GROUP BY 4,3,2
 ORDER BY pid, mode;
 count | pid | mode | fastpath
-------+------+-----------------+----------
16 | 9185 | AccessShareLock | t
336 | 9185 | AccessShareLock | f
1 | 9185 | ExclusiveLock | t

The following query shows only the total across the database.

SELECT count(*), mode, fastpath
 FROM pg_locks
 WHERE fastpath IS NOT NULL
 GROUP BY 3,2
 ORDER BY mode,1;
count | mode | fastpath
-------+-----------------+----------
16 | AccessShareLock | t
337 | AccessShareLock | f
1 | ExclusiveLock | t
(3 rows)

For more information about fast path locking, see fast path in the PostgreSQL lock manager
README and pg-locks in the PostgreSQL documentation.

LWLock:lock_manager (LWLock:lockmanager) 4557

https://github.com/postgres/postgres/blob/master/src/backend/storage/lmgr/README#L70-L76
https://www.postgresql.org/docs/9.3/view-pg-locks.html#AEN98195

Amazon Relational Database Service User Guide

Example of a scaling problem for the lock manager

In this example, a table named purchases stores five years of data, partitioned by day. Each
partition has two indexes. The following sequence of events occurs:

1. You query many days worth of data, which requires the database to read many partitions.

2. The database creates a lock entry for each partition. If partition indexes are part of the optimizer
access path, the database creates a lock entry for them, too.

3. When the number of requested locks entries for the same backend process is higher than 16,
which is the value of FP_LOCK_SLOTS_PER_BACKEND, the lock manager uses the non–fast path
lock method.

Modern applications might have hundreds of sessions. If concurrent sessions are querying the
parent without proper partition pruning, the database might create hundreds or even thousands
of non–fast path locks. Typically, when this concurrency is higher than the number of vCPUs, the
LWLock:lock_manager wait event appears.

Note

The LWLock:lock_manager wait event isn't related to the number of partitions or indexes
in a database schema. Instead, it's related to the number of non–fast path locks that the
database must control.

Likely causes of increased waits

When the LWLock:lock_manager wait event occurs more than normal, possibly indicating a
performance problem, the most likely causes of sudden spikes are as follows:

• Concurrent active sessions are running queries that don't use fast path locks. These sessions also
exceed the maximum vCPU.

• A large number of concurrent active sessions are accessing a heavily partitioned table. Each
partition has multiple indexes.

• The database is experiencing a connection storm. By default, some applications and connection
pool software create more connections when the database is slow. This practice makes the
problem worse. Tune your connection pool software so that connection storms don't occur.

• A large number of sessions query a parent table without pruning partitions.

LWLock:lock_manager (LWLock:lockmanager) 4558

Amazon Relational Database Service User Guide

• A data definition language (DDL), data manipulation language (DML), or a maintenance
command exclusively locks either a busy relation or tuples that are frequently accessed or
modified.

Actions

If the CPU wait event occurs, it doesn't necessarily indicate a performance problem. Respond to this
event only when performance degrades and this wait event is dominating DB load.

Topics

• Use partition pruning

• Remove unnecessary indexes

• Tune your queries for fast path locking

• Tune for other wait events

• Reduce hardware bottlenecks

• Use a connection pooler

• Upgrade your RDS for PostgreSQL version

Use partition pruning

Partition pruning is a query optimization strategy for declaratively partitioned tables that excludes
unneeded partitions from table scans, thereby improving performance. Partition pruning is turned
on by default. If it is turned off, turn it on as follows.

SET enable_partition_pruning = on;

Queries can take advantage of partition pruning when their WHERE clause contains the column
used for the partitioning. For more information, see Partition Pruning in the PostgreSQL
documentation.

Remove unnecessary indexes

Your database might contain unused or rarely used indexes. If so, consider deleting them. Do either
of the following:

• Learn how to find unnecessary indexes by reading Unused Indexes in the PostgreSQL wiki.

LWLock:lock_manager (LWLock:lockmanager) 4559

https://www.postgresql.org/docs/current/ddl-partitioning.html#DDL-PARTITION-PRUNING
https://wiki.postgresql.org/wiki/Index_Maintenance#Unused_Indexes

Amazon Relational Database Service User Guide

• Run PG Collector. This SQL script gathers database information and presents it in a consolidated
HTML report. Check the "Unused indexes" section. For more information, see pg-collector in the
AWS Labs GitHub repository.

Tune your queries for fast path locking

To find out whether your queries use fast path locking, query the fastpath column in the
pg_locks table. If your queries aren't using fast path locking, try to reduce number of relations
per query to fewer than 16.

Tune for other wait events

If LWLock:lock_manager is first or second in the list of top waits, check whether the following
wait events also appear in the list:

• Lock:Relation

• Lock:transactionid

• Lock:tuple

If the preceding events appear high in the list, consider tuning these wait events first. These events
can be a driver for LWLock:lock_manager.

Reduce hardware bottlenecks

You might have a hardware bottleneck, such as CPU starvation or maximum usage of your Amazon
EBS bandwidth. In these cases, consider reducing the hardware bottlenecks. Consider the following
actions:

• Scale up your instance class.

• Optimize queries that consume large amounts of CPU and memory.

• Change your application logic.

• Archive your data.

For more information about CPU, memory, and EBS network bandwidth, see Amazon RDS Instance
Types.

LWLock:lock_manager (LWLock:lockmanager) 4560

https://github.com/awslabs/pg-collector
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/

Amazon Relational Database Service User Guide

Use a connection pooler

If your total number of active connections exceeds the maximum vCPU, more OS processes require
CPU than your instance type can support. In this case, consider using or tuning a connection pool.
For more information about the vCPUs for your instance type, see Amazon RDS Instance Types.

For more information about connection pooling, see the following resources:

• Amazon RDS Proxy

• pgbouncer

• Connection Pools and Data Sources in the PostgreSQL Documentation

Upgrade your RDS for PostgreSQL version

If your current version of RDS for PostgreSQL is lower than 12, upgrade to version 12 or higher.
PostgreSQL versions 12 and later have an improved partition mechanism. For more information
about version 12, see PostgreSQL 12.0 Release Notes. For more information about upgrading RDS
for PostgreSQL, see Upgrades of the RDS for PostgreSQL DB engine.

Timeout:PgSleep

The Timeout:PgSleep event occurs when a server process has called the pg_sleep function and
is waiting for the sleep timeout to expire.

Topics

• Supported engine versions

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

Likely causes of increased waits

This wait event occurs when an application, stored function, or user issues a SQL statement that
calls one of the following functions:

Timeout:PgSleep 4561

https://aws.amazon.com/rds/instance-types/
http://www.pgbouncer.org/usage.html
https://www.postgresql.org/docs/7.4/jdbc-datasource.html
https://www.postgresql.org/docs/release/12.0/

Amazon Relational Database Service User Guide

• pg_sleep

• pg_sleep_for

• pg_sleep_until

The preceding functions delay execution until the specified number of seconds have elapsed.
For example, SELECT pg_sleep(1) pauses for 1 second. For more information, see Delaying
Execution in the PostgreSQL documentation.

Actions

Identify the statement that was running the pg_sleep function. Determine if the use of the
function is appropriate.

Timeout:VacuumDelay

The Timeout:VacuumDelay event indicates that the cost limit for vacuum I/O has been
exceeded and that the vacuum process has been put to sleep. Vacuum operations stop for the
duration specified in the respective cost delay parameter and then it resumes its work. For the
manual vacuum command, the delay is specified in the vacuum_cost_delay parameter. For
the autovacuum daemon, the delay is specified in the autovacuum_vacuum_cost_delay
parameter.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL.

Context

PostgreSQL has both an autovacuum daemon and a manual vacuum command. The autovacuum
process is "on" by default for RDS for PostgreSQL DB instances. The manual vacuum command is
used on an as-needed basis, for example, to purge tables of dead tuples or generate new statistics.

Timeout:VacuumDelay 4562

https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-DELAY
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-DELAY

Amazon Relational Database Service User Guide

When vacuuming is underway, PostgreSQL uses an internal counter to keep track of estimated
costs as the system performs various I/O operations. When the counter reaches the value specified
by the cost limit parameter, the process performing the operation sleeps for the brief duration
specified in the cost delay parameter. It then resets the counter and continues operations.

The vacuum process has parameters that can be used to regulate resource consumption. The
autovacuum and the manual vacuum command have their own parameters for setting the cost
limit value. They also have their own parameters to specify a cost delay, an amount of time to put
the vacuum to sleep when the limit is reached. In this way, the cost delay parameter works as a
throttling mechanism for resource consumption. In the following lists, you can find description of
these parameters.

Parameters that affect throttling of the autovacuum daemon

• autovacuum_vacuum_cost_limit – Specifies the cost limit value to use in automatic vacuum
operations. Increasing the setting for this parameter allows the vacuum process to use more
resources and decreases the Timeout:VacuumDelay wait event.

• autovacuum_vacuum_cost_delay – Specifies the cost delay value to use in automatic vacuum
operations. The default value is 2 milliseconds. Setting the delay parameter to 0 turns off the
throttling mechanism and thus, the Timeout:VacuumDelay wait event won't appear.

For more information, see Automatic Vacuuming in the PostgreSQL documentation.

Parameters that affect throttling of the manual vacuum process

• vacuum_cost_limit – The threshold at which the vacuuming process is put to sleep.
By default, the limit is 200. This number represents the accumulated cost estimates for
extra I/O needed by various resources. Increasing this value reduces the number of the
Timeout:VacuumDelay wait event.

• vacuum_cost_delay – The amount of time that the vacuum process sleeps when the vacuum
cost limit has been reached. The default setting is 0, which means that this feature is off. You can
set this to an integer value to specify the number of milliseconds to turn on this feature, but we
recommend that you leave it at its default setting.

For more information about the vacuum_cost_delay parameter, see Resource Consumption in
the PostgreSQL documentation.

Timeout:VacuumDelay 4563

https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-LIMIT
https://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-DELAY
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-DELAY
https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-VACUUM-COST

Amazon Relational Database Service User Guide

To learn more about how to configure and use the autovacuum with RDS for PostgreSQL, see
Working with PostgreSQL autovacuum on Amazon RDS for PostgreSQL.

Likely causes of increased waits

The Timeout:VacuumDelay is affected by the balance between the cost limit parameter settings
(vacuum_cost_limit, autovacuum_vacuum_cost_limit) and the cost delay parameters
(vacuum_cost_delay, autovacuum_vacuum_cost_delay) that control the vacuum's sleep
duration. Raising a cost limit parameter value allows more resources to be used by the vacuum
before being put to sleep. That results in fewer Timeout:VacuumDelay wait events. Increasing
either of the delay parameters causes the Timeout:VacuumDelay wait event to occur more
frequently and for longer periods of time.

The autovacuum_max_workers parameter setting can also increase numbers of the
Timeout:VacuumDelay. Each additional autovacuum worker process contributes to the internal
counter mechanism, and thus the limit can be reached more quickly than with a single autovacuum
worker process. As the cost limit is reached more quickly, the cost delay is put to effect more
frequently, resulting in more Timeout:VacuumDelay wait events. For more information, see
autovacuum_max_workers in the PostgreSQL documentation.

Large objects, such as 500GB or larger, also raise this wait event because it can take some time for
the vacuum to complete processing large objects.

Actions

If the vacuum operations complete as expected, no remediation is needed. In other words, this
wait event doesn't necessarily indicate a problem. It indicates that the vacuum is being put to sleep
for the period of time specified in the delay parameter so that resources can be applied to other
processes that need to complete.

If you want vacuum operations to complete faster, you can lower the delay parameters. This
shortens the time that the vacuum sleeps.

Timeout:VacuumDelay 4564

https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-MAX-WORKERS

Amazon Relational Database Service User Guide

Tuning RDS for PostgreSQL with Amazon DevOps Guru
proactive insights

DevOps Guru proactive insights detects conditions on your RDS for PostgreSQL DB instances that
can cause problems, and lets you know about them before they occur. Proactive insights can alert
you to a long running idle in transaction connection. For more information about troubleshooting
long running idle in transaction connections, see Database has long running idle in transaction
connection

DevOps Guru can do the following:

• Prevent many common database issues by cross-checking your database configuration against
common recommended settings.

• Alert you to critical issues in your fleet that, if left unchecked, can lead to larger problems later.

• Alert you to newly discovered problems.

Every proactive insight contains an analysis of the cause of the problem and recommendations for
corrective actions.

For more information about Amazon DevOps Guru for Amazon RDS, see Analyzing performance
anomalies with Amazon DevOps Guru for Amazon RDS.

Database has long running idle in transaction connection

A connection to the database has been in the idle in transaction state for more than 1800
seconds.

Topics

• Supported engine versions

• Context

• Likely causes for this issue

• Actions

• Relevant metrics

Tuning RDS for PostgreSQL with Amazon DevOps Guru proactive insights 4565

Amazon Relational Database Service User Guide

Supported engine versions

This insight information is supported for all versions of RDS for PostgreSQL.

Context

A transaction in the idle in transaction state can hold locks that block other queries. It can
also prevent VACUUM (including autovacuum) from cleaning up dead rows, leading to index or table
bloat or transaction ID wraparound.

Likely causes for this issue

A transaction initiated in an interactive session with BEGIN or START TRANSACTION hasn't ended
by using a COMMIT, ROLLBACK, or END command. This causes the transaction to move to idle in
transaction state.

Actions

You can find idle transactions by querying pg_stat_activity.

In your SQL client, run the following query to list all connections in idle in transaction state
and to order them by duration:

SELECT now() - state_change as idle_in_transaction_duration, now() - xact_start as
 xact_duration,*
FROM pg_stat_activity
WHERE state = 'idle in transaction'
AND xact_start is not null
ORDER BY 1 DESC;

We recommend different actions depending on the causes of your insight.

Topics

• End transaction

• Terminate the connection

• Configure the idle_in_transaction_session_timeout parameter

• Check the AUTOCOMMIT status

• Check the transaction logic in your application code

Database has long running idle in transaction connection 4566

Amazon Relational Database Service User Guide

End transaction

When you initiate a transaction in an interactive session with BEGIN or START TRANSACTION, it
moves to idle in transaction state. It remains in this state until you end the transaction by
issuing a COMMIT, ROLLBACK, END command or disconnect the connection completely to roll back
the transaction.

Terminate the connection

Terminate the connection with an idle transaction using the following query:

SELECT pg_terminate_backend(pid);

pid is the process ID of the connection.

Configure the idle_in_transaction_session_timeout parameter

Configure the idle_in_transaction_session_timeout parameter in the parameter group.
The advantage of configuring this parameter is that it does not require a manual intervention to
terminate the long idle in transaction. For more information on this parameter, see the PostgreSQL
documentation.

The following message will be reported in the PostgreSQL log file after the connection is
terminated, when a transaction is in the idle_in_transaction state for longer than the specified
time.

FATAL: terminating connection due to idle in transaction timeout

Check the AUTOCOMMIT status

AUTOCOMMIT is turned on by default. But if it is accidentally turned off in the client ensure that
you turn it back on.

• In your psql client, run the following command:

postgres=> \set AUTOCOMMIT on

• In pgadmin, turn it on by choosing the AUTOCOMMIT option from the down arrow.

Database has long running idle in transaction connection 4567

https://www.postgresql.org/docs/current/runtime-config-client.html
https://www.postgresql.org/docs/current/runtime-config-client.html

Amazon Relational Database Service User Guide

Check the transaction logic in your application code

Investigate your application logic for possible problems. Consider the following actions:

• Check if the JDBC auto commit is set true in your application. Also, consider using explicit
COMMIT commands in your code.

• Check your error handling logic to see whether it closes a transaction after errors.

• Check whether your application is taking long to process the rows returned by a query while
the transaction is open. If so, consider coding the application to close the transaction before
processing the rows.

• Check whether a transaction contains many long-running operations. If so, divide a single
transaction into multiple transactions.

Relevant metrics

The following PI metrics are related to this insight:

• idle_in_transaction_count - Number of sessions in idle in transaction state.

• idle_in_transaction_max_time - The duration of the longest running transaction in the idle in
transaction state.

Database has long running idle in transaction connection 4568

Amazon Relational Database Service User Guide

Using PostgreSQL extensions with Amazon RDS for PostgreSQL

You can extend the functionality of PostgreSQL by installing a variety of extensions and modules.
For example, to work with spatial data you can install and use the PostGIS extension. For more
information, see Managing spatial data with the PostGIS extension. As another example, if you
want to improve data entry for very large tables, you can consider partitioning your data by
using the pg_partman extension. To learn more, see Managing PostgreSQL partitions with the
pg_partman extension.

Note

RDS for PostgreSQL supports Trusted Language Extensions for PostgreSQL through
the pg_tle extension, which you can add to your DB instance. By using this extension,
developers can create their own PostgreSQL extensions in a safe environment that
simplifies the setup and configuration requirements. To learn about RDS for PostgreSQL
versions supporting pg_tle extension and for more information, see Working with Trusted
Language Extensions for PostgreSQL.

In some cases, rather than installing an extension, you might add a specific module to the list of
shared_preload_libraries in your RDS for PostgreSQL DB instance's custom DB parameter
group. Typically, the default DB cluster parameter group loads only the pg_stat_statements,
but several other modules are available to add to the list. For example, you can add scheduling
capability by adding the pg_cron module, as detailed in Scheduling maintenance with the
PostgreSQL pg_cron extension. As another example, you can log query execution plans by loading
the auto_explain module. To learn more, see Logging execution plans of queries in the AWS
knowledge center.

Depending on your version of RDS for PostgreSQL, installing an extension might require
rds_superuser permissions, as follows:

• For RDS for PostgreSQL versions 12 and earlier versions, installing extensions requires
rds_superuser privileges.

• For RDS for PostgreSQL version 13 and higher versions, users (roles) with create permissions
on a given database instance can install and use any trusted extensions. For a list of trusted
extensions, see PostgreSQL trusted extensions.

Using PostgreSQL extensions 4569

https://aws.amazon.com/premiumsupport/knowledge-center/rds-postgresql-tune-query-performance/#

Amazon Relational Database Service User Guide

You can also specify precisely which extensions can be installed on your RDS for PostgreSQL DB
instance, by listing them in the rds.allowed_extensions parameter. For more information, see
Restricting installation of PostgreSQL extensions.

To learn more about the rds_superuser role, see Understanding PostgreSQL roles and
permissions.

Topics

• Using functions from the orafce extension

• Using Amazon RDS delegated extension support for PostgreSQL

• Managing PostgreSQL partitions with the pg_partman extension

• Using pgAudit to log database activity

• Scheduling maintenance with the PostgreSQL pg_cron extension

• Using pglogical to synchronize data across instances

• Using pgactive to support active-active replication

• Reducing bloat in tables and indexes with the pg_repack extension

• Upgrading and using the PLV8 extension

• Using PL/Rust to write PostgreSQL functions in the Rust language

• Managing spatial data with the PostGIS extension

Using functions from the orafce extension

The orafce extension provides functions and operators that emulate a subset of functions and
packages from an Oracle database. The orafce extension makes it easier for you to port an Oracle
application to PostgreSQL. RDS for PostgreSQL versions 9.6.6 and higher support this extension.
For more information about orafce, see orafce on GitHub.

Note

RDS for PostgreSQL doesn't support the utl_file package that is part of the
orafce extension. This is because the utl_file schema functions provide read and
write operations on operating-system text files, which requires superuser access to the
underlying host. As a managed service, RDS for PostgreSQL doesn't provide host access.

Using functions from orafce 4570

https://github.com/orafce/orafce

Amazon Relational Database Service User Guide

To use the orafce extension

1. Connect to the DB instance with the primary user name that you used to create the DB
instance.

If you want to turn on orafce for a different database in the same DB instance, use the /c
dbname psql command. Using this command, you change from the primary database after
initiating the connection.

2. Turn on the orafce extension with the CREATE EXTENSION statement.

CREATE EXTENSION orafce;

3. Transfer ownership of the oracle schema to the rds_superuser role with the ALTER SCHEMA
statement.

ALTER SCHEMA oracle OWNER TO rds_superuser;

If you want to see the list of owners for the oracle schema, use the \dn psql command.

Using functions from orafce 4571

Amazon Relational Database Service User Guide

Using Amazon RDS delegated extension support for PostgreSQL

Using Amazon RDS delegated extension support for PostgreSQL, you can delegate the extension
management to a user who need not be an rds_superuser. With this delegated extension
support, a new role called rds_extension is created and you must assign this to a user to
manage other extensions. This role can create, update, and drop extensions.

You can specify the extensions that can be installed on your RDS DB instance, by listing them in the
rds.allowed_extensions parameter. For more information, see Using PostgreSQL extensions
with Amazon RDS for PostgreSQL.

You can restrict the list of extensions available that can be managed by the user with the
rds_extension role using rds.allowed_delegated_extensions parameter.

The delegated extension support is available in the following versions:

• All higher versions

• 16.4 and higher 16 versions

• 15.8 and higher 15 versions

• 14.13 and higher 14 versions

• 13.16 and higher 13 versions

• 12.20 and higher 12 versions

Topics

• Turning on delegate extension support to a user

• Configuration used in RDS delegated extension support for PostgreSQL

• Turning off the support for the delegated extension

• Benefits of using Amazon RDS delegated extension support

• Limitation of Amazon RDS delegated extension support for PostgreSQL

• Permissions required for certain extensions

• Security Considerations

• Drop extension cascade disabled

• Example extensions that can be added using delegated extension support

Using Amazon RDS delegated extension support for PostgreSQL 4572

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html

Amazon Relational Database Service User Guide

Turning on delegate extension support to a user

You must perform the following to enable delegate extension support to a user:

1. Grant rds_extension role to a user – Connect to the database as rds_superuser and
execute the following command:

Postgres => grant rds_extension to user_name;

2. Set the list of extensions available for delegated users to manage – The
rds.allowed_delegated_extensions allows you to specify a subset of the available
extensions using rds.allowed_extensions in the DB cluster parameter. You can perform
this at one of the following levels:

• In the cluster or the instance parameter group, through the AWS Management Console or
API. For more information, see Parameter groups for Amazon RDS.

• Use the following command at the database level:

alter database database_name set rds.allowed_delegated_extensions =
 'extension_name_1,
 extension_name_2,...extension_name_n';

• Use the following command at the user level:

alter user user_name set rds.allowed_delegated_extensions = 'extension_name_1,
 extension_name_2,...extension_name_n';

Note

You need not restart the database after changing the
rds.allowed_delegated_extensions dynamic parameter.

3. Allow access to the delegated user to objects created during the extension creation process
– Certain extensions create objects that require additional permissions to be granted before
the user with rds_extension role can access them. The rds_superuser must grant
the delegated user access to those objects. One of the options is to use an event trigger to
automatically grant permission to the delegated user. For more information, refer to the event
trigger example in Turning off the support for the delegated extension.

Using Amazon RDS delegated extension support for PostgreSQL 4573

Amazon Relational Database Service User Guide

Configuration used in RDS delegated extension support for PostgreSQL

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

rds.allow
ed_delega
ted_exten
sions

This parameter
limits the extension
s a rds_extension
role can manage
in a database. It
must be a subset of
rds.allowed_extens
ions.

empty string • By default, this
parameter is
empty string,
which means
that no extension
s have been
delegated to
users with
rds_exten
sion .

• Any supported
extension can be
added if the user
has permissio
n to do so. To
do this, set the
rds.allow
ed_delega
ted_exten
sions
parameter to a
string of comma-
separated
extension names.
By adding a list
of extensions to
this parameter
, you explicitl
y identify the
extensions that

rds_superuser

Using Amazon RDS delegated extension support for PostgreSQL 4574

Amazon Relational Database Service User Guide

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

the user with
the rds_exten
sion role can
install.

• When set to *,
it means that all
extensions listed
in rds_allow
ed_extens
ions are
delegated to
users with
rds_exten
sion role.

To learn more
about setting up
this parameter
, see Turning on
delegate extension
support to a user.

Using Amazon RDS delegated extension support for PostgreSQL 4575

Amazon Relational Database Service User Guide

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

rds.allow
ed_extens
ions

This parameter lets
the customer limit
the extensions that
can be installed
in the RDS DB
instance. For more
information, see
Restricting installat
ion of PostgreSQL
extensions

"*" By default, this
parameter is set to
"*", which means
that all extensions
supported on RDS
for PostgreSQL and
Aurora PostgreSQ
L are allowed to be
created by users
with necessary
privileges.

Empty means no
extensions can be
installed in the RDS
DB instance.

administrator

Using Amazon RDS delegated extension support for PostgreSQL 4576

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.Restriction
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.Restriction
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.Restriction

Amazon Relational Database Service User Guide

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

rds-
deleg
ated_exte
nsion_all
ow_drop_c
ascade

This parameter
controls the
ability for user
with rds_exten
sion to drop the
extension using a
cascade option.

off By default, rds-
delegated_exte
nsion_all
ow_drop_c
ascade is set to
off. This means
that users with
rds_extension
are not allowed to
drop an extension
 using the cascade
option.

To grant that
ability, the
rds.deleg
ated_exte
nsion_all
ow_drop_c
ascade
parameter should
be set to on.

rds_superuser

Turning off the support for the delegated extension

Turning off partially

The delegated users can’t create new extensions but can still update existing extensions.

• Reset rds.allowed_delegated_extensions to the default value in the DB cluster parameter
group.

• Use the following command at the database level:

Using Amazon RDS delegated extension support for PostgreSQL 4577

Amazon Relational Database Service User Guide

alter database database_name reset rds.allowed_delegated_extensions;

• Use the following command at the user level:

alter user user_name reset rds.allowed_delegated_extensions;

Turning off fully

Revoking rds_extension role from a user will revert the user to standard permissions. The user
can no longer create, update, or drop extensions.

postgres => revoke rds_extension from user_name;

Example of event trigger

If you want to allow a delegated user with rds_extension to use extensions that require setting
permissions on their objects created by the extension creation, you can customize the below
example of an event trigger and add only the extensions for which you want the delegated users
to have access to the full functionality. This event trigger can be created on template1 (the default
template), therefore all database created from template1 will have that event trigger. When a
delegated user installs the extension, this trigger will automatically grant ownership on the objects
created by the extension.

CREATE OR REPLACE FUNCTION create_ext()

 RETURNS event_trigger AS $$

DECLARE

 schemaname TEXT;
 databaseowner TEXT;

 r RECORD;

BEGIN

 IF tg_tag = 'CREATE EXTENSION' and current_user != 'rds_superuser' THEN
 RAISE NOTICE 'SECURITY INVOKER';

Using Amazon RDS delegated extension support for PostgreSQL 4578

Amazon Relational Database Service User Guide

 RAISE NOTICE 'user: %', current_user;
 FOR r IN SELECT * FROM pg_event_trigger_ddl_commands()
 LOOP
 CONTINUE WHEN r.command_tag != 'CREATE EXTENSION' OR r.object_type !=
 'extension';

 schemaname = (
 SELECT n.nspname
 FROM pg_catalog.pg_extension AS e
 INNER JOIN pg_catalog.pg_namespace AS n
 ON e.extnamespace = n.oid
 WHERE e.oid = r.objid
);

 databaseowner = (
 SELECT pg_catalog.pg_get_userbyid(d.datdba)
 FROM pg_catalog.pg_database d
 WHERE d.datname = current_database()
);
 RAISE NOTICE 'Record for event trigger %, objid: %,tag: %, current_user: %,
 schema: %, database_owenr: %', r.object_identity, r.objid, tg_tag, current_user,
 schemaname, databaseowner;
 IF r.object_identity = 'address_standardizer_data_us' THEN
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE %I.us_gaz TO
 %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE %I.us_lex TO
 %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE %I.us_rules
 TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 ELSIF r.object_identity = 'dict_int' THEN
 EXECUTE format('ALTER TEXT SEARCH DICTIONARY %I.intdict OWNER TO %I;',
 schemaname, databaseowner);
 ELSIF r.object_identity = 'pg_partman' THEN
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE
 %I.part_config TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE
 %I.part_config_sub TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE
 %I.custom_time_partitions TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 ELSIF r.object_identity = 'postgis_topology' THEN
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON ALL TABLES IN
 SCHEMA topology TO %I WITH GRANT OPTION;', databaseowner);
 EXECUTE format('GRANT USAGE, SELECT ON ALL SEQUENCES IN SCHEMA topology TO
 %I WITH GRANT OPTION;', databaseowner);

Using Amazon RDS delegated extension support for PostgreSQL 4579

Amazon Relational Database Service User Guide

 EXECUTE format('GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA topology TO %I
 WITH GRANT OPTION;', databaseowner);
 EXECUTE format('GRANT USAGE ON SCHEMA topology TO %I WITH GRANT OPTION;',
 databaseowner);
 END IF;
 END LOOP;
 END IF;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE EVENT TRIGGER log_create_ext ON ddl_command_end EXECUTE PROCEDURE create_ext();

Benefits of using Amazon RDS delegated extension support

By using Amazon RDS delegated extension support for PostgreSQL, you securely delegate the
extension management to users who do not have the rds_superuser role. This feature provides
the following benefits:

• You can easily delegate extension management to users of your choice.

• This doesn’t require rds_superuser role.

• Provides ability to support different set of extensions for different databases in the same DB
cluster.

Limitation of Amazon RDS delegated extension support for PostgreSQL

• Objects created during the extension creation process may require additional privileges for the
extension to function properly.

• Some extensions can't be managed by the delegated extension user by default, including
the following: log_fdw, pg_cron, pg_tle, pgactive, pglogical, postgis_raster,
postgis_tiger_geocoder, postgis_topology.

Permissions required for certain extensions

In order to create, use, or update the following extensions, the delegated user should have the
necessary privileges on the following functions, tables, and schema.

Using Amazon RDS delegated extension support for PostgreSQL 4580

Amazon Relational Database Service User Guide

Extension
s
that
need
ownership
or
permissio
ns

Function Tables Schema Text Search
Dictionary

Comment

address_s
tandardiz
er_data_u
s

none us_gaz, us_lex,
us_lex, I.us_rule
s

none none none

amcheckbt_index_
check,
bt_index_
parent_check

none none none none

dict_intnone none none intdict none

pg_partma
n

none custom_ti
me_partit
ions, part_conf
ig, part_conf
ig_sub

none none none

pg_stat_s
tatements

none none none none none

PostGISst_tileenvelope spatial_ref_sys none none none

postgis_r
aster

none none none none none

postgis_t
opology

none topology, layer topology none the delegated
user Must be

Using Amazon RDS delegated extension support for PostgreSQL 4581

Amazon Relational Database Service User Guide

Extension
s
that
need
ownership
or
permissio
ns

Function Tables Schema Text Search
Dictionary

Comment

the database
owner

log_fdwcreate_fo
reign_tab
le_for_log_file

none none none none

rds_toolsrole_pass
word_encr
yption_type

none none none none

postgis_t
iger_geoc
oder

none geocode_s
ettings_d
efault,
geocode_s
ettings

tiger none none

pg_freesp
acemap

pg_freespace none none none none

pg_visibi
lity

pg_visibility none none none none

Security Considerations

Keep in mind that a user with rds_extension role will be able to manage extensions on all
databases they have the connect privilege on. If the intention is to have a delegated user manage
extension on a single database, a good practice is to revoke all privileges from public on each
database, then explicitly grant the connect privilege for that specific database to the delegate user.

Using Amazon RDS delegated extension support for PostgreSQL 4582

Amazon Relational Database Service User Guide

There are several extensions that can allow a user to access information from multiple database.
Ensure the users you grant rds_extension has cross database capabilities before adding
these extensions to rds.allowed_delegated_extensions. For example, postgres_fdw
and dblink provide functionality to query across databases on the same instance or remote
instances. log_fdw reads the postgres engine log files, which are for all databases in the instance,
potentially containing slow queries or error messages from multiple databases. pg_cron enables
running scheduled background jobs on the DB instance and can configure jobs to run in a different
database.

Drop extension cascade disabled

The ability to drop the extension with cascade option by a user with the rds_extension role is
controlled by rds.delegated_extension_allow_drop_cascade parameter. By default, rds-
delegated_extension_allow_drop_cascade is set to off. This means that users with the
rds_extension role are not allowed to drop an extension using the cascade option as shown in
the below query.

DROP EXTENSION CASCADE;

As this will automatically drop objects that depend on the extension, and in turn all objects that
depend on those objects. Attempting to use the cascade option will result in an error.

To grant that ability, the rds.delegated_extension_allow_drop_cascade parameter should
be set to on.

Changing the rds.delegated_extension_allow_drop_cascade dynamic parameter doesn't
require a database restart. You can do this at one of the following levels:

• In the cluster or the instance parameter group, through the AWS Management Console or API.

• Using the following command at the database level:

alter database database_name set rds.delegated_extension_allow_drop_cascade = 'on';

• Using the following command at the user level:

alter role tenant_user set rds.delegated_extension_allow_drop_cascade = 'on';

Using Amazon RDS delegated extension support for PostgreSQL 4583

Amazon Relational Database Service User Guide

Example extensions that can be added using delegated extension support

• rds_tools

extension_test_db=> create extension rds_tools;
CREATE EXTENSION
extension_test_db=> SELECT * from rds_tools.role_password_encryption_type() where
 rolname = 'pg_read_server_files';
ERROR: permission denied for function role_password_encryption_type

• amcheck

extension_test_db=> CREATE TABLE amcheck_test (id int);
CREATE TABLE
extension_test_db=> INSERT INTO amcheck_test VALUES (generate_series(1,100000));
INSERT 0 100000
extension_test_db=> CREATE INDEX amcheck_test_btree_idx ON amcheck_test USING btree
 (id);
CREATE INDEX
extension_test_db=> create extension amcheck;
CREATE EXTENSION
extension_test_db=> SELECT bt_index_check('amcheck_test_btree_idx'::regclass);
ERROR: permission denied for function bt_index_check
extension_test_db=> SELECT bt_index_parent_check('amcheck_test_btree_idx'::regclass);
ERROR: permission denied for function bt_index_parent_check

• pg_freespacemap

extension_test_db=> create extension pg_freespacemap;
CREATE EXTENSION
extension_test_db=> SELECT * FROM pg_freespace('pg_authid');
ERROR: permission denied for function pg_freespace
extension_test_db=> SELECT * FROM pg_freespace('pg_authid',0);
ERROR: permission denied for function pg_freespace

• pg_visibility

extension_test_db=> create extension pg_visibility;
CREATE EXTENSION
extension_test_db=> select * from pg_visibility('pg_database'::regclass);
ERROR: permission denied for function pg_visibility

• postgres_fdw

Using Amazon RDS delegated extension support for PostgreSQL 4584

Amazon Relational Database Service User Guide

extension_test_db=> create extension postgres_fdw;
CREATE EXTENSION
extension_test_db=> create server myserver foreign data wrapper postgres_fdw options
 (host 'foo', dbname 'foodb', port '5432');
ERROR: permission denied for foreign-data wrapper postgres_fdw

Using Amazon RDS delegated extension support for PostgreSQL 4585

Amazon Relational Database Service User Guide

Managing PostgreSQL partitions with the pg_partman extension

PostgreSQL table partitioning provides a framework for high-performance handling of data input
and reporting. Use partitioning for databases that require very fast input of large amounts of
data. Partitioning also provides for faster queries of large tables. Partitioning helps maintain data
without impacting the database instance because it requires less I/O resources.

By using partitioning, you can split data into custom-sized chunks for processing. For example, you
can partition time-series data for ranges such as hourly, daily, weekly, monthly, quarterly, yearly,
custom, or any combination of these. For a time-series data example, if you partition the table
by hour, each partition contains one hour of data. If you partition the time-series table by day,
the partitions holds one day's worth of data, and so on. The partition key controls the size of a
partition.

When you use an INSERT or UPDATE SQL command on a partitioned table, the database engine
routes the data to the appropriate partition. PostgreSQL table partitions that store the data are
child tables of the main table.

During database query reads, the PostgreSQL optimizer examines the WHERE clause of the query
and, if possible, directs the database scan to only the relevant partitions.

Starting with version 10, PostgreSQL uses declarative partitioning to implement table partitioning.
This is also known as native PostgreSQL partitioning. Before PostgreSQL version 10, you used
triggers to implement partitions.

PostgreSQL table partitioning provides the following features:

• Creation of new partitions at any time.

• Variable partition ranges.

• Detachable and reattachable partitions using data definition language (DDL) statements.

For example, detachable partitions are useful for removing historical data from the main
partition but keeping historical data for analysis.

• New partitions inherit the parent database table properties, including the following:

• Indexes

• Primary keys, which must include the partition key column

• Foreign keys

• Check constraints

Managing partitions with the pg_partman extension 4586

Amazon Relational Database Service User Guide

• References

• Creating indexes for the full table or each specific partition.

You can't alter the schema for an individual partition. However, you can alter the parent table (such
as adding a new column), which propagates to partitions.

Topics

• Overview of the PostgreSQL pg_partman extension

• Enabling the pg_partman extension

• Configuring partitions using the create_parent function

• Configuring partition maintenance using the run_maintenance_proc function

Overview of the PostgreSQL pg_partman extension

You can use the PostgreSQL pg_partman extension to automate the creation and maintenance
of table partitions. For more general information, see PG Partition Manager in the pg_partman
documentation.

Note

The pg_partman extension is supported on RDS for PostgreSQL versions 12.5 and higher.

Instead of having to manually create each partition, you configure pg_partman with the following
settings:

• Table to be partitioned

• Partition type

• Partition key

• Partition granularity

• Partition precreation and management options

After you create a PostgreSQL partitioned table, you register it with pg_partman by calling the
create_parent function. Doing this creates the necessary partitions based on the parameters
you pass to the function.

Managing partitions with the pg_partman extension 4587

https://github.com/pgpartman/pg_partman

Amazon Relational Database Service User Guide

The pg_partman extension also provides the run_maintenance_proc function, which you can
call on a scheduled basis to automatically manage partitions. To ensure that the proper partitions
are created as needed, schedule this function to run periodically (such as hourly). You can also
ensure that partitions are automatically dropped.

Enabling the pg_partman extension

If you have multiple databases inside the same PostgreSQL DB instance for which you want to
manage partitions, enable the pg_partman extension separately for each database. To enable the
pg_partman extension for a specific database, create the partition maintenance schema and then
create the pg_partman extension as follows.

CREATE SCHEMA partman;
CREATE EXTENSION pg_partman WITH SCHEMA partman;

Note

To create the pg_partman extension, make sure that you have rds_superuser privileges.

If you receive an error such as the following, grant the rds_superuser privileges to the account
or use your superuser account.

ERROR: permission denied to create extension "pg_partman"
HINT: Must be superuser to create this extension.

To grant rds_superuser privileges, connect with your superuser account and run the following
command.

GRANT rds_superuser TO user-or-role;

For the examples that show using the pg_partman extension, we use the following sample
database table and partition. This database uses a partitioned table based on a timestamp. A
schema data_mart contains a table named events with a column named created_at. The
following settings are included in the events table:

• Primary keys event_id and created_at, which must have the column used to guide the
partition.

Managing partitions with the pg_partman extension 4588

Amazon Relational Database Service User Guide

• A check constraint ck_valid_operation to enforce values for an operation table column.

• Two foreign keys, where one (fk_orga_membership) points to the external table
organization and the other (fk_parent_event_id) is a self-referenced foreign key.

• Two indexes, where one (idx_org_id) is for the foreign key and the other (idx_event_type) is
for the event type.

The following DDL statements create these objects, which are automatically included on each
partition.

CREATE SCHEMA data_mart;
CREATE TABLE data_mart.organization (org_id BIGSERIAL,
 org_name TEXT,
 CONSTRAINT pk_organization PRIMARY KEY (org_id)
);

CREATE TABLE data_mart.events(
 event_id BIGSERIAL,
 operation CHAR(1),
 value FLOAT(24),
 parent_event_id BIGINT,
 event_type VARCHAR(25),
 org_id BIGSERIAL,
 created_at timestamp,
 CONSTRAINT pk_data_mart_event PRIMARY KEY (event_id, created_at),
 CONSTRAINT ck_valid_operation CHECK (operation = 'C' OR operation = 'D'),
 CONSTRAINT fk_orga_membership
 FOREIGN KEY(org_id)
 REFERENCES data_mart.organization (org_id),
 CONSTRAINT fk_parent_event_id
 FOREIGN KEY(parent_event_id, created_at)
 REFERENCES data_mart.events (event_id,created_at)
) PARTITION BY RANGE (created_at);

CREATE INDEX idx_org_id ON data_mart.events(org_id);
CREATE INDEX idx_event_type ON data_mart.events(event_type);

Configuring partitions using the create_parent function

After you enable the pg_partman extension, use the create_parent function to configure
partitions inside the partition maintenance schema. The following example uses the events table

Managing partitions with the pg_partman extension 4589

Amazon Relational Database Service User Guide

example created in Enabling the pg_partman extension. Call the create_parent function as
follows.

SELECT partman.create_parent(
 p_parent_table => 'data_mart.events',
 p_control => 'created_at',
 p_type => 'range',
 p_interval => '1 day',
 p_premake => 30);

The parameters are as follows:

• p_parent_table – The parent partitioned table. This table must already exist and be fully
qualified, including the schema.

• p_control – The column on which the partitioning is to be based. The data type must be an
integer or time-based.

• p_type – The type is either 'range' or 'list'.

• p_interval – The time interval or integer range for each partition. Example values include 1
day, 1 hour, and so on.

• p_premake – The number of partitions to create in advance to support new inserts.

For a complete description of the create_parent function, see Creation Functions in the
pg_partman documentation.

Configuring partition maintenance using the run_maintenance_proc function

You can run partition maintenance operations to automatically create new partitions, detach
partitions, or remove old partitions. Partition maintenance relies on the run_maintenance_proc
function of the pg_partman extension and the pg_cron extension, which initiates an internal
scheduler. The pg_cron scheduler automatically executes SQL statements, functions, and
procedures defined in your databases.

The following example uses the events table example created in Enabling the pg_partman
extension to set partition maintenance operations to run automatically. As a prerequisite, add
pg_cron to the shared_preload_libraries parameter in the DB instance's parameter group.

CREATE EXTENSION pg_cron;

Managing partitions with the pg_partman extension 4590

https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman.md#user-content-creation-functions

Amazon Relational Database Service User Guide

UPDATE partman.part_config
SET infinite_time_partitions = true,
 retention = '3 months',
 retention_keep_table=true
WHERE parent_table = 'data_mart.events';
SELECT cron.schedule('@hourly', $$CALL partman.run_maintenance_proc()$$);

Following, you can find a step-by-step explanation of the preceding example:

1. Modify the parameter group associated with your DB instance and add pg_cron to the
shared_preload_libraries parameter value. This change requires a DB instance restart for
it to take effect. For more information, see Modifying parameters in a DB parameter group in
Amazon RDS.

2. Run the command CREATE EXTENSION pg_cron; using an account that has the
rds_superuser permissions. Doing this enables the pg_cron extension. For more information,
see Scheduling maintenance with the PostgreSQL pg_cron extension.

3. Run the command UPDATE partman.part_config to adjust the pg_partman settings for the
data_mart.events table.

4. Run the command SET . . . to configure the data_mart.events table, with these clauses:

a. infinite_time_partitions = true, – Configures the table to be able to automatically
create new partitions without any limit.

b. retention = '3 months', – Configures the table to have a maximum retention of three
months.

c. retention_keep_table=true – Configures the table so that when the retention period is
due, the table isn't deleted automatically. Instead, partitions that are older than the retention
period are only detached from the parent table.

5. Run the command SELECT cron.schedule . . . to make a pg_cron function call. This
call defines how often the scheduler runs the pg_partman maintenance procedure,
partman.run_maintenance_proc. For this example, the procedure runs every hour.

For a complete description of the run_maintenance_proc function, see Maintenance Functions
in the pg_partman documentation.

Managing partitions with the pg_partman extension 4591

https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman.md#maintenance-functions

Amazon Relational Database Service User Guide

Using pgAudit to log database activity

Financial institutions, government agencies, and many industries need to keep audit logs to meet
regulatory requirements. By using the PostgreSQL Audit extension (pgAudit) with your RDS for
PostgreSQL DB instance, you can capture the detailed records that are typically needed by auditors
or to meet regulatory requirements. For example, you can set up the pgAudit extension to track
changes made to specific databases and tables, to record the user who made the change, and many
other details.

The pgAudit extension builds on the functionality of the native PostgreSQL logging infrastructure
by extending the log messages with more detail. In other words, you use the same approach to
view your audit log as you do to view any log messages. For more information about PostgreSQL
logging, see RDS for PostgreSQL database log files.

The pgAudit extension redacts sensitive data such as cleartext passwords from the logs. If your RDS
for PostgreSQL DB instance is configured to log data manipulation language (DML) statements as
detailed in Turning on query logging for your RDS for PostgreSQL DB instance, you can avoid the
cleartext password issue by using the PostgreSQL Audit extension.

You can configure auditing on your database instances with a great degree of specificity. You can
audit all databases and all users. Or, you can choose to audit only certain databases, users, and
other objects. You can also explicitly exclude certain users and databases from being audited. For
more information, see Excluding users or databases from audit logging.

Given the amount of detail that can be captured, we recommend that if you do use pgAudit, you
monitor your storage consumption.

The pgAudit extension is supported on all available RDS for PostgreSQL versions. For a list of
pgAudit versions supported by available RDS for PostgreSQL versions, see Extension versions for
Amazon RDS for PostgreSQL in the Amazon RDS for PostgreSQL Release Notes.

Topics

• Setting up the pgAudit extension

• Auditing database objects

• Excluding users or databases from audit logging

• Reference for the pgAudit extension

Using pgAudit to log database activity 4592

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html

Amazon Relational Database Service User Guide

Setting up the pgAudit extension

To set up the pgAudit extension on your RDS for PostgreSQL DB instance , you first add pgAudit to
the shared libraries on the custom DB parameter group for your RDS for PostgreSQL DB instance.
For information about creating a custom DB parameter group, see Parameter groups for Amazon
RDS. Next, you install the pgAudit extension. Finally, you specify the databases and objects that
you want to audit. The procedures in this section show you how. You can use the AWS Management
Console or the AWS CLI.

You must have permissions as the rds_superuser role to perform all these tasks.

The steps following assume that your RDS for PostgreSQL DB instance is associated with a custom
DB parameter group.

Console

To set up the pgAudit extension

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your RDS for PostgreSQL DB instance.

3. Open the Configuration tab for your RDS for PostgreSQL DB instance. Among the Instance
details, find the Parameter group link.

4. Choose the link to open the custom parameters associated with your RDS for PostgreSQL DB
instance.

5. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

6. Choose Edit parameters to access the property values.

7. Add pgaudit to the list in the Values field. Use a comma to separate items in the list of
values.

Using pgAudit to log database activity 4593

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

8. Reboot the RDS for PostgreSQL DB instance so that your change to the
shared_preload_libraries parameter takes effect.

9. When the instance is available, verify that pgAudit has been initialized. Use psql to connect to
the RDS for PostgreSQL DB instance, and then run the following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pgaudit
(1 row)

10. With pgAudit initialized, you can now create the extension. You need to create the extension
after initializing the library because the pgaudit extension installs event triggers for auditing
data definition language (DDL) statements.

CREATE EXTENSION pgaudit;

11. Close the psql session.

labdb=> \q

12. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Using pgAudit to log database activity 4594

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

13. Find the pgaudit.log parameter in the list and set to the appropriate value for your use
case. For example, setting the pgaudit.log parameter to write as shown in the following
image captures inserts, updates, deletes, and some other types changes to the log.

You can also choose one of the following values for the pgaudit.log parameter.

• none – This is the default. No database changes are logged.

• all – Logs everything (read, write, function, role, ddl, misc).

• ddl – Logs all data definition language (DDL) statements that aren't included in the ROLE
class.

• function – Logs function calls and DO blocks.

• misc – Logs miscellaneous commands, such as DISCARD, FETCH, CHECKPOINT, VACUUM, and
SET.

• read – Logs SELECT and COPY when the source is a relation (such as a table) or a query.

• role – Logs statements related to roles and privileges, such as GRANT, REVOKE, CREATE
ROLE, ALTER ROLE, and DROP ROLE.

• write – Logs INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the destination is a
relation (table).

14. Choose Save changes.

15. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

16. Choose your RDS for PostgreSQL DB instance from the Databases list.

Using pgAudit to log database activity 4595

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

To setup pgAudit

To setup pgAudit using the AWS CLI, you call the modify-db-parameter-group operation to modify
the audit log parameters in your custom parameter group, as shown in the following procedure.

1. Use the following AWS CLI command to add pgaudit to the shared_preload_libraries
parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=pgaudit,ApplyMethod=pending-
reboot" \
 --region aws-region

2. Use the following AWS CLI command to reboot the RDS for PostgreSQL DB instance so that
the pgaudit library is initialized.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

3. When the instance is available, you can verify that pgaudit has been initialized. Use psql to
connect to the RDS for PostgreSQL DB instance, and then run the following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pgaudit
(1 row)

With pgAudit initialized, you can now create the extension.

CREATE EXTENSION pgaudit;

4. Close the psql session so that you can use the AWS CLI.

labdb=> \q

Using pgAudit to log database activity 4596

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

5. Use the following AWS CLI command to specify the classes of statement that want logged
by session audit logging. The example sets the pgaudit.log parameter to write, which
captures inserts, updates, and deletes to the log.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=pgaudit.log,ParameterValue=write,ApplyMethod=pending-reboot" \
 --region aws-region

You can also choose one of the following values for the pgaudit.log parameter.

• none – This is the default. No database changes are logged.

• all – Logs everything (read, write, function, role, ddl, misc).

• ddl – Logs all data definition language (DDL) statements that aren't included in the ROLE
class.

• function – Logs function calls and DO blocks.

• misc – Logs miscellaneous commands, such as DISCARD, FETCH, CHECKPOINT, VACUUM, and
SET.

• read – Logs SELECT and COPY when the source is a relation (such as a table) or a query.

• role – Logs statements related to roles and privileges, such as GRANT, REVOKE, CREATE
ROLE, ALTER ROLE, and DROP ROLE.

• write – Logs INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the destination is a
relation (table).

Reboot the RDS for PostgreSQL DB instance using the following AWS CLI command.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

Auditing database objects

With pgAudit set up on your RDS for PostgreSQL DB instance and configured for your
requirements, more detailed information is captured in the PostgreSQL log. For example, while the
default PostgreSQL logging configuration identifies the date and time that a change was made in

Using pgAudit to log database activity 4597

Amazon Relational Database Service User Guide

a database table, with the pgAudit extension the log entry can include the schema, user who made
the change, and other details depending on how the extension parameters are configured. You can
set up auditing to track changes in the following ways.

• For each session, by user. For the session level, you can capture the fully qualified command text.

• For each object, by user and by database.

The object auditing capability is activated when you create the rds_pgaudit role on your
system and then add this role to the pgaudit.role parameter in your custom parameter
parameter group. By default, the pgaudit.role parameter is unset and the only allowable value
is rds_pgaudit. The following steps assume that pgaudit has been initialized and that you have
created the pgaudit extension by following the procedure in Setting up the pgAudit extension.

As shown in this example, the "LOG: AUDIT: SESSION" line provides information about the table
and its schema, among other details.

To set up object auditing

1. Use psql to connect to the RDS for PostgreSQL DB instance.

psql --host=your-instance-name.aws-region.rds.amazonaws.com --port=5432 --
username=postgrespostgres --password --dbname=labdb

2. Create a database role named rds_pgaudit using the following command.

labdb=> CREATE ROLE rds_pgaudit;
CREATE ROLE
labdb=>

3. Close the psql session.

labdb=> \q

Using pgAudit to log database activity 4598

Amazon Relational Database Service User Guide

In the next few steps, use the AWS CLI to modify the audit log parameters in your custom
parameter group.

4. Use the following AWS CLI command to set the pgaudit.role parameter to rds_pgaudit.
By default, this parameter is empty, and rds_pgaudit is the only allowable value.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=pgaudit.role,ParameterValue=rds_pgaudit,ApplyMethod=pending-reboot"
 \
 --region aws-region

5. Use the following AWS CLI command to reboot the RDS for PostgreSQL DB instance so that
your changes to the parameters take effect.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

6. Run the following command to confirm that the pgaudit.role is set to rds_pgaudit.

SHOW pgaudit.role;
pgaudit.role

rds_pgaudit

To test pgAudit logging, you can run several example commands that you want to audit. For
example, you might run the following commands.

CREATE TABLE t1 (id int);
GRANT SELECT ON t1 TO rds_pgaudit;
SELECT * FROM t1;
id

(0 rows)

The database logs should contain an entry similar to the following.

...

Using pgAudit to log database activity 4599

Amazon Relational Database Service User Guide

2017-06-12 19:09:49 UTC:...:rds_test@postgres:[11701]:LOG: AUDIT:
OBJECT,1,1,READ,SELECT,TABLE,public.t1,select * from t1;
...

For information on viewing the logs, see Monitoring Amazon RDS log files.

To learn more about the pgAudit extension, see pgAudit on GitHub.

Excluding users or databases from audit logging

As discussed in RDS for PostgreSQL database log files, PostgreSQL logs consume storage space.
Using the pgAudit extension adds to the volume of data gathered in your logs to varying degrees,
depending on the changes that you track. You might not need to audit every user or database in
your RDS for PostgreSQL DB instance.

To minimize impacts to your storage and to avoid needlessly capturing audit records, you can
exclude users and databases from being audited. You can also change logging within a given
session. The following examples show you how.

Note

Parameter settings at the session level take precedence over the settings in the custom DB
parameter group for the RDS for PostgreSQL DB instance. If you don't want database users
to bypass your audit logging configuration settings, be sure to change their permissions.

Suppose that your RDS for PostgreSQL DB instance is configured to audit the same level of activity
for all users and databases. You then decide that you don't want to audit the user myuser. You can
turn off auditing for myuser with the following SQL command.

ALTER USER myuser SET pgaudit.log TO 'NONE';

Then, you can use the following query to check the user_specific_settings column for
pgaudit.log to confirm that the parameter is set to NONE.

SELECT
 usename AS user_name,
 useconfig AS user_specific_settings
FROM
 pg_user
WHERE

Using pgAudit to log database activity 4600

https://github.com/pgaudit/pgaudit/blob/master/README.md

Amazon Relational Database Service User Guide

 usename = 'myuser';

You see output such as the following.

 user_name | user_specific_settings
-----------+------------------------
 myuser | {pgaudit.log=NONE}
(1 row)

You can turn off logging for a given user in the midst of their session with the database with the
following command.

ALTER USER myuser IN DATABASE mydatabase SET pgaudit.log TO 'none';

Use the following query to check the settings column for pgaudit.log for a specific user and
database combination.

SELECT
 usename AS "user_name",
 datname AS "database_name",
 pg_catalog.array_to_string(setconfig, E'\n') AS "settings"
FROM
 pg_catalog.pg_db_role_setting s
 LEFT JOIN pg_catalog.pg_database d ON d.oid = setdatabase
 LEFT JOIN pg_catalog.pg_user r ON r.usesysid = setrole
WHERE
 usename = 'myuser'
 AND datname = 'mydatabase'
ORDER BY
 1,
 2;

You see output similar to the following.

 user_name | database_name | settings
-----------+---------------+------------------
 myuser | mydatabase | pgaudit.log=none
(1 row)

After turning off auditing for myuser, you decide that you don't want to track changes to
mydatabase. You turn off auditing for that specific database by using the following command.

Using pgAudit to log database activity 4601

Amazon Relational Database Service User Guide

ALTER DATABASE mydatabase SET pgaudit.log to 'NONE';

Then, use the following query to check the database_specific_settings column to confirm that
pgaudit.log is set to NONE.

SELECT
a.datname AS database_name,
b.setconfig AS database_specific_settings
FROM
pg_database a
FULL JOIN pg_db_role_setting b ON a.oid = b.setdatabase
WHERE
a.datname = 'mydatabase';

You see output such as the following.

 database_name | database_specific_settings
---------------+----------------------------
 mydatabase | {pgaudit.log=NONE}
(1 row)

To return settings to the default setting for myuser, use the following command:

ALTER USER myuser RESET pgaudit.log;

To return settings to their default setting for a database, use the following command.

ALTER DATABASE mydatabase RESET pgaudit.log;

To reset user and database to the default setting, use the following command.

ALTER USER myuser IN DATABASE mydatabase RESET pgaudit.log;

You can also capture specific events to the log by setting the pgaudit.log to one of the other
allowed values for the pgaudit.log parameter. For more information, see List of allowable
settings for the pgaudit.log parameter.

ALTER USER myuser SET pgaudit.log TO 'read';
ALTER DATABASE mydatabase SET pgaudit.log TO 'function';

Using pgAudit to log database activity 4602

Amazon Relational Database Service User Guide

ALTER USER myuser IN DATABASE mydatabase SET pgaudit.log TO 'read,function'

Reference for the pgAudit extension

You can specify the level of detail that you want for your audit log by changing one or more of the
parameters listed in this section.

Controlling pgAudit behavior

You can control the audit logging by changing one or more of the parameters listed in the
following table.

Parameter Description

pgaudit.log Specifies the statement classes that will be logged by session
audit logging. Allowable values include ddl, function, misc,
read, role, write, none, all. For more information, see List of
allowable settings for the pgaudit.log parameter.

pgaudit.log_catalog When turned on (set to 1), adds statements to audit trail if all
relations in a statement are in pg_catalog.

pgaudit.log_level Specifies the log level to use for log entries. Allowed values:
debug5, debug4, debug3, debug2, debug1, info, notice,
warning, log

pgaudit.log_parame
ter

When turned on (set to 1), parameters passed with the
statement are captured in the audit log.

pgaudit.log_relation When turned on (set to 1), the audit log for the session creates
a separate log entry for each relation (TABLE, VIEW, and so on)
referenced in a SELECT or DML statement.

pgaudit.log_statem
ent_once

Specifies whether logging will include the statement text and
parameters with the first log entry for a statement/substate
ment combination or with every entry.

pgaudit.role Specifies the master role to use for object audit logging. The
only allowable entry is rds_pgaudit .

Using pgAudit to log database activity 4603

Amazon Relational Database Service User Guide

List of allowable settings for the pgaudit.log parameter

Value Description

none This is the default. No database changes are logged.

all Logs everything (read, write, function, role, ddl, misc).

ddl Logs all data definition language (DDL) statements that aren't included
in the ROLE class.

function Logs function calls and DO blocks.

misc Logs miscellaneous commands, such as DISCARD, FETCH, CHECKPOIN
T , VACUUM, and SET.

read Logs SELECT and COPY when the source is a relation (such as a table)
or a query.

role Logs statements related to roles and privileges, such as GRANT,
REVOKE, CREATE ROLE, ALTER ROLE, and DROP ROLE.

write Logs INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the
destination is a relation (table).

To log multiple event types with session auditing, use a comma-separated list. To log all event
types, set pgaudit.log to ALL. Reboot your DB instance to apply the changes.

With object auditing, you can refine audit logging to work with specific relations. For example, you
can specify that you want audit logging for READ operations on one or more tables.

Using pgAudit to log database activity 4604

Amazon Relational Database Service User Guide

Scheduling maintenance with the PostgreSQL pg_cron extension

You can use the PostgreSQL pg_cron extension to schedule maintenance commands within a
PostgreSQL database. For more information about the extension, see What is pg_cron? in the
pg_cron documentation.

The pg_cron extension is supported on RDS for PostgreSQL engine versions 12.5 and higher.

To learn more about using pg_cron, see Schedule jobs with pg_cron on your RDS for PostgreSQL
or your Aurora PostgreSQL-Compatible Edition databases.

Topics

• Setting up the pg_cron extension

• Granting database users permissions to use pg_cron

• Scheduling pg_cron jobs

• Reference for the pg_cron extension

Setting up the pg_cron extension

Set up the pg_cron extension as follows:

1. Modify the custom parameter group associated with your PostgreSQL DB instance by adding
pg_cron to the shared_preload_libraries parameter value.

• If your RDS for PostgreSQL DB instance uses the rds.allowed_extensions parameter to
explicitly list extensions that can be installed, you need to add the pg_cron extension to the
list. Only certain versions of RDS for PostgreSQL support the rds.allowed_extensions
parameter. By default, all available extensions are allowed. For more information, see
Restricting installation of PostgreSQL extensions.

Restart the PostgreSQL DB instance to have changes to the parameter group take effect. To
learn more about working with parameter groups, see Modifying parameters in a DB parameter
group in Amazon RDS.

2. After the PostgreSQL DB instance has restarted, run the following command using an account
that has rds_superuser permissions. For example, if you used the default settings when
you created your RDS for PostgreSQL DB instance, connect as user postgres and create the
extension.

Scheduling maintenance with the pg_cron extension 4605

https://github.com/citusdata/pg_cron
https://aws.amazon.com/blogs/database/schedule-jobs-with-pg_cron-on-your-amazon-rds-for-postgresql-or-amazon-aurora-for-postgresql-databases/
https://aws.amazon.com/blogs/database/schedule-jobs-with-pg_cron-on-your-amazon-rds-for-postgresql-or-amazon-aurora-for-postgresql-databases/

Amazon Relational Database Service User Guide

CREATE EXTENSION pg_cron;

The pg_cron scheduler is set in the default PostgreSQL database named postgres. The
pg_cron objects are created in this postgres database and all scheduling actions run in this
database.

3. You can use the default settings, or you can schedule jobs to run in other databases within
your PostgreSQL DB instance. To schedule jobs for other databases within your PostgreSQL
DB instance, see the example in Scheduling a cron job for a database other than the default
database.

Granting database users permissions to use pg_cron

Installing the pg_cron extension requires the rds_superuser privileges. However, permissions
to use the pg_cron can be granted (by a member of the rds_superuser group/role) to
other database users, so that they can schedule their own jobs. We recommend that you grant
permissions to the cron schema only as needed if it improves operations in your production
environment.

To grant a database user permission in the cron schema, run the following command:

postgres=> GRANT USAGE ON SCHEMA cron TO db-user;

This gives db-user permission to access the cron schema to schedule cron jobs for the objects
that they have permissions to access. If the database user doesn't have permissions, the job fails
after posting the error message to the postgresql.log file, as shown in the following:

2020-12-08 16:41:00 UTC::@:[30647]:ERROR: permission denied for table table-name
2020-12-08 16:41:00 UTC::@:[27071]:LOG: background worker "pg_cron" (PID 30647) exited
 with exit code 1

In other words, make sure that database users that are granted permissions on the cron schema
also have permissions on the objects (tables, schemas, and so on) that they plan to schedule.

The details of the cron job and its success or failure are also captured in the
cron.job_run_details table. For more information, see Tables for scheduling jobs and
capturing status .

Scheduling maintenance with the pg_cron extension 4606

Amazon Relational Database Service User Guide

Scheduling pg_cron jobs

The following sections show how you can schedule various management tasks using pg_cron jobs.

Note

When you create pg_cron jobs, check that the max_worker_processes setting is
larger than the number of cron.max_running_jobs. A pg_cron job fails if it runs out
of background worker processes. The default number of pg_cron jobs is 5. For more
information, see Parameters for managing the pg_cron extension.

Topics

• Vacuuming a table

• Purging the pg_cron history table

• Logging errors to the postgresql.log file only

• Scheduling a cron job for a database other than the default database

Vacuuming a table

Autovacuum handles vacuum maintenance for most cases. However, you might want to schedule a
vacuum of a specific table at a time of your choosing.

See also, Working with PostgreSQL autovacuum on Amazon RDS for PostgreSQL.

Following is an example of using the cron.schedule function to set up a job to use VACUUM
FREEZE on a specific table every day at 22:00 (GMT).

SELECT cron.schedule('manual vacuum', '0 22 * * *', 'VACUUM FREEZE pgbench_accounts');
 schedule

1
(1 row)

After the preceding example runs, you can check the history in the cron.job_run_details table
as follows.

postgres=> SELECT * FROM cron.job_run_details;

Scheduling maintenance with the pg_cron extension 4607

Amazon Relational Database Service User Guide

jobid | runid | job_pid | database | username | command |
 status | return_message | start_time | end_time
-------+-------+---------+----------+----------+--------------------------------
+-----------+----------------+-------------------------------
+-------------------------------
 1 | 1 | 3395 | postgres | adminuser| vacuum freeze pgbench_accounts
 | succeeded | VACUUM | 2020-12-04 21:10:00.050386+00 | 2020-12-04
 21:10:00.072028+00
(1 row)

Following is a query of the cron.job_run_details table to see the failed jobs.

postgres=> SELECT * FROM cron.job_run_details WHERE status = 'failed';
jobid | runid | job_pid | database | username | command | status
 | return_message | start_time |
 end_time
------+-------+---------+----------+----------+-------------------------------+--------
+--+-------------------------------
+------------------------------
 5 | 4 | 30339 | postgres | adminuser| vacuum freeze pgbench_account | failed
 | ERROR: relation "pgbench_account" does not exist | 2020-12-04 21:48:00.015145+00 |
 2020-12-04 21:48:00.029567+00
(1 row)

For more information, see Tables for scheduling jobs and capturing status .

Purging the pg_cron history table

The cron.job_run_details table contains a history of cron jobs that can become very large
over time. We recommend that you schedule a job that purges this table. For example, keeping a
week's worth of entries might be sufficient for troubleshooting purposes.

The following example uses the cron.schedule function to schedule a job that runs every day at
midnight to purge the cron.job_run_details table. The job keeps only the last seven days. Use
your rds_superuser account to schedule the job such as the following.

SELECT cron.schedule('0 0 * * *', $$DELETE
 FROM cron.job_run_details
 WHERE end_time < now() - interval '7 days'$$);

For more information, see Tables for scheduling jobs and capturing status .

Scheduling maintenance with the pg_cron extension 4608

Amazon Relational Database Service User Guide

Logging errors to the postgresql.log file only

To prevent writing to the cron.job_run_details table, modify the parameter group associated
with the PostgreSQL DB instance and set the cron.log_run parameter to off. The pg_cron
extension no longer writes to the table and captures errors to the postgresql.log file only. For
more information, see Modifying parameters in a DB parameter group in Amazon RDS.

Use the following command to check the value of the cron.log_run parameter.

postgres=> SHOW cron.log_run;

For more information, see Parameters for managing the pg_cron extension.

Scheduling a cron job for a database other than the default database

The metadata for pg_cron is all held in the PostgreSQL default database named postgres.
Because background workers are used for running the maintenance cron jobs, you can schedule a
job in any of your databases within the PostgreSQL DB instance:

Note

Only users with rds_superuser role or rds_superuser privileges can list all cron jobs in
the database. Other users can view only their own jobs in the cron.job table.

1. In the cron database, schedule the job as you normally do using the cron.schedule.

postgres=> SELECT cron.schedule('database1 manual vacuum', '29 03 * * *', 'vacuum
 freeze test_table');

2. As a user with the rds_superuser role, update the database column for the job that you just
created so that it runs in another database within your PostgreSQL DB instance.

postgres=> UPDATE cron.job SET database = 'database1' WHERE jobid = 106;

3. Verify by querying the cron.job table.

postgres=> SELECT * FROM cron.job;
jobid | schedule | command | nodename | nodeport |
 database | username | active | jobname

Scheduling maintenance with the pg_cron extension 4609

Amazon Relational Database Service User Guide

------+-------------+--------------------------------+-----------+----------
+----------+-----------+--------+-------------------------
106 | 29 03 * * * | vacuum freeze test_table | localhost | 8192 |
 database1| adminuser | t | database1 manual vacuum
 1 | 59 23 * * * | vacuum freeze pgbench_accounts | localhost | 8192 |
 postgres | adminuser | t | manual vacuum
(2 rows)

Note

In some situations, you might add a cron job that you intend to run on a different database.
In such cases, the job might try to run in the default database (postgres) before you
update the correct database column. If the user name has permissions, the job successfully
runs in the default database.

Reference for the pg_cron extension

You can use the following parameters, functions, and tables with the pg_cron extension. For more
information, see What is pg_cron? in the pg_cron documentation.

Topics

• Parameters for managing the pg_cron extension

• Function reference: cron.schedule

• Function reference: cron.unschedule

• Tables for scheduling jobs and capturing status

Parameters for managing the pg_cron extension

Following is a list of parameters that control the pg_cron extension behavior.

Parameter Description

cron.database_name The database in which pg_cron metadata is
kept.

Scheduling maintenance with the pg_cron extension 4610

https://github.com/citusdata/pg_cron

Amazon Relational Database Service User Guide

Parameter Description

cron.host The hostname to connect to PostgreSQL. You
can't modify this value.

cron.log_run Log every job that runs in the job_run_d
etails table. Values are on or off. For
more information, see Tables for scheduling
jobs and capturing status .

cron.log_statement Log all cron statements before running them.
Values are on or off.

cron.max_running_jobs The maximum number of jobs that can run
concurrently.

cron.use_background_workers Use background workers instead of client
sessions. You can't modify this value.

Use the following SQL command to display these parameters and their values.

postgres=> SELECT name, setting, short_desc FROM pg_settings WHERE name LIKE 'cron.%'
 ORDER BY name;

Function reference: cron.schedule

This function schedules a cron job. The job is initially scheduled in the default postgres database.
The function returns a bigint value representing the job identifier. To schedule jobs to run in
other databases within your PostgreSQL DB instance, see the example in Scheduling a cron job for
a database other than the default database.

The function has two syntax formats.

Syntax

cron.schedule (job_name,
 schedule,
 command
);

Scheduling maintenance with the pg_cron extension 4611

Amazon Relational Database Service User Guide

cron.schedule (schedule,
 command
);

Parameters

Parameter Description

job_name The name of the cron job.

schedule Text indicating the schedule for the cron job.
The format is the standard cron format.

command Text of the command to run.

Examples

postgres=> SELECT cron.schedule ('test','0 10 * * *', 'VACUUM pgbench_history');
 schedule

 145
(1 row)

postgres=> SELECT cron.schedule ('0 15 * * *', 'VACUUM pgbench_accounts');
 schedule

 146
(1 row)

Function reference: cron.unschedule

This function deletes a cron job. You can specify either the job_name or the job_id. A policy
makes sure that you are the owner to remove the schedule for the job. The function returns a
Boolean indicating success or failure.

The function has the following syntax formats.

Syntax

cron.unschedule (job_id);

Scheduling maintenance with the pg_cron extension 4612

Amazon Relational Database Service User Guide

cron.unschedule (job_name);

Parameters

Parameter Description

job_id A job identifier that was returned from the
cron.schedule function when the cron
job was scheduled.

job_name The name of a cron job that was scheduled
with the cron.schedule function.

Examples

postgres=> SELECT cron.unschedule(108);
 unschedule

 t
(1 row)

postgres=> SELECT cron.unschedule('test');
 unschedule

 t
(1 row)

Tables for scheduling jobs and capturing status

The following tables are used to schedule the cron jobs and record how the jobs completed.

Table Description

cron.job Contains the metadata about each scheduled job. Most
interactions with this table should be done by using the
cron.schedule and cron.unschedule functions.

Scheduling maintenance with the pg_cron extension 4613

Amazon Relational Database Service User Guide

Table Description

Important

We recommend that you don't give update or insert
privileges directly to this table. Doing so would allow
the user to update the username column to run as
rds-superuser .

cron.job_run_details Contains historic information about past scheduled jobs that
ran. This is useful to investigate the status, return messages,
 and start and end time from the job that ran.

Note

To prevent this table from growing indefinitely, purge
it on a regular basis. For an example, see Purging the
pg_cron history table.

Scheduling maintenance with the pg_cron extension 4614

Amazon Relational Database Service User Guide

Using pglogical to synchronize data across instances

All currently available RDS for PostgreSQL versions support the pglogical extension. The
pglogical extension predates the functionally similar logical replication feature that was introduced
by PostgreSQL in version 10. For more information, see Performing logical replication for Amazon
RDS for PostgreSQL.

The pglogical extension supports logical replication between two or more RDS for PostgreSQL
DB instances. It also supports replication between different PostgreSQL versions, and between
databases running on RDS for PostgreSQL DB instances and Aurora PostgreSQL DB clusters. The
pglogical extension uses a publish-subscribe model to replicate changes to tables and other
objects, such as sequences, from a publisher to a subscriber. It relies on a replication slot to ensure
that changes are synchronized from a publisher node to a subscriber node, defined as follows.

• The publisher node is the RDS for PostgreSQL DB instance that's the source of data to be
replicated to other nodes. The publisher node defines the tables to be replicated in a publication
set.

• The subscriber node is the RDS for PostgreSQL DB instance that receives WAL updates from the
publisher. The subscriber creates a subscription to connect to the publisher and get the decoded
WAL data. When the subscriber creates the subscription, the replication slot is created on the
publisher node.

Following, you can find information about setting up the pglogical extension.

Topics

• Requirements and limitations for the pglogical extension

• Setting up the pglogical extension

• Setting up logical replication for RDS for PostgreSQL DB instance

• Reestablishing logical replication after a major upgrade

• Managing logical replication slots for RDS for PostgreSQL

• Parameter reference for the pglogical extension

Requirements and limitations for the pglogical extension

All currently available releases of RDS for PostgreSQL support the pglogical extension.

Using pglogical to synchronize data 4615

Amazon Relational Database Service User Guide

Both the publisher node and the subscriber node must be set up for logical replication.

The tables that you want to replicate from a publisher to a subscriber must have the same names
and the same schema. These tables must also contain the same columns, and the columns must
use the same data types. Both publisher and subscriber tables must have the same primary keys.
We recommend that you use only the PRIMARY KEY as the unique constraint.

The tables on the subscriber node can have more permissive constraints than those on the
publisher node for CHECK constraints and NOT NULL constraints.

The pglogical extension provides features such as two-way replication that aren't supported by
the logical replication feature built into PostgreSQL (version 10 and higher). For more information,
see PostgreSQL bi-directional replication using pglogical.

Setting up the pglogical extension

To set up the pglogical extension on your RDS for PostgreSQL DB instance , you add pglogical
to the shared libraries on the custom DB parameter group for your RDS for PostgreSQL DB
instance. You also need to set the value of the rds.logical_replication parameter to 1, to
turn on logical decoding. Finally, you create the extension in the database. You can use the AWS
Management Console or the AWS CLI for these tasks.

You must have permissions as the rds_superuser role to perform these tasks.

The steps following assume that your RDS for PostgreSQL DB instance is associated with a custom
DB parameter group. For information about creating a custom DB parameter group, see Parameter
groups for Amazon RDS.

Console

To set up the pglogical extension

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your RDS for PostgreSQL DB instance.

3. Open the Configuration tab for your RDS for PostgreSQL DB instance. Among the Instance
details, find the Parameter group link.

4. Choose the link to open the custom parameters associated with your RDS for PostgreSQL DB
instance.

Using pglogical to synchronize data 4616

https://aws.amazon.com/blogs/database/postgresql-bi-directional-replication-using-pglogical/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

6. Choose Edit parameters to access the property values.

7. Add pglogical to the list in the Values field. Use a comma to separate items in the list of
values.

8. Find the rds.logical_replication parameter and set it to 1, to turn on logical replication.

9. Reboot the RDS for PostgreSQL DB instance so that your changes take effect.

10. When the instance is available, you can use psql (or pgAdmin) to connect to the RDS for
PostgreSQL DB instance.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

11. To verify that pglogical is initialized, run the following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pglogical
(1 row)

12. Verify the setting that enables logical decoding, as follows.

Using pglogical to synchronize data 4617

Amazon Relational Database Service User Guide

SHOW wal_level;
wal_level

 logical
(1 row)

13. Create the extension, as follows.

CREATE EXTENSION pglogical;
EXTENSION CREATED

14. Choose Save changes.

15. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

16. Choose your RDS for PostgreSQL DB instance from the Databases list to select it, and then
choose Reboot from the Actions menu.

AWS CLI

To setup the pglogical extension

To setup pglogical using the AWS CLI, you call the modify-db-parameter-group operation to
modify certain parameters in your custom parameter group as shown in the following procedure.

1. Use the following AWS CLI command to add pglogical to the
shared_preload_libraries parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=pglogical,ApplyMethod=pending-
reboot" \
 --region aws-region

2. Use the following AWS CLI command to set rds.logical_replication to 1 to turn on the
logical decoding capability for the RDS for PostgreSQL DB instance.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \

Using pglogical to synchronize data 4618

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

 --parameters
 "ParameterName=rds.logical_replication,ParameterValue=1,ApplyMethod=pending-
reboot" \
 --region aws-region

3. Use the following AWS CLI command to reboot the RDS for PostgreSQL DB instance so that
the pglogical library is initialized.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

4. When the instance is available, use psql to connect to the RDS for PostgreSQL DB instance.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

5. Create the extension, as follows.

CREATE EXTENSION pglogical;
EXTENSION CREATED

6. Reboot the RDS for PostgreSQL DB instance using the following AWS CLI command.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

Setting up logical replication for RDS for PostgreSQL DB instance

The following procedure shows you how to start logical replication between two RDS for
PostgreSQL DB instances. The steps assume that both the source (publisher) and the target
(subscriber) have the pglogical extension set up as detailed in Setting up the pglogical
extension.

Note

The node_name of a subscriber node can't start with rds.

Using pglogical to synchronize data 4619

Amazon Relational Database Service User Guide

To create the publisher node and define the tables to replicate

These steps assume that your RDS for PostgreSQL DB instance has a database that has one or
more tables that you want to replicate to another node. You need to recreate the table structure
from the publisher on the subscriber, so first, get the table structure if necessary. You can do
that by using the psq1 metacommand \d tablename and then creating the same table on the
subscriber instance. The following procedure creates an example table on the publisher (source) for
demonstration purposes.

1. Use psql to connect to the instance that has the table you want to use as a source for
subscribers.

psql --host=source-instance.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

If you don't have an existing table that you want to replicate, you can create a sample table as
follows.

a. Create an example table using the following SQL statement.

CREATE TABLE docs_lab_table (a int PRIMARY KEY);

b. Populate the table with generated data by using the following SQL statement.

INSERT INTO docs_lab_table VALUES (generate_series(1,5000));
INSERT 0 5000

c. Verify that data exists in the table by using the following SQL statement.

SELECT count(*) FROM docs_lab_table;

2. Identify this RDS for PostgreSQL DB instance as the publisher node, as follows.

SELECT pglogical.create_node(
 node_name := 'docs_lab_provider',
 dsn := 'host=source-instance.aws-region.rds.amazonaws.com port=5432
 dbname=labdb');
 create_node

 3410995529

Using pglogical to synchronize data 4620

Amazon Relational Database Service User Guide

(1 row)

3. Add the table that you want to replicate to the default replication set. For more information
about replication sets, see Replication sets in the pglogical documentation.

SELECT pglogical.replication_set_add_table('default', 'docs_lab_table', 'true',
 NULL, NULL);
 replication_set_add_table

 t
 (1 row)

The publisher node setup is complete. You can now set up the subscriber node to receive the
updates from the publisher.

To set up the subscriber node and create a subscription to receive updates

These steps assume that the RDS for PostgreSQL DB instance has been set up with the pglogical
extension. For more information, see Setting up the pglogical extension.

1. Use psql to connect to the instance that you want to receive updates from the publisher.

psql --host=target-instance.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

2. On the subscriber RDS for PostgreSQL DB instance,create the same table that exists on the
publisher. For this example, the table is docs_lab_table. You can create the table as follows.

CREATE TABLE docs_lab_table (a int PRIMARY KEY);

3. Verify that this table is empty.

SELECT count(*) FROM docs_lab_table;
 count

 0
(1 row)

4. Identify this RDS for PostgreSQL DB instance as the subscriber node, as follows.

SELECT pglogical.create_node(

Using pglogical to synchronize data 4621

https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs#replication-sets

Amazon Relational Database Service User Guide

 node_name := 'docs_lab_target',
 dsn := 'host=target-instance.aws-region.rds.amazonaws.com port=5432
 sslmode=require dbname=labdb user=postgres password=********');
 create_node

 2182738256
(1 row)

5. Create the subscription.

SELECT pglogical.create_subscription(
 subscription_name := 'docs_lab_subscription',
 provider_dsn := 'host=source-instance.aws-region.rds.amazonaws.com port=5432
 sslmode=require dbname=labdb user=postgres password=*******',
 replication_sets := ARRAY['default'],
 synchronize_data := true,
 forward_origins := '{}');
 create_subscription

1038357190
(1 row)

When you complete this step, the data from the table on the publisher is created in the table
on the subscriber. You can verify that this has occurred by using the following SQL query.

SELECT count(*) FROM docs_lab_table;
 count

 5000
(1 row)

From this point forward, changes made to the table on the publisher are replicated to the table on
the subscriber.

Reestablishing logical replication after a major upgrade

Before you can perform a major version upgrade of an RDS for PostgreSQL DB instance that's
set up as a publisher node for logical replication, you must drop all replication slots, even those
that aren't active. We recommend that you temporarily divert database transactions from the

Using pglogical to synchronize data 4622

Amazon Relational Database Service User Guide

publisher node, drop the replication slots, upgrade the RDS for PostgreSQL DB instance, and then
re-establish and restart replication.

The replication slots are hosted on the publisher node only. The RDS for PostgreSQL subscriber
node in a logical replication scenario has no slots to drops, but it can't be upgraded to a major
version while it's designated as a subscriber node with a subscription to the publisher. Before
upgrading the RDS for PostgreSQL subscriber node, drop the subscription and the node. For more
information, see Managing logical replication slots for RDS for PostgreSQL.

Determining that logical replication has been disrupted

You can determine that the replication process has been disrupted by querying either the publisher
node or the subscriber node, as follows.

To check the publisher node

• Use psql to connect to the publisher node, and then query the pg_replication_slots
function. Note the value in the active column. Normally, this will return t (true), showing
that replication is active. If the query returns f (false), it's an indication that replication to the
subscriber has stopped.

SELECT slot_name,plugin,slot_type,active FROM pg_replication_slots;
 slot_name | plugin | slot_type | active
---+------------------+-----------+--------
 pgl_labdb_docs_labcb4fa94_docs_lab3de412c | pglogical_output | logical | f
(1 row)

To check the subscriber node

On the subscriber node, you can check the status of replication in three different ways.

• Look through the PostgreSQL logs on the subscriber node to find failure messages. The log
identifies failure with messages that include exit code 1, as shown following.

2022-07-06 16:17:03 UTC::@:[7361]:LOG: background worker "pglogical apply
 16404:2880255011" (PID 14610) exited with exit code 1
2022-07-06 16:19:44 UTC::@:[7361]:LOG: background worker "pglogical apply
 16404:2880255011" (PID 21783) exited with exit code 1

Using pglogical to synchronize data 4623

Amazon Relational Database Service User Guide

• Query the pg_replication_origin function. Connect to the database on the subscriber node
using psql and query the pg_replication_origin function, as follows.

SELECT * FROM pg_replication_origin;
 roident | roname
---------+--------
(0 rows)

The empty result set means that replication has been disrupted. Normally, you see output such
as the following.

 roident | roname
 ---------+--
 1 | pgl_labdb_docs_labcb4fa94_docs_lab3de412c
 (1 row)

• Query the pglogical.show_subscription_status function as shown in the following
example.

SELECT subscription_name,status,slot_name FROM pglogical.show_subscription_status();
 subscription_name | status | slot_name
---====----------------+--------+-------------------------------------
 docs_lab_subscription | down | pgl_labdb_docs_labcb4fa94_docs_lab3de412c
(1 row)

This output shows that replication has been disrupted. Its status is down. Normally, the output
shows the status as replicating.

If your logical replication process has been disrupted, you can re-establish replication by following
these steps.

To reestablish logical replication between publisher and subscriber nodes

To re-establish replication, you first disconnect the subscriber from the publisher node and then re-
establish the subscription, as outlined in these steps.

1. Connect to the subscriber node using psql as follows.

Using pglogical to synchronize data 4624

Amazon Relational Database Service User Guide

psql --host=222222222222.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

2. Deactivate the subscription by using the pglogical.alter_subscription_disable
function.

SELECT pglogical.alter_subscription_disable('docs_lab_subscription',true);
 alter_subscription_disable

 t
(1 row)

3. Get the publisher node's identifier by querying the pg_replication_origin, as follows.

SELECT * FROM pg_replication_origin;
 roident | roname
---------+-------------------------------------
 1 | pgl_labdb_docs_labcb4fa94_docs_lab3de412c
(1 row)

4. Use the response from the previous step with the pg_replication_origin_create
command to assign the identifier that can be used by the subscription when re-established.

SELECT pg_replication_origin_create('pgl_labdb_docs_labcb4fa94_docs_lab3de412c');
 pg_replication_origin_create

 1
(1 row)

5. Turn on the subscription by passing its name with a status of true, as shown in the following
example.

SELECT pglogical.alter_subscription_enable('docs_lab_subscription',true);
 alter_subscription_enable

 t
(1 row)

Check the status of the node. Its status should be replicating as shown in this example.

Using pglogical to synchronize data 4625

Amazon Relational Database Service User Guide

SELECT subscription_name,status,slot_name
 FROM pglogical.show_subscription_status();
 subscription_name | status | slot_name
-------------------------------+-------------+-------------------------------------
 docs_lab_subscription | replicating |
 pgl_labdb_docs_lab98f517b_docs_lab3de412c
(1 row)

Check the status of the subscriber's replication slot on the publisher node. The slot's active
column should return t (true), indicating that replication has been re-established.

SELECT slot_name,plugin,slot_type,active
 FROM pg_replication_slots;
 slot_name | plugin | slot_type | active
---+------------------+-----------+--------
 pgl_labdb_docs_lab98f517b_docs_lab3de412c | pglogical_output | logical | t
(1 row)

Managing logical replication slots for RDS for PostgreSQL

Before you can perform a major version upgrade on an RDS for PostgreSQL DB instance that's
serving as a publisher node in a logical replication scenario, you must drop the replication slots
on the instance. The major version upgrade pre-check process notifies you that the upgrade can't
proceed until the slots are dropped.

To drop slots from your RDS for PostgreSQL DB instance, first drop the subscription and then drop
the slot.

To identify replication slots that were created using the pglogical extension, log in to each
database and get the name of the nodes. When you query the subscriber node, you get both the
publisher and the subscriber nodes in the output, as shown in this example.

SELECT * FROM pglogical.node;
node_id | node_name
------------+-------------------
 2182738256 | docs_lab_target
 3410995529 | docs_lab_provider
(2 rows)

You can get the details about the subscription with the following query.

Using pglogical to synchronize data 4626

Amazon Relational Database Service User Guide

SELECT sub_name,sub_slot_name,sub_target
 FROM pglogical.subscription;
 sub_name | sub_slot_name | sub_target
----------+--------------------------------+------------
 docs_lab_subscription | pgl_labdb_docs_labcb4fa94_docs_lab3de412c | 2182738256
(1 row)

You can now drop the subscription, as follows.

SELECT pglogical.drop_subscription(subscription_name := 'docs_lab_subscription');
 drop_subscription

 1
(1 row)

After dropping the subscription, you can delete the node.

SELECT pglogical.drop_node(node_name := 'docs-lab-subscriber');
 drop_node

 t
(1 row)

You can verify that the node no longer exists, as follows.

SELECT * FROM pglogical.node;
 node_id | node_name
---------+-----------
(0 rows)

Parameter reference for the pglogical extension

In the table you can find parameters associated with the pglogical extension. Parameters such
as pglogical.conflict_log_level and pglogical.conflict_resolution are used
to handle update conflicts. Conflicts can emerge when changes are made locally to the same
tables that are subscribed to changes from the publisher. Conflicts can also occur during various
scenarios, such as two-way replication or when multiple subscribers are replicating from the same
publisher. For more information, see PostgreSQL bi-directional replication using pglogical.

Using pglogical to synchronize data 4627

https://aws.amazon.com/blogs/database/postgresql-bi-directional-replication-using-pglogical/

Amazon Relational Database Service User Guide

Parameter Description

pglogical.batch_inserts Batch inserts if possible. Not set by default. Change to '1' to
turn on, '0' to turn off.

pglogical.conflict_log_level Sets the log level to use for logging resolved conflicts.
Supported string values are debug5, debug4, debug3, debug2,
debug1, info, notice, warning, error, log, fatal, panic.

pglogical.conflict_resolution Sets method to use to resolve conflicts when conflicts are
resolvable. Supported string values are error, apply_remote,
keep_local, last_update_wins, first_update_wins.

pglogical.extra_connection_
options

Connection options to add to all peer node connections.

pglogical.synchronous_commi
t

pglogical specific synchronous commit value

pglogical.use_spi Use SPI (server programming interface) instead of low-level
API to apply changes. Set to '1' to turn on, '0' to turn off. For
more information about SPI, see Server Programming Interface
 in the PostgreSQL documentation.

Using pglogical to synchronize data 4628

https://www.postgresql.org/docs/current/spi.html
https://www.postgresql.org/docs/current/spi.html

Amazon Relational Database Service User Guide

Using pgactive to support active-active replication

The pgactive extension uses active-active replication to support and coordinate write operations
on multiple RDS for PostgreSQL databases. Amazon RDS for PostgreSQL supports the pgactive
extension on the following versions:

• RDS for PostgreSQL 16.1 and higher 16 versions

• RDS for PostgreSQL 15.4-R2 and higher 15 versions

• RDS for PostgreSQL 14.10 and higher 14 versions

• RDS for PostgreSQL 13.13 and higher 13 versions

• RDS for PostgreSQL 12.17 and higher 12 versions

• RDS for PostgreSQL 11.22

Note

When there are write operations on more than one database in a replication configuration,
conflicts are possible. For more information, see Handling conflicts in active-active
replication

Topics

• Initializing the pgactive extension capability

• Setting up active-active replication for RDS for PostgreSQL DB instances

• Handling conflicts in active-active replication

• Handling sequences in active-active replication

• Parameter reference for the pgactive extension

• Measuring replication lag among pgactive members

• Limitations for the pgactive extension

Initializing the pgactive extension capability

To initialize the pgactive extension capability on your RDS for PostgreSQL DB instance, set
the value of the rds.enable_pgactive parameter to 1 and then create the extension in the

Using pgactive to create active-active replication 4629

Amazon Relational Database Service User Guide

database. Doing so automatically turns on the parameters rds.logical_replication and
track_commit_timestamp and sets the value of wal_level to logical.

You must have permissions as the rds_superuser role to perform these tasks.

You can use the AWS Management Console or the AWS CLI to create the required RDS for
PostgreSQL DB instances. The steps following assume that your RDS for PostgreSQL DB instance
is associated with a custom DB parameter group. For information about creating a custom DB
parameter group, see Parameter groups for Amazon RDS.

Console

To initialize the pgactive extension capability

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your RDS for PostgreSQL DB instance.

3. Open the Configuration tab for your RDS for PostgreSQL DB instance. In the instance details,
find the DB instance parameter group link.

4. Choose the link to open the custom parameters associated with your RDS for PostgreSQL DB
instance.

5. Find the rds.enable_pgactive parameter, and set it to 1 to initialize the pgactive
capability.

6. Choose Save changes.

7. In the navigation pane of the Amazon RDS console, choose Databases.

8. Select your RDS for PostgreSQL DB instance, and then choose Reboot from the Actions menu.

9. Confirm the DB instance reboot so that your changes take effect.

10. When the DB instance is available, you can use psql or any other PostgreSQL client to connect
to the RDS for PostgreSQL DB instance.

The following example assumes that your RDS for PostgreSQL DB instance has a default
database named postgres.

psql --host=mydb.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=master username --password --dbname=postgres

11. To verify that pgactive is initialized, run the following command.

Using pgactive to create active-active replication 4630

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

postgres=>SELECT setting ~ 'pgactive'
FROM pg_catalog.pg_settings
WHERE name = 'shared_preload_libraries';

If pgactive is in shared_preload_libraries, the preceding command will return the
following:

?column?

 t

12. Create the extension, as follows.

postgres=> CREATE EXTENSION pgactive;

AWS CLI

To initialize the pgactive extension capability

To initialize the pgactive using the AWS CLI, call the modify-db-parameter-group operation to
modify certain parameters in your custom parameter group as shown in the following procedure.

1. Use the following AWS CLI command to set rds.enable_pgactive to 1 to initialize the
pgactive capability for the RDS for PostgreSQL DB instance.

postgres=>aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=rds.enable_pgactive,ParameterValue=1,ApplyMethod=pending-reboot" \
 --region aws-region

2. Use the following AWS CLI command to reboot the RDS for PostgreSQL DB instance so that
the pgactive library is initialized.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

Using pgactive to create active-active replication 4631

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

3. When the instance is available, use psql to connect to the RDS for PostgreSQL DB instance.

psql --host=mydb.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=master user --password --dbname=postgres

4. Create the extension, as follows.

postgres=> CREATE EXTENSION pgactive;

Setting up active-active replication for RDS for PostgreSQL DB instances

The following procedure shows you how to start active-active replication between two RDS for
PostgreSQL DB instances running PostgreSQL 15.4 or higher in the same region. To run the multi-
region high availability example, you need to deploy Amazon RDS for PostgreSQL instances in two
different regions and set up VPC Peering. For more information, see VPC peering.

Note

Sending traffic between multiple regions may incur additional costs.

These steps assume that the RDS for PostgreSQL DB instance has been setup with the pgactive
extension. For more information, see Initializing the pgactive extension capability.

To configure the first RDS for PostgreSQL DB instance with the pgactive extension

The following example illustrates how the pgactive group is created, along with other steps
required to create the pgactive extension on the RDS for PostgreSQL DB instance.

1. Use psql or another client tool to connect to your first RDS for PostgreSQL DB instance.

psql --host=firstinstance.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=master username --password --dbname=postgres

2. Create a database on the RDS for PostgreSQL instance using the following command:

postgres=> CREATE DATABASE app;

3. Switch connection to the new database using the following command:

Using pgactive to create active-active replication 4632

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

Amazon Relational Database Service User Guide

\c app

4. To check if the shared_preload_libraries parameter contains pgactive, run the
following command:

app=>SELECT setting ~ 'pgactive' FROM pg_catalog.pg_settings WHERE name =
 'shared_preload_libraries';

 ?column?

 t

5. Create and populate a sample table using the following SQL statements:

a. Create an example table using the following SQL statement.

app=> CREATE SCHEMA inventory;
CREATE TABLE inventory.products (
id int PRIMARY KEY, product_name text NOT NULL,
created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP);

b. Populate the table with some sample data by using the following SQL statement.

app=> INSERT INTO inventory.products (id, product_name)
VALUES (1, 'soap'), (2, 'shampoo'), (3, 'conditioner');

c. Verify that data exists in the table by using the following SQL statement.

 app=>SELECT count(*) FROM inventory.products;

 count

 3

6. Create pgactive extension on the existing database.

app=> CREATE EXTENSION pgactive;

7. Create and initialize the pgactive group using the following commands:

Using pgactive to create active-active replication 4633

Amazon Relational Database Service User Guide

app=> SELECT pgactive.pgactive_create_group(
 node_name := 'node1-app',
 node_dsn := 'dbname=app host=firstinstance.111122223333.aws-
region.rds.amazonaws.com user=master username password=PASSWORD');

node1-app is the name that you assign to uniquely identify a node in the pgactive group.

Note

To perform this step successfully on a DB instance that is publicly accessible, you must
turn on the rds.custom_dns_resolution parameter by setting it to 1.

8. To check if the DB instance is ready, use the following command:

app=> SELECT pgactive.pgactive_wait_for_node_ready();

If the command succeeds, you can see the following output:

pgactive_wait_for_node_ready

(1 row)

To configure the second RDS for PostgreSQL instance and join it to the pgactive group

The following example illustrates how you can join an RDS for PostgreSQL DB instance to the
pgactive group, along with other steps that are required to create the pgactive extension on
the DB instance.

These steps assume that another RDS for PostgreSQL DB instances has been set up with the
pgactive extension. For more information, see Initializing the pgactive extension capability.

1. Use psql to connect to the instance that you want to receive updates from the publisher.

psql --host=secondinstance.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=master username --password --dbname=postgres

Using pgactive to create active-active replication 4634

Amazon Relational Database Service User Guide

2. Create a database on the second RDS for PostgreSQL DB instance using the following
command:

postgres=> CREATE DATABASE app;

3. Switch connection to the new database using the following command:

\c app

4. Create the pgactive extension on the existing database.

app=> CREATE EXTENSION pgactive;

5. Join the RDS for PostgreSQL second DB instance to the pgactive group as follows.

app=> SELECT pgactive.pgactive_join_group(
node_name := 'node2-app',
node_dsn := 'dbname=app host=secondinstance.111122223333.aws-
region.rds.amazonaws.com user=master username password=PASSWORD',
join_using_dsn := 'dbname=app host=firstinstance.111122223333.aws-
region.rds.amazonaws.com user=postgres password=PASSWORD');

node2-app is the name that you assign to uniquely identify a node in the pgactive group.

6. To check if the DB instance is ready, use the following command:

app=> SELECT pgactive.pgactive_wait_for_node_ready();

If the command succeeds, you can see the following output:

pgactive_wait_for_node_ready

(1 row)

If the first RDS for PostgreSQL database is relatively large, you can see
pgactive.pgactive_wait_for_node_ready() emitting the progress report of the restore
operation. The output looks similar to the following:

NOTICE: restoring database 'app', 6% of 7483 MB complete
Using pgactive to create active-active replication 4635

Amazon Relational Database Service User Guide

NOTICE: restoring database 'app', 42% of 7483 MB complete
NOTICE: restoring database 'app', 77% of 7483 MB complete
NOTICE: restoring database 'app', 98% of 7483 MB complete
NOTICE: successfully restored database 'app' from node node1-app in
 00:04:12.274956
 pgactive_wait_for_node_ready

(1 row)

From this point forward, pgactive synchronizes the data between the two DB instances.

7. You can use the following command to verify if the database of the second DB instance has
the data:

app=> SELECT count(*) FROM inventory.products;

If the data is successfully synchronized, you’ll see the following output:

 count

 3

8. Run the following command to insert new values:

app=> INSERT INTO inventory.products (id, product_name) VALUES ('lotion');

9. Connect to the database of the first DB instance and run the following query:

app=> SELECT count(*) FROM inventory.products;

If the active-active replication is initialized, the output is similar to the following:

count

 4

To detach and remove a DB instance from the pgactive group

You can detach and remove a DB instance from the pgactive group using these steps:
Using pgactive to create active-active replication 4636

Amazon Relational Database Service User Guide

1. You can detach the second DB instance from the first DB instance using the following
command:

app=> SELECT * FROM pgactive.pgactive_detach_nodes(ARRAY[‘node2-app']);

2. Remove the pgactive extension from the second DB instance using the following command:

app=> SELECT * FROM pgactive.pgactive_remove();

To forcefully remove the extension:

app=> SELECT * FROM pgactive.pgactive_remove(true);

3. Drop the extension using the following command:

app=> DROP EXTENSION pgactive;

Handling conflicts in active-active replication

The pgactive extension works per database and not per cluster. Each DB instance that uses
pgactive is an independent instance and can accept data changes from any source. When
a change is sent to a DB instance, PostgreSQL commits it locally and then uses pgactive to
replicate the change asynchronously to other DB instances. When two PostgreSQL DB instances
update the same record at nearly the same time, a conflict can occur.

The pgactive extension provides mechanisms for conflict detection and automatic resolution.
It tracks the time stamp when the transaction was committed on both the DB instances and
automatically applies the change with the latest time stamp. The pgactive extension also logs
when a conflict occurs in the pgactive.pgactive_conflict_history table.

The pgactive.pgactive_conflict_history will keep growing. You may want to define
a purging policy. This can be done by deleting some records on a regular basis or defining a
partitioning scheme for this relation (and later detach, drop, truncate partitions of interest). To
implement the purging policy on a regular basis, one option is to use the pg_cron extension. See
the following information of an example for the pg_cron history table, Scheduling maintenance
with the PostgreSQL pg_cron extension.

Using pgactive to create active-active replication 4637

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_pg_cron.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_pg_cron.html

Amazon Relational Database Service User Guide

Handling sequences in active-active replication

An RDS for PostgreSQL DB instance with the pgactive extension uses two different sequence
mechanisms to generate unique values.

Global Sequences

To use a global sequence, create a local sequence with the CREATE SEQUENCE
statement. Use pgactive.pgactive_snowflake_id_nextval(seqname) instead of
usingnextval(seqname) to get the next unique value of the sequence.

The following example creates a global sequence:

postgres=> CREATE TABLE gstest (
 id bigint primary key,
 parrot text
);

postgres=>CREATE SEQUENCE gstest_id_seq OWNED BY gstest.id;

postgres=> ALTER TABLE gstest \
 ALTER COLUMN id SET DEFAULT \
 pgactive.pgactive_snowflake_id_nextval('gstest_id_seq');

Partitioned sequences

In split-step or partitioned sequences, a normal PostgreSQL sequence is used on each node.
Each sequence increments by the same amount and starts at different offsets. For example, with
step 100, the node 1 generates sequence as 101, 201, 301, and so on and the node 2 generates
sequence as 102, 202, 302, and so on. This scheme works well even if the nodes can't communicate
for extended periods, but requires that the designer specify a maximum number of nodes
when establishing the schema and requires per-node configuration. Mistakes can easily lead to
overlapping sequences.

It is relatively simple to configure this approach with pgactive by creating the desired sequence
on a node as follows:

CREATE TABLE some_table (generated_value bigint primary key);

Using pgactive to create active-active replication 4638

Amazon Relational Database Service User Guide

postgres=> CREATE SEQUENCE some_seq INCREMENT 100 OWNED BY some_table.generated_value;

postgres=> ALTER TABLE some_table ALTER COLUMN generated_value SET DEFAULT
 nextval('some_seq');

Then call setval on each node to give a different offset starting value as follows.

postgres=>
-- On node 1
SELECT setval('some_seq', 1);

-- On node 2
SELECT setval('some_seq', 2);

Parameter reference for the pgactive extension

You can use the following query to view all the parameters associated with pgactive extension.

postgres=> SELECT * FROM pg_settings WHERE name LIKE 'pgactive.%';

Measuring replication lag among pgactive members

You can use the following query to view the replication lag among the pgactive members. Run
this query on every pgactive node to get the full picture.

 postgres=# SELECT *, (last_applied_xact_at - last_applied_xact_committs) AS lag
 FROM pgactive.pgactive_node_slots;
-{ RECORD 1]----------------
+---
node_name | node2-app
slot_name | pgactive_5_7332551165694385385_0_5__
slot_restart_lsn | 0/1A898A8
slot_confirmed_lsn | 0/1A898E0
walsender_active | t
walsender_pid | 69022
sent_lsn | 0/1A898E0
write_lsn | 0/1A898E0
flush_lsn | 0/1A898E0

Using pgactive to create active-active replication 4639

Amazon Relational Database Service User Guide

replay_lsn | 0/1A898E0
last_sent_xact_id | 746
last_sent_xact_committs | 2024-02-06 18:04:22.430376+00
last_sent_xact_at | 2024-02-06 18:04:22.431359+00
last_applied_xact_id | 746
last_applied_xact_committs | 2024-02-06 18:04:22.430376+00
last_applied_xact_at | 2024-02-06 18:04:52.452465+00
lag | 00:00:30.022089

Limitations for the pgactive extension

• All tables require a Primary Key, otherwise Update's and Delete's aren't allowed. The values in the
Primary Key column shouldn't be updated.

• Sequences may have gaps and sometimes might not follow an order. Sequences are not
replicated. For more information, see Handling sequences in active-active replication.

• DDL and large objects are not replicated.

• Secondary unique indexes can cause data divergence.

• Collation needs to be identical on all node in the group.

• Load balancing across nodes is an anti-pattern.

• Large transactions can cause replication lag.

Using pgactive to create active-active replication 4640

Amazon Relational Database Service User Guide

Reducing bloat in tables and indexes with the pg_repack extension

You can use the pg_repack extension to remove bloat from tables and indexes as an alternative
to VACUUM FULL. This extension is supported on RDS for PostgreSQL versions 9.6.3 and higher. For
more information on the pg_repack extension and the full table repack, see the GitHub project
documentation.

Unlike VACUUM FULL, the pg_repack extension requires an exclusive lock (AccessExclusiveLock)
only for a short period of time during the table rebuild operation in the following cases:

• Initial creation of log table – A log table is created to record changes that occur during initial
copy of the data, as shown in the following example:

postgres=>\dt+ repack.log_*
List of relations
-[RECORD 1]-+----------
Schema | repack
Name | log_16490
Type | table
Owner | postgres
Persistence | permanent
Access method | heap
Size | 65 MB
Description |

• Final swap-and-drop phase.

For the rest of the rebuild operation, it only needs an ACCESS SHARE lock on the original table
to copy rows from it to the new table. This helps the INSERT, UPDATE, and DELETE operations to
proceed as usual.

Recommendations

The following recommendations apply when you remove bloat from the tables and indexes using
the pg_repack extension:

• Perform repack during non-business hours or over a maintenance window to minimize its impact
on performance of other database activities.

• Closely monitor blocking sessions during the rebuild activity and ensure that there is no activity
on the original table that could potentially block pg_repack, specifically during the final swap-

Reducing bloat with the pg_repack extension 4641

https://reorg.github.io/pg_repack/
https://reorg.github.io/pg_repack/

Amazon Relational Database Service User Guide

and-drop phase when it needs an exclusive lock on the original table. For more information, see
Identifying what is blocking a query.

When you see a blocking session, you can terminate it using the following command after careful
consideration. This helps in the continuation of pg_repack to finish the rebuild:

SELECT pg_terminate_backend(pid);

• While applying the accrued changes from the pg_repack's log table on systems with a very
high transaction rate, the apply process might not be able to keep up with the rate of changes. In
such cases, pg_repack would not be able to complete the apply process. For more information,
see Monitoring the new table during the repack. If indexes are severely bloated, an alternative
solution is to perform an index only repack. This also helps VACUUM's index cleanup cycles to
finish faster.

You can skip the index cleanup phase using manual VACUUM from PostgreSQL version 12, and it
is skipped automatically during emergency autovacuum from PostgreSQL version 14. This helps
VACUUM complete faster without removing the index bloat and is only meant for emergency
situations such as preventing wraparound VACUUM. For more information, see Avoiding bloat in
indexes in the Amazon Aurora User Guide.

Pre-requisites

• The table must have PRIMARY KEY or not-null UNIQUE constraint.

• The extension version must be the same for both the client and the server.

• Ensure that the RDS instance has more FreeStorageSpace than the total size of the table
without the bloat. As an example, consider the total size of the table including TOAST and
indexes as 2TB, and total bloat in the table as 1TB. The required FreeStorageSpace must be
more than value returned by the following calculation:

2TB (Table size) - 1TB (Table bloat) = 1TB

You can use the following query to check the total size of the table and use pgstattuple to
derive bloat. For more information, see Diagnosing table and index bloat in the Amazon Aurora
User Guide

SELECT pg_size_pretty(pg_total_relation_size('table_name')) AS total_table_size;

Reducing bloat with the pg_repack extension 4642

https://repost.aws/knowledge-center/rds-aurora-postgresql-query-blocked
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.diag-table-ind-bloat.html#AuroraPostgreSQL.diag-table-ind-bloat.AvoidinginIndexes
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.diag-table-ind-bloat.html#AuroraPostgreSQL.diag-table-ind-bloat.AvoidinginIndexes
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.diag-table-ind-bloat.html

Amazon Relational Database Service User Guide

This space is reclaimed after the completion of the activity.

• Ensure that the RDS instance has enough compute and IO capacity to handle the repack
operation. You might consider to scale up the instance class for optimal balance of performance.

To use the pg_repack extension

1. Install the pg_repack extension on your RDS for PostgreSQL DB instance by running the
following command.

CREATE EXTENSION pg_repack;

2. Run the following commands to grant write access to temporary log tables created by
pg_repack.

ALTER DEFAULT PRIVILEGES IN SCHEMA repack GRANT INSERT ON TABLES TO PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA repack GRANT USAGE, SELECT ON SEQUENCES TO
 PUBLIC;

3. Connect to the database using the pg_repack client utility. Use an account that has
rds_superuser privileges. As an example, assume that rds_test role has rds_superuser
privileges. The following syntax performs pg_repack for full tables including all the table
indexes in the postgres database.

pg_repack -h db-instance-name.111122223333.aws-region.rds.amazonaws.com -U rds_test
 -k postgres

Note

You must connect using the -k option. The -a option is not supported.

The response from the pg_repack client provides information on the tables on the DB
instance that are repacked.

INFO: repacking table "pgbench_tellers"
INFO: repacking table "pgbench_accounts"
INFO: repacking table "pgbench_branches"

Reducing bloat with the pg_repack extension 4643

Amazon Relational Database Service User Guide

4. The following syntax repacks a single table orders including indexes in postgres database.

pg_repack -h db-instance-name.111122223333.aws-region.rds.amazonaws.com -U rds_test
 --table orders -k postgres

The following syntax repacks only indexes for orders table in postgres database.

pg_repack -h db-instance-name.111122223333.aws-region.rds.amazonaws.com -U rds_test
 --table orders --only-indexes -k postgres

Monitoring the new table during the repack

• The size of the database is increased by the total size of the table minus bloat, until swap-and-
drop phase of repack. You can monitor the growth rate of the database size, calculate the speed
of the repack, and roughly estimate the time it takes to complete initial data transfer.

As an example, consider the total size of the table as 2TB, the size of the database as 4TB, and
total bloat in the table as 1TB. The database total size value returned by the calculation at the
end of the repack operation is the following:

2TB (Table size) + 4 TB (Database size) - 1TB (Table bloat) = 5TB

You can roughly estimate the speed of the repack operation by sampling the growth rate in
bytes between two points in time. If the growth rate is 1GB per minute, it can take 1000 minutes
or 16.6 hours approximately to complete the initial table build operation. In addition to the
initial table build, pg_repack also needs to apply accrued changes. The time it takes depends on
the rate of applying ongoing changes plus accrued changes.

Note

You can use pgstattuple extension to calculate the bloat in the table. For more
information, see pgstattuple .

• The number of rows in the pg_repack's log table, under the repack schema represents the
volume of changes pending to be applied to the new table after the initial load.

Reducing bloat with the pg_repack extension 4644

https://www.postgresql.org/docs/current/pgstattuple.html

Amazon Relational Database Service User Guide

You can check the pg_repack's log table in pg_stat_all_tables to monitor the changes
applied to the new table. pg_stat_all_tables.n_live_tup indicates the number of records
that are pending to be applied to the new table. For more information, see pg_stat_all_tables.

postgres=>SELECT relname,n_live_tup FROM pg_stat_all_tables WHERE schemaname =
 'repack' AND relname ILIKE '%log%';

-[RECORD 1]---------
relname | log_16490
n_live_tup | 2000000

• You can use the pg_stat_statements extension to find out the time taken by each step in
the repack operation. This is helpful in preparation for applying the same repack operation in a
production environment. You may adjust the LIMIT clause for extending the output further.

postgres=>SELECT
 SUBSTR(query, 1, 100) query,
 round((round(total_exec_time::numeric, 6) / 1000 / 60),4)
 total_exec_time_in_minutes
 FROM
 pg_stat_statements
 WHERE
 query ILIKE '%repack%'
 ORDER BY
 total_exec_time DESC LIMIT 5;

 query |
 total_exec_time_in_minutes

+----------------------------
 CREATE UNIQUE INDEX index_16493 ON repack.table_16490 USING btree (a) |
 6.8627
 INSERT INTO repack.table_16490 SELECT a FROM ONLY public.t1 |
 6.4150
 SELECT repack.repack_apply($1, $2, $3, $4, $5, $6) |
 0.5395
 SELECT repack.repack_drop($1, $2) |
 0.0004
 SELECT repack.repack_swap($1) |
 0.0004
(5 rows)

Reducing bloat with the pg_repack extension 4645

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ALL-TABLES-VIEW

Amazon Relational Database Service User Guide

Repacking is completely an out-of-place operation so the original table is not impacted and we do
not anticipate any unexpected challenges that require recovery of the original table. If repack fails
unexpectedly, you must inspect the cause of the error and resolve it.

After the issue is resolved, drop and recreate the pg_repack extension in the database where
the table exists, and retry the pg_repack step. In addition, the availability of compute resources
and concurrent accessibility of the table plays a crucial role in the timely completion of the repack
operation.

Reducing bloat with the pg_repack extension 4646

Amazon Relational Database Service User Guide

Upgrading and using the PLV8 extension

PLV8 is a trusted Javascript language extension for PostgreSQL. You can use it for stored
procedures, triggers, and other procedural code that's callable from SQL. This language extension is
supported by all current releases of PostgreSQL.

If you use PLV8 and upgrade PostgreSQL to a new PLV8 version, you immediately take advantage
of the new extension. Take the following steps to synchronize your catalog metadata with the new
version of PLV8. These steps are optional, but we highly recommend that you complete them to
avoid metadata mismatch warnings.

The upgrade process drops all your existing PLV8 functions. Thus, we recommend that you create
a snapshot of your RDS for PostgreSQL DB instance before upgrading. For more information, see
Creating a DB snapshot for a Single-AZ DB instance for Amazon RDS.

Important

Starting with PostgreSQL version 18, Amazon RDS for PostgreSQL will deprecate the
plcoffee and plls PostgreSQL extensions. We recommend that you stop using
CoffeeScript and LiveScript in your applications to ensure you have an upgrade path for
future engine version upgrades.

To synchronize your catalog metadata with a new version of PLV8

1. Verify that you need to update. To do this, run the following command while connected to
your instance.

SELECT * FROM pg_available_extensions WHERE name IN ('plv8','plls','plcoffee');

If your results contain values for an installed version that is a lower number than the default
version, continue with this procedure to update your extensions. For example, the following
result set indicates that you should update.

name | default_version | installed_version | comment
--------+-----------------+-------------------
+--
plls | 2.1.0 | 1.5.3 | PL/LiveScript (v8) trusted
 procedural language

Upgrading and using PLV8 4647

https://plv8.github.io/

Amazon Relational Database Service User Guide

plcoffee| 2.1.0 | 1.5.3 | PL/CoffeeScript (v8) trusted
 procedural language
plv8 | 2.1.0 | 1.5.3 | PL/JavaScript (v8) trusted
 procedural language
(3 rows)

2. Create a snapshot of your RDS for PostgreSQL DB instance if you haven't done so yet. You can
continue with the following steps while the snapshot is being created.

3. Get a count of the number of PLV8 functions in your DB instance so you can validate that they
are all in place after the upgrade. For example, the following SQL query returns the number of
functions written in plv8, plcoffee, and plls.

SELECT proname, nspname, lanname
FROM pg_proc p, pg_language l, pg_namespace n
WHERE p.prolang = l.oid
AND n.oid = p.pronamespace
AND lanname IN ('plv8','plcoffee','plls');

4. Use pg_dump to create a schema-only dump file. For example, create a file on your client
machine in the /tmp directory.

./pg_dump -Fc --schema-only -U master postgres >/tmp/test.dmp

This example uses the following options:

• -Fc – Custom format

• --schema-only – Dump only the commands necessary to create schema (functions in this
case)

• -U – The RDS master user name

• database – The database name for our DB instance

For more information on pg_dump, see pg_dump in the PostgreSQL documentation.

5. Extract the "CREATE FUNCTION" DDL statement that is present in the dump file. The following
example uses the grep command to extract the DDL statement that creates the functions and
save them to a file. You use this in subsequent steps to recreate the functions.

./pg_restore -l /tmp/test.dmp | grep FUNCTION > /tmp/function_list

Upgrading and using PLV8 4648

https://www.postgresql.org/docs/current/static/app-pgdump.html

Amazon Relational Database Service User Guide

For more information on pg_restore, see pg_restore in the PostgreSQL documentation.

6. Drop the functions and extensions. The following example drops any PLV8 based objects. The
cascade option ensures that any dependent are dropped.

DROP EXTENSION plv8 CASCADE;

If your PostgreSQL instance contains objects based on plcoffee or plls, repeat this step for
those extensions.

7. Create the extensions. The following example creates the plv8, plcoffee, and plls extensions.

CREATE EXTENSION plv8;
CREATE EXTENSION plcoffee;
CREATE EXTENSION plls;

8. Create the functions using the dump file and "driver" file.

The following example recreates the functions that you extracted previously.

./pg_restore -U master -d postgres -Fc -L /tmp/function_list /tmp/test.dmp

9. Verify that all your functions have been recreated by using the following query.

SELECT * FROM pg_available_extensions WHERE name IN ('plv8','plls','plcoffee');

The PLV8 version 2 adds the following extra row to your result set:

 proname | nspname | lanname
---------------+------------+----------
 plv8_version | pg_catalog | plv8

Using PL/Rust to write PostgreSQL functions in the Rust language

PL/Rust is a trusted Rust language extension for PostgreSQL. You can use it for stored procedures,
functions, and other procedural code that's callable from SQL. The PL/Rust language extension is
available in the following versions:

• RDS for PostgreSQL 17.1 and higher 17 versions

Using PL/Rust to write functions in the Rust language 4649

https://www.postgresql.org/docs/current/static/app-pgrestore.html

Amazon Relational Database Service User Guide

• RDS for PostgreSQL 16.1 and higher 16 versions

• RDS for PostgreSQL 15.2-R2 and higher 15 versions

• RDS for PostgreSQL 14.9 and higher 14 versions

• RDS for PostgreSQL 13.12 and higher 13 versions

For more information, see PL/Rust on GitHub.

Topics

• Setting up PL/Rust

• Creating functions with PL/Rust

• Using crates with PL/Rust

• PL/Rust limitations

Setting up PL/Rust

To install the plrust extension on your DB instance, add plrust to the
shared_preload_libraries parameter in the DB parameter group associated with your DB
instance. With the plrust extension installed, you can create functions.

To modify the shared_preload_libraries parameter, your DB instance must be associated
with a custom parameter group. For information about creating a custom DB parameter group, see
Parameter groups for Amazon RDS.

You can install the plrust extension using the AWS Management Console or the AWS CLI.

The following steps assume that your DB instance is associated with a custom DB parameter group.

Console

Install the plrust extension in the shared_preload_libraries parameter

Complete the following steps using an account that is a member of the rds_superuser group
(role).

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Using PL/Rust to write functions in the Rust language 4650

https://github.com/tcdi/plrust#readme
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. Choose the name of your DB instance to display its details.

4. Open the Configuration tab for your DB instance and find the DB instance parameter group
link.

5. Choose the link to open the custom parameters associated with your DB instance.

6. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

7. Choose Edit parameters to access the property values.

8. Add plrust to the list in the Values field. Use a comma to separate items in the list of values.

9. Reboot the DB instance so that your change to the shared_preload_libraries parameter
takes effect. The initial reboot may require additional time to complete.

10. When the instance is available, verify that plrust has been initialized. Use psql to connect to
the DB instance, and then run the following command.

SHOW shared_preload_libraries;

Your output should look similar to the following:

shared_preload_libraries

rdsutils,plrust
(1 row)

AWS CLI

Install the plrust extension in the shared_preload_libraries parameter

Complete the following steps using an account that is a member of the rds_superuser group
(role).

1. Use the modify-db-parameter-group AWS CLI command to add plrust to the
shared_preload_libraries parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=plrust,ApplyMethod=pending-
reboot" \

Using PL/Rust to write functions in the Rust language 4651

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

 --region aws-region

2. Use the reboot-db-instance AWS CLI command to reboot the DB instance and initialize the
plrust library. The initial reboot may require additional time to complete.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

3. When the instance is available, you can verify that plrust has been initialized. Use psql to
connect to the DB instance, and then run the following command.

SHOW shared_preload_libraries;

Your output should look similar to the following:

shared_preload_libraries

rdsutils,plrust
(1 row)

Creating functions with PL/Rust

PL/Rust will compile the function as a dynamic library, load it, and execute it.

The following Rust function filters multiples out of an array.

postgres=> CREATE LANGUAGE plrust;
CREATE EXTENSION

CREATE OR REPLACE FUNCTION filter_multiples(a BIGINT[], multiple BIGINT) RETURNS
 BIGINT[]
 IMMUTABLE STRICT
 LANGUAGE PLRUST AS
$$
 Ok(Some(a.into_iter().filter(|x| x.unwrap() % multiple != 0).collect()))
$$;

WITH gen_values AS (
SELECT ARRAY(SELECT * FROM generate_series(1,100)) as arr)

Using PL/Rust to write functions in the Rust language 4652

https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-instance

Amazon Relational Database Service User Guide

SELECT filter_multiples(arr, 3)
from gen_values;

Using crates with PL/Rust

In RDS for PostgreSQL versions 16.3-R2 and higher, 15.7-R2 and higher 15 versions, 14.12-R2 and
higher 14 versions, and 13.15-R2 and higher 13 versions, PL/Rust supports additional crates:

• url

• regex

• serde

• serde_json

In RDS for PostgreSQL versions 15.5-R2 and higher, 14.10-R2 and higher 14 versions, and 13.13-R2
and higher 13 versions, PL/Rust supports two additional crates:

• croaring-rs

• num-bigint

Starting with Amazon RDS for PostgreSQL versions 15.4, 14.9, and 13.12, PL/Rust supports the
following crates:

• aes

• ctr

• rand

Only the default features are supported for these crates. New RDS for PostgreSQL versions might
contain updated versions of crates, and older versions of crates may no longer be supported.

Follow the best practices for performing a major version upgrade to test whether your PL/Rust
functions are compatible with the new major version. For more information, see the blog Best
practices for upgrading Amazon RDS to major and minor versions of PostgreSQL and Upgrading
the PostgreSQL DB engine for Amazon RDS in the Amazon RDS User Guide.

Examples of using dependencies when creating a PL/Rust function are available at Use
dependencies.

Using PL/Rust to write functions in the Rust language 4653

https://aws.amazon.com/blogs/database/best-practices-for-upgrading-amazon-rds-to-major-and-minor-versions-of-postgresql/
https://aws.amazon.com/blogs/database/best-practices-for-upgrading-amazon-rds-to-major-and-minor-versions-of-postgresql/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://tcdi.github.io/plrust/use-plrust.html#use-dependencies
https://tcdi.github.io/plrust/use-plrust.html#use-dependencies

Amazon Relational Database Service User Guide

PL/Rust limitations

By default, database users can't use PL/Rust. To provide access to PL/Rust, connect as a user with
rds_superuser privilege, and run the following command:

postgres=> GRANT USAGE ON LANGUAGE PLRUST TO user;

Using PL/Rust to write functions in the Rust language 4654

Amazon Relational Database Service User Guide

Managing spatial data with the PostGIS extension

PostGIS is an extension to PostgreSQL for storing and managing spatial information. To learn more
about PostGIS, see PostGIS.net.

Starting with version 10.5, PostgreSQL supports the libprotobuf 1.3.0 library used by PostGIS for
working with map box vector tile data.

Setting up the PostGIS extension requires rds_superuser privileges. We recommend that you
create a user (role) to manage the PostGIS extension and your spatial data. The PostGIS extension
and its related components add thousands of functions to PostgreSQL. Consider creating the
PostGIS extension in its own schema if that makes sense for your use case. The following example
shows how to install the extension in its own database, but this isn't required.

Topics

• Step 1: Create a user (role) to manage the PostGIS extension

• Step 2: Load the PostGIS extensions

• Step 3: Transfer ownership of the extension schemas

• Step 4: Transfer ownership of the PostGIS tables

• Step 5: Test the extensions

• Step 6: Upgrade the PostGIS extension

• PostGIS extension versions

• Upgrading PostGIS 2 to PostGIS 3

Step 1: Create a user (role) to manage the PostGIS extension

First, connect to your RDS for PostgreSQL DB instance as a user that has rds_superuser
privileges. If you kept the default name when you set up your instance, you connect as postgres.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --username=postgres
 --password

Create a separate role (user) to administer the PostGIS extension.

postgres=> CREATE ROLE gis_admin LOGIN PASSWORD 'change_me';
CREATE ROLE

Managing spatial data with PostGIS 4655

https://postgis.net/

Amazon Relational Database Service User Guide

Grant this role rds_superuser privileges, to allow the role to install the extension.

postgres=> GRANT rds_superuser TO gis_admin;
GRANT

Create a database to use for your PostGIS artifacts. This step is optional. Or you can create a
schema in your user database for the PostGIS extensions, but this also isn't required.

postgres=> CREATE DATABASE lab_gis;
CREATE DATABASE

Give the gis_admin all privileges on the lab_gis database.

postgres=> GRANT ALL PRIVILEGES ON DATABASE lab_gis TO gis_admin;
GRANT

Exit the session and reconnect to your RDS for PostgreSQL DB instance as gis_admin.

postgres=> psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=gis_admin --password --dbname=lab_gis
Password for user gis_admin:...
lab_gis=>

Continue setting up the extension as detailed in the next steps.

Step 2: Load the PostGIS extensions

The PostGIS extension includes several related extensions that work together to provide geospatial
functionality. Depending on your use case, you might not need all the extensions created in this
step.

Use CREATE EXTENSION statements to load the PostGIS extensions.

CREATE EXTENSION postgis;
CREATE EXTENSION
CREATE EXTENSION postgis_raster;
CREATE EXTENSION
CREATE EXTENSION fuzzystrmatch;
CREATE EXTENSION

Managing spatial data with PostGIS 4656

Amazon Relational Database Service User Guide

CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION
CREATE EXTENSION postgis_topology;
CREATE EXTENSION
CREATE EXTENSION address_standardizer_data_us;
CREATE EXTENSION

You can verify the results by running the SQL query shown in the following example, which lists
the extensions and their owners.

SELECT n.nspname AS "Name",
 pg_catalog.pg_get_userbyid(n.nspowner) AS "Owner"
 FROM pg_catalog.pg_namespace n
 WHERE n.nspname !~ '^pg_' AND n.nspname <> 'information_schema'
 ORDER BY 1;
List of schemas
 Name | Owner
--------------+-----------
 public | postgres
 tiger | rdsadmin
 tiger_data | rdsadmin
 topology | rdsadmin
(4 rows)

Step 3: Transfer ownership of the extension schemas

Use the ALTER SCHEMA statements to transfer ownership of the schemas to the gis_admin role.

ALTER SCHEMA tiger OWNER TO gis_admin;
ALTER SCHEMA
ALTER SCHEMA tiger_data OWNER TO gis_admin;
ALTER SCHEMA
ALTER SCHEMA topology OWNER TO gis_admin;
ALTER SCHEMA

You can confirm the ownership change by running the following SQL query. Or you can use the
\dn metacommand from the psql command line.

SELECT n.nspname AS "Name",
 pg_catalog.pg_get_userbyid(n.nspowner) AS "Owner"

Managing spatial data with PostGIS 4657

Amazon Relational Database Service User Guide

 FROM pg_catalog.pg_namespace n
 WHERE n.nspname !~ '^pg_' AND n.nspname <> 'information_schema'
 ORDER BY 1;

 List of schemas
 Name | Owner
--------------+---------------
 public | postgres
 tiger | gis_admin
 tiger_data | gis_admin
 topology | gis_admin
(4 rows)

Step 4: Transfer ownership of the PostGIS tables

Note

Do not change ownership of the PostGIS functions. Proper operation and future upgrades
of PostGIS require these functions to retain original ownership. For more information about
PostGIS permissions, see PostgreSQL Security.

Use the following function to transfer ownership of the PostGIS tables to the gis_admin role. Run
the following statement from the psql prompt to create the function.

CREATE FUNCTION exec(text) returns text language plpgsql volatile AS f BEGIN EXECUTE
 $1; RETURN $1; END; f;
CREATE FUNCTION

Next, run the following query to run the exec function that in turn runs the statements and alters
the permissions.

SELECT exec('ALTER TABLE ' || quote_ident(s.nspname) || '.' || quote_ident(s.relname)
 || ' OWNER TO gis_admin;')
 FROM (
 SELECT nspname, relname
 FROM pg_class c JOIN pg_namespace n ON (c.relnamespace = n.oid)
 WHERE nspname in ('tiger','topology') AND
 relkind IN ('r','S','v') ORDER BY relkind = 'S')
s;

Managing spatial data with PostGIS 4658

https://postgis.net/workshops/postgis-intro/security.html

Amazon Relational Database Service User Guide

Step 5: Test the extensions

To avoid needing to specify the schema name, add the tiger schema to your search path using
the following command.

SET search_path=public,tiger;
SET

Test the tiger schema by using the following SELECT statement.

SELECT address, streetname, streettypeabbrev, zip
 FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;
address | streetname | streettypeabbrev | zip
---------+------------+------------------+-------
 1 | Devonshire | Pl | 02109
(1 row)

To learn more about this extension, see Tiger Geocoder in the PostGIS documentation.

Test access to the topology schema by using the following SELECT statement. This calls the
createtopology function to register a new topology object (my_new_topo) with the specified
spatial reference identifier (26986) and default tolerance (0.5). To learn more, see CreateTopology
in the PostGIS documentation.

SELECT topology.createtopology('my_new_topo',26986,0.5);
 createtopology

 1
(1 row)

Step 6: Upgrade the PostGIS extension

Each new release of PostgreSQL supports one or more versions of the PostGIS extension
compatible with that release. Upgrading the PostgreSQL engine to a new version doesn't
automatically upgrade the PostGIS extension. Before upgrading the PostgreSQL engine, you
typically upgrade PostGIS to the newest available version for the current PostgreSQL version. For
details, see PostGIS extension versions.

After the PostgreSQL engine upgrade, you then upgrade the PostGIS extension again, to the
version supported for the newly upgraded PostgreSQL engine version. For more information

Managing spatial data with PostGIS 4659

https://postgis.net/docs/Extras.html#Tiger_Geocoder
https://postgis.net/docs/CreateTopology.html

Amazon Relational Database Service User Guide

about upgrading the PostgreSQL engine, see How to perform a major version upgrade for RDS for
PostgreSQL.

You can check for available PostGIS extension version updates on your RDS for PostgreSQL DB
instance at any time. To do so, run the following command. This function is available with PostGIS
2.5.0 and higher versions.

SELECT postGIS_extensions_upgrade();

If your application doesn't support the latest PostGIS version, you can install an older version of
PostGIS that's available in your major version as follows.

CREATE EXTENSION postgis VERSION "2.5.5";

If you want to upgrade to a specific PostGIS version from an older version, you can also use the
following command.

ALTER EXTENSION postgis UPDATE TO "2.5.5";

Depending on the version that you're upgrading from, you might need to use this function again.
The result of the first run of the function determines if an additional upgrade function is needed.
For example, this is the case for upgrading from PostGIS 2 to PostGIS 3. For more information, see
Upgrading PostGIS 2 to PostGIS 3.

If you upgraded this extension to prepare for a major version upgrade of the PostgreSQL engine,
you can continue with other preliminary tasks. For more information, see How to perform a major
version upgrade for RDS for PostgreSQL.

PostGIS extension versions

We recommend that you install the versions of all extensions such as PostGIS as listed in Extension
versions for Amazon RDS for PostgreSQL in the Amazon RDS for PostgreSQL Release Notes. To get a
list of versions that are available in your release, use the following command.

SELECT * FROM pg_available_extension_versions WHERE name='postgis';

You can find version information in the following sections in the Amazon RDS for PostgreSQL
Release Notes:

• PostgreSQL version 16 extensions supported on Amazon RDS

Managing spatial data with PostGIS 4660

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-16x

Amazon Relational Database Service User Guide

• PostgreSQL version 15 extensions supported on Amazon RDS

• PostgreSQL version 14 extensions supported on Amazon RDS

• PostgreSQL version 13 extensions supported on Amazon RDS

• PostgreSQL version 12 extensions supported on Amazon RDS

• PostgreSQL version 11 extensions supported on Amazon RDS

• PostgreSQL version 10 extensions supported on Amazon RDS

• PostgreSQL version 9.6.x extensions supported on Amazon RDS

Upgrading PostGIS 2 to PostGIS 3

Starting with version 3.0, the PostGIS raster functionality is now a separate extension,
postgis_raster. This extension has its own installation and upgrade path. This removes dozens
of functions, data types, and other artifacts required for raster image processing from the core
postgis extension. That means that if your use case doesn't require raster processing, you don't
need to install the postgis_raster extension.

In the following upgrade example, the first upgrade command extracts raster functionality
into the postgis_raster extension. A second upgrade command is then required to upgrade
postgis_raster to the new version.

To upgrade from PostGIS 2 to PostGIS 3

1. Identify the default version of PostGIS that's available to the PostgreSQL version on your RDS
for PostgreSQL DB instance. To do so, run the following query.

SELECT * FROM pg_available_extensions
 WHERE default_version > installed_version;
 name | default_version | installed_version | comment
---------+-----------------+-------------------
+--
 postgis | 3.1.4 | 2.3.7 | PostGIS geometry and geography
 spatial types and functions
(1 row)

2. Identify the versions of PostGIS installed in each database on your RDS for PostgreSQL DB
instance. In other words, query each user database as follows.

SELECT

Managing spatial data with PostGIS 4661

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-15x
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-14x
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-13x
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-12x
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-11x
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-101x
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html#postgresql-extensions-96x

Amazon Relational Database Service User Guide

 e.extname AS "Name",
 e.extversion AS "Version",
 n.nspname AS "Schema",
 c.description AS "Description"
FROM
 pg_catalog.pg_extension e
 LEFT JOIN pg_catalog.pg_namespace n ON n.oid = e.extnamespace
 LEFT JOIN pg_catalog.pg_description c ON c.objoid = e.oid
 AND c.classoid = 'pg_catalog.pg_extension'::pg_catalog.regclass
WHERE
 e.extname LIKE '%postgis%'
ORDER BY
 1;
 Name | Version | Schema | Description
---------+---------+--------
+---
 postgis | 2.3.7 | public | PostGIS geometry, geography, and raster spatial types
 and functions
(1 row)

This mismatch between the default version (PostGIS 3.1.4) and the installed version (PostGIS
2.3.7) means that you need to upgrade the PostGIS extension.

ALTER EXTENSION postgis UPDATE;
ALTER EXTENSION
WARNING: unpackaging raster
WARNING: PostGIS Raster functionality has been unpackaged

3. Run the following query to verify that the raster functionality is now in its own package.

SELECT
 probin,
 count(*)
FROM
 pg_proc
WHERE
 probin LIKE '%postgis%'
GROUP BY
 probin;
 probin | count
--------------------------+-------
 $libdir/rtpostgis-2.3 | 107
 $libdir/postgis-3 | 487

Managing spatial data with PostGIS 4662

Amazon Relational Database Service User Guide

(2 rows)

The output shows that there's still a difference between versions. The PostGIS functions are
version 3 (postgis-3), while the raster functions (rtpostgis) are version 2 (rtpostgis-2.3). To
complete the upgrade, you run the upgrade command again, as follows.

postgres=> SELECT postgis_extensions_upgrade();

You can safely ignore the warning messages. Run the following query again to verify that the
upgrade is complete. The upgrade is complete when PostGIS and all related extensions aren't
marked as needing upgrade.

SELECT postgis_full_version();

4. Use the following query to see the completed upgrade process and the separately packaged
extensions, and verify that their versions match.

SELECT
 e.extname AS "Name",
 e.extversion AS "Version",
 n.nspname AS "Schema",
 c.description AS "Description"
FROM
 pg_catalog.pg_extension e
 LEFT JOIN pg_catalog.pg_namespace n ON n.oid = e.extnamespace
 LEFT JOIN pg_catalog.pg_description c ON c.objoid = e.oid
 AND c.classoid = 'pg_catalog.pg_extension'::pg_catalog.regclass
WHERE
 e.extname LIKE '%postgis%'
ORDER BY
 1;
 Name | Version | Schema | Description
----------------+---------+--------
+---
 postgis | 3.1.5 | public | PostGIS geometry, geography, and raster
 spatial types and functions
 postgis_raster | 3.1.5 | public | PostGIS raster types and functions
(2 rows)

Managing spatial data with PostGIS 4663

Amazon Relational Database Service User Guide

The output shows that the PostGIS 2 extension was upgraded to PostGIS 3, and both postgis
and the now separate postgis_raster extension are version 3.1.5.

After this upgrade completes, if you don't plan to use the raster functionality, you can drop the
extension as follows.

DROP EXTENSION postgis_raster;

Managing spatial data with PostGIS 4664

Amazon Relational Database Service User Guide

Working with the supported foreign data wrappers for Amazon
RDS for PostgreSQL

A foreign data wrapper (FDW) is a specific type of extension that provides access to external data.
For example, the oracle_fdw extension allows your RDS for PostgreSQL DB cluster to work with
Oracle databases. As another example, by using the PostgreSQL native postgres_fdw extension
you can access data stored in PostgreSQL DB instances external to your RDS for PostgreSQL DB
instance.

Following, you can find information about several supported PostgreSQL foreign data wrappers.

Topics

• Using the log_fdw extension to access the DB log using SQL

• Using the postgres_fdw extension to access external data

• Working with MySQL databases by using the mysql_fdw extension

• Working with Oracle databases by using the oracle_fdw extension

• Working with SQL Server databases by using the tds_fdw extension

Using the log_fdw extension to access the DB log using SQL

RDS for PostgreSQL DB instance supports the log_fdw extension, which you can use to access
your database engine log using a SQL interface. The log_fdw extension provides two functions
that make it easy to create foreign tables for database logs:

• list_postgres_log_files – Lists the files in the database log directory and the file size in
bytes.

• create_foreign_table_for_log_file(table_name text, server_name text,
log_file_name text) – Builds a foreign table for the specified file in the current database.

All functions created by log_fdw are owned by rds_superuser. Members of the
rds_superuser role can grant access to these functions to other database users.

By default, the log files are generated by Amazon RDS in stderr (standard error) format, as
specified in log_destination parameter. There are only two options for this parameter, stderr
and csvlog (comma-separated values, CSV). If you add the csvlog option to the parameter,
Amazon RDS generates both stderr and csvlog logs. This can affect the storage capacity on

Supported foreign data wrappers in Amazon RDS for PostgreSQL 4665

Amazon Relational Database Service User Guide

your DB cluster, so you need to be aware of the other parameters that affect log handling. For
more information, see Setting the log destination (stderr, csvlog).

One benefit of generating csvlog logs is that the log_fdw extension lets you build foreign tables
with the data neatly split into several columns. To do this, your instance needs to be associated
with a custom DB parameter group so that you can change the setting for log_destination. For
more information about how to do so, see Working with parameters on your RDS for PostgreSQL
DB instance.

The following example assumes that the log_destination parameter includes cvslog.

To use the log_fdw extension

1. Install the log_fdw extension.

postgres=> CREATE EXTENSION log_fdw;
CREATE EXTENSION

2. Create the log server as a foreign data wrapper.

postgres=> CREATE SERVER log_server FOREIGN DATA WRAPPER log_fdw;
CREATE SERVER

3. Select all from a list of log files.

postgres=> SELECT * FROM list_postgres_log_files() ORDER BY 1;

A sample response is as follows.

 file_name | file_size_bytes
------------------------------+-----------------
 postgresql.log.2023-08-09-22.csv | 1111
 postgresql.log.2023-08-09-23.csv | 1172
 postgresql.log.2023-08-10-00.csv | 1744
 postgresql.log.2023-08-10-01.csv | 1102
(4 rows)

4. Create a table with a single 'log_entry' column for the selected file.

postgres=> SELECT create_foreign_table_for_log_file('my_postgres_error_log',
 'log_server', 'postgresql.log.2023-08-09-22.csv');

Using the log_fdw extension 4666

Amazon Relational Database Service User Guide

The response provides no detail other than that the table now exists.

(1 row)

5. Select a sample of the log file. The following code retrieves the log time and error message
description.

postgres=> SELECT log_time, message FROM my_postgres_error_log ORDER BY 1;

A sample response is as follows.

 log_time | message

+---
Tue Aug 09 15:45:18.172 2023 PDT | ending log output to stderr
Tue Aug 09 15:45:18.175 2023 PDT | database system was interrupted; last known up
 at 2023-08-09 22:43:34 UTC
Tue Aug 09 15:45:18.223 2023 PDT | checkpoint record is at 0/90002E0
Tue Aug 09 15:45:18.223 2023 PDT | redo record is at 0/90002A8; shutdown FALSE
Tue Aug 09 15:45:18.223 2023 PDT | next transaction ID: 0/1879; next OID: 24578
Tue Aug 09 15:45:18.223 2023 PDT | next MultiXactId: 1; next MultiXactOffset: 0
Tue Aug 09 15:45:18.223 2023 PDT | oldest unfrozen transaction ID: 1822, in
 database 1
(7 rows)

Using the postgres_fdw extension to access external data

You can access data in a table on a remote database server with the postgres_fdw extension. If you
set up a remote connection from your PostgreSQL DB instance, access is also available to your read
replica.

To use postgres_fdw to access a remote database server

1. Install the postgres_fdw extension.

CREATE EXTENSION postgres_fdw;

2. Create a foreign data server using CREATE SERVER.

Using postgres_fdw to access external data 4667

https://www.postgresql.org/docs/current/static/postgres-fdw.html

Amazon Relational Database Service User Guide

CREATE SERVER foreign_server
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'xxx.xx.xxx.xx', port '5432', dbname 'foreign_db');

3. Create a user mapping to identify the role to be used on the remote server.

Important

To redact the password so that it doesn't appear in the logs, set
log_statement=none at the session level. Setting at the parameter level doesn't
redact the password.

CREATE USER MAPPING FOR local_user
SERVER foreign_server
OPTIONS (user 'foreign_user', password 'password');

4. Create a table that maps to the table on the remote server.

CREATE FOREIGN TABLE foreign_table (
 id integer NOT NULL,
 data text)
SERVER foreign_server
OPTIONS (schema_name 'some_schema', table_name 'some_table');

Working with MySQL databases by using the mysql_fdw extension

To access a MySQL-compatible database from your RDS for PostgreSQL DB instance, you can install
and use the mysql_fdw extension. This foreign data wrapper lets you work with RDS for MySQL,
Aurora MySQL, MariaDB, and other MySQL-compatible databases. The connection from RDS for
PostgreSQL DB instance to the MySQL database is encrypted on a best-effort basis, depending
on the client and server configurations. However, you can enforce encryption if you like. For more
information, see Using encryption in transit with the extension.

The mysql_fdw extension is supported on Amazon RDS for PostgreSQL version 14.2, 13.6, and
higher releases. It supports selects, inserts, updates, and deletes from an RDS for PostgreSQL DB to
tables on a MySQL-compatible database instance.

Working with a MySQL database 4668

Amazon Relational Database Service User Guide

Topics

• Setting up your RDS for PostgreSQL DB to use the mysql_fdw extension

• Example: Working with an RDS for MySQL database from RDS for PostgreSQL

• Using encryption in transit with the extension

Setting up your RDS for PostgreSQL DB to use the mysql_fdw extension

Setting up the mysql_fdw extension on your RDS for PostgreSQL DB instance involves loading the
extension in your DB instance and then creating the connection point to the MySQL DB instance.
For that task, you need to have the following details about the MySQL DB instance:

• Hostname or endpoint. For an RDS for MySQL DB instance, you can find the endpoint by using
the Console. Choose the Connectivity & security tab and look in the "Endpoint and port" section.

• Port number. The default port number for MySQL is 3306.

• Name of the database. The DB identifier.

You also need to provide access on the security group or the access control list (ACL) for the
MySQL port, 3306. Both the RDS for PostgreSQL DB instance and the RDS for MySQL DB instance
need access to port 3306. If access isn't configured correctly, when you try to connect to MySQL-
compatible table you see an error message similar to the following:

ERROR: failed to connect to MySQL: Can't connect to MySQL server on 'hostname.aws-
region.rds.amazonaws.com:3306' (110)

In the following procedure, you (as the rds_superuser account) create the foreign server.
You then grant access to the foreign server to specific users. These users then create their own
mappings to the appropriate MySQL user accounts to work with the MySQL DB instance.

To use mysql_fdw to access a MySQL database server

1. Connect to your PostgreSQL DB instance using an account that has the rds_superuser role.
If you accepted the defaults when you created your RDS for PostgreSQL DB instance , the user
name is postgres, and you can connect using the psql command line tool as follows:

psql --host=your-DB-instance.aws-region.rds.amazonaws.com --port=5432 --
username=postgres –-password

Working with a MySQL database 4669

Amazon Relational Database Service User Guide

2. Install the mysql_fdw extension as follows:

postgres=> CREATE EXTENSION mysql_fdw;
CREATE EXTENSION

After the extension is installed on your RDS for PostgreSQL DB instance , you set up the foreign
server that provides the connection to a MySQL database.

To create the foreign server

Perform these tasks on the RDS for PostgreSQL DB instance . The steps assume that you're
connected as a user with rds_superuser privileges, such as postgres.

1. Create a foreign server in the RDS for PostgreSQL DB instance :

postgres=> CREATE SERVER mysql-db FOREIGN DATA WRAPPER mysql_fdw OPTIONS (host 'db-
name.111122223333.aws-region.rds.amazonaws.com', port '3306');
CREATE SERVER

2. Grant the appropriate users access to the foreign server. These should be non-administrator
users, that is, users without the rds_superuser role.

postgres=> GRANT USAGE ON FOREIGN SERVER mysql-db to user1;
GRANT

PostgreSQL users create and manage their own connections to the MySQL database through the
foreign server.

Example: Working with an RDS for MySQL database from RDS for PostgreSQL

Suppose that you have a simple table on an RDS for PostgreSQL DB instance . Your RDS for
PostgreSQL users want to query (SELECT), INSERT, UPDATE, and DELETE items on that table.
Assume that the mysql_fdw extension was created on your RDS for PostgreSQL DB instance, as
detailed in the preceding procedure. After you connect to the RDS for PostgreSQL DB instance as a
user that has rds_superuser privileges, you can proceed with the following steps.

1. On the RDS for PostgreSQL DB instance, create a foreign server:

Working with a MySQL database 4670

Amazon Relational Database Service User Guide

test=> CREATE SERVER mysqldb FOREIGN DATA WRAPPER mysql_fdw OPTIONS (host 'your-
DB.aws-region.rds.amazonaws.com', port '3306');
CREATE SERVER

2. Grant usage to a user who doesn't have rds_superuser permissions, for example, user1:

test=> GRANT USAGE ON FOREIGN SERVER mysqldb TO user1;
GRANT

3. Connect as user1, and then create a mapping to the MySQL user:

test=> CREATE USER MAPPING FOR user1 SERVER mysqldb OPTIONS (username 'myuser',
 password 'mypassword');
CREATE USER MAPPING

4. Create a foreign table linked to the MySQL table:

test=> CREATE FOREIGN TABLE mytab (a int, b text) SERVER mysqldb OPTIONS (dbname
 'test', table_name '');
CREATE FOREIGN TABLE

5. Run a simple query against the foreign table:

test=> SELECT * FROM mytab;
a | b
---+-------
1 | apple
(1 row)

6. You can add, change, and remove data from the MySQL table. For example:

test=> INSERT INTO mytab values (2, 'mango');
INSERT 0 1

Run the SELECT query again to see the results:

test=> SELECT * FROM mytab ORDER BY 1;
 a | b
---+-------
1 | apple
2 | mango

Working with a MySQL database 4671

Amazon Relational Database Service User Guide

(2 rows)

Using encryption in transit with the extension

The connection to MySQL from RDS for PostgreSQL uses encryption in transit (TLS/SSL) by default.
However, the connection falls back to non-encrypted when the client and server configuration
differ. You can enforce encryption for all outgoing connections by specifying the REQUIRE SSL
option on the RDS for MySQL user accounts. This same approach also works for MariaDB and
Aurora MySQL user accounts.

For MySQL user accounts configured to REQUIRE SSL, the connection attempt fails if a secure
connection can't be established.

To enforce encryption for existing MySQL database user accounts, you can use the ALTER USER
command. The syntax varies, depending on the MySQL version, as shown in the following table. For
more information, see ALTER USER in MySQL Reference Manual.

MySQL 5.7, MySQL 8.0 MySQL 5.6

ALTER USER 'user'@'%' REQUIRE SSL; GRANT USAGE ON *.* to 'user'@'%'
REQUIRE SSL;

For more information about the mysql_fdw extension, see the mysql_fdw documentation.

Working with Oracle databases by using the oracle_fdw extension

To access an Oracle database from your RDS for PostgreSQL DB instance you can install and use
the oracle_fdw extension. This extension is a foreign data wrapper for Oracle databases. To learn
more about this extension, see the oracle_fdw documentation.

The oracle_fdw extension is supported on RDS for PostgreSQL 12.7, 13.3, and higher versions.

Topics

• Turning on the oracle_fdw extension

• Example: Using a foreign server linked to an Amazon RDS for Oracle database

• Working with encryption in transit

• Understanding the pg_user_mappings view and permissions

Working with an Oracle database 4672

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://github.com/EnterpriseDB/mysql_fdw
https://github.com/laurenz/oracle_fdw

Amazon Relational Database Service User Guide

Turning on the oracle_fdw extension

To use the oracle_fdw extension, perform the following procedure.

To turn on the oracle_fdw extension

• Run the following command using an account that has rds_superuser permissions.

CREATE EXTENSION oracle_fdw;

Example: Using a foreign server linked to an Amazon RDS for Oracle database

The following example shows the use of a foreign server linked to an Amazon RDS for Oracle
database.

To create a foreign server linked to an RDS for Oracle database

1. Note the following on the RDS for Oracle DB instance:

• Endpoint

• Port

• Database name

2. Create a foreign server.

test=> CREATE SERVER oradb FOREIGN DATA WRAPPER oracle_fdw OPTIONS (dbserver
 '//endpoint:port/DB_name');
CREATE SERVER

3. Grant usage to a user who doesn't have rds_superuser privileges, for example user1.

test=> GRANT USAGE ON FOREIGN SERVER oradb TO user1;
GRANT

4. Connect as user1, and create a mapping to an Oracle user.

test=> CREATE USER MAPPING FOR user1 SERVER oradb OPTIONS (user 'oracleuser',
 password 'mypassword');
CREATE USER MAPPING

5. Create a foreign table linked to an Oracle table.

Working with an Oracle database 4673

Amazon Relational Database Service User Guide

test=> CREATE FOREIGN TABLE mytab (a int) SERVER oradb OPTIONS (table 'MYTABLE');
CREATE FOREIGN TABLE

6. Query the foreign table.

test=> SELECT * FROM mytab;
a

1
(1 row)

If the query reports the following error, check your security group and access control list (ACL) to
make sure that both instances can communicate.

ERROR: connection for foreign table "mytab" cannot be established
DETAIL: ORA-12170: TNS:Connect timeout occurred

Working with encryption in transit

PostgreSQL-to-Oracle encryption in transit is based on a combination of client and server
configuration parameters. For an example using Oracle 21c, see About the Values for Negotiating
Encryption and Integrity in the Oracle documentation. The client used for oracle_fdw on Amazon
RDS is configured with ACCEPTED, meaning that the encryption depends on the Oracle database
server configuration and it uses Oracle Security Library (libnnz) for encryption.

If your database is on RDS for Oracle, see Oracle native network encryption to configure the
encryption.

Understanding the pg_user_mappings view and permissions

The PostgreSQL catalog pg_user_mapping stores the mapping from an RDS for PostgreSQL user
to the user on a foreign data (remote) server. Access to the catalog is restricted, but you use the
pg_user_mappings view to see the mappings. In the following, you can find an example that
shows how permissions apply with an example Oracle database, but this information applies more
generally to any foreign data wrapper.

In the following output, you can find roles and permissions mapped to three different example
users. Users rdssu1 and rdssu2 are members of the rds_superuser role, and user1 isn't. The
example uses the psql metacommand \du to list existing roles.

Working with an Oracle database 4674

https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-network-data-encryption-and-integrity.html#GUID-3A2AF4AA-AE3E-446B-8F64-31C48F27A2B5
https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-network-data-encryption-and-integrity.html#GUID-3A2AF4AA-AE3E-446B-8F64-31C48F27A2B5
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.NetworkEncryption.html

Amazon Relational Database Service User Guide

test=> \du
 List of roles
 Role name | Attributes |
 Member of
-----------------+--
+---
 rdssu1 | |
 {rds_superuser}
 rdssu2 | |
 {rds_superuser}
 user1 | | {}

All users, including users that have rds_superuser privileges, are allowed to view their own
user mappings (umoptions) in the pg_user_mappings table. As shown in the following
example, when rdssu1 tries to obtain all user mappings, an error is raised even though
rdssu1rds_superuser privileges:

test=> SELECT * FROM pg_user_mapping;
ERROR: permission denied for table pg_user_mapping

Following are some examples.

test=> SET SESSION AUTHORIZATION rdssu1;
SET
test=> SELECT * FROM pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+----------------------------------
 16414 | 16411 | oradb | 16412 | user1 |
 16423 | 16411 | oradb | 16421 | rdssu1 | {user=oracleuser,password=mypwd}
 16424 | 16411 | oradb | 16422 | rdssu2 |
 (3 rows)

test=> SET SESSION AUTHORIZATION rdssu2;
SET
test=> SELECT * FROM pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+----------------------------------
 16414 | 16411 | oradb | 16412 | user1 |
 16423 | 16411 | oradb | 16421 | rdssu1 |
 16424 | 16411 | oradb | 16422 | rdssu2 | {user=oracleuser,password=mypwd}
 (3 rows)

Working with an Oracle database 4675

Amazon Relational Database Service User Guide

test=> SET SESSION AUTHORIZATION user1;
SET
test=> SELECT * FROM pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+--------------------------------
 16414 | 16411 | oradb | 16412 | user1 | {user=oracleuser,password=mypwd}
 16423 | 16411 | oradb | 16421 | rdssu1 |
 16424 | 16411 | oradb | 16422 | rdssu2 |
 (3 rows)

Because of implementation differences between information_schema._pg_user_mappings
and pg_catalog.pg_user_mappings, a manually created rds_superuser requires additional
permissions to view passwords in pg_catalog.pg_user_mappings.

No additional permissions are required for an rds_superuser to view passwords in
information_schema._pg_user_mappings.

Users who don't have the rds_superuser role can view passwords in pg_user_mappings only
under the following conditions:

• The current user is the user being mapped and owns the server or holds the USAGE privilege on
it.

• The current user is the server owner and the mapping is for PUBLIC.

Working with SQL Server databases by using the tds_fdw extension

You can use the PostgreSQL tds_fdw extension to access databases that support the tabular
data stream (TDS) protocol, such as Sybase and Microsoft SQL Server databases. This foreign data
wrapper lets you connect from your RDS for PostgreSQL DB instance to databases that use the
TDS protocol, including Amazon RDS for Microsoft SQL Server. For more information, see tds-fdw/
tds_fdw documentation on GitHub.

The tds_fdw extension is supported on Amazon RDS for PostgreSQL version 14.2, 13.6, and
higher releases.

Setting up your Aurora PostgreSQL DB to use the tds_fdw extension

In the following procedures, you can find an example of setting up and using the tds_fdw with an
RDS for PostgreSQL DB instance. Before you can connect to a SQL Server database using tds_fdw,
you need to get the following details for the instance:

Working with a SQL Server database 4676

https://github.com/tds-fdw/tds_fdw
https://github.com/tds-fdw/tds_fdw

Amazon Relational Database Service User Guide

• Hostname or endpoint. For an RDS for SQL Server DB instance, you can find the endpoint by
using the Console. Choose the Connectivity & security tab and look in the "Endpoint and port"
section.

• Port number. The default port number for Microsoft SQL Server is 1433.

• Name of the database. The DB identifier.

You also need to provide access on the security group or the access control list (ACL) for the SQL
Server port, 1433. Both the RDS for PostgreSQL DB instance and the RDS for SQL Server DB
instance need access to port 1433. If access isn't configured correctly, when you try to query the
Microsoft SQL Server you see the following error message:

ERROR: DB-Library error: DB #: 20009, DB Msg: Unable to connect:
Adaptive Server is unavailable or does not exist (mssql2019.aws-
region.rds.amazonaws.com), OS #: 0, OS Msg: Success, Level: 9

To use tds_fdw to connect to a SQL Server database

1. Connect to your PostgreSQL DB instance using an account that has the rds_superuser role:

psql --host=your-DB-instance.aws-region.rds.amazonaws.com --port=5432 --
username=test –-password

2. Install the tds_fdw extension:

test=> CREATE EXTENSION tds_fdw;
CREATE EXTENSION

After the extension is installed on your RDS for PostgreSQL DB instance, you set up the foreign
server.

To create the foreign server

Perform these tasks on the RDS for PostgreSQL DB instance using an account that has
rds_superuser privileges.

1. Create a foreign server in the RDS for PostgreSQL DB instance:

Working with a SQL Server database 4677

Amazon Relational Database Service User Guide

test=> CREATE SERVER sqlserverdb FOREIGN DATA WRAPPER tds_fdw OPTIONS
 (servername 'mssql2019.aws-region.rds.amazonaws.com', port '1433', database
 'tds_fdw_testing');
CREATE SERVER

To access non-ASCII data on the SQLServer side, create a server link with the character_set
option in the RDS for PostgreSQL DB instance:

test=> CREATE SERVER sqlserverdb FOREIGN DATA WRAPPER tds_fdw OPTIONS (servername
 'mssql2019.aws-region.rds.amazonaws.com', port '1433', database 'tds_fdw_testing',
 character_set 'UTF-8');
CREATE SERVER

2. Grant permissions to a user who doesn't have rds_superuser role privileges, for example,
user1:

test=> GRANT USAGE ON FOREIGN SERVER sqlserverdb TO user1;

3. Connect as user1 and create a mapping to a SQL Server user:

test=> CREATE USER MAPPING FOR user1 SERVER sqlserverdb OPTIONS (username
 'sqlserveruser', password 'password');
CREATE USER MAPPING

4. Create a foreign table linked to a SQL Server table:

test=> CREATE FOREIGN TABLE mytab (a int) SERVER sqlserverdb OPTIONS (table
 'MYTABLE');
CREATE FOREIGN TABLE

5. Query the foreign table:

test=> SELECT * FROM mytab;
 a

 1
(1 row)

Working with a SQL Server database 4678

Amazon Relational Database Service User Guide

Using encryption in transit for the connection

The connection from RDS for PostgreSQL to SQL Server uses encryption in transit (TLS/SSL)
depending on the SQL Server database configuration. If the SQL Server isn't configured for
encryption, the RDS for PostgreSQL client making the request to the SQL Server database falls
back to unencrypted.

You can enforce encryption for the connection to RDS for SQL Server DB instances by setting the
rds.force_ssl parameter. To learn how, see Forcing connections to your DB instance to use SSL.
For more information about SSL/TLS configuration for RDS for SQL Server, see Using SSL with a
Microsoft SQL Server DB instance.

Working with a SQL Server database 4679

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Concepts.General.SSL.Using.html#SQLServer.Concepts.General.SSL.Forcing
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Concepts.General.SSL.Using.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Concepts.General.SSL.Using.html

Amazon Relational Database Service User Guide

Working with Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL is an open source development kit for building
PostgreSQL extensions. It allows you to build high performance PostgreSQL extensions and safely
run them on your RDS for PostgreSQL DB instance. By using Trusted Language Extensions (TLE)
for PostgreSQL, you can create PostgreSQL extensions that follow the documented approach for
extending PostgreSQL functionality. For more information, see Packaging Related Objects into an
Extension in the PostgreSQL documentation.

One key benefit of TLE is that you can use it in environments that don't provide access to the file
system underlying the PostgreSQL instance. Previously, installing a new extension required access
to the file system. TLE removes this constraint. It provides a development environment for creating
new extensions for any PostgreSQL database, including those running on your RDS for PostgreSQL
DB instances.

TLE is designed to prevent access to unsafe resources for the extensions that you create using TLE.
Its runtime environment limits the impact of any extension defect to a single database connection.
TLE also gives database administrators fine-grained control over who can install extensions, and it
provides a permissions model for running them.

TLE is supported on the following RDS for PostgreSQL versions:

• Version 17.1 and higher 17 versions

• Version 16.1 and higher 16 versions

• Version 15.2 and higher 15 versions

• Version 14.5 and higher 14 versions

• Version 13.12 and higher 13 versions

The Trusted Language Extensions development environment and runtime are packaged as the
pg_tle PostgreSQL extension, version 1.0.1. It supports creating extensions in JavaScript, Perl, Tcl,
PL/pgSQL, and SQL. You install the pg_tle extension in your RDS for PostgreSQL DB instance in
the same way that you install other PostgreSQL extensions. After the pg_tle is set up, developers
can use it to create new PostgreSQL extensions, known as TLE extensions.

In the following topics, you can find information about how to set up Trusted Language Extensions
and how to get started creating your own TLE extensions.

Working with Trusted Language Extensions for PostgreSQL 4680

https://www.postgresql.org/docs/current/extend-extensions.html
https://www.postgresql.org/docs/current/extend-extensions.html

Amazon Relational Database Service User Guide

Topics

• Terminology

• Requirements for using Trusted Language Extensions for PostgreSQL

• Setting up Trusted Language Extensions in your RDS for PostgreSQL DB instance

• Overview of Trusted Language Extensions for PostgreSQL

• Creating TLE extensions for RDS for PostgreSQL

• Dropping your TLE extensions from a database

• Uninstalling Trusted Language Extensions for PostgreSQL

• Using PostgreSQL hooks with your TLE extensions

• Using Custom Data Types in TLE

• Function reference for Trusted Language Extensions for PostgreSQL

• Hooks reference for Trusted Language Extensions for PostgreSQL

Terminology

To help you better understand Trusted Language Extensions, view the following glossary for terms
used in this topic.

Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL is the official name of the open source
development kit that's packaged as the pg_tle extension. It's available for use on any
PostgreSQL system. For more information, see aws/pg_tle on GitHub.

Trusted Language Extensions

Trusted Language Extensions is the short name for Trusted Language Extensions for
PostgreSQL. This shortened name and its abbreviation (TLE) are also used in this
documentation.

trusted language

A trusted language is a programming or scripting language that has specific security attributes.
For example, trusted languages typically restrict access to the file system, and they limit
use of specified networking properties. The TLE development kit is designed to support
trusted languages. PostgreSQL supports several different languages that are used to create

Terminology 4681

https://github.com/aws/pg_tle

Amazon Relational Database Service User Guide

trusted or untrusted extensions. For an example, see Trusted and Untrusted PL/Perl in the
PostgreSQL documentation. When you create an extension using Trusted Language Extensions,
the extension inherently uses trusted language mechanisms.

TLE extension

A TLE extension is a PostgreSQL extension that's been created by using the Trusted Language
Extensions (TLE) development kit.

Requirements for using Trusted Language Extensions for PostgreSQL

The following are requirements for setting up and using the TLE development kit.

• RDS for PostgreSQL versions – Trusted Language Extensions is supported on RDS for
PostgreSQL versions 13.12 and higher 13 versions, 14.5 and higher 14 versions, and 15.2 and
higher versions only.

• If you need to upgrade your RDS for PostgreSQL instance, see Upgrades of the RDS for
PostgreSQL DB engine.

• If you don't yet have an Amazon RDS DB instance running PostgreSQL, you can create one.
For more information, see RDS for PostgreSQL DB instance, see Creating and connecting to a
PostgreSQL DB instance.

• Requires rds_superuser privileges – To set up and configure the pg_tle extension, your
database user role must have the permissions of the rds_superuser role. By default, this role is
granted to the postgres user that creates the RDS for PostgreSQL DB instance.

• Requires a custom DB parameter group – Your RDS for PostgreSQL DB instance must be
configured with a custom DB parameter group.

• If your RDS for PostgreSQL DB instance isn't configured with a custom DB parameter group,
you should create one and associate it with your RDS for PostgreSQL DB instance. For a short
summary of steps, see Creating and applying a custom DB parameter group.

• If your RDS for PostgreSQL DB instance is already configured using a custom DB parameter
group, you can set up Trusted Language Extensions. For details, see Setting up Trusted
Language Extensions in your RDS for PostgreSQL DB instance.

Creating and applying a custom DB parameter group

Use the following steps to create a custom DB parameter group and configure your RDS for
PostgreSQL DB instance to use it.

Requirements for using Trusted Language Extensions 4682

https://www.postgresql.org/docs/current/plperl-trusted.html

Amazon Relational Database Service User Guide

Console

To create a custom DB parameter group and use it with your RDS for PostgreSQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups from the Amazon RDS menu.

3. Choose Create parameter group.

4. In the Parameter group details page, enter the following information.

• For Parameter group family, choose postgres14.

• For Type, choose DB Parameter Group.

• For Group name, give your parameter group a meaningful name in the context of your
operations.

• For Description, enter a useful description so that others on your team can easily find it.

5. Choose Create. Your custom DB parameter group is created in your AWS Region. You can now
modify your RDS for PostgreSQL DB instance to use it by following the next steps.

6. Choose Databases from the Amazon RDS menu.

7. Choose the RDS for PostgreSQL DB instance that you want to use with TLE from among those
listed, and then choose Modify.

8. In the Modify DB instance settings page, find Database options in the Additional configuration
section and choose your custom DB parameter group from the selector.

9. Choose Continue to save the change.

10. Choose Apply immediately so that you can continue setting up the RDS for PostgreSQL DB
instance to use TLE.

To continue setting up your system for Trusted Language Extensions, see Setting up Trusted
Language Extensions in your RDS for PostgreSQL DB instance.

For more information working with DB parameter groups, see DB parameter groups for Amazon
RDS DB instances.

Requirements for using Trusted Language Extensions 4683

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

AWS CLI

You can avoid specifying the --region argument when you use CLI commands by configuring
your AWS CLI with your default AWS Region. For more information, see Configuration basics in the
AWS Command Line Interface User Guide.

To create a custom DB parameter group and use it with your RDS for PostgreSQL DB instance

1. Use the create-db-parameter-group AWS CLI command to create a custom DB parameter
group based on postgres14 for your AWS Region.

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --region aws-region \
 --db-parameter-group-name custom-params-for-pg-tle \
 --db-parameter-group-family postgres14 \
 --description "My custom DB parameter group for Trusted Language Extensions"

For Windows:

aws rds create-db-parameter-group ^
 --region aws-region ^
 --db-parameter-group-name custom-params-for-pg-tle ^
 --db-parameter-group-family postgres14 ^
 --description "My custom DB parameter group for Trusted Language Extensions"

Your custom DB parameter group is available in your AWS Region, so you can modify RDS for
PostgreSQL DB instance to use it.

2. Use the modify-db-instance AWS CLI command to apply your custom DB parameter group to
your RDS for PostgreSQL DB instance. This command immediately reboots the active instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --region aws-region \
 --db-instance-identifier your-instance-name \
 --db-parameter-group-name custom-params-for-pg-tle \
 --apply-immediately

Requirements for using Trusted Language Extensions 4684

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

For Windows:

aws rds modify-db-instance ^
 --region aws-region ^
 --db-instance-identifier your-instance-name ^
 --db-parameter-group-name custom-params-for-pg-tle ^
 --apply-immediately

To continue setting up your system for Trusted Language Extensions, see Setting up Trusted
Language Extensions in your RDS for PostgreSQL DB instance.

For more information, see Parameter groups for Amazon RDS.

Setting up Trusted Language Extensions in your RDS for PostgreSQL DB
instance

The following steps assume that your RDS for PostgreSQL DB instance is associated with a custom
DB parameter group. You can use the AWS Management Console or the AWS CLI for these steps.

When you set up Trusted Language Extensions in your RDS for PostgreSQL DB instance, you install
it in a specific database for use by the database users who have permissions on that database.

Console

To set up Trusted Language Extensions

Perform the following steps using an account that's a member of the rds_superuser group
(role).

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your RDS for PostgreSQL DB instance.

3. Open the Configuration tab for your RDS for PostgreSQL DB instance. Among the Instance
details, find the Parameter group link.

4. Choose the link to open the custom parameters associated with your RDS for PostgreSQL DB
instance.

5. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

Setting up Trusted Language Extensions 4685

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

6. Choose Edit parameters to access the property values.

7. Add pg_tle to the list in the Values field. Use a comma to separate items in the list of values.

8. Reboot the RDS for PostgreSQL DB instance so that your change to the
shared_preload_libraries parameter takes effect.

9. When the instance is available, verify that pg_tle has been initialized. Use psql to connect to
the RDS for PostgreSQL DB instance, and then run the following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pg_tle
(1 row)

10. With the pg_tle extension initialized, you can now create the extension.

CREATE EXTENSION pg_tle;

You can verify that the extension is installed by using the following psql metacommand.

labdb=> \dx
 List of installed extensions
 Name | Version | Schema | Description
---------+---------+------------+--
 pg_tle | 1.0.1 | pgtle | Trusted-Language Extensions for PostgreSQL
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

Setting up Trusted Language Extensions 4686

Amazon Relational Database Service User Guide

11. Grant the pgtle_admin role to the primary user name that you created for your RDS for
PostgreSQL DB instance when you set it up. If you accepted the default, it's postgres.

labdb=> GRANT pgtle_admin TO postgres;
GRANT ROLE

You can verify that the grant has occurred by using the psql metacommand as shown in the
following example. Only the pgtle_admin and postgres roles are shown in the output. For
more information, see Understanding the rds_superuser role.

labdb=> \du
 List of roles
 Role name | Attributes | Member of
-----------------+---------------------------------
+-----------------------------------
pgtle_admin | Cannot login | {}
postgres | Create role, Create DB +| {rds_superuser,pgtle_admin}
 | Password valid until infinity |...

12. Close the psql session using the \q metacommand.

\q

To get started creating TLE extensions, see Example: Creating a trusted language extension using
SQL.

AWS CLI

You can avoid specifying the --region argument when you use CLI commands by configuring
your AWS CLI with your default AWS Region. For more information, see Configuration basics in the
AWS Command Line Interface User Guide.

To set up Trusted Language Extensions

1. Use the modify-db-parameter-group AWS CLI command to add pg_tle to the
shared_preload_libraries parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \

Setting up Trusted Language Extensions 4687

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=pg_tle,ApplyMethod=pending-
reboot" \
 --region aws-region

2. Use the reboot-db-instance AWS CLI command to reboot the RDS for PostgreSQL DB instance
and initialize the pg_tle library.

aws rds reboot-db-instance \
 --db-instance-identifier your-instance \
 --region aws-region

3. When the instance is available, you can verify that pg_tle has been initialized. Use psql to
connect to the RDS for PostgreSQL DB instance, and then run the following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pg_tle
(1 row)

With pg_tle initialized, you can now create the extension.

CREATE EXTENSION pg_tle;

4. Grant the pgtle_admin role to the primary user name that you created for your RDS for
PostgreSQL DB instance when you set it up. If you accepted the default, it's postgres.

GRANT pgtle_admin TO postgres;
GRANT ROLE

5. Close the psql session as follows.

labdb=> \q

To get started creating TLE extensions, see Example: Creating a trusted language extension using
SQL.

Setting up Trusted Language Extensions 4688

https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-instance

Amazon Relational Database Service User Guide

Overview of Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL is a PostgreSQL extension that you install in your
RDS for PostgreSQL DB instance in the same way that you set up other PostgreSQL extensions. In
the following image of an example database in the pgAdmin client tool, you can view some of the
components that comprise the pg_tle extension.

You can see the following details.

1. The Trusted Language Extensions (TLE) for PostgreSQL development kit is packaged as the
pg_tle extension. As such, pg_tle is added to the available extensions for the database in
which it's installed.

2. TLE has its own schema, pgtle. This schema contains helper functions (3) for installing and
managing the extensions that you create.

Overview of Trusted Language Extensions 4689

Amazon Relational Database Service User Guide

3. TLE provides over a dozen helper functions for installing, registering, and managing your
extensions. To learn more about these functions, see Function reference for Trusted Language
Extensions for PostgreSQL.

Other components of the pg_tle extension include the following:

• The pgtle_admin role – The pgtle_admin role is created when the pg_tle extension is
installed. This role is privileged and should be treated as such. We strongly recommend that you
follow the principle of least privilege when granting the pgtle_admin role to database users.
In other words, grant the pgtle_admin role only to database users that are allowed to create,
install, and manage new TLE extensions, such as postgres.

• The pgtle.feature_info table – The pgtle.feature_info table is a protected table that
contains information about your TLEs, hooks, and the custom stored procedures and functions
that they use. If you have pgtle_admin privileges, you use the following Trusted Language
Extensions functions to add and update that information in the table.

• pgtle.register_feature

• pgtle.register_feature_if_not_exists

• pgtle.unregister_feature

• pgtle.unregister_feature_if_exists

Creating TLE extensions for RDS for PostgreSQL

You can install any extensions that you create with TLE in any RDS for PostgreSQL DB instance that
has the pg_tle extension installed. The pg_tle extension is scoped to the PostgreSQL database
in which it's installed. The extensions that you create using TLE are scoped to the same database.

Use the various pgtle functions to install the code that makes up your TLE extension. The
following Trusted Language Extensions functions all require the pgtle_admin role.

• pgtle.install_extension

• pgtle.install_update_path

• pgtle.register_feature

• pgtle.register_feature_if_not_exists

• pgtle.set_default_version

• pgtle.uninstall_extension(name)

Creating TLE extensions 4690

Amazon Relational Database Service User Guide

• pgtle.uninstall_extension(name, version)

• pgtle.uninstall_extension_if_exists

• pgtle.uninstall_update_path

• pgtle.uninstall_update_path_if_exists

• pgtle.unregister_feature

• pgtle.unregister_feature_if_exists

Example: Creating a trusted language extension using SQL

The following example shows you how to create a TLE extension named pg_distance that
contains a few SQL functions for calculating distances using different formulas. In the listing, you
can find the function for calculating the Manhattan distance and the function for calculating the
Euclidean distance. For more information about the difference between these formulas, see Taxicab
geometry and Euclidean geometry in Wikipedia.

You can use this example in your own RDS for PostgreSQL DB instance if you have the pg_tle
extension set up as detailed in Setting up Trusted Language Extensions in your RDS for PostgreSQL
DB instance.

Note

You need to have the privileges of the pgtle_admin role to follow this procedure.

To create the example TLE extension

The following steps use an example database named labdb. This database is owned by the
postgres primary user. The postgres role also has the permissions of the pgtle_admin role.

1. Use psql to connect to RDS for PostgreSQL DB instance.

psql --host=db-instance-123456789012.aws-region.rds.amazonaws.com
--port=5432 --username=postgres --password --dbname=labdb

2. Create a TLE extension named pg_distance by copying the following code and pasting it into
your psql session console.

SELECT pgtle.install_extension

Creating TLE extensions 4691

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Euclidean_geometry

Amazon Relational Database Service User Guide

(
 'pg_distance',
 '0.1',
 'Distance functions for two points',
$_pg_tle_$
 CREATE FUNCTION dist(x1 float8, y1 float8, x2 float8, y2 float8, norm int)
 RETURNS float8
 AS $$
 SELECT (abs(x2 - x1) ^ norm + abs(y2 - y1) ^ norm) ^ (1::float8 / norm);
 $$ LANGUAGE SQL;

 CREATE FUNCTION manhattan_dist(x1 float8, y1 float8, x2 float8, y2 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 1);
 $$ LANGUAGE SQL;

 CREATE FUNCTION euclidean_dist(x1 float8, y1 float8, x2 float8, y2 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 2);
 $$ LANGUAGE SQL;
$_pg_tle_$
);

You see the output, such as the following.

install_extension

 t
(1 row)

The artifacts that make up the pg_distance extension are now installed in your database.
These artifacts include the control file and the code for the extension, which are items that
need to be present so that the extension can be created using the CREATE EXTENSION
command. In other words, you still need to create the extension to make its functions available
to database users.

3. To create the extension, use the CREATE EXTENSION command as you do for any other
extension. As with other extensions, the database user needs to have the CREATE permissions
in the database.

Creating TLE extensions 4692

Amazon Relational Database Service User Guide

CREATE EXTENSION pg_distance;

4. To test the pg_distance TLE extension, you can use it to calculate the Manhattan distance
between four points.

labdb=> SELECT manhattan_dist(1, 1, 5, 5);
8

To calculate the Euclidean distance between the same set of points, you can use the following.

labdb=> SELECT euclidean_dist(1, 1, 5, 5);
5.656854249492381

The pg_distance extension loads the functions in the database and makes them available to any
users with permissions on the database.

Modifying your TLE extension

To improve query performance for the functions packaged in this TLE extension, add the following
two PostgreSQL attributes to their specifications.

• IMMUTABLE – The IMMUTABLE attribute ensures that the query optimizer can use optimizations
to improve query response times. For more information, see Function Volatility Categories in the
PostgreSQL documentation.

• PARALLEL SAFE – The PARALLEL SAFE attribute is another attribute that allows PostgreSQL
to run the function in parallel mode. For more information, see CREATE FUNCTION in the
PostgreSQL documentation.

In the following example, you can see how the pgtle.install_update_path function is used to
add these attributes to each function to create a version 0.2 of the pg_distance TLE extension.
For more information about this function, see pgtle.install_update_path. You need to have the
pgtle_admin role to perform this task.

To update an existing TLE extension and specify the default version

1. Connect to RDS for PostgreSQL DB instance using psql or another client tool, such as
pgAdmin.

Creating TLE extensions 4693

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Euclidean_geometry
https://www.postgresql.org/docs/current/xfunc-volatility.html
https://www.postgresql.org/docs/current/sql-createfunction.html

Amazon Relational Database Service User Guide

psql --host=db-instance-123456789012.aws-region.rds.amazonaws.com
--port=5432 --username=postgres --password --dbname=labdb

2. Modify the existing TLE extension by copying the following code and pasting it into your psql
session console.

SELECT pgtle.install_update_path
(
 'pg_distance',
 '0.1',
 '0.2',
$_pg_tle_$
 CREATE OR REPLACE FUNCTION dist(x1 float8, y1 float8, x2 float8, y2 float8,
 norm int)
 RETURNS float8
 AS $$
 SELECT (abs(x2 - x1) ^ norm + abs(y2 - y1) ^ norm) ^ (1::float8 / norm);
 $$ LANGUAGE SQL IMMUTABLE PARALLEL SAFE;

 CREATE OR REPLACE FUNCTION manhattan_dist(x1 float8, y1 float8, x2 float8, y2
 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 1);
 $$ LANGUAGE SQL IMMUTABLE PARALLEL SAFE;

 CREATE OR REPLACE FUNCTION euclidean_dist(x1 float8, y1 float8, x2 float8, y2
 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 2);
 $$ LANGUAGE SQL IMMUTABLE PARALLEL SAFE;
$_pg_tle_$
);

You see a response similar to the following.

install_update_path

 t
(1 row)

Creating TLE extensions 4694

Amazon Relational Database Service User Guide

You can make this version of the extension the default version, so that database users don't
have to specify a version when they create or update the extension in their database.

3. To specify that the modified version (version 0.2) of your TLE extension is the default version,
use the pgtle.set_default_version function as shown in the following example.

SELECT pgtle.set_default_version('pg_distance', '0.2');

For more information about this function, see pgtle.set_default_version.

4. With the code in place, you can update the installed TLE extension in the usual way, by using
ALTER EXTENSION ... UPDATE command, as shown here:

ALTER EXTENSION pg_distance UPDATE;

Dropping your TLE extensions from a database

You can drop your TLE extensions by using the DROP EXTENSION command in the same way that
you do for other PostgreSQL extensions. Dropping the extension doesn't remove the installation
files that make up the extension, which allows users to re-create the extension. To remove the
extension and its installation files, do the following two-step process.

To drop the TLE extension and remove its installation files

1. Use psql or another client tool to connect to the RDS for PostgreSQL DB instance.

psql --host=.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=dbname

2. Drop the extension as you would any PostgreSQL extension.

DROP EXTENSION your-TLE-extension

For example, if you create the pg_distance extension as detailed in Example: Creating a
trusted language extension using SQL, you can drop the extension as follows.

DROP EXTENSION pg_distance;

Dropping your TLE extensions from a database 4695

Amazon Relational Database Service User Guide

You see output confirming that the extension has been dropped, as follows.

DROP EXTENSION

At this point, the extension is no longer active in the database. However, its installation files
and control file are still available in the database, so database users can create the extension
again if they like.

• If you want to leave the extension files intact so that database users can create your TLE
extension, you can stop here.

• If you want to remove all files that make up the extension, continue to the next step.

3. To remove all installation files for your extension, use the pgtle.uninstall_extension
function. This function removes all the code and control files for your extension.

SELECT pgtle.uninstall_extension('your-tle-extension-name');

For example, to remove all pg_distance installation files, use the following command.

SELECT pgtle.uninstall_extension('pg_distance');
 uninstall_extension

 t
(1 row)

Uninstalling Trusted Language Extensions for PostgreSQL

If you no longer want to create your own TLE extensions using TLE, you can drop the pg_tle
extension and remove all artifacts. This action includes dropping any TLE extensions in the
database and dropping the pgtle schema.

To drop the pg_tle extension and its schema from a database

1. Use psql or another client tool to connect to the RDS for PostgreSQL DB instance.

psql --host=.111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=dbname

Uninstalling Trusted Language Extensions 4696

Amazon Relational Database Service User Guide

2. Drop the pg_tle extension from the database. If the database has your own TLE extensions
still running in the database, you need to also drop those extensions. To do so, you can use the
CASCADE keyword, as shown in the following.

DROP EXTENSION pg_tle CASCADE;

If the pg_tle extension isn't still active in the database, you don't need to use the CASCADE
keyword.

3. Drop the pgtle schema. This action removes all the management functions from the
database.

DROP SCHEMA pgtle CASCADE;

The command returns the following when the process completes.

DROP SCHEMA

The pg_tle extension, its schema and functions, and all artifacts are removed. To create new
extensions using TLE, go through the setup process again. For more information, see Setting
up Trusted Language Extensions in your RDS for PostgreSQL DB instance.

Using PostgreSQL hooks with your TLE extensions

A hook is a callback mechanism available in PostgreSQL that allows developers to call custom
functions or other routines during regular database operations. The TLE development kit supports
PostgreSQL hooks so that you can integrate custom functions with PostgreSQL behavior at
runtime. For example, you can use a hook to associate the authentication process with your own
custom code, or to modify the query planning and execution process for your specific needs.

Your TLE extensions can use hooks. If a hook is global in scope, it applies across all databases.
Therefore, if your TLE extension uses a global hook, then you need to create your TLE extension in
all databases that your users can access.

When you use the pg_tle extension to build your own Trusted Language Extensions, you can
use the available hooks from a SQL API to build out the functions of your extension. You should
register any hooks with pg_tle. For some hooks, you might also need to set various configuration
parameters. For example, the passcode check hook can be set to on, off, or require. For more

Using PostgreSQL hooks with your TLE extensions 4697

Amazon Relational Database Service User Guide

information about specific requirements for available pg_tle hooks, see Hooks reference for
Trusted Language Extensions for PostgreSQL.

Example: Creating an extension that uses a PostgreSQL hook

The example discussed in this section uses a PostgreSQL hook to check the password provided
during specific SQL operations and prevents database users from setting their passwords to any of
those contained in the password_check.bad_passwords table. The table contains the top-ten
most commonly used, but easily breakable choices for passwords.

To set up this example in your RDS for PostgreSQL DB instance, you must have already installed
Trusted Language Extensions. For details, see Setting up Trusted Language Extensions in your RDS
for PostgreSQL DB instance.

To set up the password-check hook example

1. Use psql to connect to RDS for PostgreSQL DB instance.

psql --host=db-instance-123456789012.aws-region.rds.amazonaws.com
--port=5432 --username=postgres --password --dbname=labdb

2. Copy the code from the Password-check hook code listing and paste it into your database.

SELECT pgtle.install_extension (
 'my_password_check_rules',
 '1.0',
 'Do not let users use the 10 most commonly used passwords',
$_pgtle_$
 CREATE SCHEMA password_check;
 REVOKE ALL ON SCHEMA password_check FROM PUBLIC;
 GRANT USAGE ON SCHEMA password_check TO PUBLIC;

 CREATE TABLE password_check.bad_passwords (plaintext) AS
 VALUES
 ('123456'),
 ('password'),
 ('12345678'),
 ('qwerty'),
 ('123456789'),
 ('12345'),
 ('1234'),
 ('111111'),

Using PostgreSQL hooks with your TLE extensions 4698

Amazon Relational Database Service User Guide

 ('1234567'),
 ('dragon');
 CREATE UNIQUE INDEX ON password_check.bad_passwords (plaintext);

 CREATE FUNCTION password_check.passcheck_hook(username text, password text,
 password_type pgtle.password_types, valid_until timestamptz, valid_null boolean)
 RETURNS void AS $$
 DECLARE
 invalid bool := false;
 BEGIN
 IF password_type = 'PASSWORD_TYPE_MD5' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE ('md5' || md5(bp.plaintext || username)) = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common password
 dictionary';
 END IF;
 ELSIF password_type = 'PASSWORD_TYPE_PLAINTEXT' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE bp.plaintext = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common password
 dictionary';
 END IF;
 END IF;
 END
 $$ LANGUAGE plpgsql SECURITY DEFINER;

 GRANT EXECUTE ON FUNCTION password_check.passcheck_hook TO PUBLIC;

 SELECT pgtle.register_feature('password_check.passcheck_hook', 'passcheck');
$_pgtle_$
);

When the extension has been loaded into your database, you see the output such as the
following.

Using PostgreSQL hooks with your TLE extensions 4699

Amazon Relational Database Service User Guide

 install_extension

 t
(1 row)

3. While still connected to the database, you can now create the extension.

CREATE EXTENSION my_password_check_rules;

4. You can confirm that the extension has been created in the database by using the following
psql metacommand.

\dx
 List of installed extensions
 Name | Version | Schema |
 Description
-------------------------+---------+------------
+---
 my_password_check_rules | 1.0 | public | Prevent use of any of the top-ten
 most common bad passwords
 pg_tle | 1.0.1 | pgtle | Trusted-Language Extensions for
 PostgreSQL
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(3 rows)

5. Open another terminal session to work with the AWS CLI. You need to modify your custom DB
parameter group to turn on the password-check hook. To do so, use the modify-db-parameter-
group CLI command as shown in the following example.

aws rds modify-db-parameter-group \
 --region aws-region \
 --db-parameter-group-name your-custom-parameter-group \
 --parameters
 "ParameterName=pgtle.enable_password_check,ParameterValue=on,ApplyMethod=immediate"

When the parameter is successfully turned on, you see the output such as the following.

(
 "DBParameterGroupName": "docs-lab-parameters-for-tle"
}

Using PostgreSQL hooks with your TLE extensions 4700

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Relational Database Service User Guide

It might take a few minutes for the change to the parameter group setting to take effect.
This parameter is dynamic, however, so you don't need to restart the RDS for PostgreSQL DB
instance for the setting to take effect.

6. Open the psql session and query the database to verify that the password_check hook has
been turned on.

labdb=> SHOW pgtle.enable_password_check;
pgtle.enable_password_check

on
(1 row)

The password-check hook is now active. You can test it by creating a new role and using one of the
bad passwords, as shown in the following example.

CREATE ROLE test_role PASSWORD 'password';
ERROR: Cannot use passwords from the common password dictionary
CONTEXT: PL/pgSQL function
 password_check.passcheck_hook(text,text,pgtle.password_types,timestamp with time
 zone,boolean) line 21 at RAISE
SQL statement "SELECT password_check.passcheck_hook(
 $1::pg_catalog.text,
 $2::pg_catalog.text,
 $3::pgtle.password_types,
 $4::pg_catalog.timestamptz,
 $5::pg_catalog.bool)"

The output has been formatted for readability.

The following example shows that pgsql interactive metacommand \password behavior is also
affected by the password_check hook.

postgres=> SET password_encryption TO 'md5';
SET
postgres=> \password
Enter new password for user "postgres":*****
Enter it again:*****
ERROR: Cannot use passwords from the common password dictionary

Using PostgreSQL hooks with your TLE extensions 4701

Amazon Relational Database Service User Guide

CONTEXT: PL/pgSQL function
 password_check.passcheck_hook(text,text,pgtle.password_types,timestamp with time
 zone,boolean) line 12 at RAISE
SQL statement "SELECT password_check.passcheck_hook($1::pg_catalog.text,
 $2::pg_catalog.text, $3::pgtle.password_types, $4::pg_catalog.timestamptz,
 $5::pg_catalog.bool)"

You can drop this TLE extension and uninstall its source files if you want. For more information, see
Dropping your TLE extensions from a database.

Password-check hook code listing

The example code shown here defines the specification for the my_password_check_rules
TLE extension. When you copy this code and paste it into your database, the code for the
my_password_check_rules extension is loaded into the database, and the password_check
hook is registered for use by the extension.

SELECT pgtle.install_extension (
 'my_password_check_rules',
 '1.0',
 'Do not let users use the 10 most commonly used passwords',
$_pgtle_$
 CREATE SCHEMA password_check;
 REVOKE ALL ON SCHEMA password_check FROM PUBLIC;
 GRANT USAGE ON SCHEMA password_check TO PUBLIC;

 CREATE TABLE password_check.bad_passwords (plaintext) AS
 VALUES
 ('123456'),
 ('password'),
 ('12345678'),
 ('qwerty'),
 ('123456789'),
 ('12345'),
 ('1234'),
 ('111111'),
 ('1234567'),
 ('dragon');
 CREATE UNIQUE INDEX ON password_check.bad_passwords (plaintext);

 CREATE FUNCTION password_check.passcheck_hook(username text, password text,
 password_type pgtle.password_types, valid_until timestamptz, valid_null boolean)
 RETURNS void AS $$

Using PostgreSQL hooks with your TLE extensions 4702

Amazon Relational Database Service User Guide

 DECLARE
 invalid bool := false;
 BEGIN
 IF password_type = 'PASSWORD_TYPE_MD5' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE ('md5' || md5(bp.plaintext || username)) = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common password dictionary';
 END IF;
 ELSIF password_type = 'PASSWORD_TYPE_PLAINTEXT' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE bp.plaintext = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common password dictionary';
 END IF;
 END IF;
 END
 $$ LANGUAGE plpgsql SECURITY DEFINER;

 GRANT EXECUTE ON FUNCTION password_check.passcheck_hook TO PUBLIC;

 SELECT pgtle.register_feature('password_check.passcheck_hook', 'passcheck');
$_pgtle_$
);

Using Custom Data Types in TLE

PostgreSQL supports commands to register new base types (also known as scalar types)
for efficiently handling complex data structures in your database. A base type allows you to
customize how the data is stored internally, and how to convert it to and from an external textual
representation. These custom data types are helpful when extending PostgreSQL to support
functional domains where a built-in type such as number or text can't provide sufficient search
semantics.

Using Custom Data Types in Trusted Language Extensions 4703

Amazon Relational Database Service User Guide

RDS for PostgreSQL enables you to create custom data types in your trusted language extension
and define functions that support SQL and index operations for these new data types. Custom data
types are available for the following versions:

• RDS for PostgreSQL 15.4 and higher 15 versions

• RDS for PostgreSQL 14.9 and higher 14 versions

• RDS for PostgreSQL 13.12 and higher 13 versions

For more information, see Trusted Language Base types.

Function reference for Trusted Language Extensions for PostgreSQL

View the following reference documentation about functions available in Trusted Language
Extensions for PostgreSQL. Use these functions to install, register, update, and manage your
TLE extensions, that is, the PostgreSQL extensions that you develop using the Trusted Language
Extensions development kit.

Functions

• pgtle.available_extensions

• pgtle.available_extension_versions

• pgtle.extension_update_paths

• pgtle.install_extension

• pgtle.install_update_path

• pgtle.register_feature

• pgtle.register_feature_if_not_exists

• pgtle.set_default_version

• pgtle.uninstall_extension(name)

• pgtle.uninstall_extension(name, version)

• pgtle.uninstall_extension_if_exists

• pgtle.uninstall_update_path

• pgtle.uninstall_update_path_if_exists

• pgtle.unregister_feature

• pgtle.unregister_feature_if_exists

Function reference for Trusted Language Extensions 4704

https://github.com/aws/pg_tle/blob/main/docs/09_datatypes.md

Amazon Relational Database Service User Guide

pgtle.available_extensions

The pgtle.available_extensions function is a set-returning function. It returns all available
TLE extensions in the database. Each returned row contains information about a single TLE
extension.

Function prototype

pgtle.available_extensions()

Role

None.

Arguments

None.

Output

• name – The name of the TLE extension.

• default_version – The version of the TLE extension to use when CREATE EXTENSION is
called without a version specified.

• description – A more detailed description about the TLE extension.

Usage example

SELECT * FROM pgtle.available_extensions();

pgtle.available_extension_versions

The available_extension_versions function is a set-returning function. It returns a list of all
available TLE extensions and their versions. Each row contains information about a specific version
of the given TLE extension, including whether it requires a specific role.

Function prototype

pgtle.available_extension_versions()

Function reference for Trusted Language Extensions 4705

Amazon Relational Database Service User Guide

Role

None.

Arguments

None.

Output

• name – The name of the TLE extension.

• version – The version of the TLE extension.

• superuser – This value is always false for your TLE extensions. The permissions needed to
create the TLE extension or update it are the same as for creating other objects in the given
database.

• trusted – This value is always false for a TLE extension.

• relocatable – This value is always false for a TLE extension.

• schema – Specifies the name of the schema in which the TLE extension is installed.

• requires – An array containing the names of other extensions needed by this TLE extension.

• description – A detailed description of the TLE extension.

For more information about output values, see Packaging Related Objects into an Extension >
Extension Files in the PostgreSQL documentation.

Usage example

SELECT * FROM pgtle.available_extension_versions();

pgtle.extension_update_paths

The extension_update_paths function is a set-returning function. It returns a list of all the
possible update paths for a TLE extension. Each row includes the available upgrades or downgrades
for that TLE extension.

Function prototype

pgtle.extension_update_paths(name)

Function reference for Trusted Language Extensions 4706

https://www.postgresql.org/docs/current/extend-extensions.html#id-1.8.3.20.11
https://www.postgresql.org/docs/current/extend-extensions.html#id-1.8.3.20.11

Amazon Relational Database Service User Guide

Role

None.

Arguments

name – The name of the TLE extension from which to get upgrade paths.

Output

• source – The source version for an update.

• target – The target version for an update.

• path – The upgrade path used to update a TLE extension from source version to target
version, for example, 0.1--0.2.

Usage example

SELECT * FROM pgtle.extension_update_paths('your-TLE');

pgtle.install_extension

The install_extension function lets you install the artifacts that make up your TLE extension
in the database, after which it can be created using the CREATE EXTENSION command.

Function prototype

pgtle.install_extension(name text, version text, description text, ext text, requires
 text[] DEFAULT NULL::text[])

Role

None.

Arguments

• name – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• version – The version of the TLE extension.

• description – A detailed description about the TLE extension. This description is displayed in
the comment field in pgtle.available_extensions().

• ext – The contents of the TLE extension. This value contains objects such as functions.

Function reference for Trusted Language Extensions 4707

Amazon Relational Database Service User Guide

• requires – An optional parameter that specifies dependencies for this TLE extension. The
pg_tle extension is automatically added as a dependency.

Many of these arguments are the same as those that are included in an extension control file
for installing a PostgreSQL extension on the file system of a PostgreSQL instance. For more
information, see the Extension Files in Packaging Related Objects into an Extension in the
PostgreSQL documentation.

Output

This functions returns OK on success and NULL on error.

• OK – The TLE extension has been successfully installed in the database.

• NULL – The TLE extension hasn't been successfully installed in the database.

Usage example

SELECT pgtle.install_extension(
 'pg_tle_test',
 '0.1',
 'My first pg_tle extension',
$_pgtle_$
 CREATE FUNCTION my_test()
 RETURNS INT
 AS $$
 SELECT 42;
 $$ LANGUAGE SQL IMMUTABLE;
$_pgtle_$
);

pgtle.install_update_path

The install_update_path function provides an update path between two different versions of
a TLE extension. This function allows users of your TLE extension to update its version by using the
ALTER EXTENSION ... UPDATE syntax.

Function prototype

pgtle.install_update_path(name text, fromvers text, tovers text, ext text)

Function reference for Trusted Language Extensions 4708

http://www.postgresql.org/docs/current/extend-extensions.html#id-1.8.3.20.11
https://www.postgresql.org/docs/current/extend-extensions.html

Amazon Relational Database Service User Guide

Role

pgtle_admin

Arguments

• name – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• fromvers – The source version of the TLE extension for the upgrade.

• tovers – The destination version of the TLE extension for the upgrade.

• ext – The contents of the update. This value contains objects such as functions.

Output

None.

Usage example

SELECT pgtle.install_update_path('pg_tle_test', '0.1', '0.2',
 $_pgtle_$
 CREATE OR REPLACE FUNCTION my_test()
 RETURNS INT
 AS $$
 SELECT 21;
 $$ LANGUAGE SQL IMMUTABLE;
 $_pgtle_$
);

pgtle.register_feature

The register_feature function adds the specified internal PostgreSQL feature to the
pgtle.feature_info table. PostgreSQL hooks are an example of an internal PostgreSQL
feature. The Trusted Language Extensions development kit supports the use of PostgreSQL hooks.
Currently, this function supports the following feature.

• passcheck – Registers the password-check hook with your procedure or function that
customizes PostgreSQL's password-check behavior.

Function reference for Trusted Language Extensions 4709

Amazon Relational Database Service User Guide

Function prototype

pgtle.register_feature(proc regproc, feature pg_tle_feature)

Role

pgtle_admin

Arguments

• proc – The name of a stored procedure or function to use for the feature.

• feature – The name of the pg_tle feature (such as passcheck) to register with the function.

Output

None.

Usage example

SELECT pgtle.register_feature('pw_hook', 'passcheck');

pgtle.register_feature_if_not_exists

The pgtle.register_feature_if_not_exists function adds the specified PostgreSQL
feature to the pgtle.feature_info table and identifies the TLE extension or other procedure
or function that uses the feature. For more information about hooks and Trusted Language
Extensions, see Using PostgreSQL hooks with your TLE extensions.

Function prototype

pgtle.register_feature_if_not_exists(proc regproc, feature pg_tle_feature)

Role

pgtle_admin

Arguments

• proc – The name of a stored procedure or function that contains the logic (code) to use as a
feature for your TLE extension. For example, the pw_hook code.

Function reference for Trusted Language Extensions 4710

Amazon Relational Database Service User Guide

• feature – The name of the PostgreSQL feature to register for the TLE function. Currently, the
only available feature is the passcheck hook. For more information, see Password-check hook
(passcheck).

Output

Returns true after registering the feature for the specified extension. Returns false if the feature
is already registered.

Usage example

SELECT pgtle.register_feature_if_not_exists('pw_hook', 'passcheck');

pgtle.set_default_version

The set_default_version function lets you specify a default_version for your TLE
extension. You can use this function to define an upgrade path and designate the version as the
default for your TLE extension. When database users specify your TLE extension in the CREATE
EXTENSION and ALTER EXTENSION ... UPDATE commands, that version of your TLE extension
is created in the database for that user.

This function returns true on success. If the TLE extension specified in the name argument doesn't
exist, the function returns an error. Similarly, if the version of the TLE extension doesn't exist, it
returns an error.

Function prototype

pgtle.set_default_version(name text, version text)

Role

pgtle_admin

Arguments

• name – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• version – The version of the TLE extension to set the default.

Function reference for Trusted Language Extensions 4711

Amazon Relational Database Service User Guide

Output

• true – When setting default version succeeds, the function returns true.

• ERROR – Returns an error message if a TLE extension with the specified name or version doesn't
exist.

Usage example

SELECT * FROM pgtle.set_default_version('my-extension', '1.1');

pgtle.uninstall_extension(name)

The uninstall_extension function removes all versions of a TLE extension from a database.
This function prevents future calls of CREATE EXTENSION from installing the TLE extension. If the
TLE extension doesn't exist in the database, an error is raised.

The uninstall_extension function won't drop a TLE extension that's currently active in the
database. To remove a TLE extension that's currently active, you need to explicitly call DROP
EXTENSION to remove it.

Function prototype

pgtle.uninstall_extension(extname text)

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension to uninstall. This name is the same as the one used
with CREATE EXTENSION to load the TLE extension for use in a given database.

Output

None.

Usage example

SELECT * FROM pgtle.uninstall_extension('pg_tle_test');

Function reference for Trusted Language Extensions 4712

Amazon Relational Database Service User Guide

pgtle.uninstall_extension(name, version)

The uninstall_extension(name, version) function removes the specified version of
the TLE extension from the database. This function prevents CREATE EXTENSION and ALTER
EXTENSION from installing or updating a TLE extension to the specified version. This function
also removes all update paths for the specified version of the TLE extension. This function
won't uninstall the TLE extension if it's currently active in the database. You must explicitly call
DROP EXTENSION to remove the TLE extension. To uninstall all versions of a TLE extension, see
pgtle.uninstall_extension(name).

Function prototype

pgtle.uninstall_extension(extname text, version text)

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• version – The version of the TLE extension to uninstall from the database.

Output

None.

Usage example

SELECT * FROM pgtle.uninstall_extension('pg_tle_test', '0.2');

pgtle.uninstall_extension_if_exists

The uninstall_extension_if_exists function removes all versions of a TLE extension from a
given database. If the TLE extension doesn't exist, the function returns silently (no error message is
raised). If the specified extension is currently active within a database, this function doesn't drop it.
You must explicitly call DROP EXTENSION to remove the TLE extension before using this function
to uninstall its artifacts.

Function reference for Trusted Language Extensions 4713

Amazon Relational Database Service User Guide

Function prototype

pgtle.uninstall_extension_if_exists(extname text)

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

Output

The uninstall_extension_if_exists function returns true after uninstalling the specified
extension. If the specified extension doesn't exist, the function returns false.

• true – Returns true after uninstalling the TLE extension.

• false – Returns false when the TLE extension doesn't exist in the database.

Usage example

SELECT * FROM pgtle.uninstall_extension_if_exists('pg_tle_test');

pgtle.uninstall_update_path

The uninstall_update_path function removes the specific update path from a TLE extension.
This prevents ALTER EXTENSION ... UPDATE TO from using this as an update path.

If the TLE extension is currently being used by one of the versions on this update path, it remains in
the database.

If the update path specified doesn't exist, this function raises an error.

Function prototype

pgtle.uninstall_update_path(extname text, fromvers text, tovers text)

Role

pgtle_admin

Function reference for Trusted Language Extensions 4714

Amazon Relational Database Service User Guide

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• fromvers – The source version of the TLE extension used on the update path.

• tovers – The destination version of the TLE extension used on the update path.

Output

None.

Usage example

SELECT * FROM pgtle.uninstall_update_path('pg_tle_test', '0.1', '0.2');

pgtle.uninstall_update_path_if_exists

The uninstall_update_path_if_exists function is similar to uninstall_update_path
in that it removes the specified update path from a TLE extension. However, if the update path
doesn't exist, this function doesn't raise an error message. Instead, the function returns false.

Function prototype

pgtle.uninstall_update_path_if_exists(extname text, fromvers text, tovers text)

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• fromvers – The source version of the TLE extension used on the update path.

• tovers – The destination version of the TLE extension used on the update path.

Output

• true – The function has successfully updated the path for the TLE extension.

Function reference for Trusted Language Extensions 4715

Amazon Relational Database Service User Guide

• false – The function wasn't able to update the path for the TLE extension.

Usage example

SELECT * FROM pgtle.uninstall_update_path_if_exists('pg_tle_test', '0.1', '0.2');

pgtle.unregister_feature

The unregister_feature function provides a way to remove functions that were registered
to use pg_tle features, such as hooks. For information about registering a feature, see
pgtle.register_feature.

Function prototype

pgtle.unregister_feature(proc regproc, feature pg_tle_features)

Role

pgtle_admin

Arguments

• proc – The name of a stored function to register with a pg_tle feature.

• feature – The name of the pg_tle feature to register with the function. For example,
passcheck is a feature that can be registered for use by the trusted language extensions that
you develop. For more information, see Password-check hook (passcheck).

Output

None.

Usage example

SELECT * FROM pgtle.unregister_feature('pw_hook', 'passcheck');

pgtle.unregister_feature_if_exists

The unregister_feature function provides a way to remove functions that were registered to
use pg_tle features, such as hooks. For more information, see Using PostgreSQL hooks with your

Function reference for Trusted Language Extensions 4716

Amazon Relational Database Service User Guide

TLE extensions. Returns true after successfully unregistering the feature. Returns false if the
feature wasn't registered.

For information about registering pg_tle features for your TLE extensions, see
pgtle.register_feature.

Function prototype

pgtle.unregister_feature_if_exists('proc regproc', 'feature pg_tle_features')

Role

pgtle_admin

Arguments

• proc – The name of the stored function that was registered to include a pg_tle feature.

• feature – The name of the pg_tle feature that was registered with the trusted language
extension.

Output

Returns true or false, as follows.

• true – The function has successfully unregistered the feature from extension.

• false – The function wasn't able to unregister the feature from the TLE extension.

Usage example

SELECT * FROM pgtle.unregister_feature_if_exists('pw_hook', 'passcheck');

Hooks reference for Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL supports PostgreSQL hooks. A hook is an internal
callback mechanism available to developers for extending PostgreSQL's core functionality. By
using hooks, developers can implement their own functions or procedures for use during various
database operations, thereby modifying PostgreSQL's behavior in some way. For example, you

Hooks reference for Trusted Language Extensions 4717

Amazon Relational Database Service User Guide

can use a passcheck hook to customize how PostgreSQL handles the passwords supplied when
creating or changing passwords for users (roles).

View the following documentation to learn about the passcheck hook available for your TLE
extensions. To learn more about the available hooks including the client authentication hook, see
Trusted Language Extensions hooks.

Password-check hook (passcheck)

The passcheck hook is used to customize PostgreSQL behavior during the password-checking
process for the following SQL commands and psql metacommand.

• CREATE ROLE username ...PASSWORD – For more information, see CREATE ROLE in the
PostgreSQL documentation.

• ALTER ROLE username...PASSWORD – For more information, see ALTER ROLE in the
PostgreSQL documentation.

• \password username – This interactive psql metacommand securely changes the password
for the specified user by hashing the password before transparently using the ALTER ROLE ...
PASSWORD syntax. The metacommand is a secure wrapper for the ALTER ROLE ... PASSWORD
command, thus the hook applies to the behavior of the psql metacommand.

For an example, see Password-check hook code listing.

Contents

• Function prototype

• Arguments

• Configuration

• Usage notes

Function prototype

passcheck_hook(username text, password text, password_type pgtle.password_types,
 valid_until timestamptz, valid_null boolean)

Arguments

A passcheck hook function takes the following arguments.

Hooks reference for Trusted Language Extensions 4718

https://github.com/aws/pg_tle/blob/main/docs/04_hooks.md
https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/current/sql-alterrole.html

Amazon Relational Database Service User Guide

• username – The name (as text) of the role (username) that's setting a password.

• password – The plaintext or hashed password. The password entered should match the type
specified in password_type.

• password_type – Specify the pgtle.password_type format of the password. This format
can be one of the following options.

• PASSWORD_TYPE_PLAINTEXT – A plaintext password.

• PASSWORD_TYPE_MD5 – A password that's been hashed using MD5 (message digest 5)
algorithm.

• PASSWORD_TYPE_SCRAM_SHA_256 – A password that's been hashed using SCRAM-SHA-256
algorithm.

• valid_until – Specify the time when the password becomes invalid. This argument is optional.
If you use this argument, specify the time as a timestamptz value.

• valid_null – If this Boolean is set to true, the valid_until option is set to NULL.

Configuration

The function pgtle.enable_password_check controls whether the passcheck hook is active.
The passcheck hook has three possible settings.

• off – Turns off the passcheck password-check hook. This is the default value.

• on – Turns on the passcode password-check hook so that passwords are checked against the
table.

• require – Requires a password check hook to be defined.

Usage notes

To turn the passcheck hook on or off, you need to modify the custom DB parameter group for
your RDS for PostgreSQL DB instance.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --region aws-region \
 --db-parameter-group-name your-custom-parameter-group \
 --parameters
 "ParameterName=pgtle.enable_password_check,ParameterValue=on,ApplyMethod=immediate"

Hooks reference for Trusted Language Extensions 4719

Amazon Relational Database Service User Guide

For Windows:

aws rds modify-db-parameter-group ^
 --region aws-region ^
 --db-parameter-group-name your-custom-parameter-group ^
 --parameters
 "ParameterName=pgtle.enable_password_check,ParameterValue=on,ApplyMethod=immediate"

Hooks reference for Trusted Language Extensions 4720

Amazon Relational Database Service User Guide

Code examples for Amazon RDS using AWS SDKs

The following code examples show how to use Amazon RDS with an AWS software development
kit (SDK).

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello Amazon RDS

The following code examples show how to get started using Amazon RDS.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon.RDS;
using Amazon.RDS.Model;

namespace RDSActions;

public static class HelloRds

4721

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

{
 static async Task Main(string[] args)
 {
 var rdsClient = new AmazonRDSClient();

 Console.WriteLine($"Hello Amazon RDS! Following are some of your DB
 instances:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first twenty DB instances.
 var response = await rdsClient.DescribeDBInstancesAsync(
 new DescribeDBInstancesRequest()
 {
 MaxRecords = 20 // Must be between 20 and 100.
 });

 foreach (var instance in response.DBInstances)
 {
 Console.WriteLine($"\tDB name: {instance.DBName}");
 Console.WriteLine($"\tArn: {instance.DBInstanceArn}");
 Console.WriteLine($"\tIdentifier: {instance.DBInstanceIdentifier}");
 Console.WriteLine();
 }
 }
}

• For API details, see DescribeDBInstances in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

4722

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds/hello_rds#code-examples

Amazon Relational Database Service User Guide

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS rds)

Set this project's name.
project("hello_rds")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line, you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_rds.cpp)

target_link_libraries(${PROJECT_NAME}

4723

Amazon Relational Database Service User Guide

 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_rds.cpp source file.

#include <aws/core/Aws.h>
#include <aws/rds/RDSClient.h>
#include <aws/rds/model/DescribeDBInstancesRequest.h>
#include <iostream>

/*
 * A "Hello Rds" starter application which initializes an Amazon Relational
 Database Service (Amazon RDS) client and
 * describes the Amazon RDS instances.
 *
 * main function
 *
 * Usage: 'hello_rds'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient rdsClient(clientConfig);
 Aws::String marker;
 std::vector<Aws::String> instanceDBIDs;

 do {
 Aws::RDS::Model::DescribeDBInstancesRequest request;

 if (!marker.empty()) {
 request.SetMarker(marker);
 }

4724

Amazon Relational Database Service User Guide

 Aws::RDS::Model::DescribeDBInstancesOutcome outcome =
 rdsClient.DescribeDBInstances(request);

 if (outcome.IsSuccess()) {
 for (auto &instance: outcome.GetResult().GetDBInstances()) {
 instanceDBIDs.push_back(instance.GetDBInstanceIdentifier());
 }
 marker = outcome.GetResult().GetMarker();
 } else {
 result = 1;
 std::cerr << "Error with RDS::DescribeDBInstances. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 } while (!marker.empty());

 std::cout << instanceDBIDs.size() << " RDS instances found." <<
 std::endl;
 for (auto &instanceDBID: instanceDBIDs) {
 std::cout << " Instance: " << instanceDBID << std::endl;
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see DescribeDBInstances in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

4725

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/rds"
)

// main uses the AWS SDK for Go V2 to create an Amazon Relational Database
 Service (Amazon RDS)
// client and list up to 20 DB instances in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 rdsClient := rds.NewFromConfig(sdkConfig)
 const maxInstances = 20
 fmt.Printf("Let's list up to %v DB instances.\n", maxInstances)
 output, err := rdsClient.DescribeDBInstances(ctx,
 &rds.DescribeDBInstancesInput{MaxRecords: aws.Int32(maxInstances)})
 if err != nil {
 fmt.Printf("Couldn't list DB instances: %v\n", err)
 return
 }
 if len(output.DBInstances) == 0 {
 fmt.Println("No DB instances found.")
 } else {
 for _, instance := range output.DBInstances {
 fmt.Printf("DB instance %v has database %v.\n",
 *instance.DBInstanceIdentifier,
 *instance.DBName)
 }
 }
}

4726

Amazon Relational Database Service User Guide

• For API details, see DescribeDBInstances in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.DescribeDbInstancesResponse;
import software.amazon.awssdk.services.rds.model.DBInstance;
import software.amazon.awssdk.services.rds.model.RdsException;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DescribeDBInstances {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 describeInstances(rdsClient);
 rdsClient.close();
 }

4727

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 public static void describeInstances(RdsClient rdsClient) {
 try {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances();
 List<DBInstance> instanceList = response.dbInstances();
 for (DBInstance instance : instanceList) {
 System.out.println("Instance ARN is: " +
 instance.dbInstanceArn());
 System.out.println("The Engine is " + instance.engine());
 System.out.println("Connection endpoint is" +
 instance.endpoint().address());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see DescribeDBInstances in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

"""
Purpose

Shows how to use the AWS SDK for Python (Boto3) with the Amazon Relational
 Database Service
(Amazon RDS) to list the databases in your account.
"""

4728

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

import boto3
from botocore.exceptions import ClientError

Create an RDS client
rds_client = boto3.client("rds")

Create a paginator for the describe_db_instances operation
paginator = rds_client.get_paginator("describe_db_instances")

try:
 # Use the paginator to get a list of DB instances
 response_iterator = paginator.paginate(
 PaginationConfig={
 "MaxItems": 123,
 "PageSize": 50, # Adjust PageSize as needed
 "StartingToken": None,
 }
)

 # Iterate through the pages of the response
 instances_found = False
 for page in response_iterator:
 if "DBInstances" in page and page["DBInstances"]:
 instances_found = True
 print("Your RDS instances are:")
 for db in page["DBInstances"]:
 print(db["DBInstanceIdentifier"])

 if not instances_found:
 print("No RDS instances found!")

except ClientError as e:
 print(f"Couldn't list RDS instances. Here's why: {e.response['Error']
['Message']}")

• For API details, see DescribeDBInstances in AWS SDK for Python (Boto3) API Reference.

4729

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBInstances

Amazon Relational Database Service User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds'
require 'logger'

RDSManager is a class responsible for managing RDS operations
such as listing all RDS DB instances in the current AWS account.
class RDSManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all RDS DB instances in the current AWS account.
 def list_db_instances
 @logger.info('Listing RDS DB instances')

 paginator = @client.describe_db_instances
 instances = []

 paginator.each_page do |page|
 instances.concat(page.db_instances)
 end

 if instances.empty?
 @logger.info('No instances found.')
 else
 @logger.info("Found #{instances.count} instance(s):")
 instances.each do |instance|
 @logger.info(" * #{instance.db_instance_identifier}
 (#{instance.db_instance_status})")
 end
 end

4730

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 end
end

if $PROGRAM_NAME == __FILE__
 rds_client = Aws::RDS::Client.new(region: 'us-west-2')
 manager = RDSManager.new(rds_client)
 manager.list_db_instances
end

• For API details, see DescribeDBInstances in AWS SDK for Ruby API Reference.

Code examples

• Basic examples for Amazon RDS using AWS SDKs

• Hello Amazon RDS

• Learn the basics of Amazon RDS with an AWS SDK

• Actions for Amazon RDS using AWS SDKs

• Use CreateDBInstance with an AWS SDK or CLI

• Use CreateDBParameterGroup with an AWS SDK or CLI

• Use CreateDBSnapshot with an AWS SDK or CLI

• Use DeleteDBInstance with an AWS SDK or CLI

• Use DeleteDBParameterGroup with an AWS SDK or CLI

• Use DescribeAccountAttributes with an AWS SDK or CLI

• Use DescribeDBEngineVersions with an AWS SDK or CLI

• Use DescribeDBInstances with an AWS SDK or CLI

• Use DescribeDBParameterGroups with an AWS SDK or CLI

• Use DescribeDBParameters with an AWS SDK or CLI

• Use DescribeDBSnapshots with an AWS SDK or CLI

• Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI

• Use GenerateRDSAuthToken with an AWS SDK

• Use ModifyDBInstance with an AWS SDK or CLI

• Use ModifyDBParameterGroup with an AWS SDK or CLI

• Use RebootDBInstance with an AWS SDK or CLI
4731

https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBInstances

Amazon Relational Database Service User Guide

• Scenarios for Amazon RDS using AWS SDKs

• Create an Aurora Serverless work item tracker

• Serverless examples for Amazon RDS

• Connecting to an Amazon RDS database in a Lambda function

Basic examples for Amazon RDS using AWS SDKs

The following code examples show how to use the basics of Amazon Relational Database Service
with AWS SDKs.

Examples

• Hello Amazon RDS

• Learn the basics of Amazon RDS with an AWS SDK

• Actions for Amazon RDS using AWS SDKs

• Use CreateDBInstance with an AWS SDK or CLI

• Use CreateDBParameterGroup with an AWS SDK or CLI

• Use CreateDBSnapshot with an AWS SDK or CLI

• Use DeleteDBInstance with an AWS SDK or CLI

• Use DeleteDBParameterGroup with an AWS SDK or CLI

• Use DescribeAccountAttributes with an AWS SDK or CLI

• Use DescribeDBEngineVersions with an AWS SDK or CLI

• Use DescribeDBInstances with an AWS SDK or CLI

• Use DescribeDBParameterGroups with an AWS SDK or CLI

• Use DescribeDBParameters with an AWS SDK or CLI

• Use DescribeDBSnapshots with an AWS SDK or CLI

• Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI

• Use GenerateRDSAuthToken with an AWS SDK

• Use ModifyDBInstance with an AWS SDK or CLI

• Use ModifyDBParameterGroup with an AWS SDK or CLI

• Use RebootDBInstance with an AWS SDK or CLI

Basics 4732

Amazon Relational Database Service User Guide

Hello Amazon RDS

The following code examples show how to get started using Amazon RDS.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon.RDS;
using Amazon.RDS.Model;

namespace RDSActions;

public static class HelloRds
{
 static async Task Main(string[] args)
 {
 var rdsClient = new AmazonRDSClient();

 Console.WriteLine($"Hello Amazon RDS! Following are some of your DB
 instances:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first twenty DB instances.
 var response = await rdsClient.DescribeDBInstancesAsync(
 new DescribeDBInstancesRequest()
 {
 MaxRecords = 20 // Must be between 20 and 100.
 });

 foreach (var instance in response.DBInstances)
 {
 Console.WriteLine($"\tDB name: {instance.DBName}");

Hello Amazon RDS 4733

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 Console.WriteLine($"\tArn: {instance.DBInstanceArn}");
 Console.WriteLine($"\tIdentifier: {instance.DBInstanceIdentifier}");
 Console.WriteLine();
 }
 }
}

• For API details, see DescribeDBInstances in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS rds)

Set this project's name.
project("hello_rds")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")

Hello Amazon RDS 4734

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds/hello_rds#code-examples

Amazon Relational Database Service User Guide

 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line, you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_rds.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_rds.cpp source file.

#include <aws/core/Aws.h>
#include <aws/rds/RDSClient.h>
#include <aws/rds/model/DescribeDBInstancesRequest.h>
#include <iostream>

/*
 * A "Hello Rds" starter application which initializes an Amazon Relational
 Database Service (Amazon RDS) client and
 * describes the Amazon RDS instances.
 *
 * main function
 *
 * Usage: 'hello_rds'
 *
 */

Hello Amazon RDS 4735

Amazon Relational Database Service User Guide

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient rdsClient(clientConfig);
 Aws::String marker;
 std::vector<Aws::String> instanceDBIDs;

 do {
 Aws::RDS::Model::DescribeDBInstancesRequest request;

 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::RDS::Model::DescribeDBInstancesOutcome outcome =
 rdsClient.DescribeDBInstances(request);

 if (outcome.IsSuccess()) {
 for (auto &instance: outcome.GetResult().GetDBInstances()) {
 instanceDBIDs.push_back(instance.GetDBInstanceIdentifier());
 }
 marker = outcome.GetResult().GetMarker();
 } else {
 result = 1;
 std::cerr << "Error with RDS::DescribeDBInstances. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 } while (!marker.empty());

 std::cout << instanceDBIDs.size() << " RDS instances found." <<
 std::endl;
 for (auto &instanceDBID: instanceDBIDs) {
 std::cout << " Instance: " << instanceDBID << std::endl;

Hello Amazon RDS 4736

Amazon Relational Database Service User Guide

 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see DescribeDBInstances in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/rds"
)

// main uses the AWS SDK for Go V2 to create an Amazon Relational Database
 Service (Amazon RDS)
// client and list up to 20 DB instances in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {

Hello Amazon RDS 4737

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 rdsClient := rds.NewFromConfig(sdkConfig)
 const maxInstances = 20
 fmt.Printf("Let's list up to %v DB instances.\n", maxInstances)
 output, err := rdsClient.DescribeDBInstances(ctx,
 &rds.DescribeDBInstancesInput{MaxRecords: aws.Int32(maxInstances)})
 if err != nil {
 fmt.Printf("Couldn't list DB instances: %v\n", err)
 return
 }
 if len(output.DBInstances) == 0 {
 fmt.Println("No DB instances found.")
 } else {
 for _, instance := range output.DBInstances {
 fmt.Printf("DB instance %v has database %v.\n",
 *instance.DBInstanceIdentifier,
 *instance.DBName)
 }
 }
}

• For API details, see DescribeDBInstances in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.DescribeDbInstancesResponse;

Hello Amazon RDS 4738

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

import software.amazon.awssdk.services.rds.model.DBInstance;
import software.amazon.awssdk.services.rds.model.RdsException;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DescribeDBInstances {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 describeInstances(rdsClient);
 rdsClient.close();
 }

 public static void describeInstances(RdsClient rdsClient) {
 try {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances();
 List<DBInstance> instanceList = response.dbInstances();
 for (DBInstance instance : instanceList) {
 System.out.println("Instance ARN is: " +
 instance.dbInstanceArn());
 System.out.println("The Engine is " + instance.engine());
 System.out.println("Connection endpoint is" +
 instance.endpoint().address());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

Hello Amazon RDS 4739

Amazon Relational Database Service User Guide

• For API details, see DescribeDBInstances in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

"""
Purpose

Shows how to use the AWS SDK for Python (Boto3) with the Amazon Relational
 Database Service
(Amazon RDS) to list the databases in your account.
"""

import boto3
from botocore.exceptions import ClientError

Create an RDS client
rds_client = boto3.client("rds")

Create a paginator for the describe_db_instances operation
paginator = rds_client.get_paginator("describe_db_instances")

try:
 # Use the paginator to get a list of DB instances
 response_iterator = paginator.paginate(
 PaginationConfig={
 "MaxItems": 123,
 "PageSize": 50, # Adjust PageSize as needed
 "StartingToken": None,
 }
)

 # Iterate through the pages of the response

Hello Amazon RDS 4740

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 instances_found = False
 for page in response_iterator:
 if "DBInstances" in page and page["DBInstances"]:
 instances_found = True
 print("Your RDS instances are:")
 for db in page["DBInstances"]:
 print(db["DBInstanceIdentifier"])

 if not instances_found:
 print("No RDS instances found!")

except ClientError as e:
 print(f"Couldn't list RDS instances. Here's why: {e.response['Error']
['Message']}")

• For API details, see DescribeDBInstances in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds'
require 'logger'

RDSManager is a class responsible for managing RDS operations
such as listing all RDS DB instances in the current AWS account.
class RDSManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all RDS DB instances in the current AWS account.

Hello Amazon RDS 4741

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 def list_db_instances
 @logger.info('Listing RDS DB instances')

 paginator = @client.describe_db_instances
 instances = []

 paginator.each_page do |page|
 instances.concat(page.db_instances)
 end

 if instances.empty?
 @logger.info('No instances found.')
 else
 @logger.info("Found #{instances.count} instance(s):")
 instances.each do |instance|
 @logger.info(" * #{instance.db_instance_identifier}
 (#{instance.db_instance_status})")
 end
 end
 end
end

if $PROGRAM_NAME == __FILE__
 rds_client = Aws::RDS::Client.new(region: 'us-west-2')
 manager = RDSManager.new(rds_client)
 manager.list_db_instances
end

• For API details, see DescribeDBInstances in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Learn the basics of Amazon RDS with an AWS SDK

The following code examples show how to:

• Create a custom DB parameter group and set parameter values.

Learn the basics 4742

https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBInstances

Amazon Relational Database Service User Guide

• Create a DB instance that's configured to use the parameter group. The DB instance also contains
a database.

• Take a snapshot of the instance.

• Delete the instance and parameter group.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>
/// Scenario for RDS DB instance example.
/// </summary>
public class RDSInstanceScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks:
 1. Returns a list of the available DB engine families using the
 DescribeDBEngineVersionsAsync method.
 2. Selects an engine family and creates a custom DB parameter group using
 the CreateDBParameterGroupAsync method.
 3. Gets the parameter groups using the DescribeDBParameterGroupsAsync
 method.
 4. Gets parameters in the group using the DescribeDBParameters method.
 5. Parses and displays parameters in the group.
 6. Modifies both the auto_increment_offset and auto_increment_increment
 parameters
 using the ModifyDBParameterGroupAsync method.
 7. Gets and displays the updated parameters using the DescribeDBParameters
 method with a source of "user".

Learn the basics 4743

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 8. Gets a list of allowed engine versions using the
 DescribeDBEngineVersionsAsync method.
 9. Displays and selects from a list of micro instance classes available for
 the selected engine and version.
 10. Creates an RDS DB instance that contains a MySql database and uses the
 parameter group
 using the CreateDBInstanceAsync method.
 11. Waits for DB instance to be ready using the DescribeDBInstancesAsync
 method.
 12. Prints out the connection endpoint string for the new DB instance.
 13. Creates a snapshot of the DB instance using the CreateDBSnapshotAsync
 method.
 14. Waits for DB snapshot to be ready using the DescribeDBSnapshots method.
 15. Deletes the DB instance using the DeleteDBInstanceAsync method.
 16. Waits for DB instance to be deleted using the DescribeDbInstances method.
 17. Deletes the parameter group using the DeleteDBParameterGroupAsync.
 */

 private static readonly string sepBar = new('-', 80);
 private static RDSWrapper rdsWrapper = null!;
 private static ILogger logger = null!;
 private static readonly string engine = "mysql";
 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon RDS service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRDS>()
 .AddTransient<RDSWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 }).CreateLogger<RDSInstanceScenario>();

 rdsWrapper = host.Services.GetRequiredService<RDSWrapper>();

Learn the basics 4744

Amazon Relational Database Service User Guide

 Console.WriteLine(sepBar);
 Console.WriteLine(
 "Welcome to the Amazon Relational Database Service (Amazon RDS) DB
 instance scenario example.");
 Console.WriteLine(sepBar);

 try
 {
 var parameterGroupFamily = await ChooseParameterGroupFamily();

 var parameterGroup = await
 CreateDbParameterGroup(parameterGroupFamily);

 var parameters = await
 DescribeParametersInGroup(parameterGroup.DBParameterGroupName,
 new List<string> { "auto_increment_offset",
 "auto_increment_increment" });

 await ModifyParameters(parameterGroup.DBParameterGroupName,
 parameters);

 await
 DescribeUserSourceParameters(parameterGroup.DBParameterGroupName);

 var engineVersionChoice = await
 ChooseDbEngineVersion(parameterGroupFamily);

 var instanceChoice = await ChooseDbInstanceClass(engine,
 engineVersionChoice.EngineVersion);

 var newInstanceIdentifier = "Example-Instance-" + DateTime.Now.Ticks;

 var newInstance = await CreateRdsNewInstance(parameterGroup, engine,
 engineVersionChoice.EngineVersion,
 instanceChoice.DBInstanceClass, newInstanceIdentifier);
 if (newInstance != null)
 {
 DisplayConnectionString(newInstance);

 await CreateSnapshot(newInstance);

 await DeleteRdsInstance(newInstance);
 }

Learn the basics 4745

Amazon Relational Database Service User Guide

 await DeleteParameterGroup(parameterGroup);

 Console.WriteLine("Scenario complete.");
 Console.WriteLine(sepBar);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "There was a problem executing the scenario.");
 }
 }

 /// <summary>
 /// Choose the RDS DB parameter group family from a list of available
 options.
 /// </summary>
 /// <returns>The selected parameter group family.</returns>
 public static async Task<string> ChooseParameterGroupFamily()
 {
 Console.WriteLine(sepBar);
 // 1. Get a list of available engines.
 var engines = await rdsWrapper.DescribeDBEngineVersions(engine);

 Console.WriteLine("1. The following is a list of available DB parameter
 group families:");
 int i = 1;
 var parameterGroupFamilies = engines.GroupBy(e =>
 e.DBParameterGroupFamily).ToList();
 foreach (var parameterGroupFamily in parameterGroupFamilies)
 {
 // List the available parameter group families.
 Console.WriteLine(
 $"\t{i}. Family: {parameterGroupFamily.Key}");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > parameterGroupFamilies.Count)
 {
 Console.WriteLine("Select an available DB parameter group family by
 entering a number from the list above:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

Learn the basics 4746

Amazon Relational Database Service User Guide

 var parameterGroupFamilyChoice = parameterGroupFamilies[choiceNumber -
 1];
 Console.WriteLine(sepBar);
 return parameterGroupFamilyChoice.Key;
 }

 /// <summary>
 /// Create and get information on a DB parameter group.
 /// </summary>
 /// <param name="dbParameterGroupFamily">The DBParameterGroupFamily for the
 new DB parameter group.</param>
 /// <returns>The new DBParameterGroup.</returns>
 public static async Task<DBParameterGroup> CreateDbParameterGroup(string
 dbParameterGroupFamily)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"2. Create new DB parameter group with family
 {dbParameterGroupFamily}:");

 var parameterGroup = await rdsWrapper.CreateDBParameterGroup(
 "ExampleParameterGroup-" + DateTime.Now.Ticks,
 dbParameterGroupFamily, "New example parameter group");

 var groupInfo =
 await rdsWrapper.DescribeDBParameterGroups(parameterGroup
 .DBParameterGroupName);

 Console.WriteLine(
 $"3. New DB parameter group: \n\t{groupInfo[0].Description}, \n\tARN
 {groupInfo[0].DBParameterGroupArn}");
 Console.WriteLine(sepBar);
 return parameterGroup;
 }

 /// <summary>
 /// Get and describe parameters from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <param name="parameterNames">Optional specific names of parameters to
 describe.</param>
 /// <returns>The list of requested parameters.</returns>
 public static async Task<List<Parameter>> DescribeParametersInGroup(string
 parameterGroupName, List<string>? parameterNames = null)
 {

Learn the basics 4747

Amazon Relational Database Service User Guide

 Console.WriteLine(sepBar);
 Console.WriteLine("4. Get some parameters from the group.");
 Console.WriteLine(sepBar);

 var parameters =
 await rdsWrapper.DescribeDBParameters(parameterGroupName);

 var matchingParameters =
 parameters.Where(p => parameterNames == null ||
 parameterNames.Contains(p.ParameterName)).ToList();

 Console.WriteLine("5. Parameter information:");
 matchingParameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);

 return matchingParameters;
 }

 /// <summary>
 /// Modify a parameter from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <param name="parameters">The parameters to modify.</param>
 /// <returns>Async task.</returns>
 public static async Task ModifyParameters(string parameterGroupName,
 List<Parameter> parameters)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("6. Modify some parameters in the group.");

 foreach (var p in parameters)
 {
 if (p.IsModifiable && p.DataType == "integer")
 {
 int newValue = 0;
 while (newValue == 0)
 {
 Console.WriteLine(

Learn the basics 4748

Amazon Relational Database Service User Guide

 $"Enter a new value for {p.ParameterName} from the
 allowed values {p.AllowedValues} ");

 var choice = Console.ReadLine();
 Int32.TryParse(choice, out newValue);
 }

 p.ParameterValue = newValue.ToString();
 }
 }

 await rdsWrapper.ModifyDBParameterGroup(parameterGroupName, parameters);

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Describe the user source parameters in the group.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <returns>Async task.</returns>
 public static async Task DescribeUserSourceParameters(string
 parameterGroupName)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("7. Describe user source parameters in the group.");

 var parameters =
 await rdsWrapper.DescribeDBParameters(parameterGroupName, "user");

 parameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Choose a DB engine version.

Learn the basics 4749

Amazon Relational Database Service User Guide

 /// </summary>
 /// <param name="dbParameterGroupFamily">DB parameter group family for engine
 choice.</param>
 /// <returns>The selected engine version.</returns>
 public static async Task<DBEngineVersion> ChooseDbEngineVersion(string
 dbParameterGroupFamily)
 {
 Console.WriteLine(sepBar);
 // Get a list of allowed engines.
 var allowedEngines =
 await rdsWrapper.DescribeDBEngineVersions(engine,
 dbParameterGroupFamily);

 Console.WriteLine($"Available DB engine versions for parameter group
 family {dbParameterGroupFamily}:");
 int i = 1;
 foreach (var version in allowedEngines)
 {
 Console.WriteLine(
 $"\t{i}. Engine: {version.Engine} Version
 {version.EngineVersion}.");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedEngines.Count)
 {
 Console.WriteLine("8. Select an available DB engine version by
 entering a number from the list above:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 var engineChoice = allowedEngines[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return engineChoice;
 }

 /// <summary>
 /// Choose a DB instance class for a particular engine and engine version.
 /// </summary>
 /// <param name="engine">DB engine for DB instance choice.</param>
 /// <param name="engineVersion">DB engine version for DB instance choice.</
param>

Learn the basics 4750

Amazon Relational Database Service User Guide

 /// <returns>The selected orderable DB instance option.</returns>
 public static async Task<OrderableDBInstanceOption>
 ChooseDbInstanceClass(string engine, string engineVersion)
 {
 Console.WriteLine(sepBar);
 // Get a list of allowed DB instance classes.
 var allowedInstances =
 await rdsWrapper.DescribeOrderableDBInstanceOptions(engine,
 engineVersion);

 Console.WriteLine($"8. Available micro DB instance classes for engine
 {engine} and version {engineVersion}:");
 int i = 1;

 // Filter to micro instances for this example.
 allowedInstances = allowedInstances
 .Where(i => i.DBInstanceClass.Contains("micro")).ToList();

 foreach (var instance in allowedInstances)
 {
 Console.WriteLine(
 $"\t{i}. Instance class: {instance.DBInstanceClass} (storage type
 {instance.StorageType})");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedInstances.Count)
 {
 Console.WriteLine("9. Select an available DB instance class by
 entering a number from the list above:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 var instanceChoice = allowedInstances[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return instanceChoice;
 }

 /// <summary>
 /// Create a new RDS DB instance.
 /// </summary>

Learn the basics 4751

Amazon Relational Database Service User Guide

 /// <param name="parameterGroup">Parameter group to use for the DB
 instance.</param>
 /// <param name="engineName">Engine to use for the DB instance.</param>
 /// <param name="engineVersion">Engine version to use for the DB instance.</
param>
 /// <param name="instanceClass">Instance class to use for the DB instance.</
param>
 /// <param name="instanceIdentifier">Instance identifier to use for the DB
 instance.</param>
 /// <returns>The new DB instance.</returns>
 public static async Task<DBInstance?> CreateRdsNewInstance(DBParameterGroup
 parameterGroup,
 string engineName, string engineVersion, string instanceClass, string
 instanceIdentifier)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"10. Create a new DB instance with identifier
 {instanceIdentifier}.");
 bool isInstanceReady = false;
 DBInstance newInstance;
 var instances = await rdsWrapper.DescribeDBInstances();
 isInstanceReady = instances.FirstOrDefault(i =>
 i.DBInstanceIdentifier == instanceIdentifier)?.DBInstanceStatus ==
 "available";

 if (isInstanceReady)
 {
 Console.WriteLine("Instance already created.");
 newInstance = instances.First(i => i.DBInstanceIdentifier ==
 instanceIdentifier);
 }
 else
 {
 Console.WriteLine("Please enter an admin user name:");
 var username = Console.ReadLine();

 Console.WriteLine("Please enter an admin password:");
 var password = Console.ReadLine();

 newInstance = await rdsWrapper.CreateDBInstance(
 "ExampleInstance",
 instanceIdentifier,
 parameterGroup.DBParameterGroupName,
 engineName,

Learn the basics 4752

Amazon Relational Database Service User Guide

 engineVersion,
 instanceClass,
 20,
 username,
 password
);

 // 11. Wait for the DB instance to be ready.

 Console.WriteLine("11. Waiting for DB instance to be ready...");
 while (!isInstanceReady)
 {
 instances = await
 rdsWrapper.DescribeDBInstances(instanceIdentifier);
 isInstanceReady = instances.FirstOrDefault()?.DBInstanceStatus ==
 "available";
 newInstance = instances.First();
 Thread.Sleep(30000);
 }
 }

 Console.WriteLine(sepBar);
 return newInstance;
 }

 /// <summary>
 /// Display a connection string for an RDS DB instance.
 /// </summary>
 /// <param name="instance">The DB instance to use to get a connection
 string.</param>
 public static void DisplayConnectionString(DBInstance instance)
 {
 Console.WriteLine(sepBar);
 // Display the connection string.
 Console.WriteLine("12. New DB instance connection string: ");
 Console.WriteLine(
 $"\n{engine} -h {instance.Endpoint.Address} -P
 {instance.Endpoint.Port} "
 + $"-u {instance.MasterUsername} -p [YOUR PASSWORD]\n");

 Console.WriteLine(sepBar);
 }

 /// <summary>

Learn the basics 4753

Amazon Relational Database Service User Guide

 /// Create a snapshot from an RDS DB instance.
 /// </summary>
 /// <param name="instance">DB instance to use when creating a snapshot.</
param>
 /// <returns>The snapshot object.</returns>
 public static async Task<DBSnapshot> CreateSnapshot(DBInstance instance)
 {
 Console.WriteLine(sepBar);
 // Create a snapshot.
 Console.WriteLine($"13. Creating snapshot from DB instance
 {instance.DBInstanceIdentifier}.");
 var snapshot = await
 rdsWrapper.CreateDBSnapshot(instance.DBInstanceIdentifier, "ExampleSnapshot-" +
 DateTime.Now.Ticks);

 // Wait for the snapshot to be available
 bool isSnapshotReady = false;

 Console.WriteLine($"14. Waiting for snapshot to be ready...");
 while (!isSnapshotReady)
 {
 var snapshots = await
 rdsWrapper.DescribeDBSnapshots(instance.DBInstanceIdentifier);
 isSnapshotReady = snapshots.FirstOrDefault()?.Status == "available";
 snapshot = snapshots.First();
 Thread.Sleep(30000);
 }

 Console.WriteLine(
 $"Snapshot {snapshot.DBSnapshotIdentifier} status is
 {snapshot.Status}.");
 Console.WriteLine(sepBar);
 return snapshot;
 }

 /// <summary>
 /// Delete an RDS DB instance.
 /// </summary>
 /// <param name="instance">The DB instance to delete.</param>
 /// <returns>Async task.</returns>
 public static async Task DeleteRdsInstance(DBInstance newInstance)
 {
 Console.WriteLine(sepBar);
 // Delete the DB instance.

Learn the basics 4754

Amazon Relational Database Service User Guide

 Console.WriteLine($"15. Delete the DB instance
 {newInstance.DBInstanceIdentifier}.");
 await rdsWrapper.DeleteDBInstance(newInstance.DBInstanceIdentifier);

 // Wait for the DB instance to delete.
 Console.WriteLine($"16. Waiting for the DB instance to delete...");
 bool isInstanceDeleted = false;

 while (!isInstanceDeleted)
 {
 var instance = await rdsWrapper.DescribeDBInstances();
 isInstanceDeleted = instance.All(i => i.DBInstanceIdentifier !=
 newInstance.DBInstanceIdentifier);
 Thread.Sleep(30000);
 }

 Console.WriteLine("DB instance deleted.");
 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Delete a DB parameter group.
 /// </summary>
 /// <param name="parameterGroup">The parameter group to delete.</param>
 /// <returns>Async task.</returns>
 public static async Task DeleteParameterGroup(DBParameterGroup
 parameterGroup)
 {
 Console.WriteLine(sepBar);
 // Delete the parameter group.
 Console.WriteLine($"17. Delete the DB parameter group
 {parameterGroup.DBParameterGroupName}.");
 await
 rdsWrapper.DeleteDBParameterGroup(parameterGroup.DBParameterGroupName);

 Console.WriteLine(sepBar);
 }

Wrapper methods used by the scenario for DB instance actions.

/// <summary>

Learn the basics 4755

Amazon Relational Database Service User Guide

/// Wrapper methods to use Amazon Relational Database Service (Amazon RDS) with
 DB instance operations.
/// </summary>
public partial class RDSWrapper
{
 private readonly IAmazonRDS _amazonRDS;
 public RDSWrapper(IAmazonRDS amazonRDS)
 {
 _amazonRDS = amazonRDS;
 }

 /// <summary>
 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="dbParameterGroupFamily">Optional parameter group family
 name.</param>
 /// <returns>List of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>> DescribeDBEngineVersions(string
 engine,
 string dbParameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()
 {
 Engine = engine,
 DBParameterGroupFamily = dbParameterGroupFamily
 });
 return response.DBEngineVersions;
 }

 /// <summary>
 /// Get a list of orderable DB instance options for a specific
 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>
 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptions(string engine, string engineVersion)
 {

Learn the basics 4756

Amazon Relational Database Service User Guide

 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,
 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);
 }
 return results;
 }

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstances(string
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(
 new DescribeDBInstancesRequest
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });
 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;
 }

Learn the basics 4757

Amazon Relational Database Service User Guide

 /// <summary>
 /// Create an RDS DB instance with a particular set of properties. Use the
 action DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbName">Name for the DB instance.</param>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="parameterGroupName">DB parameter group to associate with the
 instance.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>
 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <param name="allocatedStorage">The amount of storage in gibibytes (GiB)
 to allocate to the DB instance.</param>
 /// <param name="adminName">Admin user name.</param>
 /// <param name="adminPassword">Admin user password.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> CreateDBInstance(string dbName, string
 dbInstanceIdentifier,
 string parameterGroupName, string dbEngine, string dbEngineVersion,
 string instanceClass, int allocatedStorage, string adminName, string
 adminPassword)
 {
 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBName = dbName,
 DBInstanceIdentifier = dbInstanceIdentifier,
 DBParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass,
 AllocatedStorage = allocatedStorage,
 MasterUsername = adminName,
 MasterUserPassword = adminPassword
 });

 return response.DBInstance;
 }

 /// <summary>

Learn the basics 4758

Amazon Relational Database Service User Guide

 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstance(string dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(
 new DeleteDBInstanceRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,
 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }

Wrapper methods used by the scenario for DB parameter groups.

/// <summary>
/// Wrapper methods to use Amazon Relational Database Service (Amazon RDS) with
 parameter groups.
/// </summary>
public partial class RDSWrapper
{

 /// <summary>
 /// Get descriptions of DB parameter groups.
 /// </summary>
 /// <param name="name">Optional name of the DB parameter group to describe.</
param>
 /// <returns>The list of DB parameter group descriptions.</returns>
 public async Task<List<DBParameterGroup>> DescribeDBParameterGroups(string
 name = null)
 {
 var response = await _amazonRDS.DescribeDBParameterGroupsAsync(
 new DescribeDBParameterGroupsRequest()
 {
 DBParameterGroupName = name
 });

Learn the basics 4759

Amazon Relational Database Service User Guide

 return response.DBParameterGroups;
 }

 /// <summary>
 /// Create a new DB parameter group. Use the action
 DescribeDBParameterGroupsAsync
 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <param name="family">Family of the DB parameter group.</param>
 /// <param name="description">Description of the DB parameter group.</param>
 /// <returns>The new DB parameter group.</returns>
 public async Task<DBParameterGroup> CreateDBParameterGroup(
 string name, string family, string description)
 {
 var response = await _amazonRDS.CreateDBParameterGroupAsync(
 new CreateDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 DBParameterGroupFamily = family,
 Description = description
 });
 return response.DBParameterGroup;
 }

 /// <summary>
 /// Update a DB parameter group. Use the action
 DescribeDBParameterGroupsAsync
 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <param name="parameters">List of parameters. Maximum of 20 per request.</
param>
 /// <returns>The updated DB parameter group name.</returns>
 public async Task<string> ModifyDBParameterGroup(
 string name, List<Parameter> parameters)
 {
 var response = await _amazonRDS.ModifyDBParameterGroupAsync(
 new ModifyDBParameterGroupRequest()
 {

Learn the basics 4760

Amazon Relational Database Service User Guide

 DBParameterGroupName = name,
 Parameters = parameters,
 });
 return response.DBParameterGroupName;
 }

 /// <summary>
 /// Delete a DB parameter group. The group cannot be a default DB parameter
 group
 /// or be associated with any DB instances.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteDBParameterGroup(string name)
 {
 var response = await _amazonRDS.DeleteDBParameterGroupAsync(
 new DeleteDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Get a list of DB parameters from a specific parameter group.
 /// </summary>
 /// <param name="dbParameterGroupName">Name of a specific DB parameter
 group.</param>
 /// <param name="source">Optional source for selecting parameters.</param>
 /// <returns>List of parameter values.</returns>
 public async Task<List<Parameter>> DescribeDBParameters(string
 dbParameterGroupName, string source = null)
 {
 var results = new List<Parameter>();
 var paginateParameters = _amazonRDS.Paginators.DescribeDBParameters(
 new DescribeDBParametersRequest()
 {
 DBParameterGroupName = dbParameterGroupName,
 Source = source
 });

Learn the basics 4761

Amazon Relational Database Service User Guide

 // Get the entire list using the paginator.
 await foreach (var parameters in paginateParameters.Parameters)
 {
 results.Add(parameters);
 }
 return results;
 }

Wrapper methods used by the scenario for DB snapshot actions.

/// <summary>
/// Wrapper methods to use Amazon Relational Database Service (Amazon RDS) with
 snapshots.
/// </summary>
public partial class RDSWrapper
{

 /// <summary>
 /// Create a snapshot of a DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBSnapshot> CreateDBSnapshot(string dbInstanceIdentifier,
 string snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBSnapshotAsync(
 new CreateDBSnapshotRequest()
 {
 DBSnapshotIdentifier = snapshotIdentifier,
 DBInstanceIdentifier = dbInstanceIdentifier
 });

 return response.DBSnapshot;
 }

 /// <summary>
 /// Return a list of DB snapshots for a particular DB instance.

Learn the basics 4762

Amazon Relational Database Service User Guide

 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBSnapshot>> DescribeDBSnapshots(string
 dbInstanceIdentifier)
 {
 var results = new List<DBSnapshot>();
 var snapshotsPaginator = _amazonRDS.Paginators.DescribeDBSnapshots(
 new DescribeDBSnapshotsRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });

 // Get the entire list using the paginator.
 await foreach (var snapshots in snapshotsPaginator.DBSnapshots)
 {
 results.Add(snapshots);
 }
 return results;
 }

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateDBInstance

• CreateDBParameterGroup

• CreateDBSnapshot

• DeleteDBInstance

• DeleteDBParameterGroup

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeDBParameterGroups

• DescribeDBParameters

• DescribeDBSnapshots

• DescribeOrderableDBInstanceOptions

• ModifyDBParameterGroup

Learn the basics 4763

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBSnapshot
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameterGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameters
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBSnapshots
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBParameterGroup

Amazon Relational Database Service User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Routine which creates an Amazon RDS instance and demonstrates several
 operations
//! on that instance.
/*!
 \sa gettingStartedWithDBInstances()
 \param clientConfiguration: AWS client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::gettingStartedWithDBInstances(
 const Aws::Client::ClientConfiguration &clientConfig) {
 Aws::RDS::RDSClient client(clientConfig);

 printAsterisksLine();
 std::cout << "Welcome to the Amazon Relational Database Service (Amazon RDS)"
 << std::endl;
 std::cout << "get started with DB instances demo." << std::endl;
 printAsterisksLine();

 std::cout << "Checking for an existing DB parameter group named '" <<
 PARAMETER_GROUP_NAME << "'." << std::endl;
 Aws::String dbParameterGroupFamily("Undefined");
 bool parameterGroupFound = true;
 {
 // 1. Check if the DB parameter group already exists.
 Aws::RDS::Model::DescribeDBParameterGroupsRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);

 Aws::RDS::Model::DescribeDBParameterGroupsOutcome outcome =

Learn the basics 4764

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 client.DescribeDBParameterGroups(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB parameter group named '" <<
 PARAMETER_GROUP_NAME << "' already exists." << std::endl;
 dbParameterGroupFamily = outcome.GetResult().GetDBParameterGroups()
[0].GetDBParameterGroupFamily();
 }
 else if (outcome.GetError().GetErrorType() ==
 Aws::RDS::RDSErrors::D_B_PARAMETER_GROUP_NOT_FOUND_FAULT) {
 std::cout << "DB parameter group named '" <<
 PARAMETER_GROUP_NAME << "' does not exist." << std::endl;
 parameterGroupFound = false;
 }
 else {
 std::cerr << "Error with RDS::DescribeDBParameterGroups. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

 if (!parameterGroupFound) {
 Aws::Vector<Aws::RDS::Model::DBEngineVersion> engineVersions;

 // 2. Get available engine versions for the specified engine.
 if (!getDBEngineVersions(DB_ENGINE, NO_PARAMETER_GROUP_FAMILY,
 engineVersions, client)) {
 return false;
 }

 std::cout << "Getting available database engine versions for " <<
 DB_ENGINE
 << "."
 << std::endl;
 std::vector<Aws::String> families;
 for (const Aws::RDS::Model::DBEngineVersion &version: engineVersions) {
 Aws::String family = version.GetDBParameterGroupFamily();
 if (std::find(families.begin(), families.end(), family) ==
 families.end()) {
 families.push_back(family);
 std::cout << " " << families.size() << ": " << family <<
 std::endl;
 }

Learn the basics 4765

Amazon Relational Database Service User Guide

 }

 int choice = askQuestionForIntRange("Which family do you want to use? ",
 1,
 static_cast<int>(families.size()));
 dbParameterGroupFamily = families[choice - 1];
 }
 if (!parameterGroupFound) {
 // 3. Create a DB parameter group.
 Aws::RDS::Model::CreateDBParameterGroupRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 request.SetDBParameterGroupFamily(dbParameterGroupFamily);
 request.SetDescription("Example parameter group.");

 Aws::RDS::Model::CreateDBParameterGroupOutcome outcome =
 client.CreateDBParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully created."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

 printAsterisksLine();
 std::cout << "Let's set some parameter values in your parameter group."
 << std::endl;

 Aws::String marker;
 Aws::Vector<Aws::RDS::Model::Parameter> autoIncrementParameters;
 // 4. Get the parameters in the DB parameter group.
 if (!getDBParameters(PARAMETER_GROUP_NAME, AUTO_INCREMENT_PREFIX, NO_SOURCE,
 autoIncrementParameters,
 client)) {
 cleanUpResources(PARAMETER_GROUP_NAME, "", client);
 return false;
 }

 Aws::Vector<Aws::RDS::Model::Parameter> updateParameters;

Learn the basics 4766

Amazon Relational Database Service User Guide

 for (Aws::RDS::Model::Parameter &autoIncParameter: autoIncrementParameters) {
 if (autoIncParameter.GetIsModifiable() &&
 (autoIncParameter.GetDataType() == "integer")) {
 std::cout << "The " << autoIncParameter.GetParameterName()
 << " is described as: " <<
 autoIncParameter.GetDescription() << "." << std::endl;
 if (autoIncParameter.ParameterValueHasBeenSet()) {
 std::cout << "The current value is "
 << autoIncParameter.GetParameterValue()
 << "." << std::endl;
 }
 std::vector<int> splitValues = splitToInts(
 autoIncParameter.GetAllowedValues(), '-');
 if (splitValues.size() == 2) {
 int newValue = askQuestionForIntRange(
 Aws::String("Enter a new value in the range ") +
 autoIncParameter.GetAllowedValues() + ": ",
 splitValues[0], splitValues[1]);
 autoIncParameter.SetParameterValue(std::to_string(newValue));
 updateParameters.push_back(autoIncParameter);

 }
 else {
 std::cerr << "Error parsing " <<
 autoIncParameter.GetAllowedValues()
 << std::endl;
 }
 }
 }

 {
 // 5. Modify the auto increment parameters in the group.
 Aws::RDS::Model::ModifyDBParameterGroupRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 request.SetParameters(updateParameters);

 Aws::RDS::Model::ModifyDBParameterGroupOutcome outcome =
 client.ModifyDBParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully modified."
 << std::endl;
 }

Learn the basics 4767

Amazon Relational Database Service User Guide

 else {
 std::cerr << "Error with RDS::ModifyDBParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 }

 std::cout
 << "You can get a list of parameters you've set by specifying a
 source of 'user'."
 << std::endl;

 Aws::Vector<Aws::RDS::Model::Parameter> userParameters;
 // 6. Display the modified parameters in the group.
 if (!getDBParameters(PARAMETER_GROUP_NAME, NO_NAME_PREFIX, "user",
 userParameters,
 client)) {
 cleanUpResources(PARAMETER_GROUP_NAME, "", client);
 return false;
 }

 for (const auto &userParameter: userParameters) {
 std::cout << " " << userParameter.GetParameterName() << ", " <<
 userParameter.GetDescription() << ", parameter value - "
 << userParameter.GetParameterValue() << std::endl;
 }

 printAsterisksLine();
 std::cout << "Checking for an existing DB instance." << std::endl;

 Aws::RDS::Model::DBInstance dbInstance;
 // 7. Check if the DB instance already exists.
 if (!describeDBInstance(DB_INSTANCE_IDENTIFIER, dbInstance, client)) {
 cleanUpResources(PARAMETER_GROUP_NAME, "", client);
 return false;
 }

 if (dbInstance.DbInstancePortHasBeenSet()) {
 std::cout << "The DB instance already exists." << std::endl;
 }
 else {
 std::cout << "Let's create a DB instance." << std::endl;
 const Aws::String administratorName = askQuestion(
 "Enter an administrator username for the database: ");

Learn the basics 4768

Amazon Relational Database Service User Guide

 const Aws::String administratorPassword = askQuestion(
 "Enter a password for the administrator (at least 8 characters):
 ");
 Aws::Vector<Aws::RDS::Model::DBEngineVersion> engineVersions;

 // 8. Get a list of available engine versions.
 if (!getDBEngineVersions(DB_ENGINE, dbParameterGroupFamily,
 engineVersions,
 client)) {
 cleanUpResources(PARAMETER_GROUP_NAME, "", client);
 return false;
 }

 std::cout << "The available engines for your parameter group are:" <<
 std::endl;

 int index = 1;
 for (const Aws::RDS::Model::DBEngineVersion &engineVersion:
 engineVersions) {
 std::cout << " " << index << ": " <<
 engineVersion.GetEngineVersion()
 << std::endl;
 ++index;
 }
 int choice = askQuestionForIntRange("Which engine do you want to use? ",
 1,

 static_cast<int>(engineVersions.size()));
 const Aws::RDS::Model::DBEngineVersion engineVersion =
 engineVersions[choice -
 1];

 Aws::String dbInstanceClass;
 // 9. Get a list of micro instance classes.
 if (!chooseMicroDBInstanceClass(engineVersion.GetEngine(),
 engineVersion.GetEngineVersion(),
 dbInstanceClass,
 client)) {
 cleanUpResources(PARAMETER_GROUP_NAME, "", client);
 return false;
 }

 std::cout << "Creating a DB instance named '" << DB_INSTANCE_IDENTIFIER
 << "' and database '" << DB_NAME << "'.\n"

Learn the basics 4769

Amazon Relational Database Service User Guide

 << "The DB instance is configured to use your custom parameter
 group '"
 << PARAMETER_GROUP_NAME << "',\n"
 << "selected engine version " <<
 engineVersion.GetEngineVersion()
 << ",\n"
 << "selected DB instance class '" << dbInstanceClass << "',"
 << " and " << DB_ALLOCATED_STORAGE << " GiB of " <<
 DB_STORAGE_TYPE
 << " storage.\nThis typically takes several minutes." <<
 std::endl;

 Aws::RDS::Model::CreateDBInstanceRequest request;
 request.SetDBName(DB_NAME);
 request.SetDBInstanceIdentifier(DB_INSTANCE_IDENTIFIER);
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 request.SetEngine(engineVersion.GetEngine());
 request.SetEngineVersion(engineVersion.GetEngineVersion());
 request.SetDBInstanceClass(dbInstanceClass);
 request.SetStorageType(DB_STORAGE_TYPE);
 request.SetAllocatedStorage(DB_ALLOCATED_STORAGE);
 request.SetMasterUsername(administratorName);
 request.SetMasterUserPassword(administratorPassword);

 Aws::RDS::Model::CreateDBInstanceOutcome outcome =
 client.CreateDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB instance creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, "", client);
 return false;
 }
 }

 std::cout << "Waiting for the DB instance to become available." << std::endl;

 int counter = 0;
 // 11. Wait for the DB instance to become available.

Learn the basics 4770

Amazon Relational Database Service User Guide

 do {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++counter;
 if (counter > 900) {
 std::cerr << "Wait for instance to become available timed out ofter "
 << counter
 << " seconds." << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 dbInstance = Aws::RDS::Model::DBInstance();
 if (!describeDBInstance(DB_INSTANCE_IDENTIFIER, dbInstance, client)) {
 cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 if ((counter % 20) == 0) {
 std::cout << "Current DB instance status is '"
 << dbInstance.GetDBInstanceStatus()
 << "' after " << counter << " seconds." << std::endl;
 }
 } while (dbInstance.GetDBInstanceStatus() != "available");

 if (dbInstance.GetDBInstanceStatus() == "available") {
 std::cout << "The DB instance has been created." << std::endl;
 }

 printAsterisksLine();

 // 12. Display the connection string that can be used to connect a 'mysql'
 shell to the database.
 displayConnection(dbInstance);

 printAsterisksLine();

 if (askYesNoQuestion(
 "Do you want to create a snapshot of your DB instance (y/n)? ")) {
 Aws::String snapshotID(DB_INSTANCE_IDENTIFIER + "-" +
 Aws::String(Aws::Utils::UUID::RandomUUID()));
 {

Learn the basics 4771

Amazon Relational Database Service User Guide

 std::cout << "Creating a snapshot named " << snapshotID << "." <<
 std::endl;
 std::cout << "This typically takes a few minutes." << std::endl;

 // 13. Create a snapshot of the DB instance.
 Aws::RDS::Model::CreateDBSnapshotRequest request;
 request.SetDBInstanceIdentifier(DB_INSTANCE_IDENTIFIER);
 request.SetDBSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::CreateDBSnapshotOutcome outcome =
 client.CreateDBSnapshot(request);

 if (outcome.IsSuccess()) {
 std::cout << "Snapshot creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBSnapshot. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }
 }

 std::cout << "Waiting for snapshot to become available." << std::endl;

 Aws::RDS::Model::DBSnapshot snapshot;
 counter = 0;
 do {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++counter;
 if (counter > 600) {
 std::cerr << "Wait for snapshot to be available timed out ofter "
 << counter
 << " seconds." << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 // 14. Wait for the snapshot to become available.
 Aws::RDS::Model::DescribeDBSnapshotsRequest request;

Learn the basics 4772

Amazon Relational Database Service User Guide

 request.SetDBSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::DescribeDBSnapshotsOutcome outcome =
 client.DescribeDBSnapshots(request);

 if (outcome.IsSuccess()) {
 snapshot = outcome.GetResult().GetDBSnapshots()[0];
 }
 else {
 std::cerr << "Error with RDS::DescribeDBSnapshots. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 if ((counter % 20) == 0) {
 std::cout << "Current snapshot status is '"
 << snapshot.GetStatus()
 << "' after " << counter << " seconds." << std::endl;
 }
 } while (snapshot.GetStatus() != "available");

 if (snapshot.GetStatus() != "available") {
 std::cout << "A snapshot has been created." << std::endl;
 }
 }

 printAsterisksLine();

 bool result = true;
 if (askYesNoQuestion(
 "Do you want to delete the DB instance and parameter group (y/n)? "))
 {
 result = cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 }

 return result;
}

//! Routine which gets DB parameters using the 'DescribeDBParameters' api.

Learn the basics 4773

Amazon Relational Database Service User Guide

/*!
 \sa getDBParameters()
 \param parameterGroupName: The name of the parameter group.
 \param namePrefix: Prefix string to filter results by parameter name.
 \param source: A source such as 'user', ignored if empty.
 \param parametersResult: Vector of 'Parameter' objects returned by the routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::getDBParameters(const Aws::String ¶meterGroupName,
 const Aws::String &namePrefix,
 const Aws::String &source,
 Aws::Vector<Aws::RDS::Model::Parameter>
 ¶metersResult,
 const Aws::RDS::RDSClient &client) {
 Aws::String marker;
 do {
 Aws::RDS::Model::DescribeDBParametersRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }
 if (!source.empty()) {
 request.SetSource(source);
 }

 Aws::RDS::Model::DescribeDBParametersOutcome outcome =
 client.DescribeDBParameters(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::Parameter> ¶meters =
 outcome.GetResult().GetParameters();
 for (const Aws::RDS::Model::Parameter ¶meter: parameters) {
 if (!namePrefix.empty()) {
 if (parameter.GetParameterName().find(namePrefix) == 0) {
 parametersResult.push_back(parameter);
 }
 }
 else {
 parametersResult.push_back(parameter);
 }
 }

 marker = outcome.GetResult().GetMarker();

Learn the basics 4774

Amazon Relational Database Service User Guide

 }
 else {
 std::cerr << "Error with RDS::DescribeDBParameters. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!marker.empty());

 return true;
}

//! Routine which gets available DB engine versions for an engine name and
//! an optional parameter group family.
/*!
 \sa getDBEngineVersions()
 \param engineName: A DB engine name.
 \param parameterGroupFamily: A parameter group family name, ignored if empty.
 \param engineVersionsResult: Vector of 'DBEngineVersion' objects returned by the
 routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::getDBEngineVersions(const Aws::String &engineName,
 const Aws::String ¶meterGroupFamily,

 Aws::Vector<Aws::RDS::Model::DBEngineVersion> &engineVersionsResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBEngineVersionsRequest request;
 request.SetEngine(engineName);
 if (!parameterGroupFamily.empty()) {
 request.SetDBParameterGroupFamily(parameterGroupFamily);
 }

 engineVersionsResult.clear();
 Aws::String marker; // Used for pagination.

 do {
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

Learn the basics 4775

Amazon Relational Database Service User Guide

 Aws::RDS::Model::DescribeDBEngineVersionsOutcome outcome =
 client.DescribeDBEngineVersions(request);

 if (outcome.IsSuccess()) {
 auto &engineVersions = outcome.GetResult().GetDBEngineVersions();
 engineVersionsResult.insert(engineVersionsResult.end(),
 engineVersions.begin(),
 engineVersions.end());
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with RDS::DescribeDBEngineVersionsRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 } while (!marker.empty());

 return true;
}

//! Routine which gets a DB instance description.
/*!
 \sa describeDBInstance()
 \param dbInstanceIdentifier: A DB instance identifier.
 \param instanceResult: The 'DBInstance' object containing the description.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::describeDBInstance(const Aws::String &dbInstanceIdentifier,
 Aws::RDS::Model::DBInstance &instanceResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBInstancesRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);

 Aws::RDS::Model::DescribeDBInstancesOutcome outcome =
 client.DescribeDBInstances(request);

 bool result = true;
 if (outcome.IsSuccess()) {
 instanceResult = outcome.GetResult().GetDBInstances()[0];

Learn the basics 4776

Amazon Relational Database Service User Guide

 }
 else if (outcome.GetError().GetErrorType() !=
 Aws::RDS::RDSErrors::D_B_INSTANCE_NOT_FOUND_FAULT) {
 result = false;
 std::cerr << "Error with RDS::DescribeDBInstances. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 // This example does not log an error if the DB instance does not exist.
 // Instead, instanceResult is set to empty.
 else {
 instanceResult = Aws::RDS::Model::DBInstance();
 }

 return result;
}

//! Routine which gets available 'micro' DB instance classes, displays the list
//! to the user, and returns the user selection.
/*!
 \sa chooseMicroDBInstanceClass()
 \param engineName: The DB engine name.
 \param engineVersion: The DB engine version.
 \param dbInstanceClass: String for DB instance class chosen by the user.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::chooseMicroDBInstanceClass(const Aws::String &engine,
 const Aws::String &engineVersion,
 Aws::String &dbInstanceClass,
 const Aws::RDS::RDSClient &client) {
 std::vector<Aws::String> instanceClasses;
 Aws::String marker;
 do {
 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsRequest request;
 request.SetEngine(engine);
 request.SetEngineVersion(engineVersion);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsOutcome outcome =
 client.DescribeOrderableDBInstanceOptions(request);

Learn the basics 4777

Amazon Relational Database Service User Guide

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::OrderableDBInstanceOption>
 &options =
 outcome.GetResult().GetOrderableDBInstanceOptions();
 for (const Aws::RDS::Model::OrderableDBInstanceOption &option:
 options) {
 const Aws::String &instanceClass = option.GetDBInstanceClass();
 if (instanceClass.find("micro") != std::string::npos) {
 if (std::find(instanceClasses.begin(), instanceClasses.end(),
 instanceClass) ==
 instanceClasses.end()) {
 instanceClasses.push_back(instanceClass);
 }
 }
 }
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with RDS::DescribeOrderableDBInstanceOptions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!marker.empty());

 std::cout << "The available micro DB instance classes for your database
 engine are:"
 << std::endl;
 for (int i = 0; i < instanceClasses.size(); ++i) {
 std::cout << " " << i + 1 << ": " << instanceClasses[i] << std::endl;
 }

 int choice = askQuestionForIntRange(
 "Which micro DB instance class do you want to use? ",
 1, static_cast<int>(instanceClasses.size()));
 dbInstanceClass = instanceClasses[choice - 1];
 return true;
}

//! Routine which deletes resources created by the scenario.
/*!
\sa cleanUpResources()
\param parameterGroupName: A parameter group name, this may be empty.

Learn the basics 4778

Amazon Relational Database Service User Guide

\param dbInstanceIdentifier: A DB instance identifier, this may be empty.
\param client: 'RDSClient' instance.
\return bool: Successful completion.
*/
bool AwsDoc::RDS::cleanUpResources(const Aws::String ¶meterGroupName,
 const Aws::String &dbInstanceIdentifier,
 const Aws::RDS::RDSClient &client) {
 bool result = true;
 if (!dbInstanceIdentifier.empty()) {
 {
 // 15. Delete the DB instance.
 Aws::RDS::Model::DeleteDBInstanceRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);
 request.SetSkipFinalSnapshot(true);
 request.SetDeleteAutomatedBackups(true);

 Aws::RDS::Model::DeleteDBInstanceOutcome outcome =
 client.DeleteDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB instance deletion has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::DeleteDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

 std::cout
 << "Waiting for DB instance to delete before deleting the
 parameter group."
 << std::endl;
 std::cout << "This may take a while." << std::endl;

 int counter = 0;
 Aws::RDS::Model::DBInstance dbInstance;
 do {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++counter;
 if (counter > 800) {

Learn the basics 4779

Amazon Relational Database Service User Guide

 std::cerr << "Wait for instance to delete timed out ofter " <<
 counter
 << " seconds." << std::endl;
 return false;
 }

 dbInstance = Aws::RDS::Model::DBInstance();
 // 16. Wait for the DB instance to be deleted.
 if (!describeDBInstance(dbInstanceIdentifier, dbInstance, client)) {
 return false;
 }

 if (dbInstance.DBInstanceIdentifierHasBeenSet() && (counter % 20) ==
 0) {
 std::cout << "Current DB instance status is '"
 << dbInstance.GetDBInstanceStatus()
 << "' after " << counter << " seconds." << std::endl;
 }
 } while (dbInstance.DBInstanceIdentifierHasBeenSet());
 }

 if (!parameterGroupName.empty()) {
 // 17. Delete the parameter group.
 Aws::RDS::Model::DeleteDBParameterGroupRequest request;
 request.SetDBParameterGroupName(parameterGroupName);

 Aws::RDS::Model::DeleteDBParameterGroupOutcome outcome =
 client.DeleteDBParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully deleted."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::DeleteDBParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

 return result;
}

Learn the basics 4780

Amazon Relational Database Service User Guide

• For API details, see the following topics in AWS SDK for C++ API Reference.

• CreateDBInstance

• CreateDBParameterGroup

• CreateDBSnapshot

• DeleteDBInstance

• DeleteDBParameterGroup

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeDBParameterGroups

• DescribeDBParameters

• DescribeDBSnapshots

• DescribeOrderableDBInstanceOptions

• ModifyDBParameterGroup

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

import (
 "context"
 "fmt"
 "log"
 "sort"
 "strconv"
 "strings"
 "time"

Learn the basics 4781

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBParameterGroup
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBSnapshot
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBParameterGroup
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBParameterGroups
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBParameters
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBSnapshots
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/ModifyDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/rds/actions"
 "github.com/google/uuid"
)

// GetStartedInstances is an interactive example that shows you how to use the
 AWS SDK for Go
// with Amazon Relation Database Service (Amazon RDS) to do the following:
//
// 1. Create a custom DB parameter group and set parameter values.
// 2. Create a DB instance that is configured to use the parameter group. The DB
 instance
// also contains a database.
// 3. Take a snapshot of the DB instance.
// 4. Delete the DB instance and parameter group.
type GetStartedInstances struct {
 sdkConfig aws.Config
 instances actions.DbInstances
 questioner demotools.IQuestioner
 helper IScenarioHelper
 isTestRun bool
}

// NewGetStartedInstances constructs a GetStartedInstances instance from a
 configuration.
// It uses the specified config to get an Amazon RDS
// client and create wrappers for the actions used in the scenario.
func NewGetStartedInstances(sdkConfig aws.Config, questioner
 demotools.IQuestioner,
 helper IScenarioHelper) GetStartedInstances {
 rdsClient := rds.NewFromConfig(sdkConfig)
 return GetStartedInstances{
 sdkConfig: sdkConfig,
 instances: actions.DbInstances{RdsClient: rdsClient},
 questioner: questioner,
 helper: helper,
 }
}

// Run runs the interactive scenario.

Learn the basics 4782

Amazon Relational Database Service User Guide

func (scenario GetStartedInstances) Run(ctx context.Context, dbEngine string,
 parameterGroupName string,
 instanceName string, dbName string) {
 defer func() {
 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the Amazon Relational Database Service (Amazon RDS) DB
 Instance demo.")
 log.Println(strings.Repeat("-", 88))

 parameterGroup := scenario.CreateParameterGroup(ctx, dbEngine,
 parameterGroupName)
 scenario.SetUserParameters(ctx, parameterGroupName)
 instance := scenario.CreateInstance(ctx, instanceName, dbEngine, dbName,
 parameterGroup)
 scenario.DisplayConnection(instance)
 scenario.CreateSnapshot(ctx, instance)
 scenario.Cleanup(ctx, instance, parameterGroup)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

// CreateParameterGroup shows how to get available engine versions for a
 specified
// database engine and create a DB parameter group that is compatible with a
// selected engine family.
func (scenario GetStartedInstances) CreateParameterGroup(ctx context.Context,
 dbEngine string,
 parameterGroupName string) *types.DBParameterGroup {

 log.Printf("Checking for an existing DB parameter group named %v.\n",
 parameterGroupName)
 parameterGroup, err := scenario.instances.GetParameterGroup(ctx,
 parameterGroupName)
 if err != nil {
 panic(err)
 }
 if parameterGroup == nil {

Learn the basics 4783

Amazon Relational Database Service User Guide

 log.Printf("Getting available database engine versions for %v.\n", dbEngine)
 engineVersions, err := scenario.instances.GetEngineVersions(ctx, dbEngine, "")
 if err != nil {
 panic(err)
 }

 familySet := map[string]struct{}{}
 for _, family := range engineVersions {
 familySet[*family.DBParameterGroupFamily] = struct{}{}
 }
 var families []string
 for family := range familySet {
 families = append(families, family)
 }
 sort.Strings(families)
 familyIndex := scenario.questioner.AskChoice("Which family do you want to use?
\n", families)
 log.Println("Creating a DB parameter group.")
 _, err = scenario.instances.CreateParameterGroup(
 ctx, parameterGroupName, families[familyIndex], "Example parameter group.")
 if err != nil {
 panic(err)
 }
 parameterGroup, err = scenario.instances.GetParameterGroup(ctx,
 parameterGroupName)
 if err != nil {
 panic(err)
 }
 }
 log.Printf("Parameter group %v:\n", *parameterGroup.DBParameterGroupFamily)
 log.Printf("\tName: %v\n", *parameterGroup.DBParameterGroupName)
 log.Printf("\tARN: %v\n", *parameterGroup.DBParameterGroupArn)
 log.Printf("\tFamily: %v\n", *parameterGroup.DBParameterGroupFamily)
 log.Printf("\tDescription: %v\n", *parameterGroup.Description)
 log.Println(strings.Repeat("-", 88))
 return parameterGroup
}

// SetUserParameters shows how to get the parameters contained in a custom
 parameter
// group and update some of the parameter values in the group.
func (scenario GetStartedInstances) SetUserParameters(ctx context.Context,
 parameterGroupName string) {
 log.Println("Let's set some parameter values in your parameter group.")

Learn the basics 4784

Amazon Relational Database Service User Guide

 dbParameters, err := scenario.instances.GetParameters(ctx, parameterGroupName,
 "")
 if err != nil {
 panic(err)
 }
 var updateParams []types.Parameter
 for _, dbParam := range dbParameters {
 if strings.HasPrefix(*dbParam.ParameterName, "auto_increment") &&
 *dbParam.IsModifiable && *dbParam.DataType == "integer" {
 log.Printf("The %v parameter is described as:\n\t%v",
 *dbParam.ParameterName, *dbParam.Description)
 rangeSplit := strings.Split(*dbParam.AllowedValues, "-")
 lower, _ := strconv.Atoi(rangeSplit[0])
 upper, _ := strconv.Atoi(rangeSplit[1])
 newValue := scenario.questioner.AskInt(
 fmt.Sprintf("Enter a value between %v and %v:", lower, upper),
 demotools.InIntRange{Lower: lower, Upper: upper})
 dbParam.ParameterValue = aws.String(strconv.Itoa(newValue))
 updateParams = append(updateParams, dbParam)
 }
 }
 err = scenario.instances.UpdateParameters(ctx, parameterGroupName, updateParams)
 if err != nil {
 panic(err)
 }
 log.Println("To get a list of parameters that you set previously, specify a
 source of 'user'.")
 userParameters, err := scenario.instances.GetParameters(ctx, parameterGroupName,
 "user")
 if err != nil {
 panic(err)
 }
 log.Println("Here are the parameters you set:")
 for _, param := range userParameters {
 log.Printf("\t%v: %v\n", *param.ParameterName, *param.ParameterValue)
 }
 log.Println(strings.Repeat("-", 88))
}

// CreateInstance shows how to create a DB instance that contains a database of a
// specified type. The database is also configured to use a custom DB parameter
 group.
func (scenario GetStartedInstances) CreateInstance(ctx context.Context,
 instanceName string, dbEngine string,

Learn the basics 4785

Amazon Relational Database Service User Guide

 dbName string, parameterGroup *types.DBParameterGroup) *types.DBInstance {

 log.Println("Checking for an existing DB instance.")
 instance, err := scenario.instances.GetInstance(ctx, instanceName)
 if err != nil {
 panic(err)
 }
 if instance == nil {
 adminUsername := scenario.questioner.Ask(
 "Enter an administrator username for the database: ", demotools.NotEmpty{})
 adminPassword := scenario.questioner.AskPassword(
 "Enter a password for the administrator (at least 8 characters): ", 7)
 engineVersions, err := scenario.instances.GetEngineVersions(ctx, dbEngine,
 *parameterGroup.DBParameterGroupFamily)
 if err != nil {
 panic(err)
 }
 var engineChoices []string
 for _, engine := range engineVersions {
 engineChoices = append(engineChoices, *engine.EngineVersion)
 }
 engineIndex := scenario.questioner.AskChoice(
 "The available engines for your parameter group are:\n", engineChoices)
 engineSelection := engineVersions[engineIndex]
 instOpts, err := scenario.instances.GetOrderableInstances(ctx,
 *engineSelection.Engine,
 *engineSelection.EngineVersion)
 if err != nil {
 panic(err)
 }
 optSet := map[string]struct{}{}
 for _, opt := range instOpts {
 if strings.Contains(*opt.DBInstanceClass, "micro") {
 optSet[*opt.DBInstanceClass] = struct{}{}
 }
 }
 var optChoices []string
 for opt := range optSet {
 optChoices = append(optChoices, opt)
 }
 sort.Strings(optChoices)
 optIndex := scenario.questioner.AskChoice(
 "The available micro DB instance classes for your database engine are:\n",
 optChoices)

Learn the basics 4786

Amazon Relational Database Service User Guide

 storageType := "standard"
 allocatedStorage := int32(5)
 log.Printf("Creating a DB instance named %v and database %v.\n"+
 "The DB instance is configured to use your custom parameter group %v,\n"+
 "selected engine %v,\n"+
 "selected DB instance class %v,"+
 "and %v GiB of %v storage.\n"+
 "This typically takes several minutes.",
 instanceName, dbName, *parameterGroup.DBParameterGroupName,
 *engineSelection.EngineVersion,
 optChoices[optIndex], allocatedStorage, storageType)
 instance, err = scenario.instances.CreateInstance(
 ctx, instanceName, dbName, *engineSelection.Engine,
 *engineSelection.EngineVersion,
 *parameterGroup.DBParameterGroupName, optChoices[optIndex], storageType,
 allocatedStorage, adminUsername, adminPassword)
 if err != nil {
 panic(err)
 }
 for *instance.DBInstanceStatus != "available" {
 scenario.helper.Pause(30)
 instance, err = scenario.instances.GetInstance(ctx, instanceName)
 if err != nil {
 panic(err)
 }
 }
 log.Println("Instance created and available.")
 }
 log.Println("Instance data:")
 log.Printf("\tDBInstanceIdentifier: %v\n", *instance.DBInstanceIdentifier)
 log.Printf("\tARN: %v\n", *instance.DBInstanceArn)
 log.Printf("\tStatus: %v\n", *instance.DBInstanceStatus)
 log.Printf("\tEngine: %v\n", *instance.Engine)
 log.Printf("\tEngine version: %v\n", *instance.EngineVersion)
 log.Println(strings.Repeat("-", 88))
 return instance
}

// DisplayConnection displays connection information about a DB instance and tips
// on how to connect to it.
func (scenario GetStartedInstances) DisplayConnection(instance *types.DBInstance)
 {
 log.Println(
 "You can now connect to your database by using your favorite MySQL client.\n" +

Learn the basics 4787

Amazon Relational Database Service User Guide

 "One way to connect is by using the 'mysql' shell on an Amazon EC2 instance\n"
 +
 "that is running in the same VPC as your DB instance. Pass the endpoint,\n" +
 "port, and administrator username to 'mysql'. Then, enter your password\n" +
 "when prompted:")
 log.Printf("\n\tmysql -h %v -P %v -u %v -p\n",
 *instance.Endpoint.Address, instance.Endpoint.Port, *instance.MasterUsername)
 log.Println("For more information, see the User Guide for RDS:\n" +
 "\thttps://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
CHAP_GettingStarted.CreatingConnecting.MySQL.html#CHAP_GettingStarted.Connecting.MySQL")
 log.Println(strings.Repeat("-", 88))
}

// CreateSnapshot shows how to create a DB instance snapshot and wait until it's
 available.
func (scenario GetStartedInstances) CreateSnapshot(ctx context.Context, instance
 *types.DBInstance) {
 if scenario.questioner.AskBool(
 "Do you want to create a snapshot of your DB instance (y/n)? ", "y") {
 snapshotId := fmt.Sprintf("%v-%v", *instance.DBInstanceIdentifier,
 scenario.helper.UniqueId())
 log.Printf("Creating a snapshot named %v. This typically takes a few minutes.
\n", snapshotId)
 snapshot, err := scenario.instances.CreateSnapshot(ctx,
 *instance.DBInstanceIdentifier, snapshotId)
 if err != nil {
 panic(err)
 }
 for *snapshot.Status != "available" {
 scenario.helper.Pause(30)
 snapshot, err = scenario.instances.GetSnapshot(ctx, snapshotId)
 if err != nil {
 panic(err)
 }
 }
 log.Println("Snapshot data:")
 log.Printf("\tDBSnapshotIdentifier: %v\n", *snapshot.DBSnapshotIdentifier)
 log.Printf("\tARN: %v\n", *snapshot.DBSnapshotArn)
 log.Printf("\tStatus: %v\n", *snapshot.Status)
 log.Printf("\tEngine: %v\n", *snapshot.Engine)
 log.Printf("\tEngine version: %v\n", *snapshot.EngineVersion)
 log.Printf("\tDBInstanceIdentifier: %v\n", *snapshot.DBInstanceIdentifier)
 log.Printf("\tSnapshotCreateTime: %v\n", *snapshot.SnapshotCreateTime)
 log.Println(strings.Repeat("-", 88))

Learn the basics 4788

Amazon Relational Database Service User Guide

 }
}

// Cleanup shows how to clean up a DB instance and DB parameter group.
// Before the DB parameter group can be deleted, all associated DB instances must
 first be deleted.
func (scenario GetStartedInstances) Cleanup(
 ctx context.Context, instance *types.DBInstance, parameterGroup
 *types.DBParameterGroup) {

 if scenario.questioner.AskBool(
 "\nDo you want to delete the database instance and parameter group (y/n)? ",
 "y") {
 log.Printf("Deleting database instance %v.\n", *instance.DBInstanceIdentifier)
 err := scenario.instances.DeleteInstance(ctx, *instance.DBInstanceIdentifier)
 if err != nil {
 panic(err)
 }
 log.Println(
 "Waiting for the DB instance to delete. This typically takes several
 minutes.")
 for instance != nil {
 scenario.helper.Pause(30)
 instance, err = scenario.instances.GetInstance(ctx,
 *instance.DBInstanceIdentifier)
 if err != nil {
 panic(err)
 }
 }
 log.Printf("Deleting parameter group %v.",
 *parameterGroup.DBParameterGroupName)
 err = scenario.instances.DeleteParameterGroup(ctx,
 *parameterGroup.DBParameterGroupName)
 if err != nil {
 panic(err)
 }
 }
}

// IScenarioHelper abstracts the function from a scenario so that it
// can be mocked for unit testing.
type IScenarioHelper interface {
 Pause(secs int)
 UniqueId() string

Learn the basics 4789

Amazon Relational Database Service User Guide

}
type ScenarioHelper struct{}

// Pause waits for the specified number of seconds.
func (helper ScenarioHelper) Pause(secs int) {
 time.Sleep(time.Duration(secs) * time.Second)
}

// UniqueId returns a new UUID.
func (helper ScenarioHelper) UniqueId() string {
 return uuid.New().String()
}

Define functions that are called by the scenario to manage Amazon RDS actions.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// GetParameterGroup gets a DB parameter group by name.
func (instances *DbInstances) GetParameterGroup(ctx context.Context,
 parameterGroupName string) (
 *types.DBParameterGroup, error) {
 output, err := instances.RdsClient.DescribeDBParameterGroups(
 ctx, &rds.DescribeDBParameterGroupsInput{
 DBParameterGroupName: aws.String(parameterGroupName),
 })
 if err != nil {
 var notFoundError *types.DBParameterGroupNotFoundFault

Learn the basics 4790

Amazon Relational Database Service User Guide

 if errors.As(err, ¬FoundError) {
 log.Printf("Parameter group %v does not exist.\n", parameterGroupName)
 err = nil
 } else {
 log.Printf("Error getting parameter group %v: %v\n", parameterGroupName, err)
 }
 return nil, err
 } else {
 return &output.DBParameterGroups[0], err
 }
}

// CreateParameterGroup creates a DB parameter group that is based on the
 specified
// parameter group family.
func (instances *DbInstances) CreateParameterGroup(
 ctx context.Context, parameterGroupName string, parameterGroupFamily string,
 description string) (
 *types.DBParameterGroup, error) {

 output, err := instances.RdsClient.CreateDBParameterGroup(ctx,
 &rds.CreateDBParameterGroupInput{
 DBParameterGroupName: aws.String(parameterGroupName),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 Description: aws.String(description),
 })
 if err != nil {
 log.Printf("Couldn't create parameter group %v: %v\n", parameterGroupName, err)
 return nil, err
 } else {
 return output.DBParameterGroup, err
 }
}

// DeleteParameterGroup deletes the named DB parameter group.
func (instances *DbInstances) DeleteParameterGroup(ctx context.Context,
 parameterGroupName string) error {
 _, err := instances.RdsClient.DeleteDBParameterGroup(ctx,
 &rds.DeleteDBParameterGroupInput{
 DBParameterGroupName: aws.String(parameterGroupName),

Learn the basics 4791

Amazon Relational Database Service User Guide

 })
 if err != nil {
 log.Printf("Couldn't delete parameter group %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil
 }
}

// GetParameters gets the parameters that are contained in a DB parameter group.
func (instances *DbInstances) GetParameters(ctx context.Context,
 parameterGroupName string, source string) (
 []types.Parameter, error) {

 var output *rds.DescribeDBParametersOutput
 var params []types.Parameter
 var err error
 parameterPaginator := rds.NewDescribeDBParametersPaginator(instances.RdsClient,
 &rds.DescribeDBParametersInput{
 DBParameterGroupName: aws.String(parameterGroupName),
 Source: aws.String(source),
 })
 for parameterPaginator.HasMorePages() {
 output, err = parameterPaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get parameters for %v: %v\n", parameterGroupName, err)
 break
 } else {
 params = append(params, output.Parameters...)
 }
 }
 return params, err
}

// UpdateParameters updates parameters in a named DB parameter group.
func (instances *DbInstances) UpdateParameters(ctx context.Context,
 parameterGroupName string, params []types.Parameter) error {
 _, err := instances.RdsClient.ModifyDBParameterGroup(ctx,
 &rds.ModifyDBParameterGroupInput{
 DBParameterGroupName: aws.String(parameterGroupName),

Learn the basics 4792

Amazon Relational Database Service User Guide

 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't update parameters in %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil
 }
}

// CreateSnapshot creates a snapshot of a DB instance.
func (instances *DbInstances) CreateSnapshot(ctx context.Context, instanceName
 string, snapshotName string) (
 *types.DBSnapshot, error) {
 output, err := instances.RdsClient.CreateDBSnapshot(ctx,
 &rds.CreateDBSnapshotInput{
 DBInstanceIdentifier: aws.String(instanceName),
 DBSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't create snapshot %v: %v\n", snapshotName, err)
 return nil, err
 } else {
 return output.DBSnapshot, nil
 }
}

// GetSnapshot gets a DB instance snapshot.
func (instances *DbInstances) GetSnapshot(ctx context.Context, snapshotName
 string) (*types.DBSnapshot, error) {
 output, err := instances.RdsClient.DescribeDBSnapshots(ctx,
 &rds.DescribeDBSnapshotsInput{
 DBSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't get snapshot %v: %v\n", snapshotName, err)
 return nil, err
 } else {
 return &output.DBSnapshots[0], nil
 }

Learn the basics 4793

Amazon Relational Database Service User Guide

}

// CreateInstance creates a DB instance.
func (instances *DbInstances) CreateInstance(ctx context.Context, instanceName
 string, dbName string,
 dbEngine string, dbEngineVersion string, parameterGroupName string,
 dbInstanceClass string,
 storageType string, allocatedStorage int32, adminName string, adminPassword
 string) (
 *types.DBInstance, error) {
 output, err := instances.RdsClient.CreateDBInstance(ctx,
 &rds.CreateDBInstanceInput{
 DBInstanceIdentifier: aws.String(instanceName),
 DBName: aws.String(dbName),
 DBParameterGroupName: aws.String(parameterGroupName),
 Engine: aws.String(dbEngine),
 EngineVersion: aws.String(dbEngineVersion),
 DBInstanceClass: aws.String(dbInstanceClass),
 StorageType: aws.String(storageType),
 AllocatedStorage: aws.Int32(allocatedStorage),
 MasterUsername: aws.String(adminName),
 MasterUserPassword: aws.String(adminPassword),
 })
 if err != nil {
 log.Printf("Couldn't create instance %v: %v\n", instanceName, err)
 return nil, err
 } else {
 return output.DBInstance, nil
 }
}

// GetInstance gets data about a DB instance.
func (instances *DbInstances) GetInstance(ctx context.Context, instanceName
 string) (
 *types.DBInstance, error) {
 output, err := instances.RdsClient.DescribeDBInstances(ctx,
 &rds.DescribeDBInstancesInput{
 DBInstanceIdentifier: aws.String(instanceName),
 })
 if err != nil {

Learn the basics 4794

Amazon Relational Database Service User Guide

 var notFoundError *types.DBInstanceNotFoundFault
 if errors.As(err, ¬FoundError) {
 log.Printf("DB instance %v does not exist.\n", instanceName)
 err = nil
 } else {
 log.Printf("Couldn't get instance %v: %v\n", instanceName, err)
 }
 return nil, err
 } else {
 return &output.DBInstances[0], nil
 }
}

// DeleteInstance deletes a DB instance.
func (instances *DbInstances) DeleteInstance(ctx context.Context, instanceName
 string) error {
 _, err := instances.RdsClient.DeleteDBInstance(ctx, &rds.DeleteDBInstanceInput{
 DBInstanceIdentifier: aws.String(instanceName),
 SkipFinalSnapshot: aws.Bool(true),
 DeleteAutomatedBackups: aws.Bool(true),
 })
 if err != nil {
 log.Printf("Couldn't delete instance %v: %v\n", instanceName, err)
 return err
 } else {
 return nil
 }
}

// GetEngineVersions gets database engine versions that are available for the
 specified engine
// and parameter group family.
func (instances *DbInstances) GetEngineVersions(ctx context.Context, engine
 string, parameterGroupFamily string) (
 []types.DBEngineVersion, error) {
 output, err := instances.RdsClient.DescribeDBEngineVersions(ctx,
 &rds.DescribeDBEngineVersionsInput{
 Engine: aws.String(engine),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 })

Learn the basics 4795

Amazon Relational Database Service User Guide

 if err != nil {
 log.Printf("Couldn't get engine versions for %v: %v\n", engine, err)
 return nil, err
 } else {
 return output.DBEngineVersions, nil
 }
}

// GetOrderableInstances uses a paginator to get DB instance options that can be
 used to create DB instances that are
// compatible with a set of specifications.
func (instances *DbInstances) GetOrderableInstances(ctx context.Context, engine
 string, engineVersion string) (
 []types.OrderableDBInstanceOption, error) {

 var output *rds.DescribeOrderableDBInstanceOptionsOutput
 var instanceOptions []types.OrderableDBInstanceOption
 var err error
 orderablePaginator :=
 rds.NewDescribeOrderableDBInstanceOptionsPaginator(instances.RdsClient,
 &rds.DescribeOrderableDBInstanceOptionsInput{
 Engine: aws.String(engine),
 EngineVersion: aws.String(engineVersion),
 })
 for orderablePaginator.HasMorePages() {
 output, err = orderablePaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get orderable DB instance options: %v\n", err)
 break
 } else {
 instanceOptions = append(instanceOptions,
 output.OrderableDBInstanceOptions...)
 }
 }
 return instanceOptions, err
}

• For API details, see the following topics in AWS SDK for Go API Reference.

• CreateDBInstance

Learn the basics 4796

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBInstance

Amazon Relational Database Service User Guide

• CreateDBParameterGroup

• CreateDBSnapshot

• DeleteDBInstance

• DeleteDBParameterGroup

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeDBParameterGroups

• DescribeDBParameters

• DescribeDBSnapshots

• DescribeOrderableDBInstanceOptions

• ModifyDBParameterGroup

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run multiple operations.

import com.google.gson.Gson;
import
 software.amazon.awssdk.auth.credentials.EnvironmentVariableCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.CreateDbInstanceRequest;
import software.amazon.awssdk.services.rds.model.CreateDbInstanceResponse;
import software.amazon.awssdk.services.rds.model.CreateDbParameterGroupResponse;
import software.amazon.awssdk.services.rds.model.CreateDbSnapshotRequest;
import software.amazon.awssdk.services.rds.model.CreateDbSnapshotResponse;
import software.amazon.awssdk.services.rds.model.DBEngineVersion;
import software.amazon.awssdk.services.rds.model.DBInstance;
import software.amazon.awssdk.services.rds.model.DBParameterGroup;

Learn the basics 4797

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBParameterGroup
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBSnapshot
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBInstance
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBParameterGroup
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBEngineVersions
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBInstances
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBParameterGroups
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBParameters
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBSnapshots
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeOrderableDBInstanceOptions
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.ModifyDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

import software.amazon.awssdk.services.rds.model.DBSnapshot;
import software.amazon.awssdk.services.rds.model.DeleteDbInstanceRequest;
import software.amazon.awssdk.services.rds.model.DeleteDbInstanceResponse;
import software.amazon.awssdk.services.rds.model.DescribeDbEngineVersionsRequest;
import
 software.amazon.awssdk.services.rds.model.DescribeDbEngineVersionsResponse;
import software.amazon.awssdk.services.rds.model.DescribeDbInstancesRequest;
import software.amazon.awssdk.services.rds.model.DescribeDbInstancesResponse;
import
 software.amazon.awssdk.services.rds.model.DescribeDbParameterGroupsResponse;
import software.amazon.awssdk.services.rds.model.DescribeDbParametersResponse;
import software.amazon.awssdk.services.rds.model.DescribeDbSnapshotsRequest;
import software.amazon.awssdk.services.rds.model.DescribeDbSnapshotsResponse;
import
 software.amazon.awssdk.services.rds.model.DescribeOrderableDbInstanceOptionsResponse;
import software.amazon.awssdk.services.rds.model.ModifyDbParameterGroupResponse;
import software.amazon.awssdk.services.rds.model.OrderableDBInstanceOption;
import software.amazon.awssdk.services.rds.model.Parameter;
import software.amazon.awssdk.services.rds.model.RdsException;
import software.amazon.awssdk.services.rds.model.CreateDbParameterGroupRequest;
import
 software.amazon.awssdk.services.rds.model.DescribeDbParameterGroupsRequest;
import software.amazon.awssdk.services.rds.model.DescribeDbParametersRequest;
import software.amazon.awssdk.services.rds.model.ModifyDbParameterGroupRequest;
import
 software.amazon.awssdk.services.rds.model.DescribeOrderableDbInstanceOptionsRequest;
import software.amazon.awssdk.services.rds.model.DeleteDbParameterGroupRequest;
import software.amazon.awssdk.services.secretsmanager.SecretsManagerClient;
import
 software.amazon.awssdk.services.secretsmanager.model.GetSecretValueRequest;
import
 software.amazon.awssdk.services.secretsmanager.model.GetSecretValueResponse;
import java.util.ArrayList;
import java.util.List;

/**
 * Before running this Java (v2) code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *

Learn the basics 4798

Amazon Relational Database Service User Guide

 * This example requires an AWS Secrets Manager secret that contains the
 * database credentials. If you do not create a
 * secret, this example will not work. For details, see:
 *
 * https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_how-
services-use-secrets_RS.html
 *
 * This Java example performs these tasks:
 *
 * 1. Returns a list of the available DB engines.
 * 2. Selects an engine family and create a custom DB parameter group.
 * 3. Gets the parameter groups.
 * 4. Gets parameters in the group.
 * 5. Modifies the auto_increment_offset parameter.
 * 6. Gets and displays the updated parameters.
 * 7. Gets a list of allowed engine versions.
 * 8. Gets a list of micro instance classes available for the selected engine.
 * 9. Creates an RDS database instance that contains a MySql database and uses
 * the parameter group.
 * 10. Waits for the DB instance to be ready and prints out the connection
 * endpoint value.
 * 11. Creates a snapshot of the DB instance.
 * 12. Waits for an RDS DB snapshot to be ready.
 * 13. Deletes the RDS DB instance.
 * 14. Deletes the parameter group.
 */
public class RDSScenario {
 public static long sleepTime = 20;
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws InterruptedException {
 final String usage = """

 Usage:
 <dbGroupName> <dbParameterGroupFamily> <dbInstanceIdentifier>
 <dbName> <dbSnapshotIdentifier> <secretName>

 Where:
 dbGroupName - The database group name.\s
 dbParameterGroupFamily - The database parameter group name
 (for example, mysql8.0).
 dbInstanceIdentifier - The database instance identifier\s
 dbName - The database name.\s

Learn the basics 4799

Amazon Relational Database Service User Guide

 dbSnapshotIdentifier - The snapshot identifier.\s
 secretName - The name of the AWS Secrets Manager secret that
 contains the database credentials"
 """;

 if (args.length != 6) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbGroupName = args[0];
 String dbParameterGroupFamily = args[1];
 String dbInstanceIdentifier = args[2];
 String dbName = args[3];
 String dbSnapshotIdentifier = args[4];
 String secretName = args[5];

 Gson gson = new Gson();
 User user = gson.fromJson(String.valueOf(getSecretValues(secretName)),
 User.class);
 String masterUsername = user.getUsername();
 String masterUserPassword = user.getPassword();

 Region region = Region.US_WEST_2;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();
 System.out.println(DASHES);
 System.out.println("Welcome to the Amazon RDS example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("1. Return a list of the available DB engines");
 describeDBEngines(rdsClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Create a custom parameter group");
 createDBParameterGroup(rdsClient, dbGroupName, dbParameterGroupFamily);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Get the parameter group");
 describeDbParameterGroups(rdsClient, dbGroupName);

Learn the basics 4800

Amazon Relational Database Service User Guide

 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Get the parameters in the group");
 describeDbParameters(rdsClient, dbGroupName, 0);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Modify the auto_increment_offset parameter");
 modifyDBParas(rdsClient, dbGroupName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Display the updated value");
 describeDbParameters(rdsClient, dbGroupName, -1);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Get a list of allowed engine versions");
 getAllowedEngines(rdsClient, dbParameterGroupFamily);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Get a list of micro instance classes available for
 the selected engine");
 getMicroInstances(rdsClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(
 "9. Create an RDS database instance that contains a MySql
 database and uses the parameter group");
 String dbARN = createDatabaseInstance(rdsClient, dbGroupName,
 dbInstanceIdentifier, dbName, masterUsername,
 masterUserPassword);
 System.out.println("The ARN of the new database is " + dbARN);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("10. Wait for DB instance to be ready");
 waitForInstanceReady(rdsClient, dbInstanceIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);

Learn the basics 4801

Amazon Relational Database Service User Guide

 System.out.println("11. Create a snapshot of the DB instance");
 createSnapshot(rdsClient, dbInstanceIdentifier, dbSnapshotIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("12. Wait for DB snapshot to be ready");
 waitForSnapshotReady(rdsClient, dbInstanceIdentifier,
 dbSnapshotIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("13. Delete the DB instance");
 deleteDatabaseInstance(rdsClient, dbInstanceIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("14. Delete the parameter group");
 deleteParaGroup(rdsClient, dbGroupName, dbARN);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("The Scenario has successfully completed.");
 System.out.println(DASHES);

 rdsClient.close();
 }

 private static SecretsManagerClient getSecretClient() {
 Region region = Region.US_WEST_2;
 return SecretsManagerClient.builder()
 .region(region)
 .build();
 }

 public static String getSecretValues(String secretName) {
 SecretsManagerClient secretClient = getSecretClient();
 GetSecretValueRequest valueRequest = GetSecretValueRequest.builder()
 .secretId(secretName)
 .build();

 GetSecretValueResponse valueResponse =
 secretClient.getSecretValue(valueRequest);
 return valueResponse.secretString();
 }

Learn the basics 4802

Amazon Relational Database Service User Guide

 // Delete the parameter group after database has been deleted.
 // An exception is thrown if you attempt to delete the para group while
 database
 // exists.
 public static void deleteParaGroup(RdsClient rdsClient, String dbGroupName,
 String dbARN)
 throws InterruptedException {
 try {
 boolean isDataDel = false;
 boolean didFind;
 String instanceARN;

 // Make sure that the database has been deleted.
 while (!isDataDel) {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances();
 List<DBInstance> instanceList = response.dbInstances();
 int listSize = instanceList.size();
 didFind = false;
 int index = 1;
 for (DBInstance instance : instanceList) {
 instanceARN = instance.dbInstanceArn();
 if (instanceARN.compareTo(dbARN) == 0) {
 System.out.println(dbARN + " still exists");
 didFind = true;
 }
 if ((index == listSize) && (!didFind)) {
 // Went through the entire list and did not find the
 database ARN.
 isDataDel = true;
 }
 Thread.sleep(sleepTime * 1000);
 index++;
 }
 }

 // Delete the para group.
 DeleteDbParameterGroupRequest parameterGroupRequest =
 DeleteDbParameterGroupRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .build();

 rdsClient.deleteDBParameterGroup(parameterGroupRequest);

Learn the basics 4803

Amazon Relational Database Service User Guide

 System.out.println(dbGroupName + " was deleted.");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Delete the DB instance.
 public static void deleteDatabaseInstance(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 try {
 DeleteDbInstanceRequest deleteDbInstanceRequest =
 DeleteDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .deleteAutomatedBackups(true)
 .skipFinalSnapshot(true)
 .build();

 DeleteDbInstanceResponse response =
 rdsClient.deleteDBInstance(deleteDbInstanceRequest);
 System.out.print("The status of the database is " +
 response.dbInstance().dbInstanceStatus());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Waits until the snapshot instance is available.
 public static void waitForSnapshotReady(RdsClient rdsClient, String
 dbInstanceIdentifier,
 String dbSnapshotIdentifier) {
 try {
 boolean snapshotReady = false;
 String snapshotReadyStr;
 System.out.println("Waiting for the snapshot to become available.");

 DescribeDbSnapshotsRequest snapshotsRequest =
 DescribeDbSnapshotsRequest.builder()
 .dbSnapshotIdentifier(dbSnapshotIdentifier)
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .build();

Learn the basics 4804

Amazon Relational Database Service User Guide

 while (!snapshotReady) {
 DescribeDbSnapshotsResponse response =
 rdsClient.describeDBSnapshots(snapshotsRequest);
 List<DBSnapshot> snapshotList = response.dbSnapshots();
 for (DBSnapshot snapshot : snapshotList) {
 snapshotReadyStr = snapshot.status();
 if (snapshotReadyStr.contains("available")) {
 snapshotReady = true;
 } else {
 System.out.print(".");
 Thread.sleep(sleepTime * 1000);
 }
 }
 }

 System.out.println("The Snapshot is available!");
 } catch (RdsException | InterruptedException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Create an Amazon RDS snapshot.
 public static void createSnapshot(RdsClient rdsClient, String
 dbInstanceIdentifier, String dbSnapshotIdentifier) {
 try {
 CreateDbSnapshotRequest snapshotRequest =
 CreateDbSnapshotRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .dbSnapshotIdentifier(dbSnapshotIdentifier)
 .build();

 CreateDbSnapshotResponse response =
 rdsClient.createDBSnapshot(snapshotRequest);
 System.out.println("The Snapshot id is " +
 response.dbSnapshot().dbiResourceId());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

Learn the basics 4805

Amazon Relational Database Service User Guide

 // Waits until the database instance is available.
 public static void waitForInstanceReady(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 boolean instanceReady = false;
 String instanceReadyStr;
 System.out.println("Waiting for instance to become available.");
 try {
 DescribeDbInstancesRequest instanceRequest =
 DescribeDbInstancesRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .build();

 String endpoint = "";
 while (!instanceReady) {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances(instanceRequest);
 List<DBInstance> instanceList = response.dbInstances();
 for (DBInstance instance : instanceList) {
 instanceReadyStr = instance.dbInstanceStatus();
 if (instanceReadyStr.contains("available")) {
 endpoint = instance.endpoint().address();
 instanceReady = true;
 } else {
 System.out.print(".");
 Thread.sleep(sleepTime * 1000);
 }
 }
 }
 System.out.println("Database instance is available! The connection
 endpoint is " + endpoint);

 } catch (RdsException | InterruptedException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 // Create a database instance and return the ARN of the database.
 public static String createDatabaseInstance(RdsClient rdsClient,
 String dbGroupName,
 String dbInstanceIdentifier,
 String dbName,
 String userName,
 String userPassword) {

Learn the basics 4806

Amazon Relational Database Service User Guide

 try {
 CreateDbInstanceRequest instanceRequest =
 CreateDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .allocatedStorage(100)
 .dbName(dbName)
 .engine("mysql")
 .dbInstanceClass("db.t3.medium") // Updated to a supported class
 .engineVersion("8.0.32") // Updated to a supported
 version
 .storageType("gp2") // Changed to General Purpose SSD
 (gp2)
 .masterUsername(userName)
 .masterUserPassword(userPassword)
 .build();

 CreateDbInstanceResponse response =
 rdsClient.createDBInstance(instanceRequest);
 System.out.print("The status is " +
 response.dbInstance().dbInstanceStatus());
 return response.dbInstance().dbInstanceArn();

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }

 return "";
 }

 // Get a list of micro instances.
 public static void getMicroInstances(RdsClient rdsClient) {
 try {
 DescribeOrderableDbInstanceOptionsRequest dbInstanceOptionsRequest =
 DescribeOrderableDbInstanceOptionsRequest
 .builder()
 .engine("mysql")
 .build();

 DescribeOrderableDbInstanceOptionsResponse response = rdsClient

 .describeOrderableDBInstanceOptions(dbInstanceOptionsRequest);

Learn the basics 4807

Amazon Relational Database Service User Guide

 List<OrderableDBInstanceOption> orderableDBInstances =
 response.orderableDBInstanceOptions();
 for (OrderableDBInstanceOption dbInstanceOption :
 orderableDBInstances) {
 System.out.println("The engine version is " +
 dbInstanceOption.engineVersion());
 System.out.println("The engine description is " +
 dbInstanceOption.engine());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Get a list of allowed engine versions.
 public static void getAllowedEngines(RdsClient rdsClient, String
 dbParameterGroupFamily) {
 try {
 DescribeDbEngineVersionsRequest versionsRequest =
 DescribeDbEngineVersionsRequest.builder()
 .dbParameterGroupFamily(dbParameterGroupFamily)
 .engine("mysql")
 .build();

 DescribeDbEngineVersionsResponse response =
 rdsClient.describeDBEngineVersions(versionsRequest);
 List<DBEngineVersion> dbEngines = response.dbEngineVersions();
 for (DBEngineVersion dbEngine : dbEngines) {
 System.out.println("The engine version is " +
 dbEngine.engineVersion());
 System.out.println("The engine description is " +
 dbEngine.dbEngineDescription());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Modify auto_increment_offset and auto_increment_increment parameters.
 public static void modifyDBParas(RdsClient rdsClient, String dbGroupName) {

Learn the basics 4808

Amazon Relational Database Service User Guide

 try {
 Parameter parameter1 = Parameter.builder()
 .parameterName("auto_increment_offset")
 .applyMethod("immediate")
 .parameterValue("5")
 .build();

 List<Parameter> paraList = new ArrayList<>();
 paraList.add(parameter1);
 ModifyDbParameterGroupRequest groupRequest =
 ModifyDbParameterGroupRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .parameters(paraList)
 .build();

 ModifyDbParameterGroupResponse response =
 rdsClient.modifyDBParameterGroup(groupRequest);
 System.out.println("The parameter group " +
 response.dbParameterGroupName() + " was successfully modified");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Retrieve parameters in the group.
 public static void describeDbParameters(RdsClient rdsClient, String
 dbGroupName, int flag) {
 try {
 DescribeDbParametersRequest dbParameterGroupsRequest;
 if (flag == 0) {
 dbParameterGroupsRequest = DescribeDbParametersRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .build();
 } else {
 dbParameterGroupsRequest = DescribeDbParametersRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .source("user")
 .build();
 }

 DescribeDbParametersResponse response =
 rdsClient.describeDBParameters(dbParameterGroupsRequest);

Learn the basics 4809

Amazon Relational Database Service User Guide

 List<Parameter> dbParameters = response.parameters();
 String paraName;
 for (Parameter para : dbParameters) {
 // Only print out information about either auto_increment_offset
 or
 // auto_increment_increment.
 paraName = para.parameterName();
 if ((paraName.compareTo("auto_increment_offset") == 0)
 || (paraName.compareTo("auto_increment_increment ") ==
 0)) {
 System.out.println("*** The parameter name is " + paraName);
 System.out.println("*** The parameter value is " +
 para.parameterValue());
 System.out.println("*** The parameter data type is " +
 para.dataType());
 System.out.println("*** The parameter description is " +
 para.description());
 System.out.println("*** The parameter allowed values is " +
 para.allowedValues());
 }
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void describeDbParameterGroups(RdsClient rdsClient, String
 dbGroupName) {
 try {
 DescribeDbParameterGroupsRequest groupsRequest =
 DescribeDbParameterGroupsRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .maxRecords(20)
 .build();

 DescribeDbParameterGroupsResponse response =
 rdsClient.describeDBParameterGroups(groupsRequest);
 List<DBParameterGroup> groups = response.dbParameterGroups();
 for (DBParameterGroup group : groups) {
 System.out.println("The group name is " +
 group.dbParameterGroupName());

Learn the basics 4810

Amazon Relational Database Service User Guide

 System.out.println("The group description is " +
 group.description());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void createDBParameterGroup(RdsClient rdsClient, String
 dbGroupName, String dbParameterGroupFamily) {
 try {
 CreateDbParameterGroupRequest groupRequest =
 CreateDbParameterGroupRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .dbParameterGroupFamily(dbParameterGroupFamily)
 .description("Created by using the AWS SDK for Java")
 .build();

 CreateDbParameterGroupResponse response =
 rdsClient.createDBParameterGroup(groupRequest);
 System.out.println("The group name is " +
 response.dbParameterGroup().dbParameterGroupName());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void describeDBEngines(RdsClient rdsClient) {
 try {
 DescribeDbEngineVersionsRequest engineVersionsRequest =
 DescribeDbEngineVersionsRequest.builder()
 .defaultOnly(true)
 .engine("mysql")
 .maxRecords(20)
 .build();

 DescribeDbEngineVersionsResponse response =
 rdsClient.describeDBEngineVersions(engineVersionsRequest);
 List<DBEngineVersion> engines = response.dbEngineVersions();

Learn the basics 4811

Amazon Relational Database Service User Guide

 // Get all DBEngineVersion objects.
 for (DBEngineVersion engineOb : engines) {
 System.out.println("The name of the DB parameter group family for
 the database engine is "
 + engineOb.dbParameterGroupFamily());
 System.out.println("The name of the database engine " +
 engineOb.engine());
 System.out.println("The version number of the database engine " +
 engineOb.engineVersion());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateDBInstance

• CreateDBParameterGroup

• CreateDBSnapshot

• DeleteDBInstance

• DeleteDBParameterGroup

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeDBParameterGroups

• DescribeDBParameters

• DescribeDBSnapshots

• DescribeOrderableDBInstanceOptions

• ModifyDBParameterGroup

Learn the basics 4812

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBParameterGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBSnapshot
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBParameterGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBParameterGroups
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBParameters
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBSnapshots
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/ModifyDBParameterGroup

Amazon Relational Database Service User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
Before running this code example, set up your development environment, including
 your credentials.

For more information, see the following documentation topic:

https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

This example requires an AWS Secrets Manager secret that contains the database
 credentials. If you do not create a
secret, this example will not work. For more details, see:

https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_how-
services-use-secrets_RS.html

This example performs the following tasks:

1. Returns a list of the available DB engines by invoking the
 DescribeDbEngineVersions method.
2. Selects an engine family and create a custom DB parameter group by invoking
 the createDBParameterGroup method.
3. Gets the parameter groups by invoking the DescribeDbParameterGroups method.
4. Gets parameters in the group by invoking the DescribeDbParameters method.
5. Modifies both the auto_increment_offset and auto_increment_increment
 parameters by invoking the modifyDbParameterGroup method.
6. Gets and displays the updated parameters.
7. Gets a list of allowed engine versions by invoking the
 describeDbEngineVersions method.
8. Gets a list of micro instance classes available for the selected engine.
9. Creates an Amazon Relational Database Service (Amazon RDS) database instance
 that contains a MySQL database and uses the parameter group.

Learn the basics 4813

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Relational Database Service User Guide

10. Waits for DB instance to be ready and prints out the connection endpoint
 value.
11. Creates a snapshot of the DB instance.
12. Waits for the DB snapshot to be ready.
13. Deletes the DB instance.
14. Deletes the parameter group.
 */

var sleepTime: Long = 20

suspend fun main(args: Array<String>) {
 val usage = """
 Usage:
 <dbGroupName> <dbParameterGroupFamily> <dbInstanceIdentifier>
 <dbName> <dbSnapshotIdentifier><secretName>

 Where:
 dbGroupName - The database group name.
 dbParameterGroupFamily - The database parameter group name.
 dbInstanceIdentifier - The database instance identifier.
 dbName - The database name.
 dbSnapshotIdentifier - The snapshot identifier.
 secretName - The name of the AWS Secrets Manager secret that contains
 the database credentials.
 """

 if (args.size != 6) {
 println(usage)
 exitProcess(1)
 }

 val dbGroupName = args[0]
 val dbParameterGroupFamily = args[1]
 val dbInstanceIdentifier = args[2]
 val dbName = args[3]
 val dbSnapshotIdentifier = args[4]
 val secretName = args[5]

 val gson = Gson()
 val user = gson.fromJson(getSecretValues(secretName).toString(),
 User::class.java)
 val username = user.username
 val userPassword = user.password

Learn the basics 4814

Amazon Relational Database Service User Guide

 println("1. Return a list of the available DB engines")
 describeDBEngines()

 println("2. Create a custom parameter group")
 createDBParameterGroup(dbGroupName, dbParameterGroupFamily)

 println("3. Get the parameter groups")
 describeDbParameterGroups(dbGroupName)

 println("4. Get the parameters in the group")
 describeDbParameters(dbGroupName, 0)

 println("5. Modify the auto_increment_offset parameter")
 modifyDBParas(dbGroupName)

 println("6. Display the updated value")
 describeDbParameters(dbGroupName, -1)

 println("7. Get a list of allowed engine versions")
 getAllowedEngines(dbParameterGroupFamily)

 println("8. Get a list of micro instance classes available for the selected
 engine")
 getMicroInstances()

 println("9. Create an RDS database instance that contains a MySql database
 and uses the parameter group")
 val dbARN = createDatabaseInstance(dbGroupName, dbInstanceIdentifier, dbName,
 username, userPassword)
 println("The ARN of the new database is $dbARN")

 println("10. Wait for DB instance to be ready")
 waitForDbInstanceReady(dbInstanceIdentifier)

 println("11. Create a snapshot of the DB instance")
 createDbSnapshot(dbInstanceIdentifier, dbSnapshotIdentifier)

 println("12. Wait for DB snapshot to be ready")
 waitForSnapshotReady(dbInstanceIdentifier, dbSnapshotIdentifier)

 println("13. Delete the DB instance")
 deleteDbInstance(dbInstanceIdentifier)

 println("14. Delete the parameter group")

Learn the basics 4815

Amazon Relational Database Service User Guide

 if (dbARN != null) {
 deleteParaGroup(dbGroupName, dbARN)
 }

 println("The Scenario has successfully completed.")
}

suspend fun deleteParaGroup(
 dbGroupName: String,
 dbARN: String,
) {
 var isDataDel = false
 var didFind: Boolean
 var instanceARN: String

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 // Make sure that the database has been deleted.
 while (!isDataDel) {
 val response = rdsClient.describeDbInstances()
 val instanceList = response.dbInstances
 val listSize = instanceList?.size
 isDataDel = false // Reset this value.
 didFind = false // Reset this value.
 var index = 1
 if (instanceList != null) {
 for (instance in instanceList) {
 instanceARN = instance.dbInstanceArn.toString()
 if (instanceARN.compareTo(dbARN) == 0) {
 println("$dbARN still exists")
 didFind = true
 }
 if (index == listSize && !didFind) {
 // Went through the entire list and did not find the
 database name.
 isDataDel = true
 }
 index++
 }
 }
 }

 // Delete the para group.
 val parameterGroupRequest =
 DeleteDbParameterGroupRequest {

Learn the basics 4816

Amazon Relational Database Service User Guide

 dbParameterGroupName = dbGroupName
 }
 rdsClient.deleteDbParameterGroup(parameterGroupRequest)
 println("$dbGroupName was deleted.")
 }
}

suspend fun deleteDbInstance(dbInstanceIdentifierVal: String) {
 val deleteDbInstanceRequest =
 DeleteDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 deleteAutomatedBackups = true
 skipFinalSnapshot = true
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.deleteDbInstance(deleteDbInstanceRequest)
 print("The status of the database is
 ${response.dbInstance?.dbInstanceStatus}")
 }
}

// Waits until the snapshot instance is available.
suspend fun waitForSnapshotReady(
 dbInstanceIdentifierVal: String?,
 dbSnapshotIdentifierVal: String?,
) {
 var snapshotReady = false
 var snapshotReadyStr: String
 println("Waiting for the snapshot to become available.")

 val snapshotsRequest =
 DescribeDbSnapshotsRequest {
 dbSnapshotIdentifier = dbSnapshotIdentifierVal
 dbInstanceIdentifier = dbInstanceIdentifierVal
 }

 while (!snapshotReady) {
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbSnapshots(snapshotsRequest)
 val snapshotList: List<DbSnapshot>? = response.dbSnapshots
 if (snapshotList != null) {
 for (snapshot in snapshotList) {
 snapshotReadyStr = snapshot.status.toString()

Learn the basics 4817

Amazon Relational Database Service User Guide

 if (snapshotReadyStr.contains("available")) {
 snapshotReady = true
 } else {
 print(".")
 delay(sleepTime * 1000)
 }
 }
 }
 }
 }
 println("The Snapshot is available!")
}

// Create an Amazon RDS snapshot.
suspend fun createDbSnapshot(
 dbInstanceIdentifierVal: String?,
 dbSnapshotIdentifierVal: String?,
) {
 val snapshotRequest =
 CreateDbSnapshotRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 dbSnapshotIdentifier = dbSnapshotIdentifierVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbSnapshot(snapshotRequest)
 print("The Snapshot id is ${response.dbSnapshot?.dbiResourceId}")
 }
}

// Waits until the database instance is available.
suspend fun waitForDbInstanceReady(dbInstanceIdentifierVal: String?) {
 var instanceReady = false
 var instanceReadyStr: String
 println("Waiting for instance to become available.")

 val instanceRequest =
 DescribeDbInstancesRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 }
 var endpoint = ""
 while (!instanceReady) {
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbInstances(instanceRequest)

Learn the basics 4818

Amazon Relational Database Service User Guide

 val instanceList = response.dbInstances
 if (instanceList != null) {
 for (instance in instanceList) {
 instanceReadyStr = instance.dbInstanceStatus.toString()
 if (instanceReadyStr.contains("available")) {
 endpoint = instance.endpoint?.address.toString()
 instanceReady = true
 } else {
 print(".")
 delay(sleepTime * 1000)
 }
 }
 }
 }
 }
 println("Database instance is available! The connection endpoint is
 $endpoint")
}

// Create a database instance and return the ARN of the database.
suspend fun createDatabaseInstance(
 dbGroupNameVal: String?,
 dbInstanceIdentifierVal: String?,
 dbNameVal: String?,
 masterUsernameVal: String?,
 masterUserPasswordVal: String?,
): String? {
 val instanceRequest =
 CreateDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 allocatedStorage = 100
 dbName = dbNameVal
 dbParameterGroupName = dbGroupNameVal
 engine = "mysql"
 dbInstanceClass = "db.t3.micro"
 engineVersion = "8.0.35"
 storageType = "gp2"
 masterUsername = masterUsernameVal
 masterUserPassword = masterUserPasswordVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbInstance(instanceRequest)
 print("The status is ${response.dbInstance?.dbInstanceStatus}")

Learn the basics 4819

Amazon Relational Database Service User Guide

 return response.dbInstance?.dbInstanceArn
 }
}

// Get a list of micro instances.
suspend fun getMicroInstances() {
 val dbInstanceOptionsRequest =
 DescribeOrderableDbInstanceOptionsRequest {
 engine = "mysql"
 }
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response =
 rdsClient.describeOrderableDbInstanceOptions(dbInstanceOptionsRequest)
 val orderableDBInstances = response.orderableDbInstanceOptions
 if (orderableDBInstances != null) {
 for (dbInstanceOption in orderableDBInstances) {
 println("The engine version is
 ${dbInstanceOption.engineVersion}")
 println("The engine description is ${dbInstanceOption.engine}")
 }
 }
 }
}

// Get a list of allowed engine versions.
suspend fun getAllowedEngines(dbParameterGroupFamilyVal: String?) {
 val versionsRequest =
 DescribeDbEngineVersionsRequest {
 dbParameterGroupFamily = dbParameterGroupFamilyVal
 engine = "mysql"
 }
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbEngineVersions(versionsRequest)
 val dbEngines: List<DbEngineVersion>? = response.dbEngineVersions
 if (dbEngines != null) {
 for (dbEngine in dbEngines) {
 println("The engine version is ${dbEngine.engineVersion}")
 println("The engine description is
 ${dbEngine.dbEngineDescription}")
 }
 }
 }
}

Learn the basics 4820

Amazon Relational Database Service User Guide

// Modify the auto_increment_offset parameter.
suspend fun modifyDBParas(dbGroupName: String) {
 val parameter1 =
 Parameter {
 parameterName = "auto_increment_offset"
 applyMethod = ApplyMethod.Immediate
 parameterValue = "5"
 }

 val paraList: ArrayList<Parameter> = ArrayList()
 paraList.add(parameter1)
 val groupRequest =
 ModifyDbParameterGroupRequest {
 dbParameterGroupName = dbGroupName
 parameters = paraList
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.modifyDbParameterGroup(groupRequest)
 println("The parameter group ${response.dbParameterGroupName} was
 successfully modified")
 }
}

// Retrieve parameters in the group.
suspend fun describeDbParameters(
 dbGroupName: String?,
 flag: Int,
) {
 val dbParameterGroupsRequest: DescribeDbParametersRequest
 dbParameterGroupsRequest =
 if (flag == 0) {
 DescribeDbParametersRequest {
 dbParameterGroupName = dbGroupName
 }
 } else {
 DescribeDbParametersRequest {
 dbParameterGroupName = dbGroupName
 source = "user"
 }
 }
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbParameters(dbParameterGroupsRequest)
 val dbParameters: List<Parameter>? = response.parameters

Learn the basics 4821

Amazon Relational Database Service User Guide

 var paraName: String
 if (dbParameters != null) {
 for (para in dbParameters) {
 // Only print out information about either auto_increment_offset
 or auto_increment_increment.
 paraName = para.parameterName.toString()
 if (paraName.compareTo("auto_increment_offset") == 0 ||
 paraName.compareTo("auto_increment_increment ") == 0) {
 println("*** The parameter name is $paraName")
 System.out.println("*** The parameter value is
 ${para.parameterValue}")
 System.out.println("*** The parameter data type is
 ${para.dataType}")
 System.out.println("*** The parameter description is
 ${para.description}")
 System.out.println("*** The parameter allowed values is
 ${para.allowedValues}")
 }
 }
 }
 }
}

suspend fun describeDbParameterGroups(dbGroupName: String?) {
 val groupsRequest =
 DescribeDbParameterGroupsRequest {
 dbParameterGroupName = dbGroupName
 maxRecords = 20
 }
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbParameterGroups(groupsRequest)
 val groups = response.dbParameterGroups
 if (groups != null) {
 for (group in groups) {
 println("The group name is ${group.dbParameterGroupName}")
 println("The group description is ${group.description}")
 }
 }
 }
}

// Create a parameter group.
suspend fun createDBParameterGroup(
 dbGroupName: String?,

Learn the basics 4822

Amazon Relational Database Service User Guide

 dbParameterGroupFamilyVal: String?,
) {
 val groupRequest =
 CreateDbParameterGroupRequest {
 dbParameterGroupName = dbGroupName
 dbParameterGroupFamily = dbParameterGroupFamilyVal
 description = "Created by using the AWS SDK for Kotlin"
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbParameterGroup(groupRequest)
 println("The group name is
 ${response.dbParameterGroup?.dbParameterGroupName}")
 }
}

// Returns a list of the available DB engines.
suspend fun describeDBEngines() {
 val engineVersionsRequest =
 DescribeDbEngineVersionsRequest {
 defaultOnly = true
 engine = "mysql"
 maxRecords = 20
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbEngineVersions(engineVersionsRequest)
 val engines: List<DbEngineVersion>? = response.dbEngineVersions

 // Get all DbEngineVersion objects.
 if (engines != null) {
 for (engineOb in engines) {
 println("The name of the DB parameter group family for the
 database engine is ${engineOb.dbParameterGroupFamily}.")
 println("The name of the database engine ${engineOb.engine}.")
 println("The version number of the database engine
 ${engineOb.engineVersion}")
 }
 }
 }
}

suspend fun getSecretValues(secretName: String?): String? {
 val valueRequest =

Learn the basics 4823

Amazon Relational Database Service User Guide

 GetSecretValueRequest {
 secretId = secretName
 }

 SecretsManagerClient { region = "us-west-2" }.use { secretsClient ->
 val valueResponse = secretsClient.getSecretValue(valueRequest)
 return valueResponse.secretString
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• CreateDBInstance

• CreateDBParameterGroup

• CreateDBSnapshot

• DeleteDBInstance

• DeleteDBParameterGroup

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeDBParameterGroups

• DescribeDBParameters

• DescribeDBSnapshots

• DescribeOrderableDBInstanceOptions

• ModifyDBParameterGroup

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.
Learn the basics 4824

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

class RdsInstanceScenario:
 """Runs a scenario that shows how to get started using Amazon RDS DB
 instances."""

 def __init__(self, instance_wrapper):
 """
 :param instance_wrapper: An object that wraps Amazon RDS DB instance
 actions.
 """
 self.instance_wrapper = instance_wrapper

 def create_parameter_group(self, parameter_group_name, db_engine):
 """
 Shows how to get available engine versions for a specified database
 engine and
 create a DB parameter group that is compatible with a selected engine
 family.

 :param parameter_group_name: The name given to the newly created
 parameter group.
 :param db_engine: The database engine to use as a basis.
 :return: The newly created parameter group.
 """
 print(
 f"Checking for an existing DB instance parameter group named
 {parameter_group_name}."
)
 parameter_group = self.instance_wrapper.get_parameter_group(
 parameter_group_name
)
 if parameter_group is None:
 print(f"Getting available database engine versions for {db_engine}.")
 engine_versions =
 self.instance_wrapper.get_engine_versions(db_engine)
 families = list({ver["DBParameterGroupFamily"] for ver in
 engine_versions})
 family_index = q.choose("Which family do you want to use? ",
 families)
 print(f"Creating a parameter group.")
 self.instance_wrapper.create_parameter_group(
 parameter_group_name, families[family_index], "Example parameter
 group."
)

Learn the basics 4825

Amazon Relational Database Service User Guide

 parameter_group = self.instance_wrapper.get_parameter_group(
 parameter_group_name
)
 print(f"Parameter group {parameter_group['DBParameterGroupName']}:")
 pp(parameter_group)
 print("-" * 88)
 return parameter_group

 def update_parameters(self, parameter_group_name):
 """
 Shows how to get the parameters contained in a custom parameter group and
 update some of the parameter values in the group.

 :param parameter_group_name: The name of the parameter group to query and
 modify.
 """
 print("Let's set some parameter values in your parameter group.")
 auto_inc_parameters = self.instance_wrapper.get_parameters(
 parameter_group_name, name_prefix="auto_increment"
)
 update_params = []
 for auto_inc in auto_inc_parameters:
 if auto_inc["IsModifiable"] and auto_inc["DataType"] == "integer":
 print(f"The {auto_inc['ParameterName']} parameter is described
 as:")
 print(f"\t{auto_inc['Description']}")
 param_range = auto_inc["AllowedValues"].split("-")
 auto_inc["ParameterValue"] = str(
 q.ask(
 f"Enter a value between {param_range[0]} and
 {param_range[1]}: ",
 q.is_int,
 q.in_range(int(param_range[0]), int(param_range[1])),
)
)
 update_params.append(auto_inc)
 self.instance_wrapper.update_parameters(parameter_group_name,
 update_params)
 print(
 "You can get a list of parameters you've set by specifying a source
 of 'user'."
)
 user_parameters = self.instance_wrapper.get_parameters(
 parameter_group_name, source="user"

Learn the basics 4826

Amazon Relational Database Service User Guide

)
 pp(user_parameters)
 print("-" * 88)

 def create_instance(self, instance_name, db_name, db_engine,
 parameter_group):
 """
 Shows how to create a DB instance that contains a database of a specified
 type and is configured to use a custom DB parameter group.

 :param instance_name: The name given to the newly created DB instance.
 :param db_name: The name given to the created database.
 :param db_engine: The engine of the created database.
 :param parameter_group: The parameter group that is associated with the
 DB instance.
 :return: The newly created DB instance.
 """
 print("Checking for an existing DB instance.")
 db_inst = self.instance_wrapper.get_db_instance(instance_name)
 if db_inst is None:
 print("Let's create a DB instance.")
 admin_username = q.ask(
 "Enter an administrator user name for the database: ",
 q.non_empty
)
 admin_password = q.ask(
 "Enter a password for the administrator (at least 8 characters):
 ",
 q.non_empty,
)
 engine_versions = self.instance_wrapper.get_engine_versions(
 db_engine, parameter_group["DBParameterGroupFamily"]
)
 engine_choices = [ver["EngineVersion"] for ver in engine_versions]
 print("The available engines for your parameter group are:")
 engine_index = q.choose("Which engine do you want to use? ",
 engine_choices)
 engine_selection = engine_versions[engine_index]
 print(
 "The available micro DB instance classes for your database engine
 are:"
)
 inst_opts = self.instance_wrapper.get_orderable_instances(
 engine_selection["Engine"], engine_selection["EngineVersion"]

Learn the basics 4827

Amazon Relational Database Service User Guide

)
 inst_choices = list(
 {
 opt["DBInstanceClass"]
 for opt in inst_opts
 if "micro" in opt["DBInstanceClass"]
 }
)
 inst_index = q.choose(
 "Which micro DB instance class do you want to use? ",
 inst_choices
)
 group_name = parameter_group["DBParameterGroupName"]
 storage_type = "standard"
 allocated_storage = 5
 print(
 f"Creating a DB instance named {instance_name} and database
 {db_name}.\n"
 f"The DB instance is configured to use your custom parameter
 group {group_name},\n"
 f"selected engine {engine_selection['EngineVersion']},\n"
 f"selected DB instance class {inst_choices[inst_index]},"
 f"and {allocated_storage} GiB of {storage_type} storage.\n"
 f"This typically takes several minutes."
)
 db_inst = self.instance_wrapper.create_db_instance(
 db_name,
 instance_name,
 group_name,
 engine_selection["Engine"],
 engine_selection["EngineVersion"],
 inst_choices[inst_index],
 storage_type,
 allocated_storage,
 admin_username,
 admin_password,
)
 while db_inst.get("DBInstanceStatus") != "available":
 wait(10)
 db_inst = self.instance_wrapper.get_db_instance(instance_name)
 print("Instance data:")
 pp(db_inst)
 print("-" * 88)
 return db_inst

Learn the basics 4828

Amazon Relational Database Service User Guide

 @staticmethod
 def display_connection(db_inst):
 """
 Displays connection information about a DB instance and tips on how to
 connect to it.

 :param db_inst: The DB instance to display.
 """
 print(
 "You can now connect to your database using your favorite MySql
 client.\n"
 "One way to connect is by using the 'mysql' shell on an Amazon EC2
 instance\n"
 "that is running in the same VPC as your DB instance. Pass the
 endpoint,\n"
 "port, and administrator user name to 'mysql' and enter your password
\n"
 "when prompted:\n"
)
 print(
 f"\n\tmysql -h {db_inst['Endpoint']['Address']} -P
 {db_inst['Endpoint']['Port']} "
 f"-u {db_inst['MasterUsername']} -p\n"
)
 print(
 "For more information, see the User Guide for Amazon RDS:\n"
 "\thttps://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
CHAP_GettingStarted.CreatingConnecting.MySQL.html#CHAP_GettingStarted.Connecting.MySQL"
)
 print("-" * 88)

 def create_snapshot(self, instance_name):
 """
 Shows how to create a DB instance snapshot and wait until it's available.

 :param instance_name: The name of a DB instance to snapshot.
 """
 if q.ask(
 "Do you want to create a snapshot of your DB instance (y/n)? ",
 q.is_yesno
):
 snapshot_id = f"{instance_name}-{uuid.uuid4()}"
 print(

Learn the basics 4829

Amazon Relational Database Service User Guide

 f"Creating a snapshot named {snapshot_id}. This typically takes a
 few minutes."
)
 snapshot = self.instance_wrapper.create_snapshot(snapshot_id,
 instance_name)
 while snapshot.get("Status") != "available":
 wait(10)
 snapshot = self.instance_wrapper.get_snapshot(snapshot_id)
 pp(snapshot)
 print("-" * 88)

 def cleanup(self, db_inst, parameter_group_name):
 """
 Shows how to clean up a DB instance and parameter group.
 Before the parameter group can be deleted, all associated DB instances
 must first
 be deleted.

 :param db_inst: The DB instance to delete.
 :param parameter_group_name: The DB parameter group to delete.
 """
 if q.ask(
 "\nDo you want to delete the DB instance and parameter group (y/n)?
 ",
 q.is_yesno,
):
 print(f"Deleting DB instance {db_inst['DBInstanceIdentifier']}.")

 self.instance_wrapper.delete_db_instance(db_inst["DBInstanceIdentifier"])
 print(
 "Waiting for the DB instance to delete. This typically takes
 several minutes."
)
 while db_inst is not None:
 wait(10)
 db_inst = self.instance_wrapper.get_db_instance(
 db_inst["DBInstanceIdentifier"]
)
 print(f"Deleting parameter group {parameter_group_name}.")
 self.instance_wrapper.delete_parameter_group(parameter_group_name)

 def run_scenario(self, db_engine, parameter_group_name, instance_name,
 db_name):

Learn the basics 4830

Amazon Relational Database Service User Guide

 logging.basicConfig(level=logging.INFO, format="%(levelname)s:
 %(message)s")

 print("-" * 88)
 print(
 "Welcome to the Amazon Relational Database Service (Amazon RDS)\n"
 "get started with DB instances demo."
)
 print("-" * 88)

 parameter_group = self.create_parameter_group(parameter_group_name,
 db_engine)
 self.update_parameters(parameter_group_name)
 db_inst = self.create_instance(
 instance_name, db_name, db_engine, parameter_group
)
 self.display_connection(db_inst)
 self.create_snapshot(instance_name)
 self.cleanup(db_inst, parameter_group_name)

 print("\nThanks for watching!")
 print("-" * 88)

if __name__ == "__main__":
 try:
 scenario = RdsInstanceScenario(InstanceWrapper.from_client())
 scenario.run_scenario(
 "mysql",
 "doc-example-parameter-group",
 "doc-example-instance",
 "docexampledb",
)
 except Exception:
 logging.exception("Something went wrong with the demo.")

Define functions that are called by the scenario to manage Amazon RDS actions.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):

Learn the basics 4831

Amazon Relational Database Service User Guide

 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_parameter_group(self, parameter_group_name):
 """
 Gets a DB parameter group.

 :param parameter_group_name: The name of the parameter group to retrieve.
 :return: The parameter group.
 """
 try:
 response = self.rds_client.describe_db_parameter_groups(
 DBParameterGroupName=parameter_group_name
)
 parameter_group = response["DBParameterGroups"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBParameterGroupNotFound":
 logger.info("Parameter group %s does not exist.",
 parameter_group_name)
 else:
 logger.error(
 "Couldn't get parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return parameter_group

 def create_parameter_group(
 self, parameter_group_name, parameter_group_family, description

Learn the basics 4832

Amazon Relational Database Service User Guide

):
 """
 Creates a DB parameter group that is based on the specified parameter
 group
 family.

 :param parameter_group_name: The name of the newly created parameter
 group.
 :param parameter_group_family: The family that is used as the basis of
 the new
 parameter group.
 :param description: A description given to the parameter group.
 :return: Data about the newly created parameter group.
 """
 try:
 response = self.rds_client.create_db_parameter_group(
 DBParameterGroupName=parameter_group_name,
 DBParameterGroupFamily=parameter_group_family,
 Description=description,
)
 except ClientError as err:
 logger.error(
 "Couldn't create parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

 def delete_parameter_group(self, parameter_group_name):
 """
 Deletes a DB parameter group.

 :param parameter_group_name: The name of the parameter group to delete.
 :return: Data about the parameter group.
 """
 try:
 self.rds_client.delete_db_parameter_group(
 DBParameterGroupName=parameter_group_name
)
 except ClientError as err:

Learn the basics 4833

Amazon Relational Database Service User Guide

 logger.error(
 "Couldn't delete parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def get_parameters(self, parameter_group_name, name_prefix="", source=None):
 """
 Gets the parameters that are contained in a DB parameter group.

 :param parameter_group_name: The name of the parameter group to query.
 :param name_prefix: When specified, the retrieved list of parameters is
 filtered
 to contain only parameters that start with this
 prefix.
 :param source: When specified, only parameters from this source are
 retrieved.
 For example, a source of 'user' retrieves only parameters
 that
 were set by a user.
 :return: The list of requested parameters.
 """
 try:
 kwargs = {"DBParameterGroupName": parameter_group_name}
 if source is not None:
 kwargs["Source"] = source
 parameters = []
 paginator = self.rds_client.get_paginator("describe_db_parameters")
 for page in paginator.paginate(**kwargs):
 parameters += [
 p
 for p in page["Parameters"]
 if p["ParameterName"].startswith(name_prefix)
]
 except ClientError as err:
 logger.error(
 "Couldn't get parameters for %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)

Learn the basics 4834

Amazon Relational Database Service User Guide

 raise
 else:
 return parameters

 def update_parameters(self, parameter_group_name, update_parameters):
 """
 Updates parameters in a custom DB parameter group.

 :param parameter_group_name: The name of the parameter group to update.
 :param update_parameters: The parameters to update in the group.
 :return: Data about the modified parameter group.
 """
 try:
 response = self.rds_client.modify_db_parameter_group(
 DBParameterGroupName=parameter_group_name,
 Parameters=update_parameters
)
 except ClientError as err:
 logger.error(
 "Couldn't update parameters in %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

 def create_snapshot(self, snapshot_id, instance_id):
 """
 Creates a snapshot of a DB instance.

 :param snapshot_id: The ID to give the created snapshot.
 :param instance_id: The ID of the DB instance to snapshot.
 :return: Data about the newly created snapshot.
 """
 try:
 response = self.rds_client.create_db_snapshot(
 DBSnapshotIdentifier=snapshot_id,
 DBInstanceIdentifier=instance_id
)
 snapshot = response["DBSnapshot"]

Learn the basics 4835

Amazon Relational Database Service User Guide

 except ClientError as err:
 logger.error(
 "Couldn't create snapshot of %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

 def get_snapshot(self, snapshot_id):
 """
 Gets a DB instance snapshot.

 :param snapshot_id: The ID of the snapshot to retrieve.
 :return: The retrieved snapshot.
 """
 try:
 response = self.rds_client.describe_db_snapshots(
 DBSnapshotIdentifier=snapshot_id
)
 snapshot = response["DBSnapshots"][0]
 except ClientError as err:
 logger.error(
 "Couldn't get snapshot %s. Here's why: %s: %s",
 snapshot_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

 def get_engine_versions(self, engine, parameter_group_family=None):
 """
 Gets database engine versions that are available for the specified engine
 and parameter group family.

 :param engine: The database engine to look up.
 :param parameter_group_family: When specified, restricts the returned
 list of

Learn the basics 4836

Amazon Relational Database Service User Guide

 engine versions to those that are
 compatible with
 this parameter group family.
 :return: The list of database engine versions.
 """
 try:
 kwargs = {"Engine": engine}
 if parameter_group_family is not None:
 kwargs["DBParameterGroupFamily"] = parameter_group_family
 response = self.rds_client.describe_db_engine_versions(**kwargs)
 versions = response["DBEngineVersions"]
 except ClientError as err:
 logger.error(
 "Couldn't get engine versions for %s. Here's why: %s: %s",
 engine,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return versions

 def get_orderable_instances(self, db_engine, db_engine_version):
 """
 Gets DB instance options that can be used to create DB instances that are
 compatible with a set of specifications.

 :param db_engine: The database engine that must be supported by the DB
 instance.
 :param db_engine_version: The engine version that must be supported by
 the DB instance.
 :return: The list of DB instance options that can be used to create a
 compatible DB instance.
 """
 try:
 inst_opts = []
 paginator = self.rds_client.get_paginator(
 "describe_orderable_db_instance_options"
)
 for page in paginator.paginate(
 Engine=db_engine, EngineVersion=db_engine_version
):
 inst_opts += page["OrderableDBInstanceOptions"]

Learn the basics 4837

Amazon Relational Database Service User Guide

 except ClientError as err:
 logger.error(
 "Couldn't get orderable DB instances. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return inst_opts

 def get_db_instance(self, instance_id):
 """
 Gets data about a DB instance.

 :param instance_id: The ID of the DB instance to retrieve.
 :return: The retrieved DB instance.
 """
 try:
 response = self.rds_client.describe_db_instances(
 DBInstanceIdentifier=instance_id
)
 db_inst = response["DBInstances"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBInstanceNotFound":
 logger.info("Instance %s does not exist.", instance_id)
 else:
 logger.error(
 "Couldn't get DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

 def create_db_instance(
 self,
 db_name,
 instance_id,
 parameter_group_name,
 db_engine,

Learn the basics 4838

Amazon Relational Database Service User Guide

 db_engine_version,
 instance_class,
 storage_type,
 allocated_storage,
 admin_name,
 admin_password,
):
 """
 Creates a DB instance.

 :param db_name: The name of the database that is created in the DB
 instance.
 :param instance_id: The ID to give the newly created DB instance.
 :param parameter_group_name: A parameter group to associate with the DB
 instance.
 :param db_engine: The database engine of a database to create in the DB
 instance.
 :param db_engine_version: The engine version for the created database.
 :param instance_class: The DB instance class for the newly created DB
 instance.
 :param storage_type: The storage type of the DB instance.
 :param allocated_storage: The amount of storage allocated on the DB
 instance, in GiBs.
 :param admin_name: The name of the admin user for the created database.
 :param admin_password: The admin password for the created database.
 :return: Data about the newly created DB instance.
 """
 try:
 response = self.rds_client.create_db_instance(
 DBName=db_name,
 DBInstanceIdentifier=instance_id,
 DBParameterGroupName=parameter_group_name,
 Engine=db_engine,
 EngineVersion=db_engine_version,
 DBInstanceClass=instance_class,
 StorageType=storage_type,
 AllocatedStorage=allocated_storage,
 MasterUsername=admin_name,
 MasterUserPassword=admin_password,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't create DB instance %s. Here's why: %s: %s",

Learn the basics 4839

Amazon Relational Database Service User Guide

 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

 def delete_db_instance(self, instance_id):
 """
 Deletes a DB instance.

 :param instance_id: The ID of the DB instance to delete.
 :return: Data about the deleted DB instance.
 """
 try:
 response = self.rds_client.delete_db_instance(
 DBInstanceIdentifier=instance_id,
 SkipFinalSnapshot=True,
 DeleteAutomatedBackups=True,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't delete DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateDBInstance

• CreateDBParameterGroup

• CreateDBSnapshot

Learn the basics 4840

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBParameterGroup
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBSnapshot

Amazon Relational Database Service User Guide

• DeleteDBInstance

• DeleteDBParameterGroup

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeDBParameterGroups

• DescribeDBParameters

• DescribeDBSnapshots

• DescribeOrderableDBInstanceOptions

• ModifyDBParameterGroup

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions for Amazon RDS using AWS SDKs

The following code examples demonstrate how to perform individual Amazon RDS actions with
AWS SDKs. Each example includes a link to GitHub, where you can find instructions for setting up
and running the code.

These excerpts call the Amazon RDS API and are code excerpts from larger programs that must be
run in context. You can see actions in context in Scenarios for Amazon RDS using AWS SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Relational Database Service API Reference.

Examples

• Use CreateDBInstance with an AWS SDK or CLI

• Use CreateDBParameterGroup with an AWS SDK or CLI

• Use CreateDBSnapshot with an AWS SDK or CLI

• Use DeleteDBInstance with an AWS SDK or CLI

• Use DeleteDBParameterGroup with an AWS SDK or CLI

• Use DescribeAccountAttributes with an AWS SDK or CLI

• Use DescribeDBEngineVersions with an AWS SDK or CLI

Actions 4841

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBParameterGroup
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBParameterGroups
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBParameters
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBSnapshots
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/ModifyDBParameterGroup
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

Amazon Relational Database Service User Guide

• Use DescribeDBInstances with an AWS SDK or CLI

• Use DescribeDBParameterGroups with an AWS SDK or CLI

• Use DescribeDBParameters with an AWS SDK or CLI

• Use DescribeDBSnapshots with an AWS SDK or CLI

• Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI

• Use GenerateRDSAuthToken with an AWS SDK

• Use ModifyDBInstance with an AWS SDK or CLI

• Use ModifyDBParameterGroup with an AWS SDK or CLI

• Use RebootDBInstance with an AWS SDK or CLI

Use CreateDBInstance with an AWS SDK or CLI

The following code examples show how to use CreateDBInstance.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an RDS DB instance with a particular set of properties. Use the
 action DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbName">Name for the DB instance.</param>

Actions 4842

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="parameterGroupName">DB parameter group to associate with the
 instance.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>
 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <param name="allocatedStorage">The amount of storage in gibibytes (GiB)
 to allocate to the DB instance.</param>
 /// <param name="adminName">Admin user name.</param>
 /// <param name="adminPassword">Admin user password.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> CreateDBInstance(string dbName, string
 dbInstanceIdentifier,
 string parameterGroupName, string dbEngine, string dbEngineVersion,
 string instanceClass, int allocatedStorage, string adminName, string
 adminPassword)
 {
 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBName = dbName,
 DBInstanceIdentifier = dbInstanceIdentifier,
 DBParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass,
 AllocatedStorage = allocatedStorage,
 MasterUsername = adminName,
 MasterUserPassword = adminPassword
 });

 return response.DBInstance;
 }

• For API details, see CreateDBInstance in AWS SDK for .NET API Reference.

Actions 4843

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance

Amazon Relational Database Service User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::CreateDBInstanceRequest request;
 request.SetDBName(DB_NAME);
 request.SetDBInstanceIdentifier(DB_INSTANCE_IDENTIFIER);
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 request.SetEngine(engineVersion.GetEngine());
 request.SetEngineVersion(engineVersion.GetEngineVersion());
 request.SetDBInstanceClass(dbInstanceClass);
 request.SetStorageType(DB_STORAGE_TYPE);
 request.SetAllocatedStorage(DB_ALLOCATED_STORAGE);
 request.SetMasterUsername(administratorName);
 request.SetMasterUserPassword(administratorPassword);

 Aws::RDS::Model::CreateDBInstanceOutcome outcome =
 client.CreateDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB instance creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, "", client);
 return false;
 }

Actions 4844

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

• For API details, see CreateDBInstance in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create a DB instance

The following create-db-instance example uses the required options to launch a new
DB instance.

aws rds create-db-instance \
 --db-instance-identifier test-mysql-instance \
 --db-instance-class db.t3.micro \
 --engine mysql \
 --master-username admin \
 --master-user-password secret99 \
 --allocated-storage 20

Output:

{
 "DBInstance": {
 "DBInstanceIdentifier": "test-mysql-instance",
 "DBInstanceClass": "db.t3.micro",
 "Engine": "mysql",
 "DBInstanceStatus": "creating",
 "MasterUsername": "admin",
 "AllocatedStorage": 20,
 "PreferredBackupWindow": "12:55-13:25",
 "BackupRetentionPeriod": 1,
 "DBSecurityGroups": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-12345abc",
 "Status": "active"
 }
],
 "DBParameterGroups": [
 {

Actions 4845

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBInstance

Amazon Relational Database Service User Guide

 "DBParameterGroupName": "default.mysql5.7",
 "ParameterApplyStatus": "in-sync"
 }
],
 "DBSubnetGroup": {
 "DBSubnetGroupName": "default",
 "DBSubnetGroupDescription": "default",
 "VpcId": "vpc-2ff2ff2f",
 "SubnetGroupStatus": "Complete",
 "Subnets": [
 {
 "SubnetIdentifier": "subnet-########",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2c"
 },
 "SubnetStatus": "Active"
 },
 {
 "SubnetIdentifier": "subnet-########",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2d"
 },
 "SubnetStatus": "Active"
 },
 {
 "SubnetIdentifier": "subnet-########",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2a"
 },
 "SubnetStatus": "Active"
 },
 {
 "SubnetIdentifier": "subnet-########",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2b"
 },
 "SubnetStatus": "Active"
 }
]
 },
 "PreferredMaintenanceWindow": "sun:08:07-sun:08:37",
 "PendingModifiedValues": {
 "MasterUserPassword": "****"
 },

Actions 4846

Amazon Relational Database Service User Guide

 "MultiAZ": false,
 "EngineVersion": "5.7.22",
 "AutoMinorVersionUpgrade": true,
 "ReadReplicaDBInstanceIdentifiers": [],
 "LicenseModel": "general-public-license",
 "OptionGroupMemberships": [
 {
 "OptionGroupName": "default:mysql-5-7",
 "Status": "in-sync"
 }
],
 "PubliclyAccessible": true,
 "StorageType": "gp2",
 "DbInstancePort": 0,
 "StorageEncrypted": false,
 "DbiResourceId": "db-5555EXAMPLE44444444EXAMPLE",
 "CACertificateIdentifier": "rds-ca-2019",
 "DomainMemberships": [],
 "CopyTagsToSnapshot": false,
 "MonitoringInterval": 0,
 "DBInstanceArn": "arn:aws:rds:us-west-2:123456789012:db:test-mysql-
instance",
 "IAMDatabaseAuthenticationEnabled": false,
 "PerformanceInsightsEnabled": false,
 "DeletionProtection": false,
 "AssociatedRoles": []
 }
}

For more information, see Creating an Amazon RDS DB Instance in the Amazon RDS User
Guide.

• For API details, see CreateDBInstance in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 4847

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/create-db-instance.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// CreateInstance creates a DB instance.
func (instances *DbInstances) CreateInstance(ctx context.Context, instanceName
 string, dbName string,
 dbEngine string, dbEngineVersion string, parameterGroupName string,
 dbInstanceClass string,
 storageType string, allocatedStorage int32, adminName string, adminPassword
 string) (
 *types.DBInstance, error) {
 output, err := instances.RdsClient.CreateDBInstance(ctx,
 &rds.CreateDBInstanceInput{
 DBInstanceIdentifier: aws.String(instanceName),
 DBName: aws.String(dbName),
 DBParameterGroupName: aws.String(parameterGroupName),
 Engine: aws.String(dbEngine),
 EngineVersion: aws.String(dbEngineVersion),
 DBInstanceClass: aws.String(dbInstanceClass),
 StorageType: aws.String(storageType),
 AllocatedStorage: aws.Int32(allocatedStorage),
 MasterUsername: aws.String(adminName),
 MasterUserPassword: aws.String(adminPassword),
 })
 if err != nil {
 log.Printf("Couldn't create instance %v: %v\n", instanceName, err)
 return nil, err
 } else {
 return output.DBInstance, nil

Actions 4848

Amazon Relational Database Service User Guide

 }
}

• For API details, see CreateDBInstance in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import com.google.gson.Gson;
import
 software.amazon.awssdk.auth.credentials.EnvironmentVariableCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.DescribeDbInstancesRequest;
import software.amazon.awssdk.services.rds.model.CreateDbInstanceRequest;
import software.amazon.awssdk.services.rds.model.CreateDbInstanceResponse;
import software.amazon.awssdk.services.rds.model.RdsException;
import software.amazon.awssdk.services.rds.model.DescribeDbInstancesResponse;
import software.amazon.awssdk.services.rds.model.DBInstance;
import software.amazon.awssdk.services.secretsmanager.SecretsManagerClient;
import
 software.amazon.awssdk.services.secretsmanager.model.GetSecretValueRequest;
import
 software.amazon.awssdk.services.secretsmanager.model.GetSecretValueResponse;

import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions 4849

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This example requires an AWS Secrets Manager secret that contains the
 * database credentials. If you do not create a
 * secret, this example will not work. For more details, see:
 *
 * https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_how-
services-use-secrets_RS.html
 *
 *
 */

public class CreateDBInstance {
 public static long sleepTime = 20;

 public static void main(String[] args) {
 final String usage = """

 Usage:
 <dbInstanceIdentifier> <dbName> <secretName>

 Where:
 dbInstanceIdentifier - The database instance identifier.\s
 dbName - The database name.\s
 secretName - The name of the AWS Secrets Manager secret that
 contains the database credentials."
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbInstanceIdentifier = args[0];
 String dbName = args[1];
 String secretName = args[2];
 Gson gson = new Gson();
 User user = gson.fromJson(String.valueOf(getSecretValues(secretName)),
 User.class);
 Region region = Region.US_WEST_2;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

Actions 4850

Amazon Relational Database Service User Guide

 createDatabaseInstance(rdsClient, dbInstanceIdentifier, dbName,
 user.getUsername(), user.getPassword());
 waitForInstanceReady(rdsClient, dbInstanceIdentifier);
 rdsClient.close();
 }

 private static SecretsManagerClient getSecretClient() {
 Region region = Region.US_WEST_2;
 return SecretsManagerClient.builder()
 .region(region)

 .credentialsProvider(EnvironmentVariableCredentialsProvider.create())
 .build();
 }

 private static String getSecretValues(String secretName) {
 SecretsManagerClient secretClient = getSecretClient();
 GetSecretValueRequest valueRequest = GetSecretValueRequest.builder()
 .secretId(secretName)
 .build();

 GetSecretValueResponse valueResponse =
 secretClient.getSecretValue(valueRequest);
 return valueResponse.secretString();
 }

 public static void createDatabaseInstance(RdsClient rdsClient,
 String dbInstanceIdentifier,
 String dbName,
 String userName,
 String userPassword) {

 try {
 CreateDbInstanceRequest instanceRequest =
 CreateDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .allocatedStorage(100)
 .dbName(dbName)
 .engine("mysql")
 .dbInstanceClass("db.t3.medium") // Updated to a supported class
 .engineVersion("8.0.32") // Updated to a supported
 version

Actions 4851

Amazon Relational Database Service User Guide

 .storageType("gp2") // Changed to General Purpose SSD
 (gp2)
 .masterUsername(userName)
 .masterUserPassword(userPassword)
 .build();

 CreateDbInstanceResponse response =
 rdsClient.createDBInstance(instanceRequest);
 System.out.print("The status is " +
 response.dbInstance().dbInstanceStatus());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Waits until the database instance is available.
 public static void waitForInstanceReady(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 boolean instanceReady = false;
 String instanceReadyStr;
 System.out.println("Waiting for instance to become available.");
 try {
 DescribeDbInstancesRequest instanceRequest =
 DescribeDbInstancesRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .build();

 // Loop until the cluster is ready.
 while (!instanceReady) {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances(instanceRequest);
 List<DBInstance> instanceList = response.dbInstances();
 for (DBInstance instance : instanceList) {
 instanceReadyStr = instance.dbInstanceStatus();
 if (instanceReadyStr.contains("available"))
 instanceReady = true;
 else {
 System.out.print(".");
 Thread.sleep(sleepTime * 1000);
 }
 }
 }

Actions 4852

Amazon Relational Database Service User Guide

 System.out.println("Database instance is available!");

 } catch (RdsException | InterruptedException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see CreateDBInstance in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createDatabaseInstance(
 dbInstanceIdentifierVal: String?,
 dbNamedbVal: String?,
 masterUsernameVal: String?,
 masterUserPasswordVal: String?,
) {
 val instanceRequest =
 CreateDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 allocatedStorage = 100
 dbName = dbNamedbVal
 engine = "mysql"
 dbInstanceClass = "db.t3.micro" // Use a supported instance class
 engineVersion = "8.0.39" // Use a supported engine version
 storageType = "gp2"
 masterUsername = masterUsernameVal
 masterUserPassword = masterUserPasswordVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbInstance(instanceRequest)

Actions 4853

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Relational Database Service User Guide

 print("The status is ${response.dbInstance?.dbInstanceStatus}")
 }
}

// Waits until the database instance is available.
suspend fun waitForInstanceReady(dbInstanceIdentifierVal: String?) {
 val sleepTime: Long = 20
 var instanceReady = false
 var instanceReadyStr: String
 println("Waiting for instance to become available.")

 val instanceRequest =
 DescribeDbInstancesRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 while (!instanceReady) {
 val response = rdsClient.describeDbInstances(instanceRequest)
 val instanceList = response.dbInstances
 if (instanceList != null) {
 for (instance in instanceList) {
 instanceReadyStr = instance.dbInstanceStatus.toString()
 if (instanceReadyStr.contains("available")) {
 instanceReady = true
 } else {
 println("...$instanceReadyStr")
 delay(sleepTime * 1000)
 }
 }
 }
 }
 println("Database instance is available!")
 }
}

• For API details, see CreateDBInstance in AWS SDK for Kotlin API reference.

Actions 4854

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Relational Database Service User Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require __DIR__ . '/vendor/autoload.php';

use Aws\Exception\AwsException;

$rdsClient = new Aws\Rds\RdsClient([
 'region' => 'us-east-2'
]);

$dbIdentifier = '<<{{db-identifier}}>>';
$dbClass = 'db.t2.micro';
$storage = 5;
$engine = 'MySQL';
$username = 'MyUser';
$password = 'MyPassword';

try {
 $result = $rdsClient->createDBInstance([
 'DBInstanceIdentifier' => $dbIdentifier,
 'DBInstanceClass' => $dbClass,
 'AllocatedStorage' => $storage,
 'Engine' => $engine,
 'MasterUsername' => $username,
 'MasterUserPassword' => $password,
]);
 var_dump($result);
} catch (AwsException $e) {
 echo $e->getMessage();
 echo "\n";
}

Actions 4855

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/rds#code-examples

Amazon Relational Database Service User Guide

• For API details, see CreateDBInstance in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def create_db_instance(
 self,
 db_name,
 instance_id,
 parameter_group_name,
 db_engine,
 db_engine_version,
 instance_class,
 storage_type,

Actions 4856

https://docs.aws.amazon.com/goto/SdkForPHPV3/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 allocated_storage,
 admin_name,
 admin_password,
):
 """
 Creates a DB instance.

 :param db_name: The name of the database that is created in the DB
 instance.
 :param instance_id: The ID to give the newly created DB instance.
 :param parameter_group_name: A parameter group to associate with the DB
 instance.
 :param db_engine: The database engine of a database to create in the DB
 instance.
 :param db_engine_version: The engine version for the created database.
 :param instance_class: The DB instance class for the newly created DB
 instance.
 :param storage_type: The storage type of the DB instance.
 :param allocated_storage: The amount of storage allocated on the DB
 instance, in GiBs.
 :param admin_name: The name of the admin user for the created database.
 :param admin_password: The admin password for the created database.
 :return: Data about the newly created DB instance.
 """
 try:
 response = self.rds_client.create_db_instance(
 DBName=db_name,
 DBInstanceIdentifier=instance_id,
 DBParameterGroupName=parameter_group_name,
 Engine=db_engine,
 EngineVersion=db_engine_version,
 DBInstanceClass=instance_class,
 StorageType=storage_type,
 AllocatedStorage=allocated_storage,
 MasterUsername=admin_name,
 MasterUserPassword=admin_password,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't create DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],

Actions 4857

Amazon Relational Database Service User Guide

)
 raise
 else:
 return db_inst

• For API details, see CreateDBInstance in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateDBParameterGroup with an AWS SDK or CLI

The following code examples show how to use CreateDBParameterGroup.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a new DB parameter group. Use the action
 DescribeDBParameterGroupsAsync
 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <param name="family">Family of the DB parameter group.</param>

Actions 4858

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 /// <param name="description">Description of the DB parameter group.</param>
 /// <returns>The new DB parameter group.</returns>
 public async Task<DBParameterGroup> CreateDBParameterGroup(
 string name, string family, string description)
 {
 var response = await _amazonRDS.CreateDBParameterGroupAsync(
 new CreateDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 DBParameterGroupFamily = family,
 Description = description
 });
 return response.DBParameterGroup;
 }

• For API details, see CreateDBParameterGroup in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::CreateDBParameterGroupRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 request.SetDBParameterGroupFamily(dbParameterGroupFamily);
 request.SetDescription("Example parameter group.");

 Aws::RDS::Model::CreateDBParameterGroupOutcome outcome =
 client.CreateDBParameterGroup(request);

Actions 4859

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully created."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see CreateDBParameterGroup in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create a DB parameter group

The following create-db-parameter-group example creates a DB parameter group.

aws rds create-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --db-parameter-group-family MySQL5.6 \
 --description "My new parameter group"

Output:

{
 "DBParameterGroup": {
 "DBParameterGroupName": "mydbparametergroup",
 "DBParameterGroupFamily": "mysql5.6",
 "Description": "My new parameter group",
 "DBParameterGroupArn": "arn:aws:rds:us-
east-1:123456789012:pg:mydbparametergroup"
 }
}

For more information, see Creating a DB Parameter Group in the Amazon RDS User Guide.

Actions 4860

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBParameterGroup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Creating

Amazon Relational Database Service User Guide

• For API details, see CreateDBParameterGroup in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// CreateParameterGroup creates a DB parameter group that is based on the
 specified
// parameter group family.
func (instances *DbInstances) CreateParameterGroup(
 ctx context.Context, parameterGroupName string, parameterGroupFamily string,
 description string) (
 *types.DBParameterGroup, error) {

 output, err := instances.RdsClient.CreateDBParameterGroup(ctx,
 &rds.CreateDBParameterGroupInput{
 DBParameterGroupName: aws.String(parameterGroupName),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 Description: aws.String(description),

Actions 4861

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/create-db-parameter-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 })
 if err != nil {
 log.Printf("Couldn't create parameter group %v: %v\n", parameterGroupName, err)
 return nil, err
 } else {
 return output.DBParameterGroup, err
 }
}

• For API details, see CreateDBParameterGroup in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void createDBParameterGroup(RdsClient rdsClient, String
 dbGroupName, String dbParameterGroupFamily) {
 try {
 CreateDbParameterGroupRequest groupRequest =
 CreateDbParameterGroupRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .dbParameterGroupFamily(dbParameterGroupFamily)
 .description("Created by using the AWS SDK for Java")
 .build();

 CreateDbParameterGroupResponse response =
 rdsClient.createDBParameterGroup(groupRequest);
 System.out.println("The group name is " +
 response.dbParameterGroup().dbParameterGroupName());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }

Actions 4862

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 }

• For API details, see CreateDBParameterGroup in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def create_parameter_group(
 self, parameter_group_name, parameter_group_family, description
):
 """
 Creates a DB parameter group that is based on the specified parameter
 group
 family.

Actions 4863

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 :param parameter_group_name: The name of the newly created parameter
 group.
 :param parameter_group_family: The family that is used as the basis of
 the new
 parameter group.
 :param description: A description given to the parameter group.
 :return: Data about the newly created parameter group.
 """
 try:
 response = self.rds_client.create_db_parameter_group(
 DBParameterGroupName=parameter_group_name,
 DBParameterGroupFamily=parameter_group_family,
 Description=description,
)
 except ClientError as err:
 logger.error(
 "Couldn't create parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see CreateDBParameterGroup in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateDBSnapshot with an AWS SDK or CLI

The following code examples show how to use CreateDBSnapshot.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 4864

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBParameterGroup

Amazon Relational Database Service User Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a snapshot of a DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBSnapshot> CreateDBSnapshot(string dbInstanceIdentifier,
 string snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBSnapshotAsync(
 new CreateDBSnapshotRequest()
 {
 DBSnapshotIdentifier = snapshotIdentifier,
 DBInstanceIdentifier = dbInstanceIdentifier
 });

 return response.DBSnapshot;
 }

• For API details, see CreateDBSnapshot in AWS SDK for .NET API Reference.

Actions 4865

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBSnapshot

Amazon Relational Database Service User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::CreateDBSnapshotRequest request;
 request.SetDBInstanceIdentifier(DB_INSTANCE_IDENTIFIER);
 request.SetDBSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::CreateDBSnapshotOutcome outcome =
 client.CreateDBSnapshot(request);

 if (outcome.IsSuccess()) {
 std::cout << "Snapshot creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBSnapshot. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

• For API details, see CreateDBSnapshot in AWS SDK for C++ API Reference.

Actions 4866

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBSnapshot

Amazon Relational Database Service User Guide

CLI

AWS CLI

To create a DB snapshot

The following create-db-snapshot example creates a DB snapshot.

aws rds create-db-snapshot \
 --db-instance-identifier database-mysql \
 --db-snapshot-identifier mydbsnapshot

Output:

{
 "DBSnapshot": {
 "DBSnapshotIdentifier": "mydbsnapshot",
 "DBInstanceIdentifier": "database-mysql",
 "Engine": "mysql",
 "AllocatedStorage": 100,
 "Status": "creating",
 "Port": 3306,
 "AvailabilityZone": "us-east-1b",
 "VpcId": "vpc-6594f31c",
 "InstanceCreateTime": "2019-04-30T15:45:53.663Z",
 "MasterUsername": "admin",
 "EngineVersion": "5.6.40",
 "LicenseModel": "general-public-license",
 "SnapshotType": "manual",
 "Iops": 1000,
 "OptionGroupName": "default:mysql-5-6",
 "PercentProgress": 0,
 "StorageType": "io1",
 "Encrypted": true,
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/
AKIAIOSFODNN7EXAMPLE",
 "DBSnapshotArn": "arn:aws:rds:us-
east-1:123456789012:snapshot:mydbsnapshot",
 "IAMDatabaseAuthenticationEnabled": false,
 "ProcessorFeatures": [],
 "DbiResourceId": "db-AKIAIOSFODNN7EXAMPLE"
 }
}

Actions 4867

Amazon Relational Database Service User Guide

For more information, see Creating a DB Snapshot in the Amazon RDS User Guide.

• For API details, see CreateDBSnapshot in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// CreateSnapshot creates a snapshot of a DB instance.
func (instances *DbInstances) CreateSnapshot(ctx context.Context, instanceName
 string, snapshotName string) (
 *types.DBSnapshot, error) {
 output, err := instances.RdsClient.CreateDBSnapshot(ctx,
 &rds.CreateDBSnapshotInput{
 DBInstanceIdentifier: aws.String(instanceName),
 DBSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't create snapshot %v: %v\n", snapshotName, err)

Actions 4868

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/create-db-snapshot.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 return nil, err
 } else {
 return output.DBSnapshot, nil
 }
}

• For API details, see CreateDBSnapshot in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Create an Amazon RDS snapshot.
 public static void createSnapshot(RdsClient rdsClient, String
 dbInstanceIdentifier, String dbSnapshotIdentifier) {
 try {
 CreateDbSnapshotRequest snapshotRequest =
 CreateDbSnapshotRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .dbSnapshotIdentifier(dbSnapshotIdentifier)
 .build();

 CreateDbSnapshotResponse response =
 rdsClient.createDBSnapshot(snapshotRequest);
 System.out.println("The Snapshot id is " +
 response.dbSnapshot().dbiResourceId());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

Actions 4869

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBSnapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

• For API details, see CreateDBSnapshot in AWS SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require __DIR__ . '/vendor/autoload.php';

use Aws\Exception\AwsException;

$rdsClient = new Aws\Rds\RdsClient([
 'region' => 'us-east-2'
]);

$dbIdentifier = '<<{{db-identifier}}>>';
$snapshotName = '<<{{backup_2018_12_25}}>>';

try {
 $result = $rdsClient->createDBSnapshot([
 'DBInstanceIdentifier' => $dbIdentifier,
 'DBSnapshotIdentifier' => $snapshotName,
]);
 var_dump($result);
} catch (AwsException $e) {
 echo $e->getMessage();
 echo "\n";
}

• For API details, see CreateDBSnapshot in AWS SDK for PHP API Reference.

Actions 4870

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBSnapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/rds#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/rds-2014-10-31/CreateDBSnapshot

Amazon Relational Database Service User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def create_snapshot(self, snapshot_id, instance_id):
 """
 Creates a snapshot of a DB instance.

 :param snapshot_id: The ID to give the created snapshot.
 :param instance_id: The ID of the DB instance to snapshot.
 :return: Data about the newly created snapshot.
 """
 try:
 response = self.rds_client.create_db_snapshot(
 DBSnapshotIdentifier=snapshot_id,
 DBInstanceIdentifier=instance_id
)
 snapshot = response["DBSnapshot"]

Actions 4871

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 except ClientError as err:
 logger.error(
 "Couldn't create snapshot of %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

• For API details, see CreateDBSnapshot in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

Create a snapshot for an Amazon Relational Database Service (Amazon RDS)
DB instance.
#
@param rds_resource [Aws::RDS::Resource] The resource containing SDK logic.
@param db_instance_name [String] The name of the Amazon RDS DB instance.
@return [Aws::RDS::DBSnapshot, nil] The snapshot created, or nil if error.
def create_snapshot(rds_resource, db_instance_name)
 id = "snapshot-#{rand(10**6)}"
 db_instance = rds_resource.db_instance(db_instance_name)
 db_instance.create_snapshot({
 db_snapshot_identifier: id
 })
rescue Aws::Errors::ServiceError => e
 puts "Couldn't create DB instance snapshot #{id}:\n #{e.message}"
end

Actions 4872

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBSnapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon Relational Database Service User Guide

• For API details, see CreateDBSnapshot in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteDBInstance with an AWS SDK or CLI

The following code examples show how to use DeleteDBInstance.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstance(string dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(
 new DeleteDBInstanceRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,

Actions 4873

https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/CreateDBSnapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }

• For API details, see DeleteDBInstance in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DeleteDBInstanceRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);
 request.SetSkipFinalSnapshot(true);
 request.SetDeleteAutomatedBackups(true);

 Aws::RDS::Model::DeleteDBInstanceOutcome outcome =
 client.DeleteDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB instance deletion has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::DeleteDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;

Actions 4874

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 result = false;
 }

• For API details, see DeleteDBInstance in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete a DB instance

The following delete-db-instance example deletes the specified DB instance after
creating a final DB snapshot named test-instance-final-snap.

aws rds delete-db-instance \
 --db-instance-identifier test-instance \
 --final-db-snapshot-identifier test-instance-final-snap

Output:

{
 "DBInstance": {
 "DBInstanceIdentifier": "test-instance",
 "DBInstanceStatus": "deleting",
 ...some output truncated...
 }
}

• For API details, see DeleteDBInstance in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 4875

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBInstance
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/delete-db-instance.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// DeleteInstance deletes a DB instance.
func (instances *DbInstances) DeleteInstance(ctx context.Context, instanceName
 string) error {
 _, err := instances.RdsClient.DeleteDBInstance(ctx, &rds.DeleteDBInstanceInput{
 DBInstanceIdentifier: aws.String(instanceName),
 SkipFinalSnapshot: aws.Bool(true),
 DeleteAutomatedBackups: aws.Bool(true),
 })
 if err != nil {
 log.Printf("Couldn't delete instance %v: %v\n", instanceName, err)
 return err
 } else {
 return nil
 }
}

• For API details, see DeleteDBInstance in AWS SDK for Go API Reference.

Actions 4876

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBInstance

Amazon Relational Database Service User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.DeleteDbInstanceRequest;
import software.amazon.awssdk.services.rds.model.DeleteDbInstanceResponse;
import software.amazon.awssdk.services.rds.model.RdsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteDBInstance {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <dbInstanceIdentifier>\s

 Where:
 dbInstanceIdentifier - The database instance identifier\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbInstanceIdentifier = args[0];

Actions 4877

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 Region region = Region.US_WEST_2;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 deleteDatabaseInstance(rdsClient, dbInstanceIdentifier);
 rdsClient.close();
 }

 public static void deleteDatabaseInstance(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 try {
 DeleteDbInstanceRequest deleteDbInstanceRequest =
 DeleteDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .deleteAutomatedBackups(true)
 .skipFinalSnapshot(true)
 .build();

 DeleteDbInstanceResponse response =
 rdsClient.deleteDBInstance(deleteDbInstanceRequest);
 System.out.print("The status of the database is " +
 response.dbInstance().dbInstanceStatus());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteDBInstance in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 4878

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Relational Database Service User Guide

suspend fun deleteDatabaseInstance(dbInstanceIdentifierVal: String?) {
 val deleteDbInstanceRequest =
 DeleteDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 deleteAutomatedBackups = true
 skipFinalSnapshot = true
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.deleteDbInstance(deleteDbInstanceRequest)
 print("The status of the database is
 ${response.dbInstance?.dbInstanceStatus}")
 }
}

• For API details, see DeleteDBInstance in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require __DIR__ . '/vendor/autoload.php';

use Aws\Exception\AwsException;

//Create an RDSClient
$rdsClient = new Aws\Rds\RdsClient([
 'region' => 'us-east-1'
]);

$dbIdentifier = '<<{{db-identifier}}>>';

Actions 4879

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/rds#code-examples

Amazon Relational Database Service User Guide

try {
 $result = $rdsClient->deleteDBInstance([
 'DBInstanceIdentifier' => $dbIdentifier,
]);
 var_dump($result);
} catch (AwsException $e) {
 echo $e->getMessage();
 echo "\n";
}

• For API details, see DeleteDBInstance in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

Actions 4880

https://docs.aws.amazon.com/goto/SdkForPHPV3/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 def delete_db_instance(self, instance_id):
 """
 Deletes a DB instance.

 :param instance_id: The ID of the DB instance to delete.
 :return: Data about the deleted DB instance.
 """
 try:
 response = self.rds_client.delete_db_instance(
 DBInstanceIdentifier=instance_id,
 SkipFinalSnapshot=True,
 DeleteAutomatedBackups=True,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't delete DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

• For API details, see DeleteDBInstance in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteDBParameterGroup with an AWS SDK or CLI

The following code examples show how to use DeleteDBParameterGroup.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 4881

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBInstance

Amazon Relational Database Service User Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete a DB parameter group. The group cannot be a default DB parameter
 group
 /// or be associated with any DB instances.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteDBParameterGroup(string name)
 {
 var response = await _amazonRDS.DeleteDBParameterGroupAsync(
 new DeleteDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteDBParameterGroup in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 4882

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DeleteDBParameterGroupRequest request;
 request.SetDBParameterGroupName(parameterGroupName);

 Aws::RDS::Model::DeleteDBParameterGroupOutcome outcome =
 client.DeleteDBParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully deleted."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::DeleteDBParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }

• For API details, see DeleteDBParameterGroup in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete a DB parameter group

The following command example deletes a DB parameter group.

aws rds delete-db-parameter-group \
 --db-parameter-group-name mydbparametergroup

This command produces no output.

For more information, see Working with DB Parameter Groups in the Amazon RDS User
Guide.

Actions 4883

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBParameterGroup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

Amazon Relational Database Service User Guide

• For API details, see DeleteDBParameterGroup in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// DeleteParameterGroup deletes the named DB parameter group.
func (instances *DbInstances) DeleteParameterGroup(ctx context.Context,
 parameterGroupName string) error {
 _, err := instances.RdsClient.DeleteDBParameterGroup(ctx,
 &rds.DeleteDBParameterGroupInput{
 DBParameterGroupName: aws.String(parameterGroupName),
 })
 if err != nil {
 log.Printf("Couldn't delete parameter group %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil
 }

Actions 4884

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/delete-db-parameter-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

}

• For API details, see DeleteDBParameterGroup in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Delete the parameter group after database has been deleted.
 // An exception is thrown if you attempt to delete the para group while
 database
 // exists.
 public static void deleteParaGroup(RdsClient rdsClient, String dbGroupName,
 String dbARN)
 throws InterruptedException {
 try {
 boolean isDataDel = false;
 boolean didFind;
 String instanceARN;

 // Make sure that the database has been deleted.
 while (!isDataDel) {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances();
 List<DBInstance> instanceList = response.dbInstances();
 int listSize = instanceList.size();
 didFind = false;
 int index = 1;
 for (DBInstance instance : instanceList) {
 instanceARN = instance.dbInstanceArn();
 if (instanceARN.compareTo(dbARN) == 0) {
 System.out.println(dbARN + " still exists");
 didFind = true;
 }

Actions 4885

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 if ((index == listSize) && (!didFind)) {
 // Went through the entire list and did not find the
 database ARN.
 isDataDel = true;
 }
 Thread.sleep(sleepTime * 1000);
 index++;
 }
 }

 // Delete the para group.
 DeleteDbParameterGroupRequest parameterGroupRequest =
 DeleteDbParameterGroupRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .build();

 rdsClient.deleteDBParameterGroup(parameterGroupRequest);
 System.out.println(dbGroupName + " was deleted.");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DeleteDBParameterGroup in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):

Actions 4886

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def delete_parameter_group(self, parameter_group_name):
 """
 Deletes a DB parameter group.

 :param parameter_group_name: The name of the parameter group to delete.
 :return: Data about the parameter group.
 """
 try:
 self.rds_client.delete_db_parameter_group(
 DBParameterGroupName=parameter_group_name
)
 except ClientError as err:
 logger.error(
 "Couldn't delete parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteDBParameterGroup in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 4887

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBParameterGroup

Amazon Relational Database Service User Guide

Use DescribeAccountAttributes with an AWS SDK or CLI

The following code examples show how to use DescribeAccountAttributes.

CLI

AWS CLI

To describe account attributes

The following describe-account-attributes example retrieves the attributes for the
current AWS account.

aws rds describe-account-attributes

Output:

{
 "AccountQuotas": [
 {
 "Max": 40,
 "Used": 4,
 "AccountQuotaName": "DBInstances"
 },
 {
 "Max": 40,
 "Used": 0,
 "AccountQuotaName": "ReservedDBInstances"
 },
 {
 "Max": 100000,
 "Used": 40,
 "AccountQuotaName": "AllocatedStorage"
 },
 {
 "Max": 25,
 "Used": 0,
 "AccountQuotaName": "DBSecurityGroups"
 },
 {
 "Max": 20,
 "Used": 0,
 "AccountQuotaName": "AuthorizationsPerDBSecurityGroup"

Actions 4888

Amazon Relational Database Service User Guide

 },
 {
 "Max": 50,
 "Used": 1,
 "AccountQuotaName": "DBParameterGroups"
 },
 {
 "Max": 100,
 "Used": 3,
 "AccountQuotaName": "ManualSnapshots"
 },
 {
 "Max": 20,
 "Used": 0,
 "AccountQuotaName": "EventSubscriptions"
 },
 {
 "Max": 50,
 "Used": 1,
 "AccountQuotaName": "DBSubnetGroups"
 },
 {
 "Max": 20,
 "Used": 1,
 "AccountQuotaName": "OptionGroups"
 },
 {
 "Max": 20,
 "Used": 6,
 "AccountQuotaName": "SubnetsPerDBSubnetGroup"
 },
 {
 "Max": 5,
 "Used": 0,
 "AccountQuotaName": "ReadReplicasPerMaster"
 },
 {
 "Max": 40,
 "Used": 1,
 "AccountQuotaName": "DBClusters"
 },
 {
 "Max": 50,
 "Used": 0,

Actions 4889

Amazon Relational Database Service User Guide

 "AccountQuotaName": "DBClusterParameterGroups"
 },
 {
 "Max": 5,
 "Used": 0,
 "AccountQuotaName": "DBClusterRoles"
 }
]
}

• For API details, see DescribeAccountAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.AccountQuota;
import software.amazon.awssdk.services.rds.model.RdsException;
import
 software.amazon.awssdk.services.rds.model.DescribeAccountAttributesResponse;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DescribeAccountAttributes {
 public static void main(String[] args) {
 Region region = Region.US_WEST_2;

Actions 4890

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-account-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 getAccountAttributes(rdsClient);
 rdsClient.close();
 }

 public static void getAccountAttributes(RdsClient rdsClient) {
 try {
 DescribeAccountAttributesResponse response =
 rdsClient.describeAccountAttributes();
 List<AccountQuota> quotasList = response.accountQuotas();
 for (AccountQuota quotas : quotasList) {
 System.out.println("Name is: " + quotas.accountQuotaName());
 System.out.println("Max value is " + quotas.max());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see DescribeAccountAttributes in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun getAccountAttributes() {
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response =
 rdsClient.describeAccountAttributes(DescribeAccountAttributesRequest {})

Actions 4891

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeAccountAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Relational Database Service User Guide

 response.accountQuotas?.forEach { quotas ->
 val response = response.accountQuotas
 println("Name is: ${quotas.accountQuotaName}")
 println("Max value is ${quotas.max}")
 }
 }
}

• For API details, see DescribeAccountAttributes in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBEngineVersions with an AWS SDK or CLI

The following code examples show how to use DescribeDBEngineVersions.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>

Actions 4892

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 /// <param name="dbParameterGroupFamily">Optional parameter group family
 name.</param>
 /// <returns>List of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>> DescribeDBEngineVersions(string
 engine,
 string dbParameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()
 {
 Engine = engine,
 DBParameterGroupFamily = dbParameterGroupFamily
 });
 return response.DBEngineVersions;
 }

• For API details, see DescribeDBEngineVersions in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets available DB engine versions for an engine name and
//! an optional parameter group family.
/*!
 \sa getDBEngineVersions()
 \param engineName: A DB engine name.

Actions 4893

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 \param parameterGroupFamily: A parameter group family name, ignored if empty.
 \param engineVersionsResult: Vector of 'DBEngineVersion' objects returned by the
 routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::getDBEngineVersions(const Aws::String &engineName,
 const Aws::String ¶meterGroupFamily,

 Aws::Vector<Aws::RDS::Model::DBEngineVersion> &engineVersionsResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBEngineVersionsRequest request;
 request.SetEngine(engineName);
 if (!parameterGroupFamily.empty()) {
 request.SetDBParameterGroupFamily(parameterGroupFamily);
 }

 engineVersionsResult.clear();
 Aws::String marker; // Used for pagination.

 do {
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::RDS::Model::DescribeDBEngineVersionsOutcome outcome =
 client.DescribeDBEngineVersions(request);

 if (outcome.IsSuccess()) {
 auto &engineVersions = outcome.GetResult().GetDBEngineVersions();
 engineVersionsResult.insert(engineVersionsResult.end(),
 engineVersions.begin(),
 engineVersions.end());
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with RDS::DescribeDBEngineVersionsRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 } while (!marker.empty());

Actions 4894

Amazon Relational Database Service User Guide

 return true;
}

• For API details, see DescribeDBEngineVersions in AWS SDK for C++ API Reference.

CLI

AWS CLI

To describe the DB engine versions for the MySQL DB engine

The following describe-db-engine-versions example displays details about each of
the DB engine versions for the specified DB engine.

aws rds describe-db-engine-versions \
 --engine mysql

Output:

{
 "DBEngineVersions": [
 {
 "Engine": "mysql",
 "EngineVersion": "5.5.46",
 "DBParameterGroupFamily": "mysql5.5",
 "DBEngineDescription": "MySQL Community Edition",
 "DBEngineVersionDescription": "MySQL 5.5.46",
 "ValidUpgradeTarget": [
 {
 "Engine": "mysql",
 "EngineVersion": "5.5.53",
 "Description": "MySQL 5.5.53",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": false
 },
 {
 "Engine": "mysql",
 "EngineVersion": "5.5.54",
 "Description": "MySQL 5.5.54",

Actions 4895

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBEngineVersions

Amazon Relational Database Service User Guide

 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": false
 },
 {
 "Engine": "mysql",
 "EngineVersion": "5.5.57",
 "Description": "MySQL 5.5.57",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": false
 },
 ...some output truncated...
]
 }

For more information, see What Is Amazon Relational Database Service (Amazon RDS)? in
the Amazon RDS User Guide.

• For API details, see DescribeDBEngineVersions in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client

Actions 4896

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-engine-versions.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

}

// GetEngineVersions gets database engine versions that are available for the
 specified engine
// and parameter group family.
func (instances *DbInstances) GetEngineVersions(ctx context.Context, engine
 string, parameterGroupFamily string) (
 []types.DBEngineVersion, error) {
 output, err := instances.RdsClient.DescribeDBEngineVersions(ctx,
 &rds.DescribeDBEngineVersionsInput{
 Engine: aws.String(engine),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 })
 if err != nil {
 log.Printf("Couldn't get engine versions for %v: %v\n", engine, err)
 return nil, err
 } else {
 return output.DBEngineVersions, nil
 }
}

• For API details, see DescribeDBEngineVersions in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void describeDBEngines(RdsClient rdsClient) {
 try {
 DescribeDbEngineVersionsRequest engineVersionsRequest =
 DescribeDbEngineVersionsRequest.builder()
 .defaultOnly(true)

Actions 4897

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 .engine("mysql")
 .maxRecords(20)
 .build();

 DescribeDbEngineVersionsResponse response =
 rdsClient.describeDBEngineVersions(engineVersionsRequest);
 List<DBEngineVersion> engines = response.dbEngineVersions();

 // Get all DBEngineVersion objects.
 for (DBEngineVersion engineOb : engines) {
 System.out.println("The name of the DB parameter group family for
 the database engine is "
 + engineOb.dbParameterGroupFamily());
 System.out.println("The name of the database engine " +
 engineOb.engine());
 System.out.println("The version number of the database engine " +
 engineOb.engineVersion());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBEngineVersions in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):

Actions 4898

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_engine_versions(self, engine, parameter_group_family=None):
 """
 Gets database engine versions that are available for the specified engine
 and parameter group family.

 :param engine: The database engine to look up.
 :param parameter_group_family: When specified, restricts the returned
 list of
 engine versions to those that are
 compatible with
 this parameter group family.
 :return: The list of database engine versions.
 """
 try:
 kwargs = {"Engine": engine}
 if parameter_group_family is not None:
 kwargs["DBParameterGroupFamily"] = parameter_group_family
 response = self.rds_client.describe_db_engine_versions(**kwargs)
 versions = response["DBEngineVersions"]
 except ClientError as err:
 logger.error(
 "Couldn't get engine versions for %s. Here's why: %s: %s",
 engine,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return versions

Actions 4899

Amazon Relational Database Service User Guide

• For API details, see DescribeDBEngineVersions in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBInstances with an AWS SDK or CLI

The following code examples show how to use DescribeDBInstances.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstances(string
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(

Actions 4900

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 new DescribeDBInstancesRequest
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });
 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;
 }

• For API details, see DescribeDBInstances in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets a DB instance description.
/*!
 \sa describeDBInstance()
 \param dbInstanceIdentifier: A DB instance identifier.
 \param instanceResult: The 'DBInstance' object containing the description.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::describeDBInstance(const Aws::String &dbInstanceIdentifier,

Actions 4901

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 Aws::RDS::Model::DBInstance &instanceResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBInstancesRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);

 Aws::RDS::Model::DescribeDBInstancesOutcome outcome =
 client.DescribeDBInstances(request);

 bool result = true;
 if (outcome.IsSuccess()) {
 instanceResult = outcome.GetResult().GetDBInstances()[0];
 }
 else if (outcome.GetError().GetErrorType() !=
 Aws::RDS::RDSErrors::D_B_INSTANCE_NOT_FOUND_FAULT) {
 result = false;
 std::cerr << "Error with RDS::DescribeDBInstances. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 // This example does not log an error if the DB instance does not exist.
 // Instead, instanceResult is set to empty.
 else {
 instanceResult = Aws::RDS::Model::DBInstance();
 }

 return result;
}

• For API details, see DescribeDBInstances in AWS SDK for C++ API Reference.

CLI

AWS CLI

To describe a DB instance

The following describe-db-instances example retrieves details about the specified DB
instance.

aws rds describe-db-instances \
 --db-instance-identifier mydbinstancecf

Actions 4902

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBInstances

Amazon Relational Database Service User Guide

Output:

{
 "DBInstances": [
 {
 "DBInstanceIdentifier": "mydbinstancecf",
 "DBInstanceClass": "db.t3.small",
 "Engine": "mysql",
 "DBInstanceStatus": "available",
 "MasterUsername": "masterawsuser",
 "Endpoint": {
 "Address": "mydbinstancecf.abcexample.us-
east-1.rds.amazonaws.com",
 "Port": 3306,
 "HostedZoneId": "Z2R2ITUGPM61AM"
 },
 ...some output truncated...
 }
]
}

• For API details, see DescribeDBInstances in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"

Actions 4903

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-instances.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// GetInstance gets data about a DB instance.
func (instances *DbInstances) GetInstance(ctx context.Context, instanceName
 string) (
 *types.DBInstance, error) {
 output, err := instances.RdsClient.DescribeDBInstances(ctx,
 &rds.DescribeDBInstancesInput{
 DBInstanceIdentifier: aws.String(instanceName),
 })
 if err != nil {
 var notFoundError *types.DBInstanceNotFoundFault
 if errors.As(err, ¬FoundError) {
 log.Printf("DB instance %v does not exist.\n", instanceName)
 err = nil
 } else {
 log.Printf("Couldn't get instance %v: %v\n", instanceName, err)
 }
 return nil, err
 } else {
 return &output.DBInstances[0], nil
 }
}

• For API details, see DescribeDBInstances in AWS SDK for Go API Reference.

Actions 4904

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBInstances

Amazon Relational Database Service User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.DescribeDbInstancesResponse;
import software.amazon.awssdk.services.rds.model.DBInstance;
import software.amazon.awssdk.services.rds.model.RdsException;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DescribeDBInstances {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 describeInstances(rdsClient);
 rdsClient.close();
 }

 public static void describeInstances(RdsClient rdsClient) {
 try {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances();

Actions 4905

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 List<DBInstance> instanceList = response.dbInstances();
 for (DBInstance instance : instanceList) {
 System.out.println("Instance ARN is: " +
 instance.dbInstanceArn());
 System.out.println("The Engine is " + instance.engine());
 System.out.println("Connection endpoint is" +
 instance.endpoint().address());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see DescribeDBInstances in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun describeInstances() {
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbInstances(DescribeDbInstancesRequest
 {})
 response.dbInstances?.forEach { instance ->
 println("Instance Identifier is ${instance.dbInstanceIdentifier}")
 println("The Engine is ${instance.engine}")
 println("Connection endpoint is ${instance.endpoint?.address}")
 }
 }
}

Actions 4906

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Relational Database Service User Guide

• For API details, see DescribeDBInstances in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require __DIR__ . '/vendor/autoload.php';

use Aws\Exception\AwsException;

//Create an RDSClient
$rdsClient = new Aws\Rds\RdsClient([
 'region' => 'us-east-2'
]);

try {
 $result = $rdsClient->describeDBInstances();
 foreach ($result['DBInstances'] as $instance) {
 print('<p>DB Identifier: ' . $instance['DBInstanceIdentifier']);
 print('
Endpoint: ' . $instance['Endpoint']["Address"]
 . ':' . $instance['Endpoint']["Port"]);
 print('
Current Status: ' . $instance["DBInstanceStatus"]);
 print('</p>');
 }
 print(" Raw Result ");
 var_dump($result);
} catch (AwsException $e) {
 echo $e->getMessage();
 echo "\n";
}

Actions 4907

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/rds#code-examples

Amazon Relational Database Service User Guide

• For API details, see DescribeDBInstances in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_db_instance(self, instance_id):
 """
 Gets data about a DB instance.

 :param instance_id: The ID of the DB instance to retrieve.
 :return: The retrieved DB instance.
 """
 try:
 response = self.rds_client.describe_db_instances(
 DBInstanceIdentifier=instance_id
)
 db_inst = response["DBInstances"][0]

Actions 4908

https://docs.aws.amazon.com/goto/SdkForPHPV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 except ClientError as err:
 if err.response["Error"]["Code"] == "DBInstanceNotFound":
 logger.info("Instance %s does not exist.", instance_id)
 else:
 logger.error(
 "Couldn't get DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

• For API details, see DescribeDBInstances in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) DB instances.
#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return [Array, nil] List of all DB instances, or nil if error.
def list_instances(rds_resource)
 db_instances = []
 rds_resource.db_instances.each do |i|
 db_instances.append({
 "name": i.id,
 "status": i.db_instance_status
 })
 end

Actions 4909

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 db_instances
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list instances:\n#{e.message}"
end

• For API details, see DescribeDBInstances in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBParameterGroups with an AWS SDK or CLI

The following code examples show how to use DescribeDBParameterGroups.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get descriptions of DB parameter groups.
 /// </summary>
 /// <param name="name">Optional name of the DB parameter group to describe.</
param>
 /// <returns>The list of DB parameter group descriptions.</returns>
 public async Task<List<DBParameterGroup>> DescribeDBParameterGroups(string
 name = null)

Actions 4910

https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 {
 var response = await _amazonRDS.DescribeDBParameterGroupsAsync(
 new DescribeDBParameterGroupsRequest()
 {
 DBParameterGroupName = name
 });
 return response.DBParameterGroups;
 }

• For API details, see DescribeDBParameterGroups in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DescribeDBParameterGroupsRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);

 Aws::RDS::Model::DescribeDBParameterGroupsOutcome outcome =
 client.DescribeDBParameterGroups(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB parameter group named '" <<
 PARAMETER_GROUP_NAME << "' already exists." << std::endl;
 dbParameterGroupFamily = outcome.GetResult().GetDBParameterGroups()
[0].GetDBParameterGroupFamily();
 }

Actions 4911

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameterGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 else {
 std::cerr << "Error with RDS::DescribeDBParameterGroups. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see DescribeDBParameterGroups in AWS SDK for C++ API Reference.

CLI

AWS CLI

To describe your DB parameter group

The following describe-db-parameter-groups example retrieves details about your DB
parameter groups.

aws rds describe-db-parameter-groups

Output:

{
 "DBParameterGroups": [
 {
 "DBParameterGroupName": "default.aurora-mysql5.7",
 "DBParameterGroupFamily": "aurora-mysql5.7",
 "Description": "Default parameter group for aurora-mysql5.7",
 "DBParameterGroupArn": "arn:aws:rds:us-
east-1:123456789012:pg:default.aurora-mysql5.7"
 },
 {
 "DBParameterGroupName": "default.aurora-postgresql9.6",
 "DBParameterGroupFamily": "aurora-postgresql9.6",
 "Description": "Default parameter group for aurora-postgresql9.6",
 "DBParameterGroupArn": "arn:aws:rds:us-
east-1:123456789012:pg:default.aurora-postgresql9.6"
 },
 {
 "DBParameterGroupName": "default.aurora5.6",
 "DBParameterGroupFamily": "aurora5.6",

Actions 4912

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBParameterGroups

Amazon Relational Database Service User Guide

 "Description": "Default parameter group for aurora5.6",
 "DBParameterGroupArn": "arn:aws:rds:us-
east-1:123456789012:pg:default.aurora5.6"
 },
 {
 "DBParameterGroupName": "default.mariadb10.1",
 "DBParameterGroupFamily": "mariadb10.1",
 "Description": "Default parameter group for mariadb10.1",
 "DBParameterGroupArn": "arn:aws:rds:us-
east-1:123456789012:pg:default.mariadb10.1"
 },
 ...some output truncated...
]
}

For more information, see Working with DB Parameter Groups in the Amazon RDS User
Guide.

• For API details, see DescribeDBParameterGroups in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {

Actions 4913

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-parameter-groups.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 RdsClient *rds.Client
}

// GetParameterGroup gets a DB parameter group by name.
func (instances *DbInstances) GetParameterGroup(ctx context.Context,
 parameterGroupName string) (
 *types.DBParameterGroup, error) {
 output, err := instances.RdsClient.DescribeDBParameterGroups(
 ctx, &rds.DescribeDBParameterGroupsInput{
 DBParameterGroupName: aws.String(parameterGroupName),
 })
 if err != nil {
 var notFoundError *types.DBParameterGroupNotFoundFault
 if errors.As(err, ¬FoundError) {
 log.Printf("Parameter group %v does not exist.\n", parameterGroupName)
 err = nil
 } else {
 log.Printf("Error getting parameter group %v: %v\n", parameterGroupName, err)
 }
 return nil, err
 } else {
 return &output.DBParameterGroups[0], err
 }
}

• For API details, see DescribeDBParameterGroups in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 4914

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBParameterGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 public static void describeDbParameterGroups(RdsClient rdsClient, String
 dbGroupName) {
 try {
 DescribeDbParameterGroupsRequest groupsRequest =
 DescribeDbParameterGroupsRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .maxRecords(20)
 .build();

 DescribeDbParameterGroupsResponse response =
 rdsClient.describeDBParameterGroups(groupsRequest);
 List<DBParameterGroup> groups = response.dbParameterGroups();
 for (DBParameterGroup group : groups) {
 System.out.println("The group name is " +
 group.dbParameterGroupName());
 System.out.println("The group description is " +
 group.description());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBParameterGroups in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

Actions 4915

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBParameterGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_parameter_group(self, parameter_group_name):
 """
 Gets a DB parameter group.

 :param parameter_group_name: The name of the parameter group to retrieve.
 :return: The parameter group.
 """
 try:
 response = self.rds_client.describe_db_parameter_groups(
 DBParameterGroupName=parameter_group_name
)
 parameter_group = response["DBParameterGroups"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBParameterGroupNotFound":
 logger.info("Parameter group %s does not exist.",
 parameter_group_name)
 else:
 logger.error(
 "Couldn't get parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return parameter_group

Actions 4916

Amazon Relational Database Service User Guide

• For API details, see DescribeDBParameterGroups in AWS SDK for Python (Boto3) API
Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) parameter groups.
#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return [Array, nil] List of all parameter groups, or nil if error.
def list_parameter_groups(rds_resource)
 parameter_groups = []
 rds_resource.db_parameter_groups.each do |p|
 parameter_groups.append({
 "name": p.db_parameter_group_name,
 "description": p.description
 })
 end
 parameter_groups
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list parameter groups:\n #{e.message}"
end

• For API details, see DescribeDBParameterGroups in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 4917

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBParameterGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBParameterGroups

Amazon Relational Database Service User Guide

Use DescribeDBParameters with an AWS SDK or CLI

The following code examples show how to use DescribeDBParameters.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of DB parameters from a specific parameter group.
 /// </summary>
 /// <param name="dbParameterGroupName">Name of a specific DB parameter
 group.</param>
 /// <param name="source">Optional source for selecting parameters.</param>
 /// <returns>List of parameter values.</returns>
 public async Task<List<Parameter>> DescribeDBParameters(string
 dbParameterGroupName, string source = null)
 {
 var results = new List<Parameter>();
 var paginateParameters = _amazonRDS.Paginators.DescribeDBParameters(
 new DescribeDBParametersRequest()
 {
 DBParameterGroupName = dbParameterGroupName,
 Source = source
 });
 // Get the entire list using the paginator.
 await foreach (var parameters in paginateParameters.Parameters)
 {
 results.Add(parameters);

Actions 4918

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 }
 return results;
 }

• For API details, see DescribeDBParameters in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets DB parameters using the 'DescribeDBParameters' api.
/*!
 \sa getDBParameters()
 \param parameterGroupName: The name of the parameter group.
 \param namePrefix: Prefix string to filter results by parameter name.
 \param source: A source such as 'user', ignored if empty.
 \param parametersResult: Vector of 'Parameter' objects returned by the routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::getDBParameters(const Aws::String ¶meterGroupName,
 const Aws::String &namePrefix,
 const Aws::String &source,
 Aws::Vector<Aws::RDS::Model::Parameter>
 ¶metersResult,
 const Aws::RDS::RDSClient &client) {
 Aws::String marker;

Actions 4919

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 do {
 Aws::RDS::Model::DescribeDBParametersRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }
 if (!source.empty()) {
 request.SetSource(source);
 }

 Aws::RDS::Model::DescribeDBParametersOutcome outcome =
 client.DescribeDBParameters(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::Parameter> ¶meters =
 outcome.GetResult().GetParameters();
 for (const Aws::RDS::Model::Parameter ¶meter: parameters) {
 if (!namePrefix.empty()) {
 if (parameter.GetParameterName().find(namePrefix) == 0) {
 parametersResult.push_back(parameter);
 }
 }
 else {
 parametersResult.push_back(parameter);
 }
 }

 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with RDS::DescribeDBParameters. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!marker.empty());

 return true;
}

• For API details, see DescribeDBParameters in AWS SDK for C++ API Reference.

Actions 4920

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBParameters

Amazon Relational Database Service User Guide

CLI

AWS CLI

To describe the parameters in a DB parameter group

The following describe-db-parameters example retrieves the details of the specified DB
parameter group.

aws rds describe-db-parameters \
 --db-parameter-group-name mydbpg

Output:

{
 "Parameters": [
 {
 "ParameterName": "allow-suspicious-udfs",
 "Description": "Controls whether user-defined functions that have
 only an xxx symbol for the main function can be loaded",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "IsModifiable": false,
 "ApplyMethod": "pending-reboot"
 },
 {
 "ParameterName": "auto_generate_certs",
 "Description": "Controls whether the server autogenerates SSL key and
 certificate files in the data directory, if they do not already exist.",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "IsModifiable": false,
 "ApplyMethod": "pending-reboot"
 },
 ...some output truncated...
]
}

Actions 4921

Amazon Relational Database Service User Guide

For more information, see Working with DB Parameter Groups in the Amazon RDS User
Guide.

• For API details, see DescribeDBParameters in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// GetParameters gets the parameters that are contained in a DB parameter group.
func (instances *DbInstances) GetParameters(ctx context.Context,
 parameterGroupName string, source string) (
 []types.Parameter, error) {

 var output *rds.DescribeDBParametersOutput
 var params []types.Parameter
 var err error
 parameterPaginator := rds.NewDescribeDBParametersPaginator(instances.RdsClient,
 &rds.DescribeDBParametersInput{

Actions 4922

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-parameters.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 DBParameterGroupName: aws.String(parameterGroupName),
 Source: aws.String(source),
 })
 for parameterPaginator.HasMorePages() {
 output, err = parameterPaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get parameters for %v: %v\n", parameterGroupName, err)
 break
 } else {
 params = append(params, output.Parameters...)
 }
 }
 return params, err
}

• For API details, see DescribeDBParameters in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Retrieve parameters in the group.
 public static void describeDbParameters(RdsClient rdsClient, String
 dbGroupName, int flag) {
 try {
 DescribeDbParametersRequest dbParameterGroupsRequest;
 if (flag == 0) {
 dbParameterGroupsRequest = DescribeDbParametersRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .build();
 } else {
 dbParameterGroupsRequest = DescribeDbParametersRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .source("user")

Actions 4923

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 .build();
 }

 DescribeDbParametersResponse response =
 rdsClient.describeDBParameters(dbParameterGroupsRequest);
 List<Parameter> dbParameters = response.parameters();
 String paraName;
 for (Parameter para : dbParameters) {
 // Only print out information about either auto_increment_offset
 or
 // auto_increment_increment.
 paraName = para.parameterName();
 if ((paraName.compareTo("auto_increment_offset") == 0)
 || (paraName.compareTo("auto_increment_increment ") ==
 0)) {
 System.out.println("*** The parameter name is " + paraName);
 System.out.println("*** The parameter value is " +
 para.parameterValue());
 System.out.println("*** The parameter data type is " +
 para.dataType());
 System.out.println("*** The parameter description is " +
 para.description());
 System.out.println("*** The parameter allowed values is " +
 para.allowedValues());
 }
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBParameters in AWS SDK for Java 2.x API Reference.

Actions 4924

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBParameters

Amazon Relational Database Service User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_parameters(self, parameter_group_name, name_prefix="", source=None):
 """
 Gets the parameters that are contained in a DB parameter group.

 :param parameter_group_name: The name of the parameter group to query.
 :param name_prefix: When specified, the retrieved list of parameters is
 filtered
 to contain only parameters that start with this
 prefix.
 :param source: When specified, only parameters from this source are
 retrieved.
 For example, a source of 'user' retrieves only parameters
 that
 were set by a user.

Actions 4925

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 :return: The list of requested parameters.
 """
 try:
 kwargs = {"DBParameterGroupName": parameter_group_name}
 if source is not None:
 kwargs["Source"] = source
 parameters = []
 paginator = self.rds_client.get_paginator("describe_db_parameters")
 for page in paginator.paginate(**kwargs):
 parameters += [
 p
 for p in page["Parameters"]
 if p["ParameterName"].startswith(name_prefix)
]
 except ClientError as err:
 logger.error(
 "Couldn't get parameters for %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return parameters

• For API details, see DescribeDBParameters in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) parameter groups.

Actions 4926

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon Relational Database Service User Guide

#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return [Array, nil] List of all parameter groups, or nil if error.
def list_parameter_groups(rds_resource)
 parameter_groups = []
 rds_resource.db_parameter_groups.each do |p|
 parameter_groups.append({
 "name": p.db_parameter_group_name,
 "description": p.description
 })
 end
 parameter_groups
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list parameter groups:\n #{e.message}"
end

• For API details, see DescribeDBParameters in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBSnapshots with an AWS SDK or CLI

The following code examples show how to use DescribeDBSnapshots.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 4927

https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 /// <summary>
 /// Return a list of DB snapshots for a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBSnapshot>> DescribeDBSnapshots(string
 dbInstanceIdentifier)
 {
 var results = new List<DBSnapshot>();
 var snapshotsPaginator = _amazonRDS.Paginators.DescribeDBSnapshots(
 new DescribeDBSnapshotsRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });

 // Get the entire list using the paginator.
 await foreach (var snapshots in snapshotsPaginator.DBSnapshots)
 {
 results.Add(snapshots);
 }
 return results;
 }

• For API details, see DescribeDBSnapshots in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

Actions 4928

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DescribeDBSnapshotsRequest request;
 request.SetDBSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::DescribeDBSnapshotsOutcome outcome =
 client.DescribeDBSnapshots(request);

 if (outcome.IsSuccess()) {
 snapshot = outcome.GetResult().GetDBSnapshots()[0];
 }
 else {
 std::cerr << "Error with RDS::DescribeDBSnapshots. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(PARAMETER_GROUP_NAME, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

• For API details, see DescribeDBSnapshots in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To describe a DB snapshot for a DB instance

The following describe-db-snapshots example retrieves the details of a DB snapshot for
a DB instance.

aws rds describe-db-snapshots \
 --db-snapshot-identifier mydbsnapshot

Output:

{
 "DBSnapshots": [
 {
 "DBSnapshotIdentifier": "mydbsnapshot",

Actions 4929

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBSnapshots

Amazon Relational Database Service User Guide

 "DBInstanceIdentifier": "mysqldb",
 "SnapshotCreateTime": "2018-02-08T22:28:08.598Z",
 "Engine": "mysql",
 "AllocatedStorage": 20,
 "Status": "available",
 "Port": 3306,
 "AvailabilityZone": "us-east-1f",
 "VpcId": "vpc-6594f31c",
 "InstanceCreateTime": "2018-02-08T22:24:55.973Z",
 "MasterUsername": "mysqladmin",
 "EngineVersion": "5.6.37",
 "LicenseModel": "general-public-license",
 "SnapshotType": "manual",
 "OptionGroupName": "default:mysql-5-6",
 "PercentProgress": 100,
 "StorageType": "gp2",
 "Encrypted": false,
 "DBSnapshotArn": "arn:aws:rds:us-
east-1:123456789012:snapshot:mydbsnapshot",
 "IAMDatabaseAuthenticationEnabled": false,
 "ProcessorFeatures": [],
 "DbiResourceId": "db-AKIAIOSFODNN7EXAMPLE"
 }
]
}

For more information, see Creating a DB Snapshot in the Amazon RDS User Guide.

Example 2: To find the number of manual snapshots taken

The following describe-db-snapshots example uses the length operator in the
--query option to return the number of manual snapshots that have been taken in a
particular AWS Region.

aws rds describe-db-snapshots \
 --snapshot-type manual \
 --query "length(*[].{DBSnapshots:SnapshotType})" \
 --region eu-central-1

Output:

35

Actions 4930

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html

Amazon Relational Database Service User Guide

For more information, see Creating a DB Snapshot in the Amazon RDS User Guide.

• For API details, see DescribeDBSnapshots in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// GetSnapshot gets a DB instance snapshot.
func (instances *DbInstances) GetSnapshot(ctx context.Context, snapshotName
 string) (*types.DBSnapshot, error) {
 output, err := instances.RdsClient.DescribeDBSnapshots(ctx,
 &rds.DescribeDBSnapshotsInput{
 DBSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't get snapshot %v: %v\n", snapshotName, err)
 return nil, err
 } else {

Actions 4931

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-snapshots.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 return &output.DBSnapshots[0], nil
 }
}

• For API details, see DescribeDBSnapshots in AWS SDK for Go API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_snapshot(self, snapshot_id):
 """
 Gets a DB instance snapshot.

 :param snapshot_id: The ID of the snapshot to retrieve.
 :return: The retrieved snapshot.

Actions 4932

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 """
 try:
 response = self.rds_client.describe_db_snapshots(
 DBSnapshotIdentifier=snapshot_id
)
 snapshot = response["DBSnapshots"][0]
 except ClientError as err:
 logger.error(
 "Couldn't get snapshot %s. Here's why: %s: %s",
 snapshot_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

• For API details, see DescribeDBSnapshots in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) DB instance
snapshots.
#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return instance_snapshots [Array, nil] All instance snapshots, or nil if
 error.
def list_instance_snapshots(rds_resource)
 instance_snapshots = []
 rds_resource.db_snapshots.each do |s|

Actions 4933

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 instance_snapshots.append({
 "id": s.snapshot_id,
 "status": s.status
 })
 end
 instance_snapshots
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list instance snapshots:\n #{e.message}"
end

• For API details, see DescribeDBSnapshots in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI

The following code examples show how to use DescribeOrderableDBInstanceOptions.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of orderable DB instance options for a specific

Actions 4934

https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>
 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptions(string engine, string engineVersion)
 {
 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,
 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);
 }
 return results;
 }

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for .NET API
Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 4935

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets available 'micro' DB instance classes, displays the list
//! to the user, and returns the user selection.
/*!
 \sa chooseMicroDBInstanceClass()
 \param engineName: The DB engine name.
 \param engineVersion: The DB engine version.
 \param dbInstanceClass: String for DB instance class chosen by the user.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::RDS::chooseMicroDBInstanceClass(const Aws::String &engine,
 const Aws::String &engineVersion,
 Aws::String &dbInstanceClass,
 const Aws::RDS::RDSClient &client) {
 std::vector<Aws::String> instanceClasses;
 Aws::String marker;
 do {
 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsRequest request;
 request.SetEngine(engine);
 request.SetEngineVersion(engineVersion);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsOutcome outcome =
 client.DescribeOrderableDBInstanceOptions(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::OrderableDBInstanceOption>
 &options =
 outcome.GetResult().GetOrderableDBInstanceOptions();
 for (const Aws::RDS::Model::OrderableDBInstanceOption &option:
 options) {
 const Aws::String &instanceClass = option.GetDBInstanceClass();
 if (instanceClass.find("micro") != std::string::npos) {
 if (std::find(instanceClasses.begin(), instanceClasses.end(),

Actions 4936

Amazon Relational Database Service User Guide

 instanceClass) ==
 instanceClasses.end()) {
 instanceClasses.push_back(instanceClass);
 }
 }
 }
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with RDS::DescribeOrderableDBInstanceOptions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!marker.empty());

 std::cout << "The available micro DB instance classes for your database
 engine are:"
 << std::endl;
 for (int i = 0; i < instanceClasses.size(); ++i) {
 std::cout << " " << i + 1 << ": " << instanceClasses[i] << std::endl;
 }

 int choice = askQuestionForIntRange(
 "Which micro DB instance class do you want to use? ",
 1, static_cast<int>(instanceClasses.size()));
 dbInstanceClass = instanceClasses[choice - 1];
 return true;
}

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for C++ API
Reference.

CLI

AWS CLI

To describe orderable DB instance options

The following describe-orderable-db-instance-options example retrieves details
about the orderable options for a DB instances running the MySQL DB engine.

Actions 4937

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeOrderableDBInstanceOptions

Amazon Relational Database Service User Guide

aws rds describe-orderable-db-instance-options \
 --engine mysql

Output:

{
 "OrderableDBInstanceOptions": [
 {
 "MinStorageSize": 5,
 "ReadReplicaCapable": true,
 "MaxStorageSize": 6144,
 "AvailabilityZones": [
 {
 "Name": "us-east-1a"
 },
 {
 "Name": "us-east-1b"
 },
 {
 "Name": "us-east-1c"
 },
 {
 "Name": "us-east-1d"
 }
],
 "SupportsIops": false,
 "AvailableProcessorFeatures": [],
 "MultiAZCapable": true,
 "DBInstanceClass": "db.m1.large",
 "Vpc": true,
 "StorageType": "gp2",
 "LicenseModel": "general-public-license",
 "EngineVersion": "5.5.46",
 "SupportsStorageEncryption": false,
 "SupportsEnhancedMonitoring": true,
 "Engine": "mysql",
 "SupportsIAMDatabaseAuthentication": false,
 "SupportsPerformanceInsights": false
 }
]
 ...some output truncated...
}

Actions 4938

Amazon Relational Database Service User Guide

• For API details, see DescribeOrderableDBInstanceOptions in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// GetOrderableInstances uses a paginator to get DB instance options that can be
 used to create DB instances that are
// compatible with a set of specifications.
func (instances *DbInstances) GetOrderableInstances(ctx context.Context, engine
 string, engineVersion string) (
 []types.OrderableDBInstanceOption, error) {

 var output *rds.DescribeOrderableDBInstanceOptionsOutput
 var instanceOptions []types.OrderableDBInstanceOption
 var err error
 orderablePaginator :=
 rds.NewDescribeOrderableDBInstanceOptionsPaginator(instances.RdsClient,
 &rds.DescribeOrderableDBInstanceOptionsInput{

Actions 4939

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-orderable-db-instance-options.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 Engine: aws.String(engine),
 EngineVersion: aws.String(engineVersion),
 })
 for orderablePaginator.HasMorePages() {
 output, err = orderablePaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get orderable DB instance options: %v\n", err)
 break
 } else {
 instanceOptions = append(instanceOptions,
 output.OrderableDBInstanceOptions...)
 }
 }
 return instanceOptions, err
}

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for Go API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """

Actions 4940

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeOrderableDBInstanceOptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_orderable_instances(self, db_engine, db_engine_version):
 """
 Gets DB instance options that can be used to create DB instances that are
 compatible with a set of specifications.

 :param db_engine: The database engine that must be supported by the DB
 instance.
 :param db_engine_version: The engine version that must be supported by
 the DB instance.
 :return: The list of DB instance options that can be used to create a
 compatible DB instance.
 """
 try:
 inst_opts = []
 paginator = self.rds_client.get_paginator(
 "describe_orderable_db_instance_options"
)
 for page in paginator.paginate(
 Engine=db_engine, EngineVersion=db_engine_version
):
 inst_opts += page["OrderableDBInstanceOptions"]
 except ClientError as err:
 logger.error(
 "Couldn't get orderable DB instances. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return inst_opts

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for Python (Boto3)
API Reference.

Actions 4941

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeOrderableDBInstanceOptions

Amazon Relational Database Service User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GenerateRDSAuthToken with an AWS SDK

The following code example shows how to use GenerateRDSAuthToken.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Use the RdsUtilities class to generate an authentication token.

public class GenerateRDSAuthToken {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <dbInstanceIdentifier> <masterUsername>

 Where:
 dbInstanceIdentifier - The database instance identifier.\s
 masterUsername - The master user name.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbInstanceIdentifier = args[0];
 String masterUsername = args[1];
 Region region = Region.US_WEST_2;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)

Actions 4942

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/rds/RdsUtilities.html

Amazon Relational Database Service User Guide

 .build();

 String token = getAuthToken(rdsClient, dbInstanceIdentifier,
 masterUsername);
 System.out.println("The token response is " + token);
 }

 public static String getAuthToken(RdsClient rdsClient, String
 dbInstanceIdentifier, String masterUsername) {

 RdsUtilities utilities = rdsClient.utilities();
 try {
 GenerateAuthenticationTokenRequest tokenRequest =
 GenerateAuthenticationTokenRequest.builder()
 .credentialsProvider(ProfileCredentialsProvider.create())
 .username(masterUsername)
 .port(3306)
 .hostname(dbInstanceIdentifier)
 .build();

 return utilities.generateAuthenticationToken(tokenRequest);

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see GenerateRDSAuthToken in AWS SDK for Java 2.x API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ModifyDBInstance with an AWS SDK or CLI

The following code examples show how to use ModifyDBInstance.

Actions 4943

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/GenerateRDSAuthToken

Amazon Relational Database Service User Guide

CLI

AWS CLI

Example 1: To modify a DB instance

The following modify-db-instance example associates an option group and a parameter
group with a compatible Microsoft SQL Server DB instance. The --apply-immediately
parameter causes the option and parameter groups to be associated immediately, instead of
waiting until the next maintenance window.

aws rds modify-db-instance \
 --db-instance-identifier database-2 \
 --option-group-name test-se-2017 \
 --db-parameter-group-name test-sqlserver-se-2017 \
 --apply-immediately

Output:

{
 "DBInstance": {
 "DBInstanceIdentifier": "database-2",
 "DBInstanceClass": "db.r4.large",
 "Engine": "sqlserver-se",
 "DBInstanceStatus": "available",

 ...output omitted...

 "DBParameterGroups": [
 {
 "DBParameterGroupName": "test-sqlserver-se-2017",
 "ParameterApplyStatus": "applying"
 }
],
 "AvailabilityZone": "us-west-2d",

 ...output omitted...

 "MultiAZ": true,
 "EngineVersion": "14.00.3281.6.v1",
 "AutoMinorVersionUpgrade": false,
 "ReadReplicaDBInstanceIdentifiers": [],
 "LicenseModel": "license-included",

Actions 4944

Amazon Relational Database Service User Guide

 "OptionGroupMemberships": [
 {
 "OptionGroupName": "test-se-2017",
 "Status": "pending-apply"
 }
],
 "CharacterSetName": "SQL_Latin1_General_CP1_CI_AS",
 "SecondaryAvailabilityZone": "us-west-2c",
 "PubliclyAccessible": true,
 "StorageType": "gp2",

 ...output omitted...

 "DeletionProtection": false,
 "AssociatedRoles": [],
 "MaxAllocatedStorage": 1000
 }
}

For more information, see Modifying an Amazon RDS DB Instance in the Amazon RDS User
Guide.

Example 2: To associate VPC security group with a DB instance

The following modify-db-instance example associates a specific VPC security group and
removes DB security groups from a DB instance:

aws rds modify-db-instance \
 --db-instance-identifier dbName \
 --vpc-security-group-ids sg-ID

Output:

{
"DBInstance": {
 "DBInstanceIdentifier": "dbName",
 "DBInstanceClass": "db.t3.micro",
 "Engine": "mysql",
 "DBInstanceStatus": "available",
 "MasterUsername": "admin",
 "Endpoint": {
 "Address": "dbName.abcdefghijk.us-west-2.rds.amazonaws.com",
 "Port": 3306,

Actions 4945

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html

Amazon Relational Database Service User Guide

 "HostedZoneId": "ABCDEFGHIJK1234"
 },
 "AllocatedStorage": 20,
 "InstanceCreateTime": "2024-02-15T00:37:58.793000+00:00",
 "PreferredBackupWindow": "11:57-12:27",
 "BackupRetentionPeriod": 7,
 "DBSecurityGroups": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-ID",
 "Status": "active"
 }
],
 ... output omitted ...
 "MultiAZ": false,
 "EngineVersion": "8.0.35",
 "AutoMinorVersionUpgrade": true,
 "ReadReplicaDBInstanceIdentifiers": [],
 "LicenseModel": "general-public-license",

 ... output ommited ...
 }
}

For more information, see Controlling access with security groups in the Amazon RDS User
Guide.

• For API details, see ModifyDBInstance in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.ModifyDbInstanceRequest;

Actions 4946

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/modify-db-instance.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

import software.amazon.awssdk.services.rds.model.ModifyDbInstanceResponse;
import software.amazon.awssdk.services.rds.model.RdsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ModifyDBInstance {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <dbInstanceIdentifier> <dbSnapshotIdentifier>\s
 Where:
 dbInstanceIdentifier - The database instance identifier.\s
 masterUserPassword - The updated password that corresponds to
 the master user name.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbInstanceIdentifier = args[0];
 String masterUserPassword = args[1];
 Region region = Region.US_WEST_2;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 updateIntance(rdsClient, dbInstanceIdentifier, masterUserPassword);
 rdsClient.close();
 }

 public static void updateIntance(RdsClient rdsClient, String
 dbInstanceIdentifier, String masterUserPassword) {
 try {

Actions 4947

Amazon Relational Database Service User Guide

 // For a demo - modify the DB instance by modifying the master
 password.
 ModifyDbInstanceRequest modifyDbInstanceRequest =
 ModifyDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .publiclyAccessible(true)
 .masterUserPassword(masterUserPassword)
 .build();

 ModifyDbInstanceResponse instanceResponse =
 rdsClient.modifyDBInstance(modifyDbInstanceRequest);
 System.out.print("The ARN of the modified database is: " +
 instanceResponse.dbInstance().dbInstanceArn());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see ModifyDBInstance in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun updateIntance(
 dbInstanceIdentifierVal: String?,
 masterUserPasswordVal: String?,
) {
 val request =
 ModifyDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 publiclyAccessible = true

Actions 4948

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/ModifyDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Relational Database Service User Guide

 masterUserPassword = masterUserPasswordVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val instanceResponse = rdsClient.modifyDbInstance(request)
 println("The ARN of the modified database is
 ${instanceResponse.dbInstance?.dbInstanceArn}")
 }
}

• For API details, see ModifyDBInstance in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ModifyDBParameterGroup with an AWS SDK or CLI

The following code examples show how to use ModifyDBParameterGroup.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Update a DB parameter group. Use the action
 DescribeDBParameterGroupsAsync

Actions 4949

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

Amazon Relational Database Service User Guide

 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <param name="parameters">List of parameters. Maximum of 20 per request.</
param>
 /// <returns>The updated DB parameter group name.</returns>
 public async Task<string> ModifyDBParameterGroup(
 string name, List<Parameter> parameters)
 {
 var response = await _amazonRDS.ModifyDBParameterGroupAsync(
 new ModifyDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 Parameters = parameters,
 });
 return response.DBParameterGroupName;
 }

• For API details, see ModifyDBParameterGroup in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::ModifyDBParameterGroupRequest request;
 request.SetDBParameterGroupName(PARAMETER_GROUP_NAME);
 request.SetParameters(updateParameters);

Actions 4950

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 Aws::RDS::Model::ModifyDBParameterGroupOutcome outcome =
 client.ModifyDBParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully modified."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::ModifyDBParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see ModifyDBParameterGroup in AWS SDK for C++ API Reference.

CLI

AWS CLI

To modify a DB parameter group

The following modify-db-parameter-group example changes the value of the clr
enabled parameter in a DB parameter group. The --apply-immediately parameter
causes the DB parameter group to be modified immediately, instead of waiting until the
next maintenance window.

aws rds modify-db-parameter-group \
 --db-parameter-group-name test-sqlserver-se-2017 \
 --parameters "ParameterName='clr
 enabled',ParameterValue=1,ApplyMethod=immediate"

Output:

{
 "DBParameterGroupName": "test-sqlserver-se-2017"
}

For more information, see Modifying Parameters in a DB Parameter Group in the Amazon
RDS User Guide.

Actions 4951

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/ModifyDBParameterGroup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying

Amazon Relational Database Service User Guide

• For API details, see ModifyDBParameterGroup in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/rds"
 "github.com/aws/aws-sdk-go-v2/service/rds/types"
)

type DbInstances struct {
 RdsClient *rds.Client
}

// UpdateParameters updates parameters in a named DB parameter group.
func (instances *DbInstances) UpdateParameters(ctx context.Context,
 parameterGroupName string, params []types.Parameter) error {
 _, err := instances.RdsClient.ModifyDBParameterGroup(ctx,
 &rds.ModifyDBParameterGroupInput{
 DBParameterGroupName: aws.String(parameterGroupName),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't update parameters in %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil

Actions 4952

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/modify-db-parameter-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/rds#code-examples

Amazon Relational Database Service User Guide

 }
}

• For API details, see ModifyDBParameterGroup in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Modify auto_increment_offset and auto_increment_increment parameters.
 public static void modifyDBParas(RdsClient rdsClient, String dbGroupName) {
 try {
 Parameter parameter1 = Parameter.builder()
 .parameterName("auto_increment_offset")
 .applyMethod("immediate")
 .parameterValue("5")
 .build();

 List<Parameter> paraList = new ArrayList<>();
 paraList.add(parameter1);
 ModifyDbParameterGroupRequest groupRequest =
 ModifyDbParameterGroupRequest.builder()
 .dbParameterGroupName(dbGroupName)
 .parameters(paraList)
 .build();

 ModifyDbParameterGroupResponse response =
 rdsClient.modifyDBParameterGroup(groupRequest);
 System.out.println("The parameter group " +
 response.dbParameterGroupName() + " was successfully modified");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);

Actions 4953

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.ModifyDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 }
 }

• For API details, see ModifyDBParameterGroup in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class InstanceWrapper:
 """Encapsulates Amazon RDS DB instance actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon RDS client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def update_parameters(self, parameter_group_name, update_parameters):
 """
 Updates parameters in a custom DB parameter group.

 :param parameter_group_name: The name of the parameter group to update.
 :param update_parameters: The parameters to update in the group.
 :return: Data about the modified parameter group.
 """

Actions 4954

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/ModifyDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 try:
 response = self.rds_client.modify_db_parameter_group(
 DBParameterGroupName=parameter_group_name,
 Parameters=update_parameters
)
 except ClientError as err:
 logger.error(
 "Couldn't update parameters in %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see ModifyDBParameterGroup in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use RebootDBInstance with an AWS SDK or CLI

The following code examples show how to use RebootDBInstance.

CLI

AWS CLI

To reboot a DB instance

The following reboot-db-instance example starts a reboot of the specified DB instance.

aws rds reboot-db-instance \
 --db-instance-identifier test-mysql-instance

Output:

Actions 4955

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/ModifyDBParameterGroup

Amazon Relational Database Service User Guide

{
 "DBInstance": {
 "DBInstanceIdentifier": "test-mysql-instance",
 "DBInstanceClass": "db.t3.micro",
 "Engine": "mysql",
 "DBInstanceStatus": "rebooting",
 "MasterUsername": "admin",
 "Endpoint": {
 "Address": "test-mysql-instance.############.us-
west-2.rds.amazonaws.com",
 "Port": 3306,
 "HostedZoneId": "Z1PVIF0EXAMPLE"
 },

 ... output omitted...

 }
}

For more information, see Rebooting a DB Instance in the Amazon RDS User Guide.

• For API details, see RebootDBInstance in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.model.RebootDbInstanceRequest;
import software.amazon.awssdk.services.rds.model.RebootDbInstanceResponse;
import software.amazon.awssdk.services.rds.model.RdsException;

/**
 * Before running this Java V2 code example, set up your development

Actions 4956

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RebootInstance.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/reboot-db-instance.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#code-examples

Amazon Relational Database Service User Guide

 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class RebootDBInstance {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <dbInstanceIdentifier>\s

 Where:
 dbInstanceIdentifier - The database instance identifier\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbInstanceIdentifier = args[0];
 Region region = Region.US_WEST_2;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 rebootInstance(rdsClient, dbInstanceIdentifier);
 rdsClient.close();
 }

 public static void rebootInstance(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 try {
 RebootDbInstanceRequest rebootDbInstanceRequest =
 RebootDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .build();

 RebootDbInstanceResponse instanceResponse =
 rdsClient.rebootDBInstance(rebootDbInstanceRequest);

Actions 4957

Amazon Relational Database Service User Guide

 System.out.print("The database " +
 instanceResponse.dbInstance().dbInstanceArn() + " was rebooted");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see RebootDBInstance in AWS SDK for Java 2.x API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for Amazon RDS using AWS SDKs

The following code examples show you how to implement common scenarios in Amazon RDS with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within Amazon RDS or combined with other AWS services. Each scenario includes a link to the
complete source code, where you can find instructions on how to set up and run the code.

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Create an Aurora Serverless work item tracker

Create an Aurora Serverless work item tracker

The following code examples show how to create a web application that tracks work items in an
Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send
reports.

Scenarios 4958

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/RebootDBInstance

Amazon Relational Database Service User Guide

.NET

SDK for .NET

Shows how to use the AWS SDK for .NET to create a web application that tracks work
items in an Amazon Aurora database and emails reports by using Amazon Simple Email
Service (Amazon SES). This example uses a front end built with React.js to interact with a
RESTful .NET backend.

• Integrate a React web application with AWS services.

• List, add, update, and delete items in an Aurora table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

C++

SDK for C++

Shows how to create a web application that tracks and reports on work items stored in an
Amazon Aurora Serverless database.

For complete source code and instructions on how to set up a C++ REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

Create an Aurora Serverless work item tracker 4959

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/AuroraItemTracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/serverless-aurora

Amazon Relational Database Service User Guide

• Amazon SES

Java

SDK for Java 2.x

Shows how to create a web application that tracks and reports on work items stored in an
Amazon RDS database.

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

For complete source code and instructions on how to set up and run an example that uses
the JDBC API, see the full example on GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

JavaScript

SDK for JavaScript (v3)

Shows how to use the AWS SDK for JavaScript (v3) to create a web application that tracks
work items in an Amazon Aurora database and emails reports by using Amazon Simple Email
Service (Amazon SES). This example uses a front end built with React.js to interact with an
Express Node.js backend.

• Integrate a React.js web application with AWS services.

• List, add, and update items in an Aurora table.

• Send an email report of filtered work items by using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Create an Aurora Serverless work item tracker 4960

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_Spring_RDS_Rest
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_rds_item_tracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/aurora-serverless-app

Amazon Relational Database Service User Guide

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Kotlin

SDK for Kotlin

Shows how to create a web application that tracks and reports on work items stored in an
Amazon RDS database.

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

PHP

SDK for PHP

Shows how to use the AWS SDK for PHP to create a web application that tracks work items
in an Amazon RDS database and emails reports by using Amazon Simple Email Service
(Amazon SES). This example uses a front end built with React.js to interact with a RESTful
PHP backend.

• Integrate a React.js web application with AWS services.

• List, add, update, and delete items in an Amazon RDS table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

Create an Aurora Serverless work item tracker 4961

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/serverless_rds

Amazon Relational Database Service User Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) to create a REST service that tracks work
items in an Amazon Aurora Serverless database and emails reports by using Amazon Simple
Email Service (Amazon SES). This example uses the Flask web framework to handle HTTP
routing and integrates with a React webpage to present a fully functional web application.

• Build a Flask REST service that integrates with AWS services.

• Read, write, and update work items that are stored in an Aurora Serverless database.

• Create an AWS Secrets Manager secret that contains database credentials and use it to
authenticate calls to the database.

• Use Amazon SES to send email reports of work items.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an Aurora Serverless work item tracker 4962

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/cross_service/aurora_item_tracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_item_tracker

Amazon Relational Database Service User Guide

Serverless examples for Amazon RDS

The following code examples show how to use Amazon RDS with AWS SDKs.

Examples

• Connecting to an Amazon RDS database in a Lambda function

Connecting to an Amazon RDS database in a Lambda function

The following code examples show how to implement a Lambda function that connects to an RDS
database. The function makes a simple database request and returns the result.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using .NET.

using System.Data;
using System.Text.Json;
using Amazon.Lambda.APIGatewayEvents;
using Amazon.Lambda.Core;
using MySql.Data.MySqlClient;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace aws_rds;

public class InputModel
{
 public string key1 { get; set; }
 public string key2 { get; set; }

Serverless examples 4963

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

}

public class Function
{
 /// <summary>
 // Handles the Lambda function execution for connecting to RDS using IAM
 authentication.
 /// </summary>
 /// <param name="input">The input event data passed to the Lambda function</
param>
 /// <param name="context">The Lambda execution context that provides runtime
 information</param>
 /// <returns>A response object containing the execution result</returns>

 public async Task<APIGatewayProxyResponse>
 FunctionHandler(APIGatewayProxyRequest request, ILambdaContext context)
 {
 // Sample Input: {"body": "{\"key1\":\"20\", \"key2\":\"25\"}"}
 var input = JsonSerializer.Deserialize<InputModel>(request.Body);

 /// Obtain authentication token
 var authToken = RDSAuthTokenGenerator.GenerateAuthToken(
 Environment.GetEnvironmentVariable("RDS_ENDPOINT"),
 Convert.ToInt32(Environment.GetEnvironmentVariable("RDS_PORT")),
 Environment.GetEnvironmentVariable("RDS_USERNAME")
);

 /// Build the Connection String with the Token
 string connectionString =
 $"Server={Environment.GetEnvironmentVariable("RDS_ENDPOINT")};" +

 $"Port={Environment.GetEnvironmentVariable("RDS_PORT")};" +

 $"Uid={Environment.GetEnvironmentVariable("RDS_USERNAME")};" +
 $"Pwd={authToken};";

 try
 {
 await using var connection = new MySqlConnection(connectionString);
 await connection.OpenAsync();

 const string sql = "SELECT @param1 + @param2 AS Sum";

Connecting to an Amazon RDS database in a Lambda function 4964

Amazon Relational Database Service User Guide

 await using var command = new MySqlCommand(sql, connection);
 command.Parameters.AddWithValue("@param1", int.Parse(input.key1 ??
 "0"));
 command.Parameters.AddWithValue("@param2", int.Parse(input.key2 ??
 "0"));

 await using var reader = await command.ExecuteReaderAsync();
 if (await reader.ReadAsync())
 {
 int result = reader.GetInt32("Sum");

 //Sample Response: {"statusCode":200,"body":"{\"message\":\"The
 sum is: 45\"}","isBase64Encoded":false}
 return new APIGatewayProxyResponse
 {
 StatusCode = 200,
 Body = JsonSerializer.Serialize(new { message = $"The sum is:
 {result}" })
 };
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }

 return new APIGatewayProxyResponse
 {
 StatusCode = 500,
 Body = JsonSerializer.Serialize(new { error = "Internal server
 error" })
 };
 }
}

Connecting to an Amazon RDS database in a Lambda function 4965

Amazon Relational Database Service User Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Go.

/*
Golang v2 code here.
*/

package main

import (
 "context"
 "database/sql"
 "encoding/json"
 "fmt"
 "os"

 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/go-sql-driver/mysql"
)

type MyEvent struct {
 Name string `json:"name"`
}

func HandleRequest(event *MyEvent) (map[string]interface{}, error) {

 var dbName string = os.Getenv("DatabaseName")
 var dbUser string = os.Getenv("DatabaseUser")
 var dbHost string = os.Getenv("DBHost") // Add hostname without https
 var dbPort int = os.Getenv("Port") // Add port number
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = os.Getenv("AWS_REGION")

Connecting to an Amazon RDS database in a Lambda function 4966

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authenticationToken, dbEndpoint, dbName,
)

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

 defer db.Close()

 var sum int
 err = db.QueryRow("SELECT ?+? AS sum", 3, 2).Scan(&sum)
 if err != nil {
 panic(err)
 }
 s := fmt.Sprint(sum)
 message := fmt.Sprintf("The selected sum is: %s", s)

 messageBytes, err := json.Marshal(message)
 if err != nil {
 return nil, err
 }

 messageString := string(messageBytes)
 return map[string]interface{}{
 "statusCode": 200,
 "headers": map[string]string{"Content-Type": "application/json"},
 "body": messageString,
 }, nil
}

Connecting to an Amazon RDS database in a Lambda function 4967

Amazon Relational Database Service User Guide

func main() {
 lambda.Start(HandleRequest)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Java.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyRequestEvent;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyResponseEvent;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rdsdata.RdsDataClient;
import software.amazon.awssdk.services.rdsdata.model.ExecuteStatementRequest;
import software.amazon.awssdk.services.rdsdata.model.ExecuteStatementResponse;
import software.amazon.awssdk.services.rdsdata.model.Field;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

public class RdsLambdaHandler implements
 RequestHandler<APIGatewayProxyRequestEvent, APIGatewayProxyResponseEvent> {

 @Override
 public APIGatewayProxyResponseEvent handleRequest(APIGatewayProxyRequestEvent
 event, Context context) {
 APIGatewayProxyResponseEvent response = new
 APIGatewayProxyResponseEvent();

Connecting to an Amazon RDS database in a Lambda function 4968

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

 try {
 // Obtain auth token
 String token = createAuthToken();

 // Define connection configuration
 String connectionString = String.format("jdbc:mysql://%s:%s/%s?
useSSL=true&requireSSL=true",
 System.getenv("ProxyHostName"),
 System.getenv("Port"),
 System.getenv("DBName"));

 // Establish a connection to the database
 try (Connection connection =
 DriverManager.getConnection(connectionString, System.getenv("DBUserName"),
 token);
 PreparedStatement statement =
 connection.prepareStatement("SELECT ? + ? AS sum")) {

 statement.setInt(1, 3);
 statement.setInt(2, 2);

 try (ResultSet resultSet = statement.executeQuery()) {
 if (resultSet.next()) {
 int sum = resultSet.getInt("sum");
 response.setStatusCode(200);
 response.setBody("The selected sum is: " + sum);
 }
 }
 }

 } catch (Exception e) {
 response.setStatusCode(500);
 response.setBody("Error: " + e.getMessage());
 }

 return response;
 }

 private String createAuthToken() {
 // Create RDS Data Service client
 RdsDataClient rdsDataClient = RdsDataClient.builder()
 .region(Region.of(System.getenv("AWS_REGION")))
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

Connecting to an Amazon RDS database in a Lambda function 4969

Amazon Relational Database Service User Guide

 // Define authentication request
 ExecuteStatementRequest request = ExecuteStatementRequest.builder()
 .resourceArn(System.getenv("ProxyHostName"))
 .secretArn(System.getenv("DBUserName"))
 .database(System.getenv("DBName"))
 .sql("SELECT 'RDS IAM Authentication'")
 .build();

 // Execute request and obtain authentication token
 ExecuteStatementResponse response =
 rdsDataClient.executeStatement(request);
 Field tokenField = response.records().get(0).get(0);

 return tokenField.stringValue();
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
/*
Node.js code here.
*/
// ES6+ example
import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

async function createAuthToken() {
 // Define connection authentication parameters

Connecting to an Amazon RDS database in a Lambda function 4970

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

 const dbinfo = {

 hostname: process.env.ProxyHostName,
 port: process.env.Port,
 username: process.env.DBUserName,
 region: process.env.AWS_REGION,

 }

 // Create RDS Signer object
 const signer = new Signer(dbinfo);

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps() {

 // Obtain auth token
 const token = await createAuthToken();
 // Define connection configuration
 let connectionConfig = {
 host: process.env.ProxyHostName,
 user: process.env.DBUserName,
 password: token,
 database: process.env.DBName,
 ssl: 'Amazon RDS'
 }
 // Create the connection to the DB
 const conn = await mysql.createConnection(connectionConfig);
 // Obtain the result of the query
 const [res,] = await conn.execute('select ?+? as sum', [3, 2]);
 return res;

}

export const handler = async (event) => {
 // Execute database flow
 const result = await dbOps();
 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify("The selected sum is: " + result[0].sum)

Connecting to an Amazon RDS database in a Lambda function 4971

Amazon Relational Database Service User Guide

 }
};

Connecting to an Amazon RDS database in a Lambda function using TypeScript.

import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

// RDS settings
// Using '!' (non-null assertion operator) to tell the TypeScript compiler that
 the DB settings are not null or undefined,
const proxy_host_name = process.env.PROXY_HOST_NAME!
const port = parseInt(process.env.PORT!)
const db_name = process.env.DB_NAME!
const db_user_name = process.env.DB_USER_NAME!
const aws_region = process.env.AWS_REGION!

async function createAuthToken(): Promise<string> {

 // Create RDS Signer object
 const signer = new Signer({
 hostname: proxy_host_name,
 port: port,
 region: aws_region,
 username: db_user_name
 });

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps(): Promise<mysql.QueryResult | undefined> {
 try {
 // Obtain auth token
 const token = await createAuthToken();
 const conn = await mysql.createConnection({
 host: proxy_host_name,
 user: db_user_name,
 password: token,

Connecting to an Amazon RDS database in a Lambda function 4972

Amazon Relational Database Service User Guide

 database: db_name,
 ssl: 'Amazon RDS' // Ensure you have the CA bundle for SSL connection
 });
 const [rows, fields] = await conn.execute('SELECT ? + ? AS sum', [3, 2]);
 console.log('result:', rows);
 return rows;
 }
 catch (err) {
 console.log(err);
 }
}

export const lambdaHandler = async (event: any): Promise<{ statusCode: number;
 body: string }> => {
 // Execute database flow
 const result = await dbOps();

 // Return error is result is undefined
 if (result == undefined)
 return {
 statusCode: 500,
 body: JSON.stringify(`Error with connection to DB host`)
 }

 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify(`The selected sum is: ${result[0].sum}`)
 };
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using PHP.

Connecting to an Amazon RDS database in a Lambda function 4973

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

<?php
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;
use Aws\Rds\AuthTokenGenerator;
use Aws\Credentials\CredentialProvider;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 private function getAuthToken(): string {
 // Define connection authentication parameters
 $dbConnection = [
 'hostname' => getenv('DB_HOSTNAME'),
 'port' => getenv('DB_PORT'),
 'username' => getenv('DB_USERNAME'),
 'region' => getenv('AWS_REGION'),
];

 // Create RDS AuthTokenGenerator object
 $generator = new
 AuthTokenGenerator(CredentialProvider::defaultProvider());

 // Request authorization token from RDS, specifying the username
 return $generator->createToken(
 $dbConnection['hostname'] . ':' . $dbConnection['port'],
 $dbConnection['region'],
 $dbConnection['username']
);
 }

Connecting to an Amazon RDS database in a Lambda function 4974

Amazon Relational Database Service User Guide

 private function getQueryResults() {
 // Obtain auth token
 $token = $this->getAuthToken();

 // Define connection configuration
 $connectionConfig = [
 'host' => getenv('DB_HOSTNAME'),
 'user' => getenv('DB_USERNAME'),
 'password' => $token,
 'database' => getenv('DB_NAME'),
];

 // Create the connection to the DB
 $conn = new PDO(

 "mysql:host={$connectionConfig['host']};dbname={$connectionConfig['database']}",
 $connectionConfig['user'],
 $connectionConfig['password'],
 [
 PDO::MYSQL_ATTR_SSL_CA => '/path/to/rds-ca-2019-root.pem',
 PDO::MYSQL_ATTR_SSL_VERIFY_SERVER_CERT => true,
]
);

 // Obtain the result of the query
 $stmt = $conn->prepare('SELECT ?+? AS sum');
 $stmt->execute([3, 2]);

 return $stmt->fetch(PDO::FETCH_ASSOC);
 }

 /**
 * @param mixed $event
 * @param Context $context
 * @return array
 */
 public function handle(mixed $event, Context $context): array
 {
 $this->logger->info("Processing query");

 // Execute database flow
 $result = $this->getQueryResults();

Connecting to an Amazon RDS database in a Lambda function 4975

Amazon Relational Database Service User Guide

 return [
 'sum' => $result['sum']
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Python.

import json
import os
import boto3
import pymysql

RDS settings
proxy_host_name = os.environ['PROXY_HOST_NAME']
port = int(os.environ['PORT'])
db_name = os.environ['DB_NAME']
db_user_name = os.environ['DB_USER_NAME']
aws_region = os.environ['AWS_REGION']

Fetch RDS Auth Token
def get_auth_token():
 client = boto3.client('rds')
 token = client.generate_db_auth_token(
 DBHostname=proxy_host_name,
 Port=port
 DBUsername=db_user_name
 Region=aws_region

Connecting to an Amazon RDS database in a Lambda function 4976

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

)
 return token

def lambda_handler(event, context):
 token = get_auth_token()
 try:
 connection = pymysql.connect(
 host=proxy_host_name,
 user=db_user_name,
 password=token,
 db=db_name,
 port=port,
 ssl={'ca': 'Amazon RDS'} # Ensure you have the CA bundle for SSL
 connection
)

 with connection.cursor() as cursor:
 cursor.execute('SELECT %s + %s AS sum', (3, 2))
 result = cursor.fetchone()

 return result

 except Exception as e:
 return (f"Error: {str(e)}") # Return an error message if an exception
 occurs

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Ruby.

Ruby code here.

require 'aws-sdk-rds'

Connecting to an Amazon RDS database in a Lambda function 4977

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

require 'json'
require 'mysql2'

def lambda_handler(event:, context:)
 endpoint = ENV['DBEndpoint'] # Add the endpoint without https"
 port = ENV['Port'] # 3306
 user = ENV['DBUser']
 region = ENV['DBRegion'] # 'us-east-1'
 db_name = ENV['DBName']

 credentials = Aws::Credentials.new(
 ENV['AWS_ACCESS_KEY_ID'],
 ENV['AWS_SECRET_ACCESS_KEY'],
 ENV['AWS_SESSION_TOKEN']
)
 rds_client = Aws::RDS::AuthTokenGenerator.new(
 region: region,
 credentials: credentials
)

 token = rds_client.auth_token(
 endpoint: endpoint+ ':' + port,
 user_name: user,
 region: region
)

 begin
 conn = Mysql2::Client.new(
 host: endpoint,
 username: user,
 password: token,
 port: port,
 database: db_name,
 sslca: '/var/task/global-bundle.pem',
 sslverify: true,
 enable_cleartext_plugin: true
)
 a = 3
 b = 2
 result = conn.query("SELECT #{a} + #{b} AS sum").first['sum']
 puts result
 conn.close
 {
 statusCode: 200,

Connecting to an Amazon RDS database in a Lambda function 4978

Amazon Relational Database Service User Guide

 body: result.to_json
 }
 rescue => e
 puts "Database connection failed due to #{e}"
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Rust.

use aws_config::BehaviorVersion;
use aws_credential_types::provider::ProvideCredentials;
use aws_sigv4::{
 http_request::{sign, SignableBody, SignableRequest, SigningSettings},
 sign::v4,
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use serde_json::{json, Value};
use sqlx::postgres::PgConnectOptions;
use std::env;
use std::time::{Duration, SystemTime};

const RDS_CERTS: &[u8] = include_bytes!("global-bundle.pem");

async fn generate_rds_iam_token(
 db_hostname: &str,
 port: u16,
 db_username: &str,
) -> Result<String, Error> {
 let config = aws_config::load_defaults(BehaviorVersion::v2024_03_28()).await;

 let credentials = config
 .credentials_provider()

Connecting to an Amazon RDS database in a Lambda function 4979

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Relational Database Service User Guide

 .expect("no credentials provider found")
 .provide_credentials()
 .await
 .expect("unable to load credentials");
 let identity = credentials.into();
 let region = config.region().unwrap().to_string();

 let mut signing_settings = SigningSettings::default();
 signing_settings.expires_in = Some(Duration::from_secs(900));
 signing_settings.signature_location =
 aws_sigv4::http_request::SignatureLocation::QueryParams;

 let signing_params = v4::SigningParams::builder()
 .identity(&identity)
 .region(®ion)
 .name("rds-db")
 .time(SystemTime::now())
 .settings(signing_settings)
 .build()?;

 let url = format!(
 "https://{db_hostname}:{port}/?Action=connect&DBUser={db_user}",
 db_hostname = db_hostname,
 port = port,
 db_user = db_username
);

 let signable_request =
 SignableRequest::new("GET", &url, std::iter::empty(),
 SignableBody::Bytes(&[]))
 .expect("signable request");

 let (signing_instructions, _signature) =
 sign(signable_request, &signing_params.into())?.into_parts();

 let mut url = url::Url::parse(&url).unwrap();
 for (name, value) in signing_instructions.params() {
 url.query_pairs_mut().append_pair(name, &value);
 }

 let response = url.to_string().split_off("https://".len());

 Ok(response)
}

Connecting to an Amazon RDS database in a Lambda function 4980

Amazon Relational Database Service User Guide

#[tokio::main]
async fn main() -> Result<(), Error> {
 run(service_fn(handler)).await
}

async fn handler(_event: LambdaEvent<Value>) -> Result<Value, Error> {
 let db_host = env::var("DB_HOSTNAME").expect("DB_HOSTNAME must be set");
 let db_port = env::var("DB_PORT")
 .expect("DB_PORT must be set")
 .parse::<u16>()
 .expect("PORT must be a valid number");
 let db_name = env::var("DB_NAME").expect("DB_NAME must be set");
 let db_user_name = env::var("DB_USERNAME").expect("DB_USERNAME must be set");

 let token = generate_rds_iam_token(&db_host, db_port, &db_user_name).await?;

 let opts = PgConnectOptions::new()
 .host(&db_host)
 .port(db_port)
 .username(&db_user_name)
 .password(&token)
 .database(&db_name)
 .ssl_root_cert_from_pem(RDS_CERTS.to_vec())
 .ssl_mode(sqlx::postgres::PgSslMode::Require);

 let pool = sqlx::postgres::PgPoolOptions::new()
 .connect_with(opts)
 .await?;

 let result: i32 = sqlx::query_scalar("SELECT $1 + $2")
 .bind(3)
 .bind(2)
 .fetch_one(&pool)
 .await?;

 println!("Result: {:?}", result);

 Ok(json!({
 "statusCode": 200,
 "content-type": "text/plain",
 "body": format!("The selected sum is: {result}")
 }))
}

Connecting to an Amazon RDS database in a Lambda function 4981

Amazon Relational Database Service User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Connecting to an Amazon RDS database in a Lambda function 4982

Amazon Relational Database Service User Guide

Security in Amazon RDS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon RDS, see
AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon RDS. The following topics show you how to configure Amazon RDS to meet your
security and compliance objectives. You also learn how to use other AWS services that help you
monitor and secure your Amazon RDS resources.

You can manage access to your Amazon RDS resources and your databases on a DB instance. The
method you use to manage access depends on what type of task the user needs to perform with
Amazon RDS:

• Run your DB instance in a virtual private cloud (VPC) based on the Amazon VPC service for the
greatest possible network access control. For more information about creating a DB instance in a
VPC, see Amazon VPC and Amazon RDS.

• Use AWS Identity and Access Management (IAM) policies to assign permissions that determine
who is allowed to manage Amazon RDS resources. For example, you can use IAM to determine
who is allowed to create, describe, modify, and delete DB instances, tag resources, or modify
security groups.

4983

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Relational Database Service User Guide

• Use security groups to control what IP addresses or Amazon EC2 instances can connect to
your databases on a DB instance. When you first create a DB instance, its firewall prevents any
database access except through rules specified by an associated security group.

• Use Secure Socket Layer (SSL) or Transport Layer Security (TLS) connections with DB instances
running the Db2, MySQL, MariaDB, PostgreSQL, Oracle, or Microsoft SQL Server database
engines. For more information on using SSL/TLS with a DB instance, see Using SSL/TLS to
encrypt a connection to a DB instance or cluster.

• Use Amazon RDS encryption to secure your DB instances and snapshots at rest. Amazon RDS
encryption uses the industry standard AES-256 encryption algorithm to encrypt your data on the
server that hosts your DB instance. For more information, see Encrypting Amazon RDS resources.

• Use network encryption and transparent data encryption with Oracle DB instances; for more
information, see Oracle native network encryption and Oracle Transparent Data Encryption

• Use the security features of your DB engine to control who can log in to the databases on a DB
instance. These features work just as if the database was on your local network.

Note

You have to configure security only for your use cases. You don't have to configure
security access for processes that Amazon RDS manages. These include creating backups,
replicating data between a primary DB instance and a read replica, and other processes.

For more information on managing access to Amazon RDS resources and your databases on a DB
instance, see the following topics.

Topics

• Database authentication with Amazon RDS

• Password management with Amazon RDS and AWS Secrets Manager

• Data protection in Amazon RDS

• Identity and access management for Amazon RDS

• Logging and monitoring in Amazon RDS

• Compliance validation for Amazon RDS

• Resilience in Amazon RDS

• Infrastructure security in Amazon RDS

4984

Amazon Relational Database Service User Guide

• Amazon RDS API and interface VPC endpoints (AWS PrivateLink)

• Security best practices for Amazon RDS

• Controlling access with security groups

• Master user account privileges

• Using service-linked roles for Amazon RDS

• Amazon VPC and Amazon RDS

Database authentication with Amazon RDS

Amazon RDS supports several ways to authenticate database users.

Password, Kerberos, and IAM database authentication use different methods of authenticating
to the database. Therefore, a specific user can log in to a database using only one authentication
method.

For PostgreSQL, use only one of the following role settings for a user of a specific database:

• To use IAM database authentication, assign the rds_iam role to the user.

• To use Kerberos authentication, assign the rds_ad role to the user.

• To use password authentication, don't assign either the rds_iam or rds_ad roles to the user.

Don't assign both the rds_iam and rds_ad roles to a user of a PostgreSQL database either
directly or indirectly by nested grant access. If the rds_iam role is added to the master user, IAM
authentication takes precedence over password authentication so the master user has to log in as
an IAM user.

Important

We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal
privileges required for your application.

Topics

• Password authentication

Database authentication 4985

Amazon Relational Database Service User Guide

• IAM database authentication

• Kerberos authentication

Password authentication

With password authentication, your database performs all administration of user accounts. You
create users with SQL statements such as CREATE USER, with the appropriate clause required by
the DB engine for specifying passwords. For example, in MySQL the statement is CREATE USER
name IDENTIFIED BY password, while in PostgreSQL, the statement is CREATE USER name
WITH PASSWORD password.

With password authentication, your database controls and authenticates user accounts. If a
DB engine has strong password management features, they can enhance security. Database
authentication might be easier to administer using password authentication when you have small
user communities. Because clear text passwords are generated in this case, integrating with AWS
Secrets Manager can enhance security.

For information about using Secrets Manager with Amazon RDS, see Creating a basic secret and
Rotating secrets for supported Amazon RDS databases in the AWS Secrets Manager User Guide.
For information about programmatically retrieving your secrets in your custom applications, see
Retrieving the secret value in the AWS Secrets Manager User Guide.

IAM database authentication

You can authenticate to your DB instance using AWS Identity and Access Management (IAM)
database authentication. With this authentication method, you don't need to use a password when
you connect to a DB instance. Instead, you use an authentication token.

For more information about IAM database authentication, including information about availability
for specific DB engines, see IAM database authentication for MariaDB, MySQL, and PostgreSQL.

Kerberos authentication

Amazon RDS supports external authentication of database users using Kerberos and Microsoft
Active Directory. Kerberos is a network authentication protocol that uses tickets and symmetric-
key cryptography to eliminate the need to transmit passwords over the network. Kerberos has
been built into Active Directory and is designed to authenticate users to network resources, such as
databases.

Password authentication 4986

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets-rds.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html

Amazon Relational Database Service User Guide

Amazon RDS support for Kerberos and Active Directory provides the benefits of single sign-on and
centralized authentication of database users. You can keep your user credentials in Active Directory.
Active Directory provides a centralized place for storing and managing credentials for multiple DB
instances.

To use credentials from your self-managed Active Directory, you need to setup a trust relationship
to the AWS Directory Service for Microsoft Active Directory that the DB instance is joined to.

RDS for PostgreSQL and RDS for MySQL support one-way and two-way forest trust relationships
with forest-wide authentication or selective authentication.

In some scenarios, you can configure Kerberos authentication over an external trust relationship.
This requires your self-managed Active Directory to have additional settings. This includes but is
not limited to Kerberos Forest Search Order.

Microsoft SQL Server and PostgreSQL DB instances support one-way and two-way forest trust
relationships. Oracle DB instances support one-way and two-way external and forest trust
relationships. For more information, see When to create a trust relationship in the AWS Directory
Service Administration Guide.

For information about Kerberos authentication with a specific DB engine, see the following:

• Working with AWS Managed Active Directory with RDS for SQL Server

• Using Kerberos authentication for Amazon RDS for MySQL

• Configuring Kerberos authentication for Amazon RDS for Oracle

• Using Kerberos authentication with Amazon RDS for PostgreSQL

• Using Kerberos authentication for Amazon RDS for Db2.

Note

Currently, Kerberos authentication isn't supported for MariaDB DB instances.

Kerberos authentication 4987

https://learn.microsoft.com/en-us/troubleshoot/windows-server/active-directory/kfso-not-work-in-external-trust-event-is-17
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/setup_trust.html

Amazon Relational Database Service User Guide

Password management with Amazon RDS and AWS Secrets
Manager

Amazon RDS integrates with Secrets Manager to manage master user passwords for your DB
instances and Multi-AZ DB clusters.

Topics

• Limitations for Secrets Manager integration with Amazon RDS

• Overview of managing master user passwords with AWS Secrets Manager

• Benefits of managing master user passwords with Secrets Manager

• Permissions required for Secrets Manager integration

• Enforcing RDS management of the master user password in AWS Secrets Manager

• Managing the master user password for a DB instance with Secrets Manager

• Managing the master user password for an RDS for Oracle tenant database with Secrets Manager

• Managing the master user password for a Multi-AZ DB cluster with Secrets Manager

• Rotating the master user password secret for a DB instance

• Rotating the master user password secret for a Multi-AZ DB cluster

• Viewing the details about a secret for a DB instance

• Viewing the details about a secret for a Multi-AZ DB cluster

• Region and version availability

Limitations for Secrets Manager integration with Amazon RDS

Managing master user passwords with Secrets Manager isn't supported for the following features:

• Creating a read replica when the source DB or DB cluster manages credentials with Secrets
Manager. This applies to all DB engines except RDS for SQL Server.

• Amazon RDS Blue/Green Deployments

• Amazon RDS Custom

• Oracle Data Guard switchover

Password management with RDS and Secrets Manager 4988

Amazon Relational Database Service User Guide

Overview of managing master user passwords with AWS Secrets
Manager

With AWS Secrets Manager, you can replace hard-coded credentials in your code, including
database passwords, with an API call to Secrets Manager to retrieve the secret programmatically.
For more information about Secrets Manager, see the AWS Secrets Manager User Guide.

When you store database secrets in Secrets Manager, your AWS account incurs charges. For
information about pricing, see AWS Secrets Manager Pricing.

You can specify that RDS manages the master user password in Secrets Manager for an Amazon
RDS DB instance or Multi-AZ DB cluster when you perform one of the following operations:

• Create a DB instance

• Create a Multi-AZ DB cluster

• Create a tenant database in an RDS for Oracle CDB

• Modify a DB instance

• Modify a Multi-AZ DB cluster

• Modify a tenant database (RDS for Oracle only)

• Restore a DB instance from Amazon S3

• Restore a DB instance from a snapshot or to a point in time (RDS for Oracle only)

When you specify that RDS manages the master user password in Secrets Manager, RDS generates
the password and stores it in Secrets Manager. You can interact directly with the secret to retrieve
the credentials for the master user. You can also specify a customer managed key to encrypt the
secret, or use the KMS key that is provided by Secrets Manager.

RDS manages the settings for the secret and rotates the secret every seven days by default. You
can modify some of the settings, such as the rotation schedule. If you delete a DB instance that
manages a secret in Secrets Manager, the secret and its associated metadata are also deleted.

To connect to a DB instance or Multi-AZ DB cluster with the credentials in a secret, you can retrieve
the secret from Secrets Manager. For more information, see Retrieve secrets from AWS Secrets
Manager and Connect to a SQL database with credentials in an AWS Secrets Manager secret in the
AWS Secrets Manager User Guide.

Overview 4989

https://docs.aws.amazon.com/secretsmanager/latest/userguide/
https://aws.amazon.com/secrets-manager/pricing
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets_jdbc.html

Amazon Relational Database Service User Guide

Benefits of managing master user passwords with Secrets Manager

Managing RDS master user passwords with Secrets Manager provides the following benefits:

• RDS automatically generates database credentials.

• RDS automatically stores and manages database credentials in AWS Secrets Manager.

• RDS rotates database credentials regularly, without requiring application changes.

• Secrets Manager secures database credentials from human access and plain text view.

• Secrets Manager allows retrieval of database credentials in secrets for database connections.

• Secrets Manager allows fine-grained control of access to database credentials in secrets using
IAM.

• You can optionally separate database encryption from credentials encryption with different KMS
keys.

• You can eliminate manual management and rotation of database credentials.

• You can monitor database credentials easily with AWS CloudTrail and Amazon CloudWatch.

For more information about the benefits of Secrets Manager, see the AWS Secrets Manager User
Guide.

Permissions required for Secrets Manager integration

Users must have the required permissions to perform operations related to Secrets Manager
integration. You can create IAM policies that grant permissions to perform specific API operations
on the specified resources they need. You can then attach those policies to the IAM permission sets
or roles that require those permissions. For more information, see Identity and access management
for Amazon RDS.

For create, modify, or restore operations, the user who specifies that Amazon RDS manages
the master user password in Secrets Manager must have permissions to perform the following
operations:

• kms:DescribeKey

• secretsmanager:CreateSecret

• secretsmanager:TagResource

Benefits 4990

https://docs.aws.amazon.com/secretsmanager/latest/userguide/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/

Amazon Relational Database Service User Guide

The kms:DescribeKey permission is required to access your customer-managed key for the
MasterUserSecretKmsKeyId and to describe aws/secretsmanager.

For create, modify, or restore operations, the user who specifies the customer managed key to
encrypt the secret in Secrets Manager must have permissions to perform the following operations:

• kms:Decrypt

• kms:GenerateDataKey

• kms:CreateGrant

For modify operations, the user who rotates the master user password in Secrets Manager must
have permissions to perform the following operation:

• secretsmanager:RotateSecret

Enforcing RDS management of the master user password in AWS
Secrets Manager

You can use IAM condition keys to enforce RDS management of the master user password in AWS
Secrets Manager. The following policy doesn't allow users to create or restore DB instances or DB
clusters or create or modify tenant databases unless the master user password is managed by RDS
in Secrets Manager.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": ["rds:CreateDBInstance", "rds:CreateDBCluster",
 "rds:RestoreDBInstanceFromS3", "rds:RestoreDBClusterFromS3",
 "rds:RestoreDBInstanceFromDBSnapshot",
 "rds:RestoreDBInstanceToPointInTime", "rds:CreateTenantDatabase",
 "rds:ModifyTenantDatabase"],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "rds:ManageMasterUserPassword": false
 }
 }

Enforcing RDS management 4991

Amazon Relational Database Service User Guide

 }
]
}

Note

This policy enforces password management in AWS Secrets Manager at creation. However,
you can still disable Secrets Manager integration and manually set a master password by
modifying the instance.
To prevent this, include rds:ModifyDBInstance, rds:ModifyDBCluster in the
action block of the policy. Be aware, this prevents the user from applying any further
modifications to existing instances that don't have Secrets Manager integration enabled.

For more information about using condition keys in IAM policies, see Policy condition keys for
Amazon RDS and Example policies: Using condition keys.

Managing the master user password for a DB instance with Secrets
Manager

You can configure RDS management of the master user password in Secrets Manager when you
perform the following actions:

• Creating an Amazon RDS DB instance

• Modifying an Amazon RDS DB instance

• Restoring a backup into an Amazon RDS for MySQL DB instance

• Restoring to a DB instance (RDS for Oracle only)

• Restoring a DB instance to a specified time for Amazon RDS (RDS for Oracle only)

You can perform the preceding operations using the RDS console, the AWS CLI, or the RDS API.

Console

Follow the instructions for creating or modifying a DB instance with the RDS console:

• Creating a DB instance

• Modifying an Amazon RDS DB instance

Managing the master user password for a DB instance 4992

Amazon Relational Database Service User Guide

• Importing data from Amazon S3 to a new MySQL DB instance

When you use the RDS console to perform one of these operations, you can specify that the master
user password is managed by RDS in Secrets Manager. When you're creating or restoring a DB
instance, select Manage master credentials in AWS Secrets Manager in Credential settings. When
you're modifying a DB instance, select Manage master credentials in AWS Secrets Manager in
Settings.

The following image is an example of the Manage master credentials in AWS Secrets Manager
setting when you are creating or restoring a DB instance.

When you select this option, RDS generates the master user password and manages it throughout
its lifecycle in Secrets Manager.

Managing the master user password for a DB instance 4993

Amazon Relational Database Service User Guide

You can choose to encrypt the secret with a KMS key that Secrets Manager provides or with a
customer managed key that you create. After RDS is managing the database credentials for a DB
instance, you can't change the KMS key used to encrypt the secret.

You can choose other settings to meet your requirements. For more information about the
available settings when you're creating a DB instance, see Settings for DB instances. For more
information about the available settings when you're modifying a DB instance, see Settings for DB
instances.

AWS CLI

To manage the master user password with RDS in Secrets Manager, specify the --manage-
master-user-password option in one of the following AWS CLI commands:

• create-db-instance

• modify-db-instance

• restore-db-instance-from-s3

• restore-db-instance-from-db-snapshot (RDS for Oracle only)

• restore-db-instance-to-point-in-time (RDS for Oracle only)

When you specify the --manage-master-user-password option in these commands, RDS
generates the master user password and manages it throughout its lifecycle in Secrets Manager.

Managing the master user password for a DB instance 4994

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html

Amazon Relational Database Service User Guide

To encrypt the secret, you can specify a customer managed key or use the default KMS key that is
provided by Secrets Manager. Use the --master-user-secret-kms-key-id option to specify a
customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After RDS is managing the database credentials for a DB instance, you can't change the KMS key
that is used to encrypt the secret.

You can choose other settings to meet your requirements. For more information about the
available settings when you are creating a DB instance, see Settings for DB instances. For more
information about the available settings when you are modifying a DB instance, see Settings for DB
instances.

The following example creates a DB instance and specifies that RDS manages the master user
password in Secrets Manager. The secret is encrypted using the KMS key that is provided by Secrets
Manager.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --engine mysql \
 --engine-version 8.0.39 \
 --db-instance-class db.r5b.large \
 --allocated-storage 200 \
 --master-username testUser \
 --manage-master-user-password

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier mydbinstance ^
 --engine mysql ^
 --engine-version 8.0.39 ^
 --db-instance-class db.r5b.large ^
 --allocated-storage 200 ^
 --master-username testUser ^
 --manage-master-user-password

Managing the master user password for a DB instance 4995

Amazon Relational Database Service User Guide

RDS API

To specify that RDS manages the master user password in Secrets Manager, set the
ManageMasterUserPassword parameter to true in one of the following RDS API operations:

• CreateDBInstance

• ModifyDBInstance

• RestoreDBInstanceFromS3

• RestoreDBInstanceFromSnapshot (RDS for Oracle only)

• RestoreDBInstanceToPointInTime (RDS for Oracle only)

When you set the ManageMasterUserPassword parameter to true in one of these operations,
RDS generates the master user password and manages it throughout its lifecycle in Secrets
Manager.

To encrypt the secret, you can specify a customer managed key or use the default KMS key that
is provided by Secrets Manager. Use the MasterUserSecretKmsKeyId parameter to specify a
customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After RDS is managing the database credentials for a DB instance, you can't change the KMS key
that is used to encrypt the secret.

Managing the master user password for an RDS for Oracle tenant
database with Secrets Manager

You can configure RDS management of the master user password in Secrets Manager when you
perform the following actions:

• Adding an RDS for Oracle tenant database to your CDB instance

• Modifying an RDS for Oracle tenant database

You can use the RDS console, the AWS CLI, or the RDS API to perform the preceding actions.

Console

Follow the instructions for creating or modifying an RDS for Oracle tenant database with the RDS
console:

Managing the master user password for a tenant database 4996

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

• Adding an RDS for Oracle tenant database to your CDB instance

• Modifying an RDS for Oracle tenant database

When you use the RDS console to perform one of the preceding operations, you can specify that
RDS manage the master password in Secrets Manager. When you create a tenant database, select
Manage master credentials in AWS Secrets Manager in Credential settings. When you modify a
tenant database, select Manage master credentials in AWS Secrets Manager in Settings.

The following image is an example of the Manage master credentials in AWS Secrets Manager
setting when you are creating a tenant database.

When you select this option, RDS generates the master user password and manages it throughout
its lifecycle in Secrets Manager.

Managing the master user password for a tenant database 4997

Amazon Relational Database Service User Guide

You can choose to encrypt the secret with a KMS key that Secrets Manager provides or with a
customer managed key that you create. After RDS is managing the database credentials for a
tenant database, you can't change the KMS key that is used to encrypt the secret.

You can choose other settings to meet your requirements. For more information about the
available settings when you are creating a tenant database, see Settings for DB instances. For more
information about the available settings when you are modifying a tenant database, see Settings
for DB instances.

AWS CLI

To manage the master user password with RDS in Secrets Manager, specify the --manage-
master-user-password option in one of the following AWS CLI commands:

• create-tenant-database

• modify-tenant-database

When you specify the --manage-master-user-password option in the preceding commands,
RDS generates the master user password and manages it throughout its lifecycle in Secrets
Manager.

To encrypt the secret, you can specify a customer managed key or use the default KMS key that is
provided by Secrets Manager. Use the --master-user-secret-kms-key-id option to specify a

Managing the master user password for a tenant database 4998

https://docs.aws.amazon.com/cli/latest/reference/rds/create-tenant-database.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-tenant-database.html

Amazon Relational Database Service User Guide

customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After RDS is managing the database credentials for a tenant database, you can't change the KMS
key that is used to encrypt the secret.

You can choose other settings to meet your requirements. For more information about the
available settings when you are creating a tenant database, see create-tenant-database. For more
information about the available settings when you are modifying a tenant database, see modify-
tenant-database.

The following example creates an RDS for Oracle tenant database and specifies that RDS manages
the master user password in Secrets Manager. The secret is encrypted using the KMS key that is
provided by Secrets Manager.

Example

For Linux, macOS, or Unix:

aws rds create-tenant-database --region us-east-1 \
 --db-instance-identifier my-cdb-inst \
 --tenant-db-name mypdb2 \
 --master-username mypdb2-admin \
 --character-set-name UTF-16 \
 --manage-master-user-password

For Windows:

aws rds create-tenant-database --region us-east-1 ^
 --db-instance-identifier my-cdb-inst ^
 --tenant-db-name mypdb2 ^
 --master-username mypdb2-admin ^
 --character-set-name UTF-16 ^
 --manage-master-user-password

RDS API

To specify that RDS manages the master user password in Secrets Manager, set the
ManageMasterUserPassword parameter to true in one of the following RDS API operations:

• CreateTenantDatabase

• ModifyTenantDatabase

Managing the master user password for a tenant database 4999

https://docs.aws.amazon.com/cli/latest/reference/rds/create-tenant-database.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-tenant-database.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-tenant-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateTenantDatabase.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyTenantDatabase.html

Amazon Relational Database Service User Guide

When you set the ManageMasterUserPassword parameter to true in one of these operations,
RDS generates the master user password and manages it throughout its lifecycle in Secrets
Manager.

To encrypt the secret, you can specify a customer managed key or use the default KMS key that
is provided by Secrets Manager. Use the MasterUserSecretKmsKeyId parameter to specify a
customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After RDS is managing the database credentials for a tenant database, you can't change the KMS
key that is used to encrypt the secret.

Managing the master user password for a Multi-AZ DB cluster with
Secrets Manager

You can configure RDS management of the master user password in Secrets Manager when you
perform the following actions:

• Creating a Multi-AZ DB cluster for Amazon RDS

• Modifying a Multi-AZ DB cluster for Amazon RDS

You can use the RDS console, the AWS CLI, or the RDS API to perform these actions.

Console

Follow the instructions for creating or modifying a Multi-AZ DB cluster with the RDS console:

• Creating a DB cluster

• Modifying a Multi-AZ DB cluster for Amazon RDS

When you use the RDS console to perform one of these operations, you can specify that the master
user password is managed by RDS in Secrets Manager. To do so when you are creating a DB cluster,
select Manage master credentials in AWS Secrets Manager in Credential settings. When you are
modifying a DB cluster, select Manage master credentials in AWS Secrets Manager in Settings.

The following image is an example of the Manage master credentials in AWS Secrets Manager
setting when you are creating a DB cluster.

Managing the master user password for a Multi-AZ DB cluster 5000

Amazon Relational Database Service User Guide

When you select this option, RDS generates the master user password and manages it throughout
its lifecycle in Secrets Manager.

Managing the master user password for a Multi-AZ DB cluster 5001

Amazon Relational Database Service User Guide

You can choose to encrypt the secret with a KMS key that Secrets Manager provides or with a
customer managed key that you create. After RDS is managing the database credentials for a DB
cluster, you can't change the KMS key that is used to encrypt the secret.

You can choose other settings to meet your requirements.

For more information about the available settings when you are creating a Multi-AZ DB cluster, see
Settings for creating Multi-AZ DB clusters. For more information about the available settings when
you are modifying a Multi-AZ DB cluster, see Settings for modifying Multi-AZ DB clusters.

AWS CLI

To specify that RDS manages the master user password in Secrets Manager, specify the --manage-
master-user-password option in one of the following commands:

• create-db-cluster

• modify-db-cluster

When you specify the --manage-master-user-password option in these commands, RDS
generates the master user password and manages it throughout its lifecycle in Secrets Manager.

To encrypt the secret, you can specify a customer managed key or use the default KMS key that is
provided by Secrets Manager. Use the --master-user-secret-kms-key-id option to specify a
customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After RDS is managing the database credentials for a DB cluster, you can't change the KMS key that
is used to encrypt the secret.

You can choose other settings to meet your requirements.

For more information about the available settings when you are creating a Multi-AZ DB cluster, see
Settings for creating Multi-AZ DB clusters. For more information about the available settings when
you are modifying a Multi-AZ DB cluster, see Settings for modifying Multi-AZ DB clusters.

This example creates a Multi-AZ DB cluster and specifies that RDS manages the password in Secrets
Manager. The secret is encrypted using the KMS key that is provided by Secrets Manager.

Example

For Linux, macOS, or Unix:

Managing the master user password for a Multi-AZ DB cluster 5002

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

aws rds create-db-cluster \
 --db-cluster-identifier mysql-multi-az-db-cluster \
 --engine mysql \
 --engine-version 8.0.39 \
 --backup-retention-period 1 \
 --allocated-storage 4000 \
 --storage-type io1 \
 --iops 10000 \
 --db-cluster-instance-class db.r6gd.xlarge \
 --master-username testUser \
 --manage-master-user-password

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier mysql-multi-az-db-cluster ^
 --engine mysql ^
 --engine-version 8.0.39 ^
 --backup-retention-period 1 ^
 --allocated-storage 4000 ^
 --storage-type io1 ^
 --iops 10000 ^
 --db-cluster-instance-class db.r6gd.xlarge ^
 --master-username testUser ^
 --manage-master-user-password

RDS API

To specify that RDS manages the master user password in Secrets Manager, set the
ManageMasterUserPassword parameter to true in one of the following operations:

• CreateDBCluster

• ModifyDBCluster

When you set the ManageMasterUserPassword parameter to true in one of these operations,
RDS generates the master user password and manages it throughout its lifecycle in Secrets
Manager.

To encrypt the secret, you can specify a customer managed key or use the default KMS key that
is provided by Secrets Manager. Use the MasterUserSecretKmsKeyId parameter to specify a

Managing the master user password for a Multi-AZ DB cluster 5003

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Relational Database Service User Guide

customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After RDS is managing the database credentials for a DB cluster, you can't change the KMS key that
is used to encrypt the secret.

Rotating the master user password secret for a DB instance

When RDS rotates a master user password secret, Secrets Manager generates a new secret version
for the existing secret. The new version of the secret contains the new master user password.
Amazon RDS changes the master user password for the DB instance to match the password for the
new secret version.

You can rotate a secret immediately instead of waiting for a scheduled rotation. To rotate a master
user password secret in Secrets Manager, modify the DB instance. For information about modifying
a DB instance, see Modifying an Amazon RDS DB instance.

You can rotate a master user password secret immediately with the RDS console, the AWS CLI, or
the RDS API. The new password is always 28 characters long and contains at least one upper and
lowercase character, one number, and one punctuation.

Console

To rotate a master user password secret using the RDS console, modify the DB instance and select
Rotate secret immediately in Settings.

Rotating the master user password secret for a DB instance 5004

Amazon Relational Database Service User Guide

Follow the instructions for modifying a DB instance with the RDS console in Modifying an Amazon
RDS DB instance. You must choose Apply immediately on the confirmation page.

AWS CLI

To rotate a master user password secret using the AWS CLI, use the modify-db-instance command
and specify the --rotate-master-user-password option. You must specify the --apply-
immediately option when you rotate the master password.

This example rotates a master user password secret.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --rotate-master-user-password \
 --apply-immediately

For Windows:

Rotating the master user password secret for a DB instance 5005

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --rotate-master-user-password ^
 --apply-immediately

RDS API

You can rotate a master user password secret using the ModifyDBInstance operation and setting
the RotateMasterUserPassword parameter to true. You must set the ApplyImmediately
parameter to true when you rotate the master password.

Rotating the master user password secret for a Multi-AZ DB cluster

When RDS rotates a master user password secret, Secrets Manager generates a new secret version
for the existing secret. The new version of the secret contains the new master user password.
Amazon RDS changes the master user password for the Multi-AZ DB cluster to match the password
for the new secret version.

You can rotate a secret immediately instead of waiting for a scheduled rotation. To rotate a master
user password secret in Secrets Manager, modify the Multi-AZ DB cluster. For information about
modifying a Multi-AZ DB cluster, see Modifying a Multi-AZ DB cluster for Amazon RDS.

You can rotate a master user password secret immediately with the RDS console, the AWS CLI, or
the RDS API. The new password is always 28 characters long and contains atleast one upper and
lowercase character, one number, and one punctuation.

Console

To rotate a master user password secret using the RDS console, modify the Multi-AZ DB cluster and
select Rotate secret immediately in Settings.

Rotating the master user password secret for a Multi-AZ DB cluster 5006

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Follow the instructions for modifying a Multi-AZ DB cluster with the RDS console in Modifying a
Multi-AZ DB cluster for Amazon RDS. You must choose Apply immediately on the confirmation
page.

AWS CLI

To rotate a master user password secret using the AWS CLI, use the modify-db-cluster command
and specify the --rotate-master-user-password option. You must specify the --apply-
immediately option when you rotate the master password.

This example rotates a master user password secret.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \

Rotating the master user password secret for a Multi-AZ DB cluster 5007

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

 --db-cluster-identifier mydbcluster \
 --rotate-master-user-password \
 --apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --rotate-master-user-password ^
 --apply-immediately

RDS API

You can rotate a master user password secret using the ModifyDBCluster operation and setting
the RotateMasterUserPassword parameter to true. You must set the ApplyImmediately
parameter to true when you rotate the master password.

Viewing the details about a secret for a DB instance

You can retrieve your secrets using the console (https://console.aws.amazon.com/
secretsmanager/) or the AWS CLI (get-secret-value Secrets Manager command).

You can find the Amazon Resource Name (ARN) of a secret managed by RDS in Secrets Manager
with the RDS console, the AWS CLI, or the RDS API.

Console

To view the details about a secret managed by RDS in Secrets Manager

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance to show its details.

4. Choose the Configuration tab.

In Master Credentials ARN, you can view the secret ARN.

Viewing the details about a secret for a DB instance 5008

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

You can follow the Manage in Secrets Manager link to view and manage the secret in the
Secrets Manager console.

AWS CLI

You can use the describe-db-instances RDS CLI command to find the following information about a
secret managed by RDS in Secrets Manager:

Viewing the details about a secret for a DB instance 5009

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• SecretArn – The ARN of the secret

• SecretStatus – The status of the secret

The possible status values include the following:

• creating – The secret is being created.

• active – The secret is available for normal use and rotation.

• rotating – The secret is being rotated.

• impaired – The secret can be used to access database credentials, but it can't be rotated.
A secret might have this status if, for example, permissions are changed so that RDS can no
longer access the secret or the KMS key for the secret.

When a secret has this status, you can correct the condition that caused the status. If you
correct the condition that caused status, the status remains impaired until the next rotation.
Alternatively, you can modify the DB instance to turn off automatic management of database
credentials, and then modify the DB instance again to turn on automatic management
of database credentials. To modify the DB instance, use the --manage-master-user-
password option in the modify-db-instance command.

• KmsKeyId – The ARN of the KMS key that is used to encrypt the secret

Specify the --db-instance-identifier option to show output for a specific DB instance. This
example shows the output for a secret that is used by a DB instance.

Example

aws rds describe-db-instances --db-instance-identifier mydbinstance

Following is sample output for a secret:

"MasterUserSecret": {
 "SecretArn": "arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
db-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx",
 "SecretStatus": "active",
 "KmsKeyId": "arn:aws:kms:eu-
west-1:123456789012:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

Viewing the details about a secret for a DB instance 5010

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

When you have the secret ARN, you can view details about the secret using the get-secret-value
Secrets Manager CLI command.

This example shows the details for the secret in the previous sample output.

Example

For Linux, macOS, or Unix:

aws secretsmanager get-secret-value \
 --secret-id 'arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
db-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx'

For Windows:

aws secretsmanager get-secret-value ^
 --secret-id 'arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
db-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx'

RDS API

You can view the ARN, status, and KMS key for a secret managed by RDS in Secrets Manager by
using the DescribeDBInstances operation and setting the DBInstanceIdentifier parameter to a
DB instance identifier. Details about the secret are included in the output.

When you have the secret ARN, you can view details about the secret using the GetSecretValue
Secrets Manager operation.

Viewing the details about a secret for a Multi-AZ DB cluster

You can retrieve your secrets using the console (https://console.aws.amazon.com/
secretsmanager/) or the AWS CLI (get-secret-value Secrets Manager command).

You can find the Amazon Resource Name (ARN) of a secret managed by RDS in Secrets Manager
with the RDS console, the AWS CLI, or the RDS API.

Console

To view the details about a secret managed by RDS in Secrets Manager

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Viewing the details about a secret for a Multi-AZ DB cluster 5011

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

2. In the navigation pane, choose Databases.

3. Choose the name of the Multi-AZ DB cluster to show its details.

4. Choose the Configuration tab.

In Master Credentials ARN, you can view the secret ARN.

Viewing the details about a secret for a Multi-AZ DB cluster 5012

Amazon Relational Database Service User Guide

You can follow the Manage in Secrets Manager link to view and manage the secret in the
Secrets Manager console.

AWS CLI

You can use the RDS AWS CLI describe-db-clusters command to find the following information
about a secret managed by RDS in Secrets Manager:

• SecretArn – The ARN of the secret

• SecretStatus – The status of the secret

The possible status values include the following:

• creating – The secret is being created.

• active – The secret is available for normal use and rotation.

• rotating – The secret is being rotated.

• impaired – The secret can be used to access database credentials, but it can't be rotated.
A secret might have this status if, for example, permissions are changed so that RDS can no
longer access the secret or the KMS key for the secret.

When a secret has this status, you can correct the condition that caused the status. If you
correct the condition that caused status, the status remains impaired until the next rotation.
Alternatively, you can modify the DB cluster to turn off automatic management of database
credentials, and then modify the DB cluster again to turn on automatic management of
database credentials. To modify the DB cluster, use the --manage-master-user-password
option in the modify-db-cluster command.

• KmsKeyId – The ARN of the KMS key that is used to encrypt the secret

Specify the --db-cluster-identifier option to show output for a specific DB cluster. This
example shows the output for a secret that is used by a DB cluster.

Example

aws rds describe-db-clusters --db-cluster-identifier mydbcluster

The following sample shows the output for a secret:

Viewing the details about a secret for a Multi-AZ DB cluster 5013

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

"MasterUserSecret": {
 "SecretArn": "arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
cluster-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx",
 "SecretStatus": "active",
 "KmsKeyId": "arn:aws:kms:eu-
west-1:123456789012:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

When you have the secret ARN, you can view details about the secret using the get-secret-value
Secrets Manager CLI command.

This example shows the details for the secret in the previous sample output.

Example

For Linux, macOS, or Unix:

aws secretsmanager get-secret-value \
 --secret-id 'arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
cluster-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx'

For Windows:

aws secretsmanager get-secret-value ^
 --secret-id 'arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
cluster-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx'

RDS API

You can view the ARN, status, and KMS key for a secret managed by RDS in Secrets Manager using
the DescribeDBClusters RDS operation and setting the DBClusterIdentifier parameter to a DB
cluster identifier. Details about the secret are included in the output.

When you have the secret ARN, you can view details about the secret using the GetSecretValue
Secrets Manager operation.

Region and version availability

Feature availability and support varies across specific versions of each database engine and across
AWS Regions. For more information about version and Region availability with Secrets Manager

Region and version availability 5014

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html

Amazon Relational Database Service User Guide

integration with Amazon RDS, see Supported Regions and DB engines for the Secrets Manager
integration with Amazon RDS.

Data protection in Amazon RDS

The AWS shared responsibility model applies to data protection in Amazon Relational Database
Service. As described in this model, AWS is responsible for protecting the global infrastructure
that runs all of the AWS Cloud. You are responsible for maintaining control over your content
that is hosted on this infrastructure. You are also responsible for the security configuration and
management tasks for the AWS services that you use. For more information about data privacy,
see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared
Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon RDS or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data protection 5015

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

Amazon Relational Database Service User Guide

Topics

• Protecting data using encryption

• Internetwork traffic privacy

Protecting data using encryption

You can enable encryption for database resources. You can also encrypt connections to DB
instances.

Topics

• Encrypting Amazon RDS resources

• AWS KMS key management

• Using SSL/TLS to encrypt a connection to a DB instance or cluster

• Rotating your SSL/TLS certificate

Encrypting Amazon RDS resources

Amazon RDS can encrypt your Amazon RDS DB instances. Data that is encrypted at rest includes
the underlying storage for DB instances, its automated backups, read replicas, and snapshots.

Amazon RDS encrypted DB instances use the industry standard AES-256 encryption algorithm
to encrypt your data on the server that hosts your Amazon RDS DB instances. After your
data is encrypted, Amazon RDS handles authentication of access and decryption of your data
transparently with a minimal impact on performance. You don't need to modify your database
client applications to use encryption.

Note

For encrypted and unencrypted DB instances, data that is in transit between the source and
the read replicas is encrypted, even when replicating across AWS Regions.

Topics

• Overview of encrypting Amazon RDS resources

• Encrypting a DB instance

Data encryption 5016

Amazon Relational Database Service User Guide

• Determining whether encryption is turned on for a DB instance

• Availability of Amazon RDS encryption

• Encryption in transit

• Limitations of Amazon RDS encrypted DB instances

Overview of encrypting Amazon RDS resources

Amazon RDS encrypted DB instances provide an additional layer of data protection by securing
your data from unauthorized access to the underlying storage. You can use Amazon RDS
encryption to increase data protection of your applications deployed in the cloud, and to fulfill
compliance requirements for encryption at rest. For an Amazon RDS encrypted DB instance, all
logs, backups, and snapshots are encrypted. For more information about the availability and
limitations of encryption, see Availability of Amazon RDS encryption and Limitations of Amazon
RDS encrypted DB instances.

Amazon RDS uses an AWS Key Management Service key to encrypt these resources. AWS KMS
combines secure, highly available hardware and software to provide a key management system
scaled for the cloud. You can use an AWS managed key, or you can create customer managed keys.

When you create an encrypted DB instance, you can choose a customer managed key or the AWS
managed key for Amazon RDS to encrypt your DB instance. If you don't specify the key identifier
for a customer managed key, Amazon RDS uses the AWS managed key for your new DB instance.
Amazon RDS creates an AWS managed key for Amazon RDS for your AWS account. Your AWS
account has a different AWS managed key for Amazon RDS for each AWS Region.

To manage the customer managed keys used for encrypting and decrypting your Amazon RDS
resources, you use the AWS Key Management Service (AWS KMS).

Using AWS KMS, you can create customer managed keys and define the policies that control
the use of these customer managed keys. AWS KMS supports CloudTrail, so you can audit KMS
key usage to verify that customer managed keys are being used appropriately. You can use your
customer managed keys with Amazon Aurora and supported AWS services such as Amazon S3,
Amazon EBS, and Amazon Redshift. For a list of services that are integrated with AWS KMS, see
AWS Service Integration. Some considerations about using KMS keys:

• Once you have created an encrypted DB instance, you can't change the KMS key used by that
DB instance. Therefore, be sure to determine your KMS key requirements before you create your
encrypted DB instance.

Data encryption 5017

https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.amazon.com/kms/features/#AWS_Service_Integration

Amazon Relational Database Service User Guide

If you must change the encryption key for your DB instance, create a manual snapshot of your
instance and enable encryption while copying the snapshot. For more information, see re:Post
Knowledge article.

• If you copy an encrypted snapshot, you can use a different KMS key to encrypt the target
snapshot than the one that was used to encrypt the source snapshot.

• A read replica of an Amazon RDS encrypted instance must be encrypted using the same KMS key
as the primary DB instance when both are in the same AWS Region.

• If the primary DB instance and read replica are in different AWS Regions, you encrypt the read
replica using the KMS key for that AWS Region.

• You can't share a snapshot that has been encrypted using the AWS managed key of the AWS
account that shared the snapshot.

• Amazon RDS also supports encrypting an Oracle or SQL Server DB instance with Transparent
Data Encryption (TDE). TDE can be used with RDS encryption at rest, although using TDE and
RDS encryption at rest simultaneously might slightly affect the performance of your database.
You must manage different keys for each encryption method. For more information on TDE, see
Oracle Transparent Data Encryption or Support for Transparent Data Encryption in SQL Server.

Important

Amazon RDS loses access to the KMS key for a DB instance when you disable the KMS key.
If you lose access to a KMS key, the encrypted DB instance goes into the inaccessible-
encryption-credentials-recoverable state 2 hours after detection in instances
where backups are enabled. The DB instance remains in this state for seven days, during
which the instance is stopped. API calls made to the DB instance during this time might
not succeed. To recover the DB instance, enable the KMS key and restart this DB instance.
Enable the KMS key from the AWS Management Console, AWS CLI, or RDS API. Restart the
DB instance using the AWS CLI command start-db-instance or AWS Management Console.
The inaccessible-encryption-credentials-recoverable state only applies to DB
instances that can stop. This recoverable state is not applicable to instances that can't stop,
such as read replicas and instances with read replicas. For more information, see Limitations
of stopping your DB instance.
If the DB instance isn't recovered within seven days, it goes into the terminal
inaccessible-encryption-credentials state. In this state, the DB instance is not
usable anymore and you can only restore the DB instance from a backup. We strongly

Data encryption 5018

https://repost.aws/knowledge-center/update-encryption-key-rds
https://repost.aws/knowledge-center/update-encryption-key-rds
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-instance.html

Amazon Relational Database Service User Guide

recommend that you always turn on backups for encrypted DB instances to guard against
the loss of encrypted data in your databases.
During the creation of a DB instance, Amazon RDS checks if the calling principal has access
to the KMS key and generates a grant from the KMS key that it uses for the entire lifetime
of the DB instance. Revoking the calling principal's access to the KMS key does not affect
a running database. When using KMS keys in cross-account scenarios, such as copying a
snapshot to another account, the KMS key needs to be shared with the other account. If
you create a DB instance from the snapshot without specifying a different KMS key, the
new instance uses the KMS key from the source account. Revoking access to the key after
you create the DB instance does not affect the instance. However, disabling the key impacts
all DB instances encrypted with that key. To prevent this, specify a different key during the
snapshot copy operation.
DB instances with disabled backups remain available until the volumes are detached from
the host during an instance modification or a recovery. RDS moves the instances into
inaccessible-encryption-credentials-recoverable state or inaccessible-
encryption-credentials state as applicable.

For more information about KMS keys, see AWS KMS keys in the AWS Key Management Service
Developer Guide and AWS KMS key management.

Encrypting a DB instance

To encrypt a new DB instance, choose Enable encryption on the Amazon RDS console. For
information on creating a DB instance, see Creating an Amazon RDS DB instance.

If you use the create-db-instance AWS CLI command to create an encrypted DB instance, set
the --storage-encrypted parameter. If you use the CreateDBInstance API operation, set the
StorageEncrypted parameter to true.

If you use the AWS CLI create-db-instance command to create an encrypted DB instance with
a customer managed key, set the --kms-key-id parameter to any key identifier for the KMS key.
If you use the Amazon RDS API CreateDBInstance operation, set the KmsKeyId parameter to
any key identifier for the KMS key. To use a customer managed key in a different AWS account,
specify the key ARN or alias ARN.

Data encryption 5019

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Relational Database Service User Guide

Determining whether encryption is turned on for a DB instance

You can use the AWS Management Console, AWS CLI, or RDS API to determine whether encryption
at rest is turned on for a DB instance.

Console

To determine whether encryption at rest is turned on for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that you want to check to view its details.

4. Choose the Configuration tab, and check the Encryption value under Storage.

It shows either Enabled or Not enabled.

AWS CLI

To determine whether encryption at rest is turned on for a DB instance by using the AWS CLI, call
the describe-db-instances command with the following option:

Data encryption 5020

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• --db-instance-identifier – The name of the DB instance.

The following example uses a query to return either TRUE or FALSE regarding encryption at rest
for the mydb DB instance.

Example

aws rds describe-db-instances --db-instance-identifier mydb --query "*[].
{StorageEncrypted:StorageEncrypted}" --output text

RDS API

To determine whether encryption at rest is turned on for a DB instance by using the Amazon RDS
API, call the DescribeDBInstances operation with the following parameter:

• DBInstanceIdentifier – The name of the DB instance.

Availability of Amazon RDS encryption

Amazon RDS encryption is currently available for all database engines and storage types.

Amazon RDS encryption is available for most DB instance classes. The following table lists DB
instance classes that don't support Amazon RDS encryption:

Instance type Instance class

General purpose (M1) db.m1.small

db.m1.medium

db.m1.large

db.m1.xlarge

Memory optimized (M2) db.m2.xlarge

db.m2.2xlarge

db.m2.4xlarge

Data encryption 5021

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Relational Database Service User Guide

Instance type Instance class

Burstable (T2) db.t2.micro

Encryption in transit

Encryption at the physical layer

All data flowing accross AWS Regions over the AWS global network is automatically encrypted
at the physical layer before it leaves AWS secured facilities. All traffic between AZs is encrypted.
Additional layers of encryption, including those listed in this section may provide additional
protections.

Encryption provided by Amazon VPC peering and Transit Gateway cross-Region peering

All cross-Region traffic that uses Amazon VPC and Transit Gateway peering is automatically
bulk-encrypted when it exits a Region. An additional layer of encryption is automatically
provided at the physical layer for all traffic before it leaves AWS secured facilities.

Encryption between instances

AWS provides secure and private connectivity between DB instances of all types. In addition,
some instance types use the offload capabilities of the underlying Nitro System hardware to
automatically encrypt in-transit traffic between instances. This encryption uses Authenticated
Encryption with Associated Data (AEAD) algorithms, with 256-bit encryption. There is no impact
on network performance. To support this additional in-transit traffic encryption between
instances, the following requirements must be met:

• The instances use the following instance types:

• General purpose: M6i, M6id, M6in, M6idn, M7g

• Memory optimized: R6i, R6id, R6in, R6idn, R7g, X2idn, X2iedn, X2iezn

• The instances are in the same AWS Region.

• The instances are in the same VPC or peered VPCs, and the traffic does not pass through a
virtual network device or service, such as a load balancer or a transit gateway.

Limitations of Amazon RDS encrypted DB instances

The following limitations exist for Amazon RDS encrypted DB instances:

Data encryption 5022

Amazon Relational Database Service User Guide

• You can only encrypt an Amazon RDS DB instance when you create it, not after the DB instance is
created.

However, because you can encrypt a copy of an unencrypted snapshot, you can effectively
add encryption to an unencrypted DB instance. That is, you can create a snapshot of your DB
instance, and then create an encrypted copy of that snapshot. You can then restore a DB instance
from the encrypted snapshot, and thus you have an encrypted copy of your original DB instance.
For more information, see Copying a DB snapshot for Amazon RDS.

• You can't turn off encryption on an encrypted DB instance.

• You can't create an encrypted snapshot of an unencrypted DB instance.

• A snapshot of an encrypted DB instance must be encrypted using the same KMS key as the DB
instance.

• You can't have an encrypted read replica of an unencrypted DB instance or an unencrypted read
replica of an encrypted DB instance.

• Encrypted read replicas must be encrypted with the same KMS key as the source DB instance
when both are in the same AWS Region.

• You can't restore an unencrypted backup or snapshot to an encrypted DB instance.

• To copy an encrypted snapshot from one AWS Region to another, you must specify the KMS key
in the destination AWS Region. This is because KMS keys are specific to the AWS Region that they
are created in.

The source snapshot remains encrypted throughout the copy process. Amazon RDS uses
envelope encryption to protect data during the copy process. For more information about
envelope encryption, see Envelope encryption in the AWS Key Management Service Developer
Guide.

• You can't unencrypt an encrypted DB instance. However, you can export data from an encrypted
DB instance and import the data into an unencrypted DB instance.

AWS KMS key management

Amazon RDS automatically integrates with AWS Key Management Service (AWS KMS) for key
management. Amazon RDS uses envelope encryption. For more information about envelope
encryption, see Envelope encryption in the AWS Key Management Service Developer Guide.

You can use two types of AWS KMS keys to encrypt your DB instances.

Data encryption 5023

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

Amazon Relational Database Service User Guide

• If you want full control over a KMS key, you must create a customer managed key. For more
information about customer managed keys, see Customer managed keys in the AWS Key
Management Service Developer Guide.

• AWS managed keys are KMS keys in your account that are created, managed, and used on your
behalf by an AWS service that is integrated with AWS KMS. By default, the RDS AWS managed
key (aws/rds) is used for encryption. You can't manage, rotate, or delete the RDS AWS managed
key. For more information about AWS managed keys, see AWS managed keys in the AWS Key
Management Service Developer Guide.

To manage KMS keys used for Amazon RDS encrypted DB instances, use the AWS Key Management
Service (AWS KMS) in the AWS KMS console, the AWS CLI, or the AWS KMS API. To view audit logs
of every action taken with an AWS managed or customer managed key, use AWS CloudTrail. For
more information about key rotation, see Rotating AWS KMS keys.

Authorizing use of a customer managed key

When RDS uses a customer managed key in cryptographic operations, it acts on behalf of the user
who is creating or changing the RDS resource.

To create an RDS resource using a customer managed key, a user must have permissions to call the
following operations on the customer managed key:

• kms:CreateGrant

• kms:DescribeKey

You can specify these required permissions in a key policy, or in an IAM policy if the key policy
allows it.

Tip

To follow the principle of least privilege, do not allow full access to kms:CreateGrant.
Instead, use the kms:ViaService condition key to allow the user to create grants on the KMS
key only when the grant is created on the user's behalf by an AWS service.

You can make the IAM policy stricter in various ways. For example, if you want to allow the
customer managed key to be used only for requests that originate in RDS, use the kms:ViaService

Data encryption 5024

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service

Amazon Relational Database Service User Guide

condition key with the rds.<region>.amazonaws.com value. Also, you can use the keys or
values in the Amazon RDS encryption context as a condition for using the customer managed key
for encryption.

For more information, see Allowing users in other accounts to use a KMS key in the AWS Key
Management Service Developer Guide and Key policies in AWS KMS.

Amazon RDS encryption context

When RDS uses your KMS key, or when Amazon EBS uses the KMS key on behalf of RDS, the service
specifies an encryption context. The encryption context is additional authenticated data (AAD) that
AWS KMS uses to ensure data integrity. When an encryption context is specified for an encryption
operation, the service must specify the same encryption context for the decryption operation.
Otherwise, decryption fails. The encryption context is also written to your AWS CloudTrail logs
to help you understand why a given KMS key was used. Your CloudTrail logs might contain many
entries describing the use of a KMS key, but the encryption context in each log entry can help you
determine the reason for that particular use.

At minimum, Amazon RDS always uses the DB instance ID for the encryption context, as in the
following JSON-formatted example:

{ "aws:rds:db-id": "db-CQYSMDPBRZ7BPMH7Y3RTDG5QY" }

This encryption context can help you identify the DB instance for which your KMS key was used.

When your KMS key is used for a specific DB instance and a specific Amazon EBS volume, both
the DB instance ID and the Amazon EBS volume ID are used for the encryption context, as in the
following JSON-formatted example:

{
 "aws:rds:db-id": "db-BRG7VYS3SVIFQW7234EJQOM5RQ",
 "aws:ebs:id": "vol-ad8c6542"
}

Using SSL/TLS to encrypt a connection to a DB instance or cluster

You can use Secure Socket Layer (SSL) or Transport Layer Security (TLS) from your application to
encrypt a connection to a database running Db2, MariaDB, Microsoft SQL Server, MySQL, Oracle, or
PostgreSQL.

Data encryption 5025

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://aws.amazon.com/cloudtrail/

Amazon Relational Database Service User Guide

SSL/TLS connections provide a layer of security by encrypting data that moves between your
client and DB instance or cluster. Optionally, your SSL/TLS connection can perform server identity
verification by validating the server certificate installed on your database. To require server identity
verification, follow this general process:

1. Choose the certificate authority (CA) that signs the DB server certificate, for your database. For
more information about certificate authorities, see Certificate authorities.

2. Download a certificate bundle to use when you are connecting to the database. To download a
certificate bundle, see Certificate bundles by AWS Region.

Note

All certificates are only available for download using SSL/TLS connections.

3. Connect to the database using your DB engine's process for implementing SSL/TLS connections.
Each DB engine has its own process for implementing SSL/TLS. To learn how to implement SSL/
TLS for your database, follow the link that corresponds to your DB engine:

• Using SSL/TLS with an Amazon RDS for Db2 DB instance

• SSL/TLS support for MariaDB DB instances on Amazon RDS

• Using SSL with a Microsoft SQL Server DB instance

• SSL/TLS support for MySQL DB instances on Amazon RDS

• Using SSL with an RDS for Oracle DB instance

• Using SSL with a PostgreSQL DB instance

Certificate authorities

The certificate authority (CA) is the certificate that identifies the root CA at the top of the
certificate chain. The CA signs the DB server certificate, which is installed on each DB instance. The
DB server certificate identifies the DB instance as a trusted server.

Data encryption 5026

Amazon Relational Database Service User Guide

Amazon RDS provides the following CAs to sign the DB server certificate for a database.

Certificate authority (CA) Description Common name
(CN)

rds-ca-rsa2048-g1 Uses a certificate authority with RSA
2048 private key algorithm and SHA256
signing algorithm in most AWS Regions.

In the AWS GovCloud (US) Regions, this
CA uses a certificate authority with RSA
2048 private key algorithm and SHA384
signing algorithm.

This CA supports automatic server
certificate rotation.

Amazon RDS
region-id
entifier
RSA2048 G1

rds-ca-rsa4096-g1 Uses a certificate authority with RSA
4096 private key algorithm and SHA384
signing algorithm. This CA supports
automatic server certificate rotation.

Amazon RDS
region-id

Data encryption 5027

Amazon Relational Database Service User Guide

Certificate authority (CA) Description Common name
(CN)

entifier
RSA4096 G1

rds-ca-ecc384-g1 Uses a certificate authority with ECC
384 private key algorithm and SHA384
signing algorithm. This CA supports
automatic server certificate rotation.

Amazon RDS
region-id
entifier
ECC384 G1

Note

If you are using the AWS CLI, you can see the validities of the certificate authorities listed
above by using describe-certificates.

These CA certificates are included in the regional and global certificate bundle. When you use the
rds-ca-rsa2048-g1, rds-ca-rsa4096-g1, or rds-ca-ecc384-g1 CA with a database, RDS manages the
DB server certificate on the database. RDS rotates the DB server certificate automatically before it
expires.

Setting the CA for your database

You can set the CA for a database when you perform the following tasks:

• Create a DB instance or Multi-AZ DB cluster – You can set the CA when you create a DB instance
or cluster. For instructions, see the section called “Creating a DB instance” or the section called
“Creating a Multi-AZ DB cluster”.

• Modify a DB instance or Multi-AZ DB cluster – You can set the CA for a DB instance or cluster by
modifying it. For instructions, see the section called “Modifying a DB instance” or the section
called “Modifying a Multi-AZ DB cluster”.

Note

The default CA is set to rds-ca-rsa2048-g1. You can override the default CA for your AWS
account by using the modify-certificates command.

Data encryption 5028

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-certificates.html

Amazon Relational Database Service User Guide

The available CAs depend on the DB engine and DB engine version. When you use the AWS
Management Console, you can choose the CA using the Certificate authority setting, as shown in
the following image.

The console only shows the CAs that are available for the DB engine and DB engine version. If
you're using the AWS CLI, you can set the CA for a DB instance using the create-db-instance or
modify-db-instance command. You can set the CA for a Multi-AZ DB cluster using the create-db-
cluster or modify-db-cluster command.

If you're using the AWS CLI, you can see the available CAs for your account by using the describe-
certificates command. This command also shows the expiration date for each CA in ValidTill in
the output. You can find the CAs that are available for a specific DB engine and DB engine version
using the describe-db-engine-versions command.

The following example shows the CAs available for the default RDS for PostgreSQL DB engine
version.

aws rds describe-db-engine-versions --default-only --engine postgres

Your output is similar to the following. The available CAs are listed in
SupportedCACertificateIdentifiers. The output also shows whether
the DB engine version supports rotating the certificate without restart in
SupportsCertificateRotationWithoutRestart.

{
 "DBEngineVersions": [
 {
 "Engine": "postgres",
 "MajorEngineVersion": "13",
 "EngineVersion": "13.4",
 "DBParameterGroupFamily": "postgres13",
 "DBEngineDescription": "PostgreSQL",
 "DBEngineVersionDescription": "PostgreSQL 13.4-R1",

Data encryption 5029

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

 "ValidUpgradeTarget": [],
 "SupportsLogExportsToCloudwatchLogs": false,
 "SupportsReadReplica": true,
 "SupportedFeatureNames": [
 "Lambda"
],
 "Status": "available",
 "SupportsParallelQuery": false,
 "SupportsGlobalDatabases": false,
 "SupportsBabelfish": false,
 "SupportsCertificateRotationWithoutRestart": true,
 "SupportedCACertificateIdentifiers": [
 "rds-ca-rsa2048-g1",
 "rds-ca-ecc384-g1",
 "rds-ca-rsa4096-g1"
]
 }
]
}

DB server certificate validities

The validity of DB server certificate depends on the DB engine and DB engine version. If the DB
engine version supports rotating the certificate without restart, the validity of the DB server
certificate is 1 year. Otherwise the validity is 3 years.

For more information about DB server certificate rotation, see Automatic server certificate rotation.

Viewing the CA for your DB instance

You can view the details about the CA for a database by viewing the Connectivity & security tab in
the console, as in the following image.

Data encryption 5030

Amazon Relational Database Service User Guide

If you're using the AWS CLI, you can view the details about the CA for a DB instance by using the
describe-db-instances command. You can view the details about the CA for a Multi-AZ DB cluster
by using the describe-db-clusters command.

Download certificate bundles for Amazon RDS

When you connect to your database with SSL or TLS, the database instance requires a trust
certificate from Amazon RDS. Select the appropriate link in the following table to download the
bundle that corresponds with the AWS Region where you host your database.

Certificate bundles by AWS Region

The certificate bundles for all AWS Regions and GovCloud (US) Regions contain the following root
CA certificates:

• rds-ca-rsa2048-g1

• rds-ca-rsa4096-g1

• rds-ca-ecc384-g1

The rds-ca-rsa4096-g1 and rds-ca-ecc384-g1 certificates are not available in the following
Regions:

• Asia Pacific (Mumbai)

• Asia Pacific (Melbourne)

Data encryption 5031

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Relational Database Service User Guide

• Canada West (Calgary)

• Europe (Zurich)

• Europe (Spain)

• Israel (Tel Aviv)

Your application trust store only needs to register the root CA certificate.

Note

Amazon RDS Proxy uses certificates from the AWS Certificate Manager (ACM). If you're
using RDS Proxy, you don't need to download Amazon RDS certificates or update
applications that use RDS Proxy connections. For more information, see Using TLS/SSL with
RDS Proxy.

To download a certificate bundle for an AWS Region, select the link for the AWS Region that hosts
your database in the following table.

AWS Region Certificate bundle (PEM) Certificate bundle (PKCS7)

Any commercial AWS Region global-bundle.pem global-bundle.p7b

US East (N. Virginia) us-east-1-bundle.pem us-east-1-bundle.p7b

US East (Ohio) us-east-2-bundle.pem us-east-2-bundle.p7b

US West (N. California) us-west-1-bundle.pem us-west-1-bundle.p7b

US West (Oregon) us-west-2-bundle.pem us-west-2-bundle.p7b

Africa (Cape Town) af-south-1-bundle.pem af-south-1-bundle.p7b

Asia Pacific (Hong Kong) ap-east-1-bundle.pem ap-east-1-bundle.p7b

Asia Pacific (Hyderabad) ap-south-2-bundle.pem ap-south-2-bundle.p7b

Asia Pacific (Jakarta) ap-southeast-3-bundle.pem ap-southeast-3-bundle.p7b

Asia Pacific (Malaysia) ap-southeast-5-bundle.pem ap-southeast-5-bundle.p7b

Data encryption 5032

https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem
https://truststore.pki.rds.amazonaws.com/global/global-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-east-1/us-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-east-1/us-east-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-east-2/us-east-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-east-2/us-east-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-1/us-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-1/us-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-2/us-west-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-2/us-west-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/af-south-1/af-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/af-south-1/af-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-east-1/ap-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-east-1/ap-east-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-south-2/ap-south-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-south-2/ap-south-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-3/ap-southeast-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-3/ap-southeast-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-5/ap-southeast-5-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-5/ap-southeast-5-bundle.p7b

Amazon Relational Database Service User Guide

AWS Region Certificate bundle (PEM) Certificate bundle (PKCS7)

Asia Pacific (Melbourne) ap-southeast-4-bundle.pem ap-southeast-4-bundle.p7b

Asia Pacific (Mumbai) ap-south-1-bundle.pem ap-south-1-bundle.p7b

Asia Pacific (Osaka) ap-northeast-3-bundle.pem ap-northeast-3-bundle.p7b

Asia Pacific (Thailand) ap-southeast-7-bundle.pem ap-southeast-7-bundle.p7b

Asia Pacific (Tokyo) ap-northeast-1-bundle.pem ap-northeast-1-bundle.p7b

Asia Pacific (Seoul) ap-northeast-2-bundle.pem ap-northeast-2-bundle.p7b

Asia Pacific (Singapore) ap-southeast-1-bundle.pem ap-southeast-1-bundle.p7b

Asia Pacific (Sydney) ap-southeast-2-bundle.pem ap-southeast-2-bundle.p7b

Canada (Central) ca-central-1-bundle.pem ca-central-1-bundle.p7b

Canada West (Calgary) ca-west-1-bundle.pem ca-west-1-bundle.p7b

Europe (Frankfurt) eu-central-1-bundle.pem eu-central-1-bundle.p7b

Europe (Ireland) eu-west-1-bundle.pem eu-west-1-bundle.p7b

Europe (London) eu-west-2-bundle.pem eu-west-2-bundle.p7b

Europe (Milan) eu-south-1-bundle.pem eu-south-1-bundle.p7b

Europe (Paris) eu-west-3-bundle.pem eu-west-3-bundle.p7b

Europe (Spain) eu-south-2-bundle.pem eu-south-2-bundle.p7b

Europe (Stockholm) eu-north-1-bundle.pem eu-north-1-bundle.p7b

Europe (Zurich) eu-central-2-bundle.pem eu-central-2-bundle.p7b

Israel (Tel Aviv) il-central-1-bundle.pem il-central-1-bundle.p7b

Mexico (Central) mx-central-1-bundle.pem mx-central-1-bundle.p7b

Data encryption 5033

https://truststore.pki.rds.amazonaws.com/ap-southeast-4/ap-southeast-4-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-4/ap-southeast-4-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-south-1/ap-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-south-1/ap-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-3/ap-northeast-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-3/ap-northeast-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-2/ap-southeast-7-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-2/ap-southeast-7-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-1/ap-northeast-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-1/ap-northeast-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-2/ap-northeast-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-2/ap-northeast-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-1/ap-southeast-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-1/ap-southeast-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-2/ap-southeast-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-2/ap-southeast-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ca-central-1/ca-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ca-central-1/ca-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ca-west-1/ca-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ca-west-1/ca-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-central-1/eu-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-central-1/eu-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-1/eu-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-1/eu-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-2/eu-west-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-2/eu-west-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-south-1/eu-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-south-1/eu-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-3/eu-west-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-3/eu-west-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-south-2/eu-south-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-south-2/eu-south-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-north-1/eu-north-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-north-1/eu-north-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-central-2/eu-central-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-central-2/eu-central-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/il-central-1/il-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/il-central-1/il-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-2/mx-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-2/mx-central-1-bundle.p7b

Amazon Relational Database Service User Guide

AWS Region Certificate bundle (PEM) Certificate bundle (PKCS7)

Middle East (Bahrain) me-south-1-bundle.pem me-south-1-bundle.p7b

Middle East (UAE) me-central-1-bundle.pem me-central-1-bundle.p7b

South America (São Paulo) sa-east-1-bundle.pem sa-east-1-bundle.p7b

Any AWS GovCloud (US)
Regions

global-bundle.pem global-bundle.p7b

AWS GovCloud (US-East) us-gov-east-1-bundle.pem us-gov-east-1-bundle.p7b

AWS GovCloud (US-West) us-gov-west-1-bundle.pem us-gov-west-1-bundle.p7b

Viewing the contents of your CA certificate

To check the contents of your CA certificate bundle, use the following command:

keytool -printcert -v -file global-bundle.pem

Rotating your SSL/TLS certificate

Amazon RDS Certificate Authority certificates rds-ca-2019 expired in August, 2024. If you use or
plan to use Secure Sockets Layer (SSL) or Transport Layer Security (TLS) with certificate verification
to connect to your RDS DB instances or Multi-AZ DB clusters, consider using one of the new CA
certificates rds-ca-rsa2048-g1, rds-ca-rsa4096-g1 or rds-ca-ecc384-g1. If you currently do not use
SSL/TLS with certificate verification, you might still have an expired CA certificate and must update
them to a new CA certificate if you plan to use SSL/TLS with certificate verification to connect to
your RDS databases.

Amazon RDS provides new CA certificates as an AWS security best practice. For information about
the new certificates and the supported AWS Regions, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster.

To update the CA certificate for your database, use the following methods:

• Updating your CA certificate by modifying your DB instance or cluster

• Updating your CA certificate by applying maintenance

Data encryption 5034

https://truststore.pki.rds.amazonaws.com/me-south-1/me-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/me-south-1/me-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/me-central-1/me-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/me-central-1/me-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/sa-east-1/sa-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/sa-east-1/sa-east-1-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-east-1/us-gov-east-1-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-east-1/us-gov-east-1-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-west-1/us-gov-west-1-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-west-1/us-gov-west-1-bundle.p7b

Amazon Relational Database Service User Guide

Before you update your DB instances or Multi-AZ DB clusters to use the new CA certificate, make
sure that you update your clients or applications connecting to your RDS databases.

Considerations for rotating certificates

Consider the following situations before rotating your certificate:

• Amazon RDS Proxy uses certificates from the AWS Certificate Manager (ACM). If you're using RDS
Proxy, when you rotate your SSL/TLS certificate, you don't need to update applications that use
RDS Proxy connections. For more information, see Using TLS/SSL with RDS Proxy.

• If you're using a Go version 1.15 application with a DB instance or Multi-AZ DB cluster that was
created or updated to the rds-ca-2019 certificate prior to July 28, 2020, you must update the
certificate again. Update the certificate to rds-ca-rsa2048-g1, rds-ca-rsa4096-g1, or rds-ca-
ecc384-g1 depending on your engine.

Use the modify-db-instance command for a DB instance, or the modify-db-cluster
command for a Multi-AZ DB cluster, using the new CA certificate identifier. You can find the
CAs that are available for a specific DB engine and DB engine version using the describe-db-
engine-versions command.

If you created your database or updated its certificate after July 28, 2020, no action is required.
For more information, see Go GitHub issue #39568.

Updating your CA certificate by modifying your DB instance or cluster

The following example updates your CA certificate from rds-ca-2019 to rds-ca-rsa2048-g1. You can
choose a different certificate. For more information, see Certificate authorities.

Update your application trust store to reduce any down time associated with updating your
CA certificate. For more information about restarts associated with CA certificate rotation, see
Automatic server certificate rotation.

To update your CA certificate by modifying your DB instance or cluster

1. Download the new SSL/TLS certificate as described in Using SSL/TLS to encrypt a connection
to a DB instance or cluster.

2. Update your applications to use the new SSL/TLS certificate.

Data encryption 5035

https://github.com/golang/go/issues/39568

Amazon Relational Database Service User Guide

The methods for updating applications for new SSL/TLS certificates depend on your specific
applications. Work with your application developers to update the SSL/TLS certificates for
your applications.

For information about checking for SSL/TLS connections and updating applications for each
DB engine, see the following topics:

• Updating applications to connect to MariaDB instances using new SSL/TLS certificates

• Updating applications to connect to Microsoft SQL Server DB instances using new SSL/TLS
certificates

• Updating applications to connect to MySQL DB instances using new SSL/TLS certificates

• Updating applications to connect to Oracle DB instances using new SSL/TLS certificates

• Updating applications to connect to PostgreSQL DB instances using new SSL/TLS
certificates

For a sample script that updates a trust store for a Linux operating system, see Sample script
for importing certificates into your trust store.

Note

The certificate bundle contains certificates for both the old and new CA, so you can
upgrade your application safely and maintain connectivity during the transition period.
If you are using the AWS Database Migration Service to migrate a database to a DB
instance or cluster, we recommend using the certificate bundle to ensure connectivity
during the migration.

3. Modify the DB instance or Multi-AZ DB cluster to change the CA from rds-ca-2019
to rds-ca-rsa2048-g1. To check if your database requires a restart to update the
CA certificates, use the describe-db-engine-versions command and check the
SupportsCertificateRotationWithoutRestart flag.

Important

If you are experiencing connectivity issues after certificate expiry, use the apply
immediately option by specifying Apply immediately in the console or by specifying

Data encryption 5036

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Relational Database Service User Guide

the --apply-immediately option using the AWS CLI. By default, this operation is
scheduled to run during your next maintenance window.
For RDS for Oracle DB instances, we recommend that you restart your Oracle DB to
prevent any connection errors.
To set an override for your instance CA that's different from the default RDS CA, use
the modify-certificates CLI command.

You can use the AWS Management Console or the AWS CLI to change the CA certificate from rds-
ca-2019 to rds-ca-rsa2048-g1 for a DB instance or Multi-AZ DB cluster.

Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance or Multi-AZ DB
cluster that you want to modify.

3. Choose Modify.

4. In the Connectivity section, choose rds-ca-rsa2048-g1.

Data encryption 5037

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-certificates.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. Choose Continue and check the summary of modifications.

6. To apply the changes immediately, choose Apply immediately.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB
Instance or Modify cluster to save your changes.

Important

When you schedule this operation, make sure that you have updated your client-
side trust store beforehand.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To use the AWS CLI to change the CA from rds-ca-2019 to rds-ca-rsa2048-g1 for a DB instance
or Multi-AZ DB cluster, call the modify-db-instance or modify-db-cluster command. Specify the
DB instance or cluster identifier and the --ca-certificate-identifier option.

Use the --apply-immediately parameter to apply the update immediately. By default, this
operation is scheduled to run during your next maintenance window.

Important

When you schedule this operation, make sure that you have updated your client-side
trust store beforehand.

Data encryption 5038

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Relational Database Service User Guide

Example

DB instance

The following example modifies mydbinstance by setting the CA certificate to rds-ca-
rsa2048-g1.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --ca-certificate-identifier rds-ca-rsa2048-g1

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --ca-certificate-identifier rds-ca-rsa2048-g1

Note

If your instance requires reboot, you can use the modify-db-instance CLI command and
specify the --no-certificate-rotation-restart option.

Example

Multi-AZ DB cluster

The following example modifies mydbcluster by setting the CA certificate to rds-ca-
rsa2048-g1.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --ca-certificate-identifier rds-ca-rsa2048-g1

For Windows:

Data encryption 5039

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --ca-certificate-identifier rds-ca-rsa2048-g1

Updating your CA certificate by applying maintenance

Perform the following steps to update your CA certificate by applying maintenance.

Console

To update your CA certificate by applying maintenance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Certificate update.

Data encryption 5040

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

The Databases requiring certificate update page appears.

Data encryption 5041

Amazon Relational Database Service User Guide

Note

This page only shows the DB instances and clusters for the current AWS Region.
If you have databases in more than one AWS Region, check this page in each AWS
Region to see all DB instances with old SSL/TLS certificates.

3. Choose the DB instance or Multi-AZ DB cluster that you want to update.

You can schedule the certificate rotation for your next maintenance window by choosing
Schedule. Apply the rotation immediately by choosing Apply now.

Important

If you experience connectivity issues after certificate expiry, use the Apply now
option.

4. a. If you choose Schedule, you are prompted to confirm the CA certificate rotation. This
prompt also states the scheduled window for your update.

Data encryption 5042

Amazon Relational Database Service User Guide

b. If you choose Apply now, you are prompted to confirm the CA certificate rotation.

Data encryption 5043

Amazon Relational Database Service User Guide

Important

Before scheduling the CA certificate rotation on your database, update any client
applications that use SSL/TLS and the server certificate to connect. These updates
are specific to your DB engine. After you have updated these client applications,
you can confirm the CA certificate rotation.

To continue, choose the check box, and then choose Confirm.

5. Repeat steps 3 and 4 for each DB instance and cluster that you want to update.

Data encryption 5044

Amazon Relational Database Service User Guide

Automatic server certificate rotation

If your root CA supports automatic server certificate rotation, RDS automatically handles the
rotation of the DB server certificate. RDS uses the same root CA for this automatic rotation, so you
don't need to download a new CA bundle. See Certificate authorities.

The rotation and validity of your DB server certificate depend on your DB engine:

• If your DB engine supports rotation without restart, RDS automatically rotates the DB server
certificate without requiring any action from you. RDS attempts to rotate your DB server
certificate in your preferred maintenance window at the DB server certificate half life. The new
DB server certificate is valid for 12 months.

• If your DB engine doesn't support rotation without restart, RDS notifies you about a maintenance
event at least 6 months before the DB server certificate expires. The new DB server certificate is
valid for 36 months.

Use the describe-db-engine-versions command and inspect the
SupportsCertificateRotationWithoutRestart flag to identify whether the DB engine
version supports rotating the certificate without restart. For more information, see Setting the CA
for your database.

Sample script for importing certificates into your trust store

The following are sample shell scripts that import the certificate bundle into a trust store.

Each sample shell script uses keytool, which is part of the Java Development Kit (JDK). For
information about installing the JDK, see JDK Installation Guide.

Linux

The following is a sample shell script that imports the certificate bundle into a trust store on a
Linux operating system.

mydir=tmp/certs
if [! -e "${mydir}"]
then
mkdir -p "${mydir}"
fi

Data encryption 5045

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.oracle.com/en/java/javase/17/install/overview-jdk-installation.html

Amazon Relational Database Service User Guide

truststore=${mydir}/rds-truststore.jks
storepassword=changeit

curl -sS "https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem" >
 ${mydir}/global-bundle.pem
awk 'split_after == 1 {n++;split_after=0} /-----END CERTIFICATE-----/
 {split_after=1}{print > "rds-ca-" n+1 ".pem"}' < ${mydir}/global-bundle.pem

for CERT in rds-ca-*; do
 alias=$(openssl x509 -noout -text -in $CERT | perl -ne 'next unless /Subject:/;
 s/.*(CN=|CN =)//; print')
 echo "Importing $alias"
 keytool -import -file ${CERT} -alias "${alias}" -storepass ${storepassword} -
keystore ${truststore} -noprompt
 rm $CERT
done

rm ${mydir}/global-bundle.pem

echo "Trust store content is: "

keytool -list -v -keystore "$truststore" -storepass ${storepassword} | grep Alias |
 cut -d " " -f3- | while read alias
do
 expiry=`keytool -list -v -keystore "$truststore" -storepass ${storepassword} -
alias "${alias}" | grep Valid | perl -ne 'if(/until: (.*?)\n/) { print "$1\n"; }'`
 echo " Certificate ${alias} expires in '$expiry'"
done

macOS

The following is a sample shell script that imports the certificate bundle into a trust store on
macOS.

mydir=tmp/certs
if [! -e "${mydir}"]
then
mkdir -p "${mydir}"
fi

truststore=${mydir}/rds-truststore.jks

Data encryption 5046

Amazon Relational Database Service User Guide

storepassword=changeit

curl -sS "https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem" >
 ${mydir}/global-bundle.pem
split -p "-----BEGIN CERTIFICATE-----" ${mydir}/global-bundle.pem rds-ca-

for CERT in rds-ca-*; do
 alias=$(openssl x509 -noout -text -in $CERT | perl -ne 'next unless /Subject:/;
 s/.*(CN=|CN =)//; print')
 echo "Importing $alias"
 keytool -import -file ${CERT} -alias "${alias}" -storepass ${storepassword} -
keystore ${truststore} -noprompt
 rm $CERT
done

rm ${mydir}/global-bundle.pem

echo "Trust store content is: "

keytool -list -v -keystore "$truststore" -storepass ${storepassword} | grep Alias |
 cut -d " " -f3- | while read alias
do
 expiry=`keytool -list -v -keystore "$truststore" -storepass ${storepassword} -
alias "${alias}" | grep Valid | perl -ne 'if(/until: (.*?)\n/) { print "$1\n"; }'`
 echo " Certificate ${alias} expires in '$expiry'"
done

Internetwork traffic privacy

Connections are protected both between Amazon RDS and on-premises applications and between
Amazon RDS and other AWS resources within the same AWS Region.

Traffic between service and on-premises clients and applications

You have two connectivity options between your private network and AWS:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

Internetwork traffic privacy 5047

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon Relational Database Service User Guide

You get access to Amazon RDS through the network by using AWS-published API operations.
Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Internetwork traffic privacy 5048

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Relational Database Service User Guide

Identity and access management for Amazon RDS

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon RDS resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon RDS works with IAM

• Identity-based policy examples for Amazon RDS

• AWS managed policies for Amazon RDS

• Amazon RDS updates to AWS managed policies

• Preventing cross-service confused deputy problems

• IAM database authentication for MariaDB, MySQL, and PostgreSQL

• Troubleshooting Amazon RDS identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work you do in
Amazon RDS.

Service user – If you use the Amazon RDS service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon RDS features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
Amazon RDS, see Troubleshooting Amazon RDS identity and access.

Service administrator – If you're in charge of Amazon RDS resources at your company, you
probably have full access to Amazon RDS. It's your job to determine which Amazon RDS features
and resources your employees should access. You must then submit requests to your administrator
to change the permissions of your service users. Review the information on this page to understand

Identity and access management 5049

Amazon Relational Database Service User Guide

the basic concepts of IAM. To learn more about how your company can use IAM with Amazon RDS,
see How Amazon RDS works with IAM.

Administrator – If you're an administrator, you might want to learn details about how you can
write policies to manage access to Amazon RDS. To view example Amazon RDS identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon RDS.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.

Authenticating with identities 5050

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Relational Database Service User Guide

We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

Authenticating with identities 5051

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html

Amazon Relational Database Service User Guide

You can authenticate to your DB instance using IAM database authentication.

IAM database authentication works with the following DB engines:

• RDS for MariaDB

• RDS for MySQL

• RDS for PostgreSQL

For more information about authenticating to your DB instance using IAM, see IAM database
authentication for MariaDB, MySQL, and PostgreSQL.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to a
user, but is not associated with a specific person. You can temporarily assume an IAM role in the
AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS
API operation or by using a custom URL. For more information about methods for using roles, see
Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Temporary user permissions – A user can assume an IAM role to temporarily take on different
permissions for a specific task.

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

Authenticating with identities 5052

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Relational Database Service User Guide

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions – When you use an IAM user or role to perform actions in AWS,
you are considered a principal. When you use some services, you might perform an action
that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

To learn whether to use IAM roles, see When to create an IAM role (instead of a user) in the IAM
User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to IAM identities or AWS
resources. A policy is an object in AWS that, when associated with an identity or resource, defines

Managing access using policies 5053

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

Amazon Relational Database Service User Guide

their permissions. AWS evaluates these policies when an entity (root user, user, or IAM role) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

An administrator can use policies to specify who has access to AWS resources, and what actions
they can perform on those resources. Every IAM entity (permission set or role) starts with no
permissions. In other words, by default, users can do nothing, not even change their own password.
To give a user permission to do something, an administrator must attach a permissions policy to a
user. Or the administrator can add the user to a group that has the intended permissions. When an
administrator gives permissions to a group, all users in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as a permission set or role. These policies control what actions that identity can perform, on
which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single permission set or role. Managed policies are standalone
policies that you can attach to multiple permission sets and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

For information about AWS managed policies that are specific to Amazon RDS, see AWS managed
policies for Amazon RDS.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

Managing access using policies 5054

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

Amazon Relational Database Service User Guide

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (permission set
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the permission set or role in the Principal field are not limited by the
permissions boundary. An explicit deny in any of these policies overrides the allow. For more
information about permissions boundaries, see Permissions boundaries for IAM entities in the
IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the permission sets or role's identity-based policies and the
session policies. Permissions can also come from a resource-based policy. An explicit deny in any
of these policies overrides the allow. For more information, see Session policies in the IAM User
Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon RDS works with IAM

Before you use IAM to manage access to Amazon RDS, you should understand what IAM features
are available to use with Amazon RDS.

The following table lists IAM features you can use with Amazon RDS:

How Amazon RDS works with IAM 5055

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Relational Database Service User Guide

IAM feature Amazon RDS support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

Attribute-based access control (ABAC) (tags in
policies)

Yes

Temporary credentials Yes

Forward access sessions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Amazon RDS and other AWS services work with IAM, see AWS
services that work with IAM in the IAM User Guide.

Topics

• Amazon RDS identity-based policies

• Resource-based policies within Amazon RDS

• Policy actions for Amazon RDS

• Policy resources for Amazon RDS

• Policy condition keys for Amazon RDS

• Access control lists (ACLs) in Amazon RDS

• Attribute-based access control (ABAC) in policies with Amazon RDS tags

• Using temporary credentials with Amazon RDS

How Amazon RDS works with IAM 5056

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Relational Database Service User Guide

• Forward access sessions for Amazon RDS

• Service roles for Amazon RDS

• Service-linked roles for Amazon RDS

Amazon RDS identity-based policies

Supports identity-based policies: Yes.

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon RDS

To view examples of Amazon RDS identity-based policies, see Identity-based policy examples for
Amazon RDS.

Resource-based policies within Amazon RDS

Supports resource-based policies: No.

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource

How Amazon RDS works with IAM 5057

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Relational Database Service User Guide

are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amazon RDS

Supports policy actions: Yes.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon RDS use the following prefix before the action: rds:. For
example, to grant someone permission to describe DB instances with the Amazon RDS
DescribeDBInstances API operation, you include the rds:DescribeDBInstances action in
their policy. Policy statements must include either an Action or NotAction element. Amazon
RDS defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows.

"Action": [
 "rds:action1",
 "rds:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action.

"Action": "rds:Describe*"

To see a list of Amazon RDS actions, see Actions Defined by Amazon RDS in the Service
Authorization Reference.

How Amazon RDS works with IAM 5058

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Relational Database Service User Guide

Policy resources for Amazon RDS

Supports policy resources: Yes.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

The DB instance resource has the following Amazon Resource Name (ARN).

arn:${Partition}:rds:${Region}:${Account}:{ResourceType}/${Resource}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
service namespaces.

For example, to specify the dbtest DB instance in your statement, use the following ARN.

"Resource": "arn:aws:rds:us-west-2:123456789012:db:dbtest"

To specify all DB instances that belong to a specific account, use the wildcard (*).

"Resource": "arn:aws:rds:us-east-1:123456789012:db:*"

Some RDS API operations, such as those for creating resources, can't be performed on a specific
resource. In those cases, use the wildcard (*).

"Resource": "*"

Many Amazon RDS API operations involve multiple resources. For example, CreateDBInstance
creates a DB instance. You can specify that an user must use a specific security group and

How Amazon RDS works with IAM 5059

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Relational Database Service User Guide

parameter group when creating a DB instance. To specify multiple resources in a single statement,
separate the ARNs with commas.

"Resource": [
 "resource1",
 "resource2"

To see a list of Amazon RDS resource types and their ARNs, see Resources Defined by Amazon RDS
in the Service Authorization Reference. To learn with which actions you can specify the ARN of each
resource, see Actions Defined by Amazon RDS.

Policy condition keys for Amazon RDS

Supports service-specific policy condition keys: Yes.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Amazon RDS defines its own set of condition keys and also supports using some global condition
keys. To see all AWS global condition keys, see AWS global condition context keys in the IAM User
Guide.

All RDS API operations support the aws:RequestedRegion condition key.

How Amazon RDS works with IAM 5060

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Relational Database Service User Guide

To see a list of Amazon RDS condition keys, see Condition Keys for Amazon RDS in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions Defined by Amazon RDS.

Access control lists (ACLs) in Amazon RDS

Supports access control lists (ACLs): No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) in policies with Amazon RDS tags

Supports attribute-based access control (ABAC) tags in policies: Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

For more information about tagging Amazon RDS resources, see Specifying conditions: Using
custom tags. To view an example identity-based policy for limiting access to a resource based on
the tags on that resource, see Grant permission for actions on a resource with a specific tag with
two different values.

How Amazon RDS works with IAM 5061

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Relational Database Service User Guide

Using temporary credentials with Amazon RDS

Supports temporary credentials: Yes.

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Amazon RDS

Supports forward access sessions: Yes.

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon RDS

Supports service roles: Yes.

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

How Amazon RDS works with IAM 5062

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Relational Database Service User Guide

Warning

Changing the permissions for a service role might break Amazon RDS functionality. Edit
service roles only when Amazon RDS provides guidance to do so.

Service-linked roles for Amazon RDS

Supports service-linked roles: Yes.

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about using Amazon RDS service-linked roles, see Using service-linked roles for Amazon
RDS.

Identity-based policy examples for Amazon RDS

By default, permission sets and roles don't have permission to create or modify Amazon RDS
resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS
API. An administrator must create IAM policies that grant permission sets and roles permission to
perform specific API operations on the specified resources they need. The administrator must then
attach those policies to the permission sets or roles that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Topics

• Policy best practices

• Using the Amazon RDS console

• Permissions required to use the console

• Allow users to view their own permissions

• Permission policies to create, modify and, delete resources in Amazon RDS

• Example policies: Using condition keys

• Specifying conditions: Using custom tags

Identity-based policy examples 5063

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon Relational Database Service User Guide

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon RDS
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Identity-based policy examples 5064

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Relational Database Service User Guide

Using the Amazon RDS console

To access the Amazon RDS console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon RDS resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

To ensure that those entities can still use the Amazon RDS console, also attach the following AWS
managed policy to the entities.

AmazonRDSReadOnlyAccess

For more information, see Adding permissions to a user in the IAM User Guide.

Permissions required to use the console

For a user to work with the console, that user must have a minimum set of permissions. These
permissions allow the user to describe the Amazon RDS resources for their AWS account and to
provide other related information, including Amazon EC2 security and network information.

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console doesn't function as intended for users with that IAM policy. To ensure that those users can
still use the console, also attach the AmazonRDSReadOnlyAccess managed policy to the user, as
described in Managing access using policies.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the Amazon RDS API.

The following policy grants full access to all Amazon RDS resources for the root AWS account:

AmazonRDSFullAccess

Identity-based policy examples 5065

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Relational Database Service User Guide

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Permission policies to create, modify and, delete resources in Amazon RDS

The following sections present examples of permission policies that grant and restrict access to
resources:

Identity-based policy examples 5066

Amazon Relational Database Service User Guide

Allow a user to create DB instances in an AWS account

The following is an example policy that allows the account with the ID 123456789012 to create
DB instances for your AWS account. The policy requires that the name of the new DB instance
begin with test. The new DB instance must also use the MySQL database engine and the
db.t2.micro DB instance class. In addition, the new DB instance must use an option group and a
DB parameter group that starts with default, and it must use the default subnet group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreateDBInstanceOnly",
 "Effect": "Allow",
 "Action": [
 "rds:CreateDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:123456789012:db:test*",
 "arn:aws:rds:*:123456789012:og:default*",
 "arn:aws:rds:*:123456789012:pg:default*",
 "arn:aws:rds:*:123456789012:subgrp:default"
],
 "Condition": {
 "StringEquals": {
 "rds:DatabaseEngine": "mysql",
 "rds:DatabaseClass": "db.t2.micro"
 }
 }
 }
]
}

The policy includes a single statement that specifies the following permissions for the user:

• The policy allows the account to create a DB instance using the CreateDBInstance API operation
(this also applies to the create-db-instance AWS CLI command and the AWS Management
Console).

• The Resource element specifies that the user can perform actions on or with resources. You
specify resources using an Amazon Resources Name (ARN). This ARN includes the name of
the service that the resource belongs to (rds), the AWS Region (* indicates any region in this

Identity-based policy examples 5067

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Relational Database Service User Guide

example), the AWS account number (123456789012 is the account number in this example), and
the type of resource. For more information about creating ARNs, see Amazon Resource Names
(ARNs) in Amazon RDS.

The Resource element in the example specifies the following policy constraints on resources for
the user:

• The DB instance identifier for the new DB instance must begin with test (for example,
testCustomerData1, test-region2-data).

• The option group for the new DB instance must begin with default.

• The DB parameter group for the new DB instance must begin with default.

• The subnet group for the new DB instance must be the default subnet group.

• The Condition element specifies that the DB engine must be MySQL and the DB instance class
must be db.t2.micro. The Condition element specifies the conditions when a policy should
take effect. You can add additional permissions or restrictions by using the Condition element.
For more information about specifying conditions, see Policy condition keys for Amazon RDS.
This example specifies the rds:DatabaseEngine and rds:DatabaseClass conditions. For
information about the valid condition values for rds:DatabaseEngine, see the list under the
Engine parameter in CreateDBInstance. For information about the valid condition values for
rds:DatabaseClass, see Supported DB engines for DB instance classes .

The policy doesn't specify the Principal element because in an identity-based policy you don't
specify the principal who gets the permission. When you attach policy to a user, the user is the
implicit principal. When you attach a permission policy to an IAM role, the principal identified in
the role's trust policy gets the permissions.

To see a list of Amazon RDS actions, see Actions Defined by Amazon RDS in the Service
Authorization Reference.

Allow a user to perform any describe action on any RDS resource

The following permissions policy grants permissions to a user to run all of the actions that begin
with Describe. These actions show information about an RDS resource, such as a DB instance.
The wildcard character (*) in the Resource element indicates that the actions are allowed for all
Amazon RDS resources owned by the account.

{
 "Version": "2012-10-17",

Identity-based policy examples 5068

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Relational Database Service User Guide

 "Statement": [
 {
 "Sid": "AllowRDSDescribe",
 "Effect": "Allow",
 "Action": "rds:Describe*",
 "Resource": "*"
 }
]
}

Allow a user to create a DB instance that uses the specified DB parameter group and subnet
group

The following permissions policy grants permissions to allow a user to only create a DB instance
that must use the mydbpg DB parameter group and the mydbsubnetgroup DB subnet group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "rds:CreateDBInstance",
 "Resource": [
 "arn:aws:rds:*:*:pg:mydbpg",
 "arn:aws:rds:*:*:subgrp:mydbsubnetgroup"
]
 }
]
}

Grant permission for actions on a resource with a specific tag with two different values

You can use conditions in your identity-based policy to control access to Amazon RDS resources
based on tags. The following policy allows permission to perform the CreateDBSnapshot API
operation on DB instances with either the stage tag set to development or test.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowAnySnapshotName",

Identity-based policy examples 5069

Amazon Relational Database Service User Guide

 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:snapshot:*"
 },
 {
 "Sid":"AllowDevTestToCreateSnapshot",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

The following policy allows permission to perform the ModifyDBInstance API operation on DB
instances with either the stage tag set to development or test.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowChangingParameterOptionSecurityGroups",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:123456789012:pg:*",
 "arn:aws:rds:*:123456789012:secgrp:*",
 "arn:aws:rds:*:123456789012:og:*"
]
 },

Identity-based policy examples 5070

Amazon Relational Database Service User Guide

 {
 "Sid":"AllowDevTestToModifyInstance",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

Prevent a user from deleting a DB instance

The following permissions policy grants permissions to prevent a user from deleting a specific DB
instance. For example, you might want to deny the ability to delete your production DB instances
to any user that is not an administrator.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyDelete1",
 "Effect": "Deny",
 "Action": "rds:DeleteDBInstance",
 "Resource": "arn:aws:rds:us-west-2:123456789012:db:my-mysql-instance"
 }
]
}

Deny all access to a resource

You can explicitly deny access to a resource. Deny policies take precedence over allow policies. The
following policy explicitly denies a user the ability to manage a resource:

Identity-based policy examples 5071

Amazon Relational Database Service User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "rds:*",
 "Resource": "arn:aws:rds:us-east-1:123456789012:db:mydb"
 }
]
}

Example policies: Using condition keys

Following are examples of how you can use condition keys in Amazon RDS IAM permissions
policies.

Example 1: Grant permission to create a DB instance that uses a specific DB engine and isn't
MultiAZ

The following policy uses an RDS condition key and allows a user to create only DB instances that
use the MySQL database engine and don't use MultiAZ. The Condition element indicates the
requirement that the database engine is MySQL.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowMySQLCreate",
 "Effect": "Allow",
 "Action": "rds:CreateDBInstance",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "rds:DatabaseEngine": "mysql"
 },
 "Bool": {
 "rds:MultiAz": false
 }
 }
 }
]
}

Identity-based policy examples 5072

Amazon Relational Database Service User Guide

Example 2: Explicitly deny permission to create DB instances for certain DB instance classes and
create DB instances that use Provisioned IOPS

The following policy explicitly denies permission to create DB instances that use the DB instance
classes r3.8xlarge and m4.10xlarge, which are the largest and most expensive DB instance
classes. This policy also prevents users from creating DB instances that use Provisioned IOPS, which
incurs an additional cost.

Explicitly denying permission supersedes any other permissions granted. This ensures that
identities to not accidentally get permission that you never want to grant.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyLargeCreate",
 "Effect": "Deny",
 "Action": "rds:CreateDBInstance",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "rds:DatabaseClass": [
 "db.r3.8xlarge",
 "db.m4.10xlarge"
]
 }
 }
 },
 {
 "Sid": "DenyPIOPSCreate",
 "Effect": "Deny",
 "Action": "rds:CreateDBInstance",
 "Resource": "*",
 "Condition": {
 "NumericNotEquals": {
 "rds:Piops": "0"
 }
 }
 }
]
}

Identity-based policy examples 5073

Amazon Relational Database Service User Guide

Example 3: Limit the set of tag keys and values that can be used to tag a resource

The following policy uses an RDS condition key and allows the addition of a tag with the key stage
to be added to a resource with the values test, qa, and production.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource": "*",
 "Condition": {
 "streq": {
 "rds:req-tag/stage": [
 "test",
 "qa",
 "production"
]
 }
 }
 }
]
}

Specifying conditions: Using custom tags

Amazon RDS supports specifying conditions in an IAM policy using custom tags.

For example, suppose that you add a tag named environment to your DB instances with values
such as beta, staging, production, and so on. If you do, you can create a policy that restricts
certain users to DB instances based on the environment tag value.

Note

Custom tag identifiers are case-sensitive.

The following table lists the RDS tag identifiers that you can use in a Condition element.

Identity-based policy examples 5074

Amazon Relational Database Service User Guide

RDS tag identifier Applies to

db-tag DB instances, including read replicas

snapshot-tag DB snapshots

ri-tag Reserved DB instances

og-tag DB option groups

pg-tag DB parameter groups

subgrp-tag DB subnet groups

es-tag Event subscriptions

cluster-tag DB clusters

cluster-pg-tag DB cluster parameter groups

cluster-snapshot-tag DB cluster snapshots

The syntax for a custom tag condition is as follows:

"Condition":{"StringEquals":{"rds:rds-tag-identifier/tag-name":
["value"]} }

For example, the following Condition element applies to DB instances with a tag named
environment and a tag value of production.

"Condition":{"StringEquals":{"rds:db-tag/environment": ["production"]} }

For information about creating tags, see Tagging Amazon RDS resources.

Important

If you manage access to your RDS resources using tagging, we recommend that you
secure access to the tags for your RDS resources. You can manage access to tags by
creating policies for the AddTagsToResource and RemoveTagsFromResource actions.

Identity-based policy examples 5075

Amazon Relational Database Service User Guide

For example, the following policy denies users the ability to add or remove tags for all
resources. You can then create policies to allow specific users to add or remove tags.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyTagUpdates",
 "Effect":"Deny",
 "Action":[
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource":"*"
 }
]
}

To see a list of Amazon RDS actions, see Actions Defined by Amazon RDS in the Service
Authorization Reference.

Example policies: Using custom tags

Following are examples of how you can use custom tags in Amazon RDS IAM permissions policies.
For more information about adding tags to an Amazon RDS resource, see Amazon Resource Names
(ARNs) in Amazon RDS.

Note

All examples use the us-west-2 region and contain fictitious account IDs.

Example 1: Grant permission for actions on a resource with a specific tag with two different
values

The following policy allows permission to perform the CreateDBSnapshot API operation on DB
instances with either the stage tag set to development or test.

{

Identity-based policy examples 5076

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Relational Database Service User Guide

 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowAnySnapshotName",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:snapshot:*"
 },
 {
 "Sid":"AllowDevTestToCreateSnapshot",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

The following policy allows permission to perform the ModifyDBInstance API operation on DB
instances with either the stage tag set to development or test.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowChangingParameterOptionSecurityGroups",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource":" [
 "arn:aws:rds:*:123456789012:pg:*",

Identity-based policy examples 5077

Amazon Relational Database Service User Guide

 "arn:aws:rds:*:123456789012:secgrp:*",
 "arn:aws:rds:*:123456789012:og:*"
]
 },
 {
 "Sid":"AllowDevTestToModifyInstance",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

Example 2: Explicitly deny permission to create a DB instance that uses specified DB parameter
groups

The following policy explicitly denies permission to create a DB instance that uses DB parameter
groups with specific tag values. You might apply this policy if you require that a specific customer-
created DB parameter group always be used when creating DB instances. Policies that use Deny are
most often used to restrict access that was granted by a broader policy.

Explicitly denying permission supersedes any other permissions granted. This ensures that
identities to not accidentally get permission that you never want to grant.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyProductionCreate",
 "Effect":"Deny",
 "Action":"rds:CreateDBInstance",

Identity-based policy examples 5078

Amazon Relational Database Service User Guide

 "Resource":"arn:aws:rds:*:123456789012:pg:*",
 "Condition":{
 "StringEquals":{
 "rds:pg-tag/usage":"prod"
 }
 }
 }
]
}

Example 3: Grant permission for actions on a DB instance with an instance name that is
prefixed with a user name

The following policy allows permission to call any API (except to AddTagsToResource or
RemoveTagsFromResource) on a DB instance that has a DB instance name that is prefixed with
the user's name and that has a tag called stage equal to devo or that has no tag called stage.

The Resource line in the policy identifies a resource by its Amazon Resource Name (ARN). For
more information about using ARNs with Amazon RDS resources, see Amazon Resource Names
(ARNs) in Amazon RDS.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowFullDevAccessNoTags",
 "Effect":"Allow",
 "NotAction":[
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource":"arn:aws:rds:*:123456789012:db:${aws:username}*",
 "Condition":{
 "StringEqualsIfExists":{
 "rds:db-tag/stage":"devo"
 }
 }
 }
]
}

Identity-based policy examples 5079

Amazon Relational Database Service User Guide

AWS managed policies for Amazon RDS

To add permissions to permission sets and roles, it's easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (permission sets and
roles) where the policy is attached. Services are most likely to update an AWS managed policy
when a new feature is launched or when new operations become available. Services don't remove
permissions from an AWS managed policy, so policy updates don't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

Topics

• AWS managed policy: AmazonRDSReadOnlyAccess

• AWS managed policy: AmazonRDSFullAccess

• AWS managed policy: AmazonRDSDataFullAccess

• AWS managed policy: AmazonRDSEnhancedMonitoringRole

• AWS managed policy: AmazonRDSPerformanceInsightsReadOnly

• AWS managed policy: AmazonRDSPerformanceInsightsFullAccess

• AWS managed policy: AmazonRDSDirectoryServiceAccess

• AWS managed policy: AmazonRDSServiceRolePolicy

• AWS managed policy: AmazonRDSCustomServiceRolePolicy

• AWS managed policy: AmazonRDSCustomInstanceProfileRolePolicy

• AWS managed policy: AmazonRDSPreviewServiceRolePolicy

AWS managed policies 5080

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon Relational Database Service User Guide

• AWS managed policy: AmazonRDSBetaServiceRolePolicy

AWS managed policy: AmazonRDSReadOnlyAccess

This policy allows read-only access to Amazon RDS through the AWS Management Console.

Permissions details

This policy includes the following permissions:

• rds – Allows principals to describe Amazon RDS resources and list the tags for Amazon RDS
resources.

• cloudwatch – Allows principals to get Amazon CloudWatch metric statistics.

• ec2 – Allows principals to describe Availability Zones and networking resources.

• logs – Allows principals to describe CloudWatch Logs log streams of log groups, and get
CloudWatch Logs log events.

• devops-guru – Allows principals to describe resources that have Amazon DevOps Guru
coverage, which is specified either by CloudFormation stack names or resource tags.

For more information about this policy, including the JSON policy document, see
AmazonRDSReadOnlyAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSFullAccess

This policy provides full access to Amazon RDS through the AWS Management Console.

Permissions details

This policy includes the following permissions:

• rds – Allows principals full access to Amazon RDS.

• application-autoscaling – Allows principals describe and manage Application Auto Scaling
scaling targets and policies.

• cloudwatch – Allows principals get CloudWatch metric statics and manage CloudWatch alarms.

• ec2 – Allows principals to describe Availability Zones and networking resources.

• logs – Allows principals to describe CloudWatch Logs log streams of log groups, and get
CloudWatch Logs log events.

AWS managed policies 5081

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSReadOnlyAccess.html

Amazon Relational Database Service User Guide

• outposts – Allows principals to get AWS Outposts instance types.

• pi – Allows principals to get Performance Insights metrics.

• sns – Allows principals to Amazon Simple Notification Service (Amazon SNS) subscriptions and
topics, and to publish Amazon SNS messages.

• devops-guru – Allows principals to describe resources that have Amazon DevOps Guru
coverage, which is specified either by CloudFormation stack names or resource tags.

For more information about this policy, including the JSON policy document, see
AmazonRDSFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSDataFullAccess

This policy allows full access to use the Data API and the query editor on Aurora Serverless clusters
in a specific AWS account. This policy allows the AWS account to get the value of a secret from
AWS Secrets Manager.

You can attach the AmazonRDSDataFullAccess policy to your IAM identities.

Permissions details

This policy includes the following permissions:

• dbqms – Allows principals to access, create, delete, describe, and update queries. The Database
Query Metadata Service (dbqms) is an internal-only service. It provides your recent and saved
queries for the query editor on the AWS Management Console for multiple AWS services,
including Amazon RDS.

• rds-data – Allows principals to run SQL statements on Aurora Serverless databases.

• secretsmanager – Allows principals to get the value of a secret from AWS Secrets Manager.

For more information about this policy, including the JSON policy document, see
AmazonRDSDataFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSEnhancedMonitoringRole

This policy provides access to Amazon CloudWatch Logs for Amazon RDS Enhanced Monitoring.

Permissions details

AWS managed policies 5082

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSDataFullAccess.html

Amazon Relational Database Service User Guide

This policy includes the following permissions:

• logs – Allows principals to create CloudWatch Logs log groups and retention policies, and to
create and describe CloudWatch Logs log streams of log groups. It also allows principals to put
and get CloudWatch Logs log events.

For more information about this policy, including the JSON policy document, see
AmazonRDSEnhancedMonitoringRole in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSPerformanceInsightsReadOnly

This policy provides read-only access to Amazon RDS Performance Insights for Amazon RDS DB
instances and Amazon Aurora DB clusters.

This policy now includes Sid (statement ID) as an identifier for the policy statement.

Permissions details

This policy includes the following permissions:

• rds – Allows principals to describe Amazon RDS DB instances and Amazon Aurora DB clusters.

• pi – Allows principals make calls to the Amazon RDS Performance Insights API and access
Performance Insights metrics.

For more information about this policy, including the JSON policy document, see
AmazonRDSPerformanceInsightsReadOnly in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSPerformanceInsightsFullAccess

This policy provides full access to Amazon RDS Performance Insights for Amazon RDS DB instances
and Amazon Aurora DB clusters.

This policy now includes Sid (statement ID) as an identifier for the policy statement.

Permissions details

This policy includes the following permissions:

• rds – Allows principals to describe Amazon RDS DB instances and Amazon Aurora DB clusters.

AWS managed policies 5083

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSEnhancedMonitoringRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsReadOnly.html

Amazon Relational Database Service User Guide

• pi – Allows principals make calls to the Amazon RDS Performance Insights API, and create, view,
and delete performance analysis reports.

• cloudwatch – Allows principals to list all the Amazon CloudWatch metrics, and get metric data
and statistics.

For more information about this policy, including the JSON policy document, see
AmazonRDSPerformanceInsightsFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSDirectoryServiceAccess

This policy allows Amazon RDS to make calls to the AWS Directory Service.

Permissions details

This policy includes the following permission:

• ds – Allows principals to describe AWS Directory Service directories and control authorization to
AWS Directory Service directories.

For more information about this policy, including the JSON policy document, see
AmazonRDSDirectoryServiceAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSServiceRolePolicy

You can't attach the AmazonRDSServiceRolePolicy policy to your IAM entities. This policy is
attached to a service-linked role that allows Amazon RDS to perform actions on your behalf. For
more information, see Service-linked role permissions for Amazon RDS.

AWS managed policy: AmazonRDSCustomServiceRolePolicy

You can't attach the AmazonRDSCustomServiceRolePolicy policy to your IAM entities. This
policy is attached to a service-linked role that allows Amazon RDS to call AWS services on behalf of
your RDS DB resources.

This policy includes the following permissions:

• ec2 ‐ Allows RDS Custom to perform backup operations on the DB instance that provides point-
in-time restore capabilities.

AWS managed policies 5084

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSDirectoryServiceAccess.html

Amazon Relational Database Service User Guide

• secretsmanager ‐ Allows RDS Custom to manage DB instance specific secrets created by RDS
Custom.

• cloudwatch ‐ Allows RDS Custom to upload DB instance metrics and logs to CloudWatch
through CloudWatch agent.

• events, sqs ‐ Allows RDS Custom to send and receive status information about the DB instance.

For more information about this policy, including the JSON policy document, see
AmazonRDSCustomServiceRolePolicy in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSCustomInstanceProfileRolePolicy

You shouldn't attach AmazonRDSCustomInstanceProfileRolePolicy to your IAM entities.
It should only be attached to an instance profile role that is used to grant permissions to
your Amazon RDS Custom DB instance to perform various automation actions and database
management tasks. Pass the instance profile as custom-iam-instance-profile parameter
during the RDS Custom instance creation and RDS Custom associates this instance profile to your
DB instance.

Permissions details

This policy includes the following permissions:

• ssm, ssmmessages, ec2messages ‐ Allows RDS Custom to communicate, execute automation
and maintain agents on the DB instance through Systems Manager.

• ec2, s3 ‐ Allows RDS Custom to perform backup operations on the DB instance that provides
point-in-time restore capabilities.

• secretsmanager ‐ Allows RDS Custom to manage DB instance specific secrets created by RDS
Custom.

• cloudwatch, logs ‐ Allows RDS Custom to upload DB instance metrics and logs to CloudWatch
through CloudWatch agent.

• events, sqs ‐ Allows RDS Custom to send and receive status information about the DB instance.

• kms ‐ Allows RDS Custom to use an instance-specific KMS key to perform encryption of secrets
and S3 objects that RDS Custom manages.

For more information about this policy, including the JSON policy document, see
AmazonRDSCustomInstanceProfileRolePolicy in the AWS Managed Policy Reference Guide.

AWS managed policies 5085

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSCustomServiceRolePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSCustomInstanceProfileRolePolicy.html

Amazon Relational Database Service User Guide

AWS managed policy: AmazonRDSPreviewServiceRolePolicy

You shouldn't attach AmazonRDSPreviewServiceRolePolicy to your IAM entities. This policy
is attached to a service-linked role that allows Amazon RDS to call AWS services on behalf of your
RDS DB resources. For more information, see Service-linked role for Amazon RDS Preview.

Permissions details

This policy includes the following permissions:

• ec2 ‐ Allows principals to describe Availability Zones and networking resources.

• secretsmanager – Allows principals to get the value of a secret from AWS Secrets Manager.

• cloudwatch, logs ‐ Allows Amazon RDS to upload DB instance metrics and logs to CloudWatch
through CloudWatch agent.

For more information about this policy, including the JSON policy document, see
AmazonRDSDataFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSBetaServiceRolePolicy

You shouldn't attach AmazonRDSBetaServiceRolePolicy to your IAM entities. This policy is
attached to a service-linked role that allows Amazon RDS to call AWS services on behalf of your
RDS DB resources. For more information, see Service-linked role permissions for Amazon RDS Beta.

Permissions details

This policy includes the following permissions:

• ec2 ‐ Allows Amazon RDS to perform backup operations on the DB instance that provides point-
in-time restore capabilities.

• secretsmanager ‐ Allows Amazon RDS to manage DB instance specific secrets created by
Amazon RDS.

• cloudwatch, logs ‐ Allows Amazon RDS to upload DB instance metrics and logs to CloudWatch
through CloudWatch agent.

For more information about this policy, including the JSON policy document, see
AmazonRDSBetaServiceRolePolicy in the AWS Managed Policy Reference Guide.

AWS managed policies 5086

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSDataFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSBetaServiceRolePolicy.html

Amazon Relational Database Service User Guide

Amazon RDS updates to AWS managed policies

View details about updates to AWS managed policies for Amazon RDS since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon RDS Document history page.

Change Description Date

Service-linked role permissio
ns for Amazon RDS Custom –
Update to existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. These permissions allow
RDS Custom to manage
EC2 key-pairs and allow
RDS Custom to integrate
with Amazon SQS. For more
information, see Service-l
inked role permissions for Am
azon RDS Custom.

March 25, 2025

AWS managed
policy: AmazonRDS
CustomInstanceProfileRo
lePolicy – Update to existing
policy

Amazon RDS added
new permissions to the
managed policy AmazonRDS
Custom InstancePr
ofileRolePolicy to
allow the usage of RDS
Custom managed secrets on
an RDS Custom instance. For
more information, see AWS
managed policy: AmazonRDS
CustomInstanceProfileRo
lePolicy.

March 20, 2025

Policy updates 5087

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/WhatsNew.html

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS Custom –
Update to existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. These new permissio
ns allow RDS Custom to list
and restore Secrets Manager
secrets. For more informati
on, see Service-linked role
permissions for Amazon RDS
Custom.

March 6, 2025

AWS managed policy:
AmazonRDSPreviewSe
rviceRolePolicy – Update to
existing policy

Amazon RDS removed
sns:Publish permissio
n from the AmazonRDS
PreviewServiceRole
Policy of the AWSServic
eRoleForRDSPreview

 service-linked role. For
more information, see AWS
managed policy: AmazonRDS
PreviewServiceRolePolicy.

August 7, 2024

AWS managed policy:
AmazonRDSBetaServi
ceRolePolicy – Update to
existing policy

Amazon RDS removed
sns:Publish permissio
n from the AmazonRDS
BetaServiceRolePol
icy of the AWSServic
eRoleForRDSBeta
service-linked role. For
more information, see AWS
managed policy: AmazonRDS
BetaServiceRolePolicy.

August 7, 2024

Policy updates 5088

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS Custom –
Update to existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. The permissions allow
RDS Custom to communica
te with Amazon RDS services
in another AWS Region and
copy EC2 images. For more
information, see Service-l
inked role permissions for Am
azon RDS Custom.

July 18, 2024

AWS managed policy:
AmazonRDSServiceRolePolicy
– Update to existing policy

Amazon RDS removed
sns:Publish permissio
n from the AmazonRDS
ServiceRolePolicy
of the AWSServic
eRoleForRDS service-l
inked role. For more informati
on, see AWS managed
policy: AmazonRDSServiceRo
lePolicy.

July 2, 2024

Policy updates 5089

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS Custom –
Update to existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. This new permissio
n allow RDS Custom to
associate a service-role as an
instance profile to an RDS
Custom instance. For more
information, see Service-l
inked role permissions for Am
azon RDS Custom.

April 19, 2024

AWS managed policies for
Amazon RDS – Update to
existing policy

Amazon RDS added a new
permission to the AmazonRDS
CustomServiceRoleP
olicy of the AWSServic
eRoleForRDSCustom
service-linked role to allow
RDS Custom for SQL Server
to modify the underlyin
g database host instance
type. RDS also added the
ec2:DescribeInstan
ceTypes permission to
get instance type informati
on for database host. For
more information, see AWS
managed policies for Amazon
RDS.

April 8, 2024

Policy updates 5090

Amazon Relational Database Service User Guide

Change Description Date

AWS managed policies for
Amazon RDS – New policy

Amazon RDS added a
new managed policy
named AmazonRDS
Custom InstanceProfileRo
lePolicy to allow RDS
Custom to perform automatio
n actions and database
management tasks through
an EC2 instance profile. For
more information, see AWS
managed policies for Amazon
RDS.

February 27, 2024

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added new
statement IDs to the
AmazonRDSServiceRo
lePolicy of the
AWSServiceRoleForRDS
service-linked role.

For more information, see
Service-linked role permissio
ns for Amazon RDS.

January 19, 2024

Policy updates 5091

Amazon Relational Database Service User Guide

Change Description Date

AWS managed policies for
Amazon RDS – Update to
existing policies

The AmazonRDSPerforman
ceInsightsReadOnly
and AmazonRDSPerforman
ceInsightsFullAcce
ss managed policies now
includes Sid (statement ID)
as an identifier in the policy
statement.

For more information,
see AWS managed policy:
AmazonRDSPerforman
ceInsightsReadOnly and AWS
managed policy: AmazonRDS
PerformanceInsightsFullAcce
ss

October 23, 2023

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. These new permissions
allow RDS Custom for Oracle
to create, modify, and delete
EventBridge Managed Rules.

For more information, see
Service-linked role permissio
ns for Amazon RDS Custom.

September 20, 2023

Policy updates 5092

Amazon Relational Database Service User Guide

Change Description Date

AWS managed policies for
Amazon RDS – Update to
existing policy

Amazon RDS added new
permissions to AmazonRDS
FullAccess managed
policy. The permissions allow
you to generate, view, and
delete the performance
analysis report for a time
period.

For more information about
configuring access policies
for Performance Insights, see
Configuring access policies for
Performance Insights

August 17, 2023

AWS managed policies for
Amazon RDS – New policy
and update to existing policy

Amazon RDS added new
permissions to AmazonRDS
PerformanceInsight
sReadOnly managed
policy and a new managed
policy named AmazonRDS
PerformanceInsight
sFullAccess . These
permissions allow you to
analyse the Performance
Insights for a time period,
view the analysis results
along with the recommend
ations, and delete the reports.

For more information about
configuring access policies
for Performance Insights, see
Configuring access policies for
Performance Insights

August 16, 2023

Policy updates 5093

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. These new permissions
allow RDS Custom for Oracle
to use DB snapshots.

For more information, see
Service-linked role permissio
ns for Amazon RDS Custom.

June 23, 2023

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. These new permissions
allow RDS Custom for Oracle
to use DB snapshots.

For more information, see
Service-linked role permissio
ns for Amazon RDS Custom.

June 23, 2023

Policy updates 5094

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. These new permissions
allow RDS Custom to create
network interfaces.

For more information, see
Service-linked role permissio
ns for Amazon RDS Custom.

May 30, 2023

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. These new permissio
ns allow RDS Custom to call
Amazon EBS to check the
storage quota.

For more information, see
Service-linked role permissio
ns for Amazon RDS Custom.

April 18, 2023

Policy updates 5095

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS Custom added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role for integration with
Amazon SQS. RDS Custom
requires integration with
Amazon SQS to create and
manage SQS queues in
the customer account. The
SQS queue names follow
the format do-not-de
lete-rds-custom-[i
dentifier] and are
tagged with Amazon RDS
Custom. The permission for
ec2:CreateSnapshot
was also added to allow RDS
Custom to create backups
for volumes attached to the
instance.

For more information, see
Service-linked role permissio
ns for Amazon RDS Custom.

April 6, 2023

Policy updates 5096

Amazon Relational Database Service User Guide

Change Description Date

AWS managed policies for
Amazon RDS – Update to an
existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace ListMetrics
to AmazonRDSFullAcces
s and AmazonRDS
ReadOnlyAccess .

This namespace is required
for Amazon RDS to list
specific resource usage
metrics.

For more information, see
Overview of managing
access permissions to your
CloudWatch resources in the
Amazon CloudWatch User
Guide.

April 4, 2023

AWS managed policies for
Amazon RDS – Update to an
existing policy

Amazon RDS added a new
permission to AmazonRDS
FullAccess and
AmazonRDSReadOnlyA
ccess managed policies to
allow the display of Amazon
DevOps Guru findings in the
RDS console.

This permission is required
to allow the display of
DevOps Guru findings.

For more information, see
Amazon RDS updates to AWS
managed policies.

March, 30 2023

Policy updates 5097

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSServiceRo
lePolicy of the
AWSServiceRoleForR
DS service-linked role for
integration with AWS Secrets
Manager. RDS requires
integration with Secrets
Manager for managing
master user passwords in
Secrets Manager. The secret
uses a reserved naming
convention and restricts
customer updates.

For more information, see
Password management with
Amazon RDS and AWS Secrets
Manager.

December 22, 2022

Policy updates 5098

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSCustomSer
viceRolePolicy of the
AWSServiceRoleForR
DSCustom service-linked
role. RDS Custom supports DB
clusters. These new permissio
ns in the policy allow RDS
Custom to call AWS services
on behalf of your DB clusters.

For more information, see
Service-linked role permissio
ns for Amazon RDS Custom.

November 9, 2022

Policy updates 5099

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AWSServiceRoleForR
DS service-linked role for
integration with AWS Secrets
Manager.

Integration with Secrets
Manager is required for SQL
Server Reporting Services
(SSRS) Email to function
on RDS. SSRS Email creates
a secret on behalf of the
customer. The secret uses a
reserved naming conventio
n and restricts customer
updates.

For more information, see
Using SSRS Email to send
reports.

August 26, 2022

Policy updates 5100

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace to AmazonRDS
PreviewServiceRole
Policy for PutMetric
Data .

This namespace is required
for Amazon RDS to publish
resource usage metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

June 7, 2022

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace to AmazonRDS
BetaServiceRolePol
icy for PutMetricData .

This namespace is required
for Amazon RDS to publish
resource usage metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

June 7, 2022

Policy updates 5101

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace to AWSServic
eRoleForRDS for
PutMetricData .

This namespace is required
for Amazon RDS to publish
resource usage metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

April 22, 2022

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added
new permissions to the
AWSServiceRoleForRDS
service-linked role to manage
permissions for customer-
owned IP pools and local
gateway route tables (LGW-
RTBs).

These permissions are
required for RDS on Outposts
to perform Multi-AZ replicati
on across the Outposts’ local
network.

For more information, see
Working with Multi-AZ
deployments for Amazon RDS
on AWS Outposts.

April 19, 2022

Policy updates 5102

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html

Amazon Relational Database Service User Guide

Change Description Date

Identity-based policies –
Update to an existing policy

Amazon RDS added a new
permission to the AmazonRDS
FullAccess managed
policy to describe permissions
on LGW-RTBs.

This permission is required
to describe permissions for
RDS on Outposts to perform
Multi-AZ replication across
the Outposts’ local network.

For more information, see
Working with Multi-AZ
deployments for Amazon RDS
on AWS Outposts.

April 19, 2022

AWS managed policies for
Amazon RDS – New policy

Amazon RDS added a new
managed policy named
AmazonRDSPerforman
ceInsightsReadOnly
to allow Amazon RDS to call
AWS services on behalf of
your DB instances.

For more information about
configuring access policies
for Performance Insights, see
Configuring access policies for
Performance Insights

March 10, 2022

Policy updates 5103

Amazon Relational Database Service User Guide

Change Description Date

Service-linked role permissio
ns for Amazon RDS – Update
to an existing policy

Amazon RDS added new
Amazon CloudWatch
namespaces to AWSServic
eRoleForRDS for
PutMetricData .

These namespaces are
required for Amazon
DocumentDB (with MongoDB
compatibility) and Amazon
Neptune to publish
CloudWatch metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

March 4, 2022

Service-linked role permissio
ns for Amazon RDS Custom –
New policy

Amazon RDS added a new
service-linked role named
AWSServiceRoleForR
DSCustom to allow RDS
Custom to call AWS services
on behalf of your DB
instances.

October 26, 2021

Amazon RDS started tracking
changes

Amazon RDS started tracking
changes for its AWS managed
policies.

October 26, 2021

Policy updates 5104

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html

Amazon Relational Database Service User Guide

Preventing cross-service confused deputy problems

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem.

Cross-service impersonation can occur when one service (the calling service) calls another service
(the called service). The calling service can be manipulated to use its permissions to act on another
customer's resources in a way that it shouldn't have permission to access. To prevent this, AWS
provides tools that can help you protect your data for all services with service principals that have
been given access to resources in your account. For more information, see The confused deputy
problem in the IAM User Guide.

To limit the permissions that Amazon RDS gives another service for a specific resource, we
recommend using the aws:SourceArn and aws:SourceAccount global condition context keys in
resource policies.

In some cases, the aws:SourceArn value doesn't contain the account ID, for example when
you use the Amazon Resource Name (ARN) for an Amazon S3 bucket. In these cases, make sure
to use both global condition context keys to limit permissions. In some cases, you use both
global condition context keys and the aws:SourceArn value contains the account ID. In these
cases, make sure that the aws:SourceAccount value and the account in the aws:SourceArn
use the same account ID when they're used in the same policy statement. If you want only one
resource to be associated with the cross-service access, use aws:SourceArn. If you want to
allow any resource in the specified AWS account to be associated with the cross-service use, use
aws:SourceAccount.

Make sure that the value of aws:SourceArn is an ARN for an Amazon RDS resource type. For
more information, see Amazon Resource Names (ARNs) in Amazon RDS.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. In some cases,
you might not know the full ARN of the resource or you might be specifying multiple resources.
In these cases, use the aws:SourceArn global context condition key with wildcards (*) for the
unknown portions of the ARN. An example is arn:aws:rds:*:123456789012:*.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in Amazon RDS to prevent the confused deputy problem.

Cross-service confused deputy prevention 5105

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Relational Database Service User Guide

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:rds:us-east-1:123456789012:db:mydbinstance"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

For more examples of policies that use the aws:SourceArn and aws:SourceAccount global
condition context keys, see the following sections:

• Granting permissions to publish notifications to an Amazon SNS topic

• Manually creating an IAM role for native backup and restore

• Setting up Windows Authentication for SQL Server DB instances

• Prerequisites for integrating RDS for SQL Server with S3

• Manually creating an IAM role for SQL Server Audit

• Configuring IAM permissions for RDS for Oracle integration with Amazon S3

• Setting up access to an Amazon S3 bucket (PostgreSQL import)

• Setting up access to an Amazon S3 bucket (PostgreSQL export)

Cross-service confused deputy prevention 5106

Amazon Relational Database Service User Guide

IAM database authentication for MariaDB, MySQL, and PostgreSQL

You can authenticate to your DB instance using AWS Identity and Access Management (IAM)
database authentication. IAM database authentication works with MariaDB, MySQL, and
PostgreSQL. With this authentication method, you don't need to use a password when you connect
to a DB instance. Instead, you use an authentication token.

An authentication token is a unique string of characters that Amazon RDS generates on request.
Authentication tokens are generated using AWS Signature Version 4. Each token has a lifetime of
15 minutes. You don't need to store user credentials in the database, because authentication is
managed externally using IAM. You can also still use standard database authentication. The token
is only used for authentication and doesn't affect the session after it is established.

IAM database authentication provides the following benefits:

• Network traffic to and from the database is encrypted using Secure Socket Layer (SSL) or
Transport Layer Security (TLS). For more information about using SSL/TLS with Amazon RDS, see
Using SSL/TLS to encrypt a connection to a DB instance or cluster.

• You can use IAM to centrally manage access to your database resources, instead of managing
access individually on each DB instance.

• For applications running on Amazon EC2, you can use profile credentials specific to your EC2
instance to access your database instead of a password, for greater security.

In general, consider using IAM database authentication when your applications create fewer than
200 connections per second, and you don't want to manage usernames and passwords directly in
your application code.

The Amazon Web Services (AWS) JDBC Driver supports IAM database authentication. For more
information, see AWS IAM Authentication Plugin in the Amazon Web Services (AWS) JDBC Driver
GitHub repository.

The Amazon Web Services (AWS) Python Driver supports IAM database authentication. For more
information, see AWS IAM Authentication Plugin in the Amazon Web Services (AWS) Python Driver
GitHub repository.

Navigate through the following topics to learn the process to set IAM for DB authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

IAM database authentication 5107

https://github.com/aws/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/aws/aws-advanced-jdbc-wrapper
https://github.com/aws/aws-advanced-jdbc-wrapper
https://github.com/aws/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/aws/aws-advanced-python-wrapper
https://github.com/aws/aws-advanced-python-wrapper

Amazon Relational Database Service User Guide

• Creating a database account using IAM authentication

• Connecting to your DB instance using IAM authentication

Region and version availability

Feature availability and support varies across specific versions of each database engine. For more
information on engine, version, and Region availability with Amazon RDS and IAM database
authentication, see Supported Regions and DB engines for IAM database authentication in Amazon
RDS.

CLI and SDK support

IAM database authentication is available for the AWS CLI and for the following language-specific
AWS SDKs:

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto3)

• AWS SDK for Ruby

Limitations for IAM database authentication

When using IAM database authentication, the following limitations apply:

• IAM database authentication throttles connections at 200 connections per second.

Connections that use the same authentication token are not throttled. We recommend that you
reuse authentication tokens when possible.

• Currently, IAM database authentication doesn't support all global condition context keys.

For more information about global condition context keys, see AWS global condition context
keys in the IAM User Guide.

IAM database authentication 5108

https://docs.aws.amazon.com/cli/latest/reference/rds/generate-db-auth-token.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/RDS/TRDSAuthTokenGenerator.html
https://sdk.amazonaws.com/cpp/api/LATEST/class_aws_1_1_r_d_s_1_1_r_d_s_client.html#ae134ffffed5d7672f6156d324e7bd392
https://docs.aws.amazon.com/sdk-for-go/api/service/rds/#pkg-overview
https://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/rds/RdsUtilities.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_rds_signer.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.Rds.AuthTokenGenerator.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rds.html#RDS.Client.generate_db_auth_token
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/RDS/AuthTokenGenerator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Relational Database Service User Guide

• For PostgreSQL, if the IAM role (rds_iam) is added to a user (including the RDS master user),
IAM authentication takes precedence over password authentication, so the user must log in as an
IAM user.

• For PostgreSQL, Amazon RDS does not support enabling both IAM and Kerberos authentication
methods at the same time.

• For PostgreSQL, you cannot use IAM authentication to establish a replication connection.

• You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to generate
the authentication token.

• CloudWatch and CloudTrail don't log IAM authentication. These services do not track generate-
db-auth-token API calls that authorize the IAM role to enable database connection.

• IAM DB authorization requires compute resources on the database instance. You must have
between 300 and 1000 MiB extra memory on your database for reliable connectivity. To see the
memory needed for your workload, compare the RES column for RDS processes in the Enhanced
Monitoring processlist before and after enabling IAM DB authentication. See Viewing OS metrics
in the RDS console.

If you are using a burstable class instance, avoid running out of memory by reducing the memory
used by other parameters like buffers and cache by the same amount.

• For RDS for MySQL, you cannot use password based authentication for a database user you
configure with IAM authentication.

Recommendations for IAM database authentication

We recommend the following when using IAM database authentication:

• Use IAM database authentication when your application requires fewer than 200 new IAM
database authentication connections per second.

The database engines that work with Amazon RDS don't impose any limits on authentication
attempts per second. However, when you use IAM database authentication, your application
must generate an authentication token. Your application then uses that token to connect to the
DB instance. If you exceed the limit of maximum new connections per second, then the extra
overhead of IAM database authentication can cause connection throttling.

Consider using connection pooling in your applications to mitigate constant connection creation.
This can reduce the overhead from IAM DB authentication and allow your applications to reuse

IAM database authentication 5109

Amazon Relational Database Service User Guide

existing connections. Alternatively, consider using RDS Proxy for these use cases. RDS Proxy has
additional costs. See RDS Proxy pricing.

• The size of an IAM database authentication token depends on many things including the number
of IAM tags, IAM service policies, ARN lengths, as well as other IAM and database properties. The
minimum size of this token is generally about 1 KB but can be larger. Since this token is used
as the password in the connection string to the database using IAM authentication, you should
ensure that your database driver (e.g., ODBC) and/or any tools do not limit or otherwise truncate
this token due to its size. A truncated token will cause the authentication validation done by the
database and IAM to fail.

• If you are using temporary credentials when creating an IAM database authentication token, the
temporary credentials must still be valid when using the IAM database authentication token to
make a connection request.

Unsupported AWS global condition context keys

IAM database authentication does not support the following subset of AWS global condition
context keys.

• aws:Referer

• aws:SourceIp

• aws:SourceVpc

• aws:SourceVpce

• aws:UserAgent

• aws:VpcSourceIp

For more information, see AWS global condition context keys in the IAM User Guide.

Enabling and disabling IAM database authentication

By default, IAM database authentication is disabled on DB instances. You can enable or disable IAM
database authentication using the AWS Management Console, AWS CLI, or the API.

You can enable IAM database authentication when you perform one of the following actions:

• To create a new DB instance with IAM database authentication enabled, see Creating an Amazon
RDS DB instance.

IAM database authentication 5110

https://aws.amazon.com/rds/proxy/pricing/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Relational Database Service User Guide

• To modify a DB instance to enable IAM database authentication, see Modifying an Amazon RDS
DB instance.

• To restore a DB instance from a snapshot with IAM database authentication enabled, see
Restoring to a DB instance.

• To restore a DB instance to a point in time with IAM database authentication enabled, see
Restoring a DB instance to a specified time for Amazon RDS.

IAM authentication for PostgreSQL DB instances requires that the SSL value be 1. You can't enable
IAM authentication for a PostgreSQL DB instance if the SSL value is 0. You can't change the SSL
value to 0 if IAM authentication is enabled for a PostgreSQL DB instance.

Console

Each creation or modification workflow has a Database authentication section, where you
can enable or disable IAM database authentication. In that section, choose Password and IAM
database authentication to enable IAM database authentication.

To enable or disable IAM database authentication for an existing DB instance

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to modify.

Note

Make sure that the DB instance is compatible with IAM authentication. Check the
compatibility requirements in Region and version availability.

4. Choose Modify.

5. In the Database authentication section, choose Password and IAM database authentication
to enable IAM database authentication. Choose Password authentication or Password and
Kerberos authentication to disable IAM authentication.

6. You can also choose to enable publishing IAM DB authentication logs to CloudWatch Logs.
Under Log exports, choose the iam-db-auth-error log option. Publishing your logs to
CloudWatch Logs consumes storage and you incur charges for that storage. Be sure to delete
any CloudWatch Logs that you no longer need.

7. Choose Continue.

IAM database authentication 5111

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

8. To apply the changes immediately, choose Immediately in the Scheduling of modifications
section.

9. Choose Modify DB instance .

AWS CLI

To create a new DB instance with IAM authentication by using the AWS CLI, use the create-db-
instance command. Specify the --enable-iam-database-authentication option, as shown
in the following example.

aws rds create-db-instance \
 --db-instance-identifier mydbinstance \
 --db-instance-class db.m3.medium \
 --engine MySQL \
 --allocated-storage 20 \
 --master-username masterawsuser \
 --manage-master-user-password \
 --enable-iam-database-authentication

To update an existing DB instance to have or not have IAM authentication, use the AWS
CLI command modify-db-instance. Specify either the --enable-iam-database-
authentication or --no-enable-iam-database-authentication option, as appropriate.

Note

Make sure that the DB instance is compatible with IAM authentication. Check the
compatibility requirements in Region and version availability.

By default, Amazon RDS performs the modification during the next maintenance window. If you
want to override this and enable IAM DB authentication as soon as possible, use the --apply-
immediately parameter.

The following example shows how to immediately enable IAM authentication for an existing DB
instance.

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --apply-immediately \

IAM database authentication 5112

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

 --enable-iam-database-authentication

If you are restoring a DB instance, use one of the following AWS CLI commands:

• restore-db-instance-to-point-in-time

• restore-db-instance-from-db-snapshot

The IAM database authentication setting defaults to that of the source snapshot. To change
this setting, set the --enable-iam-database-authentication or --no-enable-iam-
database-authentication option, as appropriate.

RDS API

To create a new DB instance with IAM authentication by using the API, use the API operation
CreateDBInstance. Set the EnableIAMDatabaseAuthentication parameter to true.

To update an existing DB instance to have IAM authentication, use the API operation
ModifyDBInstance. Set the EnableIAMDatabaseAuthentication parameter to true to
enable IAM authentication, or false to disable it.

Note

Make sure that the DB instance is compatible with IAM authentication. Check the
compatibility requirements in Region and version availability.

If you are restoring a DB instance, use one of the following API operations:

• RestoreDBInstanceFromDBSnapshot

• RestoreDBInstanceToPointInTime

The IAM database authentication setting defaults to that of the source snapshot. To change
this setting, set the EnableIAMDatabaseAuthentication parameter to true to enable IAM
authentication, or false to disable it.

Creating and using an IAM policy for IAM database access

To allow a user or role to connect to your DB instance, you must create an IAM policy. After that,
you attach the policy to a permissions set or role.

IAM database authentication 5113

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromDBSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceToPointInTime.html

Amazon Relational Database Service User Guide

Note

To learn more about IAM policies, see Identity and access management for Amazon RDS.

The following example policy allows a user to connect to a DB instance using IAM database
authentication.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:1234567890:dbuser:db-ABCDEFGHIJKL01234/db_user"
]
 }
]
}

Important

A user with administrator permissions can access DB instances without explicit permissions
in an IAM policy. If you want to restrict administrator access to DB instances, you can
create an IAM role with the appropriate, lesser privileged permissions and assign it to the
administrator.

Note

Don't confuse the rds-db: prefix with other RDS API operation prefixes that begin with
rds:. You use the rds-db: prefix and the rds-db:connect action only for IAM database
authentication. They aren't valid in any other context.

IAM database authentication 5114

Amazon Relational Database Service User Guide

The example policy includes a single statement with the following elements:

• Effect – Specify Allow to grant access to the DB instance. If you don't explicitly allow access,
then access is denied by default.

• Action – Specify rds-db:connect to allow connections to the DB instance.

• Resource – Specify an Amazon Resource Name (ARN) that describes one database account in
one DB instance. The ARN format is as follows.

arn:aws:rds-db:region:account-id:dbuser:DbiResourceId/db-user-name

In this format, replace the following:

• region is the AWS Region for the DB instance. In the example policy, the AWS Region is us-
east-2.

• account-id is the AWS account number for the DB instance. In the example policy, the
account number is 1234567890. The user must be in the same account as the account for the
DB instance.

To perform cross-account access, create an IAM role with the policy shown above in the
account for the DB instance and allow your other account to assume the role.

• DbiResourceId is the identifier for the DB instance. This identifier is unique to an AWS
Region and never changes. In the example policy, the identifier is db-ABCDEFGHIJKL01234.

To find a DB instance resource ID in the AWS Management Console for Amazon RDS, choose
the DB instance to see its details. Then choose the Configuration tab. The Resource ID is
shown in the Configuration section.

Alternatively, you can use the AWS CLI command to list the identifiers and resource IDs for all
of your DB instance in the current AWS Region, as shown following.

aws rds describe-db-instances --query "DBInstances[*].
[DBInstanceIdentifier,DbiResourceId]"

IAM database authentication 5115

Amazon Relational Database Service User Guide

If you are using Amazon Aurora, specify a DbClusterResourceId instead of a
DbiResourceId. For more information, see Creating and using an IAM policy for IAM
database access in the Amazon Aurora User Guide.

Note

If you are connecting to a database through RDS Proxy, specify the proxy resource
ID, such as prx-ABCDEFGHIJKL01234. For information about using IAM database
authentication with RDS Proxy, see Connecting to a proxy using IAM authentication.

• db-user-name is the name of the database account to associate with IAM authentication. In
the example policy, the database account is db_user.

You can construct other ARNs to support various access patterns. The following policy allows
access to two different database accounts in a DB instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:db-ABCDEFGHIJKL01234/
jane_doe",
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:db-ABCDEFGHIJKL01234/
mary_roe"
]
 }
]
}

The following policy uses the "*" character to match all DB instances and database accounts for a
particular AWS account and AWS Region.

{

IAM database authentication 5116

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAMDBAuth.IAMPolicy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAMDBAuth.IAMPolicy.html

Amazon Relational Database Service User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:1234567890:dbuser:*/*"
]
 }
]
}

The following policy matches all of the DB instances for a particular AWS account and AWS Region.
However, the policy only grants access to DB instances that have a jane_doe database account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:*/jane_doe"
]
 }
]
}

The user or role has access to only those databases that the database user does. For example,
suppose that your DB instance has a database named dev, and another database named test. If
the database user jane_doe has access only to dev, any users or roles that access that DB instance
with the jane_doe user also have access only to dev. This access restriction is also true for other
database objects, such as tables, views, and so on.

An administrator must create IAM policies that grant entities permission to perform specific
API operations on the specified resources they need. The administrator must then attach those

IAM database authentication 5117

Amazon Relational Database Service User Guide

policies to the permission sets or roles that require those permissions. For examples of policies, see
Identity-based policy examples for Amazon RDS.

Attaching an IAM policy to a permission set or role

After you create an IAM policy to allow database authentication, you need to attach the policy
to a permission set or role. For a tutorial on this topic, see Create and attach your first customer
managed policy in the IAM User Guide.

As you work through the tutorial, you can use one of the policy examples shown in this section as a
starting point and tailor it to your needs. At the end of the tutorial, you have a permission set with
an attached policy that can make use of the rds-db:connect action.

Note

You can map multiple permission sets or roles to the same database user account. For
example, suppose that your IAM policy specified the following resource ARN.

arn:aws:rds-db:us-east-2:123456789012:dbuser:db-12ABC34DEFG5HIJ6KLMNOP78QR/
jane_doe

If you attach the policy to Jane, Bob, and Diego, then each of those users can connect to the
specified DB instance using the jane_doe database account.

Creating a database account using IAM authentication

With IAM database authentication, you don't need to assign database passwords to the user
accounts you create. If you remove a user that is mapped to a database account, you should also
remove the database account with the DROP USER statement.

Note

The user name used for IAM authentication must match the case of the user name in the
database.

Topics

IAM database authentication 5118

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Relational Database Service User Guide

• Using IAM authentication with MariaDB and MySQL

• Using IAM authentication with PostgreSQL

Using IAM authentication with MariaDB and MySQL

With MariaDB and MySQL, authentication is handled by AWSAuthenticationPlugin—an AWS-
provided plugin that works seamlessly with IAM to authenticate your users. Connect to the DB
instance as the master user or a different user who can create users and grant privileges. After
connecting, issue the CREATE USER statement, as shown in the following example.

CREATE USER 'jane_doe' IDENTIFIED WITH AWSAuthenticationPlugin AS 'RDS';

The IDENTIFIED WITH clause allows MariaDB and MySQL to use the
AWSAuthenticationPlugin to authenticate the database account (jane_doe). The AS 'RDS'
clause refers to the authentication method. Make sure the specified database user name is the
same as a resource in the IAM policy for IAM database access. For more information, see Creating
and using an IAM policy for IAM database access.

Note

If you see the following message, it means that the AWS-provided plugin is not available
for the current DB instance.
ERROR 1524 (HY000): Plugin 'AWSAuthenticationPlugin' is not loaded
To troubleshoot this error, verify that you are using a supported configuration and that you
have enabled IAM database authentication on your DB instance. For more information, see
Region and version availability and Enabling and disabling IAM database authentication.

After you create an account using AWSAuthenticationPlugin, you manage it in the same way as
other database accounts. For example, you can modify account privileges with GRANT and REVOKE
statements, or modify various account attributes with the ALTER USER statement.

Database network traffic is encrypted using SSL/TLS when using IAM. To allow SSL connections,
modify the user account with the following command.

ALTER USER 'jane_doe'@'%' REQUIRE SSL;

IAM database authentication 5119

Amazon Relational Database Service User Guide

Using IAM authentication with PostgreSQL

To use IAM authentication with PostgreSQL, connect to the DB instance as the master user or a
different user who can create users and grant privileges. After connecting, create database users
and then grant them the rds_iam role as shown in the following example.

CREATE USER db_userx;
GRANT rds_iam TO db_userx;

Make sure the specified database user name is the same as a resource in the IAM policy for
IAM database access. For more information, see Creating and using an IAM policy for IAM
database access. You must grant the rds_iam role to use IAM authentication. You can use nested
memberships or indirect grants of the role as well.

Connecting to your DB instance using IAM authentication

With IAM database authentication, you use an authentication token when you connect to your
DB instance. An authentication token is a string of characters that you use instead of a password.
After you generate an authentication token, it's valid for 15 minutes before it expires. If you try to
connect using an expired token, the connection request is denied.

Every authentication token must be accompanied by a valid signature, using AWS signature version
4. (For more information, see Signature Version 4 signing process in the AWS General Reference.)
The AWS CLI and an AWS SDK, such as the AWS SDK for Java or AWS SDK for Python (Boto3), can
automatically sign each token you create.

You can use an authentication token when you connect to Amazon RDS from another AWS
service, such as AWS Lambda. By using a token, you can avoid placing a password in your code.
Alternatively, you can use an AWS SDK to programmatically create and programmatically sign an
authentication token.

After you have a signed IAM authentication token, you can connect to an Amazon RDS DB instance.
Following, you can find out how to do this using either a command line tool or an AWS SDK, such
as the AWS SDK for Java or AWS SDK for Python (Boto3).

For more information, see the following blog posts:

• Use IAM authentication to connect with SQL Workbench/J to Aurora MySQL or Amazon RDS for
MySQL

IAM database authentication 5120

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/

Amazon Relational Database Service User Guide

• Using IAM authentication to connect with pgAdmin Amazon Aurora PostgreSQL or Amazon RDS
for PostgreSQL

Prerequisites

The following are prerequisites for connecting to your DB instance using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Topics

• Connecting to your DB instance using IAM authentication with the AWS drivers

• Connecting to your DB instance using IAM authentication from the command line: AWS CLI and
mysql client

• Connecting to your DB instance using IAM authentication from the command line: AWS CLI and
psql client

• Connecting to your DB instance using IAM authentication and the AWS SDK for .NET

• Connecting to your DB instance using IAM authentication and the AWS SDK for Go

• Connecting to your DB instance using IAM authentication and the AWS SDK for Java

• Connecting to your DB instance using IAM authentication and the AWS SDK for Python (Boto3)

Connecting to your DB instance using IAM authentication with the AWS drivers

The AWS suite of drivers has been designed to provide support for faster switchover and failover
times, and authentication with AWS Secrets Manager, AWS Identity and Access Management (IAM),
and Federated Identity. The AWS drivers rely on monitoring DB instance status and being aware of
the instance topology to determine the new writer. This approach reduces switchover and failover
times to single-digit seconds, compared to tens of seconds for open-source drivers.

For more information on the AWS drivers, see the corresponding language driver for your RDS for
MariaDB, RDS for MySQL, or RDS for PostgreSQL DB instance.

IAM database authentication 5121

https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/
https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/

Amazon Relational Database Service User Guide

Note

The only features supported for RDS for MariaDB are authentication with AWS Secrets
Manager, AWS Identity and Access Management (IAM), and Federated Identity.

Connecting to your DB instance using IAM authentication from the command line: AWS CLI and
mysql client

You can connect from the command line to an Amazon RDS DB instance with the AWS CLI and
mysql command line tool as described following.

Prerequisites

The following are prerequisites for connecting to your DB instance using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Note

For information about connecting to your database using SQL Workbench/J with IAM
authentication, see the blog post Use IAM authentication to connect with SQL Workbench/
J to Aurora MySQL or Amazon RDS for MySQL.

Topics

• Generating an IAM authentication token

• Connecting to a DB instance

Generating an IAM authentication token

The following example shows how to get a signed authentication token using the AWS CLI.

aws rds generate-db-auth-token \
 --hostname rdsmysql.123456789012.us-west-2.rds.amazonaws.com \

IAM database authentication 5122

https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/

Amazon Relational Database Service User Guide

 --port 3306 \
 --region us-west-2 \
 --username jane_doe

In the example, the parameters are as follows:

• --hostname – The host name of the DB instance that you want to access

• --port – The port number used for connecting to your DB instance

• --region – The AWS Region where the DB instance is running

• --username – The database account that you want to access

The first several characters of the token look like the following.

rdsmysql.123456789012.us-west-2.rds.amazonaws.com:3306/?
Action=connect&DBUser=jane_doe&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=900...

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

Connecting to a DB instance

The general format for connecting is shown following.

mysql --host=hostName --port=portNumber --ssl-ca=full_path_to_ssl_certificate --enable-
cleartext-plugin --user=userName --password=authToken

The parameters are as follows:

• --host – The host name of the DB instance that you want to access

• --port – The port number used for connecting to your DB instance

• --ssl-ca – The full path to the SSL certificate file that contains the public key

For more information about SSL/TLS support for MariaDB, see SSL/TLS support for MariaDB DB
instances on Amazon RDS.

IAM database authentication 5123

Amazon Relational Database Service User Guide

For more information about SSL/TLS support for MySQL, see SSL/TLS support for MySQL DB
instances on Amazon RDS.

To download an SSL certificate, see Using SSL/TLS to encrypt a connection to a DB instance or
cluster.

• --enable-cleartext-plugin – A value that specifies that AWSAuthenticationPlugin
must be used for this connection

If you are using a MariaDB client, the --enable-cleartext-plugin option isn't required.

• --user – The database account that you want to access

• --password – A signed IAM authentication token

The authentication token consists of several hundred characters. It can be unwieldy on the
command line. One way to work around this is to save the token to an environment variable, and
then use that variable when you connect. The following example shows one way to perform this
workaround. In the example, /sample_dir/ is the full path to the SSL certificate file that contains
the public key.

RDSHOST="mysqldb.123456789012.us-east-1.rds.amazonaws.com"
TOKEN="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 3306 --region us-
west-2 --username jane_doe)"

mysql --host=$RDSHOST --port=3306 --ssl-ca=/sample_dir/global-bundle.pem --enable-
cleartext-plugin --user=jane_doe --password=$TOKEN

When you connect using AWSAuthenticationPlugin, the connection is secured using SSL. To
verify this, type the following at the mysql> command prompt.

show status like 'Ssl%';

The following lines in the output show more details.

+---------------+-------------+
| Variable_name | Value

 |

IAM database authentication 5124

Amazon Relational Database Service User Guide

+---------------+-------------+
| ... | ...
| Ssl_cipher | AES256-SHA

 |
| ... | ...
| Ssl_version | TLSv1.1

 |
| ... | ...
+-----------------------------+

If you want to connect to a DB instance through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB instance using IAM authentication from the command line: AWS CLI and
psql client

You can connect from the command line to an Amazon RDS for PostgreSQL DB instance with the
AWS CLI and psql command line tool as described following.

Prerequisites

The following are prerequisites for connecting to your DB instance using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Note

For information about connecting to your database using pgAdmin with IAM
authentication, see the blog post Using IAM authentication to connect with pgAdmin
Amazon Aurora PostgreSQL or Amazon RDS for PostgreSQL.

Topics

• Generating an IAM authentication token

• Connecting to an Amazon RDS PostgreSQL instance

IAM database authentication 5125

https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/
https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/

Amazon Relational Database Service User Guide

Generating an IAM authentication token

The authentication token consists of several hundred characters so it can be unwieldy on the
command line. One way to work around this is to save the token to an environment variable, and
then use that variable when you connect. The following example shows how to use the AWS CLI to
get a signed authentication token using the generate-db-auth-token command, and store it in
a PGPASSWORD environment variable.

export RDSHOST="rdspostgres.123456789012.us-west-2.rds.amazonaws.com"
export PGPASSWORD="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 5432 --
region us-west-2 --username jane_doe)"

In the example, the parameters to the generate-db-auth-token command are as follows:

• --hostname – The host name of the DB instance that you want to access

• --port – The port number used for connecting to your DB instance

• --region – The AWS Region where the DB instance is running

• --username – The database account that you want to access

The first several characters of the generated token look like the following.

rdspostgres.123456789012.us-west-2.rds.amazonaws.com:5432/?
Action=connect&DBUser=jane_doe&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=900...

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

Connecting to an Amazon RDS PostgreSQL instance

The general format for using psql to connect is shown following.

psql "host=hostName port=portNumber sslmode=verify-full
 sslrootcert=full_path_to_ssl_certificate dbname=DBName user=userName
 password=authToken"

IAM database authentication 5126

Amazon Relational Database Service User Guide

The parameters are as follows:

• host – The host name of the DB instance that you want to access

• port – The port number used for connecting to your DB instance

• sslmode – The SSL mode to use

When you use sslmode=verify-full, the SSL connection verifies the DB instance endpoint
against the endpoint in the SSL certificate.

• sslrootcert – The full path to the SSL certificate file that contains the public key

For more information, see Using SSL with a PostgreSQL DB instance.

To download an SSL certificate, see Using SSL/TLS to encrypt a connection to a DB instance or
cluster.

• dbname – The database that you want to access

• user – The database account that you want to access

• password – A signed IAM authentication token

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

The following example shows using psql to connect. In the example, psql uses the environment
variable RDSHOST for the host and the environment variable PGPASSWORD for the generated token.
Also, /sample_dir/ is the full path to the SSL certificate file that contains the public key.

export RDSHOST="rdspostgres.123456789012.us-west-2.rds.amazonaws.com"
export PGPASSWORD="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 5432 --
region us-west-2 --username jane_doe)"

psql "host=$RDSHOST port=5432 sslmode=verify-full sslrootcert=/sample_dir/global-
bundle.pem dbname=DBName user=jane_doe password=$PGPASSWORD"

If you want to connect to a DB instance through a proxy, see Connecting to a proxy using IAM
authentication.

IAM database authentication 5127

Amazon Relational Database Service User Guide

Connecting to your DB instance using IAM authentication and the AWS SDK for .NET

You can connect to an RDS for MariaDB, MySQL, or PostgreSQL DB instance with the AWS SDK
for .NET as described following.

Prerequisites

The following are prerequisites for connecting to your DB instance using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Examples

The following code examples show how to generate an authentication token, and then use it to
connect to a DB instance.

To run this code example, you need the AWS SDK for .NET, found on the AWS site. The
AWSSDK.CORE and the AWSSDK.RDS packages are required. To connect to a DB instance, use
the .NET database connector for the DB engine, such as MySqlConnector for MariaDB or MySQL, or
Npgsql for PostgreSQL.

This code connects to a MariaDB or MySQL DB instance. Modify the values of the following
variables as needed:

• server – The endpoint of the DB instance that you want to access

• user – The database account that you want to access

• database – The database that you want to access

• port – The port number used for connecting to your DB instance

• SslMode – The SSL mode to use

When you use SslMode=Required, the SSL connection verifies the DB instance endpoint
against the endpoint in the SSL certificate.

• SslCa – The full path to the SSL certificate for Amazon RDS

To download a certificate, see Using SSL/TLS to encrypt a connection to a DB instance or cluster.

IAM database authentication 5128

http://aws.amazon.com/sdk-for-net/

Amazon Relational Database Service User Guide

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
using Amazon;

namespace ubuntu
{
 class Program
 {
 static void Main(string[] args)
 {
 var pwd =
 Amazon.RDS.Util.RDSAuthTokenGenerator.GenerateAuthToken(RegionEndpoint.USEast1,
 "mysqldb.123456789012.us-east-1.rds.amazonaws.com", 3306, "jane_doe");
 // for debug only Console.Write("{0}\n", pwd); //this verifies the token is
 generated

 MySqlConnection conn = new MySqlConnection($"server=mysqldb.123456789012.us-
east-1.rds.amazonaws.com;user=jane_doe;database=mydB;port=3306;password={pwd};SslMode=Required;SslCa=full_path_to_ssl_certificate");
 conn.Open();

 // Define a query
 MySqlCommand sampleCommand = new MySqlCommand("SHOW DATABASES;", conn);

 // Execute a query
 MySqlDataReader mysqlDataRdr = sampleCommand.ExecuteReader();

 // Read all rows and output the first column in each row
 while (mysqlDataRdr.Read())
 Console.WriteLine(mysqlDataRdr[0]);

 mysqlDataRdr.Close();
 // Close connection
 conn.Close();
 }

IAM database authentication 5129

Amazon Relational Database Service User Guide

 }
}

This code connects to a PostgreSQL DB instance.

Modify the values of the following variables as needed:

• Server – The endpoint of the DB instance that you want to access

• User ID – The database account that you want to access

• Database – The database that you want to access

• Port – The port number used for connecting to your DB instance

• SSL Mode – The SSL mode to use

When you use SSL Mode=Required, the SSL connection verifies the DB instance endpoint
against the endpoint in the SSL certificate.

• Root Certificate – The full path to the SSL certificate for Amazon RDS

To download a certificate, see Using SSL/TLS to encrypt a connection to a DB instance or cluster.

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

using System;
using Npgsql;
using Amazon.RDS.Util;

namespace ConsoleApp1
{
 class Program
 {
 static void Main(string[] args)
 {
 var pwd =
 RDSAuthTokenGenerator.GenerateAuthToken("postgresmydb.123456789012.us-
east-1.rds.amazonaws.com", 5432, "jane_doe");
// for debug only Console.Write("{0}\n", pwd); //this verifies the token is generated

IAM database authentication 5130

Amazon Relational Database Service User Guide

 NpgsqlConnection conn = new
 NpgsqlConnection($"Server=postgresmydb.123456789012.us-east-1.rds.amazonaws.com;User
 Id=jane_doe;Password={pwd};Database=mydb;SSL Mode=Require;Root
 Certificate=full_path_to_ssl_certificate");
 conn.Open();

 // Define a query
 NpgsqlCommand cmd = new NpgsqlCommand("select count(*) FROM
 pg_user", conn);

 // Execute a query
 NpgsqlDataReader dr = cmd.ExecuteReader();

 // Read all rows and output the first column in each row
 while (dr.Read())
 Console.Write("{0}\n", dr[0]);

 // Close connection
 conn.Close();
 }
 }
}

If you want to connect to a DB instance through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB instance using IAM authentication and the AWS SDK for Go

You can connect to an RDS for MariaDB, MySQL, or PostgreSQL DB instance with the AWS SDK for
Go as described following.

Prerequisites

The following are prerequisites for connecting to your DB instance using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Examples

IAM database authentication 5131

Amazon Relational Database Service User Guide

To run these code examples, you need the AWS SDK for Go, found on the AWS site.

Modify the values of the following variables as needed:

• dbName – The database that you want to access

• dbUser – The database account that you want to access

• dbHost – The endpoint of the DB instance that you want to access

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

• dbPort – The port number used for connecting to your DB instance

• region – The AWS Region where the DB instance is running

In addition, make sure the imported libraries in the sample code exist on your system.

Important

The examples in this section use the following code to provide credentials that access a
database from a local environment:
creds := credentials.NewEnvCredentials()
If you are accessing a database from an AWS service, such as Amazon EC2 or Amazon ECS,
you can replace the code with the following code:
sess := session.Must(session.NewSession())
creds := sess.Config.Credentials
If you make this change, make sure you add the following import:
"github.com/aws/aws-sdk-go/aws/session"

Topics

• Connecting using IAM authentication and the AWS SDK for Go V2

• Connecting using IAM authentication and the AWS SDK for Go V1.

IAM database authentication 5132

http://aws.amazon.com/sdk-for-go/

Amazon Relational Database Service User Guide

Connecting using IAM authentication and the AWS SDK for Go V2

You can connect to a DB instance using IAM authentication and the AWS SDK for Go V2.

The following code examples show how to generate an authentication token, and then use it to
connect to a DB instance.

This code connects to a MariaDB or MySQL DB instance.

package main

import (
 "context"
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/go-sql-driver/mysql"
)

func main() {

 var dbName string = "DatabaseName"
 var dbUser string = "DatabaseUser"
 var dbHost string = "mysqldb.123456789012.us-east-1.rds.amazonaws.com"
 var dbPort int = 3306
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = "us-east-1"

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authenticationToken, dbEndpoint, dbName,
)

IAM database authentication 5133

Amazon Relational Database Service User Guide

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

This code connects to a PostgreSQL DB instance.

package main

import (
 "context"
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/lib/pq"
)

func main() {

 var dbName string = "DatabaseName"
 var dbUser string = "DatabaseUser"
 var dbHost string = "postgresmydb.123456789012.us-east-1.rds.amazonaws.com"
 var dbPort int = 5432
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = "us-east-1"

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {

IAM database authentication 5134

Amazon Relational Database Service User Guide

 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s",
 dbHost, dbPort, dbUser, authenticationToken, dbName,
)

 db, err := sql.Open("postgres", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

If you want to connect to a DB instance through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting using IAM authentication and the AWS SDK for Go V1.

You can connect to a DB instance using IAM authentication and the AWS SDK for Go V1

The following code examples show how to generate an authentication token, and then use it to
connect to a DB instance.

This code connects to a MariaDB or MySQL DB instance.

package main

import (
 "database/sql"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go/aws/credentials"
 "github.com/aws/aws-sdk-go/service/rds/rdsutils"
 _ "github.com/go-sql-driver/mysql"
)

func main() {

IAM database authentication 5135

Amazon Relational Database Service User Guide

 dbName := "app"
 dbUser := "jane_doe"
 dbHost := "mysqldb.123456789012.us-east-1.rds.amazonaws.com"
 dbPort := 3306
 dbEndpoint := fmt.Sprintf("%s:%d", dbHost, dbPort)
 region := "us-east-1"

 creds := credentials.NewEnvCredentials()
 authToken, err := rdsutils.BuildAuthToken(dbEndpoint, region, dbUser, creds)
 if err != nil {
 panic(err)
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authToken, dbEndpoint, dbName,
)

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

This code connects to a PostgreSQL DB instance.

package main

import (
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go/aws/credentials"
 "github.com/aws/aws-sdk-go/service/rds/rdsutils"
 _ "github.com/lib/pq"
)

func main() {
 dbName := "app"

IAM database authentication 5136

Amazon Relational Database Service User Guide

 dbUser := "jane_doe"
 dbHost := "postgresmydb.123456789012.us-east-1.rds.amazonaws.com"
 dbPort := 5432
 dbEndpoint := fmt.Sprintf("%s:%d", dbHost, dbPort)
 region := "us-east-1"

 creds := credentials.NewEnvCredentials()
 authToken, err := rdsutils.BuildAuthToken(dbEndpoint, region, dbUser, creds)
 if err != nil {
 panic(err)
 }

 dsn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s",
 dbHost, dbPort, dbUser, authToken, dbName,
)

 db, err := sql.Open("postgres", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

If you want to connect to a DB instance through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB instance using IAM authentication and the AWS SDK for Java

You can connect to an RDS for MariaDB, MySQL, or PostgreSQL DB instance with the AWS SDK for
Java as described following.

Prerequisites

The following are prerequisites for connecting to your DB instance using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

IAM database authentication 5137

Amazon Relational Database Service User Guide

• Set up the AWS SDK for Java

For examples on how to use the SDK for Java 2.x, see Amazon RDS examples using SDK for
Java 2.x. You can also use the AWS Advanced JDBC Wrapper, see AWS Advanced JDBC Wrapper
documentation.

Topics

• Generating an IAM authentication token

• Manually constructing an IAM authentication token

• Connecting to a DB instance

Generating an IAM authentication token

If you are writing programs using the AWS SDK for Java, you can get a signed authentication token
using the RdsIamAuthTokenGenerator class. Using this class requires that you provide AWS
credentials. To do this, you create an instance of the DefaultAWSCredentialsProviderChain
class. DefaultAWSCredentialsProviderChain uses the first AWS access key and secret key
that it finds in the default credential provider chain. For more information about AWS access keys,
see Managing access keys for users.

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

After you create an instance of RdsIamAuthTokenGenerator, you can call the getAuthToken
method to obtain a signed token. Provide the AWS Region, host name, port number, and user
name. The following code example illustrates how to do this.

package com.amazonaws.codesamples;

import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.services.rds.auth.GetIamAuthTokenRequest;
import com.amazonaws.services.rds.auth.RdsIamAuthTokenGenerator;

public class GenerateRDSAuthToken {

IAM database authentication 5138

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java_rds_code_examples.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java_rds_code_examples.html
https://github.com/aws/aws-advanced-jdbc-wrapper/blob/main/docs/Documentation.md
https://github.com/aws/aws-advanced-jdbc-wrapper/blob/main/docs/Documentation.md
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Relational Database Service User Guide

 public static void main(String[] args) {

 String region = "us-west-2";
 String hostname = "rdsmysql.123456789012.us-west-2.rds.amazonaws.com";
 String port = "3306";
 String username = "jane_doe";

 System.out.println(generateAuthToken(region, hostname, port, username));
 }

 static String generateAuthToken(String region, String hostName, String port, String
 username) {

 RdsIamAuthTokenGenerator generator = RdsIamAuthTokenGenerator.builder()
 .credentials(new DefaultAWSCredentialsProviderChain())
 .region(region)
 .build();

 String authToken = generator.getAuthToken(
 GetIamAuthTokenRequest.builder()
 .hostname(hostName)
 .port(Integer.parseInt(port))
 .userName(username)
 .build());

 return authToken;
 }

}

Manually constructing an IAM authentication token

In Java, the easiest way to generate an authentication token is to use
RdsIamAuthTokenGenerator. This class creates an authentication token for you, and then signs
it using AWS signature version 4. For more information, see Signature version 4 signing process in
the AWS General Reference.

However, you can also construct and sign an authentication token manually, as shown in the
following code example.

package com.amazonaws.codesamples;

import com.amazonaws.SdkClientException;

IAM database authentication 5139

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Relational Database Service User Guide

import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.auth.SigningAlgorithm;
import com.amazonaws.util.BinaryUtils;
import org.apache.commons.lang3.StringUtils;

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.Charset;
import java.security.MessageDigest;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.SortedMap;
import java.util.TreeMap;

import static com.amazonaws.auth.internal.SignerConstants.AWS4_TERMINATOR;
import static com.amazonaws.util.StringUtils.UTF8;

public class CreateRDSAuthTokenManually {
 public static String httpMethod = "GET";
 public static String action = "connect";
 public static String canonicalURIParameter = "/";
 public static SortedMap<String, String> canonicalQueryParameters = new TreeMap();
 public static String payload = StringUtils.EMPTY;
 public static String signedHeader = "host";
 public static String algorithm = "AWS4-HMAC-SHA256";
 public static String serviceName = "rds-db";
 public static String requestWithoutSignature;

 public static void main(String[] args) throws Exception {

 String region = "us-west-2";
 String instanceName = "rdsmysql.123456789012.us-west-2.rds.amazonaws.com";
 String port = "3306";
 String username = "jane_doe";

 Date now = new Date();
 String date = new SimpleDateFormat("yyyyMMdd").format(now);
 String dateTimeStamp = new
 SimpleDateFormat("yyyyMMdd'T'HHmmss'Z'").format(now);
 DefaultAWSCredentialsProviderChain creds = new
 DefaultAWSCredentialsProviderChain();
 String awsAccessKey = creds.getCredentials().getAWSAccessKeyId();
 String awsSecretKey = creds.getCredentials().getAWSSecretKey();
 String expiryMinutes = "900";

IAM database authentication 5140

Amazon Relational Database Service User Guide

 System.out.println("Step 1: Create a canonical request:");
 String canonicalString = createCanonicalString(username, awsAccessKey, date,
 dateTimeStamp, region, expiryMinutes, instanceName, port);
 System.out.println(canonicalString);
 System.out.println();

 System.out.println("Step 2: Create a string to sign:");
 String stringToSign = createStringToSign(dateTimeStamp, canonicalString,
 awsAccessKey, date, region);
 System.out.println(stringToSign);
 System.out.println();

 System.out.println("Step 3: Calculate the signature:");
 String signature = BinaryUtils.toHex(calculateSignature(stringToSign,
 newSigningKey(awsSecretKey, date, region, serviceName)));
 System.out.println(signature);
 System.out.println();

 System.out.println("Step 4: Add the signing info to the request");

 System.out.println(appendSignature(signature));
 System.out.println();

 }

 //Step 1: Create a canonical request date should be in format YYYYMMDD and dateTime
 should be in format YYYYMMDDTHHMMSSZ
 public static String createCanonicalString(String user, String accessKey, String
 date, String dateTime, String region, String expiryPeriod, String hostName, String
 port) throws Exception {
 canonicalQueryParameters.put("Action", action);
 canonicalQueryParameters.put("DBUser", user);
 canonicalQueryParameters.put("X-Amz-Algorithm", "AWS4-HMAC-SHA256");
 canonicalQueryParameters.put("X-Amz-Credential", accessKey + "%2F" + date +
 "%2F" + region + "%2F" + serviceName + "%2Faws4_request");
 canonicalQueryParameters.put("X-Amz-Date", dateTime);
 canonicalQueryParameters.put("X-Amz-Expires", expiryPeriod);
 canonicalQueryParameters.put("X-Amz-SignedHeaders", signedHeader);
 String canonicalQueryString = "";
 while(!canonicalQueryParameters.isEmpty()) {
 String currentQueryParameter = canonicalQueryParameters.firstKey();
 String currentQueryParameterValue =
 canonicalQueryParameters.remove(currentQueryParameter);

IAM database authentication 5141

Amazon Relational Database Service User Guide

 canonicalQueryString = canonicalQueryString + currentQueryParameter + "=" +
 currentQueryParameterValue;
 if (!currentQueryParameter.equals("X-Amz-SignedHeaders")) {
 canonicalQueryString += "&";
 }
 }
 String canonicalHeaders = "host:" + hostName + ":" + port + '\n';
 requestWithoutSignature = hostName + ":" + port + "/?" + canonicalQueryString;

 String hashedPayload = BinaryUtils.toHex(hash(payload));
 return httpMethod + '\n' + canonicalURIParameter + '\n' + canonicalQueryString
 + '\n' + canonicalHeaders + '\n' + signedHeader + '\n' + hashedPayload;

 }

 //Step 2: Create a string to sign using sig v4
 public static String createStringToSign(String dateTime, String canonicalRequest,
 String accessKey, String date, String region) throws Exception {
 String credentialScope = date + "/" + region + "/" + serviceName + "/
aws4_request";
 return algorithm + '\n' + dateTime + '\n' + credentialScope + '\n' +
 BinaryUtils.toHex(hash(canonicalRequest));

 }

 //Step 3: Calculate signature
 /**
 * Step 3 of the &AWS; Signature version 4 calculation. It involves deriving
 * the signing key and computing the signature. Refer to
 * http://docs.aws.amazon
 * .com/general/latest/gr/sigv4-calculate-signature.html
 */
 public static byte[] calculateSignature(String stringToSign,
 byte[] signingKey) {
 return sign(stringToSign.getBytes(Charset.forName("UTF-8")), signingKey,
 SigningAlgorithm.HmacSHA256);
 }

 public static byte[] sign(byte[] data, byte[] key,
 SigningAlgorithm algorithm) throws SdkClientException {
 try {
 Mac mac = algorithm.getMac();
 mac.init(new SecretKeySpec(key, algorithm.toString()));
 return mac.doFinal(data);

IAM database authentication 5142

Amazon Relational Database Service User Guide

 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to calculate a request signature: "
 + e.getMessage(), e);
 }
 }

 public static byte[] newSigningKey(String secretKey,
 String dateStamp, String regionName, String
 serviceName) {
 byte[] kSecret = ("AWS4" + secretKey).getBytes(Charset.forName("UTF-8"));
 byte[] kDate = sign(dateStamp, kSecret, SigningAlgorithm.HmacSHA256);
 byte[] kRegion = sign(regionName, kDate, SigningAlgorithm.HmacSHA256);
 byte[] kService = sign(serviceName, kRegion,
 SigningAlgorithm.HmacSHA256);
 return sign(AWS4_TERMINATOR, kService, SigningAlgorithm.HmacSHA256);
 }

 public static byte[] sign(String stringData, byte[] key,
 SigningAlgorithm algorithm) throws SdkClientException {
 try {
 byte[] data = stringData.getBytes(UTF8);
 return sign(data, key, algorithm);
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to calculate a request signature: "
 + e.getMessage(), e);
 }
 }

 //Step 4: append the signature
 public static String appendSignature(String signature) {
 return requestWithoutSignature + "&X-Amz-Signature=" + signature;
 }

 public static byte[] hash(String s) throws Exception {
 try {
 MessageDigest md = MessageDigest.getInstance("SHA-256");
 md.update(s.getBytes(UTF8));
 return md.digest();
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to compute hash while signing request: "
 + e.getMessage(), e);

IAM database authentication 5143

Amazon Relational Database Service User Guide

 }
 }
}

Connecting to a DB instance

The following code example shows how to generate an authentication token, and then use it to
connect to an instance running MariaDB or MySQL.

To run this code example, you need the AWS SDK for Java, found on the AWS site. In addition, you
need the following:

• MySQL Connector/J. This code example was tested with mysql-connector-java-5.1.33-
bin.jar.

• An intermediate certificate for Amazon RDS that is specific to an AWS Region. (For more
information, see Using SSL/TLS to encrypt a connection to a DB instance or cluster.) At runtime,
the class loader looks for the certificate in the same directory as this Java code example, so that
the class loader can find it.

• Modify the values of the following variables as needed:

• RDS_INSTANCE_HOSTNAME – The host name of the DB instance that you want to access.

• RDS_INSTANCE_PORT – The port number used for connecting to your PostgreSQL DB
instance.

• REGION_NAME – The AWS Region where the DB instance is running.

• DB_USER – The database account that you want to access.

• SSL_CERTIFICATE – An SSL certificate for Amazon RDS that is specific to an AWS Region.

To download a certificate for your AWS Region, see Using SSL/TLS to encrypt a connection to
a DB instance or cluster. Place the SSL certificate in the same directory as this Java program
file, so that the class loader can find the certificate at runtime.

This code example obtains AWS credentials from the default credential provider chain.

Note

Specify a password for DEFAULT_KEY_STORE_PASSWORD other than the prompt shown
here as a security best practice.

IAM database authentication 5144

http://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default

Amazon Relational Database Service User Guide

package com.amazonaws.samples;

import com.amazonaws.services.rds.auth.RdsIamAuthTokenGenerator;
import com.amazonaws.services.rds.auth.GetIamAuthTokenRequest;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.Properties;

import java.net.URL;

public class IAMDatabaseAuthenticationTester {
 //&AWS; Credentials of the IAM user with policy enabling IAM Database Authenticated
 access to the db by the db user.
 private static final DefaultAWSCredentialsProviderChain creds = new
 DefaultAWSCredentialsProviderChain();
 private static final String AWS_ACCESS_KEY =
 creds.getCredentials().getAWSAccessKeyId();
 private static final String AWS_SECRET_KEY =
 creds.getCredentials().getAWSSecretKey();

 //Configuration parameters for the generation of the IAM Database Authentication
 token
 private static final String RDS_INSTANCE_HOSTNAME = "rdsmysql.123456789012.us-
west-2.rds.amazonaws.com";
 private static final int RDS_INSTANCE_PORT = 3306;
 private static final String REGION_NAME = "us-west-2";
 private static final String DB_USER = "jane_doe";
 private static final String JDBC_URL = "jdbc:mysql://" + RDS_INSTANCE_HOSTNAME +
 ":" + RDS_INSTANCE_PORT;

IAM database authentication 5145

Amazon Relational Database Service User Guide

 private static final String SSL_CERTIFICATE = "rds-ca-2019-us-west-2.pem";

 private static final String KEY_STORE_TYPE = "JKS";
 private static final String KEY_STORE_PROVIDER = "SUN";
 private static final String KEY_STORE_FILE_PREFIX = "sys-connect-via-ssl-test-
cacerts";
 private static final String KEY_STORE_FILE_SUFFIX = ".jks";
 private static final String DEFAULT_KEY_STORE_PASSWORD = "changeit";

 public static void main(String[] args) throws Exception {
 //get the connection
 Connection connection = getDBConnectionUsingIam();

 //verify the connection is successful
 Statement stmt= connection.createStatement();
 ResultSet rs=stmt.executeQuery("SELECT 'Success!' FROM DUAL;");
 while (rs.next()) {
 String id = rs.getString(1);
 System.out.println(id); //Should print "Success!"
 }

 //close the connection
 stmt.close();
 connection.close();

 clearSslProperties();

 }

 /**
 * This method returns a connection to the db instance authenticated using IAM
 Database Authentication
 * @return
 * @throws Exception
 */
 private static Connection getDBConnectionUsingIam() throws Exception {
 setSslProperties();
 return DriverManager.getConnection(JDBC_URL, setMySqlConnectionProperties());
 }

 /**
 * This method sets the mysql connection properties which includes the IAM Database
 Authentication token
 * as the password. It also specifies that SSL verification is required.

IAM database authentication 5146

Amazon Relational Database Service User Guide

 * @return
 */
 private static Properties setMySqlConnectionProperties() {
 Properties mysqlConnectionProperties = new Properties();
 mysqlConnectionProperties.setProperty("verifyServerCertificate","true");
 mysqlConnectionProperties.setProperty("useSSL", "true");
 mysqlConnectionProperties.setProperty("user",DB_USER);
 mysqlConnectionProperties.setProperty("password",generateAuthToken());
 return mysqlConnectionProperties;
 }

 /**
 * This method generates the IAM Auth Token.
 * An example IAM Auth Token would look like follows:
 * btusi123.cmz7kenwo2ye.rds.cn-north-1.amazonaws.com.cn:3306/?
Action=connect&DBUser=iamtestuser&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Date=20171003T010726Z&X-Amz-SignedHeaders=host&X-Amz-Expires=899&X-Amz-
Credential=AKIAPFXHGVDI5RNFO4AQ%2F20171003%2Fcn-north-1%2Frds-db%2Faws4_request&X-Amz-
Signature=f9f45ef96c1f770cdad11a53e33ffa4c3730bc03fdee820cfdf1322eed15483b
 * @return
 */
 private static String generateAuthToken() {
 BasicAWSCredentials awsCredentials = new BasicAWSCredentials(AWS_ACCESS_KEY,
 AWS_SECRET_KEY);

 RdsIamAuthTokenGenerator generator = RdsIamAuthTokenGenerator.builder()
 .credentials(new
 AWSStaticCredentialsProvider(awsCredentials)).region(REGION_NAME).build();
 return generator.getAuthToken(GetIamAuthTokenRequest.builder()

 .hostname(RDS_INSTANCE_HOSTNAME).port(RDS_INSTANCE_PORT).userName(DB_USER).build());
 }

 /**
 * This method sets the SSL properties which specify the key store file, its type
 and password:
 * @throws Exception
 */
 private static void setSslProperties() throws Exception {
 System.setProperty("javax.net.ssl.trustStore", createKeyStoreFile());
 System.setProperty("javax.net.ssl.trustStoreType", KEY_STORE_TYPE);
 System.setProperty("javax.net.ssl.trustStorePassword",
 DEFAULT_KEY_STORE_PASSWORD);
 }

IAM database authentication 5147

Amazon Relational Database Service User Guide

 /**
 * This method returns the path of the Key Store File needed for the SSL
 verification during the IAM Database Authentication to
 * the db instance.
 * @return
 * @throws Exception
 */
 private static String createKeyStoreFile() throws Exception {
 return createKeyStoreFile(createCertificate()).getPath();
 }

 /**
 * This method generates the SSL certificate
 * @return
 * @throws Exception
 */
 private static X509Certificate createCertificate() throws Exception {
 CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
 URL url = new File(SSL_CERTIFICATE).toURI().toURL();
 if (url == null) {
 throw new Exception();
 }
 try (InputStream certInputStream = url.openStream()) {
 return (X509Certificate) certFactory.generateCertificate(certInputStream);
 }
 }

 /**
 * This method creates the Key Store File
 * @param rootX509Certificate - the SSL certificate to be stored in the KeyStore
 * @return
 * @throws Exception
 */
 private static File createKeyStoreFile(X509Certificate rootX509Certificate) throws
 Exception {
 File keyStoreFile = File.createTempFile(KEY_STORE_FILE_PREFIX,
 KEY_STORE_FILE_SUFFIX);
 try (FileOutputStream fos = new FileOutputStream(keyStoreFile.getPath())) {
 KeyStore ks = KeyStore.getInstance(KEY_STORE_TYPE, KEY_STORE_PROVIDER);
 ks.load(null);
 ks.setCertificateEntry("rootCaCertificate", rootX509Certificate);
 ks.store(fos, DEFAULT_KEY_STORE_PASSWORD.toCharArray());
 }

IAM database authentication 5148

Amazon Relational Database Service User Guide

 return keyStoreFile;
 }

 /**
 * This method clears the SSL properties.
 * @throws Exception
 */
 private static void clearSslProperties() throws Exception {
 System.clearProperty("javax.net.ssl.trustStore");
 System.clearProperty("javax.net.ssl.trustStoreType");
 System.clearProperty("javax.net.ssl.trustStorePassword");
 }

}

If you want to connect to a DB instance through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB instance using IAM authentication and the AWS SDK for Python (Boto3)

You can connect to an RDS for MariaDB, MySQL, or PostgreSQL DB instance with the AWS SDK for
Python (Boto3) as described following.

Prerequisites

The following are prerequisites for connecting to your DB instance using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

In addition, make sure the imported libraries in the sample code exist on your system.

Examples

The code examples use profiles for shared credentials. For information about the specifying
credentials, see Credentials in the AWS SDK for Python (Boto3) documentation.

The following code examples show how to generate an authentication token, and then use it to
connect to a DB instance.

IAM database authentication 5149

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html

Amazon Relational Database Service User Guide

To run this code example, you need the AWS SDK for Python (Boto3), found on the AWS site.

Modify the values of the following variables as needed:

• ENDPOINT – The endpoint of the DB instance that you want to access

• PORT – The port number used for connecting to your DB instance

• USER – The database account that you want to access

• REGION – The AWS Region where the DB instance is running

• DBNAME – The database that you want to access

• SSLCERTIFICATE – The full path to the SSL certificate for Amazon RDS

For ssl_ca, specify an SSL certificate. To download an SSL certificate, see Using SSL/TLS to
encrypt a connection to a DB instance or cluster.

Note

You cannot use a custom Route 53 DNS record instead of the DB instance endpoint to
generate the authentication token.

This code connects to a MariaDB or MySQL DB instance.

Before running this code, install the PyMySQL driver by following the instructions in the Python
Package Index.

import pymysql
import sys
import boto3
import os

ENDPOINT="mysqldb.123456789012.us-east-1.rds.amazonaws.com"
PORT="3306"
USER="jane_doe"
REGION="us-east-1"
DBNAME="mydb"
os.environ['LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN'] = '1'

#gets the credentials from .aws/credentials
session = boto3.Session(profile_name='default')

IAM database authentication 5150

http://aws.amazon.com/sdk-for-python/
https://pypi.org/project/PyMySQL/
https://pypi.org/project/PyMySQL/

Amazon Relational Database Service User Guide

client = session.client('rds')

token = client.generate_db_auth_token(DBHostname=ENDPOINT, Port=PORT, DBUsername=USER,
 Region=REGION)

try:
 conn =
 pymysql.connect(auth_plugin_map={'mysql_clear_password':None},host=ENDPOINT,
 user=USER, password=token, port=PORT, database=DBNAME, ssl_ca='SSLCERTIFICATE',
 ssl_verify_identity=True)
 cur = conn.cursor()
 cur.execute("""SELECT now()""")
 query_results = cur.fetchall()
 print(query_results)
except Exception as e:
 print("Database connection failed due to {}".format(e))

This code connects to a PostgreSQL DB instance.

Before running this code, install psycopg2 by following the instructions in Psycopg
documentation.

import psycopg2
import sys
import boto3
import os

ENDPOINT="postgresmydb.123456789012.us-east-1.rds.amazonaws.com"
PORT="5432"
USER="jane_doe"
REGION="us-east-1"
DBNAME="mydb"

#gets the credentials from .aws/credentials
session = boto3.Session(profile_name='RDSCreds')
client = session.client('rds')

token = client.generate_db_auth_token(DBHostname=ENDPOINT, Port=PORT, DBUsername=USER,
 Region=REGION)

try:

IAM database authentication 5151

https://pypi.org/project/psycopg2/
https://pypi.org/project/psycopg2/

Amazon Relational Database Service User Guide

 conn = psycopg2.connect(host=ENDPOINT, port=PORT, database=DBNAME, user=USER,
 password=token, sslrootcert="SSLCERTIFICATE")
 cur = conn.cursor()
 cur.execute("""SELECT now()""")
 query_results = cur.fetchall()
 print(query_results)
except Exception as e:
 print("Database connection failed due to {}".format(e))

If you want to connect to a DB instance through a proxy, see Connecting to a proxy using IAM
authentication.

Troubleshooting for IAM DB authentication

Following, you can find troubleshooting ideas for some common IAM DB authentication issues and
information on CloudWatch logs and metrics for IAM DB authentication.

Exporting IAM DB authentication error logs to CloudWatch Logs

IAM DB authentication error logs are stored on the database host, and you can export these logs
your CloudWatch Logs account. Use the logs and remediation methods in this page to troubleshoot
IAM DB authentication issues.

You can enable log exports to CloudWatch Logs from the console, AWS CLI, and RDS API. For
console instructions, see Publishing database logs to Amazon CloudWatch Logs.

To export your IAM DB authentication error logs to CloudWatch Logs when creating a DB instance
from the AWS CLI, use the following command:

aws rds create-db-instance --db-instance-identifier mydbinstance \
--region us-east-1 \
--db-instance-class db.t3.large \
--allocated-storage 50 \
--engine postgres \
--engine-version 16 \
--port 5432 \
--master-username master \
--master-user-password password \
--publicly-accessible \
--enable-iam-database-authentication \
--enable-cloudwatch-logs-exports=iam-db-auth-error

IAM database authentication 5152

Amazon Relational Database Service User Guide

To export your IAM DB authentication error logs to CloudWatch Logs when modifying a DB
instance from the AWS CLI, use the following command:

aws rds modify-db-instance --db-instance-identifier mydbinstance \
--region us-east-1 \
--cloudwatch-logs-export-configuration '{"EnableLogTypes":["iam-db-auth-error"]}'

To verify if your DB instance is exporting IAM DB authentication logs to CloudWatch Logs, check if
the EnabledCloudwatchLogsExports parameter is set to iam-db-auth-error in the output
for the describe-db-instances command.

aws rds describe-db-instances --region us-east-1 --db-instance-identifier mydbinstance
 ...

 "EnabledCloudwatchLogsExports": [
 "iam-db-auth-error"
],
 ...

IAM DB authentication CloudWatch metrics

Amazon RDS delivers near-real time metrics about IAM DB authentication to your Amazon
CloudWatch account. The following table lists the IAM DB authentication metrics available using
CloudWatch:

Metric Description

IamDbAuthConnectionRequests Total number of connection requests made
with IAM DB authentication.

IamDbAuthConnectionSuccess Total number of successful IAM DB authentic
ation requests.

IamDbAuthConnectionFailure Total number of failed IAM DB authentication
requests.

IamDbAuthConnectionFailureI
nvalidToken

Total number of failed IAM DB authentication
requests due to invalid token.

IAM database authentication 5153

Amazon Relational Database Service User Guide

Metric Description

IamDbAuthConnectionFailureI
nsufficientPermissions

Total number of failed IAM DB authentication
requests due to incorrect policies or permissio
ns.

IamDbAuthConnectionFailureT
hrottling

Total number of failed IAM DB authentic
ation requests due to IAM DB authentication
throttling.

IamDbAuthConnectionFailureS
erverError

Total number of failed IAM DB authentication
requests due to an internal server error in the
IAM DB authentication feature.

Common issues and solutions

You might encounter the following issues when using IAM DB authention. Use the remediation
steps in the table to solve the issues:

Error Metric(s) Cause Solution

[ERROR] Failed
to authenticate
the connectio
n request for
user db_user
because the
provided token
is malformed
or otherwise
invalid. (Status
Code: 400, Error
Code: InvalidTo
ken)

IamDbAuth
Connectio
nFailure

IamDbAuth
Connectio
nFailureI
nvalidToken

The IAM DB authentia
tion token in the
connection request
is either not a valid
SigV4a token, or
it is not formatted
 correctly.

Check your token
generation strategy
in your applicati
on. In some cases,
make sure you are
passing the token
with valid formatting.
Truncating the token
(or incorrect string
formatting) will make
the token invalid.

IAM database authentication 5154

Amazon Relational Database Service User Guide

Error Metric(s) Cause Solution

[ERROR] Failed
to authenticate
the connection
request for user
db_user because
the token age is
longer than 15
minutes. (Status
Code: 400,
Error Code:Expi
redToken)

IamDbAuth
Connectio
nFailure

IamDbAuth
Connectio
nFailureI
nvalidToken

The IAM DB authentic
ation token has
expired. Tokens are
only valid for 15
minutes.

Check your token
caching and/or token
re-use logic in your
application. You
should not re-use
tokens that are older
than 15 minutes.

[ERROR] Failed
to authorize
the connection
request for user
db_user because
the IAM policy
assumed by the
caller 'arn:aws:
sts::1234
56789012:
assumed-r
ole/ <RoleName
>/ <RoleSess
ion>' is not
authorized to
perform `rds-
db:connect` on
the DB instance.
(Status Code:
403, Error
Code:NotA
uthorized)

IamDbAuth
Connectio
nFailure

IamDbAuth
Connectio
nFailureI
nsufficie
ntPermissions

This error might be
due to the following
reasons:

• The IAM policy
assumed by the
application does
not authorize
the rds-db:co
nnect action.

• You are assuming
the incorrect role/
policy for db_user
to connect to the
database.

• You are assuming
the correct policy
for db_user,
but you are not
connecting to the
correct database.

Verify that the IAM
role and/or policy
you are assuming
in your applicati
on. Make sure you
assume the same
policy to generate
the token as to
connect to the DB.

IAM database authentication 5155

Amazon Relational Database Service User Guide

Error Metric(s) Cause Solution

[ERROR] Failed
to authorize
the connection
request for user
db_user due to
IAM DB authentic
ation throttlin
g. (Status
Code: 429, Error
Code: Throttlin
gException)

IamDbAuth
Connectio
nFailure

IamDbAuth
Connectio
nFailureT
hrottling

You are making too
many connection
requests to your DB
in a short amount
of time. IAM DB
authentication
throttling limit is
200 connections per
second.

Reduce the rate of
establishing new
connections with
IAM authentication.
Consider implement
ing connection
pooling using RDS
Proxy in order to
reuse established
connections in your
application.

[ERROR] Failed
to authorize
the connectio
n request for
user db_user due
to an internal
IAM DB authentic
ation error.
(Status Code:
500, Error Code:
InternalError)

IamDbAuth
Connectio
nFailure

IamDbAuth
Connectio
nFailureT
hrottling

There was an internal
error while authorizi
ng the DB connecito
n with IAM DB
authentication.

Reach out to https://
aws.amazon.com/
premiumsupport/ to
investigate the issue.

Troubleshooting Amazon RDS identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon RDS and IAM.

Topics

• I'm not authorized to perform an action in Amazon RDS

• I'm not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon RDS resources

Troubleshooting 5156

Amazon Relational Database Service User Guide

I'm not authorized to perform an action in Amazon RDS

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

The following example error occurs when the mateojackson user tries to use the console to view
details about a widget but does not have rds:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 rds:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the rds:GetWidget action.

I'm not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, then you
must contact your administrator for assistance. Your administrator is the person that provided you
with your sign-in credentials. Ask that person to update your policies to allow you to pass a role to
Amazon RDS.

Some AWS services allow you to pass an existing role to that service, instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when a user named marymajor tries to use the console to
perform an action in Amazon RDS. However, the action requires the service to have permissions
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

Troubleshooting 5157

Amazon Relational Database Service User Guide

I want to allow people outside of my AWS account to access my Amazon RDS
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon RDS supports these features, see How Amazon RDS works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and monitoring in Amazon RDS

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon RDS and your AWS solutions. You should collect monitoring data from all of the parts
of your AWS solution so that you can more easily debug a multi-point failure if one occurs. AWS
provides several tools for monitoring your Amazon RDS resources and responding to potential
incidents:

Amazon CloudWatch Alarms

Using Amazon CloudWatch alarms, you watch a single metric over a time period that you
specify. If the metric exceeds a given threshold, a notification is sent to an Amazon SNS topic
or AWS Auto Scaling policy. CloudWatch alarms do not invoke actions because they are in
a particular state. Rather the state must have changed and been maintained for a specified
number of periods.

Logging and monitoring 5158

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Relational Database Service User Guide

AWS CloudTrail Logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon RDS.
CloudTrail captures all API calls for Amazon RDS as events, including calls from the console and
from code calls to Amazon RDS API operations. Using the information collected by CloudTrail,
you can determine the request that was made to Amazon RDS, the IP address from which the
request was made, who made the request, when it was made, and additional details. For more
information, see Monitoring Amazon RDS API calls in AWS CloudTrail.

Enhanced Monitoring

Amazon RDS provides metrics in real time for the operating system (OS) that your DB instance
runs on. You can view the metrics for your DB instance using the console, or consume the
Enhanced Monitoring JSON output from Amazon CloudWatch Logs in a monitoring system of
your choice. For more information, see Monitoring OS metrics with Enhanced Monitoring.

Amazon RDS Performance Insights

Performance Insights expands on existing Amazon RDS monitoring features to illustrate your
database's performance and help you analyze any issues that affect it. With the Performance
Insights dashboard, you can visualize the database load and filter the load by waits, SQL
statements, hosts, or users. For more information, see Monitoring DB load with Performance
Insights on Amazon RDS.

Database Logs

You can view, download, and watch database logs using the AWS Management Console, AWS
CLI, or RDS API. For more information, see Monitoring Amazon RDS log files.

Amazon RDS Recommendations

Amazon RDS provides automated recommendations for database resources. These
recommendations provide best practice guidance by analyzing DB instance configuration,
usage, and performance data. For more information, see Recommendations from Amazon RDS.

Amazon RDS Event Notification

Amazon RDS uses the Amazon Simple Notification Service (Amazon SNS) to provide notification
when an Amazon RDS event occurs. These notifications can be in any notification form
supported by Amazon SNS for an AWS Region, such as an email, a text message, or a call to an
HTTP endpoint. For more information, see Working with Amazon RDS event notification.

Logging and monitoring 5159

Amazon Relational Database Service User Guide

AWS Trusted Advisor

Trusted Advisor draws upon best practices learned from serving hundreds of thousands of AWS
customers. Trusted Advisor inspects your AWS environment and then makes recommendations
when opportunities exist to save money, improve system availability and performance, or help
close security gaps. All AWS customers have access to five Trusted Advisor checks. Customers
with a Business or Enterprise support plan can view all Trusted Advisor checks.

Trusted Advisor has the following Amazon RDS-related checks:

• Amazon RDS Idle DB Instances

• Amazon RDS Security Group Access Risk

• Amazon RDS Backups

• Amazon RDS Multi-AZ

For more information on these checks, see Trusted Advisor best practices (checks).

For more information about monitoring Amazon RDS, see Monitoring metrics in an Amazon RDS
instance.

Logging and monitoring 5160

https://aws.amazon.com/premiumsupport/trustedadvisor/best-practices/

Amazon Relational Database Service User Guide

Compliance validation for Amazon RDS

Third-party auditors assess the security and compliance of Amazon RDS as part of multiple AWS
compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS services in scope by
compliance program. For general information, see AWS compliance programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading reports in AWS Artifact.

Your compliance responsibility when using Amazon RDS is determined by the sensitivity of your
data, your organization's compliance objectives, and applicable laws and regulations. AWS provides
the following resources to help with compliance:

• Security and compliance quick start guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-compliant applications.

• AWS compliance resources – This collection of workbooks and guides that might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

Compliance validation 5161

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html

Amazon Relational Database Service User Guide

Resilience in Amazon RDS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

In addition to the AWS global infrastructure, Amazon RDS offers features to help support your data
resiliency and backup needs.

Backup and restore

Amazon RDS creates and saves automated backups of your DB instance. Amazon RDS creates
a storage volume snapshot of your DB instance, backing up the entire DB instance and not just
individual databases.

Amazon RDS creates automated backups of your DB instance during the backup window of your DB
instance. Amazon RDS saves the automated backups of your DB instance according to the backup
retention period that you specify. If necessary, you can recover your database to any point in time
during the backup retention period. You can also back up your DB instance manually, by manually
creating a DB snapshot.

You can create a DB instance by restoring from this DB snapshot as a disaster recovery solution if
the source DB instance fails.

For more information, see Backing up, restoring, and exporting data.

Replication

Amazon RDS uses the MariaDB, MySQL, Oracle, and PostgreSQL DB engines' built-in replication
functionality to create a special type of DB instance called a read replica from a source DB instance.
Updates made to the source DB instance are asynchronously copied to the read replica. You can
reduce the load on your source DB instance by routing read queries from your applications to the
read replica. Using read replicas, you can elastically scale out beyond the capacity constraints
of a single DB instance for read-heavy database workloads. You can promote a read replica to a

Resilience 5162

https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Relational Database Service User Guide

standalone instance as a disaster recovery solution if the source DB instance fails. For some DB
engines, Amazon RDS also supports other replication options.

For more information, see Working with DB instance read replicas.

Failover

Amazon RDS provides high availability and failover support for DB instances using Multi-AZ
deployments. Amazon RDS uses several different technologies to provide failover support. Multi-
AZ deployments for Oracle, PostgreSQL, MySQL, and MariaDB DB instances use Amazon's failover
technology. SQL Server DB instances use SQL Server Database Mirroring (DBM).

For more information, see Configuring and managing a Multi-AZ deployment for Amazon RDS.

Failover 5163

Amazon Relational Database Service User Guide

Infrastructure security in Amazon RDS

As a managed service, Amazon Relational Database Service is protected by AWS global network
security. For information about AWS security services and how AWS protects infrastructure, see
AWS Cloud Security. To design your AWS environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon RDS through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

In addition, Amazon RDS offers features to help support infrastructure security.

Security groups

Security groups control the access that traffic has in and out of a DB instance. By default, network
access is turned off to a DB instance. You can specify rules in a security group that allow access
from an IP address range, port, or security group. After ingress rules are configured, the same rules
apply to all DB instances that are associated with that security group.

For more information, see Controlling access with security groups.

Public accessibility

When you launch a DB instance inside a virtual private cloud (VPC) based on the Amazon VPC
service, you can turn on or off public accessibility for that DB instance. To designate whether the
DB instance that you create has a DNS name that resolves to a public IP address, you use the Public
accessibility parameter. By using this parameter, you can designate whether there is public access
to the DB instance. You can modify a DB instance to turn on or off public accessibility by modifying
the Public accessibility parameter.

Infrastructure security 5164

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

Amazon Relational Database Service User Guide

For more information, see Hiding a DB instance in a VPC from the internet.

Note

If your DB instance is in a VPC but isn't publicly accessible, you can also use an AWS Site-
to-Site VPN connection or an AWS Direct Connect connection to access it from a private
network. For more information, see Internetwork traffic privacy.

Public accessibility 5165

Amazon Relational Database Service User Guide

Amazon RDS API and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and Amazon RDS API endpoints by
creating an interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink.

AWS PrivateLink enables you to privately access Amazon RDS API operations without an internet
gateway, NAT device, VPN connection, or AWS Direct Connect connection. DB instances in your VPC
don't need public IP addresses to communicate with Amazon RDS API endpoints to launch, modify,
or terminate DB instances. Your DB instances also don't need public IP addresses to use any of the
available RDS API operations. Traffic between your VPC and Amazon RDS doesn't leave the Amazon
network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets.
For more information on elastic network interfaces, see Elastic network interfaces in the Amazon
EC2 User Guide.

For more information about VPC endpoints, see Interface VPC endpoints (AWS PrivateLink) in the
Amazon VPC User Guide. For more information about RDS API operations, see Amazon RDS API
Reference.

You don't need an interface VPC endpoint to connect to a DB instance. For more information, see
Scenarios for accessing a DB instance in a VPC.

Considerations for VPC endpoints

Before you set up an interface VPC endpoint for Amazon RDS API endpoints, ensure that you
review Interface endpoint properties and limitations in the Amazon VPC User Guide.

All RDS API operations relevant to managing Amazon RDS resources are available from your VPC
using AWS PrivateLink.

VPC endpoint policies are supported for RDS API endpoints. By default, full access to RDS API
operations is allowed through the endpoint. For more information, see Controlling access to
services with VPC endpoints in the Amazon VPC User Guide.

Availability

Amazon RDS API currently supports VPC endpoints in the following AWS Regions:

VPC endpoints (AWS PrivateLink) 5166

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Relational Database Service User Guide

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Canada West (Calgary)

• China (Beijing)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Zurich)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• Europe (Milan)

• Israel (Tel Aviv)

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Availability 5167

Amazon Relational Database Service User Guide

Creating an interface VPC endpoint for Amazon RDS API

You can create a VPC endpoint for the Amazon RDS API using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for Amazon RDS API using the service name
com.amazonaws.region.rds.

Excluding AWS Regions in China, if you enable private DNS for the endpoint, you can make
API requests to Amazon RDS with the VPC endpoint using its default DNS name for the AWS
Region, for example rds.us-east-1.amazonaws.com. For the China (Beijing) and China
(Ningxia) AWS Regions, you can make API requests with the VPC endpoint using rds-api.cn-
north-1.amazonaws.com.cn and rds-api.cn-northwest-1.amazonaws.com.cn,
respectively.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for Amazon RDS API

You can attach an endpoint policy to your VPC endpoint that controls access to Amazon RDS API.
The policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for Amazon RDS API actions

The following is an example of an endpoint policy for Amazon RDS API. When attached to an
endpoint, this policy grants access to the listed Amazon RDS API actions for all principals on all
resources.

{
 "Statement":[
 {

Creating an interface VPC endpoint 5168

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Relational Database Service User Guide

 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBInstance",
 "rds:ModifyDBInstance",
 "rds:CreateDBSnapshot"
],
 "Resource":"*"
 }
]
}

Example: VPC endpoint policy that denies all access from a specified AWS account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources
using the endpoint. The policy allows all actions from other accounts.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": { "AWS": ["123456789012"] }
 }
]
}

Security best practices for Amazon RDS

Use AWS Identity and Access Management (IAM) accounts to control access to Amazon RDS
API operations, especially operations that create, modify, or delete Amazon RDS resources.
Such resources include DB instances, security groups, and parameter groups. Also use IAM to
control actions that perform common administrative actions such as backing up and restoring DB
instances.

Security best practices 5169

Amazon Relational Database Service User Guide

• Create an individual user for each person who manages Amazon RDS resources, including
yourself. Don't use AWS root credentials to manage Amazon RDS resources.

• Grant each user the minimum set of permissions required to perform his or her duties.

• Use IAM groups to effectively manage permissions for multiple users.

• Rotate your IAM credentials regularly.

• Configure AWS Secrets Manager to automatically rotate the secrets for Amazon RDS. For more
information, see Rotating your AWS Secrets Manager secrets in the AWS Secrets Manager User
Guide. You can also retrieve the credential from AWS Secrets Manager programmatically. For
more information, see Retrieving the secret value in the AWS Secrets Manager User Guide.

For more information about Amazon RDS security, see Security in Amazon RDS. For more
information about IAM, see AWS Identity and Access Management. For information on IAM best
practices, see IAM best practices.

AWS Security Hub uses security controls to evaluate resource configurations and security standards
to help you comply with various compliance frameworks. For more information about using
Security Hub to evaluate RDS resources, see Amazon Relational Database Service controls in the
AWS Security Hub User Guide.

You can monitor your usage of RDS as it relates to security best practices by using Security Hub.
For more information, see What is AWS Security Hub?.

Use the AWS Management Console, the AWS CLI, or the RDS API to change the password for your
master user. If you use another tool, such as a SQL client, to change the master user password, it
might result in privileges being revoked for the user unintentionally.

Controlling access with security groups

VPC security groups control the access that traffic has in and out of a DB instance. By default,
network access is turned off for a DB instance. You can specify rules in a security group that allow
access from an IP address range, port, or security group. After ingress rules are configured, the
same rules apply to all DB instances that are associated with that security group. You can specify
up to 20 rules in a security group.

Overview of VPC security groups

Each VPC security group rule makes it possible for a specific source to access a DB instance in a
VPC that is associated with that VPC security group. The source can be a range of addresses (for

Controlling access with security groups 5170

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html
https://docs.aws.amazon.com/securityhub/latest/userguide/rds-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Relational Database Service User Guide

example, 203.0.113.0/24), or another VPC security group. By specifying a VPC security group
as the source, you allow incoming traffic from all instances (typically application servers) that
use the source VPC security group. VPC security groups can have rules that govern both inbound
and outbound traffic. However, the outbound traffic rules typically don't apply to DB instances.
Outbound traffic rules apply only if the DB instance acts as a client. For example, outbound traffic
rules apply to an Oracle DB instance with outbound database links. You must use the Amazon EC2
API or the Security Group option on the VPC console to create VPC security groups.

When you create rules for your VPC security group that allow access to the instances in your VPC,
you must specify a port for each range of addresses that the rule allows access for. For example, if
you want to turn on Secure Shell (SSH) access for instances in the VPC, create a rule allowing access
to TCP port 22 for the specified range of addresses.

You can configure multiple VPC security groups that allow access to different ports for different
instances in your VPC. For example, you can create a VPC security group that allows access to TCP
port 80 for web servers in your VPC. You can then create another VPC security group that allows
access to TCP port 3306 for RDS for MySQL DB instances in your VPC.

For more information on VPC security groups, see Security groups in the Amazon Virtual Private
Cloud User Guide.

Note

If your DB instance is in a VPC but isn't publicly accessible, you can also use an AWS Site-
to-Site VPN connection or an AWS Direct Connect connection to access it from a private
network. For more information, see Internetwork traffic privacy.

Security group scenario

A common use of a DB instance in a VPC is to share data with an application server running in an
Amazon EC2 instance in the same VPC, which is accessed by a client application outside the VPC.
For this scenario, you use the RDS and VPC pages on the AWS Management Console or the RDS and
EC2 API operations to create the necessary instances and security groups:

1. Create a VPC security group (for example, sg-0123ec2example) and define inbound rules that
use the IP addresses of the client application as the source. This security group allows your client
application to connect to EC2 instances in a VPC that uses this security group.

Security group scenario 5171

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Relational Database Service User Guide

2. Create an EC2 instance for the application and add the EC2 instance to the VPC security group
(sg-0123ec2example) that you created in the previous step.

3. Create a second VPC security group (for example, sg-6789rdsexample) and create a new rule
by specifying the VPC security group that you created in step 1 (sg-0123ec2example) as the
source.

4. Create a new DB instance and add the DB instance to the VPC security group
(sg-6789rdsexample) that you created in the previous step. When you create the DB
instance, use the same port number as the one specified for the VPC security group
(sg-6789rdsexample) rule that you created in step 3.

The following diagram shows this scenario.

Security group scenario 5172

Amazon Relational Database Service User Guide

For detailed instructions about configuring a VPC for this scenario, see Tutorial: Create a VPC for
use with a DB instance (IPv4 only). For more information about using a VPC, see Amazon VPC and
Amazon RDS.

Creating a VPC security group

You can create a VPC security group for a DB instance by using the VPC console. For information
about creating a security group, see Provide access to your DB instance in your VPC by creating a
security group and Security groups in the Amazon Virtual Private Cloud User Guide.

Associating a security group with a DB instance

You can associate a security group with a DB instance by using Modify on the RDS console, the
ModifyDBInstance Amazon RDS API, or the modify-db-instance AWS CLI command.

The following CLI example associates a specific VPC security group and removes DB security groups
from the DB instance

aws rds modify-db-instance --db-instance-identifier dbName --vpc-security-group-ids sg-
ID

For information about modifying a DB instance, see Modifying an Amazon RDS DB instance. For
security group considerations when you restore a DB instance from a DB snapshot, see Security
group considerations.

Note

The RDS console displays different security group rule names for your database if the Port
value is configured to a non-default value.

For RDS for Oracle DB instances, additional security groups can be associated by populating the
security group options setting for the Oracle Enterprise Manager Database Express (OEM), Oracle
Management Agent for Enterprise Manager Cloud Control (OEM Agent) and the Oracle Secure
Sockets Layer options. In this case, both security groups associated with the DB instance and
options settings apply to the DB instance. For more information about these option groups, see
Oracle Enterprise Manager, Oracle Management Agent for Enterprise Manager Cloud Control, and
Oracle Secure Sockets Layer.

Creating a VPC security group 5173

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Relational Database Service User Guide

Master user account privileges

When you create a new DB instance, the default master user that you use gets certain privileges for
that DB instance. You can't change the master user name after the DB instance is created.

Important

We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal
privileges required for your application.

Note

If you accidentally delete the permissions for the master user, you can restore them by
modifying the DB instance and setting a new master user password. For more information
about modifying a DB instance, see Modifying an Amazon RDS DB instance.

The following table shows the privileges and database roles the master user gets for each of the
database engines.

Database
engine

System privilege Database role

RDS for
Db2

The master user is assigned to the masterdba
group and assigned the master_user_role .

SYSMON, DBADM with DATAACCESS AND
ACCCESSCTRL , BINDADD, CONNECT, CREATETAB

, CREATE_SECURE_OBJECT , EXPLAIN,
IMPLICIT_SCHEMA , LOAD, SQLADM, WLMADM

DBA, DBA_RESTRICTED ,
DEVELOPER , ROLE_NULL
ID_PACKAGES ,
ROLE_PROCEDURES ,
ROLE_TABLESPACES

For more information, see
Amazon RDS for Db2 default
roles.

RDS for
MariaDB

SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
RELOAD, PROCESS, REFERENCES , INDEX, ALTER,
SHOW DATABASES , CREATE TEMPORARY

—

Master user account privileges 5174

Amazon Relational Database Service User Guide

Database
engine

System privilege Database role

TABLES, LOCK TABLES, EXECUTE, REPLICATION
CLIENT, CREATE VIEW , SHOW VIEW, CREATE
ROUTINE, ALTER ROUTINE, CREATE USER, EVENT,
TRIGGER, REPLICATION SLAVE

Starting with RDS for MariaDB version 11.4, the
master user also gets the SHOW CREATE ROUTINE
privilege.

RDS for
MySQL
8.0.36
and
higher

SELECT, INSERT, UPDATE, DELETE, CREATE,
DROP, RELOAD, PROCESS, REFERENCES , INDEX,
ALTER, SHOW DATABASES , CREATE TEMPORARY
TABLES, LOCK TABLES, EXECUTE, REPLICATION
SLAVE, REPLICATION CLIENT , CREATE VIEW,
SHOW VIEW, CREATE ROUTINE, ALTER ROUTINE,
CREATE USER, EVENT, TRIGGER, CREATE ROLE,
DROP ROLE, APPLICATION_PASSWORD_ADMIN ,
ROLE_ADMIN , SET_USER_ID , XA_RECOVE
R_ADMIN

rds_superuser_role

For more information about
rds_superuser_role

, see Role-based privilege
model for RDS for MySQL.

RDS for
MySQL
versions
lower
than
8.0.36

SELECT, INSERT, UPDATE, DELETE, CREATE,
DROP, RELOAD, PROCESS, REFERENCES , INDEX,
ALTER, SHOW DATABASES , CREATE TEMPORARY
 TABLES , LOCK TABLES, EXECUTE, REPLICATI
ON CLIENT , CREATE VIEW, SHOW VIEW, CREATE
ROUTINE, ALTER ROUTINE, CREATE USER, EVENT,
TRIGGER, REPLICATION SLAVE

—

Master user account privileges 5175

Amazon Relational Database Service User Guide

Database
engine

System privilege Database role

RDS for
PostgreSQ
L

CREATE ROLE, CREATE DB, PASSWORD VALID
UNTIL INFINITY, CREATE EXTENSION ,
ALTER EXTENSION , DROP EXTENSION ,
CREATE TABLESPACE , ALTER <OBJECT>
OWNER, CHECKPOINT , PG_CANCEL_BACKEND(
) , PG_TERMINATE_BACKEND() , SELECT
PG_STAT_REPLICATION , EXECUTE PG_STAT_S
TATEMENTS_RESET() , OWN POSTGRES_
FDW_HANDLER() , OWN POSTGRES_FDW_VALID
ATOR() , OWN POSTGRES_FDW , EXECUTE
PG_BUFFERCACHE_PAGES() , SELECT
PG_BUFFERCACHE

RDS_SUPERUSER

For more information about
RDS_SUPERUSER, see
Understanding PostgreSQL
roles and permissions.

RDS for
Oracle

ADMINISTER DATABASE TRIGGER , ALTER
DATABASE LINK, ALTER PUBLIC DATABASE
LINK, AUDIT SYSTEM, CHANGE NOTIFICAT
ION , DROP ANY DIRECTORY , EXEMPT ACCESS
POLICY, EXEMPT IDENTITY POLICY, EXEMPT
REDACTION POLICY, FLASHBACK ANY TABLE,
GRANT ANY OBJECT PRIVILEGE , RESTRICTE
D SESSION , SELECT ANY TABLE, UNLIMITED
TABLESPACE

DBA

Note

The DBA role is
exempt from the
following privileges:
ALTER DATABASE,
ALTER SYSTEM,
CREATE ANY
DIRECTORY , CREATE
EXTERNAL JOB,
CREATE PLUGGABLE
DATABASE, GRANT
ANY PRIVILEGE ,
GRANT ANY ROLE,
READ ANY FILE
GROUP

Master user account privileges 5176

Amazon Relational Database Service User Guide

Database
engine

System privilege Database role

Amazon
RDS for
Microsoft
SQL
Server

ADMINISTER BULK OPERATIONS , ALTER ANY
CONNECTION , ALTER ANY CREDENTIAL , ALTER
ANY EVENT SESSION, ALTER ANY LINKED
SERVER, ALTER ANY LOGIN, ALTER ANY SERVER
AUDIT, ALTER ANY SERVER ROLE, ALTER
SERVER STATE, ALTER TRACE, CONNECT SQL,
CREATE ANY DATABASE, VIEW ANY DATABASE,
VIEW ANY DEFINITION , VIEW SERVER STATE,
ALTER ON ROLE SQLAgentOperatorRole

DB_OWNER (database-
level role), PROCESSAD
MIN (server-level role),
SETUPADMIN (server-level
role), SQLAgentUserRole
(database-level role)

Master user account privileges 5177

Amazon Relational Database Service User Guide

Using service-linked roles for Amazon RDS

Amazon RDS uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked
role is a unique type of IAM role that is linked directly to Amazon RDS. Service-linked roles are
predefined by Amazon RDS and include all the permissions that the service requires to call other
AWS services on your behalf.

A service-linked role makes using Amazon RDS easier because you don't have to manually add
the necessary permissions. Amazon RDS defines the permissions of its service-linked roles, and
unless defined otherwise, only Amazon RDS can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

You can delete the roles only after first deleting their related resources. This protects your Amazon
RDS resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon RDS

Amazon RDS uses the service-linked role named AWSServiceRoleForRDS to allow Amazon RDS to
call AWS services on behalf of your DB instances.

The AWSServiceRoleForRDS service-linked role trusts the following services to assume the role:

• rds.amazonaws.com

This service-linked role has a permissions policy attached to it called
AmazonRDSServiceRolePolicy that grants it permissions to operate in your account.

For more information about this policy, including the JSON policy document, see
AmazonRDSServiceRolePolicy in the AWS Managed Policy Reference Guide.

Note

You must configure permissions to allow an IAM entity (such as a user, group, or role) to
create, edit, or delete a service-linked role. If you encounter the following error message:

Service-linked roles 5178

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSServiceRolePolicy.html

Amazon Relational Database Service User Guide

Unable to create the resource. Verify that you have permission to create service linked
role. Otherwise wait and try again later.
Make sure you have the following permissions enabled:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/rds.amazonaws.com/
AWSServiceRoleForRDS",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"rds.amazonaws.com"
 }
 }
}

For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for Amazon RDS

You don't need to manually create a service-linked role. When you create a DB instance, Amazon
RDS creates the service-linked role for you.

Important

If you were using the Amazon RDS service before December 1, 2017, when it began
supporting service-linked roles, then Amazon RDS created the AWSServiceRoleForRDS role
in your account. To learn more, see A new role appeared in my AWS account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a DB instance, Amazon RDS creates the
service-linked role for you again.

Editing a service-linked role for Amazon RDS

Amazon RDS does not allow you to edit the AWSServiceRoleForRDS service-linked role. After
you create a service-linked role, you cannot change the name of the role because various entities

Service-linked role permissions for Amazon RDS 5179

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared

Amazon Relational Database Service User Guide

might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon RDS

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don't have an unused entity that is not actively monitored
or maintained. However, you must delete all of your DB instances before you can delete the
service-linked role.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no
active sessions and remove any resources used by the role.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check
box) of the AWSServiceRoleForRDS role.

3. On the Summary page for the chosen role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

Note

If you are unsure whether Amazon RDS is using the AWSServiceRoleForRDS role, you
can try to delete the role. If the service is using the role, then the deletion fails and you
can view the AWS Regions where the role is being used. If the role is being used, then
you must wait for the session to end before you can delete the role. You cannot revoke
the session for a service-linked role.

If you want to remove the AWSServiceRoleForRDS role, you must first delete all of your DB
instances .

Deleting all of your instances

Use one of these procedures to delete each of your instances.

Service-linked role permissions for Amazon RDS 5180

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Relational Database Service User Guide

To delete an instance (console)

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the instance that you want to delete.

4. For Actions, choose Delete.

5. If you are prompted for Create final Snapshot?, choose Yes or No.

6. If you chose Yes in the previous step, for Final snapshot name enter the name of your final
snapshot.

7. Choose Delete.

To delete an instance (CLI)

See delete-db-instance in the AWS CLI Command Reference.

To delete an instance (API)

See DeleteDBInstance in the Amazon RDS API Reference.

You can use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForRDS
service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Service-linked role permissions for Amazon RDS Custom

Amazon RDS Custom uses the service-linked role named AWSServiceRoleForRDSCustom to
allow RDS Custom to call AWS services on behalf of your RDS DB resources.

The AWSServiceRoleForRDSCustom service-linked role trusts the following services to assume the
role:

• custom.rds.amazonaws.com

This service-linked role has a permissions policy attached to it called
AmazonRDSCustomServiceRolePolicy that grants it permissions to operate in your account.

Creating, editing, or deleting the service-linked role for RDS Custom works the same as for Amazon
RDS. For more information, see AWS managed policy: AmazonRDSCustomServiceRolePolicy.

Service-linked role permissions for Amazon RDS Custom 5181

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstance.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon Relational Database Service User Guide

Note

You must configure permissions to allow an IAM entity (such as a user, group, or role) to
create, edit, or delete a service-linked role. If you encounter the following error message:
Unable to create the resource. Verify that you have permission to create service linked
role. Otherwise wait and try again later.
Make sure you have the following permissions enabled:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/custom.rds.amazonaws.com/
AmazonRDSCustomServiceRolePolicy",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"custom.rds.amazonaws.com"
 }
 }
}

For more information, see Service-linked role permissions in the IAM User Guide.

Service-linked role permissions for Amazon RDS Beta

Amazon RDS uses the service-linked role named AWSServiceRoleForRDSBeta to allow Amazon
RDS to call AWS services on behalf of your RDS DB resources.

The AWSServiceRoleForRDSBeta service-linked role trusts the following services to assume the
role:

• rds.amazonaws.com

This service-linked role has a permissions policy attached to it called
AmazonRDSBetaServiceRolePolicy that grants it permissions to operate in your account. For
more information, see AWS managed policy: AmazonRDSBetaServiceRolePolicy.

Service-linked role permissions for Amazon RDS Beta 5182

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Relational Database Service User Guide

Note

You must configure permissions to allow an IAM entity (such as a user, group, or role) to
create, edit, or delete a service-linked role. If you encounter the following error message:
Unable to create the resource. Verify that you have permission to create service linked
role. Otherwise wait and try again later.
Make sure you have the following permissions enabled:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/custom.rds.amazonaws.com/
AmazonRDSBetaServiceRolePolicy",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"custom.rds.amazonaws.com"
 }
 }
}

For more information, see Service-linked role permissions in the IAM User Guide.

Service-linked role for Amazon RDS Preview

Amazon RDS uses the service-linked role named AWSServiceRoleForRDSPreview to allow
Amazon RDS to call AWS services on behalf of your RDS DB resources.

The AWSServiceRoleForRDSPreview service-linked role trusts the following services to assume the
role:

• rds.amazonaws.com

This service-linked role has a permissions policy attached to it called
AmazonRDSPreviewServiceRolePolicy that grants it permissions to operate in your account.
For more information, see AWS managed policy: AmazonRDSPreviewServiceRolePolicy.

Service-linked role for Amazon RDS Preview 5183

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Relational Database Service User Guide

Note

You must configure permissions to allow an IAM entity (such as a user, group, or role) to
create, edit, or delete a service-linked role. If you encounter the following error message:
Unable to create the resource. Verify that you have permission to create service linked
role. Otherwise wait and try again later.
Make sure you have the following permissions enabled:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/custom.rds.amazonaws.com/
AmazonRDSPreviewServiceRolePolicy",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"custom.rds.amazonaws.com"
 }
 }
}

For more information, see Service-linked role permissions in the IAM User Guide.

Service-linked role for Amazon RDS Preview 5184

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Relational Database Service User Guide

Amazon VPC and Amazon RDS

Amazon Virtual Private Cloud (Amazon VPC) makes it possible for you to launch AWS resources,
such as Amazon RDS DB instances, into a virtual private cloud (VPC).

When you use a VPC, you have control over your virtual networking environment. You can choose
your own IP address range, create subnets, and configure routing and access control lists. There is
no additional cost to run your DB instance in a VPC.

Accounts have a default VPC. All new DB instances are created in the default VPC unless you
specify otherwise.

Topics

• Working with a DB instance in a VPC

• Updating the VPC for a DB instance

• Scenarios for accessing a DB instance in a VPC

• Tutorial: Create a VPC for use with a DB instance (IPv4 only)

• Tutorial: Create a VPC for use with a DB instance (dual-stack mode)

• Moving a DB instance not in a VPC into a VPC

Following, you can find a discussion about VPC functionality relevant to Amazon RDS DB instances.
For more information about Amazon VPC, see Amazon VPC Getting Started Guide and Amazon
VPC User Guide.

Working with a DB instance in a VPC

Your DB instance is in a virtual private cloud (VPC). A VPC is a virtual network that is logically
isolated from other virtual networks in the AWS Cloud. Amazon VPC makes it possible for you to
launch AWS resources, such as an Amazon RDS DB instance or Amazon EC2 instance, into a VPC.
The VPC can either be a default VPC that comes with your account or one that you create. All VPCs
are associated with your AWS account.

Your default VPC has three subnets that you can use to isolate resources inside the VPC. The
default VPC also has an internet gateway that can be used to provide access to resources inside the
VPC from outside the VPC.

For a list of scenarios involving Amazon RDS DB instances in a VPC and outside of a VPC, see
Scenarios for accessing a DB instance in a VPC.

Using Amazon RDS with Amazon VPC 5185

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/

Amazon Relational Database Service User Guide

Topics

• Working with a DB instance in a VPC

• Working with DB subnet groups

• Shared subnets

• Amazon RDS IP addressing

• Hiding a DB instance in a VPC from the internet

• Creating a DB instance in a VPC

In the following tutorials, you can learn to create a VPC that you can use for a common Amazon
RDS scenario:

• Tutorial: Create a VPC for use with a DB instance (IPv4 only)

• Tutorial: Create a VPC for use with a DB instance (dual-stack mode)

Working with a DB instance in a VPC

Here are some tips on working with a DB instance in a VPC:

• Your VPC must have at least two subnets. These subnets must be in two different Availability
Zones in the AWS Region where you want to deploy your DB instance. A subnet is a segment of a
VPC's IP address range that you can specify and that you can use to group DB instances based on
your security and operational needs.

For Multi-AZ deployments, defining a subnet for two or more Availability Zones in an AWS
Region allows Amazon RDS to create a new standby in another Availability Zone as needed. Make
sure to do this even for Single-AZ deployments, just in case you want to convert them to Multi-
AZ deployments at some point.

Note

The DB subnet group for a Local Zone can have only one subnet.

• If you want your DB instance in the VPC to be publicly accessible, make sure to turn on the VPC
attributes DNS hostnames and DNS resolution.

• Your VPC must have a DB subnet group that you create. You create a DB subnet group by
specifying the subnets you created. Amazon RDS chooses a subnet and an IP address within that

Working with a DB instance in a VPC 5186

Amazon Relational Database Service User Guide

subnet group to associate with your DB instance. The DB instance uses the Availability Zone that
contains the subnet.

• Your VPC must have a VPC security group that allows access to the DB instance.

For more information, see Scenarios for accessing a DB instance in a VPC.

• The CIDR blocks in each of your subnets must be large enough to accommodate spare IP
addresses for Amazon RDS to use during maintenance activities, including failover and compute
scaling. For example, a range such as 10.0.0.0/24 and 10.0.1.0/24 is typically large enough.

• A VPC can have an instance tenancy attribute of either default or dedicated. All default VPCs have
the instance tenancy attribute set to default, and a default VPC can support any DB instance
class.

If you choose to have your DB instance in a dedicated VPC where the instance tenancy attribute
is set to dedicated, the DB instance class of your DB instance must be one of the approved
Amazon EC2 dedicated instance types. For example, the r5.large EC2 dedicated instance
corresponds to the db.r5.large DB instance class. For information about instance tenancy in a
VPC, see Dedicated instances in the Amazon Elastic Compute Cloud User Guide.

For more information about the instance types that can be in a dedicated instance, see Amazon
EC2 dedicated instances on the Amazon EC2 pricing page.

Note

When you set the instance tenancy attribute to dedicated for a DB instance, it doesn't
guarantee that the DB instance will run on a dedicated host.

• When an option group is assigned to a DB instance, it's associated with the DB instance's VPC.
This linkage means that you can't use the option group assigned to a DB instance if you attempt
to restore the DB instance into a different VPC.

• If you restore a DB instance into a different VPC, make sure to either assign the default option
group to the DB instance, assign an option group that is linked to that VPC, or create a new
option group and assign it to the DB instance. With persistent or permanent options, such as
Oracle TDE, you must create a new option group that includes the persistent or permanent
option when restoring a DB instance into a different VPC.

Working with a DB instance in a VPC 5187

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

Amazon Relational Database Service User Guide

Working with DB subnet groups

Subnets are segments of a VPC's IP address range that you designate to group your resources based
on security and operational needs. A DB subnet group is a collection of subnets (typically private)
that you create in a VPC and that you then designate for your DB instances. By using a DB subnet
group, you can specify a particular VPC when creating DB instances using the AWS CLI or RDS API.
If you use the console, you can choose the VPC and subnet groups you want to use.

Each DB subnet group should have subnets in at least two Availability Zones in a given AWS
Region. When creating a DB instance in a VPC, you choose a DB subnet group for it. From the DB
subnet group, Amazon RDS chooses a subnet and an IP address within that subnet to associate
with the DB instance. The DB uses the Availability Zone that contains the subnet. Amazon RDS
always assigns an IP address from a subnet that has free IP address space.

If the primary DB instance of a Multi-AZ deployment fails, Amazon RDS can promote the
corresponding standby and later create a new standby using an IP address of the subnet in one of
the other Availability Zones.

The subnets in a DB subnet group are either public or private. The subnets are public or private,
depending on the configuration that you set for their network access control lists (network ACLs)
and routing tables. For a DB instance to be publicly accessible, all of the subnets in its DB subnet
group must be public. If a subnet that's associated with a publicly accessible DB instance changes
from public to private, it can affect DB instance availability.

To create a DB subnet group that supports dual-stack mode, make sure that each subnet that you
add to the DB subnet group has an Internet Protocol version 6 (IPv6) CIDR block associated with
it. For more information, see Amazon RDS IP addressing and Migrating to IPv6 in the Amazon VPC
User Guide.

Note

The DB subnet group for a Local Zone can have only one subnet.

When Amazon RDS creates a DB instance in a VPC, it assigns a network interface to your DB
instance by using an IP address from your DB subnet group. However, we strongly recommend that
you use the Domain Name System (DNS) name to connect to your DB instance. We recommend this
because the underlying IP address changes during failover.

Working with a DB instance in a VPC 5188

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html

Amazon Relational Database Service User Guide

Note

For each DB instance that you run in a VPC, make sure to reserve at least one address in
each subnet in the DB subnet group for use by Amazon RDS for recovery actions.

Shared subnets

You can create a DB instance in a shared VPC.

Some considerations to keep in mind while using shared VPCs:

• You can move a DB instance from a shared VPC subnet to a non-shared VPC subnet and vice-
versa.

• Participants in a shared VPC must create a security group in the VPC to allow them to create a
DB instance.

• Owners and participants in a shared VPC can access the database by using SQL queries. However,
only the creator of a resource can make any API calls on the resource.

Amazon RDS IP addressing

IP addresses enable resources in your VPC to communicate with each other, and with resources
over the internet. Amazon RDS supports both IPv4 and IPv6 addressing protocols. By default,
Amazon RDS and Amazon VPC use the IPv4 addressing protocol. You can't turn off this behavior.
When you create a VPC, make sure to specify an IPv4 CIDR block (a range of private IPv4
addresses). You can optionally assign an IPv6 CIDR block to your VPC and subnets, and assign IPv6
addresses from that block to DB instances in your subnet.

Support for the IPv6 protocol expands the number of supported IP addresses. By using the
IPv6 protocol, you ensure that you have sufficient available addresses for the future growth of
the internet. New and existing RDS resources can use IPv4 and IPv6 addresses within your VPC.
Configuring, securing, and translating network traffic between the two protocols used in different
parts of an application can cause operational overhead. You can standardize on the IPv6 protocol
for Amazon RDS resources to simplify your network configuration.

Topics

• IPv4 addresses

Working with a DB instance in a VPC 5189

Amazon Relational Database Service User Guide

• IPv6 addresses

• Dual-stack mode

IPv4 addresses

When you create a VPC, you must specify a range of IPv4 addresses for the VPC in the form of a
CIDR block, such as 10.0.0.0/16. A DB subnet group defines the range of IP addresses in this
CIDR block that a DB instance can use. These IP addresses can be private or public.

A private IPv4 address is an IP address that's not reachable over the internet. You can use private
IPv4 addresses for communication between your DB instance and other resources, such as Amazon
EC2 instances, in the same VPC. Each DB instance has a private IP address for communication in the
VPC.

A public IP address is an IPv4 address that's reachable from the internet. You can use public
addresses for communication between your DB instance and resources on the internet, such as a
SQL client. You control whether your DB instance receives a public IP address.

For a tutorial that shows you how to create a VPC with only private IPv4 addresses that you can use
for a common Amazon RDS scenario, see Tutorial: Create a VPC for use with a DB instance (IPv4
only).

IPv6 addresses

You can optionally associate an IPv6 CIDR block with your VPC and subnets, and assign IPv6
addresses from that block to the resources in your VPC. Each IPv6 address is globally unique.

The IPv6 CIDR block for your VPC is automatically assigned from Amazon's pool of IPv6 addresses.
You can't choose the range yourself.

When connecting to an IPv6 address, make sure that the following conditions are met:

• The client is configured so that client to database traffic over IPv6 is allowed.

• RDS security groups used by the DB instance are configured correctly so that client to database
traffic over IPv6 is allowed.

• The client operating system stack allows traffic on the IPv6 address, and operating system
drivers and libraries are configured to choose the correct default DB instance endpoint (either
IPv4 or IPv6).

Working with a DB instance in a VPC 5190

Amazon Relational Database Service User Guide

For more information about IPv6, see IP Addressing in the Amazon VPC User Guide.

Dual-stack mode

When a DB instance can communicate over both the IPv4 and IPv6 addressing protocols, it's
running in dual-stack mode. So, resources can communicate with the DB instance over IPv4, IPv6,
or both. RDS disables Internet Gateway access for IPv6 endpoints of private dual-stack mode DB
instances. RDS does this to ensure that your IPv6 endpoints are private and can only be accessed
from within your VPC.

Topics

• Dual-stack mode and DB subnet groups

• Working with dual-stack mode DB instances

• Modifying IPv4-only DB instances to use dual-stack mode

• Region and version availability

• Limitations for dual-stack network DB instances

For a tutorial that shows you how to create a VPC with both IPv4 and IPv6 addresses that you can
use for a common Amazon RDS scenario, see Tutorial: Create a VPC for use with a DB instance
(dual-stack mode).

Dual-stack mode and DB subnet groups

To use dual-stack mode, make sure that each subnet in the DB subnet group that you associate
with the DB instance has an IPv6 CIDR block associated with it. You can create a new DB subnet
group or modify an existing DB subnet group to meet this requirement. After a DB instance is in
dual-stack mode, clients can connect to it normally. Make sure that client security firewalls and
RDS DB instance security groups are accurately configured to allow traffic over IPv6. To connect,
clients use the DB instance's endpoint. Client applications can specify which protocol is preferred
when connecting to a database. In dual-stack mode, the DB instance detects the client's preferred
network protocol, either IPv4 or IPv6, and uses that protocol for the connection.

If a DB subnet group stops supporting dual-stack mode because of subnet deletion or CIDR
disassociation, there's a risk of an incompatible network state for DB instances that are associated
with the DB subnet group. Also, you can't use the DB subnet group when you create a new dual-
stack mode DB instance.

Working with a DB instance in a VPC 5191

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html

Amazon Relational Database Service User Guide

To determine whether a DB subnet group supports dual-stack mode by using the AWS
Management Console, view the Network type on the details page of the DB subnet group. To
determine whether a DB subnet group supports dual-stack mode by using the AWS CLI, run the
describe-db-subnet-groups command and view SupportedNetworkTypes in the output.

Read replicas are treated as independent DB instances and can have a network type that's different
from the primary DB instance. If you change the network type of a read replica's primary DB
instance, the read replica isn't affected. When you are restoring a DB instance, you can restore it to
any network type that's supported.

Working with dual-stack mode DB instances

When you create or modify a DB instance, you can specify dual-stack mode to allow your resources
to communicate with your DB instance over IPv4, IPv6, or both.

When you use the AWS Management Console to create or modify a DB instance, you can specify
dual-stack mode in the Network type section. The following image shows the Network type
section in the console.

When you use the AWS CLI to create or modify a DB instance, set the --network-type option to
DUAL to use dual-stack mode. When you use the RDS API to create or modify a DB instance, set the
NetworkType parameter to DUAL to use dual-stack mode. When you are modifying the network
type of a DB instance, downtime is possible. If dual-stack mode isn't supported by the specified DB
engine version or DB subnet group, the NetworkTypeNotSupported error is returned.

For more information about creating a DB instance, see Creating an Amazon RDS DB instance. For
more information about modifying a DB instance, see Modifying an Amazon RDS DB instance.

To determine whether a DB instance is in dual-stack mode by using the console, view the Network
type on the Connectivity & security tab for the DB instance.

Modifying IPv4-only DB instances to use dual-stack mode

You can modify an IPv4-only DB instance to use dual-stack mode. To do so, change the network
type of the DB instance. The modification might result in downtime.

Working with a DB instance in a VPC 5192

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-subnet-groups.html

Amazon Relational Database Service User Guide

It is recommended that you change the network type of your Amazon RDS DB instances during a
maintenance window. Currently, setting the network type of new instances to dual-stack mode isn't
supported. You can set network type manually by using the modify-db-instance command.

Before modifying a DB instance to use dual-stack mode, make sure that its DB subnet group
supports dual-stack mode. If the DB subnet group associated with the DB instance doesn't support
dual-stack mode, specify a different DB subnet group that supports it when you modify the DB
instance. Modifying the DB subnet group of a DB instance can cause downtime.

If you modify the DB subnet group of a DB instance before you change the DB instance to use dual-
stack mode, make sure that the DB subnet group is valid for the DB instance before and after the
change.

For RDS for PostgreSQL, RDS for MySQL, RDS for Oracle, and RDS for MariaDB Single-AZ instances,
we recommend that you run the modify-db-instance command with only the --network-type
parameter set to DUAL to change the network to dual-stack mode. Adding other parameters along
with the --network-type parameter in the same API call could result in downtime. To modify
multiple parameters, ensure that the network type modification is successfully completed before
sending another modify-db-instance request with other parameters.

Network type modifications for RDS for PostgreSQL, RDS for MySQL, RDS for Oracle, and RDS for
MariaDB Multi-AZ DB instances cause a brief downtime and trigger a failover if you only use the --
network-type parameter or if you combine parameters in a modify-db-instance command.

Network type modifications on RDS for SQL Server Single-AZ or Multi-AZ DB instances cause
downtime if you only use the --network-type parameter or if you combine parameters in a
modify-db-instance command. Network type modifications cause failover in an SQL Server
Multi-AZ instance.

If you can't connect to the DB instance after the change, make sure that the client and database
security firewalls and route tables are accurately configured to allow traffic to the database on the
selected network (either IPv4 or IPv6). You might also need to modify operating system parameter,
libraries, or drivers to connect using an IPv6 address.

When you modify a DB instance to use dual-stack mode, there can't be a pending change from a
Single-AZ deployment to a Multi-AZ deployment, or from a Multi-AZ deployment to a Single-AZ
deployment.

Working with a DB instance in a VPC 5193

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Relational Database Service User Guide

To modify an IPv4-only DB instance to use dual-stack mode

1. Modify a DB subnet group to support dual-stack mode, or create a DB subnet group that
supports dual-stack mode:

a. Associate an IPv6 CIDR block with your VPC.

For instructions, see Add an IPv6 CIDR block to your VPC in the Amazon VPC User Guide.

b. Attach the IPv6 CIDR block to all of the subnets in your the DB subnet group.

For instructions, see Add an IPv6 CIDR block to your subnet in the Amazon VPC User
Guide.

c. Confirm that the DB subnet group supports dual-stack mode.

If you are using the AWS Management Console, select the DB subnet group, and make
sure that the Supported network types value is Dual, IPv4.

If you are using the AWS CLI, run the describe-db-subnet-groups command, and make sure
that the SupportedNetworkType value for the DB instance is Dual, IPv4.

2. Modify the security group associated with the DB instance to allow IPv6 connections to the
database, or create a new security group that allows IPv6 connections.

For instructions, see Security group rules in the Amazon VPC User Guide.

3. Modify the DB instance to support dual-stack mode. To do so, set the Network type to Dual-
stack mode.

If you are using the console, make sure that the following settings are correct:

• Network type – Dual-stack mode

• DB subnet group – The DB subnet group that you configured in a previous step

• Security group – The security that you configured in a previous step

Working with a DB instance in a VPC 5194

https://docs.aws.amazon.com/vpc/latest/userguide/modify-vpcs.html#vpc-associate-ipv6-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/modify-subnets.html#subnet-associate-ipv6-cidr
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-subnet-groups.html
https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html

Amazon Relational Database Service User Guide

If you are using the AWS CLI, make sure that the following settings are correct:

• --network-type – dual

• --db-subnet-group-name – The DB subnet group that you configured in a previous step

• --vpc-security-group-ids – The VPC security group that you configured in a previous
step

For example:

aws rds modify-db-instance --db-instance-identifier my-instance --network-type
 "DUAL"

4. Confirm that the DB instance supports dual-stack mode.

If you are using the console, choose the Connectivity & security tab for the DB instance. On
that tab, make sure that the Network type value is Dual-stack mode.

If you are using the AWS CLI, run the describe-db-instances command, and make sure that the
NetworkType value for the DB instance is dual.

Run the dig command on the DB instance endpoint to identify the IPv6 address associated
with it.

dig db-instance-endpoint AAAA

Use the DB instance endpoint, not the IPv6 address, to connect to the DB instance.

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability with dual-stack mode, see
Supported Regions and DB engines for dual-stack mode in Amazon RDS.

Limitations for dual-stack network DB instances

The following limitations apply to dual-stack network DB instances:

Working with a DB instance in a VPC 5195

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Relational Database Service User Guide

• DB instances can't use the IPv6 protocol exclusively. They can use IPv4 exclusively, or they can
use the IPv4 and IPv6 protocol (dual-stack mode).

• Amazon RDS doesn't support native IPv6 subnets.

• DB instances that use dual-stack mode must be private. They can't be publicly accessible.

• Dual-stack mode doesn't support the db.m3 and db.r3 DB instance classes.

• For RDS for SQL Server, dual-stack mode DB instances that use Always On AGs availability group
listener endpoints only present IPv4 addresses.

• You can't use RDS Proxy with dual-stack mode DB instances.

• You can't use dual-stack mode with RDS on AWS Outposts DB instances.

• You can't use dual-stack mode with DB instances in a Local Zone.

Hiding a DB instance in a VPC from the internet

One common Amazon RDS scenario is to have a VPC in which you have an Amazon EC2 instance
with a public-facing web application and a DB instance with a database that isn't publicly
accessible. For example, you can create a VPC that has a public subnet and a private subnet. EC2
instances that function as web servers can be deployed in the public subnet. The DB instances are
deployed in the private subnet. In such a deployment, only the web servers have access to the DB
instances. For an illustration of this scenario, see A DB instance in a VPC accessed by an Amazon
EC2 instance in the same VPC.

When you launch a DB instance inside a VPC, the DB instance has a private IP address for traffic
inside the VPC. This private IP address isn't publicly accessible. You can use the Public access
option to designate whether the DB instance also has a public IP address in addition to the private
IP address. If the DB instance is designated as publicly accessible, its DNS endpoint resolves to the
private IP address from within the VPC. It resolves to the public IP address from outside of the VPC.
Access to the DB instance is ultimately controlled by the security group it uses. That public access
is not permitted if the security group assigned to the DB instance doesn't include inbound rules
that permit it. In addition, for a DB instance to be publicly accessible, the subnets in its DB subnet
group must have an internet gateway. For more information, see Can't connect to Amazon RDS DB
instance

You can modify a DB instance to turn on or off public accessibility by modifying the Public access
option. The following illustration shows the Public access option in the Additional connectivity
configuration section. To set the option, open the Additional connectivity configuration section
in the Connectivity section.

Working with a DB instance in a VPC 5196

Amazon Relational Database Service User Guide

For information about modifying a DB instance to set the Public access option, see Modifying an
Amazon RDS DB instance.

Working with a DB instance in a VPC 5197

Amazon Relational Database Service User Guide

Creating a DB instance in a VPC

The following procedures help you create a DB instance in a VPC. To use the default VPC, you can
begin with step 2, and use the VPC and DB subnet group have already been created for you. If you
want to create an additional VPC, you can create a new VPC.

Note

If you want your DB instance in the VPC to be publicly accessible, you must update the DNS
information for the VPC by enabling the VPC attributes DNS hostnames and DNS resolution.
For information about updating the DNS information for a VPC instance, see Updating DNS
support for your VPC.

Follow these steps to create a DB instance in a VPC:

• Step 1: Create a VPC

• Step 2: Create a DB subnet group

• Step 3: Create a VPC security group

• Step 4: Create a DB instance in the VPC

Step 1: Create a VPC

Create a VPC with subnets in at least two Availability Zones. You use these subnets when you
create a DB subnet group. If you have a default VPC, a subnet is automatically created for you in
each Availability Zone in the AWS Region.

For more information, see Create a VPC with private and public subnets, or see Create a VPC in the
Amazon VPC User Guide.

Step 2: Create a DB subnet group

A DB subnet group is a collection of subnets (typically private) that you create for a VPC and that
you then designate for your DB instances. A DB subnet group allows you to specify a particular
VPC when you create DB instances using the AWS CLI or RDS API. If you use the console, you can
just choose the VPC and subnets you want to use. Each DB subnet group must have at least one
subnet in at least two Availability Zones in the AWS Region. As a best practice, each DB subnet
group should have at least one subnet for every Availability Zone in the AWS Region.

Working with a DB instance in a VPC 5198

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#Create-VPC

Amazon Relational Database Service User Guide

For Multi-AZ deployments, defining a subnet for all Availability Zones in an AWS Region enables
Amazon RDS to create a new standby replica in another Availability Zone if necessary. You can
follow this best practice even for Single-AZ deployments, because you might convert them to
Multi-AZ deployments in the future.

For a DB instance to be publicly accessible, the subnets in the DB subnet group must have an
internet gateway. For more information about internet gateways for subnets, see Connect to the
internet using an internet gateway in the Amazon VPC User Guide.

Note

The DB subnet group for a Local Zone can have only one subnet.

When you create a DB instance in a VPC, you can choose a DB subnet group. Amazon RDS chooses
a subnet and an IP address within that subnet to associate with your DB instance. If no DB subnet
groups exist, Amazon RDS creates a default subnet group when you create a DB instance. Amazon
RDS creates and associates an Elastic Network Interface to your DB instance with that IP address.
The DB instance uses the Availability Zone that contains the subnet.

For Multi-AZ deployments, defining a subnet for two or more Availability Zones in an AWS Region
allows Amazon RDS to create a new standby in another Availability Zone should the need arise. You
need to do this even For Single-AZ deployments, just in case you want to convert them to Multi-AZ
deployments at some point.

In this step, you create a DB subnet group and add the subnets that you created for your VPC.

To create a DB subnet group

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Subnet groups.

3. Choose Create DB Subnet Group.

4. For Name, type the name of your DB subnet group.

5. For Description, type a description for your DB subnet group.

6. For VPC, choose the default VPC or the VPC that you created.

7. In the Add subnets section, choose the Availability Zones that include the subnets from
Availability Zones, and then choose the subnets from Subnets.

Working with a DB instance in a VPC 5199

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Working with a DB instance in a VPC 5200

Amazon Relational Database Service User Guide

Note

If you have enabled a Local Zone, you can choose an Availability Zone group on the
Create DB subnet group page. In this case, choose the Availability Zone group,
Availability Zones, and Subnets.

8. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can
choose the DB subnet group to see details, including all of the subnets associated with the
group, in the details pane at the bottom of the window.

Step 3: Create a VPC security group

Before you create your DB instance, you can create a VPC security group to associate with your DB
instance. If you don't create a VPC security group, you can use the default security group when
you create a DB instance. For instructions on how to create a security group for your DB instance,
see Create a VPC security group for a private DB instance, or see Control traffic to resources using
security groups in the Amazon VPC User Guide.

Step 4: Create a DB instance in the VPC

In this step, you create a DB instance and use the VPC name, the DB subnet group, and the VPC
security group you created in the previous steps.

Note

If you want your DB instance in the VPC to be publicly accessible, you must enable the VPC
attributes DNS hostnames and DNS resolution. For more information, see DNS attributes for
your VPC in the Amazon VPC User Guide.

For details on how to create a DB instance, see Creating an Amazon RDS DB instance.

When prompted in the Connectivity section, enter the VPC name, the DB subnet group, and the
VPC security group.

Working with a DB instance in a VPC 5201

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

Amazon Relational Database Service User Guide

Updating the VPC for a DB instance

You can use the AWS Management Console to move your DB instance to a different VPC.

For information about modifying a DB instance, see Modifying an Amazon RDS DB instance. In the
Connectivity section of the modify page, shown following, enter the new DB subnet group for DB
subnet group. The new subnet group must be a subnet group in a new VPC.

You can't change the VPC for a DB instance if the following conditions apply:

• The DB instance is in multiple Availability Zones. You can convert the DB instance to a single
Availability Zone, move it to a new VPC, and then convert it back to a Multi-AZ DB instance. For
more information, see Configuring and managing a Multi-AZ deployment for Amazon RDS.

• The DB instance has one or more read replicas. You can remove the read replicas, move the DB
instance to a new VPC, and then add the read replicas again. For more information, see Working
with DB instance read replicas.

• The DB instance is a read replica. You can promote the read replica, and then move the
standalone DB instance to a new VPC. For more information, see Promoting a read replica to be a
standalone DB instance.

• The subnet group in the target VPC doesn't have subnets in the DB instance's the Availability
Zone. You can add subnets in the DB instance's Availability Zone to the DB subnet group, and
then move the DB instance to the new VPC. For more information, see Working with DB subnet
groups.

Scenarios for accessing a DB instance in a VPC

Amazon RDS supports the following scenarios for accessing a DB instance in a VPC:

Updating the VPC for a DB instance 5202

Amazon Relational Database Service User Guide

• An Amazon EC2 instance in the same VPC

• An EC2 instance in a different VPC

• A client application through the internet

• A private network

A DB instance in a VPC accessed by an Amazon EC2 instance in the same VPC

A common use of a DB instance in a VPC is to share data with an application server that is running
in an Amazon EC2 instance in the same VPC.

The following diagram shows this scenario.

Scenarios for accessing a DB instance in a VPC 5203

Amazon Relational Database Service User Guide

The simplest way to manage access between EC2 instances and DB instances in the same VPC is to
do the following:

• Create a VPC security group for your DB instances to be in. This security group can be used to
restrict access to the DB instances. For example, you can create a custom rule for this security
group. This might allow TCP access using the port that you assigned to the DB instance when
you created it and an IP address you use to access the DB instance for development or other
purposes.

• Create a VPC security group for your EC2 instances (web servers and clients) to be in. This
security group can, if needed, allow access to the EC2 instance from the internet by using the
VPC's routing table. For example, you can set rules on this security group to allow TCP access to
the EC2 instance over port 22.

• Create custom rules in the security group for your DB instances that allow connections from the
security group you created for your EC2 instances. These rules might allow any member of the
security group to access the DB instances.

There is an additional public and private subnet in a separate Availability Zone. An RDS DB subnet
group requires a subnet in at least two Availability Zones. The additional subnet makes it easy to
switch to a Multi-AZ DB instance deployment in the future.

For a tutorial that shows you how to create a VPC with both public and private subnets for this
scenario, see Tutorial: Create a VPC for use with a DB instance (IPv4 only).

Tip

You can set up network connectivity between an Amazon EC2 instance and a DB instance
automatically when you create the DB instance. For more information, see Configure
automatic network connectivity with an EC2 instance.

To create a rule in a VPC security group that allows connections from another security group,
do the following:

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the navigation pane, choose Security groups.

Scenarios for accessing a DB instance in a VPC 5204

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon Relational Database Service User Guide

3. Choose or create a security group for which you want to allow access to members of another
security group. In the preceding scenario, this is the security group that you use for your DB
instances. Choose the Inbound rules tab, and then choose Edit inbound rules.

4. On the Edit inbound rules page, choose Add rule.

5. For Type, choose the entry that corresponds to the port you used when you created your DB
instance, such as MYSQL/Aurora.

6. In the Source box, start typing the ID of the security group, which lists the matching security
groups. Choose the security group with members that you want to have access to the resources
protected by this security group. In the scenario preceding, this is the security group that you
use for your EC2 instance.

7. If required, repeat the steps for the TCP protocol by creating a rule with All TCP as the Type
and your security group in the Source box. If you intend to use the UDP protocol, create a rule
with All UDP as the Type and your security group in Source.

8. Choose Save rules.

The following screen shows an inbound rule with a security group for its source.

For more information about connecting to the DB instance from your EC2 instance, see Connecting
to an Amazon RDS DB instance .

A DB instance in a VPC accessed by an EC2 instance in a different VPC

When your DB instances is in a different VPC from the EC2 instance you are using to access it, you
can use VPC peering to access the DB instance.

The following diagram shows this scenario.

Scenarios for accessing a DB instance in a VPC 5205

Amazon Relational Database Service User Guide

A VPC peering connection is a networking connection between two VPCs that enables you to
route traffic between them using private IP addresses. Resources in either VPC can communicate
with each other as if they are within the same network. You can create a VPC peering connection
between your own VPCs, with a VPC in another AWS account, or with a VPC in a different AWS
Region. To learn more about VPC peering, see VPC peering in the Amazon Virtual Private Cloud User
Guide.

A DB instance in a VPC accessed by a client application through the internet

To access a DB instances in a VPC from a client application through the internet, you configure
a VPC with a single public subnet, and an internet gateway to enable communication over the
internet.

The following diagram shows this scenario.

Scenarios for accessing a DB instance in a VPC 5206

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-peering.html

Amazon Relational Database Service User Guide

We recommend the following configuration:

• A VPC of size /16 (for example CIDR: 10.0.0.0/16). This size provides 65,536 private IP addresses.

• A subnet of size /24 (for example CIDR: 10.0.0.0/24). This size provides 256 private IP addresses.

• An Amazon RDS DB instance that is associated with the VPC and the subnet. Amazon RDS
assigns an IP address within the subnet to your DB instance.

• An internet gateway which connects the VPC to the internet and to other AWS products.

• A security group associated with the DB instance. The security group's inbound rules allow your
client application to access to your DB instance.

For information about creating a DB instances in a VPC, see Creating a DB instance in a VPC.

A DB instance in a VPC accessed by a private network

If your DB instance isn't publicly accessible, you have the following options for accessing it from a
private network:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

• An AWS Client VPN connection. For more information, see What is AWS Client VPN?

The following diagram shows a scenario with an AWS Site-to-Site VPN connection.

Scenarios for accessing a DB instance in a VPC 5207

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com//vpn/latest/clientvpn-admin/what-is.html

Amazon Relational Database Service User Guide

For more information, see Internetwork traffic privacy.

Scenarios for accessing a DB instance in a VPC 5208

Amazon Relational Database Service User Guide

Tutorial: Create a VPC for use with a DB instance (IPv4 only)

A common scenario includes a DB instance in a virtual private cloud (VPC) based on the Amazon
VPC service. This VPC shares data with a web server that is running in the same VPC. In this
tutorial, you create the VPC for this scenario.

The following diagram shows this scenario. For information about other scenarios, see Scenarios
for accessing a DB instance in a VPC.

Your DB instance needs to be available only to your web server, and not to the public internet.
Thus, you create a VPC with both public and private subnets. The web server is hosted in the public
subnet, so that it can reach the public internet. The DB instance is hosted in a private subnet. The
web server can connect to the DB instance because it is hosted within the same VPC. But the DB
instance isn't available to the public internet, providing greater security.

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5209

Amazon Relational Database Service User Guide

This tutorial configures an additional public and private subnet in a separate Availability Zone.
These subnets aren't used by the tutorial. An RDS DB subnet group requires a subnet in at least
two Availability Zones. The additional subnet makes it easier to switch to a Multi-AZ DB instance
deployment in the future.

This tutorial describes configuring a VPC for Amazon RDS DB instances. For a tutorial that shows
you how to create a web server for this VPC scenario, see Tutorial: Create a web server and an
Amazon RDS DB instance. For more information about Amazon VPC, see Amazon VPC Getting
Started Guide and Amazon VPC User Guide.

Tip

You can set up network connectivity between an Amazon EC2 instance and a DB instance
automatically when you create the DB instance. The network configuration is similar to
the one described in this tutorial. For more information, see Configure automatic network
connectivity with an EC2 instance.

Create a VPC with private and public subnets

Use the following procedure to create a VPC with both public and private subnets.

To create a VPC and subnets

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the top-right corner of the AWS Management Console, choose the Region to create your
VPC in. This example uses the US West (Oregon) Region.

3. In the upper-left corner, choose VPC dashboard. To begin creating a VPC, choose Create VPC.

4. For Resources to create under VPC settings, choose VPC and more.

5. For the VPC settings, set these values:

• Name tag auto-generation – tutorial

• IPv4 CIDR block – 10.0.0.0/16

• IPv6 CIDR block – No IPv6 CIDR block

• Tenancy – Default

• Number of Availability Zones (AZs) – 2

• Customize AZs – Keep the default values.

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5210

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

• Number of public subnet – 2

• Number of private subnets – 2

• Customize subnets CIDR blocks – Keep the default values.

• NAT gateways ($) – None

• VPC endpoints – None

• DNS options – Keep the default values.

Note

Amazon RDS requires at least two subnets in two different Availability Zones
to support Multi-AZ DB instance deployments. This tutorial creates a Single-AZ
deployment, but the requirement makes it easier to convert to a Multi-AZ DB instance
deployment in the future.

6. Choose Create VPC.

Create a VPC security group for a public web server

Next, you create a security group for public access. To connect to public EC2 instances in your VPC,
you add inbound rules to your VPC security group. These allow traffic to connect from the internet.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

3. On the Create security group page, set these values:

• Security group name: tutorial-securitygroup

• Description: Tutorial Security Group

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-vpc)

4. Add inbound rules to the security group.

a. Determine the IP address to use to connect to EC2 instances in your VPC using Secure
Shell (SSH). To determine your public IP address, in a different browser window or tab,

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5211

https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

you can use the service at https://checkip.amazonaws.com. An example of an IP address is
203.0.113.25/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, find the range of IP addresses used
by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your instances using SSH.

b. In the Inbound rules section, choose Add rule.

c. Set the following values for your new inbound rule to allow SSH access to your Amazon
EC2 instance. If you do this, you can connect to your Amazon EC2 instance to install the
web server and other utilities. You also connect to your EC2 instance to upload content for
your web server.

• Type: SSH

• Source: The IP address or range from Step a, for example: 203.0.113.25/32.

d. Choose Add rule.

e. Set the following values for your new inbound rule to allow HTTP access to your web
server:

• Type: HTTP

• Source: 0.0.0.0/0

5. Choose Create security group to create the security group.

Note the security group ID because you need it later in this tutorial.

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5212

https://checkip.amazonaws.com

Amazon Relational Database Service User Guide

Create a VPC security group for a private DB instance

To keep your DB instance private, create a second security group for private access. To connect
to private DB instancesin your VPC, you add inbound rules to your VPC security group that allow
traffic from your web server only.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

3. On the Create security group page, set these values:

• Security group name: tutorial-db-securitygroup

• Description: Tutorial DB Instance Security Group

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-vpc)

4. Add inbound rules to the security group.

a. In the Inbound rules section, choose Add rule.

b. Set the following values for your new inbound rule to allow MySQL traffic on port 3306
from your Amazon EC2 instance. If you do this, you can connect from your web server to
your DB instance. By doing so, you can store and retrieve data from your web application
to your database.

• Type: MySQL/Aurora

• Source: The identifier of the tutorial-securitygroup security group that you created
previously in this tutorial, for example: sg-9edd5cfb.

5. Choose Create security group to create the security group.

Create a DB subnet group

A DB subnet group is a collection of subnets that you create in a VPC and that you then designate
for your DB instances. A DB subnet group makes it possible for you to specify a particular VPC
when creating DB instances.

To create a DB subnet group

1. Identify the private subnets for your database in the VPC.

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5213

https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Subnets.

c. Note the subnet IDs of the subnets named tutorial-subnet-private1-us-west-2a and
tutorial-subnet-private2-us-west-2b.

You need the subnet IDs when you create your DB subnet group.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Make sure that you connect to the Amazon RDS console, not to the Amazon VPC console.

3. In the navigation pane, choose Subnet groups.

4. Choose Create DB subnet group.

5. On the Create DB subnet group page, set these values in Subnet group details:

• Name: tutorial-db-subnet-group

• Description: Tutorial DB Subnet Group

• VPC: tutorial-vpc (vpc-identifier)

6. In the Add subnets section, choose the Availability Zones and Subnets.

For this tutorial, choose us-west-2a and us-west-2b for the Availability Zones. For Subnets,
choose the private subnets you identified in the previous step.

7. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can
choose the DB subnet group to see details in the details pane at the bottom of the window.
These details include all of the subnets associated with the group.

Note

If you created this VPC to complete Tutorial: Create a web server and an Amazon RDS DB
instance, create the DB instance by following the instructions in Create an Amazon RDS DB
instance.

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5214

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Deleting the VPC

After you create the VPC and other resources for this tutorial, you can delete them if they are no
longer needed.

Note

If you added resources in the VPC that you created for this tutorial, you might need to
delete these before you can delete the VPC. For example, these resources might include
Amazon EC2 instances or Amazon RDS DB instances. For more information, see Delete your
VPC in the Amazon VPC User Guide.

To delete a VPC and related resources

1. Delete the DB subnet group.

a. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

b. In the navigation pane, choose Subnet groups.

c. Select the DB subnet group you want to delete, such as tutorial-db-subnet-group.

d. Choose Delete, and then choose Delete in the confirmation window.

2. Note the VPC ID.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose VPCs.

c. In the list, identify the VPC that you created, such as tutorial-vpc.

d. Note the VPC ID of the VPC that you created. You need the VPC ID in later steps.

3. Delete the security groups.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Security Groups.

c. Select the security group for the Amazon RDS DB instance, such as tutorial-db-
securitygroup.

d. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5215

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

e. On the Security Groups page, select the security group for the Amazon EC2 instance, such
as tutorial-securitygroup.

f. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

4. Delete the VPC.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose VPCs.

c. Select the VPC you want to delete, such as tutorial-vpc.

d. For Actions, choose Delete VPC.

The confirmation page shows other resources that are associated with the VPC that will
also be deleted, including the subnets associated with it.

e. On the confirmation page, enter delete, and then choose Delete.

Tutorial: Create a VPC for use with a DB instance (IPv4 only) 5216

https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

Tutorial: Create a VPC for use with a DB instance (dual-stack mode)

A common scenario includes a DB instance in a virtual private cloud (VPC) based on the Amazon
VPC service. This VPC shares data with a public Amazon EC2 instance that is running in the same
VPC.

In this tutorial, you create the VPC for this scenario that works with a database running in dual-
stack mode. Dual-stack mode to enable connection over the IPv6 addressing protocol. For more
information about IP addressing, see Amazon RDS IP addressing.

Dual-stack network instances are supported in most regions. For more information see Region
and version availability. To see the limitations of dual-stack mode, see Limitations for dual-stack
network DB instances.

The following diagram shows this scenario.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5217

Amazon Relational Database Service User Guide

For information about other scenarios, see Scenarios for accessing a DB instance in a VPC.

Your DB instance needs to be available only to your Amazon EC2 instance, and not to the public
internet. Thus, you create a VPC with both public and private subnets. The Amazon EC2 instance is
hosted in the public subnet, so that it can reach the public internet. The DB instance is hosted in a
private subnet. The Amazon EC2 instance can connect to the DB instance because it's hosted within
the same VPC. However, the DB instance is not available to the public internet, providing greater
security.

This tutorial configures an additional public and private subnet in a separate Availability Zone.
These subnets aren't used by the tutorial. An RDS DB subnet group requires a subnet in at least
two Availability Zones. The additional subnet makes it easy to switch to a Multi-AZ DB instance
deployment in the future.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5218

Amazon Relational Database Service User Guide

To create a DB instance that uses dual-stack mode, specify Dual-stack mode for the Network
type setting. You can also modify a DB instance with the same setting. For more information, see
Creating an Amazon RDS DB instance and Modifying an Amazon RDS DB instance.

This tutorial describes configuring a VPC for Amazon RDS DB instances. For more information
about Amazon VPC, see Amazon VPC User Guide.

Create a VPC with private and public subnets

Use the following procedure to create a VPC with both public and private subnets.

To create a VPC and subnets

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the upper-right corner of the AWS Management Console, choose the Region to create your
VPC in. This example uses the US East (Ohio) Region.

3. In the upper-left corner, choose VPC dashboard. To begin creating a VPC, choose Create VPC.

4. For Resources to create under VPC settings, choose VPC and more.

5. For the remaining VPC settings, set these values:

• Name tag auto-generation – tutorial-dual-stack

• IPv4 CIDR block – 10.0.0.0/16

• IPv6 CIDR block – Amazon-provided IPv6 CIDR block

• Tenancy – Default

• Number of Availability Zones (AZs) – 2

• Customize AZs – Keep the default values.

• Number of public subnet – 2

• Number of private subnets – 2

• Customize subnets CIDR blocks – Keep the default values.

• NAT gateways ($) – None

• Egress only internet gateway – No

• VPC endpoints – None

• DNS options – Keep the default values.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5219

https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

Note

Amazon RDS requires at least two subnets in two different Availability Zones
to support Multi-AZ DB instance deployments. This tutorial creates a Single-AZ
deployment, but the requirement makes it easy to convert to a Multi-AZ DB instance
deployment in the future.

6. Choose Create VPC.

Create a VPC security group for a public Amazon EC2 instance

Next, you create a security group for public access. To connect to public EC2 instances in your VPC,
add inbound rules to your VPC security group that allow traffic to connect from the internet.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

3. On the Create security group page, set these values:

• Security group name: tutorial-dual-stack-securitygroup

• Description: Tutorial Dual-Stack Security Group

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-dual-
stack-vpc)

4. Add inbound rules to the security group.

a. Determine the IP address to use to connect to EC2 instances in your VPC using Secure
Shell (SSH).

An example of an Internet Protocol version 4 (IPv4) address is 203.0.113.25/32.
An example of an Internet Protocol version 6 (IPv6) address range is
2001:db8:1234:1a00::/64.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, find the range of IP addresses used
by client computers.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5220

https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

Warning

If you use 0.0.0.0/0 for IPv4 or ::0 for IPv6, you make it possible for all IP
addresses to access your public instances using SSH. This approach is acceptable
for a short time in a test environment, but it's unsafe for production environments.
In production, authorize only a specific IP address or range of addresses to access
your instances.

b. In the Inbound rules section, choose Add rule.

c. Set the following values for your new inbound rule to allow Secure Shell (SSH) access
to your Amazon EC2 instance. If you do this, you can connect to your EC2 instance to
install SQL clients and other applications. Specify an IP address so you can access your EC2
instance:

• Type: SSH

• Source: The IP address or range from step a. An example of an IPv4 IP address is
203.0.113.25/32. An example of an IPv6 IP address is 2001:DB8::/32.

5. Choose Create security group to create the security group.

Note the security group ID because you need it later in this tutorial.

Create a VPC security group for a private DB instance

To keep your DB instance private, create a second security group for private access. To connect to
private DB instances in your VPC, add inbound rules to your VPC security group. These allow traffic
from your Amazon EC2 instance only.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

3. On the Create security group page, set these values:

• Security group name: tutorial-dual-stack-db-securitygroup

• Description: Tutorial Dual-Stack DB Instance Security Group

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5221

https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-dual-
stack-vpc)

4. Add inbound rules to the security group:

a. In the Inbound rules section, choose Add rule.

b. Set the following values for your new inbound rule to allow MySQL traffic on port 3306
from your Amazon EC2 instance. If you do, you can connect from your EC2 instance to
your DB instance. Doing this means that you can send data from your EC2 instance to your
database.

• Type: MySQL/Aurora

• Source: The identifier of the tutorial-dual-stack-securitygroup security group that you
created previously in this tutorial, for example sg-9edd5cfb.

5. To create the security group, choose Create security group.

Create a DB subnet group

A DB subnet group is a collection of subnets that you create in a VPC and that you then designate
for your DB instances. By using a DB subnet group, you can specify a particular VPC when creating
DB instances. To create a DB subnet group that is DUAL compatible, all subnets must be DUAL
compatible. To be DUAL compatible, a subnet must have an IPv6 CIDR associated with it.

To create a DB subnet group

1. Identify the private subnets for your database in the VPC.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Subnets.

c. Note the subnet IDs of the subnets named tutorial-dual-stack-subnet-private1-us-
west-2a and tutorial-dual-stack-subnet-private2-us-west-2b.

You will need the subnet IDs when you create your DB subnet group.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Make sure that you connect to the Amazon RDS console, not to the Amazon VPC console.

3. In the navigation pane, choose Subnet groups.

4. Choose Create DB subnet group.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5222

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

5. On the Create DB subnet group page, set these values in Subnet group details:

• Name: tutorial-dual-stack-db-subnet-group

• Description: Tutorial Dual-Stack DB Subnet Group

• VPC: tutorial-dual-stack-vpc (vpc-identifier)

6. In the Add subnets section, choose values for the Availability Zones and Subnets options.

For this tutorial, choose us-east-2a and us-east-2b for the Availability Zones. For Subnets,
choose the private subnets you identified in the previous step.

7. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can
choose the DB subnet group to see its details. These include the supported addressing protocols
and all of the subnets associated with the group and the network type supported by the DB subnet
group.

Create an Amazon EC2 instance in dual-stack mode

To create an Amazon EC2 instance, follow the instructions in Launch an instance using the new
launch instance wizard in the Amazon EC2 User Guide.

On the Configure Instance Details page, set these values and keep the other values as their
defaults:

• Network – Choose an existing VPC with both public and private subnets, such as tutorial-dual-
stack-vpc (vpc-identifier) created in Create a VPC with private and public subnets.

• Subnet – Choose an existing public subnet, such as subnet-identifier | tutorial-dual-stack-
subnet-public1-us-east-2a | us-east-2a created in Create a VPC security group for a public
Amazon EC2 instance.

• Auto-assign Public IP – Choose Enable.

• Auto-assign IPv6 IP – Choose Enable.

• Firewall (security groups) – Choose Select an existing security group.

• Common security groups – Choose an existing security group, such as the tutorial-
securitygroup created in Create a VPC security group for a public Amazon EC2 instance. Make
sure that the security group that you choose includes inbound rules for Secure Shell (SSH) and
HTTP access.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5223

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html

Amazon Relational Database Service User Guide

Create a DB instance in dual-stack mode

In this step, you create a DB instance that runs in dual-stack mode.

To create a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the console, choose the AWS Region where you want to create the
DB instance. This example uses the US East (Ohio) Region.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, make sure that the Standard create option is chosen, and then
choose the MySQL DB engine type.

6. In the Connectivity section, set these values:

• Network type – Choose Dual-stack mode.

• Virtual private cloud (VPC) – Choose an existing VPC with both public and private subnets,
such as tutorial-dual-stack-vpc (vpc-identifier) created in Create a VPC with private and
public subnets.

The VPC must have subnets in different Availability Zones.

• DB subnet group – Choose a DB subnet group for the VPC, such as tutorial-dual-stack-db-
subnet-group created in Create a DB subnet group.

• Public access – Choose No.

• VPC security group (firewall) – Select Choose existing.

• Existing VPC security groups – Choose an existing VPC security group that is configured
for private access, such as tutorial-dual-stack-db-securitygroup created in Create a VPC
security group for a private DB instance.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5224

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

Remove other security groups, such as the default security group, by choosing the X
associated with each.

• Availability Zone – Choose us-west-2a.

To avoid cross-AZ traffic, make sure the DB instance and the EC2 instance are in the same
Availability Zone.

7. For the remaining sections, specify your DB instance settings. For information about each
setting, see Settings for DB instances.

Connect to your Amazon EC2 instance and DB instance

After you create your Amazon EC2 instance and DB instance in dual-stack mode, you can connect
to each one using the IPv6 protocol. To connect to an Amazon EC2 instance using the IPv6
protocol, follow the instructions in Connect to your Linux instance in the Amazon EC2 User Guide.

To connect to your RDS for MySQL DB instance from the Amazon EC2 instance, follow the
instructions in Connect to a MySQL DB instance.

Deleting the VPC

After you create the VPC and other resources for this tutorial, you can delete them if they are no
longer needed.

If you added resources in the VPC that you created for this tutorial, you might need to delete these
before you can delete the VPC. Examples of resources are Amazon EC2 instances or DB instances.
For more information, see Delete your VPC in the Amazon VPC User Guide.

To delete a VPC and related resources

1. Delete the DB subnet group:

a. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

b. In the navigation pane, choose Subnet groups.

c. Select the DB subnet group to delete, such as tutorial-db-subnet-group.

d. Choose Delete, and then choose Delete in the confirmation window.

2. Note the VPC ID:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5225

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

b. Choose VPC Dashboard, and then choose VPCs.

c. In the list, identify the VPC you created, such as tutorial-dual-stack-vpc.

d. Note the VPC ID value of the VPC that you created. You need this VPC ID in subsequent
steps.

3. Delete the security groups:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Security Groups.

c. Select the security group for the Amazon RDS DB instance, such as tutorial-dual-stack-
db-securitygroup.

d. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

e. On the Security Groups page, select the security group for the Amazon EC2 instance, such
as tutorial-dual-stack-securitygroup.

f. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

4. Delete the NAT gateway:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose NAT Gateways.

c. Select the NAT gateway of the VPC that you created. Use the VPC ID to identify the correct
NAT gateway.

d. For Actions, choose Delete NAT gateway.

e. On the confirmation page, enter delete, and then choose Delete.

5. Delete the VPC:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose VPCs.

c. Select the VPC that you want to delete, such as tutorial-dual-stack-vpc.

d. For Actions, choose Delete VPC.

The confirmation page shows other resources that are associated with the VPC that will
also be deleted, including the subnets associated with it.

e. On the confirmation page, enter delete, and then choose Delete.Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5226

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

6. Release the Elastic IP addresses:

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. Choose EC2 Dashboard, and then choose Elastic IPs.

c. Select the Elastic IP address that you want to release.

d. For Actions, choose Release Elastic IP addresses.

e. On the confirmation page, choose Release.

Tutorial: Create a VPC for use with a DB instance (dual-stack mode) 5227

https://console.aws.amazon.com/ec2/

Amazon Relational Database Service User Guide

Moving a DB instance not in a VPC into a VPC

Some legacy DB instances on the EC2-Classic platform are not in a VPC. If your DB instance is not
in a VPC, you can use the AWS Management Console to easily move your DB instance into a VPC.
Before you can move a DB instance not in a VPC, into a VPC, you must create the VPC.

EC2-Classic was retired on August 15, 2022. If you haven't migrated from EC2-Classic to a VPC,
we recommend that you migrate as soon as possible. For more information, see Migrate from
EC2-Classic to a VPC in the Amazon EC2 User Guide and the blog EC2-Classic Networking is
Retiring – Here’s How to Prepare.

Important

If you are a new Amazon RDS customer, if you have never created a DB instance before,
or if you are creating a DB instance in an AWS Region you have not used before, in almost
all cases you are on the EC2-VPC platform and have a default VPC. For information about
working with DB instances in a VPC, see Working with a DB instance in a VPC.

Follow these steps to create a VPC for your DB instance.

• Step 1: Create a VPC

• Step 2: Create a DB subnet group

• Step 3: Create a VPC security group

After you create the VPC, follow these steps to move your DB instance into the VPC.

• Updating the VPC for a DB instance

We highly recommend that you create a backup of your DB instance immediately before the
migration. Doing so ensures that you can restore the data if the migration fails. For more
information, see Backing up, restoring, and exporting data.

The following are some limitations to moving your DB instance into the VPC.

Moving a DB instance into a VPC 5228

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

Amazon Relational Database Service User Guide

• Previous generation DB instance classes – Previous generation DB instance classes might not
be supported on the VPC platform. When moving a DB instance to a VPC, choose a db.m3 or
db.r3 DB instance class. After you move the DB instance to a VPC, you can scale the DB instance
to use a later DB instance class. For a full list of VPC supported instance classes, see Amazon RDS
instance types.

• Multi-AZ – Moving a Multi-AZ DB instance not in a VPC into a VPC is not currently supported.
To move your DB instance to a VPC, first modify the DB instance so that it is a single-AZ
deployment. Change the Multi-AZ deployment setting to No. After you move the DB instance to
a VPC, modify it again to make it a Multi-AZ deployment. For more information, see Modifying
an Amazon RDS DB instance.

• Read replicas – Moving a DB instance with read replicas not in a VPC into a VPC is not currently
supported. To move your DB instance to a VPC, first delete all of its read replicas. After you move
the DB instance to a VPC, recreate the read replicas. For more information, see Working with DB
instance read replicas.

• Option groups – If you move your DB instance to a VPC, and the DB instance is using a custom
option group, change the option group that is associated with your DB instance. Option groups
are platform-specific, and moving to a VPC is a change in platform. To use a custom option
group in this case, assign the default VPC option group to the DB instance, assign an option
group that is used by other DB instances in the VPC you are moving to, or create a new option
group and assign it to the DB instance. For more information, see Working with option groups.

Alternatives for moving a DB instance not in a VPC into a VPC with minimal
downtime

Using the following alternatives, you can move a DB instance not in a VPC into a VPC with minimal
downtime. These alternatives cause minimum disruption to the source DB instance and allow it to
serve user traffic during the migration. However, the time required to migrate to a VPC will vary
based on the database size and the live workload characteristics.

• AWS Database Migration Service (AWS DMS) – AWS DMS enables the live migration of data
while keeping the source DB instance fully operational, but it replicates only a limited set of
DDL statements. AWS DMS doesn't propagate items such as indexes, users, privileges, stored
procedures, and other database changes not directly related to table data. In addition, AWS DMS
doesn't automatically use RDS snapshots for the initial DB instance creation, which can increase
migration time. For more information, see AWS Database Migration Service.

Moving a DB instance into a VPC 5229

https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/dms/

Amazon Relational Database Service User Guide

• DB snapshot restore or point-in-time recovery – You can move a DB instance to a VPC by
restoring a snapshot of the DB instance or by restoring a DB instance to a point in time. For more
information, see Restoring to a DB instance and Restoring a DB instance to a specified time for
Amazon RDS.

Moving a DB instance into a VPC 5230

Amazon Relational Database Service User Guide

Quotas and constraints for Amazon RDS

Following, you can find a description of the resource quotas and naming constraints for Amazon
RDS.

Topics

• Quotas in Amazon RDS

• Naming constraints in Amazon RDS

• Maximum number of database connections

• File size limits in Amazon RDS

Quotas in Amazon RDS

Each AWS account has quotas, for each AWS Region, on the number of Amazon RDS resources
that can be created. After a quota for a resource has been reached, additional calls to create that
resource fail with an exception.

The following table lists the resources and their quotas per AWS Region.

Name Default Adjustabl
e

Description

Authorizations per DB security group Each supported
Region: 20

No Number of security
group authorizations per
DB security group

Custom endpoints per DB cluster Each supported
Region: 5

Yes The maximum number
of custom endpoints
that you can create
per Aurora DB cluster
in this account in the
current Region. This
value reflects the highest
number of custom
endpoints in a DB cluster
in the account. Other DB

Quotas in Amazon RDS 5231

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-9372BAB3

Amazon Relational Database Service User Guide

Name Default Adjustabl
e

Description

clusters in the account
might have a lower
number of custom
endpoints.

Custom engine versions Each supported
Region: 40

Yes The maximum number of
custom engine versions
allowed in this account in
the current Region

DB cluster parameter groups Each supported
Region: 50

Yes The maximum number
of DB cluster parameter
groups

DB clusters Each supported
Region: 40

Yes The maximum number of
Aurora clusters allowed
in this account in the
current Region

DB instances ap-south-1: 20

Each of the
other supported
Regions: 40

Yes The maximum number
of DB instances allowed
in this account in the
current Region

DB shard groups Each supported
Region: 5

Yes The maximum number
of DB shard groups
for Aurora Limitless
Database in this account
in the current Region

DB subnet groups ap-south-1: 20

Each of the
other supported
Regions: 50

Yes The maximum number of
DB subnet groups

Quotas in Amazon RDS 5232

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-A399AC0B
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-E4C808A8
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-952B80B8
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-7B6409FD
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-75AC651F
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-48C6BF61

Amazon Relational Database Service User Guide

Name Default Adjustabl
e

Description

Data API HTTP request body size Each supported
Region: 4
Megabytes

No The maximum size
allowed for the HTTP
request body.

Data API maximum concurrent cluster-s
ecret pairs

Each supported
Region: 30

No The maximum number
of unique pairs of Aurora
Serverless v1 DB clusters
and secrets in concurrent
Data API requests for this
account in the current
AWS Region.

Data API maximum concurrent requests Each supported
Region: 500

No The maximum number
of Data API requests to
an Aurora Serverless
v1 DB cluster that use
the same secret and
can be processed at the
same time. Additional
requests are queued and
processed as in-process
requests complete.

Data API maximum result set size Each supported
Region: 1
Megabytes

No The maximum size of the
database result set that
can be returned by the
Data API.

Data API maximum size of JSON
response string

Each supported
Region: 10
Megabytes

No The maximum size of the
simplified JSON response
string returned by the
RDS Data API.

Quotas in Amazon RDS 5233

Amazon Relational Database Service User Guide

Name Default Adjustabl
e

Description

Data API requests per second Each supported
Region: 1,000 per
second

No The maximum number
of requests to the Data
API per second allowed
in this account in the
current AWS Region

Event subscriptions Each supported
Region: 20

Yes The maximum number of
event subscriptions

IAM roles per DB cluster Each supported
Region: 5

Yes The maximum number of
IAM roles associated with
a DB cluster

IAM roles per DB instance Each supported
Region: 5

Yes The maximum number of
IAM roles associated with
a DB instance

Integrations Each supported
Region: 100

No The maximum number
of integrations allowed
in this account in the
current AWS Region

Manual DB cluster snapshots Each supported
Region: 100

Yes The maximum number
of manual DB cluster
snapshots

Manual DB instance snapshots Each supported
Region: 100

Yes The maximum number
of manual DB instance
snapshots

Option groups Each supported
Region: 20

Yes The maximum number of
option groups

Quotas in Amazon RDS 5234

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-A59F4C87
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-E094F43D
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-DD2301CA
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-9B510759
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-272F1212
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-9FA33840

Amazon Relational Database Service User Guide

Name Default Adjustabl
e

Description

Parameter groups ap-south-1: 20

Each of the
other supported
Regions: 50

Yes The maximum number of
parameter groups

Proxies Each supported
Region: 20

Yes The maximum number
of proxies allowed in this
account in the current
AWS Region

Read replicas per primary Each supported
Region: 15

Yes The maximum number of
read replicas per primary
DB instance. This quota
cant be adjusted for
Amazon Aurora.

Reserved DB instances Each supported
Region: 40

Yes The maximum number
of reserved DB instances
allowed in this account in
the current AWS Region

Security groups ap-south-1: 20

Each of the
other supported
Regions: 25

Yes The maximum number of
DB security groups

Subnets per DB subnet group Each supported
Region: 20

No The maximum number
of subnets per DB subnet
group

Quotas in Amazon RDS 5235

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-DE55804A
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-D94C7EA3
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-5BC124EF
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-78E853F4
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-732153D0

Amazon Relational Database Service User Guide

Name Default Adjustabl
e

Description

Total storage for all DB instances Each supported
Region: 100,000
Gigabytes

Yes The maximum total
storage (in GB) on EBS
volumes for all Amazon
RDS DB instances added
together. This quota does
not apply to Amazon
Aurora, which has a
maximum cluster volume
of 128 TiB for each DB
cluster.

Note

By default, you can have up to a total of 40 DB instances. RDS DB instances, Aurora DB
instances, Amazon Neptune instances, and Amazon DocumentDB instances apply to this
quota.
The following limitations apply to the Amazon RDS DB instances:

• 10 for each SQL Server edition (Enterprise, Standard, Web, and Express) under the
"license-included" model

• 10 for Oracle under the "license-included" model

• 40 for Db2 under the "bring-your-own-license" (BYOL) licensing model

• 40 for MySQL, MariaDB, or PostgreSQL

• 40 for Oracle under the "bring-your-own-license" (BYOL) licensing model

If your application requires more DB instances, you can request additional DB instances
by opening the Service Quotas console. In the navigation pane, choose AWS services.
Choose Amazon Relational Database Service (Amazon RDS), choose a quota, and follow
the directions to request a quota increase. For more information, see Requesting a quota
increase in the Service Quotas User Guide.
For RDS for Oracle, you can create up to 15 read replicas per source DB instance in each
Region, but we recommend limiting replicas to 5 to minimize replication lag.

Quotas in Amazon RDS 5236

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-7ADDB58A
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/dashboard
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html

Amazon Relational Database Service User Guide

Backups managed by AWS Backup are considered manual DB snapshots, but don't count
toward the manual snapshot quota. For information about AWS Backup, see the AWS
Backup Developer Guide.

If you use any RDS API operations and exceed the default quota for the number of calls per second,
the Amazon RDS API issues an error like the following one.

ClientError: An error occurred (ThrottlingException) when calling the API_name operation: Rate
exceeded.

Here, reduce the number of calls per second. The quota is meant to cover most use cases. If higher
quotas are needed, you can request a quota increase by using one of the following options:

• From the console, open the Service Quotas console.

• From the AWS CLI, use the request-service-quota-increase AWS CLI command.

For more information, see the Service Quotas User Guide.

Naming constraints in Amazon RDS

The naming constraints in Amazon RDS are as follows:

• DB instance identifier:

• Must contain 1–63 alphanumeric characters or hyphens.

• First character must be a letter.

• Can't end with a hyphen or contain two consecutive hyphens.

• Must be unique for all DB instances per AWS account, per AWS Region.

• Initial database name:

• Database name constraints differ for each database engine. For more information, see the
available settings when creating each DB instance.

• SQL Server – Create your databases after creating your DB instance.

• Master username – Master username constraints differ for each database engine. For more
information, see the available settings when creating the DB instance.

• Master password:

Naming constraints in Amazon RDS 5237

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://docs.aws.amazon.com/aws-backup/latest/devguide
https://us-east-1.console.aws.amazon.com/servicequotas/home/
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Relational Database Service User Guide

• The password for the database master user can include any printable ASCII character except /,
', ", @, or a space.

For Oracle, & is an additional character limitation.

• The password can contain the following number of printable ASCII characters depending on
the DB engine:

• Db2: 8–255

• MariaDB and MySQL: 8–41

• Oracle: 8–30

• SQL Server and PostgreSQL: 8–128

• DB parameter group:

• Must contain 1–255 alphanumeric characters.

• First character must be a letter.

• Hyphens are allowed, but the name cannot end with a hyphen or contain two consecutive
hyphens.

• DB subnet group:

• Must contain 1–255 characters.

• Alphanumeric characters, spaces, hyphens, underscores, and periods are allowed.

Maximum number of database connections

The maximum number of simultaneous database connections varies by the DB engine type and
the memory allocation for the DB instance class. The maximum number of connections is generally
set in the parameter group associated with the DB instance. The exception is Microsoft SQL Server,
where it is set in the server properties for the DB instance in SQL Server Management Studio
(SSMS).

Database connections consume memory. Setting one of these parameters too high can cause a low
memory condition that might cause a DB instance to be placed in the incompatible-parameters
status. For more information, see Diagnosing and resolving incompatible parameters status for a
memory limit.

If your applications frequently open and close connections, or keep a large number of long-lived
connections open, we recommend that you use Amazon RDS Proxy. RDS Proxy is a fully managed,
Maximum number of database connections 5238

Amazon Relational Database Service User Guide

highly available database proxy that uses connection pooling to share database connections
securely and efficiently. To learn more about RDS Proxy, see Amazon RDS Proxy.

Note

For Oracle, you set the maximum number of user processes and user and system sessions.
For Db2, you can't set maximum connections. The limit is 64000.

The following table shows information about the maximum database connections for different DB
engines.

DB engine Parameter Allowed
values

Default value Description

MariaDB max_conne
ctions

1–100000 • For MariaDB 10.5 and
higher versions, the
default is:

LEAST({DBInstanceC
lassMemory/2516576
0},12000)

The formula is
effectively equivalent
to MB/25.

If the default value
calculation results
in a value greater
than 12,000, Amazon
RDS sets the limit to
12,000.

• For MariaDB version
10.4:

{DBInstanceClassMe
mory/12582880}

Number of
simultaneous
client connections
allowed

Maximum number of database connections 5239

Amazon Relational Database Service User Guide

DB engine Parameter Allowed
values

Default value Description

The formula is
effectively equivalent
to MB/12.

MySQL max_conne
ctions

1–100000 {DBInstanceClassMe
mory/12582880}

The formula is effectively
equivalent to MB/12.

Number of
simultaneous
client connections
allowed

Oracle processes 80–20000 LEAST({DBInstanceC
lassMemory/9868951},
20000)

User processes

Oracle sessions 100–
65535

Not applicable User and system
sessions

PostgreSQ
L

max_conne
ctions

6–
8388607

LEAST({DBInstanceC
lassMemory/9531392},
5000)

Maximum number
of concurrent
connections

SQL
Server

user connectio
ns

0–32767 0 (unlimited) Maximum number
of concurrent
connections. For
more information,
see Configure the
user connections
(server configura
tion option).

DBInstanceClassMemory is in bytes. For details about how this value is calculated, see
Specifying DB parameters. Because of memory reserved for the operating system and RDS
management processes, this memory size is smaller than the value in gibibytes (GiB) shown in
Hardware specifications for DB instance classes.

Maximum number of database connections 5240

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-user-connections-server-configuration-option?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-user-connections-server-configuration-option?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-user-connections-server-configuration-option?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-user-connections-server-configuration-option?view=sql-server-ver16

Amazon Relational Database Service User Guide

For example, some DB instance classes have 8 GiB of memory, which is 8,589,934,592 bytes. For
a MySQL DB instance running on a DB instance class with 8 GiB of memory, such as db.m7g.large,
the equation that uses the total memory would be 8589934592/12582880=683. However,
the variable DBInstanceClassMemory automatically subtracts the amounts reserved to the
operating system and the RDS processes that manage the DB instance. The remainder of the
subtraction is then divided by 12,582,880. This calculation results in approximately 630 for the
value of max_connections instead of 683. This value depends on the DB instance class and DB
engine.

When a MariaDB or MySQL DB instance is running on a small DB instance class, such as db.t3.micro
or db.t3.small, the total memory available is low. For these DB instance classes, RDS reserves
a significant portion of the available memory, which affects the value max_connections. For
example, the default maximum number of connections for a MySQL DB instance running on a
db.t3.micro DB instance class is approximately 60. You can determine the max_connections
value for your DB MariaDB or MySQL DB instance by connecting to it and running the following
SQL command:

SHOW GLOBAL VARIABLES LIKE 'max_connections';

File size limits in Amazon RDS

File size limits apply to certain Amazon RDS DB instances. For more information, see the following
engine-specific limits:

• MariaDB file size limits in Amazon RDS

• MySQL file size limits in Amazon RDS

• Oracle file size limits in Amazon RDS

File size limits in Amazon RDS 5241

Amazon Relational Database Service User Guide

Troubleshooting for Amazon RDS

Use the following sections to help troubleshoot problems you have with DB instances in Amazon
RDS and Amazon Aurora.

Topics

• Can't connect to Amazon RDS DB instance

• Amazon RDS security issues

• Troubleshooting incompatible-network state

• Resetting the DB instance owner password

• Amazon RDS DB instance outage or reboot

• Amazon RDS DB parameter changes not taking effect

• Amazon RDS DB instance running out of storage

• Amazon RDS insufficient DB instances available

• Freeable memory issues in Amazon RDS

• MySQL and MariaDB issues

• Can't set backup retention period to 0

For information about debugging problems using the Amazon RDS API, see Troubleshooting
applications on Amazon RDS.

Can't connect to Amazon RDS DB instance

When you can't connect to a DB instance, the following are common causes:

• Inbound rules – The access rules enforced by your local firewall and the IP addresses authorized
to access your DB instance might not match. The problem is most likely the inbound rules in your
security group.

By default, DB instances don't allow access. Access is granted through a security group associated
with the VPC that allows traffic into and out of the DB instance. If necessary, add inbound and
outbound rules for your particular situation to the security group. You can specify an IP address,
a range of IP addresses, or another VPC security group.

Can't connect to DB instance 5242

Amazon Relational Database Service User Guide

Note

When adding a new inbound rule, you can choose My IP for Source to allow access to the
DB instance from the IP address detected in your browser.

For more information about setting up security groups, see Provide access to your DB instance in
your VPC by creating a security group.

Note

Client connections from IP addresses within the range 169.254.0.0/16 aren't permitted.
This is the Automatic Private IP Addressing Range (APIPA), which is used for local-link
addressing.

• Public accessibility – To connect to your DB instance from outside of the VPC, such as by using a
client application, the instance must have a public IP address assigned to it.

To make the instance publicly accessible, modify it and choose Yes under Public accessibility.
For more information, see Hiding a DB instance in a VPC from the internet.

• Port – The port that you specified when you created the DB instance can't be used to send or
receive communications because of your local firewall restrictions. To determine if your network
allows the specified port to be used for inbound and outbound communication, check with your
network administrator.

• Availability – For a newly created DB instance, the DB instance has a status of creating until
the DB instance is ready to use. When the state changes to available, you can connect to the
DB instance. Depending on the size of your DB instance, it can take up to 20 minutes before an
instance is available.

• Internet gateway – For a DB instance to be publicly accessible, the subnets in its DB subnet
group must have an internet gateway.

To configure an internet gateway for a subnet

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the name of the DB instance.

Can't connect to DB instance 5243

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

3. In the Connectivity & security tab, write down the values of the VPC ID under VPC and the
subnet ID under Subnets.

4. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

5. In the navigation pane, choose Internet Gateways. Verify that there is an internet gateway
attached to your VPC. Otherwise, choose Create Internet Gateway to create an internet
gateway. Select the internet gateway, and then choose Attach to VPC and follow the
directions to attach it to your VPC.

6. In the navigation pane, choose Subnets, and then select your subnet.

7. On the Route Table tab, verify that there is a route with 0.0.0.0/0 as the destination and
the internet gateway for your VPC as the target.

If you're connecting to your instance using its IPv6 address, verify that there is a route for all
IPv6 traffic (::/0) that points to the internet gateway. Otherwise, do the following:

a. Choose the ID of the route table (rtb-xxxxxxxx) to navigate to the route table.

b. On the Routes tab, choose Edit routes. Choose Add route, use 0.0.0.0/0 as the
destination and the internet gateway as the target.

For IPv6, choose Add route, use ::/0 as the destination and the internet gateway as
the target.

c. Choose Save routes.

Also, if you are trying to connect to IPv6 endpoint, make sure that client IPv6 address range
is authorized to connect to the DB instance.

For more information, see Working with a DB instance in a VPC.

For engine-specific connection issues, see the following topics:

• Troubleshooting connections to your SQL Server DB instance

• Troubleshooting connections to your Oracle DB instance

• Troubleshooting connections to your RDS for PostgreSQL instance

• Maximum MySQL and MariaDB connections

Can't connect to DB instance 5244

https://console.aws.amazon.com/vpc/

Amazon Relational Database Service User Guide

Testing a connection to a DB instance

You can test your connection to a DB instance using common Linux or Microsoft Windows tools.

From a Linux or Unix terminal, you can test the connection by entering the following. Replace DB-
instance-endpoint with the endpoint and port with the port of your DB instance.

nc -zv DB-instance-endpoint port

For example, the following shows a sample command and the return value.

nc -zv postgresql1.c6c8mn7fake0.us-west-2.rds.amazonaws.com 8299

 Connection to postgresql1.c6c8mn7fake0.us-west-2.rds.amazonaws.com 8299 port [tcp/
vvr-data] succeeded!

Windows users can use Telnet to test the connection to a DB instance. Telnet actions aren't
supported other than for testing the connection. If a connection is successful, the action returns no
message. If a connection isn't successful, you receive an error message such as the following.

C:\>telnet sg-postgresql1.c6c8mntfake0.us-west-2.rds.amazonaws.com 819

 Connecting To sg-postgresql1.c6c8mntfake0.us-west-2.rds.amazonaws.com...Could not
 open
 connection to the host, on port 819: Connect failed

If Telnet actions return success, your security group is properly configured.

Note

Amazon RDS doesn't accept internet control message protocol (ICMP) traffic, including
ping.

Troubleshooting connection authentication

In some cases, you can connect to your DB instance but you get authentication errors. In these
cases, you might want to reset the master user password for the DB instance. You can do this by
modifying the RDS instance.

Testing the DB instance connection 5245

Amazon Relational Database Service User Guide

For more information about modifying a DB instance, see Modifying an Amazon RDS DB instance.

Amazon RDS security issues

To avoid security issues, never use your AWS account root user email address and password for
a user account. Best practice is to use your root user to create users and assign those to DB user
accounts. You can also use your root user to create other user accounts, if necessary.

For information about creating users, see Creating an IAM user in your AWS account. For
information about creating users in AWS IAM Identity Center, see Manage identities in IAM Identity
Center.

Error message "failed to retrieve account attributes, certain console
functions may be impaired."

You can get this error for several reasons. It might be because your account is missing permissions,
or your account hasn't been properly set up. If your account is new, you might not have waited
for the account to be ready. If this is an existing account, you might lack permissions in your
access policies to perform certain actions such as creating a DB instance. To fix the issue, your
administrator needs to provide the necessary roles to your account. For more information, see the
IAM documentation.

Troubleshooting incompatible-network state

The incompatible-network state means that the database might still be accessible at the database
level but you can't modify or reboot it.

Causes

The incompatible-network state of your DB instance could be a result of one of the following
actions:

• Modifying the DB instance class.

• Modifying the DB instance to use Multi-AZ DB cluster deployment.

• Replacing a host because of a maintenance event.

• Launching a replacement DB instance.

• Restoring from a snapshot backup.

Security issues 5246

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Relational Database Service User Guide

• Starting a DB instance that was stopped.

Resolution

Use start-db-instance command

To fix a database that is in an incompatible-network state, follow these instructions:

1. Open the https://console.aws.amazon.com/rds/ and choose Databases from the navigation
pane.

2. Choose the DB instance that is in the incompatible-network state and note the DB instance
identifier, VPC ID, and subnet IDs from the Connectivity & Security tab.

3. Use the AWS CLI to run the start-db-instance command. Specify the --db-instance-
identifier value.

Note

Running this command when your database is in incompatible mode might cause some
downtime.
The start-db-instance command does not resolve this issue for RDS for SQL Server
DB instances.

Your database status changes to Available if the command executes successfully.

If your database restarts, the DB instance might execute the last operation run on the instance
before it was moved to incompatible-network state. This might move the instance back to the
incompatible-network state.

If the start-db-instance command is unsuccessful or the instance moves back to incompatible-
network state, open the Databases page in the RDS console and select the database. Navigate to
the Logs & events section. The Recent events section displays further resolution steps to follow.
The messages are classified as follows:

• INTERNAL RESOURCE CHECK: There might be issues with your internal resources.

• DNS CHECK: Check DNS resolution and hostnames for the VPC in the VPC console.

• ENI CHECK: The elastic network interface (ENI) for your database might not exist.

Resolution 5247

https://console.aws.amazon.com/rds/

Amazon Relational Database Service User Guide

• GATEWAY CHECK: The internet gateway for your publicly available database is not attached to
the VPC.

• IP CHECK: There are no free IP addresses in your subnets.

• SECURITY GROUP CHECK: There are no security groups associated with your database or the
security groups are invalid.

• SUBNET CHECK: There are no valid subnets in your DB subnet group or there are issues with
your subnet.

• VPC CHECK: The VPC associated with your database is invalid.

Perform point-in-time recovery

It is best practice to have a backup (snapshot or logical), in case your database enters incompatible-
network state. See Introduction to backups. If you turned on automated backups, then temporarily
stop any writes to the database and perform a point-in-time recovery.

Note

After an instance enters the incompatible-network state, the DB instance might not be
accessible to perform a logical backup.

If you didn't turn on automated backups, create a new DB instance. Then migrate the data using
AWS Database Migration Service (AWS DMS), or by using a backup and restore tool.

If this does not resolve the issue, contact Support for further assistance.

Resetting the DB instance owner password

If you get locked out of your DB instance, you can log in as the master user. Then you can reset the
credentials for other administrative users or roles. If you can't log in as the master user, the AWS
account owner can reset the master user password. For details of which administrative accounts or
roles you might need to reset, see Master user account privileges.

You can change the DB instance password by using the Amazon RDS console, the AWS CLI
command modify-db-instance, or by using the ModifyDBInstance API operation. For more
information about modifying a DB instance, see Modifying an Amazon RDS DB instance.

Resetting the DB instance owner password 5248

https://docs.aws.amazon.com/dms/latest/userguide/;Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Relational Database Service User Guide

Amazon RDS DB instance outage or reboot

A DB instance outage can occur when a DB instance is rebooted. It can also occur when the DB
instance is put into a state that prevents access to it, and when the database is restarted. A reboot
can occur when you manually reboot your DB instance. A reboot can also occur when you change a
DB instance setting that requires a reboot before it can take effect.

A DB instance reboot occurs when you change a setting that requires a reboot, or when you
manually cause a reboot. A reboot can occur immediately if you change a setting and request that
the change take effect immediately. Or it can occur during the DB instance's maintenance window.

A DB instance reboot occurs immediately when one of the following occurs:

• You change the backup retention period for a DB instance from 0 to a nonzero value or from a
nonzero value to 0. You then set Apply Immediately to true.

• You change the DB instance class, and Apply Immediately is set to true.

• You change the storage type from Magnetic (Standard) to General Purpose (SSD) or
Provisioned IOPS (SSD), or from Provisioned IOPS (SSD) or General Purpose (SSD) to Magnetic
(Standard).

A DB instance reboot occurs during the maintenance window when one of the following occurs:

• You change the backup retention period for a DB instance from 0 to a nonzero value or from a
nonzero value to 0, and Apply Immediately is set to false.

• You change the DB instance class, and Apply Immediately is set to false.

When you change a static parameter in a DB parameter group, the change doesn't take effect until
the DB instance associated with the parameter group is rebooted. The change requires a manual
reboot. The DB instance isn't automatically rebooted during the maintenance window.

To see a table that shows DB instance actions and the effect that setting the Apply Immediately
value has, see Modifying an Amazon RDS DB instance.

Amazon RDS DB parameter changes not taking effect

In some cases, you might change a parameter in a DB parameter group but don't see the changes
take effect. If so, you likely need to reboot the DB instance associated with the DB parameter

DB instance outage or reboot 5249

Amazon Relational Database Service User Guide

group. When you change a dynamic parameter, the change takes effect immediately. When
you change a static parameter, the change doesn't take effect until you reboot the DB instance
associated with the parameter group.

You can reboot a DB instance using the RDS console. Or you can explicitly call the
RebootDBInstance API operation. You can reboot without failover if the DB instance is in a Multi-
AZ deployment. The requirement to reboot the associated DB instance after a static parameter
change helps mitigate the risk of a parameter misconfiguration affecting an API call. An example
of this is calling ModifyDBInstance to change the DB instance class. For more information, see
Modifying parameters in a DB parameter group in Amazon RDS.

Amazon RDS DB instance running out of storage

If your DB instance runs out of storage space, it might no longer be available. We highly
recommend that you constantly monitor the FreeStorageSpace metric published in CloudWatch
to make sure that your DB instance has enough free storage space.

If your database instance runs out of storage, its status changes to storage-full. For example,
a call to the DescribeDBInstances API operation for a DB instance that has used up its storage
outputs the following.

aws rds describe-db-instances --db-instance-identifier mydbinstance

DBINSTANCE mydbinstance 2009-12-22T23:06:11.915Z db.m5.large mysql8.0 50 sa
storage-full mydbinstance.clla4j4jgyph.us-east-1.rds.amazonaws.com 3306
us-east-1b 3
 SECGROUP default active
 PARAMGRP default.mysql8.0 in-sync

To recover from this scenario, add more storage space to your instance using the
ModifyDBInstance API operation or the following AWS CLI command.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --allocated-storage 60 \
 --apply-immediately

For Windows:

DB instance out of storage 5250

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html

Amazon Relational Database Service User Guide

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --allocated-storage 60 ^
 --apply-immediately

DBINSTANCE mydbinstance 2009-12-22T23:06:11.915Z db.m5.large mysql8.0 50 sa
storage-full mydbinstance.clla4j4jgyph.us-east-1.rds.amazonaws.com 3306
us-east-1b 3 60
 SECGROUP default active
 PARAMGRP default.mysql8.0 in-sync

Now, when you describe your DB instance, you see that your DB instance has modifying status,
which indicates the storage is being scaled.

aws rds describe-db-instances --db-instance-identifier mydbinstance

DBINSTANCE mydbinstance 2009-12-22T23:06:11.915Z db.m5.large mysql8.0 50 sa
modifying mydbinstance.clla4j4jgyph.us-east-1.rds.amazonaws.com
3306 us-east-1b 3 60
 SECGROUP default active
 PARAMGRP default.mysql8.0 in-sync

After storage scaling is complete, your DB instance status changes to available.

aws rds describe-db-instances --db-instance-identifier mydbinstance

DBINSTANCE mydbinstance 2009-12-22T23:06:11.915Z db.m5.large mysql8.0 60 sa
available mydbinstance.clla4j4jgyph.us-east-1.rds.amazonaws.com 3306
us-east-1b 3
 SECGROUP default active
 PARAMGRP default.mysql8.0 in-sync

You can receive notifications when your storage space is exhausted using the DescribeEvents
operation. For example, in this scenario, if you make a DescribeEvents call after these
operations you see the following output.

aws rds describe-events --source-type db-instance --source-identifier mydbinstance

DB instance out of storage 5251

Amazon Relational Database Service User Guide

2009-12-22T23:44:14.374Z mydbinstance Allocated storage has been exhausted db-
instance
2009-12-23T00:14:02.737Z mydbinstance Applying modification to allocated storage db-
instance
2009-12-23T00:31:54.764Z mydbinstance Finished applying modification to allocated
 storage

Amazon RDS insufficient DB instances available

The InsufficientDBInstanceCapacity error can be returned when you try to create, start,
or modify a DB instance. It can also be returned when you try to restore a DB instance from a DB
snapshot. When this error is returned, a common cause is that the specific DB instance class isn't
available in the requested Availability Zone. You can try one of the following to solve the problem:

• Retry the request with a different DB instance class.

• Retry the request with a different Availability Zone.

• Retry the request without specifying an explicit Availability Zone.

For information about troubleshooting instance capacity issues for Amazon EC2, see Insufficient
instance capacity in the Amazon EC2 User Guide.

For information about modifying a DB instance, see Modifying an Amazon RDS DB instance.

Freeable memory issues in Amazon RDS

Freeable memory is the total random access memory (RAM) on a DB instance that can be made
available to the database engine. It's the sum of the free operating-system (OS) memory and the
available buffer and page cache memory. The database engine uses most of the memory on the
host, but OS processes also use some RAM. Memory currently allocated to the database engine or
used by OS processes isn't included in freeable memory. When the database engine is running out
of memory, the DB instance can use the temporary space that is normally used for buffering and
caching. As previously mentioned, this temporary space is included in freeable memory.

You use the FreeableMemory metric in Amazon CloudWatch to monitor the freeable memory. For
more information, see Monitoring tools for Amazon RDS.

If your DB instance consistently runs low on freeable memory or uses swap space, consider scaling
up to a larger DB instance class. For more information, see DB instance classes.

Insufficient DB instances available 5252

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/troubleshooting-launch.html#troubleshooting-launch-capacity
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/troubleshooting-launch.html#troubleshooting-launch-capacity

Amazon Relational Database Service User Guide

You can also change the memory settings. For example, on RDS for MySQL, you might adjust
the size of the innodb_buffer_pool_size parameter. This parameter is set by default to 75
percent of physical memory. For more MySQL troubleshooting tips, see How can I troubleshoot low
freeable memory in an Amazon RDS for MySQL database?

MySQL and MariaDB issues

You can diagnose and correct issues with MySQL and MariaDB DB instances.

Topics

• Maximum MySQL and MariaDB connections

• Diagnosing and resolving incompatible parameters status for a memory limit

• Diagnosing and resolving lag between read replicas

• Diagnosing and resolving a MySQL or MariaDB read replication failure

• Creating triggers with binary logging enabled requires SUPER privilege

• Diagnosing and resolving point-in-time restore failures

• Replication stopped error

• Read replica create fails or replication breaks with fatal error 1236

• Read replica replication fails to initialize metadata structure

Maximum MySQL and MariaDB connections

The maximum number of connections allowed to an RDS for MySQL or RDS for MariaDB DB
instance is based on the amount of memory available for its DB instance class. A DB instance
class with more memory available results in a larger number of connections available. For more
information on DB instance classes, see DB instance classes.

The connection limit for a DB instance is set by default to the maximum for the DB instance class.
You can limit the number of concurrent connections to any value up to the maximum number of
connections allowed. Use the max_connections parameter in the parameter group for the DB
instance. For more information, see Maximum number of database connections and Parameter
groups for Amazon RDS.

You can retrieve the maximum number of connections allowed for a MySQL or MariaDB DB
instance by running the following query.

MySQL and MariaDB issues 5253

https://aws.amazon.com/premiumsupport/knowledge-center/low-freeable-memory-rds-mysql-mariadb/
https://aws.amazon.com/premiumsupport/knowledge-center/low-freeable-memory-rds-mysql-mariadb/

Amazon Relational Database Service User Guide

SELECT @@max_connections;

You can retrieve the number of active connections to a MySQL or MariaDB DB instance by running
the following query.

SHOW STATUS WHERE `variable_name` = 'Threads_connected';

Diagnosing and resolving incompatible parameters status for a
memory limit

A MariaDB or MySQL DB instance can be placed in incompatible-parameters status for a memory
limit when the following conditions are met:

• The DB instance is restarted at least three times in one hour or at least five times in one day
when the DB instance status is Available.

• An attempt to restart the DB instance fails because a maintenance action or monitoring process
couldn't restart the DB instance.

• The potential memory usage of the DB instance exceeds 1.2 times the memory allocated to its
DB instance class.

When a DB instance is restarted for the third time in one hour or for the fifth time in one day, it
performs a check for memory usage. The check makes a calculation of the potential memory usage
of the DB instance. The value returned by the calculation is the sum of the following values:

• Value 1 – The sum of the following parameters:

• innodb_additional_mem_pool_size

• innodb_buffer_pool_size

You can modify the value for innodb_buffer_pool_size. However, the value won't always
match what you input. This mismatch occurs for several reasons. First, if the DB instance
is a micro DB instance, then we override the default value and set it to 256 MB. For more
information, see Overriding innodb_buffer_pool_size.

Second, we make sure that 500 MB of memory is reserved on the DB instance for the host
manager, the engine, the operating system, and the kernel.

Diagnosing and resolving incompatible parameters status for a memory limit 5254

Amazon Relational Database Service User Guide

Last, we optimize innodb_buffer_pool_size by dividing it into units. The host manager
rounds down to the closest multiple of those units. The units are calculated by multiplying
innodb_buffer_pool_chunk_size by innodb_buffer_pool_instances. For more
information, see Configuring InnoDB Buffer Pool Size in the MySQL documentation.

The default for innodb_buffer_pool_instances is 8, unless
innodb_buffer_pool_size is less than 1 GB. If innodb_buffer_pool_size is less
than 1 GB, then the default for innodb_buffer_pool_instances is 1. The default for
innodb_buffer_pool_chunk_size is 128 MB.

• innodb_log_buffer_size

• key_buffer_size

• query_cache_size (MySQL version 5.7 only)

• tmp_table_size

• Value 2 – The max_connections parameter multiplied by the sum of the following parameters:

• binlog_cache_size

• join_buffer_size

• read_buffer_size

• read_rnd_buffer_size

• sort_buffer_size

• thread_stack

• Value 3 – If the performance_schema parameter is enabled, then multiply the
max_connections parameter by 429498.

If the performance_schema parameter is disabled, then this value is zero.

So, the value returned by the calculation is the following:

Value 1 + Value 2 + Value 3

When this value exceeds 1.2 times the memory allocated to the DB instance class used by the DB
instance, the DB instance is placed in incompatible-parameters status. For information about the
memory allocated to DB instance classes, see Hardware specifications for DB instance classes.

The calculation multiplies the value of the max_connections parameter by the sum of several
parameters. If the max_connections parameter is set to a large value, it might cause the check to

Diagnosing and resolving incompatible parameters status for a memory limit 5255

https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool-resize.html

Amazon Relational Database Service User Guide

return an inordinately high value for the potential memory usage of the DB instance. In this case,
consider lowering the value of the max_connections parameter.

To resolve the problem, complete the following steps:

1. Adjust the memory parameters in the DB parameter group associated with the DB instance. Do
so such that the potential memory usage is lower than 1.2 times the memory allocated to its DB
instance class.

For information about setting parameters, see Modifying parameters in a DB parameter group in
Amazon RDS.

2. Restart the DB instance.

For information about setting parameters, see Starting an Amazon RDS DB instance that was
previously stopped.

Diagnosing and resolving lag between read replicas

After you create a MySQL or MariaDB read replica and the replica is available, Amazon RDS first
replicates the changes made to the source DB instance from the time the read replica create
operation started. During this phase, the replication lag time for the read replica is greater than 0.
You can monitor this lag time in Amazon CloudWatch by viewing the Amazon RDS ReplicaLag
metric.

The ReplicaLag metric reports the value of the Seconds_Behind_Master field of the MariaDB
or MySQL SHOW REPLICA STATUS command. For more information, see SHOW REPLICA STATUS
Statement in the MySQL documentation.

When the ReplicaLag metric reaches 0, the replica has caught up to the source DB instance. If the
ReplicaLag metric returns -1, replication might not be active. To troubleshoot a replication error,
see Diagnosing and resolving a MySQL or MariaDB read replication failure. A ReplicaLag value of
-1 can also mean that the Seconds_Behind_Master value can't be determined or is NULL.

Note

Previous versions of MariaDB used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MariaDB version lower than 10.5, then use SHOW SLAVE
STATUS.

Diagnosing and resolving lag between read replicas 5256

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Relational Database Service User Guide

The ReplicaLag metric returns -1 during a network outage or when a patch is applied during
the maintenance window. In this case, wait for network connectivity to be restored or for the
maintenance window to end before you check the ReplicaLag metric again.

The MySQL and MariaDB read replication technology is asynchronous. Thus, you can expect
occasional increases for the BinLogDiskUsage metric on the source DB instance and for the
ReplicaLag metric on the read replica. For example, consider a situation where a high volume of
write operations to the source DB instance occur in parallel. At the same time, write operations to
the read replica are serialized using a single I/O thread. Such a situation can lead to a lag between
the source instance and read replica.

For more information about read replicas and MySQL, see Replication implementation details in
the MySQL documentation. For more information about read replicas and MariaDB, see Replication
overview in the MariaDB documentation.

You can reduce the lag between updates to a source DB instance and the subsequent updates to
the read replica by doing the following:

• Set the DB instance class of the read replica to have a storage size comparable to that of the
source DB instance.

• Make sure that parameter settings in the DB parameter groups used by the source DB instance
and the read replica are compatible. For more information and an example, see the discussion of
the max_allowed_packet parameter in the next section.

• Disable the query cache. For tables that are modified often, using the query cache can increase
replica lag because the cache is locked and refreshed often. If this is the case, you might see
less replica lag if you disable the query cache. You can disable the query cache by setting the
query_cache_type parameter to 0 in the DB parameter group for the DB instance. For more
information on the query cache, see Query cache configuration.

• Warm the buffer pool on the read replica for InnoDB for MySQL or MariaDB. For example,
suppose that you have a small set of tables that are being updated often and you're using the
InnoDB or XtraDB table schema. In this case, dump those tables on the read replica. Doing this
causes the database engine to scan through the rows of those tables from the disk and then
cache them in the buffer pool. This approach can reduce replica lag. The following shows an
example.

For Linux, macOS, or Unix:

PROMPT> mysqldump \

Diagnosing and resolving lag between read replicas 5257

https://dev.mysql.com/doc/refman/8.0/en/replication-implementation-details.html
http://mariadb.com/kb/en/mariadb/replication-overview/
http://mariadb.com/kb/en/mariadb/replication-overview/
https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html

Amazon Relational Database Service User Guide

 -h <endpoint> \
 --port=<port> \
 -u=<username> \
 -p <password> \
 database_name table1 table2 > /dev/null

For Windows:

PROMPT> mysqldump ^
 -h <endpoint> ^
 --port=<port> ^
 -u=<username> ^
 -p <password> ^
 database_name table1 table2 > /dev/null

Diagnosing and resolving a MySQL or MariaDB read replication failure

Amazon RDS monitors the replication status of your read replicas. RDS updates the Replication
State field of the read replica instance to Error if replication stops for any reason. You can
review the details of the associated error thrown by the MySQL or MariaDB engines by viewing
the Replication Error field. Events that indicate the status of the read replica are also generated,
including RDS-EVENT-0045, RDS-EVENT-0046, and RDS-EVENT-0057. For more information
about events and subscribing to events, see Working with Amazon RDS event notification. If a
MySQL error message is returned, check the error in the MySQL error message documentation. If a
MariaDB error message is returned, check the error in the MariaDB error message documentation.

Common situations that can cause replication errors include the following:

• The value for the max_allowed_packet parameter for a read replica is less than the
max_allowed_packet parameter for the source DB instance.

The max_allowed_packet parameter is a custom parameter that you can set in a DB
parameter group. The max_allowed_packet parameter is used to specify the maximum
size of data manipulation language (DML) that can be run on the database. In some
cases, the max_allowed_packet value for the source DB instance might be larger than
the max_allowed_packet value for the read replica. If so, the replication process can
throw an error and stop replication. The most common error is packet bigger than
'max_allowed_packet' bytes. You can fix the error by having the source and read replica
use DB parameter groups with the same max_allowed_packet parameter values.

Diagnosing and resolving a MySQL or MariaDB read replication failure 5258

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
http://mariadb.com/kb/en/mariadb/mariadb-error-codes/

Amazon Relational Database Service User Guide

• Writing to tables on a read replica. If you're creating indexes on a read replica, you need to have
the read_only parameter set to 0 to create the indexes. If you're writing to tables on the read
replica, it can break replication.

• Using a nontransactional storage engine such as MyISAM. Read replicas require a transactional
storage engine. Replication is only supported for the following storage engines: InnoDB for
MySQL or MariaDB.

You can convert a MyISAM table to InnoDB with the following command:

alter table <schema>.<table_name> engine=innodb;

• Using unsafe nondeterministic queries such as SYSDATE(). For more information, see
Determination of safe and unsafe statements in binary logging in the MySQL documentation.

The following steps can help resolve your replication error:

• If you encounter a logical error and you can safely skip the error, follow the steps described in
Skipping the current replication error for RDS for MySQL. Your MySQL or MariaDB DB instance
must be running a version that includes the mysql_rds_skip_repl_error procedure. For
more information, see mysql.rds_skip_repl_error.

• If you encounter a binary log (binlog) position issue, you can change the replica replay position
with the mysql.rds_next_source_log (RDS for MySQL major versions 8.4 and higher) or
mysql.rds_next_master_log (RDS for MariaDB and RDS for MySQL major versions 8.0 and lower)
command.

• You might encounter a temporary performance issue because of high DML load. If so, you can
set the innodb_flush_log_at_trx_commit parameter to 2 in the DB parameter group on
the read replica. Doing this can help the read replica catch up, though it temporarily reduces
atomicity, consistency, isolation, and durability (ACID).

• You can delete the read replica and create an instance using the same DB instance identifier. If
you do this, the endpoint remains the same as that of your old read replica.

If a replication error is fixed, the Replication State changes to replicating. For more information,
see Troubleshooting a MySQL read replica problem.

Diagnosing and resolving a MySQL or MariaDB read replication failure 5259

https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html

Amazon Relational Database Service User Guide

Creating triggers with binary logging enabled requires SUPER privilege

When trying to create triggers in an RDS for MySQL or RDS for MariaDB DB instance, you might
receive the following error.

"You do not have the SUPER privilege and binary logging is enabled"

To use triggers when binary logging is enabled requires the SUPER privilege, which is restricted for
RDS for MySQL and RDS for MariaDB DB instances. You can create triggers when binary logging
is enabled without the SUPER privilege by setting the log_bin_trust_function_creators
parameter to true. To set the log_bin_trust_function_creators to true, create a new DB
parameter group or modify an existing DB parameter group.

You can create a new DB parameter group so you can create triggers in your RDS for MySQL or RDS
for MariaDB DB instance with binary logging enabled. To do so, use the following CLI commands.
To modify an existing parameter group, start with step 2.

To create a new parameter group to allow triggers with binary logging enabled using the CLI

1. Create a new parameter group.

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name allow-triggers \
 --db-parameter-group-family mysql8.0 \
 --description "parameter group allowing triggers"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name allow-triggers ^
 --db-parameter-group-family mysql8.0 ^
 --description "parameter group allowing triggers"

2. Modify the DB parameter group to allow triggers.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \

Creating triggers with binary logging enabled requires SUPER privilege 5260

Amazon Relational Database Service User Guide

 --db-parameter-group-name allow-triggers \
 --parameters "ParameterName=log_bin_trust_function_creators,
 ParameterValue=true, ApplyMethod=pending-reboot"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name allow-triggers ^
 --parameters "ParameterName=log_bin_trust_function_creators,
 ParameterValue=true, ApplyMethod=pending-reboot"

3. Modify your DB instance to use the new DB parameter group.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --db-parameter-group-name allow-triggers \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-parameter-group-name allow-triggers ^
 --apply-immediately

4. For the changes to take effect, manually reboot the DB instance.

aws rds reboot-db-instance --db-instance-identifier mydbinstance

Diagnosing and resolving point-in-time restore failures

Restoring a DB instance that includes temporary tables

When attempting a point-in-time restore (PITR) of your MySQL or MariaDB DB instance, you might
encounter the following error.

Database instance could not be restored because there has been incompatible database
 activity for restore

Diagnosing and resolving point-in-time restore failures 5261

Amazon Relational Database Service User Guide

functionality. Common examples of incompatible activity include using temporary tables,
 in-memory tables,
or using MyISAM tables. In this case, use of Temporary table was detected.

PITR relies on both backup snapshots and binary logs (binlogs) from MySQL or MariaDB to restore
your DB instance to a particular time. Temporary table information can be unreliable in binlogs and
can cause a PITR failure. If you use temporary tables in your MySQL or MariaDB DB instance, you
can decrease the possibility of a PITR failure by performing more frequent backups. A PITR failure
is most probable in the time between a temporary table's creation and the next backup snapshot.

Restoring a DB instance that includes in-memory tables

You might encounter a problem when restoring a database that has in-memory tables. In-memory
tables are purged during a restart. As a result, your in-memory tables might be empty after a
reboot. We recommend that when you use in-memory tables, you architect your solution to
handle empty tables in the event of a restart. If you're using in-memory tables with replicated DB
instances, you might need to recreate the read replicas after a restart. This might be necessary if a
read replica reboots and can't restore data from an empty in-memory table.

For more information about backups and PITR, see Introduction to backups and Restoring a DB
instance to a specified time for Amazon RDS.

Replication stopped error

When you call the mysql.rds_skip_repl_error command, you might receive an error message
stating that replication is down or disabled.

This error message appears because replication is stopped and can't be restarted.

If you need to skip a large number of errors, the replication lag can increase beyond the default
retention period for binary log files. In this case, you might encounter a fatal error because of
binary log files being purged before they have been replayed on the replica. This purge causes
replication to stop, and you can no longer call the mysql.rds_skip_repl_error command to
skip replication errors.

You can mitigate this issue by increasing the number of hours that binary log files are retained
on your replication source. After you have increased the binlog retention time, you can restart
replication and call the mysql.rds_skip_repl_error command as needed.

To set the binlog retention time, use the mysql.rds_set_configuration procedure. Specify a
configuration parameter of 'binlog retention hours' along with the number of hours to retain

Replication stopped error 5262

Amazon Relational Database Service User Guide

binlog files on the DB cluster, up to 720 (30 days). The following example sets the retention period
for binlog files to 48 hours.

CALL mysql.rds_set_configuration('binlog retention hours', 48);

Read replica create fails or replication breaks with fatal error 1236

After changing default parameter values for a MySQL or MariaDB DB instance, you might
encounter one of the following problems:

• You can't create a read replica for the DB instance.

• Replication fails with fatal error 1236.

Some default parameter values for MySQL and MariaDB DB instances help to make sure that the
database is ACID compliant and read replicas are crash-safe. They do this by making sure that each
commit is fully synchronized by writing the transaction to the binary log before it's committed.
Changing these parameters from their default values to improve performance can cause replication
to fail when a transaction hasn't been written to the binary log.

To resolve this issue, set the following parameter values:

• sync_binlog = 1

• innodb_support_xa = 1

• innodb_flush_log_at_trx_commit = 1

Read replica replication fails to initialize metadata structure

When you attempted to start replication, you received the following error message:

Read Replica Replication Error - SQLError: 13124, reason: Replica failed to initialize
 applier metadata structure from the repository

This error occurs when there is a problem with the metadata structure of the replica. To fix the
metadata structure, you must create a new replica.

To prevent this from happening in the future, perform one of the following actions:

Read replica create fails or replication breaks with fatal error 1236 5263

Amazon Relational Database Service User Guide

• If possible, disable multi-threading on your replicas. Starting with MySQL 8.0.27, multi-threading
is enabled by default.

• If you need to use multi-threading on your replicas, then we recommend that you use GTID-
based replication. For more information, see Using GTID-based replication.

Can't set backup retention period to 0

There are several reasons why you might need to set the backup retention period to 0. For
example, you can disable automatic backups immediately by setting the retention period to 0.

In some cases, you might set the value to 0 and receive a message saying that the retention
period must be between 1 and 35. In these cases, check to make sure that you haven't set up a
read replica for the instance. Read replicas require backups for managing read replica logs, and
therefore you can't set a retention period of 0.

Can't set backup retention period to 0 5264

Amazon Relational Database Service User Guide

Amazon RDS API reference

In addition to the AWS Management Console and the AWS Command Line Interface (AWS CLI),
Amazon RDS also provides an API. You can use the API to automate tasks for managing your DB
instances and other objects in Amazon RDS.

• For an alphabetical list of API operations, see Actions.

• For an alphabetical list of data types, see Data types.

• For a list of common query parameters, see Common parameters.

• For descriptions of the error codes, see Common errors.

For more information about the AWS CLI, see AWS Command Line Interface reference for Amazon
RDS.

Topics

• Using the Query API

• Troubleshooting applications on Amazon RDS

Using the Query API

The following sections briefly discuss the parameters and request authentication used with the
Query API.

For general information about how the Query API works, see Query requests in the Amazon EC2
API Reference.

Query parameters

HTTP Query-based requests are HTTP requests that use the HTTP verb GET or POST and a Query
parameter named Action.

Each Query request must include some common parameters to handle authentication and
selection of an action.

Some operations take lists of parameters. These lists are specified using the param.n notation.
Values of n are integers starting from 1.

Using the Query API 5265

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Query-Requests.html

Amazon Relational Database Service User Guide

For information about Amazon RDS Regions and endpoints, go to Amazon Relational Database
Service (RDS) in the Regions and Endpoints section of the Amazon Web Services General Reference.

Query request authentication

You can only send Query requests over HTTPS, and you must include a signature in every Query
request. You must use either AWS signature version 4 or signature version 2. For more information,
see Signature Version 4 signing process and Signature version 2 signing process.

Troubleshooting applications on Amazon RDS

Amazon RDS provides specific and descriptive errors to help you troubleshoot problems while
interacting with the Amazon RDS API.

Topics

• Retrieving errors

• Troubleshooting tips

For information about troubleshooting for Amazon RDS DB instances, see Troubleshooting for
Amazon RDS.

Retrieving errors

Typically, you want your application to check whether a request generated an error before you
spend any time processing results. The easiest way to find out if an error occurred is to look for an
Error node in the response from the Amazon RDS API.

XPath syntax provides a simple way to search for the presence of an Error node. It also provides
a relatively easy way to retrieve the error code and message. The following code snippet uses Perl
and the XML::XPath module to determine if an error occurred during a request. If an error occurred,
the code prints the first error code and message in the response.

use XML::XPath;
 my $xp = XML::XPath->new(xml =>$response);
 if ($xp->find("//Error"))
 {print "There was an error processing your request:\n", " Error code: ",
 $xp->findvalue("//Error[1]/Code"), "\n", " ",
 $xp->findvalue("//Error[1]/Message"), "\n\n"; }

Query request authentication 5266

https://docs.aws.amazon.com/general/latest/gr/rande.html#rds_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#rds_region
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-2.html

Amazon Relational Database Service User Guide

Troubleshooting tips

We recommend the following processes to diagnose and resolve problems with the Amazon RDS
API:

• Verify that Amazon RDS is operating normally in the AWS Region that you're targeting by
checking http://status.aws.amazon.com.

• Check the structure of your request.

Each Amazon RDS operation has a reference page in the Amazon RDS API Reference. Double-
check that you are using parameters correctly. For ideas about what might be wrong, look at the
sample requests or user scenarios to see if those examples do similar operations.

• Check AWS re:Post.

Amazon RDS has a development community where you can search for solutions to problems
others have experienced along the way. To view the topics, go to AWS re:Post.

Troubleshooting tips 5267

http://status.aws.amazon.com/
https://repost.aws/

Amazon Relational Database Service User Guide

Document history

Current API version: 2014-10-31

The following table describes important changes in each release of the Amazon RDS User Guide
after May 2018. For notification about updates to this documentation, you can subscribe to an RSS
feed.

Note

You can filter new Amazon RDS features on the What's New with Database? page. For
Products, choose Amazon RDS. Then search using keywords such as RDS Proxy or
Oracle 2023.

Change Description Date

Amazon RDS supports MySQL
8.4.5

You can now create Amazon
RDS DB instances running
MySQL 8.4.5. For more
information, see MySQL on
Amazon RDS versions.

May 1, 2025

Amazon RDS supports backup
replication for Asia Pacific
(Hong Kong), Asia Pacific
(Melbourne), Asia Pacific
(Malaysia), Canada West
(Calgary), and Europe (Zurich)

Backup replication is now
available for databases
in the Asia Pacific (Hong
Kong), Asia Pacific (Melbourn
e), Asia Pacific (Malaysia),
Canada West (Calgary), and
Europe (Zurich) Regions.
For more information about
available Regions, see Re
plicating automated backups
to another AWS Region.

April 30, 2025

Amazon RDS supports
managed master user

You can use AWS Secrets
Manager to manage master

April 24, 2025

5268

https://aws.amazon.com/about-aws/whats-new/database/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html

Amazon Relational Database Service User Guide

passwords in the Oracle
multitenant architecture

user passwords for RDS
for Oracle container dat
abases (CDBs) and pluggable
databases (PDBs). The single-
tenant and multi-tenant
configurations of the CDB
architecture both support
managed passwords. For
more information, see User
accounts and privileges in a
CDB.

Amazon RDS for Oracle
supports m6id and r6id
instance classes for BYOL

You can now create RDS for
Oracle DB instances using
the m6id and r6id instance
 classes on the BYOL model.
Enterprise and Standard
Edition 2 are both supported
. For more information, see
Supported edition, instance
class, and licensing combinati
ons in RDS for Oracle.

April 9, 2025

Amazon RDS supports
MariaDB 11.8 in the Database
Preview environment

MariaDB 11.8 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MariaDB
version 11.8 in the Database
Preview environment.

April 2, 2025

5269

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.CDBs.html#Oracle.Concepts.single-tenant.users
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.CDBs.html#Oracle.Concepts.single-tenant.users
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.CDBs.html#Oracle.Concepts.single-tenant.users
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported.combo
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported.combo
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported.combo
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-8
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-8
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-8

Amazon Relational Database Service User Guide

Update to IAM service-linked
role permissions

The AmazonRDSCustomSer
viceRolePolicy policy
now grants additional
permissions to manage
EC2 key-pair and integrate
with Amazon SQS. For more
information, see Amazon RDS
updates to AWS managed
policies.

March 25, 2025

Amazon RDS supports MySQL
9.2 in the Database Preview
environment

MySQL 9.2 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MySQL
version 9.2 in the Database
Preview environment.

March 24, 2025

Update to existing policy Amazon RDS added
new permissions to the
managed policy AmazonRDS
Custom InstancePr
ofileRolePolicy to
allow the usage of RDS
Custom managed secrets on
an RDS Custom instance. For
more information, see AWS
managed policy: AmazonRDS
CustomInstanceProfileRole
Policy.

March 20, 2025

5270

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-9.2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-9.2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-9.2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSCustomInstanceProfileRolePolicy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSCustomInstanceProfileRolePolicy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSCustomInstanceProfileRolePolicy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSCustomInstanceProfileRolePolicy

Amazon Relational Database Service User Guide

Amazon RDS Extended
Support version 5.7.44-RD
S.20250213 for RDS for
MySQL

The RDS Extended Support
version 5.7.44-RDS.2025021
3 is now available for RDS
for MySQL. For more
information, see Amazon RDS
Extended Support versions
for RDS for MySQL.

March 12, 2025

Update to IAM service-linked
role permissions

The AmazonRDSCustomSer
viceRolePolicy policy
now grants additional
permissions to list and restore
Secrets Manager secrets. For
more information, see Am
azon RDS updates to AWS
managed policies.

March 6, 2025

Amazon RDS for Db2
supports the db.m7i and
db.r7i instance classes

You can now use the db.m7i
and db.r7i instance classes
for RDS for Db2. For more
 information, see DB instance
class types.

February 27, 2025

5271

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20250213
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20250213
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20250213
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.Types.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.Types.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports Spatial Patch
Bundles (SPBs)

RDS for Oracle now publishes
Spatial Patch Bundles (SPB)
engine versions for Oracle
Database 19c. An SPB engine
version contains Release
Update (RU) patches plus
patches specific to Oracle
Spatial. Typically, an SPB is
released 2-3 weeks after its
corresponding RU. You can
upgrade your DB instance
from a standard RU to an
SPB on the same DB engine
version or higher. For more
information, see Oracle minor
version upgrades.

February 25, 2025

Amazon RDS supports
MariaDB 11.4.5, 10.11.11,
10.6.21, and 10.5.28

You can now create Amazon
RDS DB instances running
MariaDB version 11.4.5,
10.11.11, 10.6.21, and
10.5.28. For more informati
on, see MariaDB on Amazon
RDS versions.

February 24, 2025

Amazon RDS supports
CloudWatch Database
Insights

You can now use Database
Insights to monitor Amazon
RDS databases. For more
information, see Monitorin
g Amazon RDS databases
with CloudWatch Database
Insights.

February 20, 2025

5272

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.Minor.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.Minor.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html

Amazon Relational Database Service User Guide

Amazon RDS supports MySQL
8.4.4 and MySQL 8.0.41

You can now create Amazon
RDS DB instances running
MySQL 8.4.4 and 8.0.41.
For more information, see
MySQL on Amazon RDS
versions.

February 19, 2025

Amazon RDS Extended
Support version 5.7.44-RD
S.20250103 for RDS for
MySQL

The RDS Extended Support
version 5.7.44-RDS.2025010
3 is now available for RDS
for MySQL. For more
information, see Amazon RDS
Extended Support versions
for RDS for MySQL.

February 13, 2025

Amazon RDS supports
MariaDB 11.7 in the Database
Preview environment

MariaDB 11.7 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MariaDB
version 11.7 in the Database
Preview environment.

January 9, 2025

Amazon RDS supports
MariaDB 11.4.4, 10.11.10,
10.6.20, and 10.5.27

You can now create Amazon
RDS DB instances running
MariaDB version 11.4.4,
10.11.10, 10.6.20, and
10.5.27. For more informati
on, see MariaDB on Amazon
RDS versions.

December 20, 2024

Amazon RDS for Db2
supports multiple databases

You can add up to 50 Db2
databases to an RDS for
Db2 DB instance. For more
information, see Multiple
databases on an Amazon RDS
for Db2 DB instance.

December 20, 2024

5273

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DatabaseInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20250103
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20250103
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20250103
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-7
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-7
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-7
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-multiple-databases.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-multiple-databases.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-multiple-databases.html

Amazon Relational Database Service User Guide

Amazon RDS supports MySQL
9.1 in the Database Preview
environment

MySQL 9.1 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MySQL
version 9.1 in the Database
Preview environment.

December 19, 2024

Amazon RDS supports the
db.m8g and db.r8g instance
classes

You can now use the db.m8g
and db.r8g instance classes
for RDS for MySQL, RDS for
PostgreSQL, and RDS for
MariaDB. For more informati
on, see DB instance class
types.

November 21, 2024

Amazon RDS supports MySQL
8.4

You can now create Amazon
RDS DB instances running
MySQL version 8.4. For more
 information, see MySQL on
Amazon RDS versions.

November 21, 2024

Amazon Relational Database
Service supports auto-migr
ating EC2 databases

You can use the RDS console
to migrate an EC2 database
to Amazon RDS. Amazon RDS
uses AWS Database Migration
Service (AWS DMS) to migrate
your source EC2 database.
AWS DMS allows you to
migrate relational databases
into your AWS Cloud. For
more information, see Auto
migrating EC2 databases to
Amazon Relational Database
Service using AWS Database
Migration Service.

November 20, 2024

5274

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-9.1
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-9.1
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-9.1
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DMS_migration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DMS_migration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DMS_migration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DMS_migration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DMS_migration.html

Amazon Relational Database Service User Guide

Amazon RDS blue/green
deployments support scaling
storage

You can now use Amazon
RDS blue/green deploymen
ts to adjust storage settings
in the green environment in
order to optimize resource
allocation. For more informati
on, see Specifying changes
when creating a blue/green
deployment.

November 20, 2024

Amazon RDS blue/green
deployments add storage
initialization

Amazon RDS now supports
storage initialization in
green environments for
blue/green deployments,
improving volume performan
ce from first use without
affecting availability. For
more information, see
Lazy loading and storage
initialization for blue/green
deployments.

November 20, 2024

Amazon RDS for Oracle
supports the db.m7i and
db.r7i instance classes for
BYOL

You can use the db.m7i
and db.r7i instance classes
for RDS for Oracle on the
BYOL licensing model. All
editions of Oracle Database
are supported. For more
 information, see DB instance
class types and Supported
RDS for Oracle DB instance
classes.

November 18, 2024

5275

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html#blue-green-deployments-creating-changes
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html#blue-green-deployments-creating-changes
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html#blue-green-deployments-creating-changes
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html#blue-green-deployments-creating-lazy-loading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html#blue-green-deployments-creating-lazy-loading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments-creating.html#blue-green-deployments-creating-lazy-loading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported

Amazon Relational Database Service User Guide

Amazon RDS Proxy supports
RDS for PostgreSQL 17

You can now create proxies
using RDS Proxy for RDS for
PostgreSQL 17 DB instances
. For more information, see
Using Amazon RDS Proxy.

November 15, 2024

Amazon RDS supports MySQL
8.0.40

You can now create Amazon
RDS DB instances running
MySQL version 8.0.40. For
more information, see MyS
QL on Amazon RDS versions.

November 13, 2024

Amazon RDS supports
backup replication for Africa
(Cape Town) and Asia Pacific
(Hyderabad)

Backup replication is now
available for databases in the
Africa (Cape Town) and Asia
Pacific (Hyderabad) Regions.
For more information about
available Regions, see Repl
icating automated backups to
another AWS Region.

November 1, 2024

Amazon RDS supports the
db.m7i and db.r7i instance
classes

You can now use the db.m7i
and db.r7i instance classes
for RDS for MySQL, RDS for
PostgreSQL, and RDS for
MariaDB. For more informati
on, see DB instance class
types.

October 29, 2024

Amazon RDS for Oracle
supports Oracle APEX version
24.1.v1

You can use APEX 24.1.v1
with Oracle Database 19c and
higher. For more informati
on, see Oracle Application
Express.

October 22, 2024

5276

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html

Amazon Relational Database Service User Guide

Multi-AZ DB clusters support
IAM database authentication

You can now authenticate
to your Multi-AZ DB cluster
using AWS Identity and Access
Management (IAM) database
authentication. For more
information, see Settings for
creating Multi-AZ DB clusters.

October 17, 2024

Amazon RDS supports
MariaDB 11.4

You can now create Amazon
RDS DB instances running
MariaDB version 11.4. For
more information, see
MariaDB on Amazon RDS
versions.

October 15, 2024

Amazon RDS supports
Console-to-Code

You can now use Console-to-
Code to generate code from
actions that you perform
in the RDS console. The
generated code can help you
write code to automate your
use of other AWS services. For
more information, see Use
Console-to-Code to generate
code for your Amazon RDS
console actions.

October 3, 2024

Amazon RDS for Oracle
supports Oracle Management
Agent 13.5.0.0.v2

RDS supports Oracle
Management Agent 13.5.0.0.
v2, which requires Oracle
Management Service (OMS)
13.5.0.23. For more informati
on, see Requirements for
Management Agent.

September 25, 2024

5277

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/create-multi-az-db-cluster.html#create-multi-az-db-cluster-settings
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/create-multi-az-db-cluster.html#create-multi-az-db-cluster-settings
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_C2C.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_C2C.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_C2C.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_C2C.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html#Oracle.Options.OEMAgent.PreReqs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html#Oracle.Options.OEMAgent.PreReqs

Amazon Relational Database Service User Guide

Zero-ETL integrations with
Amazon Redshift generally
available

Zero-ETL integrations make
transactional data availabl
e in Amazon Redshift within
seconds of it being written
to an RDS for MySQL DB
instance. The feature is now
generally available. For more
information, see Working
with Amazon RDS zero-ETL
integrations with Amazon
Redshift.

September 12, 2024

Amazon RDS supports
MariaDB 10.11.9, 10.6.19, and
10.5.26

You can now create Amazon
RDS DB instances running
MariaDB version 10.11.9,
10.6.19, and 10.5.26. For
more information, see Re
quirements for Management
Agent.

September 4, 2024

Amazon RDS for Oracle
supports the OEM,
OEMAGENT, and OLS options
for the CDB architecture

You can now use Oracle
Enterprise Manager and
Oracle Label Security with
 RDS for Oracle CDB instances
. For more information, see
Oracle Enterprise Manager
and Oracle Label Security.

September 4, 2024

RDS Custom for SQL Server
is available in additional
Regions

RDS Custom for SQL Server
is now available in the US
West (N. California) Region,
Asia Pacific (Osaka) Region,
and Europe (Paris) Region.
For more information, see
Supported Regions and DB
engines for RDS Custom .

August 29, 2024

5278

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEM.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OLS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html

Amazon Relational Database Service User Guide

Amazon RDS Extended
Support version 5.7.44-RD
S.20240808 for RDS for
MySQL

The RDS Extended Support
version 5.7.44-RDS.2024080
8 is now available for RDS
for MySQL. For more
information, see Amazon RDS
Extended Support versions
for RDS for MySQL.

August 29, 2024

Amazon RDS is available in
the Asia Pacific (Malaysia)
Region

Amazon RDS is now available
in the Asia Pacific (Malaysia)
Region. For more information,
see Regions and Availability
Zones.

August 22, 2024

Amazon RDS supports MySQL
8.0.39

You can now create Amazon
RDS DB instances running
MySQL version 8.0.39. For
more information, see MySQL
on Amazon RDS versions.

August 12, 2024

Update to existing policy Amazon RDS removed
sns:Publish permissio
n from the AmazonRDS
PreviewServiceRole
Policy of the AWSServic
eRoleForRDSPreview
service-linked role. For more
information, see Amazon RDS
updates to AWS managed
policies.

August 7, 2024

5279

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20240808
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20240808
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20240808
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html

Amazon Relational Database Service User Guide

Update to existing policy Amazon RDS removed
sns:Publish permissio
n from the AmazonRDS
BetaServiceRolePol
icy of the AWSServic
eRoleForRDSBeta
service-linked role. For more
information, see Amazon RDS
updates to AWS managed
policies.

August 7, 2024

Amazon RDS supports MySQL
8.4 in the Database Preview
environment

MySQL 8.4 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MySQL
version 8.4 in the Database
Preview environment.

August 1, 2024

Update to IAM service-linked
role permissions

The AmazonRDSCustomSer
viceRolePolicy policy
now grants additional
permissions to communica
te with Amazon RDS services
in another AWS Region and
copy EC2 images. For more
information, see Amazon RDS
updates to AWS managed
policies.

July 18, 2024

Amazon RDS supports
MariaDB 11.4 in the Database
Preview environment

MariaDB 11.4 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MariaDB
version 11.4 in the Database
Preview environment.

July 18, 2024

5280

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-4
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-4
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#mariadb-preview-environment-version-11-4

Amazon Relational Database Service User Guide

AWS ODBC Driver for MySQL
generally available

The Amazon Web Services
(AWS) ODBC Driver for MySQL
is a client driver designed
for the high availability of
RDS for MySQL. For more
information, see Connectin
g to RDS for MySQL with the
Amazon Web Services (AWS)
ODBC Driver for MySQL.

July 18, 2024

Update to existing policy Amazon RDS removed
sns:Publish permissio
n from the AmazonRDS
ServiceRolePolicy
of the AWSServic
eRoleForRDS service-l
inked role. For more informati
on, see AWS managed policy:
Amazon RDSServiceRolePoli
cy.

July 2, 2024

AWS Marketplace private
offer for Db2

AWS Marketplace now
supports private offers for
a Db2 license through AWS
Marketplace for Amazon RDS
for Db2. For more informati
on, see Obtaining a private
offer.

July 1, 2024

Export Multi-AZ DB cluster
snapshot data to Amazon S3

You can now export Multi-
AZ DB cluster snapshot data
to Amazon S3. For more
information, see Exporting
DB snapshot data to Amazon
S3.

June 27, 2024

5281

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html#USER_ConnectToInstance.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html#USER_ConnectToInstance.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html#USER_ConnectToInstance.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html#USER_ConnectToInstance.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSServiceRolePolicy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSServiceRolePolicy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-security-iam-awsmanpol.html#rds-security-iam-awsmanpol-AmazonRDSServiceRolePolicy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-licensing.html#db2-licensing-options-marketplace
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-licensing.html#db2-licensing-options-marketplace
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports preconfigured r6i
memory optimized instance
 classes

The db.r6i Oracle DB instance
classes are optimized for
workloads that require addit
ional memory, storage, and
I/O per vCPU. For example,
 db.r6i.8xlarge.tpc2.mem4x
has multithreading turned on
and provides 4 times as much
memory as db.r6i.8xlarge. For
more information, see RDS for
Oracle instance classes.

June 21, 2024

Amazon RDS Extended
Support version 5.7.44-RD
S.20240529 for RDS for
MySQL

The RDS Extended Support
version 5.7.44-RDS.2024052
9 is now available for RDS
for MySQL. For more
information, see Amazon RDS
Extended Support versions
for RDS for MySQL.

June 20, 2024

Amazon RDS supports MySQL
8.0.37

You can now create Amazon
RDS DB instances running
MySQL version 8.0.37. For
more information, see
MySQL on Amazon RDS
versions.

June 18, 2024

Amazon RDS supports
MariaDB 10.11.8, 10.6.18,
10.5.25, and 10.4.34

You can now create Amazon
RDS DB instances running
MariaDB version 10.11.8,
10.6.18, 10.5.25, and 10.4.34.
For more information, see
MariaDB on Amazon RDS
versions.

June 14, 2024

5282

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20240529
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20240529
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases-version-5.7.44-20240529
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html

Amazon Relational Database Service User Guide

Amazon RDS is ending
support for the db.m4, db.r4,
and db.t2 DB instance classes

For the RDS for MariaDB,
RDS for MySQL, and RDS
for PostgreSQL DB engines,
you can no longer create DB
instances that use the db.m4,
db.r4, and db.t2 instance
classes. RDS is automatica
lly upgrading existing DB
instances that use these
classes to a newer generat
ion. For more information, see
DB instance class types.

June 4, 2024

Multi-AZ DB clusters are
available in additional AWS
Regions

You can create Multi-AZ
DB clusters in more AWS
Regions. For a table that
shows all supported Regions,
see Supported Regions and
DB engines for Multi-AZ DB
clusters in Amazon RDS.

May 29, 2024

AWS Python Driver generally
available

The Amazon Web Services
(AWS) Python Driver is
designed as an advanced
Python wrapper. This
 wrapper is complementary to
and extends the functionality
of the open-source Psycopg
driver. For more informati
on, see Connecting to DB
instances with the AWS
drivers.

May 23, 2024

5283

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_CommonTasks.Connect.html#RDS.Connecting.Drivers
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_CommonTasks.Connect.html#RDS.Connecting.Drivers
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_CommonTasks.Connect.html#RDS.Connecting.Drivers

Amazon Relational Database Service User Guide

RDS Proxy is available in more
Regions

RDS Proxy is now available
in the Asia Pacific (Hyderaba
d), Asia Pacific (Melbourne),
Middle East (UAE), Israel (Tel
Aviv), Canada West (Calgary)
, and Europe (Zurich) regions.
For more information about
RDS Proxy, see Using Amazon
RDS Proxy.

May 21, 2024

Db2 license through AWS
Marketplace

With Db2 license through
AWS Marketplace, you can
now pay an hourly rate to
subscribe to Db2 licenses for
Amazon RDS for Db2. For
more information, Amazon
RDS for Db2 licensing options.

May 21, 2024

Amazon RDS supports fine-
grained access for Performan
ce Insights

You can now allow or deny
access to individual dimension
s in Performance Insights.
This fine-grained access
can be used for GetResour
ceMetrics , DescribeD
imensionKeys , and
GetDimensionKeyDet
ails actions. For more
information, see Granting
fine-grained access for
Performance Insights.

May 21, 2024

5284

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-licensing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-licensing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.access-control.html#USER_PerfInsights.access-control.cmk-policy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.access-control.html#USER_PerfInsights.access-control.cmk-policy
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.access-control.html#USER_PerfInsights.access-control.cmk-policy

Amazon Relational Database Service User Guide

Amazon RDS Extended
Support versions for RDS for
MySQL

You can view all releases of
RDS Extended Support for
RDS for MySQL versions.
For more information, see
Amazon RDS Extended
Support versions for RDS for
MySQL.

May 16, 2024

Amazon RDS supports MySQL
8.3 in the Database Preview
environment

MySQL 8.3 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MySQL
version 8.3 in the Database
Preview environment.

April 30, 2024

Amazon RDS for Db2
supports time zones

RDS for Db2 now supports
setting local time zones for
new RDS for Db2 DB instances
. For more information, see
Local time zones for Amazon
RDS for Db2 DB instances.

April 25, 2024

Update to IAM service-linked
role permissions

The AmazonRDSCustomSer
viceRolePolicy policy
now grants additional pe
rmissions to associate a
service role as an instance
profile to a RDS Custom
 instance. For more informati
on, see Amazon RDS updates
to AWS managed policies.

April 19, 2024

5285

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-extended-support-releases
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-time-zone.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-time-zone.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports Oracle Data Guard
switchover in all AWS Regions

You can now use Oracle
Data Guard switchover in all
supported Regions. For more
information, see Overview of
Oracle Data Guard switcho
ver.

April 16, 2024

RDS Custom for Oracle
supports Oracle Standard
Edition 2

You can now create DB
instances using Standard
Edition 2 on Oracle Database
12c Release 1 (12.1), 12c
Release 2 (12.2), 18c, and
19c. You can create both
CDBs and non-CDBs. For more
information, see Edition and
licensing support for RDS
Custom for Oracle.

April 11, 2024

Amazon RDS for Oracle
supports Oracle APEX version
23.2.v1

You can use APEX 23.2.v1
with Oracle Database 19c and
higher. For more informati
on, see Oracle Application
Express.

April 11, 2024

Update to RDS Custom
service-linked role permissio
ns

The AmazonRDSCustomSer
viceRolePolicy now
grants additional permissions
to allow RDS Custom for SQL
Server to get EC2 instance
type information and modify
DB host instance type. For
more information, Updates to
AWS managed policies.

April 8, 2024

5286

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-replication-switchover.html#oracle-replication-switchover.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-replication-switchover.html#oracle-replication-switchover.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-replication-switchover.html#oracle-replication-switchover.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-feature-support.html#custom-oracle-feature-support.editions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-feature-support.html#custom-oracle-feature-support.editions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-feature-support.html#custom-oracle-feature-support.editions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html

Amazon Relational Database Service User Guide

Amazon RDS Custom for
Oracle supports the db.x2iezn
DB instance class

You can now use the
db.x2iezn instance class for
RDS Custom for Oracle DB
instances. For more informat
ion, see DB instance class
support for RDS Custom for
Oracle.

March 26, 2024

Amazon RDS supports the
db.c6gd instance classes for
Multi-AZ DB clusters

You can now use the db.c6gd
instance classes for Multi-
AZ DB cluster deployments.
For more information, see
Instance class availability for
Multi-AZ DB clusters.

March 21, 2024

Amazon RDS Extended
Support

Creating or restoring an RDS
for MySQL 5.7 or RDS for
PostgreSQL 11 database
now automatically enrolls
that database into Amazon
RDS Extended Support so
your existing applications
continue to work as they
are. You can opt out of RDS
Extended Support to avoid
charges after the RDS end
of standard support date
for your database engine.
For more information, see
Using Amazon RDS Extended
Support.

March 21, 2024

5287

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-feature-support.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-feature-support.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-feature-support.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-concepts.InstanceAvailability
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-concepts.InstanceAvailability
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/extended-support.html

Amazon Relational Database Service User Guide

RDS for Db2 integration with
AWS License Manager

RDS for Db2 is now integrate
d with AWS License Manager.
If you use the Bring Your
Own License model, the AWS
License Manager integrati
on aids in monitoring your
Db2 license usage within
your organization. For more
information, see Integrating
with AWS License Manager.

March 20, 2024

CA certificate rotation for
Multi-AZ DB clusters

You can now rotate the CA
certificates for your Multi-AZ
DB clusters. Consider using
one of the new CA certifica
tes rds-ca-rsa2048-g1, rds-
ca-rsa4096-g1, or rds-ca-ecc
384-g1. For more informati
on, see Rotating your SSL/TLS
certificate.

March 6, 2024

Amazon RDS supports io2
Block Express storage

You can now create RDS DB
instances that use the io2
Block Express storage type.
For more information, see io2
Block Express storage.

March 6, 2024

RDS Custom for SQL Server
supports the db.r5b and
db.x2iedn DB instance classes

You can now use the db.r5b
and db.x2iedn instance
classes for RDS Custom for
SQL Server DB instances. Fo
r more information, see DB
instance class support for RDS
Custom for SQL Server.

March 4, 2024

5288

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-licensing.html#db2-lms-integration
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-licensing.html#db2-lms-integration
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL-certificate-rotation.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL-certificate-rotation.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS.io2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS.io2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits.instancesMS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits.instancesMS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits.instancesMS

Amazon Relational Database Service User Guide

RDS Custom for Oracle is
available in the Middle East
(UAE) Region

You can create RDS Custom
for Oracle DB instances in the
Middle East (UAE) Region.
For a table that shows all
supported AWS Regions, see
Supported Regions and DB
engines for RDS Custom for
Oracle.

March 4, 2024

New AWS managed policy Amazon RDS added a
new managed policy
named AmazonRDS
Custom InstanceProfileRo
lePolicy to allow RDS
Custom to perform automatio
n actions and database
management tasks through
an EC2 instance profile.
For more information, see
Amazon RDS updates to AWS
managed policies.

February 27, 2024

Amazon RDS supports
MariaDB 10.11.7, 10.6.17,
10.5.24, and 10.4.33

You can now create Amazon
RDS DB instances running
MariaDB version 10.11.7,
10.6.17, 10.5.24, and 10.4.33.
For more information, see
MariaDB on Amazon RDS
versions.

February 26, 2024

Amazon RDS Multi-AZ DB
clusters support the Amazon
EBS gp3 storage volume

Multi-AZ DB clusters now
support gp3 SSD-based EBS
volumes. For more informati
on, see gp3 storage.

February 26, 2024

5289

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#gp3-storage

Amazon Relational Database Service User Guide

Amazon RDS support for AWS
Secrets Manager in the Israel
(Tel Aviv) Region

Amazon RDS supports
Secrets Manager in the
Israel (Tel Aviv) Region.
For more information, see
Password management with
Amazon RDS and AWS Secrets
Manager.

February 21, 2024

Amazon RDS for Db2
supports audit logging

RDS for Db2 now supports
database-level audit logging.
When you enable audit
 logging for an RDS for Db2
database, Amazon RDS
records the database activity
and stores the audit logs
in Amazon S3. For more
information, see Db2 audit
 logging.

February 15, 2024

Amazon RDS Extended
Support

Amazon RDS now automatic
ally enables Amazon RDS
Extended Support when
RDS for MySQL and RDS for
PostgreSQL major engine
versions in your DB instances
and Multi-AZ DB clusters
reach the RDS end of s
tandard support date. For
more information, see Using
Amazon RDS Extended
Support.

February 15, 2024

5290

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Db2.Options.Audit.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Db2.Options.Audit.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/extended-support.html

Amazon Relational Database Service User Guide

Amazon RDS supports MySQL
8.0.36

You can now create Amazon
RDS DB instances running
MySQL version 8.0.36. For
more information, see
MySQL on Amazon RDS
versions.

February 12, 2024

Amazon RDS supports EBCDIC
collation for RDS for Db2

You can now create Db2
databases that use EBCDIC
collation sequences to sort
 content in the databases. For
more information, see EBCDIC
collation for Db2 databases
on Amazon RDS.

January 29, 2024

Update to default CA Certifica
te

The default CA certificate is
set to rds-ca-rsa2048-
g1. For more information, see
Using SSL/TLS to encrypt a
connection to a DB instance.

January 26, 2024

Amazon RDS for PostgreSQ
L supports two new crates
for PL/Rust, croaring-rs and
num-bigint

You can use two new crates in
Amazon RDS for PostgreSQ
L. For more information, see
 Using crates with PL/Rust.

January 24, 2024

Amazon RDS for PostgreSQL
supports TLS version 1.3

You can use Transport Layer
Security (TLS) version 1.3
in RDS for PostgreSQL. For
more information, see Using
SSL with a PostgreSQL DB
instance.

January 24, 2024

5291

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-ebcdic.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-ebcdic.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-ebcdic.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html#PL_Rust-crates
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Concepts.General.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Concepts.General.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Concepts.General.SSL.html

Amazon Relational Database Service User Guide

RDS Custom for SQL Server
supports Microsoft SQL
Server 2022

You can now create RDS
Custom for SQL Server DB
instances that use SQL Server
2022. For more information,
see Working with RDS Custom
for SQL Server.

January 22, 2024

Update to AWS managed
policy permissions

The AmazonRDSServiceRo
lePolicy of the
 AWSServiceRoleForR
DS service-linked role has
new statement IDs. For more
information, see Amazon RDS
updates to AWS managed
policies.

January 19, 2024

RDS Custom for Oracle
supports the Europe (Paris)
Region

You can create RDS Custom
for Oracle DB instances in
the Europe (Paris) Region.
For more information, see
Supported Regions and DB
engines for RDS Custom for
Oracle.

January 18, 2024

Amazon RDS for MySQL
supports multi-source
replication

You can now use multi-source
replication on RDS for MySQL
DB instances. For more
 information, see Configuring
multi-source replication on
RDS for MySQL.

January 16, 2024

5292

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/working-with-custom-sqlserver.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/working-with-custom-sqlserver.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-multi-source-replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-multi-source-replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-multi-source-replication.html

Amazon Relational Database Service User Guide

Amazon RDS supports MySQL
8.2 in the Database Preview
environment

MySQL 8.2 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MySQL
version 8.2 in the Database
Preview environment.

January 11, 2024

RDS Proxy is available in the
Europe (Spain) Region

RDS Proxy is now available in
the Europe (Spain) region. For
more information about RDS
Proxy, see Using Amazon RDS
Proxy.

January 8, 2024

Amazon RDS is available in
the Canada West (Calgary)
Region

Amazon RDS is now available
in the Canada West (Calgary)
Region. For more information,
see Regions and Availability
Zones.

December 20, 2023

Amazon RDS for Db2
supports 5,000 local users

You can now add up to 5,000
local users to an authorization
list. For more information,
see rdsadmin.add_user.

December 20, 2023

Amazon RDS supports
viewing and responding to
recommendations

Amazon RDS recommend
ations now includes threshold
based proactive and machine
 learning based reactive
recommendations for RDS
for PostgreSQL. For more
information, see Recommend
ations from Amazon RDS.

December 19, 2023

5293

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-version-8-2
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/db2-sp-granting-revoking-privileges.html#db2-sp-add-user
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/monitoring-recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/monitoring-recommendations.html

Amazon Relational Database Service User Guide

Amazon RDS supports
MariaDB 10.11.6, 10.6.16,
10.5.23, and 10.4.32

You can now create Amazon
RDS DB instances running
MariaDB version 10.11.6,
10.6.16, 10.5.23, and 10.4.32.
For more information, see
MariaDB on Amazon RDS
versions.

December 12, 2023

Amazon RDS introduces zero-
ETL integrations with Amazon
Redshift (preview)

Zero-ETL integrations provide
a fully managed solution
for making transactional
data available in Amazon
Redshift within seconds of it
being written to an RDS for
MySQL DB instance. For more
information, see Working
with Amazon RDS zero-ETL
integrations with Amazon
Redshift (preview).

November 28, 2023

Amazon RDS supports IBM
Db2 database engines

You can now run IBM Db2
database engines in Amazon
RDS. For more information,
see Amazon RDS for Db2.

November 27, 2023

RDS for PostgreSQL supports
major version upgrades to
PostgreSQL 16.1 and minor
 version upgrades to 15.5,
14.10, 13.13, 12.17, and
11.22

With RDS for PostgreSQL,
you can now upgrade the
DB engine to major version
16.1 and minor version
upgrades to 15.5, 14.10,
13.13, 12.17, and 11.22.
For more information, see
Upgrading the PostgreSQL DB
engine for Amazon RDS.

November 17, 2023

5294

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Db2.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html.html

Amazon Relational Database Service User Guide

RDS Custom for Oracle
supports option groups

You can create or modify an
option group and associate
it with an RDS Custom
for Oracle DB instance.
The Timezone option is
now supported. For more
information, see Working with
option groups in RDS Custom
for Oracle.

November 17, 2023

Amazon RDS for MySQL
supports the Group Replicati
on plugin

You can now set up an active-
active cluster with RDS for
MySQL version 8.0.35 or h
igher DB instances by using
the Group Replication plugin
developed and maintained
by the MySQL community
. For more information, see
Configuring active-active
clusters for RDS for MySQL.

November 17, 2023

Amazon RDS Proxy supports
RDS for PostgreSQL 16.1

You can now create proxies
using RDS Proxy for RDS for
PostgreSQL 16.1 DB instances
. For more information, see
Using Amazon RDS Proxy.

November 17, 2023

RDS Custom for SQL Server
supports Microsoft SQL
Server 2019 Developer
edition

You can create RDS Custom
for SQL Server DB instances
that use SQL Server 2019
Developer edition. For more
information, see Bring Your
Own Media with RDS Custom
for SQL Server.

November 16, 2023

5295

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-option-groups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-option-groups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-oracle-option-groups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-active-active-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-active-active-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver.byom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver.byom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver.byom.html

Amazon Relational Database Service User Guide

Minor version upgrades of
Multi-AZ DB clusters with
minimal downtime

When you perform a minor
version upgrade of a Multi-
AZ DB cluster, Amazon RDS
now upgrades the reader DB
instances before the writer
instance, thereby significantly
reducing downtime. You can
further reduce downtime to
one second or less by using
RDS Proxy. For more informati
on, see Upgrading the engine
version of a Multi-AZ DB
cluster.

November 16, 2023

RDS for SQL Server supports
Microsoft SQL Server 2022

You can now create RDS DB
instances that use SQL Server
2022. For more informati
on, see Microsoft SQL Server
versions on Amazon RDS.

November 15, 2023

RDS for MySQL supports
upgrading snapshots from
version 5.7 to 8.0

You can now upgrade the
engine version of an RDS
for MySQL snapshot from
version 5.7 to version 8.0.
You can do so by using the
AWS Management Console,
or the ModifyDBSnapshot
operation of the RDS API or
AWS CLI. For more informat
ion, see Upgrading a MySQL
DB snapshot engine version.

November 15, 2023

5296

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer#SQLServer.Concepts.General.VersionSupport
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer#SQLServer.Concepts.General.VersionSupport
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-upgrade-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-upgrade-snapshot.html

Amazon Relational Database Service User Guide

RDS Custom for SQL Server
supports point in time
recovery of 1,0000 databases

You can now make up to
1,000 databases eligible for
full backup and point in time
recovery on your RDS Custom
for SQL Server DB instance.
For more information, see
Restoring an RDS Custom for
SQL Server instance to a point
in time.

November 15, 2023

RDS Custom for SQL Server
supports a using a Service
Master Key

RDS Custom for SQL Server
now supports using a Service
Master Key (SMK). An SMK
allows you to encrypt objects
such as credentials, and use
SQL Server features like TDE
and column-encryption. For
more information, see Using a
Service Master Key with RDS
Custom for SQL Server.

November 13, 2023

Amazon RDS supports MySQL
8.1 in the Database Preview
environment

MySQL 8.1 is now available
in the Database Preview
environment in the US East
(Ohio) AWS Region. For more
information, see MySQL
version 8.1 in the Database
Preview environment.

November 10, 2023

RDS supports MySQL 8.0.35
and MySQL 5.7.44

You can now create Amazon
RDS DB instances running
MySQL version 8.0.35 and
5.7.44. For more information,
see MySQL on Amazon RDS
versions.

November 9, 2023

5297

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-backup-sqlserver.html#custom-backup.pitr-sqs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-backup-sqlserver.html#custom-backup.pitr-sqs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-backup-sqlserver.html#custom-backup.pitr-sqs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-sqlserver-features.smk
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-sqlserver-features.smk
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-sqlserver-features.smk
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-versions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-versions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html#mysql-preview-environment-versions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html

Amazon Relational Database Service User Guide

RDS Proxy supports Multi-AZ
DB clusters

RDS Proxy now supports
connecting to Multi-AZ DB
clusters. For more informati
on, see Working with Amazon
RDS Proxy endpoints.

November 9, 2023

RDS Custom for Oracle
is available in the AWS
GovCloud (US) Regions

Amazon RDS is now available
in the AWS GovCloud (US)
Regions. For more informati
on, see Supported Regions
and DB engines for RDS
Custom for Oracle.

November 9, 2023

Amazon RDS Optimized
Writes supports the db.m5 DB
instance class

Amazon RDS Optimized
Writes now supports the
db.m5 DB instance class.
For more information, see
Improving write performance
with Amazon RDS Optimized
Writes for MariaDB and
Improving write performance
with Amazon RDS Optimized
Writes for MySQL.

November 9, 2023

5298

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports the multi-tenant
configuration of the CDB
architecture

With the RDS for Oracle
multi-tenant feature, RDS
delivers a fully managed
Oracle multitenant architect
ure and experience for
your Oracle databases. You
can use RDS APIs to create
multiple PDBs, called tenant
 databases, in a CDB. RDS
offers the multi-tenant
configuration of the CDB
architecture as an alternati
ve to the legacy single-te
nant configuration. For more
information, see Multi-ten
ant configuration of the CDB
 architecture.

November 8, 2023

Amazon RDS exports
Performance Insights metrics
to Amazon CloudWatch

Performance Insights lets you
export the preconfigured or
custom metrics dashboards
to Amazon CloudWatch. The
exported metrics dashboard
s are available to view in the
CloudWatch console. You
can also export a selected
Performance Insights metric
widget and view the metrics
 data in the CloudWatch
console. For more informati
on, see Exporting Performan
ce Insights metrics to
CloudWatch.

November 8, 2023

5299

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.CDBs.html#multi-tenant-configuration
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.CDBs.html#multi-tenant-configuration
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.CDBs.html#multi-tenant-configuration
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PI_metrics_export_CW.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PI_metrics_export_CW.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PI_metrics_export_CW.html

Amazon Relational Database Service User Guide

Amazon RDS Custom for
Oracle allows you to upgrade
the operating system on a DB
instance

You can now upgrade the
database or operating system
(OS) for an RDS Custom for
Oracle DB instance using
the CLI command modify-
db-instance . For more
 information, see Upgrading a
DB instance for Amazon RDS
Custom for Oracle.

November 7, 2023

RDS Proxy supports Extended
Protocol for RDS for
PostgreSQL

You can now execute
extended query protocols on
an RDS for PostgreSQL DB
instance. For more informati
on, see Using Amazon RDS
Proxy.

November 6, 2023

RDS for PostgreSQL
support for RDS Blue/Green
Deployments

You can now create a blue/
green deployment from
an RDS for PostgreSQL DB
instance. For more informati
on, see Using Amazon RDS
Blue/Green Deployments for
database updates.

October 26, 2023

Update to AWS managed
policies

The AmazonRDSPerforman
ceInsightsReadOnly
and AmazonRDSPerforman
ceInsightsFullAcce
ss managed policies now
includes Sid (statement ID)
as an identifier in the policy
statement. For more informati
on, see Amazon RDS updates
to AWS managed policies.

October 23, 2023

5300

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-upgrading.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-upgrading.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-upgrading.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html

Amazon Relational Database Service User Guide

RDS Custom for Oracle
supports the Europe (Milan)
Region

For more information, see
Supported Regions and DB
engines for RDS Custom for
Oracle.

October 23, 2023

Enable RDS Optimized Writes
on existing databases

You can now enable RDS
Optimized Writes on an
existing DB instance even
if it was created with an
engine version, DB instance
class, or file system config
uration that doesn't support
the feature. For more
information, see Enabling
RDS Optimized Writes on an
existing database for RDS
for MySQL, and Enabling
RDS Optimized Writes on an
existing database for RDS for
MariaDB.

October 19, 2023

Amazon RDS supports using a
dedicated log volume (DLV).

You can now use a dedicated
log volume (DLV) with RDS
for MariaDB, RDS for MySQL,
and RDS for PostgreSQL.
DLVs are ideal for databases
with large allocated storage,
high I/O per second (IOPS)
requirements, or latency-s
ensitive workloads. For more
 information, see Using a
dedicated log volume (DLV).

October 17, 2023

5301

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html#rds-optimized-writes-modify-enable
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html#rds-optimized-writes-modify-enable
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html#rds-optimized-writes-modify-enable
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html#rds-optimized-writes-modify-enable-mariadb
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html#rds-optimized-writes-modify-enable-mariadb
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html#rds-optimized-writes-modify-enable-mariadb
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.dlv
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.dlv

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL,
MySQL, and MariaDB support
new DB instance classes

You can create Amazon
RDS DB instances running
PostgreSQL, MySQL, and
MariaDB that use the
db.m6.in, db.m6idn, db.r6.in,
and db.r6.idn DB instance
classes. For more informat
ion, see Supported DB
engines for all available DB
instance classes.

October 12, 2023

Amazon RDS for PostgreSQL
supports pgactive

The pgactive extension is
available in Amazon RDS
for PostgreSQL. For more
 information, see Using
PostgreSQL extensions with
Amazon RDS for PostgreSQL.

October 9, 2023

RDS Custom for Oracle is
available in the Asia Pacific
(Jakarta) Region

You can create RDS Custom
for Oracle DB instances in the
Asia Pacific (Jakarta) Region.
For more information, see
Supported Regions and DB
engines for RDS Custom for
 Oracle.

October 5, 2023

RDS Custom for SQL Server
supports new server-level
collations

RDS Custom for SQL Server
now supports a wide range
of server collations, both
in traditional and UTF-8
encoding, for the SQL_Latin,
Japanese, German, and Arabic
locales. For more information,
see Collation and character
support for RDS Custom for
SQL Server DB instances.

September 26, 2023

5302

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html#Appendix.PostgreSQL.CommonDBATasks.pgactive
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html#Appendix.PostgreSQL.CommonDBATasks.pgactive
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html#Appendix.PostgreSQL.CommonDBATasks.pgactive
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits-MS.collation
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits-MS.collation
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits-MS.collation

Amazon Relational Database Service User Guide

Update to AWS managed
policy permissions

The AmazonRDSCustomSer
viceRolePolicy of the
 AWSServiceRoleForR
DSCustom service-linked
role has new permissions that
allow RDS Custom to create,
modify, and delete EventBrid
ge Managed Rules. For more
information, see Amazon RDS
updates to AWS managed
policies.

September 20, 2023

Amazon RDS publishes
Performance Insights counter
metrics to Amazon CloudWatc
h

The DB_PERF_INSIGHTS
metric math function in the
CloudWatch console allows
you to query Amazon RDS for
Performance Insights counter
metrics. For more informat
ion, see Creating CloudWatc
h alarms to monitor Amazon
RDS.

September 20, 2023

Performance Insights
supports digest-level statistics
for SQL Server

When you use Performan
ce Insights, you can view
SQL statistics both at the
statement and digest level for
Amazon RDS for SQL Server.
For more information, see
 Analyzing running queries in
SQL Server.

September 18, 2023

5303

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/creating_alarms.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/creating_alarms.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/creating_alarms.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.SQLServer
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.SQLServer

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL,
MySQL, and MariaDB support
the db.m6.id and db.r6.id DB
instance class types

You can now create Amazon
RDS DB instances running
PostgreSQL, MySQL, and
MariaDB that use the
memory-optimized db.m6.id
and db.r6.id DB instance class
types. These types offer local
NVMe-based SSD storage.
For more information, see
Supported DB engines for all
available DB instance classes.

September 11, 2023

Major version upgrade
support for RDS for
PostgreSQL Multi-AZ DB
clusters

You can now perform major
version upgrades of your RDS
for PostgreSQL Multi-AZ DB
clusters. For more informati
on, see Upgrading the engine
version of a Multi-AZ DB
cluster.

September 7, 2023

Amazon RDS supports
MariaDB 10.11.5, 10.6.15,
10.5.22, and 10.4.31

You can now create Amazon
RDS DB instances running
MariaDB version 10.11.5,
10.6.15, 10.5.22, and 10.4.31.
For more information, see
MariaDB on Amazon RDS
versions.

September 7, 2023

5304

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-upgrading
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html

Amazon Relational Database Service User Guide

Amazon RDS Extended
Support

Amazon RDS announces the
upcoming ability to continue
running RDS for MySQL and
RDS for PostgreSQL major
engine versions in your DB
instances past the RDS end
of standard support date.
For more information, see
Using Amazon RDS Extended
Support.

September 1, 2023

RDS Custom supports starting
and stopping an RDS Custom
for SQL Server DB instance

RDS Custom now supports
starting and stopping an
RDS Custom for SQL Server
DB instance. For more
information, see Starting and
stopping an RDS Custom for
SQL Server DB instance.

August 31, 2023

Amazon RDS Optimized
Writes supports the db.r5 DB
instance class

Amazon RDS Optimized
Writes now supports the
db.r5 DB instance class. For
more information, see Im
proving write performance
with Amazon RDS Optimized
Writes for MariaDB and
Improving write performance
with Amazon RDS Optimized
Writes for MySQL.

August 31, 2023

5305

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-managing-sqlserver.html#custom-managing-sqlserver.startstop
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-managing-sqlserver.html#custom-managing-sqlserver.startstop
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-managing-sqlserver.html#custom-managing-sqlserver.startstop
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports timezone file
autoupgrade for CDBs

With the TIMEZONE_
FILE_AUTOUPGRADE
option, you can upgrade the
current time zone file to the
latest version on your RDS for
Oracle container database
 (CDB). For more informati
on, see Oracle time zone file
autoupgrade.

August 29, 2023

Amazon RDS Optimized
Writes supports the db.m6g
and db.m6i DB instance clas
ses

Amazon RDS Optimized
Writes now supports the
db.m6g and db.m6i DB
instance classes. For more
information, see Improving
write performance with
Amazon RDS Optimized
Writes for MariaDB and
Improving write performance
with Amazon RDS Optimized
Writes for MySQL.

August 28, 2023

Amazon RDS supports
MariaDB 10.11

You can now create Amazon
RDS DB instances running
MariaDB version 10.11. For
more information, see
MariaDB on Amazon RDS
versions.

August 21, 2023

5306

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.Timezone-file-autoupgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.Timezone-file-autoupgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html

Amazon Relational Database Service User Guide

Update to AWS managed
policy permissions

The AmazonRDSCustomSer
viceRolePolicy of the
 AWSServiceRoleForR
DSCustom service-linked
role has new permissions that
allow RDS Custom to create
network interfaces. For more
information, see Amazon RDS
updates to AWS managed
policies.

August 18, 2023

Update to AWS managed
policy permissions

The AmazonRDSFullAcces
s managed policy has new
permissions that allows you
to generate, view, and delete
the performance analysis
report for a time period.
For more information, see
Amazon RDS updates to AWS
managed policies.

August 17, 2023

Update to AWS managed
policy permissions

The addition of new
permissions to AmazonRDS
PerformanceInsight
sReadOnly managed
policy and addition of new
managed policy AmazonRDS
PerformanceInsight
sFullAccess allows you
generate a DB load analysis
report for a time period.
For more information, see
Amazon RDS updates to AWS
managed policies.

August 16, 2023

5307

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html

Amazon Relational Database Service User Guide

Amazon RDS supports
performance analysis for a
period of time

Performance Insights allows
you to create and view
performance analysis reports
for a specific period of
time. The report provides
the insights identified and
recommendations to resolve
the performance issues.
For more information, see
Analyzing DB load for a
period of time.

August 16, 2023

Amazon RDS Custom for
Oracle supports the db.r5b
and db.x2iedn DB instance
classes

You can now use the db.r5b
and db.x2iedn instance
classes for RDS Custom for
Oracle DB instances. For
more information, see DB
instance class support for RDS
Custom for Oracle.

August 16, 2023

Amazon RDS Custom for
Oracle supports the db.m6i,
db.r6i, and db.t3 DB instance
classes

You can now use the db.m6i,
db.r6i, and db.t3 instance
classes for RDS Custom for
Oracle DB instances. For
more information, see DB
instance class support for RDS
Custom for Oracle.

August 15, 2023

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L version 16 Beta 3 in the
database preview environme
nt

PostgreSQL version 16 Beta
3 is now available in the
database preview envir
onment in the US East
(Ohio) AWS Region. For more
information, see Working
with the database preview
environment.

August 11, 2023

5308

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AnalyzePerformanceTimePeriod.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AnalyzePerformanceTimePeriod.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.instances
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment

Amazon Relational Database Service User Guide

Amazon RDS supports MySQL
8.0.34 and 5.7.43

You can now create Amazon
RDS DB instances running
MySQL version 8.0.34 and
5.7.43. For more information,
see MySQL on Amazon RDS
versions.

August 9, 2023

RDS for SQL Server supports
OS metrics view for the
standby replica

You can now view OS metrics
for standby replica for RDS
for SQL Server. For more
 information, see Viewing OS
metrics in the RDS console.

August 3, 2023

RDS for Oracle supports
Oracle Data Guard for CDBs

RDS for Oracle supports
Data Guard read replicas for
Oracle Database 19c and 21c
container databases (CDBs).
You can create, manage, and
promote read replicas in a
CDB, just as you can in a non-
CDB, using the existing RDS
APIs. For more information,
see Multitenant read replicas.

August 1, 2023

Amazon RDS is available in
the Israel (Tel Aviv) Region

Amazon RDS is now available
in the Israel (Tel Aviv) Region.
For more information, see
 Regions and Availability
Zones.

August 1, 2023

Amazon RDS supports Oracle
APEX version 23.1.v1

You can use APEX 23.1.v1
with Oracle Database 19c and
higher. For more informat
ion, see Oracle Application
Express.

July 26, 2023

5309

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.Viewing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.Viewing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.overview.html#oracle-read-replicas.overview.data-guard
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html

Amazon Relational Database Service User Guide

Amazon RDS Custom for
Oracle supports a nondefault
Oracle SID

When you create an RDS
Custom for Oracle DB
instance using Oracle
Database 19c, you can
specify a nondefault Oracle
system identifier (Oracle SID).
This value is also the name of
the CDB. For more informati
on, see Multitenant architect
ure considerations .

July 21, 2023

RDS for SQL Server supports
Self Managed Active Directory

You can now use Self
Managed Active Directory to
directly join your RDS for SQL
Server DB instances to your
Microsoft Active Directory
(AD) domains. Self-mana
ged AD domains can be on-
premises or in the cloud.
For more information, see
Working with Self Managed
Active Directory.

July 7, 2023

PostgreSQL logical replicati
on support for Multi-AZ DB
clusters

You can now use PostgreSQ
L logical replication with
your Multi-AZ DB cluster to
replicate and synchronize
individual tables rather than
an entire database instance.
For more information, see
Setting up PostgreSQL logical
replication with Multi-AZ DB
clusters for Amazon RDS.

July 6, 2023

5310

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServer_SelfManagedActiveDirectory.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServer_SelfManagedActiveDirectory.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_LogicalRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_LogicalRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_LogicalRepl.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L version 16 Beta 2 in the
database preview environme
nt

PostgreSQL version 16 Beta
2 is now available in the
database preview envir
onment in the US East
(Ohio) AWS Region. For more
information, see Working
with the database preview
environment.

July 6, 2023

Update to AWS managed
policy permissions

The AmazonRDSCustomSer
viceRolePolicy of the
 AWSServiceRoleForR
DSCustom service-linked
role has new permissions
that allow RDS Custom for
Oracle to use snapshots.
For more information, see
Amazon RDS updates to AWS
managed policies.

June 23, 2023

RDS supports MariaDB
10.6.14, 10.5.21, and 10.4.30

You can now create Amazon
RDS DB instances running
MariaDB version 10.6.14,
10.5.21, and 10.4.30. For
more information, see
MariaDB on Amazon RDS
versions.

June 22, 2023

RDS supports MySQL 8.0.33
and 5.7.42

You can now create Amazon
RDS DB instances running
MySQL version 8.0.33 and
5.7.42. For more information,
see MySQL on Amazon RDS
versions.

June 15, 2023

5311

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html

Amazon Relational Database Service User Guide

RDS supports MariaDB
10.6.13, 10.5.20, 10.4.29, and
10.3.39

You can now create Amazon
RDS DB instances running
MariaDB version 10.6.13,
10.5.20, 10.4.29, and
10.3.39. For more informati
on, see MariaDB on Amazon
RDS versions.

June 15, 2023

RDS for Oracle supports
transportable tablespaces

You can migrate data from
an on-premises Oracle
database into an RDS for
Oracle DB instance using
transportable tablespaces.
This technique doesn't require
additional licensing and is the
migration technique with the
least downtime. For more
 information, see Migrating
using Oracle transportable
tablespaces.

June 15, 2023

Amazon RDS supports RDS
Proxy with RDS for MariaDB
version 10.6

You can now create an
RDS Proxy with an RDS
for MariaDB version 10.6
database. For more informati
on about RDS Proxy, see
Using Amazon RDS Proxy.

June 15, 2023

RDS Custom for SQL Server
supports Bring Your Own
Media (BYOM)

You can now create a Custom
Engine Version (CEV) using
your own SQL Server media.
For more information, see
Bring Your Own Media with
RDS Custom for SQL Server.

June 8, 2023

5312

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-migrating-tts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-migrating-tts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-migrating-tts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver.byom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver.byom.html

Amazon Relational Database Service User Guide

RDS for Oracle can convert an
Oracle Database 19c non-CDB
to a CDB

If your DB instance runs
Oracle Database 19c with the
April 2021 or higher RU, you
can convert a non-CDB to
a CDB (container database)
. After you convert the
architecture, you can upgrade
your 19c CDB to a 21c CDB.
This step is necessary bec
ause you can't upgrade your
database and convert the
architecture using a single
command. For more informati
on, see Converting an RDS
for Oracle non-CDB into a
CDB.

May 31, 2023

Multi-AZ DB clusters available
in the China Regions

Multi-AZ DB clusters are now
available in the AWS Regions
China (Beijing) and China
(Ningxia). For more informati
on, see Supported Regions
and DB engines for Multi-AZ
DB clusters in Amazon RDS.

May 30, 2023

Amazon RDS Optimized
Reads support for Multi-AZ
DB clusters

Amazon RDS Optimized
Reads now supports Multi-
AZ DB clusters. For more
information, see Improving
query performance for RDS
for MySQL with Amazon
RDS Optimized Reads and
Improving query performance
for RDS for PostgreSQL with
Amazon RDS Optimized Re
ads.

May 30, 2023

5313

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-multitenant.html#oracle-cdb-converting
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-multitenant.html#oracle-cdb-converting
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-multitenant.html#oracle-cdb-converting
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.optimizedreads.html

Amazon Relational Database Service User Guide

RDS Custom for Oracle
supports the Asia Pacific
(Jakarta) Region

For more information, see
Supported Regions and DB
engines for RDS Custom for
Oracle.

May 29, 2023

Create a DB instance read
replica with a source RDS
for PostgreSQL Multi-AZ DB
cluster

You can now create a DB
instance read replica with
an RDS for PostgreSQL
Multi-AZ DB cluster as the
source. Previously, only RDS
for MySQL was supported.
For more information, see
 Creating a DB instance read
replica from a Multi-AZ DB
cluster.

May 24, 2023

Amazon RDS provides
combined Performance
Insights and CloudWatch
metrics in the Performance
Insights dashboard

Amazon RDS now provides
a consolidated view of
Performance Insights and
CloudWatch metrics in the
Performance Insights dash
board. For more informati
on, see Viewing combined
metrics with the Performance
Insights dashboard.

May 24, 2023

5314

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-create-instance-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-create-instance-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-create-instance-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Viewing_Unifiedmetrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Viewing_Unifiedmetrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Viewing_Unifiedmetrics.html

Amazon Relational Database Service User Guide

Amazon RDS Optimized
Reads available in the China
Regions

Amazon RDS Optimized
Reads is now available in the
AWS Regions China (Beijing)
and China (Ningxia). For more
information, see Improving
 query performance for RDS
for MariaDB with Amazon
RDS Optimized Reads and
 Improving query perfor
mance for RDS for MySQL
with Amazon RDS Optimized
Reads.

April 24, 2023

Amazon RDS support for AWS
Secrets Manager in the China
Regions

Amazon RDS supports Secrets
Manager in the China (Beijing)
and China (Ningxia) Regions.
For more information, see
Password management with
Amazon RDS and AWS Secrets
Manager.

April 20, 2023

RDS Custom for Oracle
supports reuse of AMI IDs for
new CEVs

When you create a custom
engine version (CEV),
RDS Custom for Oracle
defaults to the most recent
Amazon Machine Image
(AMI) available. Now you
can specify an AMI ID that
 was used in a previous CEV.
For more information, see
Creating a CEV.

April 19, 2023

5315

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.create.html

Amazon Relational Database Service User Guide

Amazon RDS supports
publishing events with tags to
topic subscribers

Amazon RDS event notificat
ions sent to Amazon Simple
Notification Service (Amazon
SNS) or Amazon EventBrid
ge now contain event tags in
the message body. These tags
provide the resource data that
was affected by the service
event. For more informati
on, see Amazon RDS event
notification tags and attribute
s.

April 17, 2023

Purchase reserved instances
for a Multi-AZ DB cluster

You can now purchase
reserved DB instances for a
Multi-AZ DB cluster. For more
information, see Reserved DB
instances for a Multi-AZ DB
cluster.

April 12, 2023

Amazon RDS supports the
db.m7g and db.r7g instance
classes

You can now use the db.m7g
and db.r7g instance classes
for RDS for MySQL, RDS
for MariaDB, and RDS for
PostgreSQL DB instances.
For more information, see
Supported DB engines for DB
instance classes.

April 12, 2023

5316

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.TagsAttributesForFiltering.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.TagsAttributesForFiltering.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.TagsAttributesForFiltering.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithReservedDBInstances.html#USER_WorkingWithReservedDBInstances.MultiAZDBClusters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithReservedDBInstances.html#USER_WorkingWithReservedDBInstances.MultiAZDBClusters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithReservedDBInstances.html#USER_WorkingWithReservedDBInstances.MultiAZDBClusters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support

Amazon Relational Database Service User Guide

Update to Amazon RDS
Custom service-linked role
permissions

The AmazonRDSCustomSer
viceRolePolicy now
grants additional permissions
to allow RDS Custom for
SQL Server to use Amazon
SQS and create snapshots.
For more information, see
Updates to AWS managed
policies.

April 6, 2023

Migrate to an RDS for MySQL
Multi-AZ DB cluster using a
read replica

You can now use a read
replica to migrate an RDS for
MySQL Single-AZ deploymen
t or Multi-AZ DB instance
deployment to an RDS for
MySQL Multi-AZ DB cluster
deployment with reduced
downtime. For more informati
on, see Migrating to a Multi-
AZ DB cluster using a read
replica.

April 6, 2023

Create a DB instance read
replica from a Multi-AZ DB
cluster

You can now create a DB
instance read replica from a
Multi-AZ DB cluster in order
to scale beyond the compute
capacity of the source cluster.
For more information, see
Creating a DB instance read
replica from a Multi-AZ DB
cluster.

April 6, 2023

5317

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-migrating-to-with-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-migrating-to-with-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-migrating-to-with-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-create-instance-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-create-instance-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MultiAZDBCluster_ReadRepl.html#multi-az-db-clusters-create-instance-read-replica

Amazon Relational Database Service User Guide

Amazon RDS Custom for SQL
Server supports Multi-AZ

You can create a Multi-AZ
deployment with RDS Custom
for SQL Server. For more
information, see Managing a
Multi-AZ deployment for RDS
Custom for SQL Server.

April 6, 2023

Update to AWS managed
policy permissions

The AmazonRDSFullAcces
s and AmazonRDS
ReadOnlyAccess pol
icies now grants additiona
l permissions to allow
the display of Amazon
DevOps Guru findings in
the RDS console. For more
information, see Amazon RDS
updates to AWS managed
policies.

March 30, 2023

Amazon RDS supports Oracle
APEX version 22.2.v1

You can use APEX 22.2.v1
with all supported versions
of Oracle Database. For
more information, see Oracle
Application Express.

March 30, 2023

5318

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver-multiaz.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver-multiaz.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-sqlserver-multiaz.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html

Amazon Relational Database Service User Guide

Amazon DevOps Guru
available for RDS for
PostgreSQL

RDS for PostgreSQL alerts
you to recent anomalies
detected by Amazon
DevOps Guru. The database
details page of the console
alerts you to current and
anomalies that occurred
in the past 24 hours.
DevOps Guru publishes
proactive insights with
 recommendations to help
address issues in your RDS for
PostgreSQL databases before
 they are predicted to happen.
For more information, see
How DevOps Guru for RDS
works.

March 30, 2023

RDS Custom supports the
Amazon EBS gp3 storage
volume

RDS Custom for Oracle and
RDS Custom for SQL Server
both support the io1, gp2,
and gp3 SSD-based EBS
volumes. For more informati
on, see General requirements
for RDS Custom for Oracle
and General requirements for
RDS Custom for SQL Server.

March 29, 2023

5319

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/devops-guru-for-rds.html#devops-guru-for-rds.how-it-works
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/devops-guru-for-rds.html#devops-guru-for-rds.how-it-works
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.reqs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.reqs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits.reqsMS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits.reqsMS

Amazon Relational Database Service User Guide

Update to AWS managed
policy permissions

The AmazonRDSFullAcces
s and AmazonRDS
ReadOnlyAccess pol
icies now grants additiona
l permissions to Amazon
CloudWatch. For more
information, see Amazon RDS
updates to AWS managed
policies.

March 16, 2023

RDS Proxy is available in the
China Regions

RDS Proxy is now available in
the China (Beijing) and China
(Ningxia) regions. For more
information about RDS Proxy,
see Using Amazon RDS Proxy.

March 15, 2023

RDS Proxy is available in the
Asia Pacific (Jakarta) Region

RDS Proxy is now available
in the Asia Pacific (Jakarta)
Region. For more information
about RDS Proxy, see Using
 Amazon RDS Proxy.

March 8, 2023

Amazon RDS Optimized
Writes improves the
performance of write
transactions for RDS for
MariaDB

You can improve the
performance of write
transactions for RDS for
MariaDB DB instances wit
h Amazon RDS Optimized
Writes. For more informati
on, see Improving write
performance with Amazon
RDS Optimized Writes for
MariaDB.

March 7, 2023

5320

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes-mariadb.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL
versions 15.2

New features in Amazon RDS
for PostgreSQL 15.2 include
the SQL standard "MERGE"
 command for condition
al SQL queries, performan
ce improvements for both
in-memory and disk-based
sorting, and support for two-
phase commit and row/colum
n filtering for logical replicati
on.

February 27, 2023

RDS Custom for Oracle is
available in the Canada
(Central) Region and South
America (São Paulo) Regions

For a table that shows all
supported AWS Regions, see
Supported Regions and DB
engines for RDS Custom for
Oracle.

February 22, 2023

Amazon RDS supports cross-
Region automated backups
for RDS for MariaDB and RDS
for MySQL

You can now replicate DB
snapshots and transaction
logs between AWS Regions
 for RDS for MariaDB and
RDS for MySQL DB instances
. For more information,
see Replicating automated
backups to another AWS
Region.

February 22, 2023

5321

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports advance notice of
automatic minor version
 upgrades

RDS notifies you in advance
of the date when a new minor
version of the RDS for Oracle
engine will become available
. RDS begins scheduling
automatic minor version
upgrades of your RDS for
Oracle DB instances on the
availability date. For more
 information, see Before an
automatic minor version
upgrade is scheduled.

February 21, 2023

Amazon RDS for SQL Server
supports Database Activity
Streams

You can now monitor a SQL
Server DB instance using
Database Activity Streams. A
SQL Server database instance
has the server audit which is
managed by Amazon RDS.
You can define the policies
to record server events in the
server audit specification.
 You can create a database
audit specification and define
the policies to record databa
se events. The stream of
activity is collected and
transmitted to Amazon
Kinesis. From Kinesis, you can
monitor the activity stream
for further analysis. For more
information, see Monitoring
Amazon RDS with Database
 Activity Streams.

February 15, 2023

5322

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.Minor.html#oracle-minor-version-upgrade-advance
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.Minor.html#oracle-minor-version-upgrade-advance
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.Minor.html#oracle-minor-version-upgrade-advance
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.html

Amazon Relational Database Service User Guide

RDS supports MySQL 8.0.32
and 5.7.41

You can now create Amazon
RDS DB instances running
MySQL version 8.0.32 and
5.7.41. For more information,
see MySQL on Amazon RDS
versions.

February 7, 2023

Amazon RDS for Oracle
supports new cipher suites for
SSL

If you run Oracle Database
19c or 21c, you can specify six
new cipher suites in the SSL
option for RDS for Oracle.
These suites support FIPS
and are FedRAMP-complaint.
For more information, see
Oracle Secure Sockets Layer.

February 3, 2023

Amazon RDS for Oracle
supports new cipher suites for
Oracle Enterprise Manager

You can use four new
FedRAMP-compliant cipher
suites for the OEM option.
For more information, see
Oracle Management Agent
for Enterprise Manager Cloud
Control.

February 3, 2023

RDS for Oracle supports
Database Activity Streams in
the Asia Pacific (Hyderabad),
Europe (Spain), and Middle
East (UAE) Regions

For more information, see
Supported Regions and DB
engines for database activity
 streams in Amazon RDS.

January 27, 2023

5323

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.DBActivityStreams.html

Amazon Relational Database Service User Guide

Migrate to an RDS for
PostgreSQL Multi-AZ DB
cluster using a read replica

By using a read replica,
you can migrate an RDS
for PostgreSQL Single-AZ
deployment or Multi-AZ DB
instance deployment to an
RDS for PostgreSQL Multi-AZ
DB cluster deployment with
reduced downtime. For more
information, see Migrating to
a Multi-AZ DB cluster using a
read replica.

January 23, 2023

Amazon RDS is available in
the Asia Pacific (Melbourne)
Region

Amazon RDS is now available
in the Asia Pacific (Melbourne)
Region. For more information,
see Regions and Availability
Zones.

January 23, 2023

RDS for MariaDB supports
enforcing SSL/TLS connectio
ns

RDS for MariaDB now
supports enforcing SSL/TLS
connections by setting the
 require_secure_tra
nsport parameter to ON.
For more information, see
Requiring SSL/TLS for all
connections to a MariaDB DB
instance.

January 19, 2023

Amazon RDS Optimized
Reads improves query
performance for RDS for
MariaDB

You can achieve faster
query processing for RDS
for MariaDB DB instances
with Amazon RDS Optimized
Reads. For more informati
on, see Improving query
performance for RDS for
MariaDB with Amazon RDS
Optimized Reads.

January 11, 2023

5324

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-migrating-to-with-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-migrating-to-with-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html#multi-az-db-clusters-migrating-to-with-read-replica
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mariadb-ssl-connections.html#mariadb-ssl-connections.require-ssl
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mariadb-ssl-connections.html#mariadb-ssl-connections.require-ssl
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mariadb-ssl-connections.html#mariadb-ssl-connections.require-ssl
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mariadb-ssl-connections.html#mariadb-ssl-connections.require-ssl
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads-mariadb.html

Amazon Relational Database Service User Guide

Restore a Multi-AZ DB cluster
snapshot to a DB instance

You can now restore a Multi-
AZ DB cluster snapshot to
a Single-AZ deployment
or Multi-AZ DB instance
deployment. For more
information, see Restoring
from a Multi-AZ DB cluster
snapshot to a DB instance.

January 10, 2023

Specify certificate authority
(CA) during DB instance
creation

You can now specify which
CA to use for a DB instance's
server certificate during DB
instance creation. For more
information, see Certificate
authorities.

January 5, 2023

RDS Custom for SQL Server
supports custom engine
versions

A custom engine version
(CEV) for RDS Custom for
SQL Server is an Amazon
Machine Image (AMI) with
Microsoft SQL Server pre-
installed. You choose an
Amazon EC2 Windows AMI to
use as a base image and can
install other software on the
operating system (OS). You
can customize the configura
tion of the OS and SQL Server
to meet your enterprise ne
eds. For more information,
see Working with custom
engine versions for RDS
Custom for SQL Server.

December 28, 2022

5325

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromMultiAZDBClusterSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromMultiAZDBClusterSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromMultiAZDBClusterSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html#UsingWithRDS.SSL.RegionCertificateAuthorities
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html#UsingWithRDS.SSL.RegionCertificateAuthorities
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev-sqlserver.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev-sqlserver.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev-sqlserver.html

Amazon Relational Database Service User Guide

Use Amazon RDS Blue/Gree
n Deployments available in
additional AWS Regions

The Blue/Green Deploymen
ts feature is now available
in the China (Beijing) and
China (Ningxia) Regions. For
more information, see Using
Amazon RDS Blue/Green
Deployments for database
updates.

December 22, 2022

Update to IAM service-linked
role permissions

The AmazonRDSServiceRo
lePolicy policy now grants
additional permissions to
AWS Secrets Manager. For
more information, see
Amazon RDS updates to AWS
managed policies.

December 22, 2022

Amazon RDS supports
renaming a Multi-AZ DB
cluster

You can now rename a Multi-
AZ DB cluster. For more
information, see Renaming a
Multi-AZ DB cluster.

December 22, 2022

Amazon RDS integrates with
AWS Secrets Manager for
password management

Amazon RDS can manage the
master user password for a
DB instance or Multi-AZ DB
cluster in Secrets Manager.
For more information, see
Password management with
Amazon RDS and AWS Secrets
Manager.

December 22, 2022

5326

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-cluster-rename.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-cluster-rename.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html

Amazon Relational Database Service User Guide

Amazon RDS Optimized
Writes supports the db.r6g
and db.r6gd DB instance
classes

Amazon RDS Optimized
Writes now supports the
db.r6g and db.r6gd DB
instance classes. For more
information, see Improving
write performance with
Amazon RDS Optimized
Writes.

December 22, 2022

Amazon RDS Custom for
Oracle supports new AWS
Regions

You can create RDS Custom
for Oracle DB instances in
the Asia Pacific (Seoul) and
Asia Pacific (Osaka) Regions.
For more information, see
Supported Regions and DB
engines for RDS Custom for
Oracle.

December 21, 2022

Amazon RDS on AWS
Outposts supports read
replicas

You can now create a
read replica from an RDS
on Outposts MySQL or
PostgreSQL DB instance.
For more information, see
Creating read replicas
for Amazon RDS on AWS
Outposts.

December 19, 2022

RDS Custom for Oracle
supports modifying the DB
instance class

You can now change the
instance class of your RDS
Custom for Oracle DB
instance. For more informat
ion, see Modifying your
RDS Custom for Oracle DB
instance.

December 16, 2022

5327

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.RDSCustom.ora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.rr.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.rr.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.rr.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.rr.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-managing.html#custom-managing.modifying
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-managing.html#custom-managing.modifying
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-managing.html#custom-managing.modifying

Amazon Relational Database Service User Guide

RDS for MySQL and RDS
for PostgreSQL support
db.x2iedn DB instance classes

You can now use the
db.x2iedn DB instance classes
for RDS for MySQL and RDS
for PostgreSQL DB instances
. For more information, see
Supported DB engines for DB
instance classes.

December 14, 2022

Amazon RDS Optimized
Writes supports db.x2iedn DB
instance classes

Amazon RDS Optimized
Writes now supports
db.x2iedn DB instance classes.
For more information, see
Improving write performance
with Amazon RDS Optimized
Writes.

December 14, 2022

Amazon RDS supports
copying DB option groups
when copying DB snapshots

You can now copy an option
group across AWS accounts
as part of a snapshot copy
request on RDS for Oracle
databases. For more informati
on, see Option group
considerations.

December 13, 2022

Amazon RDS supports RDS
Proxy with RDS for PostgreSQ
L version 14

You can now create an
RDS Proxy with an RDS
for PostgreSQL version 14
database. For more informati
on about RDS Proxy, see
Using Amazon RDS Proxy.

December 13, 2022

5328

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html#USER_CopySnapshot.Options
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html#USER_CopySnapshot.Options
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports db.x2idn, db.x2iedn
, and db.x2iezn instance clas
ses

You can now use the db.x2idn,
db.x2iedn, and db.x2iezn
instance classes for Amazon
RDS for Oracle DB instances
. For more information, see
Supported DB engines for
DB instance classes and
Supported RDS for Oracle
instance classes.

December 12, 2022

RDS for PostgreSQL DB
instances support Trusted
Language Extensions for
PostgreSQL

Trusted Language Extension
s for PostgreSQL is an open
source development kit that
allows you to build high
 performance PostgreSQ
L extensions and safely
run them on your RDS for
PostgreSQL DB instance.
For more information,
see Working with Trusted
Language Extensions for
PostgreSQL.

November 30, 2022

5329

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_trusted_language_extension.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_trusted_language_extension.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_trusted_language_extension.html

Amazon Relational Database Service User Guide

Use Amazon RDS Blue/Gree
n Deployments for database
updates

You can make changes to
a DB instance in a staging
environment and test the
changes without affecting
your production DB instance.
When you are ready, you
can promote the staging
environment to be the new
production environment,
with minimal downtime. For
more information, see Using
Amazon RDS Blue/Green
Deployments for database
updates.

November 27, 2022

Amazon RDS Optimized
Writes improves the
performance of write
transactions for RDS for
MySQL

You can improve the
performance of write
transactions for RDS for
MySQL DB instances wit
h Amazon RDS Optimized
Writes. For more information,
see Improving write perfor
mance with Amazon RDS
Optimized Writes for MySQL.

November 27, 2022

Amazon RDS Optimized
Reads improves query
performance for RDS for
MySQL

You can achieve faster query
processing for RDS for
MySQL DB instances with
Amazon RDS Optimized
Reads. For more information,
see Improving query perfor
mance with Amazon RDS
Optimized Reads.

November 27, 2022

5330

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-writes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-optimized-reads.html

Amazon Relational Database Service User Guide

Amazon RDS is available in
the Asia Pacific (Hyderabad)
Region

Amazon RDS is now available
in the Asia Pacific (Hyderabad)
Region. For more information,
see Regions and Availability
Zones.

November 22, 2022

RDS supports MariaDB
10.6.11, 10.5.18, 10.4.27, and
10.3.37

You can now create Amazon
RDS DB instances running
MariaDB versions 10.6.11,
10.5.18, 10.4.27, and
10.3.37. For more informati
on, see MariaDB on Amazon
RDS versions.

November 18, 2022

RDS Custom for Oracle
supports setting nondefault
installation parameters in a
custom engine version (CEV)

When you create a CEV, you
can set nondefault values
for the Oracle base, Oracle
home, UNIX user name and
ID, and UNIX group name
and ID. In this way, you
gain more control over the
database installation on your
RDS Custom for Oracle DB
instance. For more informati
on, see Preparing the CEV
manifest.

November 18, 2022

Amazon RDS supports Oracle
APEX version 22.1.v1

You can use APEX 22.1.v1
with all supported versions
of Oracle Database. For
more information, see Oracle
Application Express.

November 18, 2022

5331

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.preparing.html#custom-cev.preparing.manifest
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.preparing.html#custom-cev.preparing.manifest
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html

Amazon Relational Database Service User Guide

RDS for SQL Server supports
cross-Region read replicas

You can now create a cross-
Region read replica to
enhance disaster recovery
 capability, reduce applicati
on read latency, and offload
read workloads from the
primary DB instance. For more
information, see Creating a
read replica in a different AWS
Region.

November 16, 2022

Amazon RDS is available in
the Europe (Spain) Region

Amazon RDS is now available
in the Europe (Spain) Region.
For more information, see
 Regions and Availability
Zones.

November 16, 2022

RDS for SQL Server supports
linked servers for Oracle
database

You can now create a
linked server to access
external Oracle databases
to read data and execute
SQL commands. For more
information, see Linked
Servers with Oracle OLEDB
with RDS for SQL Server.

November 15, 2022

5332

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.XRgn
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.XRgn
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.XRgn
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.LinkedServers_Oracle_OLEDB.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.LinkedServers_Oracle_OLEDB.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.LinkedServers_Oracle_OLEDB.html

Amazon Relational Database Service User Guide

RDS Custom for Oracle
supports Oracle Multitenant

You can create an RDS
Custom for Oracle DB
instance as a container
database (CDB). After creatio
n, the CDB contains the CDB
root, PDB seed, and one PDB.
You can add more PDBs
manually using Oracle SQL.
For more information, see
Overview of Amazon RDS
Custom for Oracle architect
ure.

November 15, 2022

Amazon RDS for Oracle
supports Amazon EFS
integration

If you add the EFS_INTEG
RATION option to your
option group, you can
transfer files between your
RDS for Oracle DB instance
and an Amazon EFS file
system. For more information,
see Amazon EFS.

November 15, 2022

RDS supports MySQL 8.0.31
and 5.7.40

You can now create Amazon
RDS DB instances running
MySQL version 8.0.31 and
5.7.40. For more information,
see MySQL on Amazon RDS
versions.

November 10, 2022

Amazon RDS is available in
the Europe (Zurich) Region

Amazon RDS is now available
in the Europe (Zurich) Region.
For more information, see
 Regions and Availability
Zones.

November 9, 2022

5333

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-creating.html#custom-creating.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-efs-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Relational Database Service User Guide

Access to transaction log
backups is now available for
RDS for SQL Server

You can now view and copy
database transaction log
backups to an Amazon S3
bucket. For more informati
on, see Access to transaction
log backups.

November 7, 2022

Multi-AZ DB clusters
supported in additional AWS
Regions

Multi-AZ DB clusters are now
available in additional AWS
Regions. For more informat
ion, see Supported Regions
and DB engines for Multi-AZ
DB clusters in Amazon RDS.

November 4, 2022

Amazon RDS supports gp3
storage

You can now create Amazon
RDS DB instances that
use Amazon EBS General
Purpose SSD (gp3) storage
volumes, which let you
customize storage performan
ce independently of storage
capacity. For more informati
on, see General Purpose SSD
storage.

November 4, 2022

Amazon RDS supports a new
event for operating system
updates

Amazon RDS now supports
a new DB instance event,
RDS-EVENT-0230, under the
event category of security
patching. This new event
alerts you when an operating
system update is available for
your DB instance. For more
information, see Monitorin
g Amazon RDS events and
Working with operating
system updates.

October 28, 2022

5334

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER.SQLServer.AddlFeat.TransactionLogAccess.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER.SQLServer.AddlFeat.TransactionLogAccess.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.MultiAZDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#Concepts.Storage.GeneralSSD
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#Concepts.Storage.GeneralSSD
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/working-with-events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/working-with-events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html#OS_Updates
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html#OS_Updates
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html#OS_Updates

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports preconfigured r5b
memory optimized instance
 classes

The db.r5b Oracle DB instance
classes are optimized for
workloads that require addit
ional memory, storage, and
I/O per vCPU. For example,
 db.r5b.4xlarge.tpc2.mem2x
has multithreading turned
on and provides twice as m
uch memory as db.r5b.4x
large. For more information,
see RDS for Oracle instance
classes.

October 27, 2022

Amazon RDS supports
15 read replicas for RDS
for MariaDB, MySQL, and
PostgreSQL DB instances

You can now create up to
15 read replicas for RDS
for MariaDB, MySQL, and
PostgreSQL DB instances. For
more information about read
replicas, see Working with
read replicas.

October 20, 2022

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L version 15 RC 3 in the
database preview environme
nt

PostgreSQL version 15 Beta
3 is now available in the
database preview envir
onment in the US East
(Ohio) AWS Region. For more
information, see Working
with the database preview
environment.

October 18, 2022

5335

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html#Oracle.Concepts.InstanceClasses.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment

Amazon Relational Database Service User Guide

Amazon RDS supports
automatically setting up
connectivity between an RDS
database and an EC2 instance

You can use the AWS
Management Console to set
up connectivity between an
existing RDS DB instance
 or Multi-AZ DB cluster and
an EC2 instance. For more
information, see Connecting
an EC2 instance and an RDS
database automatically.

October 14, 2022

AWS JDBC Driver for
PostgreSQL generally
available

The AWS JDBC Driver for
PostgreSQL is a client
driver designed for RDS for
PostgreSQL. The AWS JDBC
Driver for PostgreSQL is now
generally available. For more
information, see Connecting
with the AWS JDBC Driver for
PostgreSQL.

October 6, 2022

Amazon RDS for Oracle
supports Oracle APEX version
21.2.v1

APEX 21.2 includes patch
33420059. For more
information, see APEX version
requirements.

October 3, 2022

RDS supports MySQL 5.7.39 You can now create Amazon
RDS DB instances running
MySQL versions 5.7.39. For
more information, see
MySQL on Amazon RDS
versions.

September 29, 2022

5336

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/ec2-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/ec2-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/ec2-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html#USER_ConnectToPostgreSQLInstance.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html#USER_ConnectToPostgreSQLInstance.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html#USER_ConnectToPostgreSQLInstance.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html#Appendix.Oracle.Options.APEX.versions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html#Appendix.Oracle.Options.APEX.versions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html

Amazon Relational Database Service User Guide

RDS supports MariaDB
10.6.10

You can now create Amazon
RDS DB instances running
MariaDB versions 10.6.10.
For more information, see
MariaDB on Amazon RDS
versions.

September 29, 2022

RDS Proxy supports RDS for
SQL Server

You can now create an RDS
Proxy for an RDS DB instance
that runs Microsoft SQL
Server version 2014 or
higher. For more information
about RDS Proxy, see Using
 Amazon RDS Proxy.

September 19, 2022

RDS supports MariaDB
10.5.17, 10.4.26, and 10.3.36

You can now create Amazon
RDS DB instances running
MariaDB versions 10.5.17,
10.4.26, and 10.3.36. For
more information, see
MariaDB on Amazon RDS
versions.

September 15, 2022

5337

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports local instance
storage for temporary data

You can now launch Amazon
RDS for Oracle on Amazon
EC2 db.r5d and db.m5d
instance types with the
temporary tablespace and
Database Smart Flash Cache
(the flash cache) configured
to use an instance store.
By storing temporary data
locally, you can achieve lower
read and write latencies when
compared to standard storage
based on Amazon EBS. For
more information, see Storing
temporary Oracle data in the
instance store.

September 14, 2022

Performance Insights shows
the top 25 SQL queries

In the Performance Insights
dashboard, the Top SQL tab
shows the 25 SQL queries
that are contributing the
most to DB load. For more
 information, see Overview of
the Top SQL tab.

September 13, 2022

RDS supports MySQL 8.0.30 You can now create Amazon
RDS DB instances running
MySQL version 8.0.30. For
more information, see
MySQL on Amazon RDS
versions.

September 9, 2022

Amazon RDS is available in
the Middle East (UAE) Region

Amazon RDS is now available
in the Middle East (UAE)
Region. For more information,
see Regions and Availability
Zones.

August 30, 2022

5338

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.advanced-features.instance-store.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.advanced-features.instance-store.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.advanced-features.instance-store.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable.TopSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable.TopSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Concepts.VersionMgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Relational Database Service User Guide

Amazon RDS for SQL Server
supports SSRS Email subscript
ions

You can now use the SQL
Server Reporting Services
(SSRS) Email extension to
send reports to users and
subscribe to reports on the
report server. For more
 information, see Support for
SQL Server Reporting Services
in RDS for SQL Server.

August 26, 2022

RDS for Oracle supports read
replica backups

You can turn on automatic
backups and create manual
snapshots of RDS for Oracle
 replicas. For more informati
on, see Working with RDS for
Oracle replica backups.

August 23, 2022

RDS for Oracle supports
Oracle Data Guard switchover

A switchover is a role reversal
between a primary database
and a mounted or open
Oracle replica. During a
switchover, the original
primary database transitions
to a standby role, while the
original standby database
transitions to the primary
role. For more information,
see Performing an Oracle
Data Guard switchover.

August 23, 2022

5339

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSRS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSRS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSRS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.overview.html#
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.overview.html#
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-replication-switchover.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-replication-switchover.html

Amazon Relational Database Service User Guide

Amazon RDS supports
automatically setting up
connectivity with an EC2
instance

When you create a DB
instance or Multi-AZ DB
cluster, you can use the AWS
Management Console to s
et up connectivity between
an Amazon Elastic Compute
Cloud instance and the
new DB instance or DB c
luster. For more informati
on, see Configure automatic
network connectivity with
an EC2 instance for a new
DB instance and Configure
automatic network connectiv
ity with an EC2 instance for a
new DB cluster.

August 22, 2022

RDS Custom for Oracle
supports promotion of Oracle
replicas

If you use RDS Custom for
Oracle, you can promote your
managed Oracle replicas by
using the promote-read-
replica CLI command.
Also, you can delete your
 primary DB instance, which
causes RDS Custom for Oracle
to promote your managed
Oracle replicas to standalone
instances. For more informati
on, see Working with Oracle
replicas for RDS Custom for
Oracle.

August 5, 2022

5340

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html#USER_CreateDBInstance.Prerequisites.VPC.Automatic
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html#USER_CreateDBInstance.Prerequisites.VPC.Automatic
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html#USER_CreateDBInstance.Prerequisites.VPC.Automatic
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/create-multi-az-db-cluster.html#create-multi-az-db-cluster-prerequisites-VPC-automatic
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/create-multi-az-db-cluster.html#create-multi-az-db-cluster-prerequisites-VPC-automatic
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/create-multi-az-db-cluster.html#create-multi-az-db-cluster-prerequisites-VPC-automatic
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-rr.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-rr.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-rr.html

Amazon Relational Database Service User Guide

RDS for MySQL supports
enforcing SSL/TLS connectio
ns

RDS for MySQL now supports
enforcing SSL/TLS connectio
ns by setting the require_s
ecure_transport
parameter to ON. For more
 information, see Requiring
an SSL/TLS connection to a
MySQL DB instance.

August 1, 2022

Amazon RDS has deprecated
support for Oracle Database
12c Release 1 (12.1.0.2)

Support for version 12.1.0.2
is deprecated for both the
BYOL and LI licensing mod
els. On August 1, 2022, RDS
for Oracle begins automatic
upgrades of 12c Release 1
(12.1.0.2) DB instances and
restored 12.1.0.2 snapshots
to Oracle Database 19c. For
more information, see the
end of support timeline on
AWS re:Post.

August 1, 2022

RDS Proxy supports RDS for
MariaDB

You can now create an RDS
Proxy for an RDS DB instance
that runs MariaDB version
10.2, 10.3, 10.4, or 10.5. The
MariaDB support is included
under the MySQL engine
 family. For more information
about RDS Proxy, see Using
 Amazon RDS Proxy.

July 26, 2022

5341

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-ssl-connections.html#mysql-ssl-connections.require-ssl
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-ssl-connections.html#mysql-ssl-connections.require-ssl
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-ssl-connections.html#mysql-ssl-connections.require-ssl
https://repost.aws/questions/QUESrwZfKMSSuijzLLHCQkYQ/announcement-amazon-rds-for-oracle-end-of-support-timeline-for-12-c-oracle-release-2-12-2-0-1-and-oracle-release-1-12-1-0-2-major-version
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html

Amazon Relational Database Service User Guide

RDS for MariaDB supports the
db.r5b DB instance classes

You can now create RDS for
MariaDB DB instances that
use the db.r5b DB instance
classes. For more information,
Supported DB engines for DB
instance classes.

July 25, 2022

RDS for Oracle supports
modifying database activity
streams

If you use RDS for Oracle,
you can change the audit
policy state of a database acti
vity stream to either locked
(default) or unlocked. Instead
of stopping an activity
stream, you can unlock its
policy state, customize your
audit policy, and then relock
the policy state. For more
information, see Modifying a
database activity stream.

July 22, 2022

Performance Insights
supports the Asia Pacific
(Jakarta) Region

Formerly, you couldn't use
Performance Insights in the
Asia Pacific (Jakarta) Reg
ion. This restriction has been
removed. For more informati
on, see Supported Regions
and DB engines for Performan
ce Insights in Amazon RDS.

July 21, 2022

5342

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.Modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.Modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.PerformanceInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.PerformanceInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.PerformanceInsights.html

Amazon Relational Database Service User Guide

Microsoft SQL Server 2012
has reached its end of
support on Amazon RDS

Microsoft SQL Server 2012
has reached its end of
support, coinciding with
the Microsoft plan to end
extended support for this
version on July 12, 2022.
Any existing Microsoft SQL
Server 2012 instances are to
be automatically upgraded
to the latest minor version of
Microsoft SQL Server 2014
starting on June 1, 2022.
 For more information, see
Microsoft SQL Server 2012
support on Amazon RDS.

July 12, 2022

RDS supports MariaDB 10.6.8,
10.5.16, 10.4.25, 10.3.35, and
10.2.44

You can now create Amazon
RDS DB instances running
MariaDB versions 10.6.8,
10.5.16, 10.4.25, 10.3.35,
and 10.2.44. For more
information, see Supported
MariaDB versions on Amazon
RDS.

July 8, 2022

5343

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport.2012
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport.2012
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#MariaDB.Concepts.VersionMgmt.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#MariaDB.Concepts.VersionMgmt.Supported
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MariaDB.Concepts.VersionMgmt.html#MariaDB.Concepts.VersionMgmt.Supported

Amazon Relational Database Service User Guide

RDS Performance Insights
supports additional retention
periods

Previously, Performance
Insights offered only two
retention periods: 7 days
 (default) or 2 years (731
days). Now, if you need to
retain your performance d
ata for longer than 7 days,
you can specify from 1–24
months. For more informat
ion, see Pricing and data
retention for Performance
Insights.

July 1, 2022

RDS Custom supports the Asia
Pacific (Mumbai) and Europe
(London) Regions

You can create RDS Custom
for Oracle and RDS Custom
for SQL Server DB instances in
two new AWS Regions: Asia
Pacific (Mumbai) and Europe
(London). For more informati
on, see AWS Region support
for RDS Custom for Oracle
and AWS Region support for
RDS Custom for SQL Server.

June 21, 2022

RDS Custom for Oracle
supports Oracle Database 18c
and 12c Release 2 (12.2)

You can now create a CEV
for RDS Custom for Oracle
using installation files for
Oracle Database 18c and 12c
Release 2 (12.2). You can use
this these CEVs to create an
RDS Custom for Oracle DB
instance. For more informati
on, see Working with custom
engine versions for Amazon
RDS Custom for Oracle.

June 21, 2022

5344

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Overview.cost.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Overview.cost.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Overview.cost.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.regions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits.html#custom-reqs-limits.regions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits.regionsMS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-reqs-limits-MS.html#custom-reqs-limits.regionsMS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.html

Amazon Relational Database Service User Guide

Multi-AZ DB clusters support
the db.m5d and db.r5d DB
instance classes

You can now create Multi-
AZ DB clusters that use
the db.m5d and db.r5d DB
instance classes. For more
information, see Multi-AZ DB
cluster deployments and DB
instance class types.

June 21, 2022

Multi-AZ DB clusters available
in additional AWS Regions

You can now create Multi-AZ
DB clusters in the following
Regions: Europe (Frankfurt)
and Europe (Stockholm). For
more information, see Multi-
AZ DB cluster deployments.

June 21, 2022

RDS for Microsoft SQL
Server supports migration of
databases that use Transpare
nt Data Encryption (TDE)

RDS for SQL Server now
supports migrating Microsoft
SQL Server databases with
TDE turned on, using native
backup and restore. For more
information, see Support for
 Transparent Data Encryption
in SQL Server.

June 14, 2022

Amazon RDS supports
publishing events to
encrypted Amazon SNS topics

Amazon RDS can now publish
events to Amazon Simple
Notification Service (Amazon
SNS) topics that have server-
side encryption (SSE) enabled,
for additional protection of
events that carry sensitive
data. For more information,
see Subscribing to Amazon
RDS event notification.

June 1, 2022

5345

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.TDE.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.TDE.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.TDE.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.Subscribing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.Subscribing.html

Amazon Relational Database Service User Guide

RDS supports MySQL 5.7.38 You can now create Amazon
RDS DB instances running
MySQL version 5.7.38. For
more information, see
MySQL on Amazon RDS
versions.

May 31, 2022

RDS for PostgreSQL supports
cascading read replicas

You can now use cascading
read replicas with RDS for
PostgreSQL version 14.1 and
higher releases. For more
information, see Working
with PostgreSQL read replicas
in Amazon RDS.

May 4, 2022

Amazon RDS on AWS
Outposts supports scale
storage and autoscaling
operations

You can now change the
storage sizes of DB instances
on your Outpost and use
storage autoscaling. For more
information, see Amazon RDS
on AWS Outposts support for
Amazon RDS features.

May 2, 2022

Multi-AZ DB clusters available
in additional AWS Regions

You can now create Multi-AZ
DB clusters in the following
Regions: Asia Pacific
(Singapore) and Asia Pacific
(Sydney). For more informati
on, see Multi-AZ DB cluster
deployments.

April 29, 2022

5346

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.Replication.ReadReplicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.Replication.ReadReplicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.Replication.ReadReplicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.features.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.features.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.features.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html

Amazon Relational Database Service User Guide

Amazon RDS supports dual-
stack mode

DB instances can now run
in dual-stack mode. In dual-
stack mode, resources can
communicate with the DB
instance over IPv4, IPv6, or
both. For more informati
on, see Amazon RDS IP
addressing.

April 29, 2022

Amazon RDS publishes usage
metrics to Amazon CloudWatc
h

The AWS/Usage namespace
in Amazon CloudWatch
includes account-level usage
 metrics for your Amazon
RDS service quotas. For more
information, see Amazon
CloudWatch usage metrics for
Amazon RDS.

April 28, 2022

Amazon RDS for MySQL
supports the db.m6i and
db.r6i DB instance classes

You can now use the db.m6i
and db.r6i DB instance classes
for Amazon RDS DB instances
running MySQL. For more
information, see Supported
DB engines for DB instance
classes.

April 28, 2022

Amazon RDS for PostgreSQ
L supports the db.m6i and
db.r6i DB instance classes

You can now use the db.m6i
and db.r6i DB instance
classes for Amazon RDS DB
instances running Postg
reSQL. For more information,
see Supported DB engines for
DB instance classes.

April 27, 2022

5347

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.IP_addressing
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.IP_addressing
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-metrics.html#rds-metrics-usage
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-metrics.html#rds-metrics-usage
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-metrics.html#rds-metrics-usage
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support

Amazon Relational Database Service User Guide

Amazon RDS for MariaDB
supports the db.m6i and
db.r6i DB instance classes

You can now use the db.m6i
and db.r6i DB instance classes
for Amazon RDS DB instances
running MariaDB. For more
information, see Supported
DB engines for DB instance
classes.

April 26, 2022

Amazon RDS on AWS
Outposts supports Multi-AZ
deployments

You can now create a standby
DB instance on a different
Outpost. For more informat
ion, see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

April 19, 2022

Amazon RDS for Oracle
supports the db.m6i and
db.r6i instance classes

If you run Oracle Database
19c, you can use the db.m6i
and db.r6i instance clas
ses. The db.m6i classes are
general-purpose instance
classes that are well
 suited for a broad range
of workloads. For more
information, see RDS for
Oracle instance classes.

April 8, 2022

Amazon RDS for SQL Server
supports SQL Server Agent
job replication

When you turn on this
feature, SQL Server Agent
jobs created, modified, or d
eleted on the primary host
are automatically synchroni
zed to the secondary host in
a Multi-AZ configuration. For
more information, see Using
SQL Server Agent.

April 7, 2022

5348

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.features.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.features.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.features.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Concepts.InstanceClasses.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Agent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Agent.html

Amazon Relational Database Service User Guide

Amazon RDS supports RDS
Proxy with RDS for PostgreSQ
L version 13

You can now create an
RDS Proxy with an RDS
for PostgreSQL version 13
database. For more informati
on about RDS Proxy, see
Using Amazon RDS Proxy.

April 4, 2022

Amazon RDS plans to
deprecate Oracle Database
12c

Oracle Database 12c is on
a deprecation path. Oracle
Corporation will no longer
provide patches for Oracle
Database 12c releases after
the end-of-support dates.
Amazon RDS plans to begin
automatically upgrading
Oracle Database 12c DB
instances to Oracle Database
19c.

March 22, 2022

Amazon RDS for PostgreSQL
Release Notes

There is now a separate guide
for the Amazon RDS for
PostgreSQL release notes.
For more information, see
Amazon RDS for PostgreSQL
Release Notes.

March 22, 2022

Amazon RDS for Oracle
Release Notes

There is now a separate
guide for the Amazon RDS
for Oracle release notes.
For more information, see
Amazon RDS for Oracle
Release Notes.

March 22, 2022

5349

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/OracleReleaseNotes/Welcome.html

Amazon Relational Database Service User Guide

Multi-AZ DB clusters available
in additional AWS Regions

You can now create Multi-AZ
DB clusters in the following
Regions: US East (Ohio) and
Asia Pacific (Tokyo). For more
information, see Multi-AZ DB
cluster deployments.

March 15, 2022

Amazon RDS for PostgreSQ
L versions 14.2, 13.6, 12.10,
11.15, and 10.20

RDS for PostgreSQL now
supports versions 14.2, 13.6,
12.10, 11.15, and 10.20.
 Version 14.2 and 13.6
add support for two new
foreign data wrappers. The
 mysql_fdw extension lets
PostgreSQL work with data
stored in MySQL, MariaDB,
and Aurora MySQL databases
. The tds_fdw extension
 lets PostgreSQL work with
data stored in SQL Server
databases. For more informat
ion, see Supported PostgreSQ
L database versions.

March 12, 2022

RDS supports MySQL 5.7.37 You can now create Amazon
RDS DB instances running
MySQL version 5.7.37. For
more information, see
MySQL on Amazon RDS
versions.

March 11, 2022

5350

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS for SQL Server
supports new DB instance
classes

You can now create Amazon
RDS DB instances running
Microsoft SQL Server that
use the db.m6i and db.r6i DB
instance classes. For more
information, see DB instance
class support for Microsoft
SQL Server.

March 9, 2022

Amazon RDS for Oracle
supports Oracle Database 21c

You can now create Amazon
RDS DB instances running
Oracle Database 21c (21.0.0.0
). This is the first Oracle
Database release that
supports only the multitena
nt (CDB) architecture. For
more information, see Oracle
Database 21c with Amazon
RDS.

March 7, 2022

RDS supports MariaDB 10.6.7,
10.5.15, 10.4.24, 10.3.34, and
10.2.43

You can now create Amazon
RDS DB instances running
MariaDB versions 10.6.7,
10.5.15, 10.4.24, 10.3.34,
and 10.2.43. For more
information, see MariaDB on
Amazon RDS versions.

March 3, 2022

AWS JDBC Driver for MySQL
generally available

The AWS JDBC Driver for
MySQL is a client driver
designed for RDS for MySQL.
 The AWS JDBC Driver for
MySQL is now generally
available. For more informat
ion, see Connecting with the
Amazon Web Services JDBC
Driver for MySQL.

March 2, 2022

5351

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.21c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.21c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.21c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html#USER_ConnectToInstance.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html#USER_ConnectToInstance.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html#USER_ConnectToInstance.JDBCDriverMySQL

Amazon Relational Database Service User Guide

Multi-AZ DB clusters generally
available

A Multi-AZ DB cluster
deployment is a high availabil
ity deployment mode of A
mazon RDS with two readable
standby DB instances. Multi-
AZ DB clusters are now
generally available. For more
information, see Multi-AZ DB
cluster deployments.

March 1, 2022

RDS supports MySQL 8.0.28 You can now create Amazon
RDS DB instances running
MySQL version 8.0.28. For
more information, see
MySQL on Amazon RDS
versions.

February 28, 2022

Amazon RDS for Oracle
supports new settings for
native network encryption (N
NE)

To control whether clients
can connect with non-secure
encryption and checksumm
ing methods, set SQLNET.AL
LOW_WEAK_CRYPTO_CL
IENTS and SQLNET.AL
LOW_WEAK_CRYPTO in
the NNE option. Examples
of insecure methods include
DES, 3DES, RC4, and MD5. For
more information, see NNE
option settings.

February 25, 2022

5352

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.NetworkEncryption.html#Oracle.Options.NNE.Options
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.NetworkEncryption.html#Oracle.Options.NNE.Options

Amazon Relational Database Service User Guide

Amazon RDS for SQL Server
supports Always On Availabil
ity Groups for Microsoft SQL
Server 2017 Standard Edition

When you create a DB
instance using the Multi-
AZ configuration on SQL
Server 2017 Standard Edition
14.00.3401.7 and higher
versions, RDS automatically
uses Availability Groups. For
more information, see Multi-
AZ deployments for Microsof
t SQL Server.

February 18, 2022

RDS for Oracle supports
Database Activity Streams
in the Asia Pacific (Jakarta)
Region

For more information, see
Support for AWS Regions for
database activity streams.

February 16, 2022

Amazon RDS Custom for
Oracle support for Oracle
Database 12.1

You can now create custom
engine versions for RDS
Custom for Oracle that
use Oracle Database 12.1
Enterprise Edition. For more
information, see Working
with custom engine versions
for Amazon RDS Custom for
Oracle.

February 4, 2022

Amazon RDS for MariaDB
supports a new major version

You can now create Amazon
RDS DB instances running
MariaDB version 10.6. For
more information, see
MariaDB 10.6 support on
Amazon RDS.

February 3, 2022

5353

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-cev.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.FeatureSupport.10-6
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.FeatureSupport.10-6

Amazon Relational Database Service User Guide

Performance Insights
supports plan capture for
Oracle queries

The Performance Insights
console supports a new plan
dimension for top SQL. When
you slice by plan, you can
see which plans your top
Oracle queries are using. If a
query uses multiple plans, you
can compare the plans side
by side in the console and
determine which plan is most
efficient. You can also drill
down to see which steps in
a plan have the highest cost.
For more information, see
 Analyzing Oracle execution
plans using the Performance
Insights dashboard.

January 27, 2022

Performance Insights
supports new APIs

Performance Insights
supports the following APIs:
 GetResourceMetadat
a , ListAvailableResou
rceDimensions , and
 ListAvailableResou
rceMetrics . For more
information, see Retrieving
metrics with the Performan
ce Insights API in this manual
and the Amazon RDS
Performance Insights API
Reference.

January 12, 2022

5354

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AccessPlans.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AccessPlans.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AccessPlans.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.API.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.API.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.API.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html

Amazon Relational Database Service User Guide

RDS Proxy supports events RDS Proxy now generates
events that you can subscribe
to and view in CloudWatc
h Events or configure to
send to Amazon EventBrid
ge. For more information,
see Working with RDS Proxy
events.

January 11, 2022

Amazon RDS for SQL Server
supports SSAS Multidime
nsional mode

RDS for SQL Server supports
running SQL Server Analysis
Services (SSAS) in Tabular
or Multidimensional mode.
For more information, see
Support for SQL Server
Analysis Services in RDS for
SQL Server.

January 7, 2022

RDS Proxy available in
additional AWS Regions

RDS Proxy is now available in
the following Regions: Africa
(Cape Town), Asia Pacific
(Hong Kong), Asia Pacific
(Osaka), Europe (Milan), Euro
pe (Paris), Europe (Stockhol
m), Middle East (Bahrain)
, and South America (São
Paulo). For more information
about RDS Proxy, see Using
 Amazon RDS Proxy.

January 5, 2022

RDS supports MySQL 8.0.27 You can now create Amazon
RDS DB instances running
MySQL version 8.0.27. For
more information, see
MySQL on Amazon RDS
versions.

December 21, 2021

5355

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSAS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSAS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSAS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS is available
in the Asia Pacific (Jakarta)
Region

Amazon RDS is now available
in the Asia Pacific (Jakarta)
Region. For more information,
see Regions and Availability
Zones.

December 13, 2021

Amazon RDS supports
MariaDB 10.5.13, 10.4.22,
10.3.32, and 10.2.41

You can now create Amazon
RDS DB instances running
MariaDB versions 10.5.13,
10.4.22, 10.3.32, and
10.2.41. For more informati
on, see MariaDB on Amazon
RDS versions.

December 8, 2021

Amazon RDS Custom for SQL
Server

Amazon RDS Custom is a
managed database service
for legacy, custom, and
packaged applications
that require access to the
underlying operating system
and database environment.
With Amazon RDS Custom,
you get the automation of
Amazon RDS and the flexibili
ty of Amazon EC2. For more
information, see Working with
Amazon RDS Custom.

December 1, 2021

5356

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-custom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-custom.html

Amazon Relational Database Service User Guide

Multi-AZ DB clusters (preview) You can now create Multi-
AZ DB clusters for RDS
for MySQL and RDS for
PostgreSQL. A Multi-AZ
DB cluster deployment is a
high availability deploymen
t mode of Amazon RDS
with two readable standby
DB instances. Multi-AZ DB
clusters are in preview. For
more information, see Multi-
AZ DB cluster deployments
(preview).

November 23, 2021

Amazon RDS supports RDS
Proxy with RDS for PostgreSQ
L version 12

You can now create an
RDS Proxy with an RDS
for PostgreSQL version 12
database. For more informati
on about RDS Proxy, see
Using Amazon RDS Proxy.

November 22, 2021

Amazon RDS on AWS
Outposts supports local
backups

You can store automated
backups and manual
snapshots in your AWS
Region or locally on your
Outpost. For more informati
on, see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

November 22, 2021

Amazon RDS support for
cross-account AWS KMS keys

You can use a KMS key from
a different AWS account for
encryption when exportin
g DB snapshots to Amazon
S3. For more information, see
Exporting DB snapshot data
to Amazon S3.

November 3, 2021

5357

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html

Amazon Relational Database Service User Guide

Amazon RDS on AWS
Outposts supports publishin
g database engine logs to C
loudWatch Logs

RDS on Outposts now
supports publishing database
engine logs to CloudWatc
h Logs. For more informati
on, see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

November 2, 2021

Amazon RDS Custom for
Oracle

Amazon RDS Custom is a
managed database service
for legacy, custom, and
packaged applications
that require access to the
underlying operating system
and database environment.
With Amazon RDS Custom,
you get the automation of
Amazon RDS and the flexibili
ty of Amazon EC2. For more
information, see Working with
Amazon RDS Custom.

October 26, 2021

Support for delayed replicati
on for RDS for MySQL version
8.0

Starting with RDS for MySQL
version 8.0.26, you can
configure delayed replication
for RDS for MySQL version
8.0 DB instances. For more
information, see Configuri
ng delayed replication with
MySQL.

October 25, 2021

Support for MySQL 8.0.26 You can now create Amazon
RDS DB instances running
MySQL version 8.0.26. For
more information, see
MySQL on Amazon RDS
versions.

October 25, 2021

5358

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-custom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-custom.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.DelayReplication
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.DelayReplication
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.DelayReplication
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Support for GTID-based
replication for RDS for MySQL
version 8.0

Starting with RDS for MySQL
version 8.0.26, you can
configure GTID-based re
plication for RDS for MySQL
version 8.0 DB instances. For
more information, see Using
GTID-based replication for
RDS for MySQL.

October 25, 2021

Amazon RDS supports RDS
Proxy with RDS for MySQL 8.0

You can now create an RDS
Proxy for an RDS for MySQL
8.0 database instance. For
more information, see Using
 Amazon RDS Proxy.

October 21, 2021

Amazon RDS on AWS
Outposts supports additional
RDS for MySQL versions

RDS on Outposts now
supports RDS for MySQL
versions 8.0.23 and 8.0.25.
For more information,
see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

October 20, 2021

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L version 14 RC 1 in the
database preview environme
nt

PostgreSQL version 14 RC 1 is
now available in the database
preview environment in the
US East (Ohio) AWS Region.
For more information, see
 Working with the database
preview environment.

October 19, 2021

5359

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment

Amazon Relational Database Service User Guide

Amazon RDS supports
Performance Insights in
additional AWS Regions

Performance Insights is
available in the Middle East
(Bahrain), Africa (Cape Town),
Europe (Milan), and Asia
Pacific (Osaka) Regions.
For more information, see
Supported Regions and DB
engines for Performance
Insights in Amazon RDS.

October 5, 2021

Performance Insights
supports digest-level statistic
s for Oracle

When you use Performan
ce Insights, you can view
SQL statistics both at the
statement and digest level
for Amazon RDS for Oracle.
For more information, see
 Analyzing running queries in
Oracle.

October 4, 2021

Amazon RDS on AWS
Outposts supports additional
RDS for PostgreSQL versions

RDS on Outposts now
supports RDS for PostgreSQ
L versions 12.8 and 13.4.
For more information,
see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

October 1, 2021

Amazon RDS supports Oracle
APEX version 21.1.v1

You can use APEX 21.1.v1
with all supported versions
of Oracle Database. For
more information, see Oracle
Application Express.

September 24, 2021

5360

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.PerformanceInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.PerformanceInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.PerformanceInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.Oracle
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.Oracle
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports client-side encryptio
n for NNE

When you configure NNE,
you might want to avoid
forcing encryption on the
server side. For example,
you might not want to force
all client communications
 to use encryption because
the server requires it. In this
case, you can force encrypt
ion on the client side using
the SQLNET.*CLIENT
options. For more informat
ion, see Oracle native network
encryption.

September 24, 2021

Amazon RDS for MySQL and
RDS for PostgreSQL support
new DB instance classes

You can now use the db.r5b,
db.t4g, and db.x2g instance
classes to create Amazon RDS
DB instances running MySQL
or PostgreSQL. For more
information, see Supported
DB engines for DB instance
classes.

September 15, 2021

Amazon RDS for Microsoft
SQL Server supports Java
Database Connectivity (JDBC)
with Microsoft Distributed
Transaction Coordinator
(MSDTC)

JDBC XA transactions are now
supported with MSDTC for
SQL Server 2017 version
 14.00.3223.3 and higher, and
SQL Server 2019. For more
information, see Support
for Microsoft Distributed
Transaction Coordinator in
RDS for SQL Server.

September 7, 2021

5361

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.NetworkEncryption.html#Oracle.Options.NNE.Using
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.NetworkEncryption.html#Oracle.Options.NNE.Using
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html

Amazon Relational Database Service User Guide

Amazon RDS supports
MariaDB 10.5.12, 10.4.21,
10.3.31, and 10.2.40

You can now create Amazon
RDS DB instances running
MariaDB versions 10.5.12,
10.4.21, 10.3.31, and
10.2.40. For more informati
on, see MariaDB on Amazon
RDS versions.

September 2, 2021

Amazon RDS has ended
support for Oracle Database
18c

You can create DB instances
only for Oracle Database 12c
and Oracle Database 19c. If
you have Oracle Database
18c snapshots, upgrade them
to a later release. For more
information, see Upgrading
an Oracle DB snapshot.

August 17, 2021

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L version 14 beta 2 in the
database preview environme
nt

For more about PostgreSQ
L version 14 beta 1, see
PostgreSQL 14 beta 1
release notes. For more about
PostgreSQL version 14 beta
2, see PostgreSQL 14 beta 2
release notes. For informati
on on the Database Preview
Environment, see Working
with the database preview
environment.

August 9, 2021

Amazon RDS supports RDS
Proxy in a shared VPC

You can now create an RDS
Proxy in a shared VPC. For
more information about
 RDS Proxy, see "Managing
Connections with Amazon
RDS Proxy" in the Amazon
RDS User Guide or the Aurora
User Guide.

August 6, 2021

5362

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBSnapshot.Oracle.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBSnapshot.Oracle.html
https://www.postgresql.org/docs/14/release-14.html
https://www.postgresql.org/docs/14/release-14.html
https://www.postgresql.org/about/news/postgresql-14-beta-2-released-2249/
https://www.postgresql.org/about/news/postgresql-14-beta-2-released-2249/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Relational Database Service User Guide

Amazon RDS supports
MariaDB 10.2.39

You can now create Amazon
RDS DB instances running
MariaDB versions 10.2.39.
For more information, see
MariaDB on Amazon RDS
versions.

August 4, 2021

Amazon RDS for Oracle adds
the TIMEZONE_FILE_AUTO
UPGRADE option

With this option, you can
upgrade the current time
zone file to the latest versio
n on your Oracle DB instance.
For more information,
see Oracle time zone file
autoupgrade.

July 30, 2021

Amazon RDS extends support
for cross-Region automated
backups

You can now replicate DB
snapshots and transaction
logs between more AWS
Regions. For more informati
on, see Replicating automated
backups to another AWS
Region.

July 19, 2021

Support for MySQL 5.7.34 You can now create Amazon
RDS DB instances running
MySQL version 5.7.34. For
more information, see
MySQL on Amazon RDS
versions.

July 8, 2021

Amazon RDS on AWS
Outposts supports additional
RDS for PostgreSQL versions

RDS on Outposts now
supports RDS for PostgreSQ
L versions 12.7 and 13.3.
For more information,
see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

July 8, 2021

5363

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.Timezone-file-autoupgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.Timezone-file-autoupgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL
supports oracle_fdw

You can now use the
oracle_fdw extension to
provide a foreign data
wrapper for access to Oracle
databases. For more informati
on, see Accessing external
data with the oracle_fdw
extension.

July 8, 2021

Amazon RDS supports Oracle
Management Agent (OMA)
version 13.5

You can use Oracle
Management Agent (OMA)
version 13.5 with Oracle
Enterprise Manager (OEM)
Cloud Control 13c Release 5
and higher. Amazon RDS for
Oracle installs OMA, which
then communicates with your
Oracle Management Service
(OMS) to provide monitorin
g information. If you run
OMS 13.5, you can manage
databases by installing OMA
13.5. For more information,
see Oracle Management
Agent for Enterprise Manager
Cloud Control.

July 7, 2021

5364

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#postgresql-oracle-fdw
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#postgresql-oracle-fdw
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#postgresql-oracle-fdw
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports downloading logs
from Amazon S3

If archived redo logs aren't
on your instance but are
protected by your backup
 retention period, you can use
 rdsadmin.rdsadmin_
archive_log_downlo
ad to download them
from Amazon S3. RDS for
Oracle saves the logs to the /
rdsdbdata/log/arch dir
ectory on your DB instance.
For more information, see
Downloading archived redo
logs from Amazon S3.

July 2, 2021

Amazon RDS supports
MariaDB 10.4.18 and 10.5.9

You can now create Amazon
RDS DB instances running
MariaDB versions 10.4.18 and
10.5.9. For more information,
see MariaDB on Amazon RDS
versions.

June 30, 2021

5365

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Log.html#Appendix.Oracle.CommonDBATasks.download-redo-logs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Log.html#Appendix.Oracle.CommonDBATasks.download-redo-logs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports Database Activity
Streams

You can now monitor an
Oracle DB instance using
Database Activity Streams.
An Oracle database writes
audit records to the unified
audit trail. When you start
a database activity stream
on an Oracle DB instance,
Amazon Kinesis streams
all activities that match
the Oracle Database audit
policies. For more informati
on, see Monitoring Amazon
RDS with Database Activity
Streams.

June 23, 2021

Amazon RDS for Oracle
introduces memory optimized
instance classes

New Oracle DB instance
classes are optimized for
workloads that require
additional memory, storage,
and I/O per vCPU. For more
information, see RDS for
 Oracle instance classes.

June 23, 2021

Support for MySQL 8.0.25 You can now create Amazon
RDS DB instances running
MySQL version 8.0.25. For
more information, see
MySQL on Amazon RDS
versions.

June 18, 2021

5366

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS on AWS
Outposts supports additional
RDS for PostgreSQL versions

RDS on Outposts now
supports RDS for PostgreSQ
L versions 12.5, 12.6, 13.1,
and 13.2. For more informati
on, see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

May 28, 2021

Amazon RDS supports
MariaDB 10.2.37 and 10.3.28

You can now create Amazon
RDS DB instances running
MariaDB versions 10.2.37 and
10.3.28. For more informati
on, see MariaDB on Amazon
RDS versions.

May 27, 2021

Amazon RDS for Oracle
supports multitenant
container database (CDB)

A multitenant architecture
enables an Oracle database
to be a CDB. In Oracle
 Database 19c, your CDB can
include a single PDB. The
user experience with a PDB
is mostly identical to the user
experience with a non-CDB.
For more information, see
RDS for Oracle architecture.

May 25, 2021

Amazon RDS on AWS
Outposts supports Amazon
RDS for SQL Server

RDS on Outposts now
supports Amazon RDS
for SQL Server. For more
information, see Amazon RDS
on AWS Outposts support for
Amazon RDS features.

May 11, 2021

5367

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.single-tenant
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support

Amazon Relational Database Service User Guide

Amazon RDS extends support
for cross-Region automated
backups

You can now configure
Amazon RDS database
instances running Microsoft
SQL Server to replicate DB
snapshots and transacti
on logs to a different AWS
Region. For more informati
on, see Replicating automated
backups to another AWS
Region.

May 7, 2021

Amazon RDS supports cross-
Region automated backups
for encrypted DB instances

You can now replicate DB
snapshots and transacti
on logs to a different AWS
Region for encrypted Amazon
RDS database instances
running Oracle or PostgreSQ
L. For more information,
see Replicating automated
backups to another AWS
Region.

May 3, 2021

Amazon RDS on AWS
Outposts supports Amazon
CloudWatch monitoring

RDS on Outposts now
supports Amazon CloudWatc
h monitoring. For more
information, see Amazon RDS
on AWS Outposts support for
Amazon RDS features.

April 21, 2021

RDS for PostgreSQL supports
AWS Lambda functions

You can now invoke AWS
Lambda functions for your
RDS for PostgreSQL DB
instances. For more informati
on, see Invoking an AWS
Lambda function from an RDS
for PostgreSQL DB instance.

April 13, 2021

5368

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL-Lambda.html

Amazon Relational Database Service User Guide

RDS for SQL Server supports
extended events

You can use SQL Server
extended events to capture
debugging and troublesh
ooting information. For
more information, see
Using extended events with
 Amazon RDS for Microsoft
SQL Server.

April 8, 2021

Support for MySQL 8.0.23,
5.7.33, and 5.6.51

You can now create Amazon
RDS DB instances running
MySQL version 8.0.23,
5.7.33, and 5.6.51. For more
information, see MySQL on
Amazon RDS versions.

March 31, 2021

Automatic rollback on failed
Amazon RDS for MySQL
upgrade

If a DB instance upgrade
from MySQL version 5.7
to MySQL version 8.0 fails,
Amazon RDS rolls back
the changes performed
for the upgrade automatic
ally. After the rollback, the
MySQL DB instance is running
MySQL version 5.7. For more
information, see Rollback
after failure to upgrade from
MySQL 5.7 to 8.0.

March 18, 2021

Amazon RDS supports cross-
Region read replicas in opt-in
Regions

You can now replicate DB
instances to opt-in Regions.
For more information, see
 Creating a read replica in a
different AWS Region.

March 18, 2021

5369

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.ExtendedEvents.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.ExtendedEvents.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.ExtendedEvents.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html#USER_UpgradeDBInstance.MySQL.Major.RollbackAfterFailure
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html#USER_UpgradeDBInstance.MySQL.Major.RollbackAfterFailure
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html#USER_UpgradeDBInstance.MySQL.Major.RollbackAfterFailure
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.XRgn.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.XRgn.html

Amazon Relational Database Service User Guide

Amazon RDS plans to
deprecate Oracle Database
18c

Oracle Database 18c (18.0.0.0
) is on a deprecation path.
Oracle Corporation will no
longer provide patches for
Oracle Database 18c after
the end-of-support date. On
July 1, 2021, Amazon RDS
plans to begin automatically
upgrading Oracle Databa
se 18c instances to Oracle
Database 19c. Before the
automatic upgrades begin,
we highly recommend that
you manually upgrade your
existing Oracle Database 18c
instances to Oracle Database
19c. For more informati
on, see Preparing for the
automatic upgrade of Oracle
Database 18c.

March 11, 2021

Amazon RDS has ended
support for Oracle Database
11g

You can only create DB
instances for Oracle Database
12c Release 1 (12.1.0.2)
and later. If you have Oracle
Database 11g snapshots
, upgrade them to a later
release. For more information,
see Upgrading an Oracle DB
snapshot.

March 11, 2021

5370

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-of-18c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-of-18c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-of-18c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBSnapshot.Oracle.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBSnapshot.Oracle.html

Amazon Relational Database Service User Guide

Amazon RDS supports
continuous backups of DB
instances in AWS Backup

You can now create
automated backups in AWS
Backup and restore DB
instances from these backups
to a specified time. For more
information, see Using AWS
Backup to manage automated
backups.

March 10, 2021

Amazon RDS supports Oracle
Management Agent (OMA)
version 13.4

You can use Oracle
Management Agent (OMA)
version 13.4 with Oracle
Enterprise Manager (OEM)
Cloud Control 13c Release 4
Update 9. Amazon RDS for
Oracle installs OMA, which
then communicates with your
Oracle Management Service
(OMS) to provide monitorin
g information. If you run
OMS 13.4, you can manage
databases by installing OMA
13.4. For more information,
see Oracle Management
Agent for Enterprise Manager
Cloud Control.

March 10, 2021

5371

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html#AutomatedBackups.AWSBackup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html#AutomatedBackups.AWSBackup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html#AutomatedBackups.AWSBackup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html

Amazon Relational Database Service User Guide

RDS Proxy endpoint
enhancements

You can create additional
endpoints associated with
each RDS proxy. Creating
 an endpoint in a different
VPC enables cross-VPC
access for the proxy. Proxies
 for Aurora MySQL clusters
can also have read-only
endpoints. These reader
 endpoints connect to reader
DB instances in the clusters
and can improve read scalabil
ity and availability for query-
intensive applications. For
more information about
RDS Proxy, see "Managing
Connections with Amazon
RDS Proxy" in the Amazon
RDS User Guide or the Aurora
user guide.

March 8, 2021

Amazon RDS extends
supports for cross-Region
automated backups

You can now configure
Amazon RDS database
instances running PostgreSQL
to replicate DB snapshots and
transaction logs to a different
AWS Region. For more
 information, see Replicati
ng automated backups to
another AWS Region.

March 8, 2021

5372

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html

Amazon Relational Database Service User Guide

Replication filters for Amazon
RDS for MariaDB and MySQL
supported in the China
(Beijing) Region and China
(Ningxia) Region

Replication filtering is now
supported in the China
(Beijing) Region and China
(Ningxia) Region. For more
information, see Configuri
ng replication filters with
MariaDB and Configuring
replication filters with MySQL.

March 5, 2021

Amazon RDS supports cross-
Region DB snapshot copy in
opt-in Regions

You can now copy DB
snapshots to and from opt-
in AWS Regions. For more
 information, see Copying
snapshots across AWS
Regions.

March 4, 2021

Amazon RDS for SQL Server
supports Always On Availabil
ity Groups for Standard Edit
ion

When you create a DB
instance using the Multi-
AZ configuration on SQL
Server 2019 for the Standard
Edition database engine, RDS
automatically uses Availabil
ity Groups. For more informati
on, see Multi-AZ deployments
for Microsoft SQL Server.

February 23, 2021

5373

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MariaDB.Replication.ReadReplicas.html#USER_MariaDB.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MariaDB.Replication.ReadReplicas.html#USER_MariaDB.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MariaDB.Replication.ReadReplicas.html#USER_MariaDB.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html#USER_CopySnapshot.AcrossRegions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html#USER_CopySnapshot.AcrossRegions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html#USER_CopySnapshot.AcrossRegions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
introduces advisor-related
procedures

The rdsadmin_util
package includes the
procedures advisor_t
ask_set_parameter ,
advisor_task_drop ,
and dbms_stats_init .
You can use these procedure
s to modify, stop, and re-
enable advisor tasks such
as AUTO_STATS_ADVISOR
_TASK . For more informati
on, see Setting parameters for
advisor tasks.

February 23, 2021

Amazon RDS provides failover
reasons for Multi-AZ DB
instances

You can now see more
detailed explanations when
a Multi-AZ DB instance fails
over to a standby replica.
For more information, see
Failover process for Amazon
RDS.

February 18, 2021

Amazon RDS extends support
for exporting snapshots to
Amazon S3

You can now export DB
snapshot data to Amazon
S3 in China. For more
information, see Exporting DB
snapshot data to Amazon S3.

February 17, 2021

5374

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Misc.html#Appendix.Oracle.CommonDBATasks.setting-task-parameters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Misc.html#Appendix.Oracle.CommonDBATasks.setting-task-parameters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html#Concepts.MultiAZ.Failover
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html#Concepts.MultiAZ.Failover
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html

Amazon Relational Database Service User Guide

Replication filters for Amazon
RDS for MariaDB and MySQL

You can configure replication
filters for MySQL and MariaDB
instances. Replication filters
specify which databases and
tables are replicated in a
read replica. You can create
lists of databases and tables
to include or exclude for
each read replica. For more
information, see Configuri
ng replication filters with
MariaDB and Configuring
replication filters with MySQL.

February 12, 2021

RDS for Oracle supports APEX
20.2v1

You can use APEX 20.2.v1
with all supported versions
of Oracle Database. For
more information, see Oracle
Application Express.

February 2, 2021

Amazon RDS for SQL Server
supports local instance
storage for the tempdb
 database

You can now launch Amazon
RDS for SQL Server on
Amazon EC2 db.r5d and
db.m5d instance types
with the tempdb database
configured to use an instance
store. By placing tempd
b data files and log files
locally, you can achieve lower
read and write latencies
when compared to standard
storage based on Amazon
EBS. For more information,
see Instance store support
for the tempdb database on
Amazon RDS for SQL Server.

January 27, 2021

5375

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MariaDB.Replication.ReadReplicas.html#USER_MariaDB.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MariaDB.Replication.ReadReplicas.html#USER_MariaDB.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MariaDB.Replication.ReadReplicas.html#USER_MariaDB.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.ReplicationFilters
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.InstanceStore.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.InstanceStore.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.InstanceStore.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L supports pg_partman and
pg_cron

Amazon RDS for PostgreSQL
now supports the pg_partma
n and pg_cron extension
s. For more informati
on on the pg_partman
extension, see Managing
 PostgreSQL partitions with
the pg_partman extension
. For more information on
the pg_cron extension, see
Scheduling maintenance
with the PostgreSQL pg_cron
extension.

January 12, 2021

Amazon RDS supports
publishing the Oracle
Management Agent log to A
mazon CloudWatch Logs

The Oracle Managemen
t Agent log consists of
emctl.log, emdctlj.log,
gcagent.log, gcagent_e
rrors.log, emagent.nohup,
and secure.log. Amazon RDS
publishes each of these logs
as a separate CloudWatch log
stream. For more informat
ion, see Publishing Oracle
logs to Amazon CloudWatch
Logs.

December 28, 2020

Amazon RDS on AWS
Outposts supports additional
database versions

RDS on Outposts now
supports additional MySQL
and PostgreSQL versions.
For more information,
see Amazon RDS on AWS
Outposts support for Amazon
RDS features.

December 23, 2020

5376

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_Partitions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_Partitions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_Partitions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_Partitions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_pg_cron.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_pg_cron.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL_pg_cron.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.Oracle.html#USER_LogAccess.Oracle.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.Oracle.html#USER_LogAccess.Oracle.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.Oracle.html#USER_LogAccess.Oracle.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.rds-feature-support

Amazon Relational Database Service User Guide

Amazon RDS on AWS
Outposts supports CoIPs

RDS on Outposts now
supports customer-owned
IP addresses (CoIPs). CoIPs
 provide local or external
connectivity to resources in
your Outpost subnets throu
gh your on-premises network.
For more information, see Cu
stomer-owned IP addresses
for RDS on Outposts.

December 22, 2020

Amazon RDS for Oracle
plans upgrade of 11g BYOL
instances to 19c

On January 4, 2021, we
plan to begin automatically
upgrading all editions of O
racle Database 11g instances
on the Bring Your Own
License (BYOL) model to O
racle Database 19c. All Oracle
Database 11g instances
, including reserved inst
ances, will move to the latest
available Release Update
(RU). For more informat
ion, see Preparing for the
automatic upgrade of Oracle
Database 11g BYOL.

December 11, 2020

5377

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.coip
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.coip
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html#rds-on-outposts.coip
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-byol
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-byol
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-byol

Amazon Relational Database Service User Guide

Amazon RDS supports
replicating automated
backups to another AWS
Region

You can now configure
your Amazon RDS database
instances to replicate
snapshots and transacti
on logs to a destination
AWS Region of your choice.
For more information, see
Replicating automated
backups to another AWS
Region.

December 4, 2020

Amazon RDS for Oracle and
Microsoft SQL Server support
a new DB instance class

You can now use the db.r5b
instance class to create
Amazon RDS DB instances
running Oracle or SQL Server.
For more information, see
Supported DB engines for DB
instance classes.

December 4, 2020

Support for MariaDB 10.2.32 You can now create Amazon
RDS DB instances running
MariaDB version 10.2.32.
For more information, see
MariaDB on Amazon RDS
versions.

November 25, 2020

Amazon RDS for SQL Server
supports the Microsoft
Business Intelligence Suite on
SQL Server 2019

You can now run SQL Server
Analysis Services, SQL Server
Integration Services, and SQL
Server Reporting Services
on DB instances using the
latest major version. For more
information, see Options for
the Microsoft SQL Server
database engine.

November 24, 2020

5378

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L version 13 in the database
preview environment

Amazon RDS for PostgreSQ
L now supports PostgreSQL
version 13 in the database
 preview environment. For
more information, see
PostgreSQL 13 versions.

November 24, 2020

Amazon RDS Performan
ce Insights introduces new
dimensions

You can group database
load according to the
dimension groups for
database (PostgreSQL,
MySQL, and MariaDB),
application (PostgreSQL), and
session type (PostgreSQL).
Amazon RDS also supports
the dimensions db.name
(PostgreSQL, MySQL, and
MariaDB), db.application.nam
e (PostgreSQL), and db.sessio
n_type.name (PostgreSQL).
For more information, see Top
load table.

November 24, 2020

Amazon RDS for MariaDB
supports a new major version

You can now create Amazon
RDS DB instances running
MariaDB version 10.5. For
more information, see
MariaDB on Amazon RDS
versions.

November 23, 2020

Support for MySQL 5.6.49 You can now create Amazon
RDS DB instances running
MySQL version 5.6.49. For
more information, see
MySQL on Amazon RDS
versions.

November 20, 2020

5379

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version13
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version13
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Support for MySQL 5.5.62 You can now create Amazon
RDS DB instances running
MySQL version 5.5.62. For
more information, see
MySQL on Amazon RDS
versions.

November 20, 2020

Performance Insights
supports analyzing statistic
s for running PostgreSQL qu
eries

You can now analyze statistic
s for running queries with
Performance Insights for
PostgreSQL DB instances.
For more information, see
Statistics for PostgreSQL.

November 18, 2020

Amazon RDS extends support
for storage autoscaling

You can now enable storage
autoscaling when creating
a read replica, restoring a
DB instance to a specified
time, or restoring a MySQL DB
instance from an Amazon S3
backup. For more informati
on, see Managing capacity
automatically with Amazon
RDS storage autoscaling.

November 18, 2020

Amazon RDS for SQL Server
supports Database Mail

With Database Mail you can
send email messages from
your Amazon RDS for SQL
Server database instance.
After specifying the email
recipients, you can add files or
query results to the message
you send. For more informati
on, see Using Database Mail
on Amazon RDS for SQL
Server.

November 4, 2020

5380

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.PostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.PostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.Autoscaling
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.Autoscaling
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html#USER_PIOPS.Autoscaling
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.DBMail.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.DBMail.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.DBMail.html

Amazon Relational Database Service User Guide

Support for MySQL 8.0.21 You can now create Amazon
RDS DB instances running
MySQL version 8.0.21. For
more information, see
MySQL on Amazon RDS
versions.

October 22, 2020

Amazon RDS extends support
for exporting snapshots to
Amazon S3

You can now export DB
snapshot data to Amazon
S3 in all commercial AWS
Regions. For more informati
on, see Exporting DB
snapshot data to Amazon S3.

October 22, 2020

Amazon RDS for PostgreSQ
L supports read replica
upgrades

With Amazon RDS for
PostgreSQL, when you do a
major version upgrade of the
primary DB instance, read
replicas are also automatic
ally upgraded. For more
information, see Upgrading
 the PostgreSQL DB engine.

October 15, 2020

Amazon RDS for MariaDB,
MySQL and PostgreSQL
support the Graviton2 DB
instance classes

You can now use the
Graviton2 DB instance classes
db.m6g.x and db.r6g.x to
create Amazon RDS DB
instances running MariaDB,
MySQL or PostgreSQL. For
more information, see
Supported DB Engines for All
Available DB instance Classes.

October 15, 2020

5381

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support

Amazon Relational Database Service User Guide

Amazon RDS for SQL Server
supports upgrades to SQL
Server 2019

You can upgrade your SQL
Server DB instances to SQL
Server 2019. For more
 information, see Upgrading
the Microsoft SQL Server DB
Engine.

October 6, 2020

Amazon RDS for Oracle
supports specifying the
national character set

The national character
set, also called the NCHAR
character set, is used in the
NCHAR, NVARCHAR2 , and
NCLOB data types. When you
create a database, you can
specify either AL16UTF16
(default) or UTF8 as the
NCHAR character set. For
more information, see Oracle
character sets supported in
Amazon RDS.

October 2, 2020

Support for MySQL 5.7.31 You can now create Amazon
RDS DB instances running
MySQL version 5.7.31. For
more information, see
MySQL on Amazon RDS
versions.

October 1, 2020

Amazon RDS for PostgreSQ
L supports exporting data to
Amazon S3

You can query data from
a PostgreSQL DB instance
and export it directly into
files stored in an Amazon
S3bucket. For more informati
on, see Exporting data from
an RDS for PostgreSQL DB
instance to Amazon S3.

September 24, 2020

5382

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.SQLServer.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.SQLServer.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.SQLServer.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.OracleCharacterSets.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.OracleCharacterSets.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.OracleCharacterSets.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/postgresql-s3-export.html

Amazon Relational Database Service User Guide

Amazon RDS for MySQL 8.0
supports Percona XtraBackup

You can now use Percona
XtraBackup to restore a
backup into an Amazon RDS
for MySQL 8.0 DB instance.
For more information, see
Restoring a backup into a
MySQL DB instance.

September 17, 2020

Amazon RDS for SQL Server
supports native backup and
restore on DB instances with
read replicas

You can restore a SQL Server
native backup onto a DB
instance that has read
replicas configured. For more
information, see Importing
and exporting SQL Server
databases.

September 16, 2020

Amazon RDS for SQL Server
supports additional time
zones

You can match your DB
instance time zone with your
chosen time zone. For more
 information, see Local time
zone for Microsoft SQL Server
DB instances.

September 11, 2020

Amazon RDS for PostgreSQ
L version 13 beta 3 in the
database preview envir
onment

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L Version 13 Beta 3 in the
Database Preview Environme
nt. For more information, see
PostgreSQL 13 versions.

September 9, 2020

5383

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer#SQLServer.Concepts.General.TimeZone
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer#SQLServer.Concepts.General.TimeZone
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer#SQLServer.Concepts.General.TimeZone
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version13
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version13

Amazon Relational Database Service User Guide

Amazon RDS for SQL Server
supports trace flag 692

You can now use trace flag
692 as a startup parameter
using DB parameter gro
ups. Enabling this trace flag
disables fast inserts while
bulk loading data into heap
or clustered indexes. For more
information, see Disabling
fast inserts during bulk
loading.

August 27, 2020

Amazon RDS for SQL Server
supports Microsoft SQL
Server 2019

You can now create RDS DB
instances that use SQL Server
2019. For more informati
on, see Microsoft SQL Server
versions on Amazon RDS.

August 26, 2020

RDS for Oracle supports
mounted replica database

When creating or modifying
an Oracle replica, you can
place it in mounted mode.
Because the replica database
doesn't accept user connectio
ns, it can't serve a read-
only workload. The mounted
replica deletes archived redo
log files after it applies them.
The primary use for mounted
replicas is cross-Region
disaster recovery. For more
information, see Overview of
Oracle replicas.

August 13, 2020

5384

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.DisableFastInserts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.DisableFastInserts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.DisableFastInserts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer#SQLServer.Concepts.General.VersionSupport
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer#SQLServer.Concepts.General.VersionSupport
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.html#oracle-read-replicas.overview
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.html#oracle-read-replicas.overview

Amazon Relational Database Service User Guide

RDS for Oracle plans upgrade
of 11g SE1 LI instances

On November 1, 2020, we
plan to begin automatically
upgrading Oracle Database
 11g SE1 License Included (LI)
instances to Oracle Database
19c for Amazon RDS for
Oracle. All 11g instances,
including reserved instances,
will move to the latest availa
ble Oracle Release Update
(RU). For more informati
on, see Preparing for the
automatic upgrade of Oracle
Database 11g SE1.

July 31, 2020

Amazon RDS supports
new Graviton2 DB instance
classes in preview release for
PostgreSQL and MySQL

You can now create Amazon
RDS DB instances running
PostgreSQL or MySQL that
use the db.m6g.x and db.r6g.x
DB instance classes. For more
information, see Supported
DB engines for all available
DB instance classes.

July 30, 2020

RDS for Oracle supports APEX
20.1v1

You can use APEX 20.1v1
with all supported versions
of Oracle Database. For
more information, see Oracle
application Express.

July 28, 2020

Support for MySQL 8.0.20 You can now create Amazon
RDS DB instances running
MySQL version 8.0.20. For
more information, see
MySQL on Amazon RDS
versions.

July 23, 2020

5385

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-of-11g
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-of-11g
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Oracle.html#USER_UpgradeDBInstance.Oracle.auto-upgrade-of-11g
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS for MariaDB
and MySQL support new DB
instance classes

You can now create Amazon
RDS DB instances running
MariaDB and MySQL that
use the db.m5.16xlarge,
db.m5.8xlarge, db.r5.16x
large, and db.r5.8xlarge DB
instance classes. For more
information, see Supported
DB engines for all available
DB instance classes.

July 23, 2020

RDS for SQL Server supports
disabling old versions of TLS
and ciphers

You can turn certain security
protocols and ciphers on and
off. For more information, see
Configuring security protocols
and ciphers.

July 21, 2020

RDS supports Oracle Spatial
on SE2

You can use Oracle Spatial in
Standard Edition 2 (SE2) for
all versions of 12.2, 18c, and
19c. For more information,
see Oracle Spatial.

July 9, 2020

Amazon RDS supports AWS
PrivateLink

Amazon RDS now supports
creating Amazon VPC
endpoints for Amazon RDS
API calls to keep traffic
between applications and
Amazon RDS in the AWS
network. For more informat
ion, see Amazon RDS and
interface VPC endpoints (AWS
PrivateLink).

July 9, 2020

5386

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Ciphers.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Ciphers.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.Spatial.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/vpc-interface-endpoints.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL
versions 9.4.x has reached its
end of support.

Amazon RDS for PostgreSQL
no longer supports versions
9.4.x. For supported versions,
see Supported PostgreSQL
database versions.

July 8, 2020

Support for MariaDB 10.3.23
and 10.4.13

You can now create Amazon
RDS DB instances running
MariaDB version 10.3.23 and
10.4.13. For more informati
on, see MariaDB on Amazon
RDS versions.

July 6, 2020

Amazon RDS on AWS
Outposts

You can create Amazon
RDS DB instances on AWS
Outposts. For more informati
on, see Working with Amazon
RDS on AWS Outposts.

July 6, 2020

Amazon RDS for Oracle
creates inventory files
automatically

To open service requests
for BYOL customers, Oracle
Support requests inventory
 files generated by Opatch.
Amazon RDS for Oracle
automatically creates
inventory files every hour
in the BDUMP directory.
For more information, see
Accessing Opatch files.

July 6, 2020

Support for MySQL 5.7.30
and 5.6.48

You can now create Amazon
RDS DB instances running
MySQL version 5.7.30 and
5.6.48. For more information,
see MySQL on Amazon RDS
versions.

June 25, 2020

5387

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Misc.html#Appendix.Oracle.CommonDBATasks.accessing-opatch-files
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports ADRCI

The Automatic Diagnosti
c Repository Command
Interpreter (ADRCI) utility
is an Oracle command-line
tool that you use to manage
diagnostic data. By using
the functions in the Amazon
RDS package rdsadmin_
adrci_util , you can list
and package problems and
incidents, and also show trace
files. For more information,
see Common DBA diagnostic
tasks for Oracle DB instances.

June 17, 2020

Support for MySQL 8.0.19 You can now create Amazon
RDS DB instances running
MySQL version 8.0.19. For
more information, see
MySQL on Amazon RDS
versions.

June 2, 2020

MySQL 8.0 supports lower
case table names

You can now set the
lower_case_table_n
ames parameter to 1 for
Amazon RDS DB instances
running MySQL version 8.0.19
and higher 8.0 versions. For
more information, see MySQL
parameter exceptions for
Amazon RDS DB instances.

June 2, 2020

5388

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Diagnostics.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Diagnostics.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.KnownIssuesAndLimitations.html#MySQL.Concepts.ParameterNotes
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.KnownIssuesAndLimitations.html#MySQL.Concepts.ParameterNotes
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.KnownIssuesAndLimitations.html#MySQL.Concepts.ParameterNotes

Amazon Relational Database Service User Guide

Amazon RDS for Microsoft
SQL Server supports SQL
Server Integration Services
 (SSIS)

SSIS is a platform for data
integration and workflow
applications. You can enable
SSIS on existing or new DB
instances. It's installed on
the same DB instance as your
database engine. For more
information, see Support
for SQL Server Integration
Services in SQL Server.

May 19, 2020

Amazon RDS for Microsoft
SQL Server supports SQL
Server Reporting Services
 (SSRS)

SSRS is a server-based
application used for report
generation and distribut
ion. You can enable SSRS on
existing or new DB instances
. It's installed on the same
DB instance as your database
engine. For more information,
see Support for SQL Server
Reporting Services in SQL
Server.

May 15, 2020

Amazon RDS for Microsoft
SQL Server supports S3
integration on Multi-AZ inst
ances

You can now use Amazon
S3 with SQL Server features
such as bulk insert on Multi-
AZ DB instances. For more
information, see Integrati
ng an Amazon RDS for SQL
Server DB instance with
Amazon S3.

May 15, 2020

5389

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSIS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSIS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSIS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSRS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSRS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSRS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports purging the recycle
bin

The rdsadmin.rdsadmin_
util.purge_dba_rec
yclebin procedure purges
 the recycle bin. For more
information, see Purging the
recycle bin.

May 13, 2020

Amazon RDS for Oracle
improves manageability
of Automatic Workload
Repository (AWR)

The rdsadmin.rdsadmin_
diagnostic_util
procedures generate AWR
reports and extract AWR data
into dump files. For more
information, see Generatin
g performance reports
with Automatic Workload
Repository (AWR).

May 13, 2020

Amazon RDS for Microsoft
SQL Server supports
Microsoft Distributed
Transaction Coordinator
(MSDTC)

Amazon RDS for SQL Server
supports distributed transacti
ons between hosts. For more
information, see Support
for Microsoft Distributed
Transaction Coordinator in
SQL Server.

May 4, 2020

Amazon RDS for Microsoft
SQL Server supports new
versions

You can now create Amazon
RDS DB instances running
SQL Server versions 2017
CU19 14.00.3281.6, 2016
SP2 CU11 13.00.5598.27,
2014 SP3 CU4 12.00.632
9.1, and 2012 SP4 GDR
11.0.7493.4 for all editions.
For more information, see
Microsoft SQL Server versions
on Amazon RDS.

April 28, 2020

5390

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.PurgeRecycleBin
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.PurgeRecycleBin
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.AWR
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.AWR
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.AWR
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.AWR
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.MSDTC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.VersionSupport
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.VersionSupport

Amazon Relational Database Service User Guide

Amazon RDS available in the
Europe (Milan) Region

Amazon RDS is now available
in the Europe (Milan) Region.
For more information, see
 Regions and Availability
Zones.

April 28, 2020

Amazon RDS support for
Local Zones

You can now launch DB
instances into a Local Zone
subnet. For more informati
on, see Regions, Availability
Zones, and Local Zones.

April 23, 2020

Amazon RDS available in the
Africa (Cape Town) Region

Amazon RDS is now available
in the Africa (Cape Town)
Region. For more information,
see Regions and Availability
Zones.

April 22, 2020

Amazon RDS for Microsoft
SQL Server supports SQL
Server Analysis Services (SSA
S)

SSAS is an online analytical
processing (OLAP) and data
mining tool that is installed
within SQL Server. You can
enable SSAS on existing
or new DB instances. It's
installed on the same DB
instance as your database
engine. For more informat
ion, see Support for SQL
Server Analysis Services in
SQL Server.

April 17, 2020

5391

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSAS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSAS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.SSAS.html

Amazon Relational Database Service User Guide

Amazon RDS proxy for
PostgreSQL

Amazon RDS Proxy is now
available for PostgreSQL. You
can use RDS Proxy to reduce
 the overhead of connectio
n management on your DB
instance and also the chance
of "too many connections"
errors. The RDS Proxy is
currently in public preview
for PostgreSQL. For more
information, see Managing
connections with Amazon
RDS proxy (preview).

April 8, 2020

Amazon RDS for Oracle
supports Oracle APEX version
19.2.v1

Amazon RDS for Oracle now
supports Oracle Application
Express (APEX) version 19.2.
v1. For more information, see
Oracle application Express.

April 8, 2020

Amazon RDS for MariaDB
supports a new major version

You can now create Amazon
RDS DB instances running
MariaDB version 10.4. For
more information, see
MariaDB on Amazon RDS
versions.

April 6, 2020

Amazon RDS Performan
ce Insights is available for
Amazon RDS for MariaDB
10.4

Amazon RDS Performance
Insights is now available for
Amazon RDS for MariaDB
version 10.4. For more
information, see Using
Amazon RDS performance
insights.

April 6, 2020

5392

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL
versions 9.3.x has reached its
end of support

Amazon RDS for PostgreSQL
no longer supports versions
9.3.x. For supported versions,
see Supported PostgreSQL
database versions.

April 3, 2020

Amazon RDS for Microsoft
SQL Server supports read
replicas

You can now create read
replicas for SQL Server DB
instances. For more informati
on, see Working with read
 replicas.

April 3, 2020

Amazon RDS for Microsoft
SQL Server supports multifile
backups

You can now back up
databases to multiple files
using SQL Server native
backup and restore. For more
information, see Backing up a
database.

April 2, 2020

Amazon RDS for Oracle
integration with AWS License
Manager

Amazon RDS for Oracle is
now integrated with AWS
License Manager. If you use
the Bring Your Own License
model, AWS License Manager
integration makes it easier to
monitor your Oracle license
usage within your organizat
ion. For more information, see
Integrating with AWS License
Manager.

March 23, 2020

5393

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Using.Backup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Using.Backup
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.Licensing
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.Licensing

Amazon Relational Database Service User Guide

Support for 64 TiB on db.r5
instances in Amazon RDS for
MariaDB and MySQL

You can now create Amazon
RDS DB instances for MariaDB
and MySQL that use the db.r5
DB instance class with up to
64 TiB of storage. For more
information, see Factors that
affect storage performance.

March 18, 2020

Support for MySQL 8.0.17 You can now create Amazon
RDS DB instances running
MySQL version 8.0.17. For
more information, see
MySQL on Amazon RDS
versions.

March 10, 2020

Amazon RDS Performan
ce Insights is available for
Amazon RDS for MySQL 8.0

Amazon RDS Performan
ce Insights is now available
for Amazon RDS for MySQL
version 8.0.17 and higher 8.0
versions. For more informati
on, see Using Amazon RDS
performance insights.

March 10, 2020

Support for MySQL 5.6.46 You can now create Amazon
RDS DB instances running
MySQL version 5.6.46. For
more information, see
MySQL on Amazon RDS
versions.

February 28, 2020

5394

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#CHAP_Storage.Other.Factors
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#CHAP_Storage.Other.Factors
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS Performan
ce Insights is available for
Amazon RDS for MariaDB
10.3

Amazon RDS Performance
Insights is now available for
Amazon RDS for MariaDB
version 10.3.13 and higher
10.3 versions. For more
information, see Using
Amazon RDS performance
insights.

February 26, 2020

Support for MySQL 5.7.28 You can now create Amazon
RDS DB instances running
MySQL version 5.7.28. For
more information, see
MySQL on Amazon RDS
versions.

February 20, 2020

Support for MariaDB 10.3.20 You can now create Amazon
RDS DB instances running
MariaDB version 10.3.20.
For more information, see
MariaDB on Amazon RDS
versions.

February 20, 2020

Amazon RDS for Microsoft
SQL Server supports a new
DB instance class

You can now create Amazon
RDS DB instances running
SQL Server that use the
db.z1d DB instance class.
For more information, see
DB instance class support for
Microsoft SQL Server.

February 19, 2020

5395

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses

Amazon Relational Database Service User Guide

Support for cross-account,
cross-VPC Active Directory
domains in Amazon RDS for
SQL Server

Amazon RDS for Microsoft
SQL Server now supports
associating DB instances with
Active Directory domains
owned by different accounts
and VPCs. For more informati
on, see Using Windows auth
entication with a Microsoft
SQL Server DB instance.

February 13, 2020

Oracle OLAP option Amazon RDS for Oracle
now supports the On-
line Analytical Processing
(OLAP) option for Oracle
DB instances. You can use
Oracle OLAP to analyze large
amounts of data by creating
dimensional objects and
cubes in accordance with the
OLAP standard. For more
information, see Oracle
 OLAP.

February 13, 2020

FIPS 140-2 support for Oracle Amazon RDS for Oracle
supports the Federal
Information Processin
g Standard Publication
140-2 (FIPS 140-2) for
SSL/TLS connections. For
more information, see FIPS
support.

February 11, 2020

5396

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerWinAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerWinAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerWinAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OLAP.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OLAP.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.SSL.html#Appendix.Oracle.Options.SSL.FIPS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.SSL.html#Appendix.Oracle.Options.SSL.FIPS

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L supports new DB instance
classes

You can now create Amazon
RDS DB instances running
PostgreSQL that use the
db.m5.16xlarge, db.m5.8xl
arge, db.r5.16xlarge, and
db.r5.8xlarge DB instance
classes. For more informati
on, see Supported DB
engines for all available DB
instance classes.

February 11, 2020

Performance Insights
supports analyzing statistic
s of running MariaDB and
MySQL queries

You can now analyze statistic
s of running queries with
Performance Insights for
MariaDB and MySQL DB
instances. For more informati
on, see Analyzing statistics of
running queries.

February 4, 2020

Support for exporting DB
snapshot data to Amazon S3
for MariaDB, MySQL, and
PostgreSQL

Amazon RDS supports
exporting DB snapshot data
to Amazon S3 for MariaDB,
MySQL, and PostgreSQL.
For more information, see
Exporting DB snapshot data
to Amazon S3.

January 23, 2020

Amazon RDS for MySQL
supports Kerberos authentic
ation

You can now use Kerberos
authentication to authentic
ate users when they connect
to your Amazon RDS for
MySQL DB instances. For
more information, see Using
Kerberos authentication for
 MySQL.

January 21, 2020

5397

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-kerberos.html

Amazon Relational Database Service User Guide

Amazon RDS Performance
Insights supports viewing
more SQL text for Amazon
RDS for Microsoft SQL Server

Amazon RDS Performan
ce Insights now supports
viewing more SQL text in
the Performance Insights
dashboard for Amazon RDS
for Microsoft SQL Server DB
instances. For more informati
on, see Viewing more SQL
text in the Performance
Insights dashboard.

December 17, 2019

Amazon RDS proxy You can reduce the overhead
of connection management
on your cluster, and reduce
the chance of "too many
connections" errors, by using
the Amazon RDS Proxy. You
associate each proxy with an
RDS DB instance or Aurora
DB cluster. Then you use
the proxy endpoint in the
connection string for your
 application. The Amazon RDS
Proxy is currently in a public
preview state. It supports
the RDS for MySQL database
engine. For more informati
on, see Managing connectio
ns with Amazon RDS proxy
(preview).

December 3, 2019

5398

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html

Amazon Relational Database Service User Guide

Amazon RDS on AWS
Outposts (preview)

With Amazon RDS on AWS
Outposts, you can create
AWS-managed relational
databases in your on-premis
es data centers. RDS on
Outposts enables you to
run RDS databases on AWS
Outposts. For more informati
on, see Amazon RDS on AWS
Outposts (preview).

December 3, 2019

Amazon RDS for Oracle
supports cross-region read
replicas

Amazon RDS for Oracle now
supports cross-region read
replicas with Active Data
 Guard. For more informati
on, see Working with read
replicas and Working with
Oracle read replicas.

November 26, 2019

Performance Insights
supports analyzing statistics
of running Oracle queries

You can now analyze statistic
s of running queries with
Performance Insights for
Oracle DB instances. For more
information, see Analyzing
statistics of running queries.

November 25, 2019

Amazon RDS for Microsoft
SQL Server supports publishin
g logs to CloudWatch Logs

You can configure your
Amazon RDS for SQL Server
DB instance to publish log
events directly to Amazon
CloudWatch Logs. For more
information, see Publishing
SQL Server logs to Amazon
CloudWatch Logs.

November 25, 2019

5399

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-on-outposts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.SQLServer.html#USER_LogAccess.SQLServer.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.SQLServer.html#USER_LogAccess.SQLServer.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.SQLServer.html#USER_LogAccess.SQLServer.PublishtoCloudWatchLogs

Amazon Relational Database Service User Guide

Amazon RDS for Microsoft
SQL Server supports new DB
instance classes

You can now create Amazon
RDS DB instances running
SQL Server that use the
db.x1e and db.x1 DB instance
classes. For more information,
see DB instance class support
for Microsoft SQL Server.

November 25, 2019

Amazon RDS for Microsoft
SQL Server supports different
ial and log restores

You can restore differential
backups and logs using SQL
Server native backup and
restore. For more information,
see Using native backup and
restore.

November 25, 2019

Multi-AZ supported on
Amazon RDS for Microsoft
SQL Server in new regions

Multi-AZ on SQL Server
is now available in China,
 Middle East (Bahrain), and
Europe (Stockholm). For more
information, see Multi-AZ
deployments for Microsoft SQ
L Server.

November 22, 2019

Amazon RDS for Microsoft
SQL Server now supports bulk
insert and S3 integration

You can transfer files between
a SQL Server DB instance
and an Amazon S3 bucket.
Then you can use Amazon
S3 with SQL Server features
such as bulk insert. For more
information, see Integrati
ng an Amazon RDS for SQL
Server DB instance with
Amazon S3.

November 21, 2019

5400

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Using
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Using
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User.SQLServer.Options.S3-integration.html

Amazon Relational Database Service User Guide

Performance Insights
counters for Amazon RDS for
Microsoft SQL Server

You can now add performan
ce counters to your
Performance Insights charts
for Microsoft SQL Server DB
instances. For more informati
on, see Performance Insights
counters for Amazon RDS for
Microsoft SQL Server.

November 12, 2019

Amazon RDS for Microsoft
SQL Server supports new DB
instance class sizes

You can now create Amazon
RDS DB instances running
SQL Server that use the
8xlarge and 16xlarge instance
sizes for the db.m5 and db.r5
DB instance classes. Instance
sizes ranging from small to
2xlarge are now available
for the db.t3 instance class.
 For more information, see
DB instance class support for
Microsoft SQL Server.

November 11, 2019

Support for PostgreSQL
snapshot upgrades

If you have existing manual
DB snapshots of your Amazon
RDS PostgreSQL DB instances
, you can now upgrade them
to a later version of the
PostgreSQL database engine.
 For more information, see
Upgrading a PostgreSQL DB
snapshot.

November 7, 2019

5401

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights_Counters.html#USER_PerfInsights_Counters.SQLServer
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights_Counters.html#USER_PerfInsights_Counters.SQLServer
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights_Counters.html#USER_PerfInsights_Counters.SQLServer
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.InstanceClasses
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBSnapshot.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBSnapshot.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBSnapshot.PostgreSQL.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports a new major version

You can now create Amazon
RDS DB instances running
Oracle Database 19c (19.0).
For more information, see
Oracle Database 19c with
Amazon RDS.

November 7, 2019

Amazon RDS for PostgreSQL
version 12.0 in the database
preview environment

Amazon RDS for PostgreSQ
L now supports PostgreSQL
Version 12.0 in the Database
 Preview Environment. For
more information, see
PostgreSQL version 12.0
in the database preview
environment.

November 1, 2019

Amazon RDS for PostgreSQL
supports Kerberos authentic
ation

You can now use Kerberos
authentication to authentic
ate users when they connect
to your Amazon RDS DB
instance running PostgreSQ
L. For more information, see
 Using Kerberos authenticati
on with Amazon RDS for
PostgreSQL.

October 28, 2019

OEM Management Agent
database tasks for Oracle DB
instances

Amazon RDS for Oracle
DB instances now support
procedures to invoke certain
EMCTL commands on the
Management Agent. For more
information, see OEM agent
database tasks.

October 24, 2019

5402

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.19c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.19c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.19c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version120
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version120
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version120
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version120
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html#Oracle.Options.OEMAgent.DBTasks
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html#Oracle.Options.OEMAgent.DBTasks

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L supports PostgreSQL
transportable databases

PostgreSQL Transport
able Databases provide an
extremely fast method of m
igrating an RDS PostgreSQ
L database between two
DB instances. For more
information, see Transport
ing PostgreSQL databases
between DB instances.

October 8, 2019

Amazon RDS for Oracle
supports Kerberos authentic
ation

You can now use Kerberos
authentication to authentic
ate users when they connect
to your Amazon RDS DB
instance running Oracle. For
more information, see Using
Kerberos authentication with
Amazon RDS for Oracle.

September 30, 2019

Amazon RDS for PostgreSQ
L version 12 beta 3 in the
database preview envir
onment

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L Version 12 Beta 3 in the
Database Preview Environme
nt. For more information,
see PostgreSQL version 12
beta 3 on Amazon RDS in
the database preview envi
ronment.

August 28, 2019

Support for MySQL 8.0.16 You can now create Amazon
RDS DB instances running
MySQL version 8.0.16. For
more information, see
MySQL on Amazon RDS
versions.

August 19, 2019

5403

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Procedural.Importing.html#PostgreSQL.TransportableDB
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Procedural.Importing.html#PostgreSQL.TransportableDB
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Procedural.Importing.html#PostgreSQL.TransportableDB
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12beta3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12beta3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12beta3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12beta3
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports a new major version

You can now create Amazon
RDS DB instances running
Oracle Database 18c (18.0).
For more information, see
Oracle Database 18c with
Amazon RDS.

August 15, 2019

Management Agent for OEM
13c release 3

Amazon RDS for Oracle
DB instances now support
the Management Agent for
Oracle Enterprise Manager
(OEM) Cloud Control 13c
Release 3. For more informati
on, see Oracle Management
Agent for Enterprise Manager
cloud control.

August 7, 2019

Amazon RDS for PostgreSQ
L version 12 beta 2 in the
database preview envir
onment

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L Version 12 Beta 2 in the
Database Preview Environme
nt. For more information,
see PostgreSQL version 12
beta 2 on Amazon RDS in
the database preview envi
ronment.

August 6, 2019

Amazon RDS supports server
collations for SQL Server

Amazon RDS for SQL Server
supports a selection of
collations for new DB
instances. For more informati
on, see Collations and
character sets for Microsoft
SQL Server.

July 29, 2019

5404

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.18c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.18c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.FeatureSupport.18c
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.OEMAgent.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version12
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Collation.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Collation.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Collation.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports Oracle APEX version
19.1.v1

Amazon RDS for Oracle now
supports Oracle Application
Express (APEX) version 19.1.
v1. For more information, see
Oracle application Express.

June 28, 2019

Amazon RDS for PostgreSQ
L version 13 beta 1 in the
database preview envir
onment

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L Version 13 Beta 1 in the
Database Preview Environme
nt. For more information, see
PostgreSQL 13 versions.

June 22, 2019

Amazon RDS storage
autoscaling

Storage autoscaling for
Amazon RDS DB instances
enables Amazon RDS to
automatically expand the
storage associated with a DB
instance to reduce the chance
of out-of-space conditions.
For information about storage
autoscaling, see Working with
storage for Amazon RDS DB
instances.

June 20, 2019

Amazon RDS for Oracle
supports db.z1d DB instance
classes

You can now create Amazon
RDS DB instances running
Oracle that use the db.z1d
DB instance classes. For more
information, see DB instance
class.

June 13, 2019

5405

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version13
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version13
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

Amazon Relational Database Service User Guide

Amazon RDS Performance
Insights supports viewing
more SQL text for Amazon
RDS for Oracle

Amazon RDS Performan
ce Insights now supports
viewing more SQL text in
the Performance Insights
dashboard for Amazon RDS
for Oracle DB instances.
For more information, see
Viewing more SQL text in
the Performance Insights
dashboard.

June 10, 2019

Amazon RDS adds support
native restores of SQL Server
databases up to 16 TB

You can now do native
restores of up to 16 TB from
SQL Server to Amazon RDS.
For more information, see
Amazon RDS for SQL Server:
Limitations and recommend
ations.

June 4, 2019

Amazon RDS adds support for
Microsoft SQL Server audit

Using Amazon RDS for
Microsoft SQL Server, you can
audit server and database
level events using SQL Server
Audit, and view the results
on your DB instance or send
the audit log files directly
to Amazon S3. For more
information, see SQL Server
 Audit.

May 23, 2019

5406

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Limitations
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Limitations
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Limitations
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.Audit.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.Options.Audit.html

Amazon Relational Database Service User Guide

Improvements to Amazon
RDS recommendations

Amazon RDS has improved its
automated recommendations
for database resources. For
example, Amazon RDS now
provides recommendations
for database parameters. For
more information, see Using
 Amazon RDS recommend
ations.

May 22, 2019

Support for more databases
per DB instance for Amazon
RDS for SQL Server

You can create up to 30
databases on each of your DB
instances running Microsoft
SQL Server. For more
information, see Limits for
Microsoft SQL Server DB
instances.

May 21, 2019

Support for 64 TiB and 80k
IOPS of storage for Amazon
RDS for MariaDB, MySQL and
PostgreSQL

You can now create Amazon
RDS DB instances for
MariaDB, MySQL and
PostgreSQL with up to 64 TiB
of storage and up to 80,000
provisioned IOPS. For more
information, see DB instance
storage.

May 20, 2019

Amazon RDS for MySQL
supports upgrade prechecks

When you upgrade a DB
instance from MySQL 5.7
to MySQL 8.0, Amazon RDS
performs prechecks for
incompatibilities. For more
information, see Prechecks
for upgrades from MySQL 5.7
to 8.0.

May 17, 2019

5407

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport.Limits
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport.Limits
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport.Limits
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html#USER_UpgradeDBInstance.MySQL.57to80Prechecks
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html#USER_UpgradeDBInstance.MySQL.57to80Prechecks
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.MySQL.html#USER_UpgradeDBInstance.MySQL.57to80Prechecks

Amazon Relational Database Service User Guide

Support for the MySQL
password validation plugin

You can now use the MySQL
validate_password
plugin for improved security
of Amazon RDS for MySQL DB
instances. For more informati
on, see Using the Password
Validation Plugin.

May 16, 2019

Performance Insights
counters for Amazon RDS for
Oracle

You can now add performan
ce counters to your
Performance Insights charts
for Oracle DB instances
. For more information,
see Performance Insights
counters for Amazon RDS for
Oracle.

May 8, 2019

Support for per-second billing Amazon RDS is now billed in
1-second increments in all
AWS Regions except AWS
GovCloud (US) for on-demand
instances. For more informati
on, see DB instance billing for
 Amazon RDS.

April 25, 2019

Support for importing data
from Amazon S3 for Amazon
RDS for PostgreSQL

You can now import data
from Amazon S3 file into a
table in an RDS PostgreSQ
L DB instance. For more
information, see Importing
Amazon S3 data into an RDS
PostgreSQL DB instance.

April 24, 2019

5408

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.PasswordValidationPlugin
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.PasswordValidationPlugin
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights_Counters.html#USER_PerfInsights_Counters.Oracle
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights_Counters.html#USER_PerfInsights_Counters.Oracle
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights_Counters.html#USER_PerfInsights_Counters.Oracle
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User_DBInstanceBilling.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/User_DBInstanceBilling.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.S3Import.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.S3Import.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.S3Import.html

Amazon Relational Database Service User Guide

Support for restoring 5.7
backups from Amazon S3

You can now create a backup
of your MySQL version
5.7 database, store it on A
mazon S3, and then restore
the backup file onto a new
Amazon RDS DB instance
running MySQL. For more
information, see Restoring
a backup into a MySQL DB
instance.

April 17, 2019

Support for multiple major
version upgrades for Amazon
RDS for PostgreSQL

With Amazon RDS for
PostgreSQL, you can now
choose from multiple major
versions when you upgrade
the DB engine. This feature
enables you to skip ahead to
a newer major version when
you upgrade select PostgreSQ
L engine versions. For more
 information, see Upgrading
the PostgreSQL DB engine.

April 16, 2019

Support for 64 TiB of storage
for Amazon RDS for Oracle

You can now create Amazon
RDS DB instances for Oracle
with up to 64 TiB of storage
and up to 80,000 provisioned
IOPS. For more information,
see DB instance storage.

April 4, 2019

Support for MySQL 8.0.15 You can now create Amazon
RDS DB instances running
MySQL version 8.0.15. For
more information, see
MySQL on Amazon RDS
versions.

April 3, 2019

5409

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt

Amazon Relational Database Service User Guide

Support for MariaDB 10.3.13 You can now create Amazon
RDS DB instances running
MariaDB version 10.3.13.
For more information, see
MariaDB on Amazon RDS
versions.

April 3, 2019

Microsoft SQL Server 2008
R2 has reached its end of
support on Amazon RDS

Microsoft SQL Server 2008
R2 has reached its end of
support, coinciding with
 the Microsoft plan to end
extended support for this
version on July 9, 2019. Any
existing Microsoft SQL Server
2008 R2 snapshots are to be
automatically upgraded to
the latest minor version of
Microsoft SQL Server 2012
starting on June 1, 2019.
For more information, see
Microsoft SQL Server 2008 R2
support on Amazon RDS .

April 2, 2019

Always On availability groups
supported in Microsoft SQL
Server 2017

You can now use Always On
Availability Groups in SQL
Server 2017 Enterprise Ed
ition 14.00.3049.1 or later.
For more information, see
Multi-AZ deployments for
Microsoft SQL Server.

March 29, 2019

5410

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport.2008
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.FeatureSupport.2008
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ

Amazon Relational Database Service User Guide

View volume metrics You can now view metrics
for the Amazon Elastic Block
Store (Amazon EBS) volumes,
which are the physical devices
used for database and log
storage. For more informati
on, see Viewing Enhanced
Monitoring.

March 20, 2019

Support for MySQL 5.7.25 You can now create Amazon
RDS DB instances running
MySQL version 5.7.25. For
more information, see
MySQL on Amazon RDS
versions.

March 19, 2019

Amazon RDS for Oracle
supports RMAN DBA tasks

Amazon RDS for Oracle now
supports Oracle Recovery
Manager (RMAN) DBA tasks,
 including RMAN backups.
For more information, see
Common DBA Recovery
Manager (RMAN) tasks for
Oracle DB instances.

March 14, 2019

Amazon RDS for PostgreSQL
supports version 11.1

You can now create Amazon
RDS DB instances running
PostgreSQL version 11.1.
For more information, see
PostgreSQL version 11.1 on
Amazon RDS.

March 12, 2019

Multiple-file restore is
available in Amazon RDS for
SQL Server

You can now restore from
multiple files with Amazon
RDS for SQL Server. For more
 information, see Restoring a
database.

March 11, 2019

5411

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html#USER_Monitoring.OS.Viewing
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html#USER_Monitoring.OS.Viewing
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.RMAN.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.RMAN.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.RMAN.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.RMAN.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version111
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version111
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version111
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Using.Restore
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html#SQLServer.Procedural.Importing.Native.Using.Restore

Amazon Relational Database Service User Guide

MariaDB 10.2.21 You can now create Amazon
RDS DB instances running
MariaDB version 10.2.21.
For more information, see
MariaDB on Amazon RDS
versions.

March 11, 2019

Amazon RDS for Oracle
supports read replicas

Amazon RDS for Oracle now
supports read replicas with
Active Data Guard. For more
information, see Working with
read replicas and Working
with Oracle read replicas.

March 11, 2019

Amazon RDS Performan
ce Insights is available for
Amazon RDS for MariaDB

Amazon RDS Performance
Insights is now available for
Amazon RDS for MariaDB. For
more information, see Using
Amazon RDS Performance
Insights.

March 11, 2019

MySQL 8.0.13 and 5.7.24 You can now create Amazon
RDS DB instances running
MySQL versions 8.0.13 and
5.7.24. For more information,
see MySQL on Amazon RDS
versions.

March 8, 2019

Amazon RDS Performan
ce Insights is available for
Amazon RDS for SQL Server

Amazon RDS Performan
ce Insights is now available
for Amazon RDS for SQL
Server. For more informat
ion, see Using Amazon RDS
Performance Insights.

March 4, 2019

5412

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-read-replicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports Amazon S3 integrati
on

You can now transfer files
between an Amazon RDS for
Oracle DB instance and an
Amazon S3 bucket. For more
information, see Integrating
Amazon RDS for Oracle and
Amazon S3.

February 26, 2019

Amazon RDS for MySQL and
Amazon RDS for MariaDB
support db.t3 DB instance
classes

You can now create Amazon
RDS DB instances running
MySQL or MariaDB that use
the db.t3 DB instance classes.
For more information, see DB
instance class.

February 20, 2019

Amazon RDS for MySQL and
Amazon RDS for MariaDB
support db.r5 DB instance
classes

You can now create Amazon
RDS DB instances running
MySQL or MariaDB that use
the db.r5 DB instance classes.
For more information, see DB
instance class.

February 20, 2019

Performance Insights
counters for RDS for MySQL
and PostgreSQL

You can now add performan
ce counters to your
Performance Insights charts
for MySQL and PostgreSQ
L DB instances. For more
information, see Performan
ce Insights dashboard
components.

February 19, 2019

5413

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-s3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-s3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-s3-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L now supports adaptive
autovacuum parameter tun
ing

Adaptive autovacuum
parameter tuning with
Amazon RDS for PostgreSQ
L helps prevent transaction
ID wraparound by adjusting
autovacuum parameter
values automatically. For
more information, see
Reducing the likelihood of
transaction ID wraparound.

February 12, 2019

Amazon RDS for Oracle
supports Oracle APEX
versions 18.1.v1 and 18.2.v1

Amazon RDS for Oracle now
supports Oracle Applicati
on Express (APEX) versions
 18.1.v1 and 18.2.v1. For
more information, see Oracle
application Express.

February 11, 2019

Amazon RDS Performance
Insights supports viewing
more SQL text for RDS for
MySQL

Amazon RDS Performan
ce Insights now supports
viewing more SQL text in
the Performance Insights
dashboard for MySQL DB
instances. For more informati
on, see Viewing more SQL
text in the Performance
Insights dashboard.

February 6, 2019

Amazon RDS for PostgreSQ
L supports db.t3 DB instance
classes

You can now create Amazon
RDS DB instances running
PostgreSQL that use the db.t3
DB instance classes. For more
information, see DB instance
class.

January 25, 2019

5414

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.Autovacuum.AdaptiveAutoVacuuming
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.Autovacuum.AdaptiveAutoVacuuming
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports db.t3 DB instance
classes

You can now create Amazon
RDS DB instances running
Oracle that use the db.t3 DB
instance classes. For more
information, see DB instance
class.

January 25, 2019

Amazon RDS Performance
Insights supports viewing
more SQL text for Amazon
RDS PostgreSQL

Amazon RDS Performan
ce Insights now supports
viewing more SQL text in
the Performance Insights
dashboard for Amazon RDS
PostgreSQL DB instances.
For more information, see
Viewing more SQL text in
the Performance Insights
dashboard.

January 24, 2019

Amazon RDS for Oracle
supports a new version of
SQLT

Amazon RDS for Oracle
now supports SQLT version
12.2.180725. For more
information, see Oracle
 SQLT.

January 22, 2019

Amazon RDS for PostgreSQ
L supports db.r5 DB instance
classes

You can now create Amazon
RDS DB instances running
PostgreSQL that use the db.r5
DB instance classes. For more
information, see DB instance
class.

December 19, 2018

5415

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.SQLT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.SQLT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L now supports restricted
password management

Amazon RDS for PostgreSQ
L enables you to restrict
who can manage user
passwords and password
expiration changes by
using the parameter
 rds.restrict_passw
ord_commands and
the role rds_password .
For more information,
see Restricting password
management.

December 19, 2018

Amazon RDS for PostgreSQL
supports uploading database
logs to Amazon CloudWatch
Logs

Amazon RDS for PostgreSQL
supports uploading database
logs to CloudWatch Logs.
For more information, see
Publishing PostgreSQL logs to
CloudWatch Logs.

December 10, 2018

Amazon RDS for Oracle
supports db.r5 DB instance
classes

You can now create Amazon
RDS DB instances running
Oracle that use the db.r5 DB
instance classes. For more
information, see DB instance
 class.

November 20, 2018

Retain backups when deleting
a DB instance

Amazon RDS supports
retaining automated backups
when you delete a DB
instance. For more informat
ion, see Working with
 backups.

November 15, 2018

5416

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.RestrictPasswordMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.RestrictPasswordMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html#USER_LogAccess.Concepts.PostgreSQL.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html#USER_LogAccess.Concepts.PostgreSQL.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL
supports db.m5 DB instance
classes

You can now create Amazon
RDS DB instances running
PostgreSQL that use the
db.m5 DB instance classes.
For more information, see DB
instance class.

November 15, 2018

Amazon RDS for Oracle
supports a new major version

You can now create Amazon
RDS DB instances running
Oracle version 12.2.

November 13, 2018

Amazon RDS for SQL Server
supports Always On

Amazon RDS for SQL
Server supports Always On
Availability Groups. For more
 information, see Multi-AZ
 deployments for Microsoft
SQL Server.

November 8, 2018

Amazon RDS for PostgreSQL
supports outbound network
access using custom DNS
servers

Amazon RDS for PostgreSQL
supports outbound network
access using custom DNS
servers. For more informati
on, see Using a custom DNS
server for outbound network
access.

November 8, 2018

Amazon RDS for MariaDB,
MySQL, and PostgreSQL
supports 32 TiB of storage

You can now create Amazon
RDS DB instances with up to
32 TiB of storage for MySQL,
 MariaDB, and PostgreSQL.
For more information, see DB
instance storage.

November 7, 2018

5417

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_SQLServerMultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.CustomDNS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.CustomDNS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.CustomDNS
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports extended data types

You can now enable extended
data types on Amazon RDS
DB instances running Oracle.
With extended data types,
the maximum size is 32,767
bytes for the VARCHAR2, NVA
RCHAR2, and RAW data types.
For more information, see Us
ing extended data types.

November 6, 2018

Amazon RDS for Oracle
supports db.m5 DB instance
classes

You can now create Amazon
RDS DB instances running
Oracle that use the db.m5 DB
instance classes. For more
information, see DB instance
 class.

November 2, 2018

Amazon RDS for Oracle
migration from SE, SE1, or
SE2 to EE

You can now migrate from
any Oracle Database Standard
Edition (SE, SE1, or SE2) to
Oracle Database Enterpris
e Edition (EE). For more
information, see Migrating
between Oracle editions.

October 31, 2018

Amazon RDS can now stop
Multi-AZ instances

Amazon RDS can now stop
a DB instance that is part
of a Multi-AZ deployment.
Formerly, the stop instance
feature had a limitation for
multi-AZ instances. For more
 information, see Stopping
an Amazon RDS DB instance
temporarily.

October 29, 2018

5418

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.ExtendedDataTypes
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.ExtendedDataTypes
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.EditionsMigrating
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Oracle.html#Oracle.Concepts.EditionsMigrating
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_StopInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_StopInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_StopInstance.html

Amazon Relational Database Service User Guide

Amazon RDS Performan
ce Insights is available for
Amazon RDS for Oracle

Amazon RDS Performance
Insights is now available for
Amazon RDS for Oracle. For
more information, see Using
Amazon RDS Performance
Insights.

October 29, 2018

Amazon RDS for PostgreSQL
supports PostgreSQL version
11 in the database preview
 environment

Amazon RDS for PostgreSQ
L now supports PostgreSQL
version 11 in the Database
 Preview Environment. For
more information, see
PostgreSQL version 11 on
Amazon RDS in the database
preview environment.

October 25, 2018

MySQL supports a new major
version

You can now create Amazon
RDS DB instances running
MySQL version 8.0. For more
 information, see MySQL on
Amazon RDS versions.

October 23, 2018

MariaDB supports a new
major version

You can now create Amazon
RDS DB instances running
MariaDB version 10.3. For
more information, see
MariaDB on Amazon RDS
versions.

October 23, 2018

Amazon RDS for Oracle
supports Oracle JVM

Amazon RDS for Oracle now
supports the Oracle Java
Virtual Machine (JVM) option.
 For more information, see Or
acle Java virtual machine.

October 16, 2018

5419

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version11
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version11
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version11
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.version11
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-options-java.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/oracle-options-java.html

Amazon Relational Database Service User Guide

Custom parameter group
for restore and point in time
recovery

You can now specify a custom
parameter group when you
restore a snapshot or perform
a point in time recovery
operation. For more informati
on, see Restoring from a DB
snapshot and Restoring a DB
instance to a specified time.

October 15, 2018

Amazon RDS for Oracle
supports 32 TiB storage

You can now create Oracle
RDS DB instances with up to
32 TiB of storage. For more
information, see DB instance
 storage.

October 15, 2018

Amazon RDS for MySQL
supports GTIDs

Amazon RDS for MySQL now
supports global transacti
on identifiers (GTIDs), which
are unique across all DB
instances and in a replicati
on configuration. For more
information, see Using GTID-
based replication for RDS for
MySQL.

October 10, 2018

MySQL 5.7.23, 5.6.41, and
5.5.61

You can now create Amazon
RDS DB instances running
MySQL versions 5.7.23,
5.6.41, and 5.5.61. For more
information, see MySQL on
Amazon RDS versions.

October 8, 2018

Amazon RDS for Oracle
supports a new version of
SQLT

Amazon RDS for Oracle
now supports SQLT version
12.2.180331. For more
information, see Oracle
 SQLT.

October 4, 2018

5420

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.SQLT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Options.SQLT.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQL
now supports IAM authentic
ation

Amazon RDS for PostgreSQL
now supports IAM authentic
ation. For more informati
on see IAM database aut
hentication for MySQL and
PostgreSQL.

September 27, 2018

You can enable deletion
protection for your Amazon
RDS DB instances

When you enable deletion
protection for a DB instance,
the database cannot be d
eleted by any user. For more
information, see Deleting a
DB instance.

September 26, 2018

Amazon RDS for MySQL and
Amazon RDS for MariaDB
support db.m5 DB instance
classes

You can now create Amazon
RDS DB instances running
MySQL or MariaDB that
use the db.m5 DB instance
classes. For more information,
see DB instance class.

September 18, 2018

Amazon RDS now supports
upgrades to SQL Server 2017

You can upgrade your existing
DB instance to SQL Server
2017 from any version except
 SQL Server 2008. To upgrade
from SQL Server 2008, first
upgrade to one of the other
versions first. For information,
see Upgrading the Microsoft
SQL Server DB engine.

September 11, 2018

5421

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DeleteInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DeleteInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.SQLServer.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.SQLServer.html

Amazon Relational Database Service User Guide

Amazon RDS for PostgreSQ
L now supports PostgreSQ
L version 11 beta 3 in the
database preview environme
nt

In this release, the Write-
Ahead Log (WAL) segment
size (wal_segment_size) is
now set to 64MB. For more
about PostgreSQL version 11
Beta 3, see PostgreSQL 11
beta 3 released. For informati
on on the Database Preview
Environment, see Working
with the database preview
environment.

September 7, 2018

Amazon Aurora User Guide The Amazon Aurora User
Guide describes all Amazon
Aurora concepts and provides
instructions on using the
various features with both the
console and the command
line interface. The Amazon
RDS User Guide now covers
non-Aurora database engines.

August 31, 2018

Amazon RDS Performance
Insights is available for RDS
for MySQL

Amazon RDS Performance
Insights is now available for
RDS for MySQL. For more
 information, see Using
Amazon RDS Performance
Insights.

August 28, 2018

Aurora PostgreSQL-Compati
ble Edition now supports
Aurora Auto Scaling

Auto Scaling of Aurora
replicas is now available
for Aurora PostgreSQL-
Compatible Edition. For more
information, see Amazon
Aurora auto scaling with
Aurora replicas.

August 16, 2018

5422

https://www.postgresql.org/about/news/1878/
https://www.postgresql.org/about/news/1878/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#working-with-the-database-preview-environment
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html

Amazon Relational Database Service User Guide

Aurora Serverless for Aurora
MySQL

Aurora Serverless is an
on-demand, autoscaling
configuration for Amazon
Aurora. For more information,
see Using Amazon Aurora
 Serverless.

August 9, 2018

MySQL 5.7.22 and 5.6.40 You can now create Amazon
RDS DB instances running
MySQL versions 5.7.22 and
5.6.40. For more information,
see MySQL on Amazon RDS
versions.

August 6, 2018

Aurora is now available in the
China (Ningxia) region

Aurora MySQL and Aurora
PostgreSQL are now available
in the China (Ningxia) region.
 For more information, see
Availability for Amazon
Aurora MySQL and Availabil
ity for Amazon Aurora
PostgreSQL.

August 6, 2018

Amazon RDS for MySQL
supports delayed replication

Amazon RDS for MySQL now
supports delayed replicati
on as a strategy for disaster
 recovery. For more informati
on, see Configuring delayed
replication with MySQL.

August 6, 2018

Amazon RDS Performance
Insights is available for Aurora
MySQL

Amazon RDS Performance
Insights is now available for
Aurora MySQL. For more
 information, see Using
Amazon RDS Performance
Insights.

August 6, 2018

5423

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.DelayReplication
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_MySQL.Replication.ReadReplicas.DelayReplication
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html

Amazon Relational Database Service User Guide

Amazon RDS Performance
Insights integration with
Amazon CloudWatch

Amazon RDS Performan
ce Insights automatically
publishes metrics to Amazon
CloudWatch. For more
information, see Performance
Insights metrics published to
CloudWatch.

August 6, 2018

Amazon RDS recommend
ations

Amazon RDS now provides
automated recommendations
for database resources. For
more information, see Using
 Amazon RDS recommend
ations.

July 25, 2018

Incremental snapshot copies
across AWS Regions

Amazon RDS supports
incremental snapshot copies
across AWS Regions for both
 unencrypted and encrypted
instances. For more informati
on, see Copying snapshots
across AWS Regions.

July 24, 2018

Amazon RDS Performan
ce Insights is available for
Amazon RDS for PostgreSQL

Amazon RDS Performance
Insights is now available for
Amazon RDS for PostgreSQ
L. For more information,
see Using Amazon RDS
Performance Insights.

July 18, 2018

Amazon RDS for Oracle
supports Oracle APEX version
5.1.4.v1

Amazon RDS for Oracle now
supports Oracle Application
Express (APEX) version 5.1.4
.v1. For more information, see
Oracle application Express.

July 10, 2018

5424

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Cloudwatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Cloudwatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.Cloudwatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html#USER_CopySnapshot.AcrossRegions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html#USER_CopySnapshot.AcrossRegions
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.APEX.html

Amazon Relational Database Service User Guide

Amazon RDS for Oracle
supports publishing logs to
Amazon CloudWatch Logs

Amazon RDS for Oracle now
supports publishing alert,
audit, trace, and listener
log data to a log group in
CloudWatch Logs. For more
information, see Publishin
g Oracle logs to Amazon
CloudWatch Logs.

July 9, 2018

MariaDB 10.2.15, 10.1.34, and
10.0.35

You can now create Amazon
RDS DB instances running
MariaDB versions 10.2.15,
10.1.34, and 10.0.35. For
more information, see
MariaDB on Amazon RDS
versions.

July 5, 2018

Aurora PostgreSQL 1.2 is
available and compatible with
PostgreSQL 9.6.8

Aurora PostgreSQL 1.2 is now
available and is compatible
with PostgreSQL 9.6.8. For
more information, see Version
1.2.

June 27, 2018

Read replicas for Amazon RDS
PostgreSQL support Multi-AZ
deployments

RDS read replicas in Amazon
RDS PostgreSQL now support
multiple Availability Zones.
 For more information, see
Working with PostgreSQL
read replicas.

June 25, 2018

5425

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.Oracle.html#USER_LogAccess.Oracle.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.Oracle.html#USER_LogAccess.Oracle.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.Oracle.html#USER_LogAccess.Oracle.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MariaDB.html#MariaDB.Concepts.VersionMgmt
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.12
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.12
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.Replication.ReadReplicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.Replication.ReadReplicas.html

Amazon Relational Database Service User Guide

Performance Insights
available for Aurora
PostgreSQL

Performance Insights is
generally available for Aurora
PostgreSQL, with support
 for extended retention
of performance data. For
more information, see Using
Amazon RDS performance
insights.

June 21, 2018

Aurora PostgreSQL available
in western US (northern
California) region

Aurora PostgreSQL is now
available in the western
United States (Northern Cal
ifornia) region. For more
information, see Availability
for Amazon Aurora PostgreSQ
L.

June 11, 2018

Amazon RDS for Oracle now
supports CPU configuration

Amazon RDS for Oracle
supports configuring the
number of CPU cores and the
number of threads for each
core for the processor of a
DB instance class. For more
 information, see Configuri
ng the processor of the DB
instance class.

June 5, 2018

Earlier updates

The following table describes the important changes in each release of the Amazon RDS User Guide
before June 2018.

Earlier updates 5426

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#USER_ConfigureProcessor
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#USER_ConfigureProcessor
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#USER_ConfigureProcessor

Amazon Relational Database Service User Guide

Change Description Date changed

Amazon RDS
for PostgreSQ
L now supports
PostgreSQ
L Version 11
Beta 1 in the
Database Preview
Environment

PostgreSQL version 11 Beta 1 contains several
improvements that are described in PostgreSQL 11
 beta 1 released!

For information on the Database Preview Environme
nt, see Working with the Database Preview
environment.

May 31, 2018

Amazon RDS
for Oracle now
supports TLS
versions 1.0 and
1.2

Amazon RDS for Oracle supports Transport Layer
Security (TLS) versions 1.0 and 1.2. For more
information, see TLS versions for the Oracle SSL
option.

May 30, 2018

Aurora MySQL
supports
publishing logs
to Amazon
CloudWatch Logs

Aurora MySQL now supports publishing general, slow,
audit, and error log data to a log group in CloudWatc
h Logs. For more information, see Publishing Aurora
MySQL to CloudWatch Logs.

May 23, 2018

Database Preview
Environment
for Amazon RDS
PostgreSQL

You can now launch a new instance of Amazon RDS
PostgreSQL in a preview mode. For more informati
on about the Database Preview Environment see,
 Working with the Database Preview environment.

May 22, 2018

Amazon RDS
for Oracle DB
instances support
new DB instance
 classes

Oracle DB instances now support the db.x1e and
db.x1 DB instance classes. For more information, see
DB instance classes and RDS for Oracle DB instance
classes.

May 22, 2018

Amazon RDS
PostgreSQL
now supports

You can now use postgres_fdw to connect to a
remote server from a read replica. For more informati
on see, Using the postgres_fdw extension to access
external data.

May 17, 2018

Earlier updates 5427

https://www.postgresql.org/about/news/1855/
https://www.postgresql.org/about/news/1855/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.CloudWatch.html

Amazon Relational Database Service User Guide

Change Description Date changed

postgres_fdw on a
read replica.

Amazon RDS
for Oracle now
supports setting
sqlnet.ora
 parameters

You can now set sqlnet.ora parameters with Amazon
RDS for Oracle. For more information, see Modifying
connection properties using sqlnet.ora parameters.

May 10, 2018

Aurora PostgreSQ
L available in Asia
Pacific (Seoul) reg
ion.

Aurora PostgreSQL is now available in the Asia Pacific
(Seoul) region. For more information, see Availability
for Amazon Aurora PostgreSQL.

May 9, 2018

Aurora MySQL
supports
backtracking

Aurora MySQL now supports "rewinding" a DB cluster
to a specific time, without restoring data from a
backup. For more information, see Backtracking an
Aurora DB cluster.

May 9, 2018

Aurora MySQL
supports
encrypted
migration and
replication from
 external MySQL

Aurora MySQL now supports encrypted migration
and replication from an external MySQL database.
For more information, see Migrating data from an
external MySQL database to an Amazon Aurora
MySQL DB cluster and Replication between Aurora
and MySQL or between Aurora and another Aurora
DB cluster.

April 25, 2018

Aurora PostgreSQ
L-Compatible
Edition support
for the Copy-on-
Write protocol.

You can now clone databases in an Aurora PostgreSQ
L database cluster. For more information see,
Cloning databases in an Aurora DB cluster.

April 10, 2018

Earlier updates 5428

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html

Amazon Relational Database Service User Guide

Change Description Date changed

MariaDB 10.2.12,
10.1.31, and
10.0.34

You can now create Amazon RDS DB instances
running MariaDB versions 10.2.12, 10.1.31, and
10.0.34. For more information, see MariaDB on
Amazon RDS versions.

March 21, 2018

Aurora PostgreSQ
L Support for new
regions

Aurora PostgreSQL is now available in the EU
(London) and Asia Pacific (Singapore) regions. For
more information, see Availability for Amazon
Aurora PostgreSQL.

March 13, 2018

MySQL 5.7.21,
5.6.39, and 5.5.59

You can now create Amazon RDS DB instances
running MySQL versions 5.7.21, 5.6.39, and 5.5.59.
For more information, see MySQL on Amazon RDS
versions.

March 9, 2018

Amazon RDS
for Oracle now
supports Oracle
REST Data Servic
es

Amazon RDS for Oracle supports Oracle REST Data
Services as part of the APEX option. For more
information, see Oracle Application Express (APEX).

March 9, 2018

Amazon Aurora
MySQL-Com
patible Edition
available in new
AWS Region

Aurora MySQL is now available in the Asia Pacific
(Singapore) region. For the complete list of AWS
Regions for Aurora MySQL, see Availability for
Amazon Aurora MySQL.

March 6, 2018

Amazon RDS DB
instances running
Microsoft SQL
Server support
change data
 capture (CDC)

DB instances running Amazon RDS for Microsoft SQL
Server now support change data capture (CDC). For
more information, see Change data capture support
for Microsoft SQL Server DB instances.

February 6, 2018

Earlier updates 5429

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability

Amazon Relational Database Service User Guide

Change Description Date changed

Aurora MySQL
supports a new
major version

You can now create Aurora MySQL DB clusters
running MySQL version 5.7. For more information,
see Amazon Aurora MySQL database engine updates
2018-02-06.

February 6, 2018

Publish MySQL
and MariaDB
logs to Amazon
CloudWatch Logs

You can now publish MySQL and MariaDB log data
to CloudWatch Logs. For more information, see
Publishing MySQL logs to Amazon CloudWatch Logs
and Publishing MariaDB logs to Amazon CloudWatch
Logs.

January 17, 2018

Multi-AZ support
for read replicas

You can now create a read replica as a Multi-AZ DB
instance. Amazon RDS creates a standby of your
replica in another Availability Zone for failover
support for the replica. Creating your read replica as
a Multi-AZ DB instance is independent of whether
the source database is a Multi-AZ DB instance. For
more information, see Working with DB instance read
replicas.

January 11, 2018

Amazon RDS for
MariaDB supports
a new major
version

You can now create Amazon RDS DB instances
running MariaDB version 10.2. For more information,
see MariaDB 10.2 support on Amazon RDS.

January 3, 2018

Amazon Aurora
PostgreSQL-
Compatible
Edition available
in new AWS
 Region

Aurora PostgreSQL is now available in the EU (Paris)
region. For the complete list of AWS Regions for
Aurora PostgreSQL, see Availability for Amazon
Aurora PostgreSQL.

December 22,
2017

Aurora PostgreSQ
L supports new
instance types

Aurora PostgreSQL now supports new instance types.
For the complete list of instance types, see Choosing
the DB instance class.

December 20,
2017

Earlier updates 5430

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.20180206.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.20180206.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Relational Database Service User Guide

Change Description Date changed

Amazon Aurora
MySQL-Com
patible Edition
available in new
AWS Region

Aurora MySQL is now available in the EU (Paris)
region. For the complete list of AWS Regions for
Aurora MySQL, see Availability for Amazon Aurora
MySQL.

December 18,
2017

Aurora MySQL
supports hash
joins

This feature can improve query performance when
you need to join a large amount of data by using an
equijoin. For more information, see Working with
hash joins in Aurora MySQL.

December 11,
2017

Aurora MySQL
supports native
functions to
invoke AWS
Lambda fun
ctions

You can call the native functions lambda_sync and
 lambda_async when you use Aurora MySQL. For
more information, see Invoking a Lambda function
from an Amazon Aurora MySQL DB cluster.

December 11,
2017

Added Aurora
PostgreSQL
HIPAA eligibility

Aurora PostgreSQL now supports building HIPAA
compliant applications. For more information, see
Working with Amazon Aurora PostgreSQL.

December 6, 2017

Additional AWS
Regions available
for Amazon
Aurora with
 PostgreSQL
compatibility

Amazon Aurora with PostgreSQL compatibility is
now available in four new AWS Regions. For more
information, see Availability for Amazon Aurora
PostgreSQL.

November 22,
2017

Modify storage
for Amazon RDS
DB instances
running Microsoft
SQL Server

You can now modify the storage of your Amazon RDS
DB instances running SQL Server. For more informati
on, see Modifying an Amazon RDS DB instance.

November 21,
2017

Earlier updates 5431

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.BestPractices.html#Aurora.BestPractices.HashJoin
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.BestPractices.html#Aurora.BestPractices.HashJoin
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraPostgreSQL.Availability

Amazon Relational Database Service User Guide

Change Description Date changed

Amazon RDS
supports 16 TiB
storage for Linux-
based engines

You can now create MySQL, MariaDB, PostgreSQL,
and Oracle RDS DB instances with up to 16 TiB of
storage. For more information, see Amazon RDS DB
instance storage.

November 21,
2017

Amazon RDS
supports fast
scale up of
storage

You can now add storage to MySQL, MariaDB,
PostgreSQL, and Oracle RDS DB instances in a few
minutes. For more information, see Amazon RDS DB
instance storage.

November 21,
2017

Amazon RDS
supports MariaDB
versions 10.1.26
and 10.0.32

You can now create Amazon RDS DB instances
running MariaDB versions 10.1.26 and 10.0.32. For
more information, see MariaDB on Amazon RDS
versions.

November 20,
2017

Amazon RDS
for Microsoft
SQL Server now
supports new DB
instance classes

You can now create Amazon RDS DB instances
running SQL Server that use the db.r4 and
db.m4.16xlarge DB instance classes. For more
information, see DB instance class support for
Microsoft SQL Server.

November 20,
2017

Amazon RDS
for MySQL and
MariaDB now
supports new DB
instance classes

You can now create Amazon RDS DB instances
running MySQL and MariaDB that use the db.r4,
db.m4.16xlarge, db.t2.xlarge, and db.t2.2xlarge
DB instance classes. For more information, see DB
instance classes.

November 20,
2017

SQL Server 2017 You can now create Amazon RDS DB instances
running Microsoft SQL Server 2017. You can also
create DB instances running SQL Server 2016 SP1
CU5. For more information, see Amazon RDS for
Microsoft SQL Server.

November 17,
2017

Earlier updates 5432

Amazon Relational Database Service User Guide

Change Description Date changed

Restore MySQL
backups from
Amazon S3

You can now create a backup of your on-premis
es database, store it on Amazon S3, and then
restore the backup file onto a new Amazon RDS DB
 instance running MySQL. For more information, see
Restoring a backup into an Amazon RDS for MySQL
DB instance.

November 17,
2017

Auto Scaling with
Aurora Replicas

Amazon Aurora MySQL now supports Aurora Auto
Scaling. Aurora Auto Scaling dynamically adjusts
the number of Aurora Replicas based on increases
or decreases in connectivity or workload. For more
information, see Amazon Aurora Auto Scaling with
Aurora replicas.

November 17,
2017

Oracle default
edition support

Amazon RDS for Oracle DB instances now supports
setting the default edition for the DB instance. For
more information, see Setting the default edition for
a DB instance.

November 3,
2017

Oracle DB
instance file
validation

Amazon RDS for Oracle DB instances now supports
validating DB instance files with the Oracle Recovery
Manager (RMAN) logical validation utility. For more
information, see Validating database files in RDS for
Oracle .

November 3,
2017

Management
Agent for OEM
13c

Amazon RDS for Oracle DB instances now support the
Management Agent for Oracle Enterprise Manager
(OEM) Cloud Control 13c. For more information, see
Oracle Management Agent for Enterprise Manager
Cloud Control.

November 1,
2017

Storage reconfigu
ration for
Microsoft SQL
Server snapshots

You can now reconfigure the storage when you
restore a snapshot to an Amazon RDS DB instance
running Microsoft SQL Server. For more information,
 see Restoring to a DB instance.

October 26, 2017

Earlier updates 5433

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html

Amazon Relational Database Service User Guide

Change Description Date changed

Asynchronous
key prefetch for
Aurora MySQL-
Compatible
Edition

Asynchronous key prefetch (AKP) improves the
performance of noncached index joins, by prefetchi
ng keys in memory ahead of when they are needed.
For more information, see Working with asynchron
ous key prefetch in Amazon Aurora.

October 26, 2017

MySQL 5.7.19,
5.6.37, and 5.5.57

You can now create Amazon RDS DB instances
running MySQL versions 5.7.19, 5.6.37, and 5.5.57.
For more information, see MySQL on Amazon RDS
versions.

October 25, 2017

General availabil
ity of Amazon
Aurora with
PostgreSQL
compatibility

Amazon Aurora with PostgreSQL compatibility makes
it simple and cost-effective to set up, operate, and
scale your new and existing PostgreSQL deploymen
ts, thus freeing you to focus on your business and
applications. For more information, see Working
with Amazon Aurora PostgreSQL.

October 24, 2017

Amazon RDS
for Oracle DB
instances support
new DB instance
 classes

Amazon RDS for Oracle DB instances now support
memory optimized next generation (db.r4) instance
classes. Amazon RDS for Oracle DB instances also
 now support the following new current generation
instance classes: db.m4.16xlarge, db.t2.xlarge, and
db.t2.2xlarge. For more information, see DB instance
classes and RDS for Oracle DB instance classes.

October 23, 2017

Earlier updates 5434

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.BestPractices.html#Aurora.BestPractices.AKP
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.BestPractices.html#Aurora.BestPractices.AKP
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Your new and existing Reserved Instances can now
cover multiple sizes in the same DB instance class.
Size-flexible reserved instances are available for
DB instances with the same AWS Region, database
engine, and instance family, and across AZ configura
tion. Size-flexible reserved instances are available
for the following database engines: Amazon Aurora,
MariaDB, MySQL, Oracle (Bring Your Own License),
PostgreSQL. For more information, see Size-flexible
reserved DB instances.

October 11, 2017

New feature You can now use the Oracle SQLT option to tune a
SQL statement for optimal performance. For more
information, see Oracle SQLT.

September 22,
2017

New feature If you have existing manual DB snapshots of your
Amazon RDS for Oracle DB instances, you can now
upgrade them to a later version of the Oracle dat
abase engine. For more information, see Upgrading
an Oracle DB snapshot.

September 20,
2017

New feature You can now use Oracle Spatial to store, retrieve,
update, and query spatial data in your Amazon RDS
DB instances running Oracle. For more information,
see Oracle Spatial.

September 15,
2017

New feature You can now use Oracle Locator to support internet
and wireless service-based applications and partner-
based GIS solutions with your Amazon RDS DB
instances running Oracle. For more information, see
Oracle Locator.

September 15,
2017

New feature You can now use Oracle Multimedia to store,
manage, and retrieve images, audio, video, and other
heterogeneous media data in your Amazon RDS DB
instances running Oracle.

September 15,
2017

Earlier updates 5435

Amazon Relational Database Service User Guide

Change Description Date changed

New feature You can now export audit logs from your Amazon
Aurora MySQL DB clusters to Amazon CloudWatch
Logs. For more information, see Publishing Aurora
MySQL logs to Amazon CloudWatch Logs.

September 14,
2017

New feature Amazon RDS now supports multiple versions of
Oracle Application Express (APEX) for your DB
instances running Oracle. For more information, see
 Oracle Application Express (APEX).

September 13,
2017

New feature You can now use Amazon Aurora to migrate an
unencrypted or encrypted DB snapshot or MySQL DB
instance to an encrypted Aurora MySQL DB cluster.
 For more information, see Migrating an RDS for
MySQL snapshot to Aurora and Migrating data from
a MySQL DB instance to an Amazon Aurora MySQL
DB cluster by using an Aurora read replica.

September 5,
2017

New feature You can use Amazon RDS for Microsoft SQL Server
databases to build HIPAA-compliant applications. For
more information, see Compliance program support
for Microsoft SQL Server DB instances.

August 31, 2017

New feature You can now use Amazon RDS for MariaDB databases
to build HIPAA-compliant applications. For more
information, see Amazon RDS for MariaDB.

August 31, 2017

New feature You can now create Amazon RDS DB instances
running Microsoft SQL Server with allocated storage
up to 16 TiB, and Provisioned IOPS to storage ranges
of 1:1–50:1. For more information, see Amazon RDS
DB instance storage.

August 22, 2017

Earlier updates 5436

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature You can now use Multi-AZ deployments for DB
instances running Microsoft SQL Server in the EU
(Frankfurt) region. For more information, see Multi-
AZ deployments for Amazon RDS for Microsoft SQL
Server.

August 3, 2017

New feature You can now create Amazon RDS DB instances
running MariaDB versions 10.1.23 and 10.0.31. For
more information, see MariaDB on Amazon RDS
versions.

July 17, 2017

New feature Amazon RDS now supports Microsoft SQL Server
Enterprise Edition with the License Included model in
all AWS Regions. For more information, see Licensing
Microsoft SQL Server on Amazon RDS.

July 13, 2017

New feature Amazon RDS for Oracle now supports Linux kernel
huge pages for increased database scalability. The
use of huge pages results in smaller page tables
and less CPU time spent on memory managemen
t, increasing the performance of large database
instances. You can use huge pages with your Amazon
RDS DB instances running all editions of Oracle ver
sions 12.1.0.2 and 11.2.0.4. For more information, see
Turning on HugePages for an RDS for Oracle instance.

July 7, 2017

New feature Updated to support encryption at rest (EAR) for
db.t2.small and db.t2.medium DB instance classes
for all non-Aurora DB engines. For more information,
see Availability of Amazon RDS encryption.

June 27, 2017

New feature Updated to support Amazon Aurora in the Europe
(Frankfurt) region. For more information, see
Availability for Amazon Aurora MySQL.

June 16, 2017

Earlier updates 5437

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability

Amazon Relational Database Service User Guide

Change Description Date changed

New feature You can now specify an option group when you
copy a DB snapshot across AWS regions. For more
information, see Considerations for option groups.

June 12, 2017

New feature You can now copy DB snapshots created from
specialized DB instances across AWS regions. You can
copy snapshots from DB instances that use Oracle
TDE, Microsoft SQL Server TDE, and Microsoft SQL
Server Multi-AZ with Mirroring. For more information,
see Copying a DB snapshot.

June 12, 2017

New feature Amazon Aurora now allows you to quickly and
cost-effectively copy all of your databases in an
Amazon Aurora DB cluster. For more information, see
Cloning databases in an Aurora DB cluster.

June 12, 2017

New feature Amazon RDS now supports Microsoft SQL Server
2016 SP1 CU2. For more information, see Amazon
RDS for Microsoft SQL Server.

June 7, 2017

Preview Public preview of Amazon Aurora with PostgreSQL
Compatibility. For more information, see Working
with Amazon Aurora PostgreSQL.

April 19, 2017

New feature Amazon Aurora now allows you to run an ALTER
TABLE tbl_name ADD COLUMN col_name column_de
finition operation nearly instantaneously. The
operation completes without requiring the table to
be copied and without materially impacting other
DML statements. For more information, see Altering
 tables in Amazon Aurora using fast DDL.

April 5, 2017

New feature We have added a new monitoring command, SHOW
VOLUME STATUS, to display the number of nodes
and disks in a volume. For more information, see
 Displaying volume status for an Aurora DB cluster.

April 5, 2017

Earlier updates 5438

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.FastDDL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.FastDDL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.VolumeStatus.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.VolumeStatus.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature You can now use your own custom logic in your
custom password verification functions for Oracle
on Amazon RDS. For more information, see Creating
custom functions to verify passwords.

March 21, 2017

New feature You can now access your online and archived redo
log files on your Oracle DB instances on Amazon
RDS. For more information, see Accessing online and
archived redo logs.

March 21, 2017

New feature You can now copy both encrypted and unencrypt
ed DB cluster snapshots between accounts in the
same region. For more information, see Copying a
DB cluster snapshot across accounts.

March 7, 2017

New feature You can now share encrypted DB cluster snapshots
between accounts in the same region. For more
information, see Sharing a DB cluster snapshot.

March 7, 2017

New feature You can now replicate encrypted Amazon Aurora
MySQL DB clusters to create cross-region Aurora
Replicas. For more information, see Replicating
Aurora MySQL DB clusters across AWS Regions.

March 7, 2017

New feature You can now require that all connections to your DB
instance running Microsoft SQL Server use Secure
Sockets Layer (SSL). For more information, see Using
SSL with a Microsoft SQL Server DB instance.

February 27, 2017

New feature You can now set your local time zone to one of 15
additional time zones. For more information, see
Supported time zones.

February 27, 2017

Earlier updates 5439

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_CopySnapshot.html#USER_CopyDBClusterSnapshot.CrossAccount
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_CopySnapshot.html#USER_CopyDBClusterSnapshot.CrossAccount
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ShareSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature You can now use the Amazon RDS procedure
 msdb.dbo.rds_shrink_tempdbfile to shrink
the tempdb database on your DB instances running
Microsoft SQL Server. For more information, see
Shrinking the tempdb database.

February 17, 2017

New feature You can now compress your backup file when
you export your Enterprise and Standard Edition
Microsoft SQL Server database from an Amazon RDS
DB instance to Amazon S3. For more information, see
Compressing backup files.

February 17, 2017

New feature Amazon RDS now supports custom DNS servers to
resolve DNS names used in outbound network access
on your DB instances running Oracle. For more infor
mation, see Setting up a custom DNS server.

January 26, 2017

New feature Amazon RDS now supports creating an encrypted
read replica in another region. For more information,
see Creating a read replica in a different AWS Region
and CreateDBInstanceReadReplica.

January 23, 2017

New feature Amazon RDS now supports upgrading a MySQL DB
snapshot from MySQL 5.1 to MySQL 5.5.

January 20, 2017

New feature Amazon RDS now supports copying an encrypted
DB snapshot to another region for the MariaDB,
MySQL, Oracle, PostgreSQL, and Microsoft SQL
 Server database engines. For more information, see
Copying a DB snapshot and CopyDBSnapshot.

December 20,
2016

Earlier updates 5440

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBSnapshot.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Amazon Aurora MySQL now supports spatial
indexing.

Spatial indexing improves query performance on
large datasets for queries that use spatial data. For
more information, see Amazon Aurora MySQL and
spatial data.

December 14,
2016

New feature Amazon RDS now supports outbound network access
on your DB instances running Oracle. You can use
utl_http, utl_tcp, and utl_smtp to connect from your
DB instance to the network. For more information,
see Configuring UTL_HTTP access using certificates
and an Oracle wallet.

December 5, 2016

New feature Amazon RDS has retired support for MySQL version
5.1. However, you can restore existing MySQL
5.1 snapshots to a MySQL 5.5 instance. For more
information, see Supported storage engines for RDS
for MySQL.

November 15,
2016

New feature Amazon RDS now supports Microsoft SQL Server
2016 RTM CU2. For more information, see Amazon
RDS for Microsoft SQL Server.

November 4,
2016

New feature Amazon RDS now supports major version upgrades
for DB instances running Oracle. You can now
upgrade your Oracle DB instances from 11g to 12c.
For more information, see Upgrading the RDS for
Oracle DB engine.

November 2,
2016

New feature You can now create DB instances running Microsoft
SQL Server 2014 Enterprise Edition. Amazon RDS
now supports SQL Server 2014 SP2 for all editions
and all regions. For more information, see Amazon
RDS for Microsoft SQL Server.

October 25, 2016

Earlier updates 5441

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraMySQL.Overview.html#Aurora.AuroraMySQL.Spatial
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraMySQL.Overview.html#Aurora.AuroraMySQL.Spatial

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Amazon Aurora MySQL now integrates with other
AWS services: You can load text or XML data into
a table from an Amazon S3 bucket, or invoke an
 AWS Lambda function from database code. For more
information, see Integrating Aurora MySQL with
other AWS services.

October 18, 2016

New feature You can now access the tempdb database on your
Amazon RDS DB instances running Microsoft SQL
Server. You can access the tempdb database by
 using Transact-SQL through Microsoft SQL Server
Management Studio (SSMS), or any other standard
SQL client application. For more information, see
Accessing the tempdb database on Microsoft SQL
Server DB instances on Amazon RDS.

September 29,
2016

New feature You can now use the UTL_MAIL package with your
Amazon RDS DB instances running Oracle. For more
information, see Oracle UTL_MAIL.

September 20,
2016

New features You can now set the time zone of your new Microsoft
SQL Server DB instances to a local time zone, to
match the time zone of your applications. For more
information, see Local time zone for Microsoft SQL
Server DB instances.

September 19,
2016

New feature You can now use the Oracle Label Security option
to control access to individual table rows in your
Amazon RDS DB instances running Oracle Database
12c. With Oracle Label Security, you can enforce
regulatory compliance with a policy-based administr
ation model, and ensure that an access to sensitive
data is restricted to only users with the appropriate
clearance level. For more information, see Oracle
Label Security.

September 8,
2016

Earlier updates 5442

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature You can now connect to an Amazon Aurora DB cluster
using the reader endpoint, which load-balances
connections across the Aurora Replicas that are
available in the DB cluster. As clients request new
 connections to the reader endpoint, Aurora distribut
es the connection requests among the Aurora
Replicas in the DB cluster. This functionality can help
balance your read workload across multiple Aurora
Replicas in your DB cluster. For more information, see
Amazon Aurora endpoints.

September 8,
2016

New feature You can now support the Oracle Enterprise Manager
Cloud Control on your Amazon RDS DB instances
running Oracle. You can enable the Management
 Agent on your DB instances, and share data with
your Oracle Management Service (OMS). For more
information, see Oracle Management Agent for
Enterprise Manager Cloud Control.

September 1,
2016

New feature This release adds support to get an ARN for a
resource. For more information, see Getting an
existing ARN for Amazon RDS.

August 23, 2016

New feature You can now assign up to 50 tags for each Amazon
RDS resource, for managing your resources and
tracking costs. For more information, see Tagging
Amazon RDS resources.

August 19, 2016

Earlier updates 5443

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Amazon RDS now supports the License Included
model for Oracle Standard Edition Two. For more
information, see Creating an Amazon RDS DB
instance.

You can now change the license model of your
Amazon RDS DB instances running Microsoft
SQL Server and Oracle. For more information, see
Licensing Microsoft SQL Server on Amazon RDS and
RDS for Oracle licensing options.

August 5, 2016

New feature Amazon RDS now supports native backup and restore
for Microsoft SQL Server databases using full backup
files (.bak files). You can now easily migrate SQL
Server databases to Amazon RDS, and import and
export databases in a single, easily-portable file,
using Amazon S3 for storage, and AWS KMS for
encryption. For more information, see Importing and
exporting SQL Server databases using native backup
and restore.

July 27, 2016

New feature You can now copy the source files from a MySQL
database to an Amazon Simple Storage Service
(Amazon S3) bucket, and then restore an Amazon
Aurora DB cluster from those files. This option can
be considerably faster than migrating data using
mysqldump . For more information, see Migrating
data from an external MySQL database to an Aurora
MySQL DB cluster.

July 20, 2016

Earlier updates 5444

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature You can now restore an unencrypted Amazon
Aurora DB cluster snapshot to create an encrypted
Amazon Aurora DB cluster by including an AWS Key
Management Service (AWS KMS) encryption key
during the restore operation. For more information,
see Encrypting Amazon RDS resources.

June 30, 2016

New feature You can use the Oracle Repository Creation Utility
(RCU) to create a repository on Amazon RDS for
Oracle. For more information, see Using the Oracle
Repository Creation Utility on RDS for Oracle .

June 17, 2016

New feature Adds support for PostgreSQL cross-region read
replicas. For more information, see Creating a read
replica in a different AWS Region.

June 16, 2016

New feature You can now use the AWS Management Console to
easily add Multi-AZ with Mirroring to a Microsoft
SQL Server DB instance. For more information, see
 Adding Multi-AZ to a Microsoft SQL Server DB
instance.

June 9, 2016

New feature You can now use Multi-AZ Deployments Using SQL
Server Mirroring in the following additional regions:
Asia Pacific (Sydney), Asia Pacific (Tokyo), and South
America (São Paulo). For more information, see
Multi-AZ deployments for Amazon RDS for Microsoft
SQL Server.

June 9, 2016

New feature Updated to support MariaDB version 10.1. For more
information, see Amazon RDS for MariaDB.

June 1, 2016

New feature Updated to support Amazon Aurora cross-region DB
clusters that are read replicas. For more informati
on, see Replicating Aurora MySQL DB clusters across
AWS Regions.

June 1, 2016

Earlier updates 5445

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Enhanced Monitoring is now available for Oracle DB
instances. For more information, see Monitoring OS
metrics with Enhanced Monitoring and Modifying an
Amazon RDS DB instance.

May 27, 2016

New feature Updated to support manual snapshot sharing for
Amazon Aurora DB cluster snapshots. For more
information, see Sharing a DB cluster snapshot.

May 18, 2016

New feature You can now use the MariaDB Audit Plugin to log
database activity on MariaDB and MySQL database
instances. For more information, see Options for
MariaDB database engine and Options for MySQL DB
instances.

April 27, 2016

New feature In-place, major version upgrades are now available
for upgrading from MySQL version 5.6 to version 5.7.
For more information, see Upgrades of the RDS for
MySQL DB engine.

April 26, 2016

New feature Enhanced Monitoring is now available for Microsoft
SQL Server DB instances. For more information, see
Monitoring OS metrics with Enhanced Monitoring.

April 22, 2016

New feature Updated to provide an Amazon Aurora Clusters view
in the Amazon RDS console. For more information,
see Viewing an Aurora DB cluster.

April 1, 2016

New feature Updated to support SQL Server Multi-AZ with
mirroring in the Asia Pacific (Seoul) region. For more
information, see Multi-AZ deployments for Amazon
RDS for Microsoft SQL Server.

March 31, 2016

Earlier updates 5446

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ShareSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Viewing.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Updated to support Amazon Aurora Multi-AZ with
mirroring in the Asia Pacific (Seoul) region. For more
information, see Availability for Amazon Aurora
MySQL.

March 31, 2016

New feature PostgreSQL DB instances have the ability to require
connections to use SSL. For more information, see
Using SSL with a PostgreSQL DB instance.

March 25, 2016

New feature Enhanced Monitoring is now available for PostgreSQ
L DB instances. For more information, see Monitoring
OS metrics with Enhanced Monitoring.

March 25, 2016

New feature Microsoft SQL Server DB instances can now use
Windows Authentication for user authentication. For
more information, see Working with AWS Managed
Active Directory with RDS for SQL Server.

March 23, 2016

New feature Enhanced Monitoring is now available in the Asia
Pacific (Seoul) region. For more information, see
Monitoring OS metrics with Enhanced Monitoring.

March 16, 2016

New feature You can now customize the order in which Aurora
Replicas are promoted to primary instance during a
failover. For more information, see Fault tolerance
for an Aurora DB cluster.

March 14, 2016

New feature Updated to support encryption when migrating to
an Aurora DB cluster. For more information, see
Migrating data to an Aurora DB cluster.

March 2, 2016

New feature Updated to support local time zone for Aurora DB
clusters. For more information, see Local time zone
for Aurora DB clusters.

March 1, 2016

New feature Updated to add support for MySQL version 5.7 for
current generation Amazon RDS DB instance classes.

February 22, 2016

Earlier updates 5447

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html#Aurora.Managing.FaultTolerance
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html#Aurora.Managing.FaultTolerance
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Migrate.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.LocalTimeZone
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.LocalTimeZone

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Updated to support db.r3 and db.t2 DB instance
classes in the AWS GovCloud (US-West) region.

February 11, 2016

New feature Updated to support encrypting copies of DB
snapshots and sharing encrypted DB snapshots. For
more information, see Copying a DB snapshot for
Amazon RDS and Sharing a DB snapshot for Amazon
RDS.

February 11, 2016

New feature Updated to support Amazon Aurora in the Asia Pacific
(Sydney) region. For more information, see Availabil
ity for Amazon Aurora MySQL.

February 11, 2016

New feature Updated to support SSL for Oracle DB instances. For
more information, see Using SSL with an RDS for
Oracle DB instance.

February 9, 2016

New feature Updated to support local time zone for MySQL and
MariaDB DB instances. For more information, see
Local time zone for MySQL DB instances and Local
time zone for MariaDB DB instances.

December 21,
2015

New feature Updated to support Enhanced Monitoring of OS
metrics for MySQL and MariaDB instances and
Aurora DB clusters. For more information, see
 Viewing metrics in the Amazon RDS console.

December 18,
2015

New feature Updated to support db.t2, db.r3, and db.m4 DB
instance classes for MySQL version 5.5. For more
information, see DB instance classes.

December 4, 2015

New feature Updated to support modifying the database port for
an existing DB instance.

December 3, 2015

Earlier updates 5448

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Updated to support major version upgrades of the
database engine for PostgreSQL instances. For more
information, see Upgrades of the RDS for PostgreSQL
DB engine.

November 19,
2015

New feature Updated to support modifying the public accessibi
lity of an existing DB instance. Updated to support
db.m4 standard DB instance classes.

November 11,
2015

New feature Updated to support manual DB snapshot sharing.
For more information, see Sharing a DB snapshot for
Amazon RDS.

October 28, 2015

New feature Updated to support Microsoft SQL Server 2014 for
the Web, Express, and Standard editions.

October 26, 2015

New feature Updated to support the MySQL-based MariaDB
database engine. For more information, see Amazon
RDS for MariaDB.

October 7, 2015

New feature Updated to support Amazon Aurora in the Asia Pacific
(Tokyo) region. For more information, see Availabil
ity for Amazon Aurora MySQL.

October 7, 2015

New feature Updated to support db.t2 burst-capable DB instance
classes for all DB engines and the addition of the
db.t2.large DB instance class. For more information,
see DB instance classes.

September 25,
2015

New feature Updated to support Oracle DB instances on R3 and
T2 DB instance classes. For more information, see DB
instance classes.

August 5, 2015

New feature Microsoft SQL Server Enterprise Edition is now
available with the License Included service model.
For more information, see Licensing Microsoft SQL
Server on Amazon RDS.

July 29, 2015

Earlier updates 5449

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.AuroraMySQL.Availability

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Amazon Aurora has officially released. The Amazon
Aurora DB engine supports multiple DB instances in
a DB cluster. For detailed information, see What is
 Amazon Aurora?.

July 27, 2015

New feature Updated to support copying tags to DB snapshots. July 20, 2015

New feature Updated to support increases in storage size for all
DB engines and an increase in Provisioned IOPS for
SQL Server.

June 18, 2015

New feature Updated options for reserved DB instances. June 15, 2015

New feature Updated to support using Amazon CloudHSM with
Oracle DB instances using TDE.

January 8, 2015

New feature Updated to support encrypting data at rest and new
API version 2014-10-31.

January 6, 2015

New feature Updated to include the new Amazon DB engine:
Aurora. The Amazon Aurora DB engine supports
multiple DB instances in a DB cluster. Amazon Aurora
is currently in preview release and is subject to
change. For detailed information, see What is
Amazon Aurora?.

November 12,
2014

New feature Updated to support PostgreSQL read replicas. November 10,
2014

New API and
features

Updated to support the GP2 storage type and new
API version 2014-09-01. Updated to support the
ability to copy an existing option or parameter group
to create a new option or parameter group.

October 7, 2014

New feature Updated to support InnoDB Cache Warming for DB
instances running MySQL version 5.6.19 and later.

September 3,
2014

Earlier updates 5450

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Updated to support SSL certificate verification when
connecting to MySQL version 5.6, SQL Server, and
PostgreSQL database engines.

August 5, 2014

New feature Updated to support the db.t2 burstable DB instance
 classes.

August 4, 2014

New feature Updated to support the db.r3 memory optimized DB
instance classes for use with the MySQL (version 5.6),
SQL Server, and PostgreSQL database engines.

May 28, 2014

New feature Updated to support SQL Server Multi-AZ deploymen
ts using SQL Server Mirroring.

May 19, 2014

New feature Updated to support upgrades from MySQL version
5.5 to version 5.6.

April 23, 2014

New feature Updated to support Oracle GoldenGate. April 3, 2014

New feature Updated to support the M3 DB instance classes. February 20, 2014

New feature Updated to support the Oracle Timezone option. January 13, 2014

New feature Updated to support replication between MySQL DB
instances in different regions.

November 26,
2013

New feature Updated to support the PostgreSQL DB engine. November 14,
2013

New feature Updated to support SQL Server transparent data
encryption (TDE).

November 7,
2013

New API and new
feature

Updated to support cross region DB snapshot copies;
new API version, 2013-09-09.

October 31, 2013

New features Updated to support Oracle Statspack. September 26,
2013

Earlier updates 5451

Amazon Relational Database Service User Guide

Change Description Date changed

New features Updated to support using replication to import or
export data between instances of MySQL running in
Amazon RDS and instances of MySQL running on-
premises or on Amazon EC2.

September 5,
2013

New features Updated to support the db.cr1.8xlarge DB instance
class for MySQL 5.6.

September 4,
2013

New feature Updated to support replication of read replicas. August 28, 2013

New feature Updated to support parallel read replica creation. July 22, 2013

New feature Updated to support fine-grained permissions and
tagging for all Amazon RDS resources.

July 8, 2013

New feature Updated to support MySQL 5.6 for new instances
, including support for the MySQL 5.6 memcached
interface and binary log access.

July 1, 2013

New feature Updated to support major version upgrades from
MySQL 5.1 to MySQL 5.5.

June 20, 2013

New feature Updated DB parameter groups to allow expressions
for parameter values.

June 20, 2013

New API and new
feature

Updated to support read replica status; new API
version, 2013-05-15.

May 23, 2013

New features Updated to support Oracle Advanced Security
features for native network encryption and Oracle
Transparent Data Encryption.

April 18, 2013

New features Updated to support major version upgrades for SQL
Server and additional functionality for Provisioned
IOPS.

March 13, 2013

New feature Updated to support VPC By Default for RDS. March 11, 2013

Earlier updates 5452

Amazon Relational Database Service User Guide

Change Description Date changed

New API and
feature

Updated to support log access; new API version 20
13-02-12

March 4, 2013

New feature Updated to support RDS event notification subscri
ptions.

February 4, 2013

New API and
feature

Updated to support DB instance renaming and the
migration of DB security group members in a VPC to
a VPC security group.

January 14, 2013

New feature Updated for AWS GovCloud (US-West) support. December 17,
2012

New feature Updated to support m1.medium and m1.xlarge DB
instance classes.

November 6,
2012

New feature Updated to support read replica promotion. October 11, 2012

New feature Updated to support SSL in Microsoft SQL Server DB
instances.

October 10, 2012

New feature Updated to support Oracle micro DB instances. September 27,
2012

New feature Updated to support SQL Server 2012. September 26,
2012

New API and
feature

Updated to support provisioned IOPS. API version
2012-09-17.

September 25,
2012

New features Updated for SQL Server support for DB instances in
VPC and Oracle support for Data Pump.

September 13,
2012

New feature Updated for support for SQL Server Agent. August 22, 2012

New feature Updated for support for tagging of DB instances. August 21, 2012

Earlier updates 5453

Amazon Relational Database Service User Guide

Change Description Date changed

New features Updated for support for Oracle APEX and XML DB,
Oracle time zones, and Oracle DB instances in a VPC.

August 16, 2012

New features Updated for support for SQL Server Database Engine
Tuning Advisor and Oracle DB instances in VPC.

July 18, 2012

New feature Updated for support for option groups and first
option, Oracle Enterprise Manager Database Control.

May 29, 2012

New feature Updated for support for read replicas in Amazon
Virtual Private Cloud.

May 17, 2012

New feature Updated for Microsoft SQL Server support. May 8, 2012

New features Updated for support for forced failover, Multi-AZ
deployment of Oracle DB instances, and nondefault
character sets for Oracle DB Instances.

May 2, 2012

New feature Updated for Amazon Virtual Private Cloud (VPC)
Support.

February 13, 2012

Updated content Updated for new Reserved Instance types. December 19,
2011

New feature Updated for Oracle engine support. May 23, 2011

Updated content Console updates. May 13, 2011

Updated content Edited content for shortened backup and maintenan
ce windows.

February 28, 2011

New feature Added support for MySQL 5.5. January 31, 2011

New feature Added support for read replicas. October 4, 2010

New feature Added support for AWS Identity and Access
Management (IAM).

September 2,
2010

Earlier updates 5454

Amazon Relational Database Service User Guide

Change Description Date changed

New feature Added DB engine Version Management. August 16, 2010

New feature Added Reserved DB instances. August 16, 2010

New Feature Amazon RDS now supports SSL connections to your
DB instances.

June 28, 2010

New Guide This is the first release of the Amazon RDS User
Guide.

June 7, 2010

Earlier updates 5455

Amazon Relational Database Service User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

5456

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Relational Database Service
	Table of Contents
	What is Amazon Relational Database Service (Amazon RDS)?
	Advantages of Amazon RDS
	Comparison of responsibilities with Amazon EC2 and on-premises deployments
	Amazon RDS shared responsibility model
	Amazon RDS DB instances
	Amazon RDS application architecture: example
	DB engines
	DB instance classes
	DB instance storage
	DB instances in an Amazon Virtual Private Cloud (Amazon VPC)

	AWS Regions and Availability Zones
	Availability Zones
	Multi-AZ deployments

	Access control with security groups
	Amazon RDS monitoring
	User interfaces to Amazon RDS
	AWS Management Console
	Command line interface
	Amazon RDS APIs

	How you are charged for Amazon RDS
	What's next?
	Getting started
	Topics specific to database engines

	Amazon RDS DB instances
	DB instance classes
	DB instance class types
	General-purpose instance class types
	Memory-optimized instance class types
	Compute-optimized instance class type
	Burstable-performance instance class types
	Optimized Reads instance class types

	Supported DB engines for DB instance classes
	Supported DB engines for general-purpose instance classes
	Supported DB engines for memory-optimized instance classes
	Supported DB engines for compute-optimized instance classes
	Supported DB engines for burstable-performance instance classes
	Supported DB engines for Optimized Reads instance classes

	Determining DB instance class support in AWS Regions
	Using the Amazon RDS pricing page to determine DB instance class support in AWS Regions
	Using the AWS CLI to determine DB instance class support in AWS Regions
	Listing the DB instance classes that are supported by a specific DB engine version in an AWS Region
	Listing the DB engine versions that support a specific DB instance class in an AWS Region
	Listing AWS Regions that support a specific DB engine and instance class

	Changing your DB instance class
	Configuring the processor for a DB instance class in RDS for Oracle
	Overview of processor configuration for RDS for Oracle
	DB instance classes that support processor configuration
	Setting the CPU cores and threads per CPU core for a DB instance class
	Console
	AWS CLI
	Setting the number of CPU cores for a DB instance
	Setting the number of CPU cores and disabling multiple threads for a DB instance
	Viewing the valid processor values for a DB instance class
	Returning to default processor settings for a DB instance
	Returning to the default number of CPU cores for a DB instance
	Returning to the default number of threads per core for a DB instance

	RDS API

	Hardware specifications for DB instance classes
	Hardware terminology for DB instance classes
	Hardware specifications for the general-purpose instance classes
	Hardware specifications for the memory-optimized instance classes
	Hardware specifications for the compute-optimized instance classes
	Hardware specifications for the burstable-performance instance classes

	Amazon RDS DB instance storage
	Amazon RDS storage types
	Provisioned IOPS SSD storage
	io2 Block Express storage (recommended)
	io1 storage (previous generation)
	Combining Provisioned IOPS storage with Multi-AZ deployments or read replicas
	Provisioned IOPS storage costs
	Getting the best performance from Amazon RDS Provisioned IOPS storage

	General Purpose SSD storage
	gp3 storage (recommended)
	gp2 storage (previous generation)

	Performance characteristics of solid-state drive (SSD) storage types
	Automatic striping across SSD volumes
	Performance impact when you modify an SSD volume
	Baseline and maximum IOPS rates for EBS-optimized instances

	Magnetic storage (deprecated)
	Dedicated log volume (DLV)
	Monitoring database performance
	Factors that affect database performance
	System activities
	Database workload
	DB instance class

	Regions, Availability Zones, and Local Zones
	AWS Regions
	Region availability

	Availability Zones
	Local Zones

	Supported features in Amazon RDS by AWS Region and DB engine
	Table conventions
	Feature quick reference
	Supported Regions and DB engines for Amazon RDS Blue/Green Deployments
	Blue/green deployments with RDS for MariaDB
	Blue/green deployments with RDS for MySQL
	Blue/green deployments with RDS for PostgreSQL

	Supported Regions and DB engines for cross-Region automated backups in Amazon RDS
	Backup replication with RDS for Db2
	Backup replication with RDS for MariaDB
	Backup replication with RDS for MySQL
	Backup replication with RDS for Oracle
	Backup replication with RDS for PostgreSQL
	Backup replication with RDS for SQL Server

	Supported Regions and DB engines for cross-Region read replicas in Amazon RDS
	Cross-Region read replicas with RDS for MariaDB
	Cross-Region read replicas with RDS for MySQL
	Cross-Region read replicas with RDS for Oracle
	Cross-Region read replicas with RDS for PostgreSQL
	Cross-Region read replicas with RDS for SQL Server

	Supported Regions and DB engines for database activity streams in Amazon RDS
	Database activity streams with RDS for Oracle
	Database activity streams with RDS for SQL Server

	Supported Regions and DB engines for dual-stack mode in Amazon RDS
	Dual-stack mode with RDS for Db2
	Dual-stack mode with RDS for MariaDB
	Dual-stack mode with RDS for MySQL
	Dual-stack mode with RDS for Oracle
	Dual-stack mode with RDS for PostgreSQL
	Dual-stack mode with RDS for SQL Server

	Supported Regions and DB engines for exporting snapshots to S3 in Amazon RDS
	Export snapshots to S3 with RDS for MariaDB
	Export snapshots to S3 with RDS for MySQL
	Export snapshots to S3 with RDS for PostgreSQL

	Supported Regions and DB engines for IAM database authentication in Amazon RDS
	IAM database authentication with RDS for MariaDB
	IAM database authentication with RDS for MySQL
	IAM database authentication with RDS for PostgreSQL

	Supported Regions and DB engines for Kerberos authentication in Amazon RDS
	Kerberos authentication with RDS for Db2
	Kerberos authentication with RDS for MySQL
	Kerberos authentication with RDS for Oracle
	Kerberos authentication with RDS for PostgreSQL
	Kerberos authentication with RDS for SQL Server

	Supported Regions and DB engines for Multi-AZ DB clusters in Amazon RDS
	Multi-AZ DB clusters with RDS for MySQL
	Multi-AZ DB clusters with RDS for PostgreSQL

	Supported Regions and DB engines for Performance Insights in Amazon RDS
	Supported Regions and DB engines for RDS Custom
	Supported Regions and DB engines for RDS Custom for Oracle
	Supported Regions and DB engines for RDS Custom for SQL Server

	Supported Regions and DB engines for Amazon RDS Proxy
	RDS Proxy with RDS for MariaDB
	RDS Proxy with RDS for MySQL
	RDS Proxy with RDS for PostgreSQL
	RDS Proxy with RDS for SQL Server

	Supported Regions and DB engines for the Secrets Manager integration with Amazon RDS
	Supported Regions and DB engines for Amazon RDS zero-ETL integrations with Amazon Redshift
	Zero-ETL integrations with RDS for MySQL

	Engine-native features in Amazon RDS

	DB instance billing for Amazon RDS
	On-Demand DB instances for Amazon RDS
	Stopped DB instances
	Multi-AZ DB instances

	Reserved DB instances for Amazon RDS
	Overview of reserved DB instances
	Offering types
	Size-flexible reserved DB instances
	Reserved DB instance billing example
	Reserved DB instances for a Multi-AZ DB cluster
	Deleting a reserved DB instance

	Purchasing reserved DB instances for Amazon RDS
	Console
	AWS CLI
	RDS API

	Viewing the billing for reserved DB instances for Amazon RDS

	Setting up your Amazon RDS environment
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access
	Determine requirements
	Provide access to your DB instance in your VPC by creating a security group

	Getting started with Amazon RDS
	Creating and connecting to a MariaDB DB instance
	Prerequisites
	Create an EC2 instance
	Create a MariaDB DB instance
	(Optional) Create VPC, EC2 instance, and MariaDB instance using AWS CloudFormation
	Download the CloudFormation template
	Configure your resources using CloudFormation

	Connect to a MariaDB DB instance
	Delete the EC2 instance and DB instance
	(Optional) Delete the EC2 instance and DB instance created with CloudFormation
	(Optional) Connect your DB instance to a Lambda function

	Creating and connecting to a Microsoft SQL Server DB instance
	Prerequisites
	Create an EC2 instance
	Create a SQL Server DB instance
	(Optional) Create VPC, EC2 instance, and SQL Server instance using AWS CloudFormation
	Download the CloudFormation template
	Configure your resources using CloudFormation

	Connect to your SQL Server DB instance
	Explore your sample SQL Server DB instance
	Delete the EC2 instance and DB instance
	(Optional) Delete the EC2 instance and DB instance created with CloudFormation
	(Optional) Connect your DB instance to a Lambda function

	Creating and connecting to a MySQL DB instance
	Prerequisites
	Create an EC2 instance
	Create a MySQL DB instance
	(Optional) Create VPC, EC2 instance, and MySQL instance using AWS CloudFormation
	Download the CloudFormation template
	Configure your resources using CloudFormation

	Connect to a MySQL DB instance
	Delete the EC2 instance and DB instance
	(Optional) Delete the EC2 instance and DB instance created with CloudFormation
	(Optional) Connect your DB instance to a Lambda function

	Creating and connecting to an Oracle DB instance
	Prerequisites
	Step 1: Create an EC2 instance
	Step 2: Create an Oracle DB instance
	(Optional) Create VPC, EC2 instance, and Oracle DB instance using AWS CloudFormation
	Download the CloudFormation template
	Configure your resources using CloudFormation

	Step 3: Connect your SQL client to an Oracle DB instance
	Step 4: Delete the EC2 instance and DB instance
	(Optional) Delete the EC2 instance and DB instance created with CloudFormation
	(Optional) Connect your DB instance to a Lambda function

	Creating and connecting to a PostgreSQL DB instance
	Prerequisites
	Create an EC2 instance
	Create a PostgreSQL DB instance
	(Optional) Create VPC, EC2 instance, and PostgreSQL instance using AWS CloudFormation
	Download the CloudFormation template
	Configure your resources using CloudFormation

	Connect to a PostgreSQL DB instance
	Delete the EC2 instance and DB instance
	(Optional) Delete the EC2 instance and DB instance created with CloudFormation
	(Optional) Connect your DB instance to a Lambda function

	Tutorial: Create a web server and an Amazon RDS DB instance
	Launch an EC2 instance to connect with your DB instance
	Create an Amazon RDS DB instance
	Install a web server on your EC2 instance
	Install an Apache web server with PHP and MariaDB
	Connect your Apache web server to your DB instance

	Tutorial: Using a Lambda function to access an Amazon RDS database
	Prerequisites
	Create an Amazon RDS DB instance
	Create Lambda function and proxy
	Create a function execution role
	Create a Lambda deployment package
	Update the Lambda function
	Test your Lambda function in the console
	Create an Amazon SQS queue
	Create an event source mapping to invoke your Lambda function
	Test and monitor your setup
	Clean up your resources

	Amazon RDS tutorials and sample code
	Tutorials in this guide
	Tutorials in other AWS guides
	AWS workshop and lab content portal for Amazon RDS PostgreSQL
	AWS workshop and lab content portal for Amazon RDS MySQL
	Tutorials and sample code in GitHub
	Using this service with an AWS SDK

	Best practices for Amazon RDS
	Amazon RDS basic operational guidelines
	DB instance RAM recommendations
	Keeping database engine versions up to date
	AWS database drivers
	Using Enhanced Monitoring to identify operating system issues
	Using metrics to identify performance issues
	Viewing performance metrics
	Evaluating performance metrics

	Tuning queries
	Best practices for working with MySQL
	Table size
	Number of tables
	Storage engine

	Best practices for working with MariaDB
	Table size
	Number of tables
	Storage engine

	Best practices for working with Oracle
	Best practices for working with PostgreSQL
	Loading data into a PostgreSQL DB instance
	Working with the PostgreSQL autovacuum feature
	Amazon RDS for PostgreSQL best practices video

	Best practices for working with SQL Server
	Amazon RDS for SQL Server best practices video

	Working with DB parameter groups
	Best practices for automating DB instance creation
	Amazon RDS new features video

	Programmatic access to Amazon RDS
	Use Console-to-Code to generate code for your Amazon RDS console actions

	Configuring an Amazon RDS DB instance
	Creating an Amazon RDS DB instance
	DB instance prerequisites
	Configure the network for the DB instance
	Configure automatic network connectivity with an EC2 instance
	Configure the network manually

	Additional prerequisites

	Creating a DB instance
	Console
	AWS CLI
	RDS API

	Settings for DB instances

	Creating Amazon RDS resources with AWS CloudFormation
	RDS and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Connecting to an Amazon RDS DB instance
	Finding the connection information for an Amazon RDS DB instance
	Console
	AWS CLI
	RDS API

	Scenarios for accessing a DB instance in a VPC
	Connecting to DB instances with the AWS drivers
	Connecting to a DB instance that's running a specific DB engine
	Managing connections with RDS Proxy
	Database authentication options
	Encrypted connections

	Working with option groups
	Option groups overview
	Persistent and permanent options
	VPC considerations
	Mutually exclusive options

	Creating an option group
	Console
	AWS CLI
	RDS API

	Copying an option group
	AWS CLI
	RDS API

	Adding an option to an option group
	Console
	AWS CLI
	RDS API

	Listing the options and option settings for an option group
	Console
	AWS CLI
	RDS API

	Modifying an option setting
	Console
	AWS CLI
	RDS API

	Removing an option from an option group
	Console
	AWS CLI
	RDS API

	Deleting an option group
	Console
	AWS CLI
	RDS API

	Parameter groups for Amazon RDS
	Overview of parameter groups
	Default and custom parameter groups
	Static and dynamic DB instance parameters
	Static and dynamic DB cluster parameters
	Character set parameters
	Supported parameters and parameter values

	DB parameter groups for Amazon RDS DB instances
	Creating a DB parameter group in Amazon RDS
	Console
	AWS CLI
	RDS API

	Associating a DB parameter group with a DB instance in Amazon RDS
	Console
	AWS CLI
	RDS API

	Modifying parameters in a DB parameter group in Amazon RDS
	Console
	AWS CLI
	RDS API

	Resetting parameters in a DB parameter group to their default values in Amazon RDS
	Console
	AWS CLI
	RDS API

	Copying a DB parameter group in Amazon RDS
	Console
	AWS CLI
	RDS API

	Listing DB parameter groups in Amazon RDS
	Console
	AWS CLI
	RDS API

	Viewing parameter values for a DB parameter group in Amazon RDS
	Console
	AWS CLI
	RDS API

	Deleting a DB parameter group in Amazon RDS
	Console
	AWS CLI
	RDS API

	Working with DB cluster parameter groups for Multi-AZ DB clusters
	Creating a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Modifying parameters in a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Resetting parameters in a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Copying a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Listing DB cluster parameter groups
	Console
	AWS CLI
	RDS API

	Viewing parameter values for a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Deleting a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Comparing DB parameter groups
	Specifying DB parameters
	DB parameter formulas
	DB parameter formula variables
	DB parameter formula operators

	DB parameter functions
	Boolean DB parameter expressions
	DB parameter log expressions
	DB parameter value examples

	Creating an Amazon ElastiCache cache using Amazon RDS DB instance settings
	Overview of ElastiCache cache creation with RDS DB instance settings
	Setting up ElastiCache in your applications

	Creating an ElastiCache cache with settings from an RDS DB instance

	Auto migrating EC2 databases to Amazon RDS using AWS Database Migration Service
	Overview
	Prerequisites
	MySQL and MariaDB
	PostgreSQL

	Limitations
	Creating IAM resources for homogeneous migrations
	Creating an IAM policy for homogeneous data migrations
	Creating an IAM role for homogeneous data migrations
	Creating a secret access policy and role
	Creating an IAM role for AWS DMS to manage Amazon VPC

	Setting up data migration for EC2 database
	Managing data migrations
	Starting the data migration
	Stopping the data migration
	Resuming the data migration
	Deleting the data migration
	Restarting the data migration

	Monitoring your data migrations
	Migration statuses

	Tutorial: Creating a MySQL DB instance with a custom parameter and new option group
	Prerequisites
	Create an Amazon RDS parameter group
	Modify parameter values in your custom parameter group
	Create a new Amazon RDS option group
	Add a option to your new option group
	Create MySQL DB instance with a custom parameter and a new option group

	Managing an Amazon RDS DB instance
	Stopping an Amazon RDS DB instance temporarily
	Use cases for stopping your DB instance
	Supported DB engines, instance classes, and Regions
	Stopping a DB instance in a Multi-AZ deployment
	How stopping a DB instance works
	Characteristics of a stopped DB instance
	Automatic restart of a stopped DB instance

	Limitations of stopping your DB instance
	Option and parameter group considerations
	Public IP address considerations
	Stopping a DB instance temporarily: basic steps
	Console
	AWS CLI
	RDS API

	Starting an Amazon RDS DB instance that was previously stopped
	Console
	AWS CLI
	RDS API

	Rebooting a DB instance
	Use cases for rebooting a DB instance
	How rebooting a DB instance works
	How rebooting a DB instance in a Multi-AZ deployment works
	Considerations when rebooting a DB instance
	Prerequisites for rebooting a DB instance
	Rebooting a DB instance: basic steps
	Console
	AWS CLI
	RDS API

	Automatically connecting an EC2 instance and a DB instance
	Overview of automatic connectivity with an EC2 instance
	Automatically connecting an EC2 instance and an RDS database
	Viewing connected compute resources
	Connecting to a DB instance that is running a specific DB engine

	Automatically connecting a Lambda function and a DB instance
	Overview of automatic connectivity with a Lambda function
	Automatically connecting a Lambda function and an RDS database
	Viewing connected compute resources

	Modifying an Amazon RDS DB instance
	Console
	AWS CLI
	RDS API
	Using the schedule modifications setting
	Settings for DB instances

	Maintaining a DB instance
	Overview of DB instance maintenance updates
	Offline resources during maintenance updates
	Deferred DB instance modifications
	Eventual consistency for the DescribePendingMaintenanceActions API

	Viewing pending maintenance updates
	Maintenance actions for Amazon RDS

	Maintenance for Multi-AZ deployments
	Amazon RDS maintenance window
	Adjusting the preferred DB instance maintenance window
	Console
	AWS CLI
	RDS API

	Applying updates to a DB instance
	Console
	AWS CLI
	RDS API

	Operating system updates for RDS DB instances
	Console
	AWS CLI
	Availability of operating system updates

	Upgrading a DB instance engine version
	Manually upgrading the engine version
	Console
	AWS CLI
	RDS API

	Automatically upgrading the minor engine version
	How automatic minor version upgrades work
	Turning on automatic minor version upgrades
	Determining the availability of maintenance updates
	Finding automatic minor version upgrade targets

	Renaming a DB instance
	Renaming to replace an existing DB instance
	Console
	AWS CLI
	RDS API

	Working with DB instance read replicas
	Overview of Amazon RDS read replicas
	Use cases for read replicas
	How read replicas work
	Read replicas in a Multi-AZ deployment
	Cross-Region read replicas
	Differences among read replicas for DB engines
	Read replica storage types
	Restrictions for creating a replica from a replica
	Considerations when deleting replicas

	Creating a read replica
	Console
	AWS CLI
	RDS API

	Promoting a read replica to be a standalone DB instance
	Use cases for promoting a read replica
	Characteristics of a promoted read replica
	Prerequisites for promoting a read replica
	Promoting a read replica: basic steps
	Console
	AWS CLI
	RDS API

	Monitoring read replication
	Monitoring replication lag

	Creating a read replica in a different AWS Region
	Region and version availability
	Creating a cross-Region read replica
	Console
	AWS CLI
	RDS API

	How Amazon RDS does cross-Region replication
	Cross-Region replication considerations
	Requesting a cross-Region read replica
	Authorizing the read replica
	Using AWS Security Token Service credentials

	Cross-Region replication costs

	Tagging Amazon RDS resources
	Why use Amazon RDS resource tags?
	How Amazon RDS resource tags work
	Tag sets in Amazon RDS
	Tag structure in Amazon RDS
	Amazon RDS resources eligible for tagging
	How AWS billing works with tags in Amazon RDS
	How cost allocation tags work with DB snapshots

	Best practices for tagging Amazon RDS resources
	Copying tags to DB snapshots
	Adding and deleting tags in Amazon RDS
	Console
	AWS CLI
	RDS API

	Tutorial: Specify which DB instances to stop by using tags

	Amazon Resource Names (ARNs) in Amazon RDS
	Constructing an ARN for Amazon RDS
	Getting an existing ARN for Amazon RDS
	Console
	AWS CLI
	RDS API

	Working with storage for Amazon RDS DB instances
	Increasing DB instance storage capacity
	Console
	AWS CLI
	RDS API

	Managing capacity automatically with Amazon RDS storage autoscaling
	Limitations of storage autoscaling
	Enabling storage autoscaling for a new DB instance
	Console
	AWS CLI
	RDS API

	Changing the storage autoscaling settings for a DB instance
	Console
	AWS CLI
	RDS API

	Manually scaling your DB instance down or in
	Turning off storage autoscaling for a DB instance
	Console
	AWS CLI
	RDS API

	Upgrading the storage file system for a DB instance
	Modifying settings for Provisioned IOPS SSD storage
	Console
	AWS CLI
	RDS API

	I/O-intensive storage modifications
	Modifying settings for General Purpose SSD (gp3) storage
	Console
	AWS CLI
	RDS API

	Using a dedicated log volume (DLV)
	Considerations when enabling and disabling DLV
	Enabling DLV when you create a DB instance
	Console
	CLI
	RDS API

	Enabling DLV on an existing DB instance
	Console
	CLI
	RDS API

	Monitoring DLV storage

	Deleting a DB instance
	Prerequisites for deleting a DB instance
	Considerations when deleting a DB instance
	Deleting a DB instance
	Console
	AWS CLI
	RDS API

	Tutorial: Managing a MySQL DB instance environment from development to production
	Introduction
	Prerequisites
	Add tags to categorize your DB instance as a development environment
	Increase the storage capacity of a DB instance to accommodate growing data needs
	Create read replicas to enhance the resilience and availability of a DB instance
	Update tags to categorize a DB instance as a production environment
	Delete a DB instance when it is no longer needed to avoid incurring additional costs
	Next steps: Synchronize your development instance with production for consistency across environments
	Create a development environment
	Synchronize a development environment with production environment

	Configuring and managing a Multi-AZ deployment for Amazon RDS
	Multi-AZ DB instance deployments for Amazon RDS
	Converting a DB instance to a Multi-AZ deployment for Amazon RDS
	Convert to a Multi-AZ DB instance deployment with the RDS console
	Modifying a DB instance to be a Multi-AZ DB instance deployment

	Failing over a Multi-AZ DB instance for Amazon RDS
	Setting the JVM TTL for DNS name lookups

	Multi-AZ DB cluster deployments for Amazon RDS
	Instance class availability for Multi-AZ DB clusters
	Multi-AZ DB cluster architecture
	Parameter groups for Multi-AZ DB clusters
	RDS Proxy with Multi-AZ DB clusters
	Replica lag and Multi-AZ DB clusters
	Common causes of replica lag
	Mitigating replica lag
	Mitigating replica lag with flow control for RDS for MySQL
	Mitigating replica lag with flow control for RDS for PostgreSQL

	Multi-AZ DB cluster snapshots
	Creating a Multi-AZ DB cluster for Amazon RDS
	DB cluster prerequisites
	Configure the network for the DB cluster
	Configure automatic network connectivity with an EC2 instance
	Configure the network manually

	Additional prerequisites

	Creating a DB cluster
	Console
	AWS CLI
	RDS API

	Settings for creating Multi-AZ DB clusters
	Settings that don't apply when creating Multi-AZ DB clusters

	Connecting to a Multi-AZ DB cluster for Amazon RDS
	Types of Multi-AZ DB cluster endpoints
	Viewing endpoints
	Cluster endpoints
	Reader endpoints
	Instance endpoints
	High availability connections
	Connecting to Multi-AZ DB clusters with the AWS drivers for Amazon RDS
	Connecting to Multi-AZ DB clusters with the Amazon Web Services (AWS) JDBC Driver
	Connecting to Multi-AZ DB clusters with the Amazon Web Services (AWS) Python Driver

	Automatically connecting an AWS compute resource and a Multi-AZ DB cluster for Amazon RDS
	Automatically connecting an EC2 instance and a Multi-AZ DB cluster
	Overview of automatic connectivity with an EC2 instance
	Connecting an EC2 instance and a Multi-AZ DB cluster automatically
	Viewing connected compute resources

	Automatically connecting a Lambda function and a Multi-AZ DB cluster
	Overview of automatic connectivity with a Lambda function
	Automatically connecting a Lambda function and a Multi-AZ DB cluster
	Viewing connected compute resources

	Modifying a Multi-AZ DB cluster for Amazon RDS
	Console
	AWS CLI
	RDS API
	Applying changes immediately
	Settings for modifying Multi-AZ DB clusters
	Settings that don't apply when modifying Multi-AZ DB clusters

	Upgrading the engine version of a Multi-AZ DB cluster for Amazon RDS
	Minor version upgrades
	Major version upgrades
	Upgrading a Multi-AZ DB cluster
	Upgrading Multi-AZ DB cluster read replicas

	Renaming a Multi-AZ DB cluster for Amazon RDS
	Renaming to replace an existing Multi-AZ DB cluster
	Console
	AWS CLI
	RDS API

	Rebooting a Multi-AZ DB cluster and reader DB instances for Amazon RDS
	Console
	AWS CLI
	RDS API

	Failing over a Multi-AZ DB cluster for Amazon RDS
	Automatic failovers
	Manually failing over a Multi-AZ DB cluster
	Console
	AWS CLI
	RDS API

	Determining whether a Multi-AZ DB cluster has failed over
	Setting the JVM TTL for DNS name lookups

	Setting up PostgreSQL logical replication with Multi-AZ DB clusters for Amazon RDS
	Prerequisites
	Setting up logical replication
	Limitations and recommendations

	Working with Multi-AZ DB cluster read replicas for Amazon RDS
	Migrating to a Multi-AZ DB cluster using a read replica
	Creating and promoting the Multi-AZ DB cluster read replica
	Console
	AWS CLI
	RDS API

	Limitations for creating a Multi-AZ DB cluster read replica

	Creating a DB instance read replica from a Multi-AZ DB cluster
	Comparing reader DB instances and DB instance read replicas
	Considerations
	Creating a DB instance read replica
	Console
	AWS CLI
	RDS API

	Promoting the DB instance read replica
	Limitations for creating a DB instance read replica from a Multi-AZ DB cluster

	Setting up external replication from Multi-AZ DB clusters for Amazon RDS
	RDS for MySQL
	RDS for PostgreSQL

	Deleting a Multi-AZ DB cluster for Amazon RDS
	Console
	AWS CLI
	RDS API

	Limitations of Multi-AZ DB clusters for Amazon RDS

	Amazon RDS Extended Support with Amazon RDS
	Overview of Amazon RDS Extended Support
	Amazon RDS Extended Support charges
	Avoiding charges for Amazon RDS Extended Support

	Versions with Amazon RDS Extended Support
	Amazon RDS Extended Support version naming

	Amazon RDS and customer responsibilities with Amazon RDS Extended Support
	Amazon RDS responsibilities
	Your responsibilities

	Creating a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support
	RDS Extended Support behavior
	Considerations for RDS Extended Support
	Create a DB instance or a Multi-AZ DB cluster with RDS Extended Support
	Console
	AWS CLI
	RDS API

	Viewing the enrollment of your DB instances or Multi-AZ DB clusters in Amazon RDS Extended Support
	Console
	AWS CLI
	RDS API

	Restoring a DB instance or a Multi-AZ DB cluster with Amazon RDS Extended Support
	RDS Extended Support behavior
	Considerations for RDS Extended Support
	Restore a DB instance or a Multi-AZ DB cluster with RDS Extended Support
	Console
	AWS CLI
	RDS API

	Using Amazon RDS Blue/Green Deployments for database updates
	Overview of Amazon RDS Blue/Green Deployments
	Region and version availability
	Benefits of using Amazon RDS Blue/Green Deployments
	Workflow of a blue/green deployment
	Authorizing access to Amazon RDS blue/green deployment operations
	Limitations and considerations for Amazon RDS blue/green deployments
	Limitations for blue/green deployments
	General limitations for blue/green deployments
	RDS for MySQL limitations for blue/green deployments
	RDS for PostgreSQL limitations for blue/green deployments with physical replication
	RDS for PostgreSQL limitations for blue/green deployments with logical replication
	Logical replication-specific limitations for blue/green deployments

	Considerations for blue/green deployments

	Best practices for Amazon RDS blue/green deployments
	General best practices for blue/green deployments
	RDS for MySQL best practices for blue/green deployments
	RDS for PostgreSQL best practices for blue/green deployments
	RDS for PostgreSQL general best practices for blue/green deployments
	RDS for PostgreSQL best practices for blue/green deployments with physical replication
	RDS for PostgreSQL best practices for blue/green deployments with logical replication

	PostgreSQL replication methods for blue/green deployments

	Creating a blue/green deployment in Amazon RDS
	Preparing for a blue/green deployment
	Preparing an RDS for MySQL or RDS for MariaDB DB instance for a blue/green deployment
	Preparing an RDS for PostgreSQL DB instance for a blue/green deployment with physical replication
	Preparing an RDS for PostgreSQL DB instance for a blue/green deployment with logical replication

	Specifying changes when creating a blue/green deployment
	Specify a higher engine version
	Specify a different DB parameter group
	Modify storage and performance settings
	Enable RDS Optimized Writes
	Upgrade the storage configuration

	Lazy loading and storage initialization for blue/green deployments
	Creating a blue/green deployment
	Console
	AWS CLI
	RDS API

	Settings for creating blue/green deployments

	Viewing a blue/green deployment in Amazon RDS
	Console
	AWS CLI
	RDS API

	Switching a blue/green deployment in Amazon RDS
	Switchover timeout
	Switchover guardrails
	Switchover actions
	Switchover best practices
	Verifying CloudWatch metrics before switchover
	Monitoring replica lag prior to switchover
	RDS for MySQL and RDS for MariaDB
	RDS for PostgreSQL

	Switching over a blue/green deployment
	Console
	AWS CLI
	RDS API

	After switchover
	Updating the parent node for consumers

	Deleting a blue/green deployment in Amazon RDS
	Console
	AWS CLI
	RDS API

	Backing up, restoring, and exporting data
	Introduction to backups
	Backup storage

	Managing automated backups
	Backup window
	Backup retention period
	Enabling automated backups
	Console
	AWS CLI
	RDS API
	Viewing automated backups

	Retaining automated backups
	Retention period
	Viewing retained backups
	Restoration
	Retention costs
	Limitations

	Deleting retained automated backups
	Console
	AWS CLI
	RDS API
	Disabling automated backups
	Console
	AWS CLI
	RDS API

	Automated backups with unsupported MySQL storage engines
	Automated backups with unsupported MariaDB storage engines
	Replicating automated backups to another AWS Region
	Region and version availability
	Source and destination AWS Region support
	Limitations
	Enabling cross-Region automated backups for Amazon RDS
	Console
	AWS CLI
	RDS API

	Finding information about replicated backups for Amazon RDS
	Restoring to a specified time from a replicated backup for Amazon RDS
	Console
	AWS CLI
	RDS API

	Stopping automated backup replication for Amazon RDS
	Console
	AWS CLI
	RDS API

	Deleting replicated backups for Amazon RDS
	Console
	AWS CLI
	RDS API

	Managing manual backups
	Creating a DB snapshot for a Single-AZ DB instance for Amazon RDS
	Console
	AWS CLI
	RDS API

	Creating a Multi-AZ DB cluster snapshot for Amazon RDS
	Console
	AWS CLI
	RDS API
	Deleting a Multi-AZ DB cluster snapshot

	Deleting a DB snapshot for Amazon RDS
	Deleting a DB snapshot
	Console
	AWS CLI
	RDS API

	Restoring to a DB instance
	Restoring from a snapshot
	Console
	AWS CLI
	RDS API

	Considerations
	Parameter group considerations
	Security group considerations
	Option group considerations
	Resource tagging considerations
	Db2 considerations
	Microsoft SQL Server considerations
	MySQL considerations
	Oracle Database considerations

	Restoring a DB instance to a specified time for Amazon RDS
	Console
	AWS CLI
	RDS API

	Restoring a Multi-AZ DB cluster to a specified time
	Console
	AWS CLI
	RDS API

	Restoring from a snapshot to a Multi-AZ DB cluster
	Console
	AWS CLI
	RDS API

	Restoring from a Multi-AZ DB cluster snapshot to a DB instance
	Console
	AWS CLI
	RDS API

	Tutorial: Restore an Amazon RDS DB instance from a DB snapshot
	Restoring a DB instance from a DB snapshot

	Copying a DB snapshot for Amazon RDS
	Copying a DB snapshot
	Console
	AWS CLI
	RDS API

	Limitations
	Considerations
	Snapshot retention
	Considerations for shared snapshot copying
	Considerations for encryption snapshot copying
	Considerations for incremental snapshot copying
	Considerations for cross-Region snapshot copying
	Requesting a cross-Region DB snapshot copy
	Authorizing the snapshot copy
	Using AWS Security Token Service credentials
	Latency and multiple copy requests
	Full and incremental copies

	Considerations for option groups
	Considerations for parameter group

	Sharing a DB snapshot for Amazon RDS
	Sharing a snapshot
	Console
	AWS CLI
	RDS API

	Sharing public snapshots for Amazon RDS
	Viewing public snapshots owned by other AWS accounts
	Viewing your own public snapshots
	Sharing public snapshots from deprecated DB engine versions

	Sharing encrypted snapshots for Amazon RDS
	Create a customer managed key and give access to it
	Copy and share the snapshot from the source account
	Copy the shared snapshot in the target account

	Stopping snapshot sharing for Amazon RDS
	Console
	CLI
	RDS API

	Exporting DB snapshot data to Amazon S3 for Amazon RDS
	Overview of exporting snapshot data
	Setting up access to an Amazon S3 bucket
	Identifying the Amazon S3 bucket for export
	Providing access to an Amazon S3 bucket using an IAM role
	Using a cross-account Amazon S3 bucket
	Using a cross-account AWS KMS key for encrypting Amazon S3 exports

	Exporting a DB snapshot to an Amazon S3 bucket
	Console
	AWS CLI
	RDS API

	Region and version availability
	Limitations
	Monitoring snapshot exports for Amazon RDS
	Console
	AWS CLI
	RDS API

	Canceling a snapshot export task for Amazon RDS
	Console
	AWS CLI
	RDS API

	Failure messages for Amazon S3 export tasks for Amazon RDS
	Troubleshooting RDS for PostgreSQL permissions errors
	File naming conventions for exports to Amazon S3 for Amazon RDS
	Data conversion when exporting to an Amazon S3 bucket for Amazon RDS
	MySQL and MariaDB data type mapping to Parquet
	PostgreSQL data type mapping to Parquet

	Using AWS Backup to manage automated backups for Amazon RDS

	Monitoring metrics in an Amazon RDS instance
	Monitoring plan
	Performance baseline
	Performance guidelines
	Monitoring tools for Amazon RDS
	Automated monitoring tools
	Amazon RDS instance status and recommendations
	Amazon CloudWatch metrics for Amazon RDS
	Amazon RDS Performance Insights and operating-system monitoring
	Integrated services

	Manual monitoring tools

	Viewing instance status
	Viewing Amazon RDS DB instance status
	Console
	CLI
	API

	Recommendations from Amazon RDS
	Viewing Amazon RDS recommendations
	Console
	CLI
	RDS API

	Applying Amazon RDS recommendations
	Console
	RDS API

	Dismissing Amazon RDS recommendations
	Console
	CLI
	RDS API

	Modifying dismissed Amazon RDS recommendations to active recommendations
	Console
	CLI
	RDS API

	Recommendations from Amazon RDS reference

	Viewing metrics in the Amazon RDS console
	Viewing combined metrics with the Performance Insights dashboard
	Choosing the new monitoring view from the Monitoring tab
	Choosing the new monitoring view from the Performance Insights page
	Creating a custom dashboard with Performance Insights
	Choosing the preconfigured dashboard with Performance Insights

	Monitoring Amazon RDS metrics with Amazon CloudWatch
	Overview of Amazon RDS and Amazon CloudWatch
	Viewing DB instance metrics in the CloudWatch console and AWS CLI
	Console
	AWS CLI

	Exporting Performance Insights metrics to CloudWatch
	Exporting Performance Insights metrics as a new dashboard to CloudWatch
	Adding Performance Insights metrics to an existing CloudWatch dashboard
	Viewing a Performance Insights metric widget in CloudWatch

	Creating CloudWatch alarms to monitor Amazon RDS
	Tutorial: Creating an Amazon CloudWatch alarm for Multi-AZ DB cluster replica lag for Amazon RDS

	Monitoring Amazon RDS databases with CloudWatch Database Insights
	Pricing
	Amazon RDS DB engine, Region, and instance class support for Database Insights
	Turning on the Advanced mode of Database Insights for Amazon RDS
	Turning on the Advanced mode of Database Insights when creating a DB instance or Multi-AZ DB cluster
	Turning on the Advanced mode of Database Insights when modifying a DB instance or Multi-AZ DB cluster

	Turning on the Standard mode of Database Insights for Amazon RDS
	Turning on the Standard mode of Database Insights when creating a DB instance or Multi-AZ DB cluster
	Turning on the Standard mode of Database Insights when modifying a DB instance or Multi-AZ DB cluster

	Configuring your database to monitor slow SQL queries with Database Insights for Amazon RDS
	Considerations for Database Insights for Amazon RDS

	Monitoring DB load with Performance Insights on Amazon RDS
	Overview of Performance Insights on Amazon RDS
	Database load
	Active sessions
	Average active sessions
	Average active executions
	Dimensions
	Wait events
	Top SQL
	Plans
	Plan capture
	Digest queries

	Maximum CPU
	Amazon RDS DB engine, Region, and instance class support for Performance Insights
	Amazon RDS DB engine, Region, and instance class support for Performance Insights features

	Pricing and data retention for Performance Insights

	Turning Performance Insights on and off for Amazon RDS
	Overview of the Performance Schema for Performance Insights on Amazon RDS for MariaDB or MySQL
	Overview of the Performance Schema
	Performance Insights and the Performance Schema
	Automatic management of the Performance Schema by Performance Insights
	Effect of a reboot on the Performance Schema
	Determining whether Performance Insights is managing the Performance Schema
	Turn on the Performance Schema for Amazon RDS for MariaDB or MySQL

	Configuring access policies for Performance Insights
	Attaching the AmazonRDSPerformanceInsightsReadOnly policy to an IAM principal
	Attaching the AmazonRDSPerformanceInsightsFullAccess policy to an IAM principal
	Creating a custom IAM policy for Performance Insights
	Changing an AWS KMS policy for Performance Insights
	How Performance Insights uses AWS KMS customer managed key
	How Performance Insights IAM works with AWS KMS

	Granting fine-grained access for Performance Insights

	Analyzing metrics with the Performance Insights dashboard
	Overview of the Performance Insights dashboard
	Time range filter
	Counter metrics chart
	Database load chart
	DB load sliced by dimensions
	DB load details for a dimension item

	Top dimensions table

	Accessing the Performance Insights dashboard
	Analyzing DB load by wait events
	Analyzing database performance for a period of time
	Creating a performance analysis report in Performance Insights
	Viewing a performance analysis report in Performance Insights
	Adding tags to a performance analysis report in Performance Insights
	Deleting a performance analysis report in Performance Insights

	Analyzing queries with the Top SQL tab in Performance Insights
	Overview of the Top SQL tab
	SQL text
	SQL statistics
	Load by waits (AAS)
	View SQL information
	Choose statistics preferences

	Accessing more SQL text in the Performance Insights dashboard
	Text size limits for Amazon RDS engines
	Setting the SQL text limit for Amazon RDS for PostgreSQL DB instances
	Viewing and downloading SQL text in the Performance Insights dashboard

	Viewing SQL statistics in the Performance Insights dashboard

	Analyzing top Oracle PDB load
	Analyzing execution plans using the Performance Insights dashboard for Amazon RDS
	Overview of analyzing execution plans for Amazon RDS
	Analyzing Oracle execution plans using the Performance Insights dashboard for Amazon RDS
	Analyzing SQL Server execution plans using the Performance Insights dashboard for Amazon RDS

	Viewing Performance Insights proactive recommendations
	Retrieving metrics with the Performance Insights API for Amazon RDS
	Retrieving time-series metrics for Performance Insights
	AWS CLI examples for Performance Insights
	Built-in help for the AWS CLI for Performance Insights
	Retrieving counter metrics
	Retrieving the DB load average for top wait events
	Retrieving the DB load average for top SQL
	Retrieving the DB load average filtered by SQL
	Retrieving the full text of a SQL statement
	Creating a performance analysis report for a time period
	Retrieving a performance analysis report
	Listing all the performance analysis reports for the DB instance
	Deleting a performance analysis report
	Adding tag to a performance analysis report
	Listing all the tags for a performance analysis report
	Deleting tags from a performance analysis report

	Logging Performance Insights calls using AWS CloudTrail
	Working with Performance Insights information in CloudTrail
	Performance Insights log file entries

	Performance Insights API and interface VPC endpoints (AWS PrivateLink)
	Considerations for Performance Insights
	Availability
	Create an interface endpoint for Performance Insights
	Creating a VPC endpoint policy for Performance Insights API
	IP addressing for Performance Insights

	Analyzing performance anomalies with Amazon DevOps Guru for Amazon RDS
	Benefits of DevOps Guru for RDS
	How DevOps Guru for RDS works
	Proactive insights
	Reactive insights
	Causal anomalies
	Contextual anomalies

	Setting up DevOps Guru for RDS
	Configuring IAM access policies for DevOps Guru for RDS
	Turning on Performance Insights for your RDS for PostgreSQL DB instances
	Turning on DevOps Guru and specifying resource coverage
	Turning on DevOps Guru in the RDS console
	Turning on DevOps Guru when you create an RDS for PostgreSQL database
	Turning on DevOps Guru from the notification banner
	Responding to a permissions error when you turn on DevOps Guru

	Adding RDS for PostgreSQL resources in the DevOps Guru console
	Adding RDS for PostgreSQL resources using AWS CloudFormation

	Monitoring OS metrics with Enhanced Monitoring
	Overview of Enhanced Monitoring
	Enhanced Monitoring availability
	Differences between CloudWatch and Enhanced Monitoring metrics
	Retention of Enhanced Monitoring metrics
	Cost of Enhanced Monitoring

	Setting up and enabling Enhanced Monitoring
	Creating an IAM role for Enhanced Monitoring
	Creating the IAM role when you enable Enhanced Monitoring
	Creating the IAM role before you enable Enhanced Monitoring

	Turning Enhanced Monitoring on and off
	Console
	AWS CLI
	RDS API

	Protecting against the confused deputy problem

	Viewing OS metrics in the RDS console
	Viewing OS metrics using CloudWatch Logs

	Metrics reference for Amazon RDS
	Amazon CloudWatch metrics for Amazon RDS
	Amazon CloudWatch instance-level metrics for Amazon RDS
	Amazon CloudWatch usage metrics for Amazon RDS

	Amazon CloudWatch dimensions for Amazon RDS
	Amazon CloudWatch metrics for Amazon RDS Performance Insights
	Querying other Performance Insights counter metrics in CloudWatch

	Performance Insights counter metrics
	Performance Insights operating system counters
	Performance Insights counters for Amazon RDS for MariaDB and MySQL
	Native counters for RDS for MariaDB and RDS for MySQL
	Non-native counters for Amazon RDS for MariaDB and MySQL

	Performance Insights counters for Amazon RDS for Microsoft SQL Server
	Native counters for RDS for Microsoft SQL Server

	Performance Insights counters for Amazon RDS for Oracle
	Native counters for RDS for Oracle

	Performance Insights counters for Amazon RDS for PostgreSQL
	Native counters for Amazon RDS for PostgreSQL
	Non-native counters for Amazon RDS for PostgreSQL

	SQL statistics for Performance Insights
	SQL statistics for MariaDB and MySQL
	Digest statistics for MariaDB and MySQL
	Per-second statistics for MariaDB and MySQL
	Per-call statistics for MariaDB and MySQL
	Primary statistics for MariaDB and MySQL

	SQL statistics for Amazon RDS for Oracle
	Per-second statistics for Oracle
	Per-call statistics for Oracle
	Primary statistics for Oracle

	SQL statistics for Amazon RDS for SQL Server
	Per-second statistics for SQL Server
	Per-call statistics for SQL Server
	Primary statistics for SQL Server

	SQL statistics for RDS PostgreSQL
	Digest statistics for RDS PostgreSQL
	Per-second digest statistics for RDS PostgreSQL
	Per-call digest statistics for RDS PostgreSQL
	Primary statistics for RDS PostgreSQL

	OS metrics in Enhanced Monitoring
	OS metrics for Db2, MariaDB, MySQL, Oracle, and PostgreSQL
	OS metrics for Microsoft SQL Server

	Monitoring events, logs, and streams in an Amazon RDS DB instance
	Viewing logs, events, and streams in the Amazon RDS console
	Monitoring Amazon RDS events
	Overview of events for Amazon RDS
	Viewing Amazon RDS events
	Console
	AWS CLI
	API

	Working with Amazon RDS event notification
	Overview of Amazon RDS event notification
	RDS resources eligible for event subscription
	Basic process for subscribing to Amazon RDS event notifications
	Delivery of RDS event notifications
	Billing for Amazon RDS event notifications
	Examples of Amazon RDS events using Amazon EventBridge
	Example of a DB instance event
	Example of a DB parameter group event
	Example of a DB snapshot event

	Granting permissions to publish notifications to an Amazon SNS topic
	Subscribing to Amazon RDS event notification
	Console
	AWS CLI
	API

	Amazon RDS event notification tags and attributes
	Listing Amazon RDS event notification subscriptions
	Console
	AWS CLI
	API

	Modifying an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Adding a source identifier to an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Removing a source identifier from an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Listing the Amazon RDS event notification categories
	Console
	AWS CLI
	API

	Deleting an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Creating a rule that triggers on an Amazon RDS event
	Creating rules to send Amazon RDS events to Amazon EventBridge
	Tutorial: Log DB instance state changes using Amazon EventBridge
	Step 1: Create an AWS Lambda function
	Step 2: Create a rule
	Step 3: Test the rule

	Amazon RDS event categories and event messages
	DB cluster events
	DB cluster snapshot events
	DB instance events
	DB parameter group events
	DB security group events
	DB snapshot events
	RDS Proxy events
	Blue/green deployment events
	Custom engine version events

	Monitoring Amazon RDS log files
	Viewing and listing database log files
	Console
	AWS CLI
	RDS API

	Downloading a database log file
	Console
	AWS CLI
	RDS API

	Watching a database log file
	

	Publishing database logs to Amazon CloudWatch Logs
	Overview of RDS integration with CloudWatch Logs
	Deciding which logs to publish to CloudWatch Logs
	Specifying the logs to publish to CloudWatch Logs
	Searching and filtering your logs in CloudWatch Logs

	Reading log file contents using REST
	Amazon RDS for Db2 database log files
	Retention schedule
	Publishing Db2 logs to Amazon CloudWatch Logs
	Console
	AWS CLI

	MariaDB database log files
	Accessing MariaDB error logs
	Accessing the MariaDB slow query and general logs
	Publishing MariaDB logs to Amazon CloudWatch Logs
	Console
	AWS CLI
	RDS API

	Log rotation and retention for MariaDB
	Managing table-based MariaDB logs
	Configuring MariaDB binary logging
	Accessing MariaDB binary logs
	Enabling MariaDB binary log annotation

	Amazon RDS for Microsoft SQL Server database log files
	Retention schedule
	Viewing the SQL Server error log by using the rds_read_error_log procedure
	Publishing SQL Server logs to Amazon CloudWatch Logs
	Console
	AWS CLI

	MySQL database log files
	Overview of RDS for MySQL database logs
	RDS for MySQL error logs
	RDS for MySQL slow query and general logs
	MySQL audit log
	Log rotation and retention for RDS for MySQL
	Size limits on redo logs

	Publishing MySQL logs to Amazon CloudWatch Logs
	Console
	AWS CLI
	RDS API

	Sending MySQL log output to tables
	Configuring RDS for MySQL binary logging
	Configuring MySQL binary logging for Multi-AZ DB clusters
	Binary log transaction compression for Multi-AZ DB clusters
	Configuring binary log transaction compression for Multi-AZ DB clusters
	Console
	AWS CLI
	RDS API

	Accessing MySQL binary logs

	Amazon RDS for Oracle database log files
	Retention schedule
	Working with Oracle trace files
	Listing files
	Generating trace files and tracing a session
	Retrieving trace files
	Purging trace files

	Publishing Oracle logs to Amazon CloudWatch Logs
	Console
	AWS CLI
	RDS API

	Accessing alert logs and listener logs

	RDS for PostgreSQL database log files
	Parameters for logging in RDS for PostgreSQL
	Setting the log retention period
	Setting log file rotation
	Setting the log destination (stderr, csvlog)
	Understanding the log_line_prefix parameter

	Turning on query logging for your RDS for PostgreSQL DB instance
	Using logging to find slow performing queries
	Mitigating risk of password exposure when using query logging

	Publishing PostgreSQL logs to Amazon CloudWatch Logs
	Console
	AWS CLI
	RDS API

	Monitoring Amazon RDS API calls in AWS CloudTrail
	CloudTrail integration with Amazon RDS
	CloudTrail events
	CloudTrail trails

	Amazon RDS log file entries

	Monitoring Amazon RDS with Database Activity Streams
	Overview of Database Activity Streams
	How database activity streams work
	Auditing in Oracle Database and Microsoft SQL Server Database
	Unified auditing in Oracle Database
	Auditing in Microsoft SQL Server
	Non-native audit fields for Oracle Database and SQL Server
	DB parameter group override

	Asynchronous mode for database activity streams
	Requirements and limitations for database activity streams
	Region and version availability
	Supported DB instance classes for database activity streams

	Configuring unified auditing for Oracle Database
	Configuring auditing policy for Amazon RDS for Microsoft SQL Server
	Starting a database activity stream
	Console
	AWS CLI
	RDS API

	Modifying a database activity stream for Amazon RDS
	Console
	AWS CLI
	RDS API

	Getting the status of a database activity stream
	Console
	AWS CLI
	RDS API

	Stopping a database activity stream
	Console
	AWS CLI
	RDS API

	Monitoring database activity streams
	Accessing an activity stream from Amazon Kinesis
	Audit log contents and examples for database activity streams
	Examples of an audit log for an activity stream
	DatabaseActivityMonitoringRecords JSON object
	databaseActivityEvents JSON Object
	Top-level fields in JSON record

	databaseActivityEventList JSON array for database activity streams
	databaseActivityEventList fields for Amazon RDS for Oracle
	databaseActivityEventList fields for Amazon RDS for SQL Server

	Processing a database activity stream using the AWS SDK

	IAM policy examples for database activity streams

	Monitoring threats with Amazon GuardDuty RDS Protection

	Amazon RDS Custom
	Addressing the challenge of database customization
	Management model and benefits for Amazon RDS Custom
	Shared responsibility model in RDS Custom
	Support perimeter and unsupported configurations in RDS Custom
	Key benefits of RDS Custom

	Amazon RDS Custom architecture
	VPC
	RDS Custom automation and monitoring
	Amazon RDS Custom host replacement
	Stopping and starting the host
	Effects of host replacement
	Best practices for Amazon EC2 hosts

	RDS Custom support perimeter
	Unsupported configurations in RDS Custom
	Troubleshooting unsupported configurations

	Amazon S3
	AWS CloudTrail

	Security in Amazon RDS Custom
	How RDS Custom securely manages tasks on your behalf
	SSL certificates
	Securing your Amazon S3 bucket against the confused deputy problem
	Rotating RDS Custom for Oracle credentials for compliance programs
	Automatic rotation of credentials for predefined users
	Guidelines for rotating user credentials
	Rotating user credentials manually

	Working with RDS Custom for Oracle
	RDS Custom for Oracle workflow
	Database installation files
	Custom engine versions for RDS Custom for Oracle
	CEV manifest
	CEV naming format
	Oracle multitenant architecture in RDS Custom for Oracle

	Creating a DB instance for RDS Custom for Oracle
	Database connection
	RDS Custom customization

	Database architecture for Amazon RDS Custom for Oracle
	Supported Oracle database architectures
	Supported engine types
	Supported features in the Oracle multitenant architecture

	Feature availability and support for RDS Custom for Oracle
	AWS Region and database version support for RDS Custom for Oracle
	Database version support for RDS Custom for Oracle
	Edition and licensing support for RDS Custom for Oracle
	DB instance class support for RDS Custom for Oracle
	Option group support for RDS Custom for Oracle

	RDS Custom for Oracle requirements and limitations
	General requirements for RDS Custom for Oracle
	General limitations for RDS Custom for Oracle
	CEV and AMI limitations for RDS Custom for Oracle
	Unsupported settings for create and modify workflows
	DB instance quotas for your AWS account

	Setting up your environment for Amazon RDS Custom for Oracle
	Step 1: Create or reuse a symmetric encryption AWS KMS key
	Step 2: Download and install the AWS CLI
	Step 3: Extract the CloudFormation templates for RDS Custom for Oracle
	Step 3a: Download the CloudFormation template files
	Step 3b: Extract custom-oracle-iam.json
	Step 3c: Extract custom-vpc.json

	Step 4: Configure IAM for RDS Custom for Oracle
	Configure IAM using CloudFormation
	Create your IAM role and instance profile manually
	Step 1: Create the IAM role AWSRDSCustomInstanceRoleForRdsCustomInstance
	Step 2: Add an access policy to AWSRDSCustomInstanceRoleForRdsCustomInstance
	Step 3: Create the RDS Custom instance profile AWSRDSCustomInstanceProfile
	Step 4: Add AWSRDSCustomInstanceRoleForRdsCustomInstance to AWSRDSCustomInstanceProfile

	Step 5: Grant required permissions to your IAM user or role
	IAM permissions required for Amazon S3 and AWS KMS
	IAM permissions required for creating a CEV
	IAM permissions required for creating a DB instance from a CEV

	Step 6: Configure your VPC for RDS Custom for Oracle
	Configure your VPC using CloudFormation (recommended)
	Configure your VPC manually for RDS Custom for Oracle
	Make sure your VPC can access dependent AWS services
	Configure the instance metadata service

	Working with custom engine versions for Amazon RDS Custom for Oracle
	Preparing to create a CEV
	Step 1 (Optional): Download the manifest templates
	Step 2: Download your database installation files and patches from Oracle Software Delivery Cloud
	Step 3: Upload your installation files to Amazon S3
	Step 3a: Verify that your S3 bucket is in the correct AWS Region
	Step 3b: Make sure that your S3 bucket policy has the correct permissions
	Step 3c: Upload your files using the cp or sync commands
	Step 3d: List the files in your S3 bucket

	Step 4 (Optional): Share your installation media in S3 across AWS accounts
	Step 5: Prepare the CEV manifest
	JSON fields in the CEV manifest
	Creating the CEV manifest
	CEV manifest examples

	Step 6 (Optional): Validate the CEV manifest
	Step 7: Add necessary IAM permissions

	Creating a CEV
	Console
	AWS CLI
	Failure to create a CEV

	Modifying CEV status
	Console
	AWS CLI

	Viewing CEV details for Amazon RDS Custom for Oracle
	Console
	AWS CLI

	Deleting a CEV
	Console
	AWS CLI

	Configuring a DB instance for Amazon RDS Custom for Oracle
	Creating an RDS Custom for Oracle DB instance
	Console
	AWS CLI

	Multitenant architecture considerations
	RDS Custom service-linked role
	Installing additional software components on your RDS Custom for Oracle DB instance
	Connecting to your RDS Custom DB instance using Session Manager
	Console
	AWS CLI

	Connecting to your RDS Custom DB instance using SSH
	Step 1: Configure your DB instance to allow SSH connections
	Step 2: Retrieve your SSH secret key and EC2 instance ID
	Console
	AWS CLI

	Step 3: Connect to your EC2 instance using the ssh utility

	Logging in to your RDS Custom for Oracle database as SYS
	Finding the SYS password for your RDS Custom for Oracle database
	Console

	Logging in to your RDS Custom for Oracle database using OS authentication

	Managing an Amazon RDS Custom for Oracle DB instance
	Working with container databases (CDBs) in RDS Custom for Oracle
	PDB and CDB names
	PDB management
	Automatic recovery of the CDB root

	Working with high availability features for RDS Custom for Oracle
	Customizing your RDS Custom environment
	General steps for customizing your RDS Custom environment
	Pausing and resuming your RDS Custom DB instance
	Console
	AWS CLI

	Modifying your RDS Custom for Oracle DB instance
	Requirements and limitations when modifying your DB instance storage
	Requirements and limitations when modifying your DB instance class
	How RDS Custom creates your DB instance when you modify the instance class
	Modifying your RDS Custom for Oracle DB instance
	Console
	AWS CLI

	Changing the character set of an RDS Custom for Oracle DB instance
	Setting the NLS_LANG value in RDS Custom for Oracle
	Support for Transparent Data Encryption
	Tagging RDS Custom for Oracle resources
	Deleting an RDS Custom for Oracle DB instance
	Console
	AWS CLI

	Working with Oracle replicas for RDS Custom for Oracle
	Overview of RDS Custom for Oracle replication
	Maximum number of replicas
	Replica naming convention
	Replica backup retention
	Replica promotion

	Guidelines and limitations for RDS Custom for Oracle replication
	General guidelines for RDS Custom for Oracle replication
	General limitations for RDS Custom for Oracle replication
	Networking requirements and limitations for RDS Custom for Oracle replication
	External replica limitations for RDS Custom for Oracle

	Promoting an RDS Custom for Oracle replica to a standalone DB instance
	Console
	AWS CLI
	RDS API

	Configuring a VPN tunnel between RDS Custom for Oracle primary and replica instances

	Backing up and restoring an Amazon RDS Custom for Oracle DB instance
	Creating an RDS Custom for Oracle snapshot
	Console
	AWS CLI

	Restoring from an RDS Custom for Oracle DB snapshot
	Console
	AWS CLI

	Restoring an RDS Custom for Oracle instance to a point in time
	PITR considerations for RDS Custom for Oracle
	Console
	AWS CLI

	Deleting an RDS Custom for Oracle snapshot
	Console
	AWS CLI

	Deleting RDS Custom for Oracle automated backups
	Console
	AWS CLI

	Working with option groups in RDS Custom for Oracle
	Overview of option groups in RDS Custom for Oracle
	Summary of RDS Custom for Oracle options
	Basic steps for adding an option to an RDS Custom for Oracle DB instance
	Creating an option group for in RDS Custom for Oracle
	Console
	AWS CLI
	RDS API

	Associating an option group with an RDS Custom for Oracle DB instance

	Oracle time zone
	Time zone option settings in RDS Custom for Oracle
	Available time zones in RDS Custom for Oracle
	Considerations for setting the time zone in RDS Custom for Oracle
	Limitations for the time zone setting in RDS Custom for Oracle
	Adding the time zone option to an option group
	Console
	AWS CLI

	Removing the time zone option

	Migrating an on-premises database to RDS Custom for Oracle
	Upgrading a DB instance for Amazon RDS Custom for Oracle
	Overview of upgrades in RDS Custom for Oracle
	CEV upgrade options
	Patching without CEVs
	General steps for patching your DB instance with a CEV

	Requirements for RDS Custom for Oracle upgrades
	Considerations for RDS Custom for Oracle database upgrades
	Considerations for RDS Custom for Oracle OS upgrades
	Viewing valid CEV upgrade targets for RDS Custom for Oracle DB instances
	Upgrading an RDS Custom for Oracle DB instance
	Console
	AWS CLI
	Upgrading the OS
	Upgrading the database

	Viewing pending database upgrades for RDS Custom DB instances
	Troubleshooting an upgrade failure for an RDS Custom for Oracle DB instance

	Troubleshooting DB issues for Amazon RDS Custom for Oracle
	Viewing RDS Custom events
	Subscribing to RDS Custom events
	Troubleshooting custom engine version creation for RDS Custom for Oracle
	Fixing unsupported configurations in RDS Custom for Oracle
	Troubleshooting upgrades for RDS Custom for Oracle
	Troubleshooting replica promotion for RDS Custom for Oracle

	Known issues for Amazon RDS Custom for Oracle
	Known issues with database user accounts
	Known issues with parameter and configuration files

	Working with RDS Custom for SQL Server
	RDS Custom for SQL Server workflow
	Creating a DB instance for RDS Custom
	Database connection
	RDS Custom customization

	Requirements and limitations for Amazon RDS Custom for SQL Server
	Region and version availability
	General requirements for RDS Custom for SQL Server
	DB instance class support for RDS Custom for SQL Server
	Limitations for RDS Custom for SQL Server
	Setting character sets and collations for RDS Custom for SQL Server DB instances
	Overview
	Considerations
	Supported collations

	Local time zone for RDS Custom for SQL Server DB instances
	Supported time zones

	Using a Service Master Key with RDS Custom for SQL Server
	Region and version availability
	Supported features
	Using TDE
	Configuring features
	Requirements and limitations

	Setting up your environment for Amazon RDS Custom for SQL Server
	Prerequisites for setting up RDS Custom for SQL Server
	Automated instance profile creation using the AWS Management Console

	Step 1: Grant required permissions to your IAM principal
	Step 2: Configure networking, instance profile, and encryption
	Configuring with AWS CloudFormation
	Parameters required by CloudFormation
	Resources created by CloudFormation
	Download AWS CloudFormation template file
	Configuring resources using CloudFormation
	Updating the CloudFormation stack
	Deleting the CloudFormation stack

	Configuring manually
	Make sure that you have a symmetric encryption AWS KMS key
	Creating your IAM role and instance profile manually
	Create the AWSRDSCustomSQLServerInstanceRole IAM role
	Add an access policy to AWSRDSCustomSQLServerInstanceRole
	Create your RDS Custom for SQL Server instance profile
	Add AWSRDSCustomSQLServerInstanceRole to your RDS Custom for SQL Server instance profile

	Configuring your VPC manually
	Configure your VPC security group
	Configure endpoints for dependent AWS services
	Configure the instance metadata service

	Cross-instance restriction

	Bring Your Own Media with RDS Custom for SQL Server
	Requirements for BYOM for RDS Custom for SQL Server
	Limitations of BYOM for RDS Custom for SQL Server
	Creating an RDS Custom for SQL Server DB instance with BYOM

	Working with custom engine versions for RDS Custom for SQL Server
	Preparing to create a CEV for RDS Custom for SQL Server
	Preparing a CEV
	Preparing a CEV using Bring Your Own Media (BYOM)
	Preparing a CEV using pre-installed SQL Server (LI)

	Region availability for RDS Custom for SQL Server CEVs
	Version support for RDS Custom for SQL Server CEVs
	Requirements for RDS Custom for SQL Server CEVs
	Limitations for RDS Custom for SQL Server CEVs

	Creating a CEV for RDS Custom for SQL Server
	Console
	AWS CLI
	Create an RDS Custom for SQL Server DB instance from a CEV
	Lifecycle of a CEV

	Modifying a CEV for RDS Custom for SQL Server
	Console
	AWS CLI
	Modifying an RDS Custom for SQL Server DB instance to use a new CEV
	Console
	AWS CLI

	Viewing CEV details for Amazon RDS Custom for SQL Server
	Console
	AWS CLI

	Deleting a CEV for RDS Custom for SQL Server
	Console
	AWS CLI

	Creating and connecting to a DB instance for Amazon RDS Custom for SQL Server
	Creating an RDS Custom for SQL Server DB instance
	Console
	AWS CLI

	RDS Custom service-linked role
	Connecting to your RDS Custom DB instance using AWS Systems Manager
	Console
	AWS CLI

	Connecting to your RDS Custom DB instance using RDP
	Configure your DB instance to allow RDP connections
	Configure your VPC security group
	Set the firewall rule on the host

	Retrieve your secret key
	Console
	AWS CLI

	Connect to your EC2 instance using the RDP utility

	Managing an Amazon RDS Custom for SQL Server DB instance
	Pausing and resuming RDS Custom automation
	Console
	AWS CLI

	Modifying an RDS Custom for SQL Server DB instance
	Console
	AWS CLI

	Modifying the storage for an RDS Custom for SQL Server DB instance
	Console
	AWS CLI

	Tagging RDS Custom for SQL Server resources
	Deleting an RDS Custom for SQL Server DB instance
	Console
	AWS CLI

	Starting and stopping an RDS Custom for SQL Server DB instance

	Working with Microsoft Active Directory with RDS Custom for SQL Server
	Region and version availability
	Configure Self-Managed or On-premise AD
	Configure your network connectivity
	Configure DNS resolution

	Configure Microsoft Active Directory using AWS Directory Service
	Configure your network connectivity
	Enable cross-VPC traffic between the directory and the DB instance

	Configure DNS resolution

	Network configuration port rules
	Network Validation
	Setting up Windows Authentication for RDS Custom for SQL Server instances
	Step 1: Create an organizational unit (OU) in your AD
	Step 2: Create an AD domain user
	Step 3: Delegate control to the AD user in self-managed or AWS Managed Microsoft AD
	Step 4: Create a secret
	Step 5: Create or modify a RDS Custom for SQL Server DB instance
	Step 6: Create Windows Authentication SQL Server Login
	Step 7: Using Kerberos or NTLM Authentication
	NTLM authentication using RDS endpoint
	Kerberos authentication
	Finding your CNAME

	Managing a DB instance in a Domain
	Restoring a RDS Custom for SQL Server DB instance and adding it to an Active Directory domain

	Understanding Domain membership
	Troubleshooting Active Directory

	Managing a Multi-AZ deployment for RDS Custom for SQL Server
	Region and version availability
	Limitations for a Multi-AZ deployment with RDS Custom for SQL Server
	Prerequisites for a Multi-AZ deployment with RDS Custom for SQL Server
	Creating an RDS Custom for SQL Server Multi-AZ deployment
	Modifying an RDS Custom for SQL Server Single-AZ deployment to a Multi-AZ deployment
	Configuring prerequisites to modify a Single-AZ to a Multi-AZ deployment using CloudFormation
	Configuring prerequisites to modify a Single-AZ to a Multi-AZ deployment manually
	Modify using the RDS console, AWS CLI, or RDS API.
	Console
	AWS CLI
	RDS API

	Modifying an RDS Custom for SQL Server Multi-AZ deployment to a Single-AZ deployment
	Console
	AWS CLI
	RDS API

	Failover process for an RDS Custom for SQL Server Multi-AZ deployment
	Time to live (TTL) settings with applications using an RDS Custom for SQL Server Multi-AZ deployment

	Backing up and restoring an Amazon RDS Custom for SQL Server DB instance
	Creating an RDS Custom for SQL Server snapshot
	Console
	AWS CLI

	Restoring from an RDS Custom for SQL Server DB snapshot
	Console
	AWS CLI

	Restoring an RDS Custom for SQL Server instance to a point in time
	
	PITR considerations for RDS Custom for SQL Server
	Number of databases eligible for PITR per instance class type
	Making databases ineligible for PITR
	Transaction logs in Amazon S3
	PITR Restore using the AWS Management Console, the AWS CLI, or the RDS API.
	Console
	AWS CLI

	Deleting an RDS Custom for SQL Server snapshot
	Console
	AWS CLI

	Deleting RDS Custom for SQL Server automated backups
	Console
	AWS CLI

	Copying an Amazon RDS Custom for SQL Server DB snapshot
	Limitations
	Handling encryption
	Cross-Region copying
	Authorizing RDS to communicate across AWS Regions for snapshot copying
	Using AWS Security Token Service credentials

	Snapshots of DB instances created with Custom Engine Versions (CEV)
	Grant required permissions to your IAM principal
	Copying a DB snapshot

	Migrating an on-premises database to Amazon RDS Custom for SQL Server
	Prerequisites
	Backing up the on-premises database
	Uploading the backup file to Amazon S3
	Downloading the backup file from Amazon S3
	Restoring the backup file to the RDS Custom for SQL Server DB instance

	Upgrading a DB instance for Amazon RDS Custom for SQL Server
	Major version upgrades
	Database compatibility level

	Troubleshooting DB issues for Amazon RDS Custom for SQL Server
	Viewing RDS Custom events
	Subscribing to RDS Custom events
	Troubleshooting CEV errors for RDS Custom for SQL Server
	Fixing unsupported configurations in RDS Custom for SQL Server
	Troubleshooting Storage-Full in RDS Custom for SQL Server
	Troubleshooting PENDING_RECOVERY state for TDE enabled databases in RDS Custom for SQL Server

	Amazon RDS on AWS Outposts
	Prerequisites for Amazon RDS on AWS Outposts
	Amazon RDS on AWS Outposts support for Amazon RDS features
	Supported DB instance classes for Amazon RDS on AWS Outposts
	Customer-owned IP addresses for Amazon RDS on AWS Outposts
	Using CoIPs
	Limitations

	Working with Multi-AZ deployments for Amazon RDS on AWS Outposts
	Working with the shared responsibility model
	Improving availability
	Prerequisites
	Working with API operations for Amazon EC2 permissions

	Creating DB instances for Amazon RDS on AWS Outposts
	Console
	Creating a DB subnet group
	Creating the RDS on Outposts DB instance
	Viewing DB instance details

	AWS CLI
	RDS API

	Creating read replicas for Amazon RDS on AWS Outposts
	Console
	AWS CLI
	RDS API

	Considerations for restoring DB instances on Amazon RDS on AWS Outposts

	Amazon RDS Proxy
	Region and version availability
	Quotas and limitations for RDS Proxy
	Additional limitations for RDS for MariaDB
	Additional limitations for RDS for Microsoft SQL Server
	Additional limitations for RDS for MySQL
	Additional limitations for RDS for PostgreSQL

	Planning where to use RDS Proxy
	RDS Proxy concepts and terminology
	Overview of RDS Proxy concepts
	Connection pooling
	RDS Proxy security
	Using TLS/SSL with RDS Proxy

	Failover
	Transactions

	Getting started with RDS Proxy
	Setting up network prerequisites for RDS Proxy
	Getting information about your subnets
	Planning for IP address capacity

	Setting up database credentials in AWS Secrets Manager for RDS Proxy
	Creating secrets to use with RDS Proxy
	Console
	AWS CLI

	Configuring IAM authentication for RDS Proxy
	Prerequisites
	Creating an IAM policy for Secrets Manager access
	Console
	AWS CLI

	Creating a proxy for Amazon RDS
	Console
	AWS CLI
	RDS API

	Viewing a proxy
	Console
	CLI
	RDS API

	Connecting to a database through RDS Proxy
	Connecting to a proxy using native authentication
	Connecting to a proxy using IAM authentication
	Considerations for connecting to a proxy with Microsoft SQL Server
	Considerations for connecting to a proxy with PostgreSQL

	Managing an RDS Proxy
	Modifying an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Adding a new database user when using RDS Proxy
	Adding a new database user to a PostgreSQL database when using RDS Proxy
	Changing the password for a database user when using RDS Proxy

	RDS Proxy connection considerations
	Configuring connection settings
	IdleClientTimeout
	MaxConnectionsPercent
	MaxIdleConnectionsPercent
	ConnectionBorrowTimeout

	Client and database connections

	Avoiding pinning an RDS Proxy
	What RDS Proxy tracks for RDS for SQL Server databases
	What RDS Proxy tracks for RDS for MariaDB and RDS for MySQL databases
	Minimizing pinning
	Conditions that cause pinning for all engine families
	Conditions that cause pinning for RDS for Microsoft SQL Server
	Conditions that cause pinning for RDS for MariaDB and RDS for MySQL
	Conditions that cause pinning for RDS for PostgreSQL

	Deleting an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Working with Amazon RDS Proxy endpoints
	Overview of proxy endpoints
	Limitations for proxy endpoints
	Proxy endpoints for Multi-AZ DB clusters
	Reader endpoints for Multi-AZ DB clusters
	How reader endpoints help application availability
	How reader endpoints help query scalability

	Accessing RDS databases across VPCs
	Creating a proxy endpoint
	Console
	AWS CLI
	RDS API

	Viewing proxy endpoints
	Console
	AWS CLI
	RDS API

	Modifying a proxy endpoint
	Console
	AWS CLI
	RDS API

	Deleting a proxy endpoint
	Console
	AWS CLI
	RDS API

	Monitoring RDS Proxy metrics with Amazon CloudWatch
	Working with RDS Proxy events
	RDS Proxy events

	Troubleshooting for RDS Proxy
	Verifying connectivity for a proxy
	Common issues and solutions
	Troubleshooting RDS Proxy issues with RDS for MySQL
	Troubleshooting RDS Proxy issues with RDS for PostgreSQL

	Using RDS Proxy with AWS CloudFormation

	Amazon RDS zero-ETL integrations with Amazon Redshift
	Benefits
	Key concepts
	Limitations
	General limitations
	RDS for MySQL limitations
	Amazon Redshift limitations

	Quotas
	Supported Regions
	Getting started with Amazon RDS zero-ETL integrations with Amazon Redshift
	Step 1: Create a custom DB parameter group
	Step 2: Select or create a source database
	Step 3: Create a target Amazon Redshift data warehouse
	Enable case sensitivity on the data warehouse
	Configure authorization for the data warehouse

	Set up an integration using the AWS SDKs
	Python code example

	Next steps

	Creating Amazon RDS zero-ETL integrations with Amazon Redshift
	Prerequisites
	Required permissions
	Sample policy
	Choosing a target data warehouse in a different account
	Required permissions and trust policy

	Creating zero-ETL integrations
	RDS console
	AWS CLI
	RDS API

	Encrypting integrations with a customer managed key
	Sample key policy

	Next steps

	Data filtering for Amazon RDS zero-ETL integrations with Amazon Redshift
	Format of a data filter
	Data filters in the AWS CLI

	Filter logic
	Filter precedence
	Examples
	Adding data filters to an integration
	RDS console
	AWS CLI
	RDS API

	Removing data filters from an integration

	Adding data to a source RDS database and querying it in Amazon Redshift
	Creating a destination database in Amazon Redshift
	Adding data to the source database
	Querying your Amazon RDS data in Amazon Redshift
	Data type differences between RDS and Amazon Redshift databases
	RDS for MySQL

	Viewing and monitoring Amazon RDS zero-ETL integrations with Amazon Redshift
	Viewing integrations
	Console
	AWS CLI
	RDS API

	Monitoring integrations using system tables
	Monitoring integrations with Amazon EventBridge

	Modifying Amazon RDS zero-ETL integrations with Amazon Redshift
	RDS console
	AWS CLI
	RDS API

	Deleting Amazon RDS zero-ETL integrations with Amazon Redshift
	Console
	AWS CLI
	RDS API

	Troubleshooting Amazon RDS zero-ETL integrations with Amazon Redshift
	I can't create a zero-ETL integration
	My integration is stuck in a state of Syncing
	My tables aren't replicating to Amazon Redshift
	One or more of my Amazon Redshift tables requires a resync

	Amazon RDS for Db2
	Overview of Db2 on Amazon RDS
	Amazon RDS for Db2 features
	Supported features in RDS for Db2
	Features native to IBM Db2
	Features core to Amazon RDS

	Unsupported features in RDS for Db2

	Db2 on Amazon RDS versions
	Supported Db2 minor versions on Amazon RDS
	Supported Db2 major versions on Amazon RDS

	Amazon RDS for Db2 licensing options
	Bring Your Own License for Db2
	IBM IDs for Bring Your Own License for Db2
	Adding IBM IDs to a parameter group for RDS for Db2 DB instances
	Console
	AWS CLI
	RDS API

	Integrating with AWS License Manager
	Terminology
	Creating a self-managed license in AWS License Manager
	Console
	AWS License Manager CLI
	AWS License Manager API

	Automating the creation of self-managed licenses in AWS License Manager with templates
	Settings for creating self-managed licenses

	Db2 license through AWS Marketplace
	Terminology
	Payments and billing
	Subscribing to Db2 Marketplace listings and registering with IBM
	Task 1: Subscribe to Db2 in AWS Marketplace
	Task 2: Register your subscription with IBM

	Obtaining a private offer

	Switching between Db2 licenses
	Console
	AWS CLI
	RDS API

	Amazon RDS for Db2 instance classes
	Supported RDS for Db2 instance classes
	Supported RDS for Db2 instance classes for Db2 Standard Edition
	Supported RDS for Db2 instance classes for Db2 Advanced Edition

	Amazon RDS for Db2 default roles
	Amazon RDS for Db2 parameters
	Viewing the parameters in parameter groups
	Console
	AWS CLI
	RDS API

	Viewing all parameters with Db2 commands
	Modifying the parameters in parameter groups
	Console
	AWS CLI
	RDS API

	Modifying the database configuration parameters with Db2 commands

	EBCDIC collation for Db2 databases on Amazon RDS
	Local time zone for Amazon RDS for Db2 DB instances
	Available time zones

	Prerequisites for creating an Amazon RDS for Db2 DB instance
	Administrator account
	Additional considerations

	Multiple databases on an Amazon RDS for Db2 DB instance
	Connecting to your Db2 DB instance
	Finding the endpoint of your Amazon RDS for Db2 DB instance
	Console
	AWS CLI

	Connecting to your Amazon RDS for Db2 DB instance with IBM Db2 CLP
	Terminology
	Installing the client
	Connecting to a DB instance
	Troubleshooting connections to your RDS for Db2 DB instance

	Connecting to your Amazon RDS for Db2 DB instance with IBM CLPPlus
	Installing the client
	Connecting to a DB instance

	Connecting to your Amazon RDS for Db2 DB instance with DBeaver
	Connecting to your Amazon RDS for Db2 DB instance with IBM Db2 Data Management Console
	Step 1: Creating a repository database to monitor DB instances
	Manually creating a buffer pool, a user tablespace, and a system temporary tablespace
	Creating an Amazon EC2 instance to host an IBM Db2 Data Management Console repository

	Step 2: Installing and setting up IBM Db2 Data Management Console
	Step 3: Configuring the repository database and connecting to RDS for Db2 DB instances
	Using IBM Db2 Data Management Console

	Considerations for security groups with Amazon RDS for Db2

	Securing Amazon RDS for Db2 DB instance connections
	Using SSL/TLS with an Amazon RDS for Db2 DB instance
	Creating an SSL/TLS connection
	Step 1: Choose a CA and download a certificate
	Step 2: Update parameters in a custom parameter group

	Connect to your Db2 database server

	Using Kerberos authentication for Amazon RDS for Db2
	Region and version availability
	Overview of Kerberos authentication for RDS for Db2 DB instances
	Managing a DB instance in a domain
	Understanding domain membership

	Setting up Kerberos authentication for Amazon RDS for Db2 DB instances
	Step 1: Create a directory using AWS Managed Microsoft AD
	Step 2: Create an IAM role for Amazon RDS to access AWS Directory Service
	Step 3: Create and configure users
	Step 4: Create an RDS for Db2 admin group in AWS Managed Microsoft AD
	Step 5: Create or modify an RDS for Db2 DB instance
	Console
	AWS CLI

	Step 6: Configure a Db2 client

	Connecting to Amazon RDS for Db2 with Kerberos authentication

	Administering your Amazon RDS for Db2 DB instance
	Performing common system tasks for Amazon RDS for Db2 DB instances
	Creating a custom database endpoint
	Granting and revoking privileges for RDS for Db2
	Granting a user access to your database
	Changing a user's password
	Adding groups to a user
	Removing groups from a user
	Removing a user
	Listing users
	Creating a role
	Granting a role
	Revoking a role
	Dropping a role
	Granting database authorization
	Revoking database authorization

	Attaching to the remote RDS for Db2 DB instance

	Performing common database tasks for Amazon RDS for Db2 DB instances
	Common tasks for buffer pools
	Creating a buffer pool
	Altering a buffer pool
	Dropping a buffer pool
	Flushing the buffer pools

	Common tasks for databases
	Creating a database
	Configuring settings for a database
	Modifying database parameters
	Configuring log retention
	Listing log information
	Deactivating a database
	Activating a database
	Reactivating a database
	Dropping a database
	Restoring a database
	Listing databases
	Collecting information about databases
	Forcing applications off of databases
	Generating performance reports

	Managing storage
	Common tasks for tablespaces
	Creating a tablespace
	Altering a tablespace
	Renaming a tablespace
	Dropping a tablespace
	Checking the status of a tablespace
	Returning detailed information about tablespaces
	Listing the state and storage group for a tablespace
	Listing the tablespaces of a table
	Listing tablespace containers

	Integrating an Amazon RDS for Db2 DB instance with Amazon S3
	Step 1: Create an IAM policy
	Console
	AWS CLI

	Step 2: Create an IAM role and attach your IAM policy
	Console
	AWS CLI

	Step 3: Add your IAM role to your RDS for Db2 DB instance
	Console
	AWS CLI

	Migrating data to Amazon RDS for Db2
	Using AWS services to migrate data from Db2 to Amazon RDS for Db2
	Migrating from Linux to Linux for Amazon RDS for Db2
	Limitations and recommendations for using native restore
	Backing up your database to Amazon S3
	Creating a default automatic storage group
	Restoring your Db2 database

	Migrating from Linux to Linux with near-zero downtime for Amazon RDS for Db2
	Limitations and recommendations for near-zero downtime migration
	Backing up your database to Amazon S3
	Creating a default automatic storage group
	Migrating your Db2 database

	Migrating synchronously from Linux to Linux for Amazon RDS for Db2
	Migrating from AIX or Windows to Linux for Amazon RDS for Db2
	Migrating Db2 data through Amazon S3 to Amazon RDS for Db2
	Saving your data to Amazon S3
	Loading your data into RDS for Db2 tables

	Migrating to Amazon RDS for Db2 with AWS Database Migration Service (AWS DMS)

	Using native Db2 tools to migrate data from Db2 to Amazon RDS for Db2
	Connecting a client machine to an Amazon RDS for Db2 DB instance
	Copying database metadata from Db2 to Amazon RDS for Db2 with db2look
	Importing data from a client machine to Amazon RDS for Db2 with the IMPORT command
	Importing data from a client machine to Amazon RDS for Db2 with the LOAD command
	Importing data from Db2 to Amazon RDS for Db2 with the INSERT command
	Importing data from Db2 to Amazon RDS for Db2 with the INGEST utility

	Amazon RDS for Db2 federation
	Homogeneous federation
	Step 1: Create a DRDA wrapper and a federated server
	Step 2: Create a user mapping
	Step 3: Check the connection

	Heterogeneous federation
	Step 1: Create an ODBC wrapper
	Step 2: Create a federated server
	Step 3: Create a user mapping
	Step 4: Check the connection

	Options for Amazon RDS for Db2 DB instances
	Db2 audit logging
	Setting up Db2 audit logging
	Step 1: Create an Amazon S3 bucket
	Step 2: Create an IAM policy
	Console
	AWS CLI

	Step 3: Create an IAM role and attach your IAM policy
	Console
	AWS CLI

	Step 4: Configure an option group for Db2 audit logging
	Step 5: Configure the audit policy
	Step 6: Check the audit configuration

	Managing Db2 audit logging
	Modifying a Db2 audit policy
	Modifying the location of your log files
	Disabling Db2 audit logging

	Viewing audit logs
	Troubleshooting Db2 audit logging
	Can't configure the audit policy
	No data in the Amazon S3 bucket

	External stored procedures for Amazon RDS for Db2
	Java-based external stored procedures
	Limitations for Java-based external stored procedures
	Configuring Java-based external stored procedures
	Step 1: Enable external stored procedures
	Console
	AWS CLI
	RDS API

	Step 2: Install the .jar file with your external routine
	Step 3: Register the external stored procedure
	Step 4: Validate the external stored procedure

	Known issues and limitations for Amazon RDS for Db2
	Authentication limitation
	Non-fenced routines
	Non-automatic storage tablespaces during migration
	Setting the db2_compatibility_vector parameter
	Migrating databases that contain INVALID packages

	Amazon RDS for Db2 stored procedure reference
	Considerations for Amazon RDS for Db2 stored procedures
	Stored procedures for granting and revoking privileges for RDS for Db2
	rdsadmin.create_role
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.grant_role
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.revoke_role
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.drop_role
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.add_user
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.change_password
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.list_users
	Syntax
	Usage notes

	rdsadmin.remove_user
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.add_groups
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.remove_groups
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.dbadm_grant
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.dbadm_revoke
	Syntax
	Parameters
	Usage notes
	Examples

	Stored procedures for audit policies for RDS for Db2
	rdsadmin.configure_db_audit
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.disable_db_audit
	Syntax
	Parameters
	Usage notes
	Examples

	Stored procedures for buffer pools for RDS for Db2
	rdsadmin.create_bufferpool
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.alter_bufferpool
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.drop_bufferpool
	Syntax
	Parameters
	Usage notes
	Examples

	Stored procedures for databases for RDS for Db2
	rdsadmin.create_database
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.deactivate_database
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.activate_database
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.reactivate_database
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.drop_database
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.update_db_param
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.set_configuration
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.show_configuration
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.restore_database
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.rollforward_database
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.complete_rollforward
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.db2pd_command
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.force_application
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.set_archive_log_retention
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.show_archive_log_retention
	Syntax
	Parameters
	Examples

	rdsadmin.list_archive_log_information
	Syntax
	Parameters
	Examples

	Stored procedures for storage access for RDS for Db2
	rdsadmin.catalog_storage_access
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.uncatalog_storage_access
	Syntax
	Parameters
	Usage notes
	Examples

	Stored procedures for tablespaces for RDS for Db2
	rdsadmin.create_tablespace
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.alter_tablespace
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.rename_tablespace
	Syntax
	Parameters
	Usage notes
	Examples

	rdsadmin.drop_tablespace
	Syntax
	Parameters
	Usage notes
	Examples

	Amazon RDS for Db2 user-defined function reference
	rdsadmin.get_task_status
	Syntax
	Parameters
	Usage notes
	Examples
	Response
	Response examples

	rdsadmin.list_databases
	Syntax
	Usage notes
	Response
	Response examples

	Troubleshooting for Amazon RDS for Db2
	Database connection error
	File I/O error
	Step 1: Create a VPC gateway endpoint for Amazon S3
	Step 2: Confirm that your VPC gateway endpoint for Amazon S3 exists
	Console
	AWS CLI

	Troubleshooting errors from stored procedures
	rdsadmin.activate_database errors
	rdsadmin.alter_tablespace errors
	rdsadmin.create_database errors
	rdsadmin.deactivate_database errors
	rdsadmin.drop_database errors
	rdsadmin.reactivate_database errors
	rdsadmin.restore_database errors
	rdsadmin.update_db_param errors

	Amazon RDS for MariaDB
	MariaDB feature support on Amazon RDS
	MariaDB feature support on Amazon RDS for MariaDB major versions
	MariaDB 11.4 support on Amazon RDS
	MariaDB 10.11 support on Amazon RDS
	MariaDB 10.6 support on Amazon RDS
	MariaDB 10.5 support on Amazon RDS
	MariaDB 10.4 support on Amazon RDS

	Supported storage engines for MariaDB on Amazon RDS
	The InnoDB storage engine
	The MyRocks storage engine

	Cache warming for MariaDB on Amazon RDS
	Dumping and loading the buffer pool on demand

	MariaDB features not supported by Amazon RDS

	MariaDB on Amazon RDS versions
	Supported MariaDB minor versions on Amazon RDS
	MariaDB minor versions on Amazon RDS
	MariaDB version 11.4.5
	MariaDB version 11.4.4
	MariaDB version 10.11.11
	MariaDB version 10.11.10
	MariaDB version 10.6.21
	MariaDB version 10.6.20
	MariaDB version 10.5.28
	MariaDB version 10.5.27

	Supported MariaDB major versions on Amazon RDS
	Working with the Database Preview environment
	Features not supported in the Database Preview environment
	Creating a new DB instance in the Database Preview environment
	Console
	AWS CLI
	RDS API

	MariaDB version 11.8 in the Database Preview environment
	MariaDB version 11.7 in the Database Preview environment
	MariaDB version 11.4 in the Database Preview environment
	Deprecated versions for Amazon RDS for MariaDB

	Connecting to your MariaDB DB instance
	Finding the connection information for a MariaDB DB instance
	Console
	AWS CLI
	RDS API

	Connecting from the MySQL command-line client (unencrypted) for RDS for MariaDB
	Connecting to RDS for MariaDB with the AWS JDBC Driver and AWS Python Driver;
	Connecting to RDS for MariaDB with the Amazon Web Services (AWS) JDBC Driver
	Connecting to RDS for MariaDB with the Amazon Web Services (AWS) Python Driver

	Troubleshooting connections to your MariaDB DB instance

	Securing MariaDB DB instance connections
	MariaDB security on Amazon RDS
	Using the password validation plugins for RDS for MariaDB
	Encrypting client connections with SSL/TLS to MariaDB DB instances on Amazon RDS
	SSL/TLS support for MariaDB DB instances on Amazon RDS
	Requiring SSL/TLS for specific user accounts to a MariaDB DB instance on Amazon RDS
	Requiring SSL/TLS for all connections to a MariaDB DB instance on Amazon RDS
	Connecting to your MariaDB DB instance on Amazon RDS with SSL/TLS from the MySQL command-line client (encrypted)

	Updating applications to connect to MariaDB instances using new SSL/TLS certificates
	Determining whether a client requires certificate verification in order to connect
	JDBC
	MySQL

	Updating your application trust store
	Example Java code for establishing SSL connections

	Improving query performance for RDS for MariaDB with Amazon RDS Optimized Reads
	Overview of RDS Optimized Reads
	Use cases for RDS Optimized Reads
	Best practices for RDS Optimized Reads
	Using RDS Optimized Reads
	Monitoring DB instances that use RDS Optimized Reads
	Limitations for RDS Optimized Reads

	Improving write performance with Amazon RDS Optimized Writes for MariaDB
	Overview of RDS Optimized Writes
	Using RDS Optimized Writes
	Console
	AWS CLI
	RDS API

	Enabling RDS Optimized Writes on an existing database
	Limitations for RDS Optimized Writes

	Upgrades of the MariaDB DB engine
	Considerations for MariaDB upgrades
	Finding valid upgrade targets
	MariaDB version numbers
	RDS version numbers in RDS for MariaDB
	Major version upgrades for RDS for MariaDB
	Upgrading a MariaDB DB instance
	Automatic minor version upgrades for RDS for MariaDB
	Using a read replica to reduce downtime when upgrading an RDS for MariaDB database

	Upgrading a MariaDB DB snapshot engine version
	Upgrade options for DB snapshots with unsupported engine versions for RDS for MariaDB

	Importing data into an Amazon RDS for MariaDB DB instance
	Importing data considerations for MariaDB
	Binary logging
	Transaction size
	Small transactions
	Large transactions
	Optimizing large data loads

	InnoDB
	Understanding InnoDB undo logging
	InnoDB transaction recovery options

	Data import formats
	Flat files
	SQL

	Using Amazon RDS DB snapshots for database checkpoints
	Reducing database load times

	Importing data from an external MariaDB database to an Amazon RDS for MariaDB DB instance
	Importing data to an Amazon RDS for MariaDB DB instance with reduced downtime
	Task 1: Create a copy of your existing database
	To set replication options
	To create a backup copy of your existing database

	Task 2: Create an Amazon EC2 instance and copy the compressed database
	To create an Amazon EC2 instance and copy your data

	Task 3: Create a MySQL or MariaDB database and import data from your Amazon EC2 instance
	To create a MariaDB or MySQL database and import your data

	Task 4: Replicate data from your external database to your new Amazon RDS database
	To start replication

	Task 5: Redirect your live application to your Amazon RDS instance
	To redirect your live application to your MariaDB or MySQL database and stop replication

	Importing data from any source to an Amazon RDS for MariaDB DB instance
	Step 1: Create flat files containing the data to be loaded
	Step 2: Stop any applications from accessing the target DB instance
	Step 3: Create a DB snapshot
	Step 4 (Optional): Turn off Amazon RDS automated backups
	Step 5: Load the data
	Step 6: Turn back on Amazon RDS automated backups

	Working with MariaDB replication in Amazon RDS
	Working with MariaDB read replicas
	Configuring read replicas with MariaDB
	Configuring replication filters with MariaDB
	Setting replication filtering parameters for RDS for MariaDB
	Replication filtering limitations for RDS for MariaDB
	Replication filtering examples for RDS for MariaDB
	Viewing the replication filters for a read replica

	Configuring delayed replication with MariaDB
	Configuring delayed replication during read replica creation
	Modifying delayed replication for an existing read replica
	Promoting a read replica

	Updating read replicas with MariaDB
	Working with Multi-AZ read replica deployments with MariaDB
	Using cascading read replicas with RDS for MariaDB
	Monitoring MariaDB read replicas
	Starting and stopping replication with MariaDB read replicas
	Troubleshooting a MariaDB read replica problem

	Configuring GTID-based replication with an external source instance
	Configuring binary log file position replication with an external source instance
	Before you begin
	Configuring binary log file position replication with an external source instance

	Options for MariaDB database engine
	MariaDB Audit Plugin support
	Audit Plugin option settings
	Adding the MariaDB Audit Plugin
	Viewing and downloading the MariaDB Audit Plugin log
	Modifying MariaDB Audit Plugin settings
	Removing the MariaDB Audit Plugin

	Parameters for MariaDB
	Viewing MariaDB parameters
	MySQL parameters that aren't available

	Migrating data from a MySQL DB snapshot to a MariaDB DB instance
	Performing the migration
	Console
	AWS CLI
	API

	Incompatibilities between MariaDB and MySQL

	MariaDB on Amazon RDS SQL reference
	mysql.rds_replica_status
	Syntax
	Usage notes
	Examples

	mysql.rds_set_external_master_gtid
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_kill_query_id
	Syntax
	Parameters
	Usage notes
	Examples

	Local time zone for MariaDB DB instances
	Known issues and limitations for RDS for MariaDB
	MariaDB file size limits in Amazon RDS
	InnoDB reserved word
	Custom ports
	Performance Insights

	Amazon RDS for Microsoft SQL Server
	Common management tasks for Microsoft SQL Server on Amazon RDS
	Limitations for Microsoft SQL Server DB instances
	DB instance class support for Microsoft SQL Server
	Microsoft SQL Server security
	SSL support for Microsoft SQL Server DB instances
	Using SSL with a Microsoft SQL Server DB instance
	Forcing connections to your DB instance to use SSL
	Encrypting specific connections
	Obtaining certificates for client computers
	Importing certificates on client computers
	Encrypting connections to an Amazon RDS DB instance running Microsoft SQL Server

	Configuring SQL Server security protocols and ciphers
	Creating the security-related parameter group
	Console
	CLI

	Modifying security-related parameters
	Console
	CLI

	Associating the security-related parameter group with your DB instance
	Console
	CLI

	Updating applications to connect to Microsoft SQL Server DB instances using new SSL/TLS certificates
	Determining whether any applications are connecting to your Microsoft SQL Server DB instance using SSL
	Determining whether a client requires certificate verification in order to connect
	SQL Server Management Studio
	Sqlcmd
	ADO.NET
	Java

	Updating your application trust store

	Compliance program support for Microsoft SQL Server DB instances
	HIPAA support for Microsoft SQL Server DB instances

	Microsoft SQL Server versions on Amazon RDS
	Version management in Amazon RDS
	Microsoft SQL Server engine patching in Amazon RDS
	Deprecation schedule for major engine versions of Microsoft SQL Server on Amazon RDS

	Microsoft SQL Server features on Amazon RDS
	Microsoft SQL Server 2022 features
	Microsoft SQL Server 2019 features
	Microsoft SQL Server 2017 features
	Microsoft SQL Server 2016 features
	Microsoft SQL Server 2014 end of support on Amazon RDS
	Microsoft SQL Server 2012 end of support on Amazon RDS
	Microsoft SQL Server 2008 R2 end of support on Amazon RDS
	Change data capture support for Microsoft SQL Server DB instances
	Features not supported and features with limited support

	Multi-AZ deployments using Microsoft SQL Server Database Mirroring or Always On availability groups
	Using Transparent Data Encryption to encrypt data at rest
	Functions and stored procedures for Amazon RDS for Microsoft SQL Server
	Local time zone for Microsoft SQL Server DB instances
	Supported time zones

	Licensing Microsoft SQL Server on Amazon RDS
	Restoring license-terminated DB instances
	Development and test

	Connecting to your Microsoft SQL Server DB instance
	Before you connect
	Finding the DB instance endpoint and port number
	Connecting to your DB instance with Microsoft SQL Server Management Studio
	Connecting to your DB instance with SQL Workbench/J
	Security group considerations
	Troubleshooting connections to your SQL Server DB instance

	Working with Active Directory with RDS for SQL Server
	Working with Self Managed Active Directory with an Amazon RDS for SQL Server DB instance
	Region and version availability
	Requirements
	Configure your on-premises AD
	Configure your network connectivity
	Configure your AD domain service account

	Limitations
	Overview of setting up Self Managed Active Directory
	Setting up Self Managed Active Directory
	Step 1: Create an Organizational Unit in your AD
	Step 2: Create an AD domain user in your AD
	Step 3: Delegate control to the AD user
	Step 4: Create an AWS KMS key
	Step 5: Create an AWS secret
	Step 6: Create or modify a SQL Server DB instance
	Step 7: Create Windows Authentication SQL Server logins

	Managing a DB instance in a self-managed Active Directory Domain
	Understanding self-managed Active Directory Domain membership
	Troubleshooting self-managed Active Directory
	Restoring a SQL Server DB instance and then adding it to a self-managed Active Directory domain

	Working with AWS Managed Active Directory with RDS for SQL Server
	Region and version availability
	Overview of setting up Windows authentication
	Creating the endpoint for Kerberos authentication
	Setting up Windows Authentication for SQL Server DB instances
	Step 1: Create a directory using the AWS Directory Service for Microsoft Active Directory
	Step 2: Create the IAM role for use by Amazon RDS
	Step 3: Create and configure users and groups
	Step 4: Enable cross-VPC traffic between the directory and the DB instance
	Step 5: Create or modify a SQL Server DB instance
	Step 6: Create Windows Authentication SQL Server logins

	Managing a DB instance in a Domain
	Understanding Domain membership

	Connecting to SQL Server with Windows authentication
	Restoring a SQL Server DB instance and then adding it to a domain

	Upgrades of the Microsoft SQL Server DB engine
	Major version upgrades for RDS for SQL Server
	Database compatibility level

	Considerations for SQL Server upgrades
	Best practices before initiating an upgrade
	Multi-AZ and in-memory optimization considerations
	Read replica considerations
	Option group considerations
	Parameter group considerations

	Testing an RDS for SQL Server upgrade
	Upgrading a SQL Server DB instance
	Upgrading deprecated DB instances before support ends

	Importing and exporting SQL Server databases using native backup and restore
	Limitations and recommendations
	Setting up for native backup and restore
	Manually creating an IAM role for native backup and restore

	Using native backup and restore
	Backing up a database
	Usage
	Examples

	Restoring a database
	Usage
	Examples

	Restoring a log
	Usage
	Examples

	Finishing a database restore
	Usage

	Working with partially restored databases
	Dropping a partially restored database
	Snapshot restore and point-in-time recovery behavior for partially restored databases

	Canceling a task
	Usage

	Tracking the status of tasks
	Usage
	Examples
	Response

	Compressing backup files
	Troubleshooting
	Importing and exporting SQL Server data using other methods
	Importing data into RDS for SQL Server by using a snapshot
	Import the data
	Generate and Publish Scripts Wizard
	Import and Export Wizard
	Bulk copy

	Exporting data from RDS for SQL Server
	SQL Server Import and Export Wizard
	SQL Server Generate and Publish Scripts Wizard and bcp utility

	Working with read replicas for Microsoft SQL Server in Amazon RDS
	Configuring read replicas for SQL Server
	Read replica limitations with SQL Server
	Option considerations for RDS for SQL Server replicas
	Synchronizing database users and objects with a SQL Server read replica
	Troubleshooting a SQL Server read replica problem

	Multi-AZ deployments for Amazon RDS for Microsoft SQL Server
	Adding Multi-AZ to a Microsoft SQL Server DB instance
	Removing Multi-AZ from a Microsoft SQL Server DB instance
	Microsoft SQL Server Multi-AZ deployment limitations, notes, and recommendations
	Determining the location of the secondary
	Migrating from Database Mirroring to Always On Availability Groups

	Additional features for Microsoft SQL Server on Amazon RDS
	Using Password Policy for SQL Server logins on RDS for SQL Server
	Key terms
	Enabling and disabling policy for each login
	Password policy parameters
	Considerations for existing logins
	Considerations for Multi-AZ deployments

	Password considerations for the master login
	Modifying the master user password

	Integrating an Amazon RDS for SQL Server DB instance with Amazon S3
	Prerequisites for integrating RDS for SQL Server with S3
	Console
	AWS CLI

	Enabling RDS for SQL Server integration with S3
	Console
	AWS CLI

	Transferring files between RDS for SQL Server and Amazon S3
	Downloading files from an Amazon S3 bucket to a SQL Server DB instance
	Uploading files from a SQL Server DB instance to an Amazon S3 bucket

	Listing files on the RDS DB instance
	Deleting files on the RDS DB instance
	Monitoring the status of a file transfer task
	Canceling a task
	Multi-AZ limitations for S3 integration
	Disabling RDS for SQL Server integration with S3
	Console
	AWS CLI

	Using Database Mail on Amazon RDS for SQL Server
	Limitations
	Enabling Database Mail
	Creating the parameter group for Database Mail
	Console
	CLI

	Modifying the parameter that enables Database Mail
	Console
	CLI

	Associating the parameter group with the DB instance
	Console
	CLI

	Configuring Database Mail
	Creating the Database Mail profile
	Creating the Database Mail account
	Adding the Database Mail account to the Database Mail profile
	Adding users to the Database Mail profile

	Amazon RDS stored procedures and functions for Database Mail
	Sending email messages using Database Mail
	Usage
	Examples

	Viewing messages, logs, and attachments
	Deleting messages
	Starting and stopping mail queue
	Starting the mail queue
	Stopping the mail queue

	Working with file attachments
	Considerations for Multi-AZ deployments
	Removing the SMTP (port 25) restriction

	Instance store support for the tempdb database on Amazon RDS for SQL Server
	Enabling the instance store
	File location and size considerations
	Backup considerations
	Disk full errors
	Removing the instance store

	Using extended events with Amazon RDS for Microsoft SQL Server
	Limitations and recommendations
	Configuring extended events on RDS for SQL Server
	Considerations for Multi-AZ deployments
	Querying extended event files

	Access to transaction log backups with RDS for SQL Server
	Availability and support
	Requirements
	Limitations and recommendations
	Setting up access to transaction log backups
	Listing available transaction log backups
	Copying transaction log backups
	Validating the transaction log backup log chain

	Amazon S3 bucket folder and file structure
	Tracking the status of tasks
	Canceling a task
	Troubleshooting access to transaction log backups

	Options for the Microsoft SQL Server database engine
	Listing the available options for SQL Server versions and editions
	Support for Linked Servers with Oracle OLEDB in Amazon RDS for SQL Server
	Supported versions and Regions
	Limitations and recommendations
	Activating linked servers with Oracle
	Creating the option group for OLEDB_ORACLE
	Console
	CLI

	Adding the OLEDB_ORACLE option to the option group
	Console
	CLI

	Associating the option group with your DB instance
	Console
	CLI

	Modifying OLEDB provider properties
	Modifying OLEDB driver properties
	Deactivating linked servers with Oracle
	Console
	CLI

	Linked Servers with Teradata ODBC in RDS for SQL Server
	Supported versions and Regions
	Limitations and recommendations
	Considerations for Multi-AZ deployment
	Activating linked servers with Teradata
	Creating the option group for ODBC_TERADATA
	Console
	AWS CLI

	Adding the ODBC_TERADATA option to the option group
	Console
	AWS CLI

	Associating the ODBC_TERADATA option with your DB instance
	Console
	AWS CLI

	Creating linked servers with Teradata
	Deactivating servers linked to Teradata
	Console
	AWS CLI

	Support for native backup and restore in SQL Server
	Adding the native backup and restore option
	Console
	CLI

	Modifying native backup and restore option settings
	Removing the native backup and restore option

	Support for Transparent Data Encryption in SQL Server
	Turning on TDE for RDS for SQL Server
	Option group considerations
	SQL Server performance considerations

	Encrypting data on RDS for SQL Server
	Backing up and restoring TDE certificates on RDS for SQL Server
	Prerequisites
	Limitations
	Backing up a TDE certificate
	Restoring a TDE certificate
	Viewing restored TDE certificates
	Dropping restored TDE certificates

	Backing up and restoring TDE certificates for on-premises databases
	Turning off TDE for RDS for SQL Server

	SQL Server Audit
	SQL Server Audit with Database Activity Streams
	Support for SQL Server Audit
	Adding SQL Server Audit to the DB instance options
	Modifying the SQL Server Audit option
	Removing SQL Server Audit from the DB instance options

	Using SQL Server Audit
	Creating audits
	Creating audit specifications

	Viewing audit logs
	Using SQL Server Audit with Multi-AZ instances
	Configuring an S3 bucket
	Manually creating an IAM role for SQL Server Audit

	Support for SQL Server Analysis Services in Amazon RDS for SQL Server
	Limitations
	Turning on SSAS
	Creating an option group for SSAS
	Console
	CLI

	Adding the SSAS option to the option group
	Console
	CLI

	Associating the option group with your DB instance
	Console
	CLI

	Allowing inbound access to your VPC security group
	Enabling Amazon S3 integration

	Deploying SSAS projects on Amazon RDS
	Monitoring the status of a deployment task
	Using SSAS on Amazon RDS
	Setting up a Windows-authenticated user for SSAS
	Adding a domain user as a database administrator
	Creating an SSAS proxy
	Scheduling SSAS database processing using SQL Server Agent
	Revoking SSAS access from the proxy

	Backing up an SSAS database
	Restoring an SSAS database
	Restoring a DB instance to a specified time

	Changing the SSAS mode
	Console
	AWS CLI

	Turning off SSAS
	Console
	AWS CLI

	Troubleshooting SSAS issues

	Support for SQL Server Integration Services in Amazon RDS for SQL Server
	Limitations and recommendations
	Enabling SSIS
	Creating the option group for SSIS
	Console
	CLI

	Adding the SSIS option to the option group
	Console
	CLI

	Creating the parameter group for SSIS
	Console
	CLI

	Modifying the parameter for SSIS
	Console
	CLI

	Associating the option group and parameter group with your DB instance
	Console
	CLI

	Enabling S3 integration

	Administrative permissions on SSISDB
	Setting up a Windows-authenticated user for SSIS

	Deploying an SSIS project
	Monitoring the status of a deployment task
	Using SSIS
	Setting database connection managers for SSIS projects
	Creating an SSIS proxy
	Scheduling an SSIS package using SQL Server Agent
	Revoking SSIS access from the proxy

	Disable and drop SSIS database
	Disabling SSIS
	Console
	CLI

	Dropping the SSISDB database

	Support for SQL Server Reporting Services in Amazon RDS for SQL Server
	Limitations and recommendations
	Turning on SSRS
	Creating an option group for SSRS
	Console
	CLI

	Adding the SSRS option to your option group
	Console
	CLI

	Associating your option group with your DB instance
	Console
	CLI

	Allowing inbound access to your VPC security group

	Report server databases
	SSRS log files
	Accessing the SSRS web portal
	Using SSL on RDS
	Granting access to domain users
	Accessing the web portal

	Deploying reports and configuring report data sources
	Deploying reports to SSRS
	Configuring the report data source

	Using SSRS Email to send reports
	Revoking system-level permissions
	Monitoring the status of a task
	Disabling and deleting SSRS databases
	Turning off SSRS
	Console
	CLI

	Deleting the SSRS databases

	Support for Microsoft Distributed Transaction Coordinator in RDS for SQL Server
	Limitations
	Enabling MSDTC
	Creating the option group for MSDTC
	Console
	CLI

	Adding the MSDTC option to the option group
	Console
	CLI

	Creating the parameter group for MSDTC
	Console
	CLI

	Modifying the parameter for MSDTC
	Console
	CLI

	Associating the option group and parameter group with the DB instance
	Console
	CLI

	Modifying the MSDTC option

	Using transactions
	Using distributed transactions
	Using XA transactions
	Using transaction tracing

	Disabling MSDTC
	Console
	CLI

	Troubleshooting MSDTC for RDS for SQL Server

	Common DBA tasks for Amazon RDS for Microsoft SQL Server
	Accessing the tempdb database on Microsoft SQL Server DB instances on Amazon RDS
	Modifying tempdb database options
	Optimizing performance when importing data
	Preventing storage problems

	Shrinking the tempdb database
	Using the rds_shrink_tempdbfile procedure
	Setting the SIZE property

	TempDB configuration for Multi-AZ deployments

	Analyzing your database workload on an Amazon RDS for SQL Server DB instance with Database Engine Tuning Advisor
	Running a client-side trace on a SQL Server DB instance
	Running a server-side trace on a SQL Server DB instance
	Running Tuning Advisor with a trace

	Changing the db_owner to the rdsa account for your Amazon RDS for SQL Server database
	Managing collations and character sets for Amazon RDS for Microsoft SQL Server
	Server-level collation for Microsoft SQL Server
	Database-level collation for Microsoft SQL Server

	Creating a database user for Amazon RDS for SQL Server
	Determining a recovery model for your Amazon RDS for SQL Server database
	Determining the last failover time for Amazon RDS for SQL Server
	Troubleshooting point-in-time-recovery failures due to a log sequence number gap
	Deny or allow viewing database names for Amazon RDS for SQL Server
	Disabling fast inserts during bulk loading for Amazon RDS for SQL Server
	Dropping a database in an Amazon RDS for Microsoft SQL Server DB instance
	Renaming a Amazon RDS for Microsoft SQL Server database in a Multi-AZ deployment
	Resetting the db_owner role membership for master user for Amazon RDS for SQL Server
	Restoring license-terminated DB instances for Amazon RDS for SQL Server
	Transitioning a Amazon RDS for SQL Server database from OFFLINE to ONLINE
	Using change data capture for Amazon RDS for SQL Server
	Tracking tables with change data capture
	Change data capture jobs
	Change data capture for Multi-AZ instances

	Using SQL Server Agent for Amazon RDS
	Turning on SQL Server Agent job replication
	Adding a user to the SQLAgentUser role
	Deleting a SQL Server Agent job

	Working with Amazon RDS for Microsoft SQL Server logs
	Watching log files
	Archiving log files
	Viewing error and agent logs

	Working with trace and dump files for Amazon RDS for SQL Server
	Generating a trace SQL query
	Viewing an open trace
	Viewing trace contents
	Setting the retention period for trace and dump files

	Amazon RDS for MySQL
	MySQL feature support on Amazon RDS
	MySQL feature support on Amazon RDS for MySQL major versions
	MySQL 8.4 support on Amazon RDS

	Supported storage engines for RDS for MySQL
	Using memcached and other options with MySQL on Amazon RDS
	InnoDB cache warming for MySQL on Amazon RDS
	Dumping and loading the buffer pool on demand

	Inclusive language changes for RDS for MySQL 8.4
	Configuration parameter name changes
	Stored procedure name changes

	MySQL features not supported by Amazon RDS

	MySQL on Amazon RDS versions
	Supported MySQL minor versions on Amazon RDS
	MySQL minor versions on Amazon RDS
	MySQL version 8.4.5
	MySQL version 8.4.4
	MySQL version 8.0.41
	MySQL version 8.0.40
	MySQL version 8.0.39
	MySQL version 8.0.37

	Supported MySQL major versions on Amazon RDS
	Amazon RDS Extended Support versions for RDS for MySQL
	RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250213
	RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20250103
	RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240808
	RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240529
	RDS Extended Support for RDS for MySQL version 5.7.44-RDS.20240408

	Working with the Database Preview environment
	Features not supported in the Database Preview environment
	Creating a new DB instance in the Database Preview environment
	Console
	AWS CLI
	RDS API

	MySQL version 9.2 in the Database Preview environment
	MySQL version 9.1 in the Database Preview environment
	Deprecated versions for Amazon RDS for MySQL

	Connecting to your MySQL DB instance
	Finding the connection information for an RDS for MySQL DB instance
	Console
	AWS CLI
	RDS API

	Installing the MySQL command-line client
	Connecting from the MySQL command-line client (unencrypted)
	Connecting from MySQL Workbench
	Connecting to RDS for MySQL with the AWS JDBC Driver, AWS Python Driver, and AWS ODBC Driver for MySQL
	Connecting to RDS for MySQL with the Amazon Web Services (AWS) JDBC Driver
	Connecting to RDS for MySQL with the Amazon Web Services (AWS) Python Driver
	Connecting to RDS for MySQL with the Amazon Web Services (AWS) ODBC Driver for MySQL

	Troubleshooting connections to your MySQL DB instance

	Securing MySQL DB instance connections
	Password validation for RDS for MySQL
	Encrypting client connections with SSL/TLS to MySQL DB instances on Amazon RDS
	SSL/TLS support for MySQL DB instances on Amazon RDS
	Requiring SSL/TLS for specific user accounts to a MySQL DB instance on Amazon RDS
	Requiring SSL/TLS for all connections to a MySQL DB instance on Amazon RDS
	Connecting to your MySQL DB instance on Amazon RDS with SSL/TLS from the MySQL command-line client (encrypted)

	Updating applications to connect to MySQL DB instances using new SSL/TLS certificates
	Determining whether any applications are connecting to your MySQL DB instance using SSL
	Determining whether a client requires certificate verification to connect
	JDBC
	MySQL

	Updating your application trust store
	Example Java code for establishing SSL connections

	Using Kerberos authentication for Amazon RDS for MySQL
	Region and version availability
	Overview of Setting up Kerberos authentication for MySQL DB instances
	Setting up Kerberos authentication for MySQL DB instances
	Step 1: Create a directory using AWS Managed Microsoft AD
	Step 2: Create the IAM role for use by Amazon RDS
	Step 3: Create and configure users
	Step 4: Create or modify a MySQL DB instance
	Step 5: Create Kerberos authentication MySQL logins

	Managing a DB instance in a domain
	Understanding domain membership

	Connecting to MySQL with Kerberos authentication
	Restoring a MySQL DB instance and adding it to a domain
	Kerberos authentication MySQL limitations

	Improving query performance for RDS for MySQL with Amazon RDS Optimized Reads
	Overview of RDS Optimized Reads
	Use cases for RDS Optimized Reads
	Best practices for RDS Optimized Reads
	Using RDS Optimized Reads
	Monitoring DB instances that use RDS Optimized Reads
	Limitations for RDS Optimized Reads

	Improving write performance with RDS Optimized Writes for MySQL
	Overview of RDS Optimized Writes
	Using RDS Optimized Writes
	Console
	AWS CLI
	RDS API

	Enabling RDS Optimized Writes on an existing database
	Limitations for RDS Optimized Writes

	Upgrades of the RDS for MySQL DB engine
	Considerations for MySQL upgrades
	Finding valid upgrade targets
	MySQL version numbers
	RDS version numbers in RDS for MySQL
	Major version upgrades for RDS for MySQL
	Overview of MySQL major version upgrades
	Prechecks for upgrades
	Prechecks for upgrades from MySQL 8.0 to 8.4
	Prechecks for upgrades from MySQL 5.7 to 8.0

	Rollback after failure to upgrade

	Testing an RDS for MySQL upgrade
	Upgrading a MySQL DB instance
	Automatic minor version upgrades for RDS for MySQL
	Using a read replica to reduce downtime when upgrading an RDS for MySQL database

	Upgrading a MySQL DB snapshot engine version
	Upgrade options for DB snapshots with unsupported engine versions for RDS for MySQL

	Importing data into an Amazon RDS for MySQL DB instance
	Importing data considerations for MySQL
	Binary logging
	Transaction size
	Small transactions
	Large transactions
	Optimizing large data loads

	InnoDB
	Understanding InnoDB undo logging
	InnoDB transaction recovery options

	Data import formats
	Flat files
	SQL

	Using Amazon RDS DB snapshots for database checkpoints
	Reducing database load times

	Restoring a backup into an Amazon RDS for MySQL DB instance
	Overview of setup to import backup files from Amazon S3 to Amazon RDS
	Creating your database backup
	Creating a full backup with Percona XtraBackup
	Using incremental backups with Percona XtraBackup
	Backup considerations for Percona XtraBackup

	Creating an IAM role manually
	Importing data from Amazon S3 to a new MySQL DB instance
	Console
	AWS CLI
	RDS API

	Limitations and considerations for importing backup files from Amazon S3 to Amazon RDS
	Stored objects with 'rdsamin'@'localhost' as the definer
	User accounts with unsupported privileges

	Importing data from an external MySQL database to an Amazon RDS for MySQL DB instance
	Importing data to an Amazon RDS for MySQL database with reduced downtime
	Task 1: Create a copy of your existing database
	To set replication options
	To create a backup copy of your existing database

	Task 2: Create an Amazon EC2 instance and copy the compressed database
	To create an Amazon EC2 instance and copy your data

	Task 3: Create a MySQL or MariaDB database and import data from your Amazon EC2 instance
	To create a MariaDB or MySQL database and import your data

	Task 4: Replicate data from your external database to your new Amazon RDS database
	To start replication

	Task 5: Redirect your live application to your Amazon RDS instance
	To redirect your live application to your MariaDB or MySQL database and stop replication

	Importing data from any source to an Amazon RDS for MySQL DB instance
	Step 1: Create flat files containing the data to be loaded
	Step 2: Stop any applications from accessing the target DB instance
	Step 3: Create a DB snapshot
	Step 4 (Optional): Turn off Amazon RDS automated backups
	Step 5: Load the data
	Step 6: Turn back on Amazon RDS automated backups

	Working with MySQL replication in Amazon RDS
	Working with MySQL read replicas
	Configuring read replicas with MySQL
	Preparing MySQL DB instances that use MyISAM

	Configuring replication filters with MySQL
	Setting replication filtering parameters for RDS for MySQL
	Replication filtering limitations for RDS for MySQL
	Replication filtering examples for RDS for MySQL
	Viewing the replication filters for a read replica

	Configuring delayed replication with MySQL
	Configuring delayed replication during read replica creation
	Modifying delayed replication for an existing read replica
	Setting a location to stop replication to a read replica
	Promoting a read replica

	Updating read replicas with MySQL
	Working with Multi-AZ read replica deployments with MySQL
	Using cascading read replicas with RDS for MySQL
	Monitoring replication lag for MySQL read replicas
	Starting and stopping replication with MySQL read replicas
	Troubleshooting a MySQL read replica problem

	Using GTID-based replication
	Overview of global transaction identifiers (GTIDs)
	Parameters for GTID-based replication
	Enabling GTID-based replication for new read replicas for RDS for MySQL
	Enabling GTID-based replication for existing read replicas for RDS for MySQL
	Disabling GTID-based replication for a MySQL DB instance with read replicas

	Configuring binary log file position replication with an external source instance
	Before you begin
	Configuring binary log file position replication with an external source instance

	Configuring multi-source-replication for Amazon RDS for MySQL
	Use cases for multi-source replication
	Prerequisites for multi-source replication
	Configuring multi-source replication channels on RDS for MySQL DB instances
	Step 1: Import data from the source DB instances to the multi-source replica
	Step 2: Start replication from the source DB instances to the multi-source replica

	Using filters with multi-source replication
	Monitoring multi-source replication channels
	Considerations and best practices for multi-source replication
	Limitations for multi-source replication on RDS for MySQL

	Configuring active-active clusters for RDS for MySQL
	Use cases for active-active clusters
	Limitations and considerations for active-active clusters
	Limitations for RDS for MySQL active-active clusters
	Considerations and best practices for RDS for MySQL active-active clusters

	Preparing for a cross-VPC active-active cluster
	Required parameter settings for active-active clusters
	Converting an existing DB instance to an active-active cluster
	Step 1: Set the active-active cluster parameters in one or more custom parameter groups
	Step 2: Associate the DB instance with a DB parameter group that has the required Group Replication parameters set
	Step 3: Create the active-active cluster
	Step 4: Create additional RDS for MySQL DB instances for the active-active cluster
	Step 5: Initialize the group on the DB instance you are converting
	Step 6: Start replication on the other DB instances in the active-active cluster
	Step 7: (Recommended) Check the status of the active-active cluster

	Setting up an active-active cluster with new DB instances
	Step 1: Set the active-active cluster parameters in one or more custom parameter groups
	Step 2: Create new RDS for MySQL DB instances for the active-active cluster
	Step 3: Specify the DB instances in the active-active cluster
	Step 4: Initialize the group on a DB instance and start replication
	Step 5: Start replication on the other DB instances in the active-active cluster
	Step 6: (Recommended) Check the status of the active-active cluster
	Step 7: (Optional) Import data into a DB instance in the active-active cluster

	Adding a DB instance to an active-active cluster
	Adding a DB instance to an active-active cluster using point-in-time recovery
	Adding a DB instance to an active-active cluster using a DB snapshot

	Monitoring active-active clusters
	Stopping Group Replication on a DB instance in an active-active cluster
	Renaming a DB instance in an active-active cluster
	Removing a DB instance from an active-active cluster

	Exporting data from a MySQL DB instance by using replication
	Prepare an external MySQL database
	Prepare the source MySQL DB instance
	Copy the database
	Complete the export

	Options for MySQL DB instances
	MariaDB Audit Plugin support for MySQL
	Audit Plugin option settings
	Adding the MariaDB Audit Plugin
	Audit log format
	Viewing and downloading the MariaDB Audit Plugin log
	Modifying MariaDB Audit Plugin settings
	Removing the MariaDB Audit Plugin

	MySQL memcached support
	MySQL memcached security considerations
	MySQL memcached connection information
	MySQL memcached option settings
	MySQL memcached parameters
	MySQL daemon_memcached_options parameters

	Parameters for MySQL
	Common DBA tasks for MySQL DB instances
	Understanding predefined users
	Role-based privilege model for RDS for MySQL
	Dynamic privileges for RDS for MySQL
	Ending a session or query for RDS for MySQL
	Skipping the current replication error for RDS for MySQL
	Calling the mysql.rds_skip_repl_error procedure
	Setting the slave_skip_errors parameter

	Working with InnoDB tablespaces to improve crash recovery times for RDS for MySQL
	Migrating multiple tablespaces to the shared tablespace

	Managing the Global Status History for RDS for MySQL
	Configuring buffer pool size and redo log capacity in MySQL 8.4

	Local time zone for MySQL DB instances
	Known issues and limitations for Amazon RDS for MySQL
	InnoDB reserved word
	Storage-full behavior for Amazon RDS for MySQL
	Inconsistent InnoDB buffer pool size
	Index merge optimization returns incorrect results
	MySQL parameter exceptions for Amazon RDS DB instances
	lower_case_table_names
	long_query_time

	MySQL file size limits in Amazon RDS
	MySQL Keyring Plugin not supported
	Custom ports
	MySQL stored procedure limitations
	GTID-based replication with an external source instance
	MySQL default authentication plugin
	Overriding innodb_buffer_pool_size
	Upgrading from MySQL 5.7 to MySQL 8.4
	InnoDB page compression

	RDS for MySQL stored procedure reference
	Collecting and maintaining the Global Status History
	mysql.rds_collect_global_status_history
	Syntax

	mysql.rds_disable_gsh_collector
	Syntax

	mysql.rds_disable_gsh_rotation
	Syntax

	mysql.rds_enable_gsh_collector
	Syntax

	mysql.rds_enable_gsh_rotation
	Syntax

	mysql.rds_rotate_global_status_history
	Syntax

	mysql.rds_set_gsh_collector
	Syntax
	Parameters

	mysql.rds_set_gsh_rotation
	Syntax
	Parameters

	Configuring, starting, and stopping binary log (binlog) replication
	mysql.rds_next_master_log (RDS for MariaDB and RDS for MySQL major versions 8.0 and lower)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_next_source_log (RDS for MySQL major versions 8.4 and higher)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_reset_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and lower)
	Syntax
	Usage notes

	mysql.rds_reset_external_source (RDS for MySQL major versions 8.4 and higher)
	Syntax
	Usage notes

	mysql.rds_set_external_master (RDS for MariaDB and RDS for MySQL major versions 8.0 and lower)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source (RDS for MySQL major versions 8.4 and higher)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_master_with_auto_position (RDS for MySQL major versions 8.0 and lower)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source_with_auto_position (RDS for MySQL major versions 8.4 and higher)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_master_with_delay (RDS for MariaDB and RDS for MySQL major versions 8.0 and lower)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source_with_delay (RDS for MySQL major versions 8.4 and higher)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source_gtid_purged
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_master_auto_position (RDS for MySQL major versions 8.0 and lower)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_source_auto_position (RDS for MySQL major versions 8.4 and higher)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_source_delay
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_skip_repl_error
	Syntax
	Usage notes
	Replication stopped error

	mysql.rds_start_replication
	Syntax
	Usage notes

	mysql.rds_start_replication_until
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_stop_replication
	Syntax
	Usage notes

	Ending a session or query
	mysql.rds_kill
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_kill_query
	Syntax
	Parameters
	Usage notes
	Examples

	Managing active-active clusters
	mysql.rds_group_replication_advance_gtid
	Syntax
	Parameters
	Usage notes
	Example

	mysql.rds_group_replication_create_user
	Syntax
	Parameters
	Usage notes
	Example

	mysql.rds_group_replication_set_recovery_channel
	Syntax
	Parameters
	Usage notes
	Example

	mysql.rds_group_replication_start
	Syntax
	Parameters
	Example

	mysql.rds_group_replication_stop
	Syntax
	Usage notes

	Managing multi-source replication
	mysql.rds_next_source_log_for_channel
	Syntax
	Parameters
	Usage notes
	Example

	mysql.rds_reset_external_source_for_channel
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_external_source_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source_with_auto_position_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source_with_delay_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_source_auto_position_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_source_delay_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_skip_repl_error_for_channel
	Syntax
	Parameters
	Usage notes

	mysql.rds_start_replication_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_start_replication_until_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_start_replication_until_gtid_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_stop_replication_for_channel
	Syntax
	Parameters
	Usage notes
	Examples

	Replicating transactions using GTIDs
	mysql.rds_skip_transaction_with_gtid
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_start_replication_until_gtid
	Syntax
	Parameters
	Usage notes
	Examples

	Rotating the query logs
	mysql.rds_rotate_general_log
	Syntax
	Usage notes

	mysql.rds_rotate_slow_log
	Syntax
	Usage notes

	Setting and showing binary log configuration
	mysql.rds_set_configuration
	Syntax
	Parameters
	Usage notes
	binlog retention hours
	source delay
	target delay

	mysql.rds_show_configuration
	Syntax
	Usage notes
	Examples

	Warming the InnoDB cache
	mysql.rds_innodb_buffer_pool_dump_now
	Syntax
	Usage notes

	mysql.rds_innodb_buffer_pool_load_abort
	Syntax
	Usage notes

	mysql.rds_innodb_buffer_pool_load_now
	Syntax
	Usage notes

	Amazon RDS for Oracle
	Overview of Oracle on Amazon RDS
	RDS for Oracle features
	New features in RDS for Oracle
	Supported features in RDS for Oracle
	Unsupported features in RDS for Oracle

	RDS for Oracle releases
	Oracle Database 21c with Amazon RDS
	Amazon RDS parameter changes for Oracle Database 21c (21.0.0.0)
	New parameters
	Changes for the compatible parameter
	Removed parameters

	Oracle Database 19c with Amazon RDS
	Amazon RDS parameter changes for Oracle Database 19c (19.0.0.0)
	New parameters
	Changes to the compatible parameter
	Removed parameters

	RDS for Oracle licensing options
	License Included model for SE2
	Bring Your Own License (BYOL) for EE and SE2
	Integrating with AWS License Manager
	Console
	AWS CLI

	Migrating between Oracle Database editions

	Licensing Oracle Multi-AZ deployments

	RDS for Oracle users and privileges
	Limitations for Oracle DBA privileges
	How to manage privileges on SYS objects

	RDS for Oracle DB instance classes
	Supported RDS for Oracle DB instance classes
	RDS for Oracle preconfigured DB instance classes
	Supported edition, instance class, and licensing combinations in RDS for Oracle

	Deprecated RDS for Oracle DB instance classes

	RDS for Oracle database architecture
	RDS for Oracle parameters
	DB parameter groups
	Oracle database initialization parameters

	RDS for Oracle character sets
	DB character set
	Supported DB character sets
	NLS_LANG environment variable
	NLS initialization parameters

	National character set

	RDS for Oracle limitations
	Oracle file size limits in Amazon RDS
	Public synonyms for Oracle-supplied schemas
	Schemas for unsupported features
	Limitations for Oracle DBA privileges
	Deprecation of TLS 1.0 and 1.1 Transport Layer Security

	Connecting to your Oracle DB instance
	Finding the endpoint of your RDS for Oracle DB instance
	Console
	AWS CLI

	Connecting to your DB instance using Oracle SQL developer
	Connecting to your DB instance using SQL*Plus
	Considerations for security groups
	Considerations for process architecture
	Troubleshooting connections to your Oracle DB instance
	Modifying connection properties using sqlnet.ora parameters
	Setting sqlnet.ora parameters
	Supported sqlnet.ora parameters
	Viewing sqlnet.ora parameters
	Viewing sqlnet.ora parameters using the console
	Viewing sqlnet.ora parameters using the AWS CLI
	Viewing sqlnet.ora parameters using a SQL client

	Securing Oracle DB instance connections
	Using SSL with an RDS for Oracle DB instance
	Updating applications to connect to Oracle DB instances using new SSL/TLS certificates
	Finding out whether applications connect using SSL
	Updating your application trust store
	Updating your application trust store for SQL*Plus
	Updating your application trust store for JDBC

	Example Java code for establishing SSL connections

	Using native network encryption with an RDS for Oracle DB instance
	Configuring Kerberos authentication for Amazon RDS for Oracle
	Region and version availability
	Setting up Kerberos for Oracle DB instances
	Step 1: Create a directory using the AWS Managed Microsoft AD
	Step 2: Create a trust
	Step 3: Configure IAM permissions for Amazon RDS
	Creating an IAM role
	Creating an IAM trust policy manually

	Step 4: Create and configure users
	Step 5: Enable cross-VPC traffic between the directory and the DB instance
	Step 6: Create or modify an Oracle DB instance
	Step 7: Create Kerberos authentication Oracle logins
	Step 8: Configure an Oracle client

	Managing a DB instance in a domain
	Viewing the status of domain membership
	Force-rotating Kerberos keys

	Connecting to Oracle with Kerberos authentication

	Configuring UTL_HTTP access using certificates and an Oracle wallet
	Considerations when configuring UTL_HTTP access
	Step 1: Get the root certificate for a website
	Step 2: Create an Oracle wallet
	Step 3: Download your Oracle wallet to your RDS for Oracle instance
	Step 4: Grant user permissions for the Oracle wallet
	Step 5: Configure access to a website from your DB instance
	Step 6: Test connections from your DB instance to a website

	Working with CDBs in RDS for Oracle
	Overview of RDS for Oracle CDBs
	Multi-tenant configuration of the CDB architecture
	Single-tenant configuration of the CDB architecture
	Creation and conversion options for CDBs
	Creation, conversion, and upgrade options for the Oracle database architecture
	Conversion options for CDB architecture configurations

	User accounts and privileges in a CDB
	Parameter group families in a CDB
	Limitations of RDS for Oracle CDBs
	CDB limitations
	Tenant database (PDB) limitations

	Configuring an RDS for Oracle CDB
	Creating an RDS for Oracle CDB instance
	Console
	AWS CLI
	RDS API

	Connecting to a PDB in your RDS for Oracle CDB

	Backing up and restoring a CDB
	Backing up and restoring a CDB using DB snapshots
	Backing up and restoring a CDB using RMAN

	Converting an RDS for Oracle non-CDB to a CDB
	Console
	AWS CLI
	RDS API

	Converting the single-tenant configuration to multi-tenant
	Console
	AWS CLI

	Adding an RDS for Oracle tenant database to your CDB instance
	Console
	AWS CLI

	Modifying an RDS for Oracle tenant database
	Console
	AWS CLI

	Deleting an RDS for Oracle tenant database from your CDB
	Console
	AWS CLI

	Viewing tenant database details
	Console
	AWS CLI

	Upgrading your CDB

	Administering your RDS for Oracle DB instance
	Performing common system tasks for Oracle DB instances
	Disconnecting a session
	Terminating a session
	Canceling a SQL statement in a session
	Enabling and disabling restricted sessions
	Flushing the shared pool
	Flushing the buffer cache
	Flushing the database smart flash cache

	Granting SELECT or EXECUTE privileges to SYS objects
	Revoking SELECT or EXECUTE privileges on SYS objects
	Managing RDS_X$ views for Oracle DB instances
	List X$ fixed tables eligible for use in RDS_X$ views
	Creating SYS.RDS_X$ views
	Listing SYS.RDS_X$ views
	Dropping RDS_X$ views

	Granting privileges to non-master users
	Creating custom functions to verify passwords
	The create_verify_function procedure
	The create_passthrough_verify_fcn procedure

	Setting up a custom DNS server
	Setting and unsetting system diagnostic events
	Listing allowed system diagnostic events
	Setting system diagnostic events
	Listing system diagnostic events that are set
	Unsetting system diagnostic events

	Performing common database tasks for Oracle DB instances
	Changing the global name of a database
	Using tablespaces
	Creating and sizing tablespaces
	Setting the default tablespace
	Setting the default temporary tablespace
	Creating a temporary tablespace on the instance store

	Using tempfiles
	Adding a tempfile to the instance store on a read replica
	Dropping tempfiles on a read replica

	Checkpointing a database
	Setting distributed recovery
	Setting the database time zone
	Working with Oracle external tables
	Generating performance reports with Automatic Workload Repository (AWR)
	Working with AWR reports in RDS
	Common parameters for the diagnostic utility package
	Generating an AWR report
	Extracting AWR data into a dump file
	Generating an ADDM report
	Generating an ASH report
	Accessing AWR reports from the console or CLI

	Adjusting database links for use with DB instances in a VPC
	Setting the default edition for a DB instance
	Enabling auditing for the SYS.AUD$ table
	Disabling auditing for the SYS.AUD$ table
	Cleaning up interrupted online index builds
	Skipping corrupt blocks
	Resizing tablespaces, data files, and temp files
	Resizing permanent tablespaces
	Resizing temporary tablespaces

	Purging the recycle bin
	Setting the default displayed values for full redaction

	Performing common log-related tasks for Oracle DB instances
	Setting force logging
	Setting supplemental logging
	Switching online log files
	Adding online redo logs
	Dropping online redo logs
	Resizing online redo logs
	Retaining archived redo logs
	Accessing online and archived redo logs
	Downloading archived redo logs from Amazon S3
	Downloading archived redo logs: basic steps
	Downloading a single archived redo log
	Downloading a series of archived redo logs

	Performing common RMAN tasks for Oracle DB instances
	Prerequisites for RMAN backups
	Common parameters for RMAN procedures
	Validating database files in RDS for Oracle
	Validating a database
	Validating a tenant database
	Validating a tablespace
	Validating a control file
	Validating an SPFILE
	Validating an Oracle data file

	Enabling and disabling block change tracking
	Crosschecking archived redo logs
	Backing up archived redo log files
	Backing up all archived redo logs
	Backing up an archived redo log from a date range
	Backing up an archived redo log from an SCN range
	Backing up an archived redo log from a sequence number range

	Performing a full database backup
	Performing a full backup of a tenant database
	Performing an incremental database backup
	Performing an incremental backup of a tenant database
	Backing up a tablespace
	Backing up a control file
	Performing block media recovery

	Performing common scheduling tasks for Oracle DB instances
	Common parameters for Oracle Scheduler procedures
	Modifying DBMS_SCHEDULER jobs
	Modifying AutoTask maintenance windows
	Setting the time zone for Oracle Scheduler jobs
	Turning off Oracle Scheduler jobs owned by SYS
	Turning on Oracle Scheduler jobs owned by SYS
	Modifying the Oracle Scheduler repeat interval for jobs of CALENDAR type
	Modifying the Oracle Scheduler repeat interval for jobs of NAMED type
	Turning off autocommit for Oracle Scheduler job creation

	Diagnosing problems with RDS for Oracle DB instances
	Common parameters for diagnostic procedures
	Listing incidents
	Listing problems
	Creating incident packages
	Showing trace files

	Performing miscellaneous tasks for Oracle DB instances
	Creating and dropping directories in the main data storage space
	Listing files in a DB instance directory
	Reading files in a DB instance directory
	Accessing Opatch files
	Console
	SQL
	PL/SQL

	Managing advisor tasks
	Setting parameters for advisor tasks
	Disabling AUTO_STATS_ADVISOR_TASK
	Re-enabling AUTO_STATS_ADVISOR_TASK

	Transporting tablespaces
	Importing transported tablespaces to your DB instance
	Syntax
	Parameters
	Examples

	Importing transportable tablespace metadata into your DB instance
	Syntax
	Parameters
	Examples

	Listing orphaned files after a tablespace import
	Syntax
	Examples

	Deleting orphaned data files after a tablespace import
	Syntax
	Parameters
	Examples

	Configuring advanced RDS for Oracle features
	Storing temporary data in an RDS for Oracle instance store
	Overview of the RDS for Oracle instance store
	Types of data in the RDS for Oracle instance store
	Benefits of the RDS for Oracle instance store
	Supported instance classes for the RDS for Oracle instance store
	Supported engine versions for the RDS for Oracle instance store
	Supported AWS Regions for the RDS for Oracle instance store
	Cost of the RDS for Oracle instance store

	Turning on an RDS for Oracle instance store
	Configuring an RDS for Oracle instance store
	Considerations when changing the DB instance type

	Working with an instance store on an Oracle read replica
	Configuring a temporary tablespace group on an instance store and Amazon EBS
	Removing an RDS for Oracle instance store

	Turning on HugePages for an RDS for Oracle instance
	Turning on extended data types in RDS for Oracle
	Considerations for extended data types
	Turning on extended data types for a new DB instance
	Turning on extended data types for an existing DB instance

	Importing data into Oracle on Amazon RDS
	Importing using Oracle SQL Developer
	Migrating using Oracle transportable tablespaces
	Overview of Oracle transportable tablespaces
	Advantages and disadvantages of transportable tablespaces
	Limitations for transportable tablespaces
	Prerequisites for transportable tablespaces

	Phase 1: Set up your source host
	Phase 2: Prepare the full tablespace backup
	Step 1: Back up the tablespaces on your source host
	Step 2: Transfer the backup files to your target DB instance
	Step 2.2: Upload the backups to your Amazon S3 bucket
	Step 2.3: Download the backups from your Amazon S3 bucket to your target DB instance

	Step 3: Import the tablespaces on your target DB instance

	Phase 3: Make and transfer incremental backups
	Phase 4: Transport the tablespaces
	Step 1: Back up your read-only tablespaces
	Step 2: Export tablespace metadata on your source host
	Step 3: (Amazon S3 only) Transfer the backup and export files to your target DB instance
	Step 3.1: Upload the backups and dump file from your source host to your Amazon S3 bucket
	Step 3.2: Download the backups and dump file from your Amazon S3 bucket to your target DB instance

	Step 4: Import the tablespaces on your target DB instance
	Step 5: Import tablespace metadata on your target DB instance

	Phase 5: Validate the transported tablespaces
	Phase 6: Clean up leftover files

	Importing using Oracle Data Pump
	Overview of Oracle Data Pump
	Oracle Data Pump workflow
	Oracle Data Pump best practices

	Importing data with Oracle Data Pump and an Amazon S3 bucket
	Requirements for Importing data with Oracle Data Pump and an Amazon S3 bucket
	Step 1: Grant privileges to the database user on the RDS for Oracle target DB instance
	Step 2: Export data into a dump file using DBMS_DATAPUMP
	Step 3: Upload the dump file to your Amazon S3 bucket
	Step 4: Download the dump file from your Amazon S3 bucket to your target DB instance
	Step 5: Import your dump file into your target DB instance using DBMS_DATAPUMP
	Step 6: Clean up

	Importing data with Oracle Data Pump and a database link
	Requirements for importing data with Oracle Data Pump and a database link
	Step 1: Grant privileges to the user on the RDS for Oracle target DB instance
	Step 2: Grant privileges to the user on the source database
	Step 3: Create a dump file using DBMS_DATAPUMP
	Step 4: Create a database link to the target DB instance
	Step 5: Copy the exported dump file to the target DB instance using DBMS_FILE_TRANSFER
	Step 6: Import the data file to the target DB instance using DBMS_DATAPUMP
	Step 7: Clean up

	Importing using Oracle Export/Import
	Importing using Oracle SQL*Loader
	Migrating with Oracle materialized views

	Working with read replicas for Amazon RDS for Oracle
	Overview of RDS for Oracle replicas
	Read-only and mounted replicas
	Read replicas of CDBs
	Archived redo log retention
	Outages during Oracle replication

	Requirements and considerations for RDS for Oracle replicas
	Version and licensing requirements for RDS for Oracle replicas
	Option group limitations for RDS for Oracle replicas
	Backup and restore considerations for RDS for Oracle replicas
	Oracle Data Guard requirements and limitations for RDS for Oracle replicas
	Miscellaneous considerations for RDS for Oracle replicas

	Preparing to create an Oracle replica
	Enabling automatic backups
	Enabling force logging mode
	Changing your logging configuration
	Setting the MAX_STRING_SIZE parameter
	Planning compute and storage resources

	Creating an RDS for Oracle replica in mounted mode
	Console
	AWS CLI
	RDS API

	Modifying the RDS for Oracle replica mode
	Console
	AWS CLI
	RDS API

	Working with RDS for Oracle replica backups
	Turning on RDS for Oracle replica backups
	Console
	AWS CLI
	RDS API

	Restoring an RDS for Oracle replica backup

	Performing an Oracle Data Guard switchover
	Overview of Oracle Data Guard switchover
	Benefits of Oracle Data Guard switchover
	Supported Oracle Database versions
	Cost of Oracle Data Guard switchover
	How Oracle Data Guard switchover works
	Stages of the Oracle Data Guard switchover
	After the Oracle Data Guard switchover
	Success criteria
	Connection to the new primary database
	Configuration of the new primary database

	Requirements for the Oracle Data Guard switchover
	Initiating the Oracle Data Guard switchover
	Console
	AWS CLI
	RDS API

	Monitoring the Oracle Data Guard switchover

	Troubleshooting RDS for Oracle replicas
	Monitoring Oracle replication lag
	Troubleshooting Oracle replication failure after adding or modifying triggers

	Adding options to Oracle DB instances
	Overview of Oracle DB options
	Summary of Oracle Database options
	Options supported for different editions
	Memory requirements for specific options

	Amazon S3 integration
	Configuring IAM permissions for RDS for Oracle integration with Amazon S3
	Step 1: Create an IAM policy for your Amazon RDS role
	Console
	AWS CLI

	Step 2: (Optional) Create an IAM policy for your Amazon S3 bucket
	Console

	Step 3: Create an IAM role for your DB instance and attach your policy
	Console
	AWS CLI

	Step 4: Associate your IAM role with your RDS for Oracle DB instance
	Console
	AWS CLI

	Adding the Amazon S3 integration option
	Console
	AWS CLI

	Transferring files between Amazon RDS for Oracle and an Amazon S3 bucket
	Requirements and limitations for file transfers
	Uploading files from your RDS for Oracle DB instance to an Amazon S3 bucket
	Downloading files from an Amazon S3 bucket to an Oracle DB instance
	Monitoring the status of a file transfer

	Troubleshooting Amazon S3 integration
	Removing the Amazon S3 integration option

	Oracle Application Express (APEX)
	APEX components
	Requirements and limitations
	APEX version requirements
	Oracle APEX and ORDS prerequisites
	APEX limitations

	Setting up APEX and Oracle Rest Data Services (ORDS)
	Adding the APEX and APEX-DEV options to your DB instance
	Unlocking the public user account on your DB instance
	Configuring RESTful services for Oracle APEX
	Preparing to install ORDS on a separate host
	Setting up Oracle APEX listener
	Preparing to install Oracle APEX listener
	Installing and configuring Oracle APEX listener

	Configuring Oracle Rest Data Services (ORDS)
	Installing and configuring ORDS 21 and lower
	Installing and configuring ORDS 22 and higher

	Upgrading and removing APEX
	Upgrading the APEX version
	Removing the APEX option

	Amazon EFS integration
	Overview of Amazon EFS integration
	Advantages to Amazon EFS integration
	Requirements for Amazon EFS integration

	Configuring network permissions for RDS for Oracle integration with Amazon EFS
	Controlling network access with security groups
	Controlling network access with file system policies

	Configuring IAM permissions for RDS for Oracle integration with Amazon EFS
	Step 1: Create an IAM role for your DB instance and attach your policy
	Console
	AWS CLI

	Step 2: Create a file system policy for your Amazon EFS file system
	Step 3: Associate your IAM role with your RDS for Oracle DB instance
	Console
	AWS CLI

	Adding the EFS_INTEGRATION option
	Console
	AWS CLI

	Configuring Amazon EFS file system permissions
	Transferring files between RDS for Oracle and an Amazon EFS file system
	Creating an Oracle directory
	Transferring data to and from an EFS file system: examples

	Removing the EFS_INTEGRATION option
	Troubleshooting Amazon EFS integration

	Oracle Java virtual machine
	Considerations for Oracle JVM
	Prerequisites for Oracle JVM
	Best practices for Oracle JVM
	Adding the Oracle JVM option
	Removing the Oracle JVM option

	Oracle Enterprise Manager
	Oracle Enterprise Manager Database Express
	OEM option settings
	Step 1: Adding the OEM option
	Step 2: (CDB only) Unlocking the DBSNMP user account
	Step 3: Accessing EM Express through your browser
	Modifying OEM Database settings
	Running OEM Database Express tasks
	Switching the website front end for OEM Database Express to Adobe Flash
	Switching the website front end for OEM Database Express to Oracle JET

	Removing the OEM Database option

	Oracle Management Agent for Enterprise Manager Cloud Control
	Requirements for Management Agent
	OMS host communication prerequisites
	Limitations for Management Agent
	Option settings for Management Agent
	Step1: Adding the Management Agent option to your DB instance
	Console
	AWS CLI

	Step 2: Unlocking the DBSNMP user account
	Step 3: Adding your targets to the Management Agent console
	Administering the Management Agent
	Getting the status of the Management Agent
	Restarting the Management Agent
	Listing the targets monitored by the Management Agent
	Listing the collection threads monitored by the Management Agent
	Clearing the Management Agent state
	Making the Management Agent upload its OMS
	Pinging the OMS
	Viewing the status of an ongoing task

	Removing the Management Agent option

	Oracle Label Security
	Requirements for Oracle Label Security
	Considerations when using Oracle Label Security
	Adding the Oracle Label Security option
	Troubleshooting

	Oracle Locator
	Supported database releases for Oracle Locator
	Prerequisites for Oracle Locator
	Best practices for Oracle Locator
	Adding the Oracle Locator option
	Using Oracle Locator
	Removing the Oracle Locator option

	Oracle native network encryption
	NATIVE_NETWORK_ENCRYPTION option settings
	Adding the NATIVE_NETWORK_ENCRYPTION option
	Setting NNE values in the sqlnet.ora
	Modifying NATIVE_NETWORK_ENCRYPTION option settings
	Modifying CRYPTO_CHECKSUM_* values
	Modifying ALLOW_WEAK_CRYPTO* settings

	Removing the NATIVE_NETWORK_ENCRYPTION option

	Oracle OLAP
	Prerequisites for Oracle OLAP
	Best practices for Oracle OLAP
	Adding the Oracle OLAP option
	Using Oracle OLAP
	Removing the Oracle OLAP option

	Oracle Secure Sockets Layer
	TLS versions for the Oracle SSL option
	Cipher suites for the Oracle SSL option
	FIPS support
	Adding the SSL option
	Console
	AWS CLI

	Configuring SQL*Plus to use SSL with an RDS for Oracle DB instance
	Connecting to an RDS for Oracle DB instance using SSL
	Setting up an SSL connection over JDBC
	Enforcing a DN match with an SSL connection
	Troubleshooting SSL connections

	Oracle Spatial
	How Spatial Patch Bundles (SPBs) work
	Prerequisites for Oracle Spatial
	Best practices for Oracle Spatial
	Adding the Oracle Spatial option
	Removing the Oracle Spatial option

	Oracle SQLT
	Prerequisites for SQLT
	SQLT option settings
	Adding the SQLT option
	Using SQLT
	Upgrading the SQLT option
	Modifying SQLT settings
	Removing the SQLT option

	Oracle Statspack
	Setting up Oracle Statspack
	Generating Statspack reports
	Removing Statspack snapshots

	Oracle time zone
	Restrictions for setting the time zone
	Recommendations for setting the time zone
	Time zone option settings
	Adding the time zone option
	Console
	AWS CLI

	Modifying time zone settings
	Removing the time zone option
	Available time zones

	Oracle time zone file autoupgrade
	Overview of Oracle time zone files
	How the time zone file affects data transfer
	Automatic updates using the TIMEZONE_FILE_AUTOUPGRADE option

	Strategies for updating your time zone file
	Update the time zone file without upgrading the engine
	Upgrade the time zone file and DB engine version
	Upgrade your DB engine version without updating the time zone file

	Downtime during the time zone file update
	Preparing to update the time zone file
	Adding the time zone file autoupgrade option
	Console
	AWS CLI

	Checking your data after the update of the time zone file

	Oracle Transparent Data Encryption
	TDE encryption modes
	Restrictions for the TDE option
	Determining whether your DB instance is using TDE
	Adding the TDE option
	Console
	AWS CLI

	Copying your data to a DB instance that doesn't include the TDE option
	Considerations when using TDE with Oracle Data Pump

	Oracle UTL_MAIL
	Prerequisites for Oracle UTL_MAIL
	Adding the Oracle UTL_MAIL option
	Using Oracle UTL_MAIL
	Removing the Oracle UTL_MAIL option
	Troubleshooting

	Oracle XML DB

	Upgrading the RDS for Oracle DB engine
	Overview of RDS for Oracle engine upgrades
	Major and minor version upgrades
	Support dates and mandatory upgrades for RDS for Oracle
	Support dates for major releases of RDS for Oracle
	Support dates for minor versions of RDS for Oracle

	Oracle engine version management
	Automatic snapshots during engine upgrades
	Oracle upgrades in a Multi-AZ deployment
	Oracle upgrades of read replicas

	Oracle major version upgrades
	Supported versions for major upgrades
	Supported instance classes for major upgrades
	Gathering statistics before major upgrades
	Allowing major upgrades

	Oracle minor version upgrades
	Release Updates (RUs) and Spatial Patch Bundles (SPBs)
	Turning on automatic minor version upgrades for Oracle
	Notification of automatic minor version upgrades in RDS for Oracle
	When RDS schedules automatic minor version upgrades in RDS for Oracle
	Managing an automatic minor version upgrade in RDS for Oracle

	Considerations for Oracle database upgrades
	Oracle Multitenant considerations
	Option group considerations
	Parameter group considerations
	Time zone considerations
	Spatial Patch Bundle (SPB) considerations

	Testing an Oracle DB upgrade
	Upgrading the version of an RDS for Oracle DB instance
	Console
	AWS CLI
	RDS API

	Upgrading an Oracle DB snapshot
	Console
	AWS CLI
	RDS API

	Using third-party software with your RDS for Oracle DB instance
	Using Oracle GoldenGate with Amazon RDS for Oracle
	Supported versions and licensing options for Oracle GoldenGate
	Requirements and limitations for Oracle GoldenGate
	Oracle GoldenGate architecture
	On-premises source database and Oracle GoldenGate hub
	On-premises source database and Amazon EC2 hub
	Amazon RDS source database and Amazon EC2 hub
	Amazon EC2 source database and Amazon EC2 hub
	Amazon EC2 hubs in different AWS Regions

	Setting up Oracle GoldenGate
	Setting up an Oracle GoldenGate hub on Amazon EC2
	Setting up a source database for use with Oracle GoldenGate on Amazon RDS
	Step 1: Turn on supplemental logging on the source database
	Step 2: Set the ENABLE_GOLDENGATE_REPLICATION initialization parameter to true
	Step 3: Set the log retention period on the source database
	Step 4: Create an Oracle GoldenGate user account on the source database
	Step 5: Grant user account privileges on the source database
	Step 6: Add a TNS alias for the source database

	Setting up a target database for use with Oracle GoldenGate on Amazon RDS
	Step 1: Set the ENABLE_GOLDENGATE_REPLICATION initialization parameter to true
	Step 2: Create an Oracle GoldenGate user account on the target database
	Step 3: Grant account privileges on the target database
	Step 4: Add a TNS alias for the target database

	Working with the EXTRACT and REPLICAT utilities of Oracle GoldenGate
	Running the Oracle GoldenGate EXTRACT utility
	Running the Oracle GoldenGate REPLICAT utility

	Monitoring Oracle GoldenGate
	Troubleshooting Oracle GoldenGate
	Error opening an online redo log
	Oracle GoldenGate appears to be properly configured but replication is not working
	Integrated REPLICAT slow due to query on SYS."_DBA_APPLY_CDR_INFO"

	Using the Oracle Repository Creation Utility on RDS for Oracle
	Supported versions and licensing options for RCU
	Requirements and limitations for RCU
	Guidelines for using RCU
	Running RCU
	Running RCU using the command line in one step
	Running RCU using the command line in multiple steps
	Running RCU in interactive mode

	Troubleshooting RCU
	Oracle Managed Files (OMF)
	Object privileges
	Enterprise Scheduler Service

	Configuring Oracle Connection Manager on an Amazon EC2 instance
	Supported versions and licensing options for CMAN
	Requirements and limitations for CMAN
	Configuring CMAN
	Step 1: Configure CMAN on an Amazon EC2 instance in the same VPC as the RDS for Oracle instance
	Step 2: Configure database parameters for CMAN
	Step 3: Associate your DB instance with the parameter group

	Installing a Siebel database on Oracle on Amazon RDS
	Licensing and versions
	Before you begin
	Installing and configuring a Siebel database
	Using other Amazon RDS features with a Siebel database
	Collecting statistics with the Oracle Statspack option
	Performance tuning with parameters
	Creating snapshots

	Support for other Siebel CRM components

	Oracle Database engine release notes

	Amazon RDS for PostgreSQL
	Common management tasks for Amazon RDS for PostgreSQL
	Working with the Database Preview environment
	Features not supported in the Database Preview environment
	PostgreSQL version 17 in the Database Preview environment
	Creating a new DB instance in the Database Preview environment

	Available PostgreSQL database versions
	Deprecated versions for Amazon RDS for PostgreSQL

	Understanding the RDS for PostgreSQL incremental release process
	Advantages of RDS for PostgreSQL incremental release process
	Managing release updates

	Supported PostgreSQL extension versions
	Restricting installation of PostgreSQL extensions
	PostgreSQL trusted extensions

	Working with PostgreSQL features supported by Amazon RDS for PostgreSQL
	Custom data types and enumerations with RDS for PostgreSQL
	Event triggers for RDS for PostgreSQL
	Huge pages for RDS for PostgreSQL
	Performing logical replication for Amazon RDS for PostgreSQL
	Understanding logical replication and logical decoding
	Working with logical replication slots

	RAM disk for the stats_temp_directory
	Tablespaces for RDS for PostgreSQL
	RDS for PostgreSQL collations for EBCDIC and other mainframe migrations
	Managing logical slot synchronization for RDS for PostgreSQL

	Connecting to a DB instance running the PostgreSQL database engine
	Installing the psql client
	Finding the connection information for an RDS for PostgreSQL DB instance
	Using pgAdmin to connect to a RDS for PostgreSQL DB instance
	Using psql to connect to your RDS for PostgreSQL DB instance
	Connecting to RDS for PostgreSQL with the Amazon Web Services (AWS) JDBC Driver
	Connecting to RDS for PostgreSQL with the Amazon Web Services (AWS) Python Driver
	Troubleshooting connections to your RDS for PostgreSQL instance
	Error – FATAL: database name does not exist
	Error – Could not connect to server: Connection timed out
	Errors with security group access rules

	Securing connections to RDS for PostgreSQL with SSL/TLS
	Using SSL with a PostgreSQL DB instance
	Connecting to a PostgreSQL DB instance over SSL
	Requiring an SSL connection to a PostgreSQL DB instance
	Determining the SSL connection status
	SSL cipher suites in RDS for PostgreSQL

	Updating applications to connect to PostgreSQL DB instances using new SSL/TLS certificates
	Determining whether applications are connecting to PostgreSQL DB instances using SSL
	Determining whether a client requires certificate verification in order to connect
	Updating your application trust store
	Using SSL/TLS connections for different types of applications

	Using Kerberos authentication with Amazon RDS for PostgreSQL
	Region and version availability
	Overview of Kerberos authentication for PostgreSQL DB instances
	Setting up Kerberos authentication for PostgreSQL DB instances
	Step 1: Create a directory using AWS Managed Microsoft AD
	Step 2: (Optional) Create a trust relationship between your on-premises Active Directory and AWS Directory Service
	Step 3: Create an IAM role for Amazon RDS to access the AWS Directory Service
	Step 4: Create and configure users
	Step 5: Enable cross-VPC traffic between the directory and the DB instance
	Step 6: Create or modify a PostgreSQL DB instance
	Console
	AWS CLI

	Step 7: Create PostgreSQL users for your Kerberos principals
	Step 8: Configure a PostgreSQL client

	Managing an RDS for PostgreSQL DB instance in an Active Directory domain
	Understanding Domain membership

	Connecting to PostgreSQL with Kerberos authentication
	pgAdmin
	Psql

	Using a custom DNS server for outbound network access
	Turning on custom DNS resolution
	Turning off custom DNS resolution
	Setting up a custom DNS server

	Upgrades of the RDS for PostgreSQL DB engine
	Considerations for PostgreSQL upgrades
	Finding valid upgrade targets
	PostgreSQL version numbers
	RDS version numbers in RDS for PostgreSQL
	Choosing a major version for an RDS for PostgreSQL upgrade
	How to perform a major version upgrade for RDS for PostgreSQL
	Automatic minor version upgrades for RDS for PostgreSQL
	Upgrading PostgreSQL extensions in RDS for PostgreSQL databases

	Upgrading a PostgreSQL DB snapshot engine version
	Console
	AWS CLI
	RDS API

	Working with read replicas for Amazon RDS for PostgreSQL
	Logical decoding on a read replica
	Read replica limitations with PostgreSQL
	Read replica configuration with PostgreSQL
	Using RDS for PostgreSQL read replicas with Multi-AZ configurations

	Using cascading read replicas with RDS for PostgreSQL
	Creating cross-Region cascading read replicas with RDS for PostgreSQL
	How streaming replication works for different RDS for PostgreSQL versions
	Understanding the parameters that control PostgreSQL replication
	Example: How a read replica recovers from replication interruptions

	Setting the parameters that control shared memory

	Monitoring and tuning the replication process
	Monitoring replication slots for your RDS for PostgreSQL DB instance

	Troubleshooting for RDS for PostgreSQL read replica

	Improving query performance for RDS for PostgreSQL with Amazon RDS Optimized Reads
	Overview of RDS Optimized Reads in PostgreSQL
	Use cases for RDS Optimized Reads
	Best practices for RDS Optimized Reads
	Using RDS Optimized Reads
	Monitoring DB instances that use RDS Optimized Reads
	Limitations for RDS Optimized Reads in PostgreSQL

	Importing data into PostgreSQL on Amazon RDS
	Importing a PostgreSQL database from an Amazon EC2 instance
	Step 1: Create a file using pg_dump that contains the data to load
	Step 2: Create the target DB instance
	Step 3: Use psql to create the database on the DB instance and load data
	Step 4: Create a DB snapshot of the DB instance

	Using the \copy command to import data to a table on a PostgreSQL DB instance
	Importing data from Amazon S3 into an RDS for PostgreSQL DB instance
	Installing the aws_s3 extension
	Overview of importing data from Amazon S3 data
	Setting up access to an Amazon S3 bucket
	Using an IAM role to access an Amazon S3 bucket
	Console
	AWS CLI
	RDS API

	Using security credentials to access an Amazon S3 bucket
	Troubleshooting access to Amazon S3

	Importing data from Amazon S3 to your RDS for PostgreSQL DB instance
	Importing an Amazon S3 file that uses a custom delimiter
	Importing an Amazon S3 compressed (gzip) file
	Importing an encoded Amazon S3 file

	Function reference
	aws_s3.table_import_from_s3
	Syntax
	Parameters
	Alternate syntax
	Alternate parameters

	aws_commons.create_s3_uri
	Syntax
	Parameters

	aws_commons.create_aws_credentials
	Syntax
	Parameters

	Transporting PostgreSQL databases between DB instances
	What happens during database transport
	Limitations for using PostgreSQL transportable databases
	Setting up to transport a PostgreSQL database
	Transporting a PostgreSQL database to the destination from the source
	Transportable databases function reference
	Transportable databases parameter reference

	Exporting data from an RDS for PostgreSQL DB instance to Amazon S3
	Installing the aws_s3 extension
	Verify that your RDS for PostgreSQL version supports exports to Amazon S3

	Overview of exporting data to Amazon S3
	Specifying the Amazon S3 file path to export to
	Setting up access to an Amazon S3 bucket
	Console
	AWS CLI

	Exporting query data using the aws_s3.query_export_to_s3 function
	Prerequisites
	Calling aws_s3.query_export_to_s3
	Exporting to a CSV file that uses a custom delimiter
	Exporting to a binary file with encoding

	Function reference
	aws_s3.query_export_to_s3
	Alternate input parameters
	Output parameters
	Examples

	aws_commons.create_s3_uri

	Troubleshooting access to Amazon S3

	Invoking an AWS Lambda function from an RDS for PostgreSQL DB instance
	Step 1: Configure your RDS for PostgreSQL DB instance for outbound connections to AWS Lambda
	Step 2: Configure IAM for your RDS for PostgreSQL DB instance and AWS Lambda
	Step 3: Install the aws_lambda extension for an RDS for PostgreSQL DB instance
	Step 4: Use Lambda helper functions with your RDS for PostgreSQL DB instance (Optional)
	Step 5: Invoke a Lambda function from your RDS for PostgreSQL DB instance
	Step 6: Grant other users permission to invoke Lambda functions
	Examples: Invoking Lambda functions from your RDS for PostgreSQL DB instance
	Example: Synchronous (RequestResponse) invocation of Lambda functions
	Example: Asynchronous (Event) invocation of Lambda functions
	Example: Capturing the Lambda execution log in a function response
	Example: Including client context in a Lambda function
	Example: Invoking a specific version of a Lambda function

	Lambda function error messages
	AWS Lambda function and parameter reference
	aws_lambda.invoke
	aws_commons.create_lambda_function_arn
	aws_lambda parameters

	Common DBA tasks for Amazon RDS for PostgreSQL
	Collations supported in RDS for PostgreSQL
	Understanding PostgreSQL roles and permissions
	Understanding the rds_superuser role
	Controlling user access to the PostgreSQL database
	Delegating and controlling user password management
	Using SCRAM for PostgreSQL password encryption
	Setting up RDS for PostgreSQL DB instance to require SCRAM
	Getting ready to require SCRAM for your RDS for PostgreSQL DB instance
	Creating a custom DB parameter group
	Configuring password encryption to use SCRAM
	Migrating passwords for user roles to SCRAM
	Changing parameter to require SCRAM

	Working with PostgreSQL autovacuum on Amazon RDS for PostgreSQL
	Allocating memory for autovacuum
	Reducing the likelihood of transaction ID wraparound
	Determining if the tables in your database need vacuuming
	Determining which tables are currently eligible for autovacuum
	Determining if autovacuum is currently running and for how long
	Performing a manual vacuum freeze
	Reindexing a table when autovacuum is running
	Managing autovacuum with large indexes
	Vacuuming a table as quickly as possible

	Other parameters that affect autovacuum
	Setting table-level autovacuum parameters
	Logging autovacuum and vacuum activities
	Understanding the behavior of autovacuum with invalid databases
	Monitoring transaction ID
	Adjusting the monitoring query
	Resolving invalid database issue

	Identify and resolve aggressive vacuum blockers in RDS for PostgreSQL
	Installing autovacuum monitoring and diagnostic tools in RDS for PostgreSQL
	Functions of postgres_get_av_diag() in RDS for PostgreSQL
	Resolving identifiable vacuum blockers in RDS for PostgreSQL
	Active statement
	Idle in transaction
	Prepared transaction
	Logical replication slot
	Read replicas
	Temporary tables

	Resolving unidentifiable vacuum blockers in RDS for PostgreSQL
	Invalid pages
	Index inconsistency
	Exceptionally high transaction rate

	Resolving vacuum performance issues in RDS for PostgreSQL
	Vacuum large indexes
	Too many tables or databases to vacuum
	Aggressive vacuum (to prevent wraparound) is running

	Explanation of the NOTICE messages in RDS for PostgreSQL

	Working with logging mechanisms supported by RDS for PostgreSQL
	Managing temporary files with PostgreSQL
	Viewing temporary file usage with Performance Insights

	Using pgBadger for log analysis with PostgreSQL
	Using PGSnapper for monitoring PostgreSQL
	Working with parameters on your RDS for PostgreSQL DB instance
	RDS for PostgreSQL DB instance parameter list

	Tuning with wait events for RDS for PostgreSQL
	Essential concepts for RDS for PostgreSQL tuning
	RDS for PostgreSQL wait events
	RDS for PostgreSQL memory
	Shared memory in RDS for PostgreSQL
	Shared buffers
	Write ahead log (WAL) buffers

	Local memory in RDS for PostgreSQL
	Work memory area
	Maintenance work memory area
	Temporary buffer area

	RDS for PostgreSQL processes
	Postmaster process
	Backend processes
	Background processes

	RDS for PostgreSQL wait events
	Client:ClientRead
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Place the clients in the same Availability Zone and VPC subnet as the instance
	Scale your client
	Use current generation instances
	Increase network bandwidth
	Monitor maximums for network performance
	Monitor for transactions in the "idle in transaction" state

	Client:ClientWrite
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Place the clients in the same Availability Zone and VPC subnet as the cluster
	Use current generation instances
	Reduce the amount of data sent to the client
	Scale your client

	CPU
	Supported engine versions
	Context
	How to tell when this wait occurs
	DBLoadCPU metric
	os.cpuUtilization metrics
	Likely cause of CPU scheduling

	Likely causes of increased waits
	Likely causes of sudden spikes
	Likely causes of long-term high frequency
	Corner cases

	Actions
	Investigate whether the database is causing the CPU increase
	Determine whether the number of connections increased
	The connections increased
	The connections didn't increase

	Respond to workload changes

	IO:BufFileRead and IO:BufFileWrite
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problem
	Examine your join queries
	Examine your ORDER BY and GROUP BY queries
	Avoid using the DISTINCT operation
	Consider using window functions instead of GROUP BY functions
	Investigate materialized views and CTAS statements
	Use pg_repack when you rebuild indexes
	Increase maintenance_work_mem when you cluster tables
	Tune memory to prevent IO:BufFileRead and IO:BufFileWrite
	Increase the size of the work memory area
	Reserve sufficient memory for the shared buffer pool
	Manage the number of connections

	IO:DataFileRead
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Check predicate filters for queries that generate waits
	Minimize the effect of maintenance operations
	Find tables consuming space unnecessarily
	Find indexes consuming space unnecessarily
	Find tables that are eligible to be autovacuumed

	Respond to high numbers of connections

	IO:WALWrite
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Reduce the number of commits
	Monitor your checkpoints
	Scale up IO
	Dedicated log volume (DLV)

	Lock:advisory
	Relevant engine versions
	Context
	Causes
	Actions

	Lock:extend
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Reduce concurrent inserts and updates to the same relation
	Increase network bandwidth

	Lock:Relation
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Reduce the impact of blocking SQL statements
	Minimize the effect of maintenance operations

	Lock:transactionid
	Supported engine versions
	Context
	Likely causes of increased waits
	High concurrency
	Idle in transaction
	Long-running transactions

	Actions
	Respond to high concurrency
	Respond to idle transactions
	Respond to long-running transactions

	Lock:tuple
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Investigate your application logic
	Find the blocker session
	Reduce concurrency when it is high
	Troubleshoot bottlenecks

	LWLock:BufferMapping (LWLock:buffer_mapping)
	Supported engine versions
	Context
	Causes
	Actions
	Monitor buffer-related metrics
	Assess your indexing strategy
	Reduce the number of buffers that must be allocated quickly

	LWLock:BufferIO (IPC:BufferIO)
	Relevant engine versions
	Context
	Causes
	Actions

	LWLock:buffer_content (BufferContent)
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Improve in-memory efficiency
	Reduce usage of foreign key constraints
	Remove unused indexes
	Increase the cache size when using sequences

	LWLock:lock_manager (LWLock:lockmanager)
	Supported engine versions
	Context
	Fast path locking
	Example of a scaling problem for the lock manager

	Likely causes of increased waits
	Actions
	Use partition pruning
	Remove unnecessary indexes
	Tune your queries for fast path locking
	Tune for other wait events
	Reduce hardware bottlenecks
	Use a connection pooler
	Upgrade your RDS for PostgreSQL version

	Timeout:PgSleep
	Supported engine versions
	Likely causes of increased waits
	Actions

	Timeout:VacuumDelay
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions

	Tuning RDS for PostgreSQL with Amazon DevOps Guru proactive insights
	Database has long running idle in transaction connection
	Supported engine versions
	Context
	Likely causes for this issue
	Actions
	
	
	End transaction
	Terminate the connection
	Configure the idle_in_transaction_session_timeout parameter
	Check the AUTOCOMMIT status
	Check the transaction logic in your application code

	Relevant metrics

	Using PostgreSQL extensions with Amazon RDS for PostgreSQL
	Using functions from the orafce extension
	Using Amazon RDS delegated extension support for PostgreSQL
	Turning on delegate extension support to a user
	Configuration used in RDS delegated extension support for PostgreSQL
	Turning off the support for the delegated extension
	Benefits of using Amazon RDS delegated extension support
	Limitation of Amazon RDS delegated extension support for PostgreSQL
	Permissions required for certain extensions
	Security Considerations
	Drop extension cascade disabled
	Example extensions that can be added using delegated extension support

	Managing PostgreSQL partitions with the pg_partman extension
	Overview of the PostgreSQL pg_partman extension
	Enabling the pg_partman extension
	Configuring partitions using the create_parent function
	Configuring partition maintenance using the run_maintenance_proc function

	Using pgAudit to log database activity
	Setting up the pgAudit extension
	Console
	AWS CLI

	Auditing database objects
	Excluding users or databases from audit logging
	Reference for the pgAudit extension
	Controlling pgAudit behavior
	List of allowable settings for the pgaudit.log parameter

	Scheduling maintenance with the PostgreSQL pg_cron extension
	Setting up the pg_cron extension
	Granting database users permissions to use pg_cron
	Scheduling pg_cron jobs
	Vacuuming a table
	Purging the pg_cron history table
	Logging errors to the postgresql.log file only
	Scheduling a cron job for a database other than the default database

	Reference for the pg_cron extension
	Parameters for managing the pg_cron extension
	Function reference: cron.schedule
	Function reference: cron.unschedule
	Tables for scheduling jobs and capturing status

	Using pglogical to synchronize data across instances
	Requirements and limitations for the pglogical extension
	Setting up the pglogical extension
	Console
	AWS CLI

	Setting up logical replication for RDS for PostgreSQL DB instance
	Reestablishing logical replication after a major upgrade
	Determining that logical replication has been disrupted

	Managing logical replication slots for RDS for PostgreSQL
	Parameter reference for the pglogical extension

	Using pgactive to support active-active replication
	Initializing the pgactive extension capability
	Console
	AWS CLI

	Setting up active-active replication for RDS for PostgreSQL DB instances
	Handling conflicts in active-active replication
	Handling sequences in active-active replication
	Parameter reference for the pgactive extension
	Measuring replication lag among pgactive members
	Limitations for the pgactive extension

	Reducing bloat in tables and indexes with the pg_repack extension
	Recommendations
	Pre-requisites
	Monitoring the new table during the repack

	Upgrading and using the PLV8 extension
	Using PL/Rust to write PostgreSQL functions in the Rust language
	Setting up PL/Rust
	Console
	AWS CLI

	Creating functions with PL/Rust
	Using crates with PL/Rust
	PL/Rust limitations

	Managing spatial data with the PostGIS extension
	Step 1: Create a user (role) to manage the PostGIS extension
	Step 2: Load the PostGIS extensions
	Step 3: Transfer ownership of the extension schemas
	Step 4: Transfer ownership of the PostGIS tables
	Step 5: Test the extensions
	Step 6: Upgrade the PostGIS extension
	PostGIS extension versions
	Upgrading PostGIS 2 to PostGIS 3

	Working with the supported foreign data wrappers for Amazon RDS for PostgreSQL
	Using the log_fdw extension to access the DB log using SQL
	Using the postgres_fdw extension to access external data
	Working with MySQL databases by using the mysql_fdw extension
	Setting up your RDS for PostgreSQL DB to use the mysql_fdw extension
	Example: Working with an RDS for MySQL database from RDS for PostgreSQL
	Using encryption in transit with the extension

	Working with Oracle databases by using the oracle_fdw extension
	Turning on the oracle_fdw extension
	Example: Using a foreign server linked to an Amazon RDS for Oracle database
	Working with encryption in transit
	Understanding the pg_user_mappings view and permissions

	Working with SQL Server databases by using the tds_fdw extension
	Setting up your Aurora PostgreSQL DB to use the tds_fdw extension
	Using encryption in transit for the connection

	Working with Trusted Language Extensions for PostgreSQL
	Terminology
	Requirements for using Trusted Language Extensions for PostgreSQL
	Creating and applying a custom DB parameter group
	Console
	AWS CLI

	Setting up Trusted Language Extensions in your RDS for PostgreSQL DB instance
	Console
	AWS CLI

	Overview of Trusted Language Extensions for PostgreSQL
	Creating TLE extensions for RDS for PostgreSQL
	Example: Creating a trusted language extension using SQL
	Modifying your TLE extension

	Dropping your TLE extensions from a database
	Uninstalling Trusted Language Extensions for PostgreSQL
	Using PostgreSQL hooks with your TLE extensions
	Example: Creating an extension that uses a PostgreSQL hook
	Password-check hook code listing

	Using Custom Data Types in TLE
	Function reference for Trusted Language Extensions for PostgreSQL
	pgtle.available_extensions
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.available_extension_versions
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.extension_update_paths
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.install_extension
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.install_update_path
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.register_feature
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.register_feature_if_not_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.set_default_version
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_extension(name)
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_extension(name, version)
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_extension_if_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_update_path
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_update_path_if_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.unregister_feature
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.unregister_feature_if_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	Hooks reference for Trusted Language Extensions for PostgreSQL
	Password-check hook (passcheck)
	Function prototype
	Arguments
	Configuration
	Usage notes

	Code examples for Amazon RDS using AWS SDKs
	Hello Amazon RDS
	Basic examples for Amazon RDS using AWS SDKs
	Hello Amazon RDS
	Learn the basics of Amazon RDS with an AWS SDK
	Actions for Amazon RDS using AWS SDKs
	Use CreateDBInstance with an AWS SDK or CLI
	Use CreateDBParameterGroup with an AWS SDK or CLI
	Use CreateDBSnapshot with an AWS SDK or CLI
	Use DeleteDBInstance with an AWS SDK or CLI
	Use DeleteDBParameterGroup with an AWS SDK or CLI
	Use DescribeAccountAttributes with an AWS SDK or CLI
	Use DescribeDBEngineVersions with an AWS SDK or CLI
	Use DescribeDBInstances with an AWS SDK or CLI
	Use DescribeDBParameterGroups with an AWS SDK or CLI
	Use DescribeDBParameters with an AWS SDK or CLI
	Use DescribeDBSnapshots with an AWS SDK or CLI
	Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI
	Use GenerateRDSAuthToken with an AWS SDK
	Use ModifyDBInstance with an AWS SDK or CLI
	Use ModifyDBParameterGroup with an AWS SDK or CLI
	Use RebootDBInstance with an AWS SDK or CLI

	Scenarios for Amazon RDS using AWS SDKs
	Create an Aurora Serverless work item tracker

	Serverless examples for Amazon RDS
	Connecting to an Amazon RDS database in a Lambda function

	Security in Amazon RDS
	Database authentication with Amazon RDS
	Password authentication
	IAM database authentication
	Kerberos authentication

	Password management with Amazon RDS and AWS Secrets Manager
	Limitations for Secrets Manager integration with Amazon RDS
	Overview of managing master user passwords with AWS Secrets Manager
	Benefits of managing master user passwords with Secrets Manager
	Permissions required for Secrets Manager integration
	Enforcing RDS management of the master user password in AWS Secrets Manager
	Managing the master user password for a DB instance with Secrets Manager
	Console
	AWS CLI
	RDS API

	Managing the master user password for an RDS for Oracle tenant database with Secrets Manager
	Console
	AWS CLI
	RDS API

	Managing the master user password for a Multi-AZ DB cluster with Secrets Manager
	Console
	AWS CLI
	RDS API

	Rotating the master user password secret for a DB instance
	Console
	AWS CLI
	RDS API

	Rotating the master user password secret for a Multi-AZ DB cluster
	Console
	AWS CLI
	RDS API

	Viewing the details about a secret for a DB instance
	Console
	AWS CLI
	RDS API

	Viewing the details about a secret for a Multi-AZ DB cluster
	Console
	AWS CLI
	RDS API

	Region and version availability

	Data protection in Amazon RDS
	Protecting data using encryption
	Encrypting Amazon RDS resources
	Overview of encrypting Amazon RDS resources
	Encrypting a DB instance
	Determining whether encryption is turned on for a DB instance
	Console
	AWS CLI
	RDS API

	Availability of Amazon RDS encryption
	Encryption in transit
	Limitations of Amazon RDS encrypted DB instances

	AWS KMS key management
	Authorizing use of a customer managed key
	Amazon RDS encryption context

	Using SSL/TLS to encrypt a connection to a DB instance or cluster
	Certificate authorities
	Setting the CA for your database
	DB server certificate validities
	Viewing the CA for your DB instance

	Download certificate bundles for Amazon RDS
	Certificate bundles by AWS Region
	Viewing the contents of your CA certificate

	Rotating your SSL/TLS certificate
	Considerations for rotating certificates
	Updating your CA certificate by modifying your DB instance or cluster
	Updating your CA certificate by applying maintenance
	Automatic server certificate rotation
	Sample script for importing certificates into your trust store

	Internetwork traffic privacy
	Traffic between service and on-premises clients and applications

	Identity and access management for Amazon RDS
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Other policy types
	Multiple policy types

	How Amazon RDS works with IAM
	Amazon RDS identity-based policies
	Identity-based policy examples for Amazon RDS

	Resource-based policies within Amazon RDS
	Policy actions for Amazon RDS
	Policy resources for Amazon RDS
	Policy condition keys for Amazon RDS
	Access control lists (ACLs) in Amazon RDS
	Attribute-based access control (ABAC) in policies with Amazon RDS tags
	Using temporary credentials with Amazon RDS
	Forward access sessions for Amazon RDS
	Service roles for Amazon RDS
	Service-linked roles for Amazon RDS

	Identity-based policy examples for Amazon RDS
	Policy best practices
	Using the Amazon RDS console
	Permissions required to use the console
	Allow users to view their own permissions
	Permission policies to create, modify and, delete resources in Amazon RDS
	Allow a user to create DB instances in an AWS account
	Allow a user to perform any describe action on any RDS resource
	Allow a user to create a DB instance that uses the specified DB parameter group and subnet group
	Grant permission for actions on a resource with a specific tag with two different values
	Prevent a user from deleting a DB instance
	Deny all access to a resource

	Example policies: Using condition keys
	Example 1: Grant permission to create a DB instance that uses a specific DB engine and isn't MultiAZ
	Example 2: Explicitly deny permission to create DB instances for certain DB instance classes and create DB instances that use Provisioned IOPS
	Example 3: Limit the set of tag keys and values that can be used to tag a resource

	Specifying conditions: Using custom tags
	Example policies: Using custom tags
	Example 1: Grant permission for actions on a resource with a specific tag with two different values
	Example 2: Explicitly deny permission to create a DB instance that uses specified DB parameter groups
	Example 3: Grant permission for actions on a DB instance with an instance name that is prefixed with a user name

	AWS managed policies for Amazon RDS
	AWS managed policy: AmazonRDSReadOnlyAccess
	AWS managed policy: AmazonRDSFullAccess
	AWS managed policy: AmazonRDSDataFullAccess
	AWS managed policy: AmazonRDSEnhancedMonitoringRole
	AWS managed policy: AmazonRDSPerformanceInsightsReadOnly
	AWS managed policy: AmazonRDSPerformanceInsightsFullAccess
	AWS managed policy: AmazonRDSDirectoryServiceAccess
	AWS managed policy: AmazonRDSServiceRolePolicy
	AWS managed policy: AmazonRDSCustomServiceRolePolicy
	AWS managed policy: AmazonRDSCustomInstanceProfileRolePolicy
	AWS managed policy: AmazonRDSPreviewServiceRolePolicy
	AWS managed policy: AmazonRDSBetaServiceRolePolicy

	Amazon RDS updates to AWS managed policies
	Preventing cross-service confused deputy problems
	IAM database authentication for MariaDB, MySQL, and PostgreSQL
	Region and version availability
	CLI and SDK support
	Limitations for IAM database authentication
	Recommendations for IAM database authentication
	Unsupported AWS global condition context keys
	Enabling and disabling IAM database authentication
	Console
	AWS CLI
	RDS API

	Creating and using an IAM policy for IAM database access
	Attaching an IAM policy to a permission set or role

	Creating a database account using IAM authentication
	Using IAM authentication with MariaDB and MySQL
	Using IAM authentication with PostgreSQL

	Connecting to your DB instance using IAM authentication
	Connecting to your DB instance using IAM authentication with the AWS drivers
	Connecting to your DB instance using IAM authentication from the command line: AWS CLI and mysql client
	Generating an IAM authentication token
	Connecting to a DB instance

	Connecting to your DB instance using IAM authentication from the command line: AWS CLI and psql client
	Generating an IAM authentication token
	Connecting to an Amazon RDS PostgreSQL instance

	Connecting to your DB instance using IAM authentication and the AWS SDK for .NET
	Connecting to your DB instance using IAM authentication and the AWS SDK for Go
	Connecting using IAM authentication and the AWS SDK for Go V2
	Connecting using IAM authentication and the AWS SDK for Go V1.

	Connecting to your DB instance using IAM authentication and the AWS SDK for Java
	Generating an IAM authentication token
	Manually constructing an IAM authentication token
	Connecting to a DB instance

	Connecting to your DB instance using IAM authentication and the AWS SDK for Python (Boto3)

	Troubleshooting for IAM DB authentication
	Exporting IAM DB authentication error logs to CloudWatch Logs
	IAM DB authentication CloudWatch metrics
	Common issues and solutions

	Troubleshooting Amazon RDS identity and access
	I'm not authorized to perform an action in Amazon RDS
	I'm not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon RDS resources

	Logging and monitoring in Amazon RDS
	Compliance validation for Amazon RDS
	Resilience in Amazon RDS
	Backup and restore
	Replication
	Failover

	Infrastructure security in Amazon RDS
	Security groups
	Public accessibility

	Amazon RDS API and interface VPC endpoints (AWS PrivateLink)
	Considerations for VPC endpoints
	Availability
	Creating an interface VPC endpoint for Amazon RDS API
	Creating a VPC endpoint policy for Amazon RDS API

	Security best practices for Amazon RDS
	Controlling access with security groups
	Overview of VPC security groups
	Security group scenario
	Creating a VPC security group
	Associating a security group with a DB instance

	Master user account privileges
	Using service-linked roles for Amazon RDS
	Service-linked role permissions for Amazon RDS
	Creating a service-linked role for Amazon RDS
	Editing a service-linked role for Amazon RDS
	Deleting a service-linked role for Amazon RDS
	Cleaning up a service-linked role
	Deleting all of your instances

	Service-linked role permissions for Amazon RDS Custom
	Service-linked role permissions for Amazon RDS Beta
	Service-linked role for Amazon RDS Preview

	Amazon VPC and Amazon RDS
	Working with a DB instance in a VPC
	Working with a DB instance in a VPC
	Working with DB subnet groups
	Shared subnets
	Amazon RDS IP addressing
	IPv4 addresses
	IPv6 addresses
	Dual-stack mode
	Dual-stack mode and DB subnet groups
	Working with dual-stack mode DB instances
	Modifying IPv4-only DB instances to use dual-stack mode
	Region and version availability
	Limitations for dual-stack network DB instances

	Hiding a DB instance in a VPC from the internet
	Creating a DB instance in a VPC
	Step 1: Create a VPC
	Step 2: Create a DB subnet group
	Step 3: Create a VPC security group
	Step 4: Create a DB instance in the VPC

	Updating the VPC for a DB instance
	Scenarios for accessing a DB instance in a VPC
	A DB instance in a VPC accessed by an Amazon EC2 instance in the same VPC
	A DB instance in a VPC accessed by an EC2 instance in a different VPC
	A DB instance in a VPC accessed by a client application through the internet
	A DB instance in a VPC accessed by a private network

	Tutorial: Create a VPC for use with a DB instance (IPv4 only)
	Create a VPC with private and public subnets
	Create a VPC security group for a public web server
	Create a VPC security group for a private DB instance
	Create a DB subnet group
	Deleting the VPC

	Tutorial: Create a VPC for use with a DB instance (dual-stack mode)
	Create a VPC with private and public subnets
	Create a VPC security group for a public Amazon EC2 instance
	Create a VPC security group for a private DB instance
	Create a DB subnet group
	Create an Amazon EC2 instance in dual-stack mode
	Create a DB instance in dual-stack mode
	Connect to your Amazon EC2 instance and DB instance
	Deleting the VPC

	Moving a DB instance not in a VPC into a VPC
	Alternatives for moving a DB instance not in a VPC into a VPC with minimal downtime

	Quotas and constraints for Amazon RDS
	Quotas in Amazon RDS
	Naming constraints in Amazon RDS
	Maximum number of database connections
	File size limits in Amazon RDS

	Troubleshooting for Amazon RDS
	Can't connect to Amazon RDS DB instance
	Testing a connection to a DB instance
	Troubleshooting connection authentication

	Amazon RDS security issues
	Error message "failed to retrieve account attributes, certain console functions may be impaired."

	Troubleshooting incompatible-network state
	Causes
	Resolution
	Use start-db-instance command
	Perform point-in-time recovery

	Resetting the DB instance owner password
	Amazon RDS DB instance outage or reboot
	Amazon RDS DB parameter changes not taking effect
	Amazon RDS DB instance running out of storage
	Amazon RDS insufficient DB instances available
	Freeable memory issues in Amazon RDS
	MySQL and MariaDB issues
	Maximum MySQL and MariaDB connections
	Diagnosing and resolving incompatible parameters status for a memory limit
	Diagnosing and resolving lag between read replicas
	Diagnosing and resolving a MySQL or MariaDB read replication failure
	Creating triggers with binary logging enabled requires SUPER privilege
	Diagnosing and resolving point-in-time restore failures
	Replication stopped error
	Read replica create fails or replication breaks with fatal error 1236
	Read replica replication fails to initialize metadata structure

	Can't set backup retention period to 0

	Amazon RDS API reference
	Using the Query API
	Query parameters
	Query request authentication

	Troubleshooting applications on Amazon RDS
	Retrieving errors
	Troubleshooting tips

	Document history
	Earlier updates

	AWS Glossary

