

Notices

Responsibility. Knowledge and best practice in the field of engineering and software
development are constantly changing. Practitioners and researchers must always rely on their
own experience and knowledge in evaluating and using any information, methods, compounds,
or experiments described herein. In using such information or methods, they should be mindful
of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the author nor contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operations of any methods, products, instructions,
or ideas contained in the material herein.

Trademarks. Designations used by companies to distinguish their products are often claimed
as trademarks or registered trademarks. Intel, Intel Core, Intel Xeon, Intel Pentium, Intel
Vtune, and Intel Advisor are trademarks of Intel Corporation in the U.S. and/or other
countries. AMD is a trademark of Advanced Micro Devices Corporation in the U.S. and/or
other countries. ARM is a trademark of Arm Limited (or its subsidiaries) in the U.S.
and/or elsewhere. Readers, however, should contact the appropriate companies for complete
information regarding trademarks and registration.

Affiliation. At the time of writing, the book’s primary author (Denis Bakhvalov) is an
employee of Intel Corporation. All information presented in the book is not an official position
of the aforementioned company, but rather is an individual knowledge and opinions of the
author. The primary author did not receive any financial sponsorship from Intel Corporation
for writing this book.

Advertisement. This book does not advertise any software, hardware, or any other product.

Copyright

Copyright © 2020 by Denis Bakhvalov under Creative Commons license (CC BY 4.0).

2

Preface

About The Author

Denis Bakhvalov is a senior developer at Intel, where he works on C++ compiler projects that
aim at generating optimal code for a variety of different architectures. Performance engineering
and compilers were always among the primary interests for him. Denis has started his career
as a software developer in 2008 and has since worked in multiple areas, including developing
desktop applications, embedded, performance analysis, and compiler development. In 2016
Denis started his easyperf.net blog, where he writes about performance analysis and tuning,
C/C++ compilers, and CPU microarchitecture. Denis is a big proponent of an active lifestyle,
which he practices in his free time. You can find him playing soccer, tennis, running, and
playing chess. Besides that, Denis is a father of 2 beautiful daughters.

Contacts:

• Email: dendibakh@gmail.com
• Twitter: @dendibakh
• LinkedIn: @dendibakh

From The Author

I started this book with a simple goal: educate software developers to better understand their
applications’ performance on modern hardware. I know how confusing this topic might be for
a beginner or even for an experienced developer. This confusion mostly happens to developers
that don’t have prior occasions of working on performance-related tasks. And that’s fine since
every expert was once a beginner.

I remember the days when I was starting with performance analysis. I was staring at unfamiliar
metrics trying to match the data that didn’t match. And I was baffled. It took me years
until it finally “clicked”, and all pieces of the puzzle came together. At the time, the only
good sources of information were software developer manuals, which are not what mainstream
developers like to read. So I decided to write this book, which will hopefully make it easier for
developers to learn performance analysis concepts.

Developers who consider themselves beginners in performance analysis can start from the
beginning of the book and read sequentially, chapter by chapter. Chapters 2-4 give developers
a minimal set of knowledge required by later chapters. Readers already familiar with these
concepts may choose to skip those. Additionally, this book can be used as a reference or a
checklist for optimizing SW applications. Developers can use chapters 7-11 as a source of ideas
for tuning their code.

Target Audience

This book will be primarily useful for software developers who work with performance-critical
applications and do low-level optimizations. To name just a few areas: High-Performance
Computing (HPC), Game Development, data-center applications (like Facebook, Google, etc.),
High-Frequency Trading. But the scope of the book is not limited to the mentioned industries.
This book will be useful for any developer who wants to understand the performance of their
application better and know how it can be diagnosed and improved. The author hopes that

3

https://twitter.com/dendibakh
https://www.linkedin.com/in/dendibakh/

the material presented in this book will help readers develop new skills that can be applied in
their daily work.

Readers are expected to have a minimal background in C/C++ programming languages to
understand the book’s examples. The ability to read basic x86 assembly is desired but is not
a strict requirement. The author also expects familiarity with basic concepts of computer
architecture and operating systems like central processor, memory, process, thread, virtual
and physical memory, context switch, etc. If any of the mentioned terms are new to you, I
suggest studying this material first.

Acknowledgments

Huge thanks to Mark E. Dawson, Jr. for his help writing several sections of this book:
“Optimizing For DTLB” (section 8.1.3), “Optimizing for ITLB” (section 7.8), “Cache Warming”
(section 10.3), System Tuning (section 10.5), section 11.1 about performance scaling and
overhead of multithreaded applications, section 11.5 about using COZ profiler, section 11.6
about eBPF, “Detecting Coherence Issues” (section 11.7). Mark is a recognized expert in the
High-Frequency Trading industry. Mark was kind enough to share his expertise and feedback
at different stages of this book’s writing.

Next, I want to thank Sridhar Lakshmanamurthy, who authored the major part of section 3
about CPU microarchitecture. Sridhar has spent decades working at Intel, and he is a veteran
of the semiconductor industry.

Big thanks to Nadav Rotem, the original author of the vectorization framework in the LLVM
compiler, who helped me write the section 8.2.3 about vectorization.

Clément Grégoire authored a section 8.2.3.7 about ISPC compiler. Clément has an extensive
background in the game development industry. His comments and feedback helped address in
the book some of the challenges in the game development industry.

This book wouldn’t have come out of the draft without its reviewers: Dick Sites, Wojciech
Muła, Thomas Dullien, Matt Fleming, Daniel Lemire, Ahmad Yasin, Michele Adduci, Clément
Grégoire, Arun S. Kumar, Surya Narayanan, Alex Blewitt, Nadav Rotem, Alexander Yer-
molovich, Suchakrapani Datt Sharma, Renat Idrisov, Sean Heelan, Jumana Mundichipparakkal,
Todd Lipcon, Rajiv Chauhan, Shay Morag, and others.

Also, I would like to thank the whole performance community for countless blog articles and
papers. I was able to learn a lot from reading blogs by Travis Downs, Daniel Lemire, Andi
Kleen, Agner Fog, Bruce Dawson, Brendan Gregg, and many others. I stand on the shoulders
of giants, and the success of this book should not be attributed only to myself. This book is
my way to thank and give back to the whole community.

Last but not least, thanks to my family, who were patient enough to tolerate me missing
weekend trips and evening walks. Without their support, I wouldn’t have finished this book.

4

Table Of Contents

Table Of Contents 5

1 Introduction 9
1.1 Why Do We Still Need Performance Tuning? 10
1.2 Who Needs Performance Tuning? . 12
1.3 What Is Performance Analysis? . 14
1.4 What is discussed in this book? . 14
1.5 What is not in this book? . 15
1.6 Chapter Summary . 16

Part1. Performance analysis on a modern CPU 17

2 Measuring Performance 17
2.1 Noise In Modern Systems . 18
2.2 Measuring Performance In Production . 19
2.3 Automated Detection of Performance Regressions 20
2.4 Manual Performance Testing . 22
2.5 Software and Hardware Timers . 25
2.6 Microbenchmarks . 27
2.7 Chapter Summary . 28

3 CPU Microarchitecture 30
3.1 Instruction Set Architecture . 30
3.2 Pipelining . 30
3.3 Exploiting Instruction Level Parallelism (ILP) 32

3.3.1 OOO Execution . 33
3.3.2 Superscalar Engines and VLIW . 33
3.3.3 Speculative Execution . 34

3.4 Exploiting Thread Level Parallelism . 35
3.4.1 Simultaneous Multithreading . 35

3.5 Memory Hierarchy . 36
3.5.1 Cache Hierarchy . 36

3.5.1.1 Placement of data within the cache. 36
3.5.1.2 Finding data in the cache. 37
3.5.1.3 Managing misses. 37
3.5.1.4 Managing writes. 37
3.5.1.5 Other cache optimization techniques. 38

3.5.2 Main Memory . 39
3.6 Virtual Memory . 39
3.7 SIMD Multiprocessors . 40
3.8 Modern CPU design . 41

3.8.1 CPU Front-End . 41
3.8.2 CPU Back-End . 43

5

3.9 Performance Monitoring Unit . 43
3.9.1 Performance Monitoring Counters . 44

4 Terminology and metrics in performance analysis 46
4.1 Retired vs. Executed Instruction . 46
4.2 CPU Utilization . 46
4.3 CPI & IPC . 47
4.4 UOPs (micro-ops) . 47
4.5 Pipeline Slot . 48
4.6 Core vs. Reference Cycles . 48
4.7 Cache miss . 50
4.8 Mispredicted branch . 51

5 Performance Analysis Approaches 52
5.1 Code Instrumentation . 52
5.2 Tracing . 54
5.3 Workload Characterization . 55

5.3.1 Counting Performance Events . 55
5.3.2 Manual performance counters collection 56
5.3.3 Multiplexing and scaling events . 58

5.4 Sampling . 59
5.4.1 User-Mode And Hardware Event-based Sampling 59
5.4.2 Finding Hotspots . 60
5.4.3 Collecting Call Stacks . 62
5.4.4 Flame Graphs . 63

5.5 Roofline Performance Model . 64
5.6 Static Performance Analysis . 68

5.6.1 Static vs. Dynamic Analyzers . 68
5.7 Compiler Optimization Reports . 69
5.8 Chapter Summary . 72

6 CPU Features For Performance Analysis 73
6.1 Top-Down Microarchitecture Analysis . 74

6.1.1 TMA in Intel® VTune™ Profiler . 76
6.1.2 TMA in Linux Perf . 76
6.1.3 Step1: Identify the bottleneck . 78
6.1.4 Step2: Locate the place in the code . 80
6.1.5 Step3: Fix the issue . 81
6.1.6 Summary . 82

6.2 Last Branch Record . 83
6.2.1 Collecting LBR stacks . 85
6.2.2 Capture call graph . 86
6.2.3 Identify hot branches . 86
6.2.4 Analyze branch misprediction rate . 87
6.2.5 Precise timing of machine code . 88
6.2.6 Estimating branch outcome probability 90
6.2.7 Other use cases . 90

6.3 Processor Event-Based Sampling . 91
6.3.1 Precise events . 92
6.3.2 Lower sampling overhead . 93

6

6.3.3 Analyzing memory accesses . 93
6.4 Intel Processor Traces . 94

6.4.1 Workflow . 94
6.4.2 Timing Packets . 96
6.4.3 Collecting and Decoding Traces . 96
6.4.4 Usages . 97
6.4.5 Disk Space and Decoding Time . 97

6.5 Chapter Summary . 98

Part2. Source Code Tuning For CPU 100

7 CPU Front-End Optimizations 103
7.1 Machine code layout . 103
7.2 Basic Block . 104
7.3 Basic block placement . 104
7.4 Basic block alignment . 106
7.5 Function splitting . 108
7.6 Function grouping . 109
7.7 Profile Guided Optimizations . 110
7.8 Optimizing for ITLB . 111
7.9 Chapter Summary . 112

8 CPU Back-End Optimizations 113
8.1 Memory Bound . 113

8.1.1 Cache-Friendly Data Structures . 114
8.1.1.1 Access data sequentially. 114
8.1.1.2 Use appropriate containers. 114
8.1.1.3 Packing the data. 115
8.1.1.4 Aligning and padding. 115
8.1.1.5 Dynamic memory allocation. 117
8.1.1.6 Tune the code for memory hierarchy. 118

8.1.2 Explicit Memory Prefetching . 118
8.1.3 Optimizing For DTLB . 119

8.1.3.1 Explicit Hugepages. 120
8.1.3.2 Transparent Hugepages. 121
8.1.3.3 Explicit vs. Transparent Hugepages. 121

8.2 Core Bound . 121
8.2.1 Inlining Functions . 122
8.2.2 Loop Optimizations . 124

8.2.2.1 Low-level optimizations. 124
8.2.2.2 High-level optimizations. 126
8.2.2.3 Discovering loop optimization opportunities. 127
8.2.2.4 Use Loop Optimization Frameworks 129

8.2.3 Vectorization . 129
8.2.3.1 Compiler Autovectorization. 130
8.2.3.2 Discovering vectorization opportunities. 131
8.2.3.3 Vectorization is illegal. 132
8.2.3.4 Vectorization is not beneficial. 134
8.2.3.5 Loop vectorized but scalar version used. 134
8.2.3.6 Loop vectorized in a suboptimal way. 135

7

8.2.3.7 Use languages with explicit vectorization. 135
8.3 Chapter Summary . 137

9 Optimizing Bad Speculation 138
9.1 Replace branches with lookup . 138
9.2 Replace branches with predication . 139
9.3 Chapter Summary . 141

10 Other Tuning Areas 142
10.1 Compile-Time Computations . 142
10.2 Compiler Intrinsics . 142
10.3 Cache Warming . 143
10.4 Detecting Slow FP Arithmetic . 144
10.5 System Tuning . 145

11 Optimizing Multithreaded Applications 147
11.1 Performance Scaling And Overhead . 147
11.2 Parallel Efficiency Metrics . 149

11.2.1 Effective CPU Utilization . 149
11.2.2 Thread Count . 150
11.2.3 Wait Time . 150
11.2.4 Spin Time . 150

11.3 Analysis With Intel VTune Profiler . 150
11.3.1 Find Expensive Locks . 151
11.3.2 Platform View . 152

11.4 Analysis with Linux Perf . 152
11.4.1 Find Expensive Locks . 154

11.5 Analysis with Coz . 155
11.6 Analysis with eBPF and GAPP . 155
11.7 Detecting Coherence Issues . 156

11.7.1 Cache Coherency Protocols . 156
11.7.2 True Sharing . 158
11.7.3 False Sharing . 158

11.8 Chapter Summary . 159

Epilog 161

Glossary 163

References 164

Appendix A. Reducing Measurement Noise 168

Appendix B. The LLVM Vectorizer 172

8

1 Introduction

They say, “performance is king”. It was true a decade ago, and it certainly is now. According
to [Dom, 2017], in 2017, the world has been creating 2.5 quintillions1 bytes of data every day,
and as predicted in [Sta, 2018], this number is growing 25% per year. In our increasingly
data-centric world, the growth of information exchange fuels the need for both faster software
(SW) and faster hardware (HW). Fair to say, the data growth puts demand not only on
computing power but also on storage and network systems.

In the PC era2, developers usually were programming directly on top of the operating system,
with possibly a few libraries in between. As the world moved to the cloud era, the SW stack
got deeper and more complex. The top layer of the stack on which most developers are working
has moved further away from the HW. Those additional layers abstract away the actual HW,
which allows using new types of accelerators for emerging workloads. However, the negative
side of such evolution is that developers of modern applications have less affinity to the actual
HW on which their SW is running.

Software programmers have had an “easy ride” for decades, thanks to Moore’s law. It used to
be the case that some SW vendors preferred to wait for a new generation of HW to speed up
their application and did not spend human resources on making improvements in their code.
By looking at Figure 1, we can see that single-threaded performance3 growth is slowing down.

Figure 1: 40 Years of Microprocessor Trend Data. © Image by K. Rupp via karlrupp.net

When it’s no longer the case that each HW generation provides a significant performance
boost [Leiserson et al., 2020], we must start paying more attention to how fast our code runs.

1 Quintillion is a thousand raised to the power of six (1018).
2 From the late 1990s to the late 2000s where personal computers where dominating the market of computing

devices.
3 Single-threaded performance is a performance of a single HW thread inside the CPU core.

9

1.1 Why Do We Still Need Performance Tuning?

When seeking ways to improve performance, developers should not rely on HW. Instead, they
should start optimizing the code of their applications.

“Software today is massively inefficient; it’s become prime time again for software
programmers to get really good at optimization.” - Marc Andreessen, the US
entrepreneur and investor (a16z Podcast, 2020)

Personal Experience: While working at Intel, I hear the same story from
time to time: when Intel clients experience slowness in their application, they
immediately and unconsciously start blaming Intel for having slow CPUs.
But when Intel sends one of our performance ninjas to work with them and
help them improve their application, it is not unusual that they help speed it
up by a factor of 5x, sometimes even 10x.

Reaching high-level performance is challenging and usually requires substantial efforts, but
hopefully, this book will give you the tools to help you achieve it.

1.1 Why Do We Still Need Performance Tuning?

Modern CPUs are getting more and more cores each year. As of the end of 2019, you can
buy a high-end server processor which will have more than 100 logical cores. This is very
impressive, but that doesn’t mean we don’t have to care about performance anymore. Very
often, application performance might not get better with more CPU cores. The performance
of a typical general-purpose multithread application doesn’t always scale linearly with the
number of CPU cores we assign to the task. Understanding why that happens and possible
ways to fix it is critical for the future growth of a product. Not being able to do proper
performance analysis and tuning leaves lots of performance and money on the table and can
kill the product.

According to [Leiserson et al., 2020], at least in the near term, a large portion of performance
gains for most applications will originate from the SW stack. Sadly, applications do not get
optimal performance by default. Article [Leiserson et al., 2020] also provides an excellent
example that illustrates the potential for performance improvements that could be done
on a source code level. Speedups from performance engineering a program that multiplies
two 4096-by-4096 matrices are summarized in Table 1. The end result of applying multiple
optimizations is a program that runs over 60,000 times faster. The reason for providing this
example is not to pick on Python or Java (which are great languages), but rather to break
beliefs that software has “good enough” performance by default.

Table 1: Speedups from performance engineering a program that multiplies two 4096-by-4096
matrices running on a dual-socket Intel Xeon E5-2666 v3 system with a total of 60 GB of
memory. From [Leiserson et al., 2020].

Version Implementation
Absolute
speedup

Relative
speedup

1 Python 1 —
2 Java 11 10.8
3 C 47 4.4
4 Parallel loops 366 7.8
5 Parallel divide and

conquer
6,727 18.4

10

1.1 Why Do We Still Need Performance Tuning?

Version Implementation
Absolute
speedup

Relative
speedup

6 plus vectorization 23,224 3.5
7 plus AVX intrinsics 62,806 2.7

Here are some of the most important factors that prevent systems from achieving optimal
performance by default:

1. CPU limitations. It’s so tempting to ask: "Why doesn’t HW solve all our problems?"
Modern CPUs execute instructions at incredible speed and are getting better with every
generation. But still, they cannot do much if instructions that are used to perform
the job are not optimal or even redundant. Processors cannot magically transform
suboptimal code into something that performs better. For example, if we implement
a sorting routine using BubbleSort4 algorithm, a CPU will not make any attempts to
recognize it and use the better alternatives, for example, QuickSort5. It will blindly
execute whatever it was told to do.

2. Compilers limitations. “But isn’t it what compilers are supposed to do? Why don’t
compilers solve all our problems?” Indeed, compilers are amazingly smart nowadays,
but can still generate suboptimal code. Compilers are great at eliminating redundant
work, but when it comes to making more complex decisions like function inlining, loop
unrolling, etc. they may not generate the best possible code. For example, there is
no binary “yes” or “no” answer to the question of whether a compiler should always
inline a function into the place where it’s called. It usually depends on many factors
which a compiler should take into account. Often, compilers rely on complex cost models
and heuristics, which may not work for every possible scenario. Additionally, compilers
cannot perform optimizations unless they are certain it is safe to do so, and it does not
affect the correctness of the resulting machine code. It may be very difficult for compiler
developers to ensure that a particular optimization will generate correct code under all
possible circumstances, so they often have to be conservative and refrain from doing
some optimizations6. Finally, compilers generally do not transform data structures used
by the program, which are also crucial in terms of performance.

3. Algorithmic complexity analysis limitations. Developers are frequently overly
obsessed with complexity analysis of the algorithms, which leads them to choose the
popular algorithm with the optimal algorithmic complexity, even though it may not be
the most efficient for a given problem. Considering two sorting algorithms InsertionSort7

and QuickSort, the latter clearly wins in terms of Big O notation for the average case:
InsertionSort is O(N2) while QuickSort is only O(N log N). Yet for relatively small
sizes8 of N, InsertionSort outperforms QuickSort. Complexity analysis cannot account
for all the branch prediction and caching effects of various algorithms, so they just
encapsulate them in an implicit constant C, which sometimes can make drastic impact
on performance. Blindly trusting Big O notation without testing on the target workload
could lead developers down an incorrect path. So, the best-known algorithm for a certain
problem is not necessarily the most performant in practice for every possible input.

Limitations described above leave the room for tuning the performance of our SW to reach its
4 BubbleSort algorithm - https://en.wikipedia.org/wiki/Bubble_sort
5 QuickSort algorithm - https://en.wikipedia.org/wiki/Quicksort
6 This is certainly the case with the order of floating-point operations.
7 InsertionSort algorithm - https://en.wikipedia.org/wiki/Insertion_sort
8 Typically between 7 and 50 elements

11

https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Insertion_sort

1.2 Who Needs Performance Tuning?

full potential. Broadly speaking, the SW stack includes many layers, e.g., firmware, BIOS, OS,
libraries, and the source code of an application. But since most of the lower SW layers are not
under our direct control, a major focus will be made on the source code. Another important
piece of SW that we will touch on a lot is a compiler. It’s possible to obtain attractive speedups
by making the compiler generate the desired machine code through various hints. You will
find many such examples throughout the book.

Personal Experience: To successfully implement the needed improvements
in your application, you don’t have to be a compiler expert. Based on my
experience, at least 90% of all transformations can be done at a source
code level without the need to dig down into compiler sources. Although,
understanding how the compiler works and how you can make it do what you
want is always advantageous in performance-related work.

Also, nowadays, it’s essential to enable applications to scale up by distributing them across
many cores since single-threaded performance tends to reach a plateau. Such enabling
calls for efficient communication between the threads of application, eliminating unnecessary
consumption of resources and other issues typical for multi-threaded programs.

It is important to mention that performance gains will not only come from tuning SW.
According to [Leiserson et al., 2020], two other major sources of potential speedups in the future
are algorithms (especially for new problem domains like machine learning) and streamlined
hardware design. Algorithms obviously play a big role in the performance of an application,
but we will not cover this topic in this book. We will not be discussing the topic of new
hardware designs either, since most of the time, SW developers have to deal with existing HW.
However, understanding modern CPU design is important for optimizing applications.

“During the post-Moore era, it will become ever more important to make code run
fast and, in particular, to tailor it to the hardware on which it runs.” [Leiserson
et al., 2020]

The methodologies in this book focus on squeezing out the last bit of performance from your
application. Such transformations can be attributed along rows 6 and 7 in Table 1. The
types of improvements that will be discussed are usually not big and often do not exceed 10%.
However, do not underestimate the importance of a 10% speedup. It is especially relevant for
large distributed applications running in cloud configurations. According to [Hennessy, 2018],
in the year 2018, Google spends roughly the same amount of money on actual computing
servers that run the cloud as it spends on power and cooling infrastructure. Energy efficiency
is a very important problem, which can be improved by optimizing SW.

“At such scale, understanding performance characteristics becomes critical – even
small improvements in performance or utilization can translate into immense cost
savings.” [Kanev et al., 2015]

1.2 Who Needs Performance Tuning?

Performance engineering does not need to be justified much in industries like High-Performance
Computing (HPC), Cloud Services, High-Frequency Trading (HFT), Game Development, and
other performance-critical areas. For instance, Google reported that a 2% slower search caused
2% fewer searches9 per user. For Yahoo! 400 milliseconds faster page load caused 5-9% more

9 Slides by Marissa Mayer - https://assets.en.oreilly.com/1/event/29/Keynote Presentation 2.pdf

12

https://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
https://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications

1.2 Who Needs Performance Tuning?

traffic10. In the game of big numbers, small improvements can make a significant impact. Such
examples prove that the slower the service works, the fewer people will use it.

Interestingly, performance engineering is not only needed in the aforementioned areas. Nowa-
days, it is also required in the field of general-purpose applications and services. Many tools
that we use every day simply would not exist if they failed to meet their performance require-
ments. For example, Visual C++ IntelliSense11 features that are integrated into Microsoft
Visual Studio IDE have very tight performance constraints. For IntelliSense autocomplete
feature to work, they have to parse the entire source codebase in the order of milliseconds12.
Nobody will use source code editors if it takes them several seconds to suggest autocomplete
options. Such a feature has to be very responsive and provide valid continuations as the user
types new code. The success of similar applications can only be achieved by designing SW
with performance in mind and thoughtful performance engineering.

Sometimes fast tools find use in the areas they were not initially designed for. For example,
nowadays, game engines like Unreal13 and Unity14 are used in architecture, 3d visualization,
film making, and other areas. Because they are so performant, they are a natural choice
for applications that require 2d and 3d rendering, physics engine, collision detection, sound,
animation, etc.

“Fast tools don’t just allow users to accomplish tasks faster; they allow users to
accomplish entirely new types of tasks, in entirely new ways.” - Nelson Elhage
wrote in article15on his blog (2020).

I hope it goes without saying that people hate using slow software. Performance characteristics
of an application can be a single factor for your customer to switch to a competitor’s product.
By putting emphasis on performance, you can give your product a competitive advantage.

Performance engineering is important and rewarding work, but it may be very time-consuming.
In fact, performance optimization is a never-ending game. There will always be something
to optimize. Inevitably, the developer will reach the point of diminishing returns at which
further improvement will come at a very high engineering cost and likely will not be worth
the efforts. From that perspective, knowing when to stop optimizing is a critical aspect of
performance work16. Some organizations achieve it by integrating this information into the
code review process: source code lines are annotated with the corresponding “cost” metric.
Using that data, developers can decide whether improving the performance of a particular
piece of code is worth it.

Before starting performance tuning, make sure you have a strong reason to do so. Optimization
just for optimization’s sake is useless if it doesn’t add value to your product. Mindful
performance engineering starts with clearly defined performance goals, stating what you are
trying to achieve and why you are doing it. Also, you should pick the metrics you will use to

10 Slides by Stoyan Stefanov - https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-
highperformance-web-applications

11 Visual C++ IntelliSense - https://docs.microsoft.com/en-us/visualstudio/ide/visual-cpp-intellisense
12 In fact, it’s not possible to parse the entire codebase in the order milliseconds. Instead, IntelliSense only

reconstructs the portions of AST that has been changed. Watch more details on how the Microsoft team
achieves this in the video: https://channel9.msdn.com/Blogs/Seth-Juarez/Anders-Hejlsberg-on-Modern-
Compiler-Construction.

13 Unreal Engine - https://www.unrealengine.com.
14 Unity Engine - https://unity.com/
15 Reflections on software performance by N. Elhage - https://blog.nelhage.com/post/reflections-on-

performance/
16 Roofline model (section 5.5) and Top-Down Microarchitecture Analysis (section 6.1) may help to assess

performance against HW theoretical maximums.

13

https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
https://docs.microsoft.com/en-us/visualstudio/ide/visual-cpp-intellisense
https://www.unrealengine.com
https://unity.com/
https://blog.nelhage.com/post/reflections-on-performance/
https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
https://docs.microsoft.com/en-us/visualstudio/ide/visual-cpp-intellisense
https://channel9.msdn.com/Blogs/Seth-Juarez/Anders-Hejlsberg-on-Modern-Compiler-Construction
https://channel9.msdn.com/Blogs/Seth-Juarez/Anders-Hejlsberg-on-Modern-Compiler-Construction
https://www.unrealengine.com
https://unity.com/
https://blog.nelhage.com/post/reflections-on-performance/
https://blog.nelhage.com/post/reflections-on-performance/

1.3 What Is Performance Analysis?

measure if you reach the goal. You can read more on the topic of setting performance goals in
[Gregg, 2013] and [Akinshin, 2019].

Nevertheless, it is always great to practice and master the skill of performance analysis and
tuning. If you picked up the book for that reason, you are more than welcome to keep on
reading.

1.3 What Is Performance Analysis?

Ever found yourself debating with a coworker about the performance of a certain piece of code?
Then you probably know how hard it is to predict which code is going to work the best. With
so many moving parts inside modern processors, even a small tweak to the code can trigger
significant performance change. That’s why the first advice in this book is: Always Measure.

Personal Experience: I see many people rely on intuition when they try
to optimize their application. And usually, it ends up with random fixes
here and there without making any real impact on the performance of the
application.

Inexperienced developers often make changes in the source code and hope it will improve
the performance of the program. One such example is replacing i++ with ++i all over the
code base, assuming that the previous value of i is not used. In the general case, this change
will make no difference to the generated code because every decent optimizing compiler will
recognize that the previous value of i is not used and will eliminate redundant copies anyway.

Many micro-optimization tricks that circulate around the world were valid in the past, but
current compilers have already learned them. Additionally, some people tend to overuse legacy
bit-twiddling tricks. One of such examples is using XOR-based swap idiom17, while in reality,
simple std::swap produces faster code. Such accidental changes likely won’t improve the
performance of the application. Finding the right place to fix should be a result of careful
performance analysis, not intuition and guesses.

There are many performance analysis methodologies18 that may or may not lead you to a
discovery. The CPU-specific approaches to performance analysis presented in this book have
one thing in common: they are based on collecting certain information about how the program
executes. Any change that ends up being made in the source code of the program is driven by
analyzing and interpreting collected data.

Locating a performance bottleneck is only half of the engineer’s job. The second half is to
fix it properly. Sometimes changing one line in the program source code can yield a drastic
performance boost. Performance analysis and tuning are all about how to find and fix this
line. Missing such opportunities can be a big waste.

1.4 What is discussed in this book?

This book is written to help developers better understand the performance of their application,
learn to find inefficiencies, and eliminate them. Why my hand-written archiver performs two
times slower than the conventional one? Why did my change in the function cause two times
performance drop? Customers are complaining about the slowness of my application, and I
don’t know where to start? Have I optimized the program to its full potential? What do I do

17 XOR-based swap idiom - https://en.wikipedia.org/wiki/XOR_swap_algorithm
18 Performance Analysis Methodology by B. Gregg - http://www.brendangregg.com/methodology.html

14

https://en.wikipedia.org/wiki/XOR_swap_algorithm
https://en.wikipedia.org/wiki/XOR_swap_algorithm
http://www.brendangregg.com/methodology.html

1.5 What is not in this book?

with all that cache misses and branch mispredictions? Hopefully, by the end of this book, you
will have the answers to those questions.

Here is the outline of what this book contains:

• Chapter 2 discusses how to conduct fair performance experiments and analyze their
results. It introduces the best practices of performance testing and comparing results.

• Chapters 3 and 4 provide basics of CPU microarchitecture and terminology in performance
analysis; feel free to skip if you know this already.

• Chapter 5 explores several most popular approaches for doing performance analysis. It
explains how profiling techniques work and what data can be collected.

• Chapter 6 gives information about features provided by the modern CPU to support
and enhance performance analysis. It shows how they work and what problems they are
capable of solving.

• Chapters 7-9 contain recipes for typical performance problems. It is organized in the most
convenient way to be used with Top-Down Microarchitecture Analysis (see section 6.1),
which is one of the most important concepts of the book.

• Chapter 10 contains optimization topics not specifically related to any of the categories
covered in the previous three chapters, still important enough to find their place in this
book.

• Chapter 11 discusses techniques for analyzing multithreaded applications. It outlines
some of the most important challenges of optimizing the performance of multithreaded
applications and the tools that can be used to analyze it. The topic itself is quite big, so
the chapter only focuses on HW-specific issues, like “False Sharing”.

Examples provided in this book are primarily based on open-source software: Linux as the
operating system, LLVM-based Clang compiler for C and C++ languages, and Linux perf
as the profiling tool. The reason for such a choice is not only the popularity of mentioned
technologies but also the fact that their source code is open, which allows us to better
understand the underlying mechanism of how they work. This is especially useful for learning
the concepts presented in this book. We will also sometimes showcase proprietary tools that
are “big players” in their areas, for example, Intel® VTune™ Profiler.

1.5 What is not in this book?

System performance depends on different components: CPU, OS, memory, I/O devices, etc.
Applications could benefit from tuning various components of the system. In general, engineers
should analyze the performance of the whole system. However, the biggest factor in systems
performance is its heart, the CPU. This is why this book primarily focuses on performance
analysis from a CPU perspective, occasionally touching on OS and memory subsystems.

The scope of the book does not go beyond a single CPU socket, so we will not discuss
optimization techniques for distributed, NUMA, and heterogeneous systems. Offloading
computations to accelerators (GPU, FPGA, etc.) using solutions like OpenCL and openMP is
not discussed in this book.

This book centers around Intel x86 CPU architecture and does not provide specific tuning
recipes for AMD, ARM, or RISC-V chips. Nonetheless, many of the principles discussed in
further chapters apply well to those processors. Also, Linux is the OS of choice for this book,
but again, for most of the examples in this book, it doesn’t matter since the same techniques
benefit applications that run on Windows and Mac operating systems.

All the code snippets in this book are written in C, C++, or x86 assembly languages, but to

15

1.6 Chapter Summary

a large degree, ideas from this book can be applied to other languages that are compiled to
native code like Rust, Go, and even Fortran. Since this book targets user-mode applications
that run close to the hardware, we will not discuss managed environments, e.g., Java.

Finally, the author assumes that readers have full control over the software that they develop,
including the choice of libraries and compiler they use. Hence, this book is not about tuning
purchased commercial packages, e.g., tuning SQL database queries.

1.6 Chapter Summary

• HW is not getting that much performance boosts in single-threaded performance as it
used to in the past years. That’s why performance tuning is becoming more important
than it has been for the last 40 years. The computing industry is changing now much
more heavily than at any time since the 90s.

• According to [Leiserson et al., 2020], SW tuning will be one of the key drivers for
performance gains in the near future. The importance of performance tuning should
not be underestimated. For large distributed applications, every small performance
improvement results in immense cost savings.

• Software doesn’t have an optimal performance by default. Certain limitations exist
that prevent applications to reach their full performance potential. Both HW and SW
environments have such limitations. CPUs cannot magically speed up slow algorithms.
Compilers are far from generating optimal code for every program. Due to HW specifics,
the best-known algorithm for a certain problem is not always the most performant. All
this leaves the room for tuning the performance of our applications.

• For some types of applications, performance is not just a feature. It enables users to
solve new kinds of problems in a new way.

• SW optimizations should be backed by strong business needs. Developers should set
quantifiable goals and metrics which must be used to measure progress.

• Predicting the performance of a certain piece of code is nearly impossible since there are
so many factors that affect the performance of modern platforms. When implementing
SW optimizations, developers should not rely on intuition but use careful performance
analysis instead.

16

Part1. Performance analysis on a modern CPU

2 Measuring Performance

The first step on the path to understanding an application’s performance is knowing how to
measure it. Some people attribute performance as one of the features of the application19.
But unlike other features, performance is not a boolean property: applications always have
some level of performance. This is why it’s impossible to answer “yes” or “no” to the question
of whether an application has the performance.

Performance problems are usually harder to track down and reproduce than most functional
issues20. Every run of the benchmark is different from each other. For example, when
unpacking a zip-file, we get the same result over and over again, which means this operation is
reproducible21. However, it’s impossible to reproduce exactly the same performance profile of
this operation.

Anyone ever concerned with performance evaluations likely knows how hard it is to conduct fair
performance measurements and draw accurate conclusions from it. Performance measurements
sometimes can be very much unexpected. Changing a seemingly unrelated part of the source
code can surprise us with a significant impact on program performance. This phenomenon
is called measurement bias. Because of the presence of error in measurements, performance
analysis requires statistical methods to process them. This topic deserves a whole book just
by itself. There are many corner cases and a huge amount of research done in this field. We
will not go all the way down this rabbit hole. Instead, we will just focus on high-level ideas
and directions to follow.

Conducting fair performance experiments is an essential step towards getting accurate and
meaningful results. Designing performance tests and configuring the environment are both
important components in the process of evaluating performance. This chapter will give a brief
introduction to why modern systems yield noisy performance measurements and what you can
do about it. We will touch on the importance of measuring performance in real production
deployments.

Not a single long-living product exists without ever having performance regressions. This is
especially important for large projects with lots of contributors where changes are coming
at a very fast pace. This chapter devotes a few pages discussing the automated process of
tracking performance changes in Continuous Integration and Continuous Delivery (CI/CD)
systems. We also present general guidance on how to properly collect and analyze performance
measurements when developers implement changes in their source codebase.

The end of the chapter describes SW and HW timers that can be used by developers in time-
based measurements and common pitfalls when designing and writing a good microbenchmark.

19 Blog post by Nelson Elhage “Reflections on software performance”: https://blog.nelhage.com/post/reflect
ions-on-performance/.

20 Sometimes, we have to deal with non-deterministic and hard to reproduce bugs, but it’s not that often.
21 Assuming no data races.

17

https://blog.nelhage.com/post/reflections-on-performance/
https://blog.nelhage.com/post/reflections-on-performance/

2.1 Noise In Modern Systems

2.1 Noise In Modern Systems

There are many features in HW and SW that are intended to increase performance. But not
all of them have deterministic behavior. Let’s consider Dynamic Frequency Scaling22 (DFS):
this is a feature that allows a CPU to increase its frequency for a short time interval, making
it run significantly faster. However, the CPU can’t stay in “overclocked” mode for a long time,
so later, it decreases its frequency back to the base value. DFS usually depends a lot on a core
temperature, which makes it hard to predict the impact on our experiments.

If we start two runs of the benchmark, one right after another on a “cold” processor23, the first
run could possibly work for some time in “overclocked” mode and then decrease its frequency
back to the base level. However, it’s possible that the second run might not have this advantage
and will operate at the base frequency without entering “turbo mode”. Even though we run
the exact same version of the program two times, the environment in which they run is not
the same. Figure 2 shows a situation where dynamic frequency scaling can cause variance in
measurements. Such a scenario can frequently happen when benchmarking on laptops since
usually they have limited heat dissipation.

Figure 2: Variance in measurements caused by frequency scaling.

Frequency Scaling is an HW feature, but variations in measurements might also come from
SW features. Let’s consider the example of a filesystem cache. If we benchmark an application
that does lots of file manipulation, the filesystem can play a big role in performance. When
the first iteration of the benchmark runs, the required entries in the filesystem cache could be
missing. However, the filesystem cache will be warmed-up when running the same benchmark
a second time, making it significantly faster than the first run.

Unfortunately, measurement bias does not only come from environment configuration. [Mytkow-
icz et al., 2009] paper demonstrates that UNIX environment size (i.e., the total number of
bytes required to store the environment variables) and link order (the order of object files
that are given to the linker) can affect performance in unpredictable ways. Moreover, there
are numerous other ways of affecting memory layout and potentially affecting performance
measurements. One approach to enable statistically sound performance analysis of software
on modern architectures was presented in [Curtsinger and Berger, 2013]. This work shows
that it’s possible to eliminate measurement bias that comes from memory layout by efficiently

22 Dynamic Frequency Scaling - https://en.wikipedia.org/wiki/Dynamic_frequency_scaling.
23 By cold processor, I mean the CPU that stayed in an idle mode for a while, allowing it to cool down.

18

https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
https://en.wikipedia.org/wiki/Dynamic_frequency_scaling

2.2 Measuring Performance In Production

and repeatedly randomizing the placement of code, stack, and heap objects at runtime. Sadly,
these ideas didn’t go much further, and right now, this project is almost abandoned.

Personal Experience: Remember that even running a task manager tool,
like Linux top, can affect measurements since some CPU core will be activated
and assigned to it. This might affect the frequency of the core that is running
the actual benchmark.

Having consistent measurements requires running all iterations of the benchmark with the
same conditions. However, it is not possible to replicate the exact same environment and
eliminate bias completely: there could be different temperature conditions, power delivery
spikes, neighbor processes running, etc. Chasing all potential sources of noise and variation in
the system can be a never-ending story. Sometimes it cannot be achieved, for example, when
benchmarking large distributed cloud service.

So, eliminating non-determinism in a system is helpful for well-defined, stable performance
tests, e.g., microbenchmarks. For instance, when you implement some code change and want
to know the relative speedup ratio by benchmarking two different versions of the same program.
This is a scenario where you can control most of the variables in the benchmark, including
its input, environment configuration, etc. In this situation, eliminating non-determinism
in a system helps to get a more consistent and accurate comparison. After finishing with
local testing, remember to make sure projected performance improvements were mirrored in
real-world measurements. Readers can find some examples of features that can bring noise
into performance measurements and how to disable them in Appendix A. Also, there are tools
that can set up the environment to ensure benchmarking results with a low variance; one of
them is temci24.

It is not recommended to eliminate system non-deterministic behavior when estimating
real-world performance improvements. Engineers should try to replicate the target system
configuration, which they are optimizing for. Introducing any artificial tuning to the system
under test will diverge results from what users of your service will see in practice. Also, any
performance analysis work, including profiling (see section 5.4), should be done on a system
that is configured similar to what will be used in a real deployment.

Finally, it’s important to keep in mind that even if a particular HW or SW feature has non-
deterministic behavior, that doesn’t mean it is considered harmful. It could give an inconsistent
result, but it is designed to improve the overall performance of the system. Disabling such a
feature might reduce the noise in microbenchmarks but make the whole suite run longer. This
might be especially important for CI/CD performance testing when there are time limits for
how long it should take to run the whole benchmark suite.

2.2 Measuring Performance In Production

When an application runs on shared infrastructure (typical in a public cloud), there usually
will be other workloads from other customers running on the same servers. With technologies
like virtualization and containers becoming more popular, public cloud providers try to fully
utilize the capacity of their servers. Unfortunately, it creates additional obstacles for measuring
performance in such an environment. Sharing resources with neighbor processes can influence
performance measurements in unpredictable ways.

Analyzing production workloads by recreating them in a lab can be tricky. Sometimes it’s not
24 Temci - https://github.com/parttimenerd/temci.

19

https://github.com/parttimenerd/temci
https://github.com/parttimenerd/temci

2.3 Automated Detection of Performance Regressions

possible to synthesize exact behavior for “in-house” performance testing. This is why more
and more often, cloud providers and hyperscalers choose to profile and monitor performance
directly on production systems [Ren et al., 2010]. Measuring performance when there are “no
other players” may not reflect real-world scenarios. It would be a waste of time to implement
code optimizations that perform well in a lab environment but not in a production environment.
Having said that, it doesn’t eliminate the need for continuous “in-house” testing to catch
performance problems early. Not all performance regressions can be caught in a lab, but
engineers should design performance benchmarks representative of real-world scenarios.

It’s becoming a trend for large service providers to implement telemetry systems that monitor
performance on user devices. One such example is the Netflix Icarus25 telemetry service, which
runs on thousands of different devices spread all around the world. Such a telemetry system
helps Netflix understand how real users perceive Netflix’s app performance. It allows engineers
to analyze data collected from many devices and to find issues that would be impossible to
find otherwise. This kind of data allows making better-informed decisions on where to focus
the optimization efforts.

One important caveat of monitoring production deployments is measurement overhead. Because
any kind of monitoring affects the performance of a running service, it’s recommended to use
only lightweight profiling methods. According to [Ren et al., 2010]: “To conduct continuous
profiling on datacenter machines serving real traffic, extremely low overhead is paramount”.
Usually, acceptable aggregated overhead is considered below 1%. Performance monitoring
overhead can be reduced by limiting the set of profiled machines as well as using smaller time
intervals.

Measuring performance in such production environments means that we must accept its noisy
nature and use statistical methods to analyze results. A good example of how large companies
like LinkedIn use statistical methods to measure and compare quantile-based metrics (e.g.,
90th percentile Page Load Times) in their A/B testing in the production environment can be
found in [Liu et al., 2019].

2.3 Automated Detection of Performance Regressions

It is becoming a trend that SW vendors try to increase the frequency of deployments. Com-
panies constantly seek ways to accelerate the rate of delivering their products to the market.
Unfortunately, this doesn’t automatically imply that SW products become better with each
new release. In particular, software performance defects tend to leak into production software
at an alarming rate [Jin et al., 2012]. A large number of changes in software impose a challenge
to analyze all of those results and historical data to detect performance regressions.

Software performance regressions are defects that are erroneously introduced into software as
it evolves from one version to the next. Catching performance bugs and improvements means
detecting which commits change the performance of the software (as measured by performance
tests) in the presence of the noise from the testing infrastructure. From database systems to
search engines to compilers, performance regressions are commonly experienced by almost all
large-scale software systems during their continuous evolution and deployment life cycle. It
may be impossible to entirely avoid performance regressions during software development, but
with proper testing and diagnostic tools, the likelihood for such defects to silently leak into
production code could be minimized.

The first option that comes to mind is: having humans to look at the graphs and compare
25 Presented at CMG 2019, https://www.youtube.com/watch?v=4RG2DUK03_0.

20

https://www.youtube.com/watch?v=4RG2DUK03_0

2.3 Automated Detection of Performance Regressions

results. It shouldn’t be surprising that we want to move away from that option very quickly.
People tend to lose focus quickly and can miss regressions, especially on a noisy chart, like
the one shown in figure 3. Humans will likely catch performance regression that happened
around August 5th, but it’s not obvious that humans will detect later regressions. In addition
to being error-prone, having humans in the loop is also a time consuming and boring job that
must be performed daily.

Figure 3: Performance trend graph for four tests with a small drop in performance on August
5th (the higher value, the better). © Image from [Daly et al., 2020]

The second option is to have a simple threshold. It is somewhat better than the first option
but still has its own drawbacks. Fluctuations in performance tests are inevitable: sometimes,
even a harmless code change26 can trigger performance variation in a benchmark. Choosing
the right value for the threshold is extremely hard and does not guarantee a low rate of
false-positive as well as false-negative alarms. Setting the threshold too low might lead to
analyzing a bunch of small regressions that were not caused by the change in source code but
due to some random noise. Setting the threshold too high might lead to filtering out real
performance regressions. Small changes can pile up slowly into a bigger regression, which can
be left unnoticed27. By looking at the figure 3, we can make an observation that the threshold
requires per test adjustment. The threshold that might work for the green (upper line) test
will not necessarily work equally well for the purple (lower line) test since they have a different
level of noise. An example of a CI system where each test requires setting explicit threshold
values for alerting a regression is LUCI28, which is a part of the Chromium project.

One of the recent approaches to identify performance regressions was taken in [Daly et al.,
2020]. MongoDB developers implemented change point analysis for identifying performance
changes in the evolving code base of their database products. According to [Matteson and
James, 2014], change point analysis is the process of detecting distributional changes within
time-ordered observations. MongoDB developers utilized an “E-Divisive means” algorithm
that works by hierarchically selecting distributional change points that divide the time series
into clusters. Their open-sourced CI system called Evergreen29 incorporates this algorithm to
display change points on the chart and opens Jira tickets. More details about this automated
performance testing system can be found in [Ingo and Daly, 2020].

Another interesting approach is presented in [Alam et al., 2019]. The authors of this paper
presented AutoPerf, which uses hardware performance counters (PMC, see section 3.9.1) to
diagnose performance regressions in a modified program. First, it learns the distribution of the

26 The following article shows that changing the order of the functions or removing dead functions can cause
variations in performance: https://easyperf.net/blog/2018/01/18/Code_alignment_issues.

27 E.g., suppose you have a threshold of 2%. If you have two consecutive 1.5% regressions, they both will be
filtered out. But throughout two days, performance regression will sum up to 3%, which is bigger than the
threshold.

28 LUCI - https://chromium.googlesource.com/chromium/src.git/+/master/docs/tour_of_luci_ui.md
29 Evergreen - https://github.com/evergreen-ci/evergreen.

21

https://chromium.googlesource.com/chromium/src.git/+/master/docs/tour_of_luci_ui.md
https://github.com/evergreen-ci/evergreen
https://easyperf.net/blog/2018/01/18/Code_alignment_issues
https://chromium.googlesource.com/chromium/src.git/+/master/docs/tour_of_luci_ui.md
https://github.com/evergreen-ci/evergreen

2.4 Manual Performance Testing

performance of a modified function based on its PMC profile data collected from the original
program. Then, it detects deviations of performance as anomalies based on the PMC profile
data collected from the modified program. AutoPerf showed that this design could effectively
diagnose some of the most complex software performance bugs, like those hidden in parallel
programs.

Regardless of the underlying algorithm of detecting performance regressions, a typical CI
system should automate the following actions:

1. Setup a system under test.
2. Run a workload.
3. Report the results.
4. Decide if performance has changed.
5. Visualize the results.

CI system should support both automated and manual benchmarking, yield repeatable results,
and open tickets for performance regressions that were found. It is very important to detect
regressions promptly. First, because fewer changes were merged since a regression happened.
This allows us to have a person responsible for regression to look into the problem before they
move to another task. Also, it is a lot easier for a developer to approach the regression since
all the details are still fresh in their head as opposed to several weeks after that.

2.4 Manual Performance Testing

It is great when engineers can leverage existing performance testing infrastructure during
development. In the previous section, we discussed that one of the nice-to-have features
of the CI system is the possibility to submit performance evaluation jobs to it. If this is
supported, then the system would return the results of testing a patch that the developer
wants to commit to the codebase. It may not always be possible due to various reasons, like
hardware unavailability, setup is too complicated for testing infrastructure, a need to collect
additional metrics. In this section, we provide basic advice for local performance evaluations.

When making performance improvements in our code, we need a way to prove that we
actually made it better. Also, when we commit a regular code change, we want to make sure
performance did not regress. Typically, we do this by 1) measuring the baseline performance, 2)
measuring the performance of the modified program, and 3) comparing them with each other.
The goal in such a scenario is to compare the performance of two different versions of the same
functional program. For example, we have a program that recursively calculates Fibonacci
numbers, and we decided to rewrite it in an iterative fashion. Both are functionally correct
and yield the same numbers. Now we need to compare the performance of two programs.

It is highly recommended to get not just a single measurement but to run the benchmark
multiple times. So, we have N measurements for the baseline and N measurements for the
modified version of the program. Now we need a way to compare those two sets of measurements
to decide which one is faster. This task is intractable by itself, and there are many ways
to be fooled by the measurements and potentially derive wrong conclusions from them. If
you ask any data scientist, they will tell you that you should not rely on a single metric
(min/mean/median, etc.).

Consider two distributions of performance measurements collected for two versions of a program
in Figure 4. This chart displays the probability we get a particular timing for a given version
of a program. For example, there is a ~32% chance the version A will finish in ~102 seconds.
It’s tempting to say that A is faster than B. However, it is true only with some probability P.

22

2.4 Manual Performance Testing

This is because there are some measurements of B that are faster than A. Even in the situation
when all the measurements of B are slower than every measurement of A probability P is not
equal to 100%. This is because we can always produce one additional sample for B, which may
be faster than some samples of A.

Figure 4: Comparing 2 performance measurement distributions.

An interesting advantage of using distribution plots is that it allows you to spot unwanted
behavior of the benchmark30. If the distribution is bimodal, the benchmark likely experiences
two different types of behavior. A common cause of bimodally distributed measurements is
code that has both a fast and a slow path, such as accessing a cache (cache hit vs. cache miss)
and acquiring a lock (contended lock vs. uncontended lock). To “fix” this, different functional
patterns should be isolated and benchmarked separately.

Data scientists often present measurements by plotting the distributions and avoid calculating
speedup ratios. This eliminates biased conclusions and allows readers to interpret the data
themselves. One of the popular ways to plot distributions is by using box plots (see Figure 5),
which allow comparisons of multiple distributions on the same chart.

While visualizing performance distributions may help you discover certain anomalies, developers
shouldn’t use them for calculating speedups. In general, it’s hard to estimate the speedup
by looking at performance measurement distributions. Also, as discussed in the previous
section, it doesn’t work for automated benchmarking systems. Usually, we want to get a scalar
value that will represent a speedup ratio between performance distributions of 2 versions of a
program, for example, “version A is faster than version B by X%”.

The statistical relationship between the two distributions is identified using Hypothesis Testing
methods. A comparison is deemed statistically significant if the relationship between the data-
sets would reject the null hypothesis31 according to a threshold probability (the significance
level). If the distributions32 are Gaussian (normal33), then using a parametric hypothesis
test (e.g., Student’s T-test34) to compare the distributions will suffice. If the distributions
being compared are not Gaussian (e.g., heavily skewed or multimodal), then it’s possible to

30 Another way to check this is to run the normality test: https://en.wikipedia.org/wiki/Normality_test.
31 Null hypothesis - https://en.wikipedia.org/wiki/Null_hypothesis.
32 It is worth to mention that Gaussian distributions are very rarely seen in performance data. So, be cautious

using formulas from statistics textbooks assuming Gaussian distributions.
33 Normal distribution - https://en.wikipedia.org/wiki/Normal_distribution.
34 Student’s t-test - https://en.wikipedia.org/wiki/Student’s_t-test.

23

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Student's_t-test
https://en.wikipedia.org/wiki/Normality_test
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Student's_t-test

2.4 Manual Performance Testing

Figure 5: Box plots.

use non-parametric tests (e.g., Mann-Whitney35, Kruskal Wallis36, etc.). Hypothesis Testing
methods are great for determining whether a speedup (or slowdown) is random or not37. A
good reference specifically about statistics for performance engineering is a book38 by Dror
G. Feitelson, “Workload Modeling for Computer Systems Performance Evaluation”, that has
more information on modal distributions, skewness, and other related topics.

Once it’s determined that the difference is statistically significant via the hypothesis test, then
the speedup can be calculated as a ratio between the means or geometric means, but there
are caveats. On a small collection of samples, the mean and geometric mean can be affected
by outliers. Unless distributions have low variance, do not consider averages alone. If the
variance in the measurements is on the same order of magnitude as the mean, the average
is not a representative metric. Figure 6 shows an example of 2 versions of the program. By
looking at averages (6a), it’s tempting to say that A is faster than B by 20%. However, taking
into account the variance of the measurements (6b), we can see that it is not always the case,
and sometimes B may be 20% faster than A. For normal distributions, a combination of mean,
standard deviation, and standard error can be used to gauge a speedup between two versions
of a program. Otherwise, for skewed or multimodal samples, one would have to use percentiles
that are more appropriate for the benchmark, e.g., min, median, 90th, 95th, 99th, max, or
some combination of these.

One of the most important factors in calculating accurate speedup ratios is collecting a rich
collection of samples, i.e., run the benchmark a large number of times. This may sound obvious,
but it is not always achievable. For example, some of the SPEC benchmarks39 run for more

35 Mann-Whitney U test - https://en.wikipedia.org/wiki/Mann-Whitney_U_test.
36 Kruskal-Wallis analysis of variance - https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_o

f_variance.
37 Therefore, it is best used in Automated Testing Frameworks to verify that the commit didn’t introduce any

performance regressions.
38 Book “Workload Modeling for Computer Systems Performance Evaluation” -

https://www.cs.huji.ac.il/~feit/wlmod/.
39 SPEC CPU 2017 benchmarks - http://spec.org/cpu2017/Docs/overview.html#benchmarks

24

https://en.wikipedia.org/wiki/Mann\T1\textendash Whitney_U_test
https://en.wikipedia.org/wiki/Kruskal\T1\textendash Wallis_one-way_analysis_of_variance
http://spec.org/cpu2017/Docs/overview.html#benchmarks
https://en.wikipedia.org/wiki/Mann-Whitney_U_test
https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
http://cs.huji.ac.il/~feit/wlmod/
http://spec.org/cpu2017/Docs/overview.html#benchmarks

2.5 Software and Hardware Timers

(a) Averages only (b) Full measurement intervals

Figure 6: Two histograms showing how averages could be misleading.

than 10 minutes on a modern machine. That means it would take 1 hour to produce just three
samples: 30 minutes for each version of the program. Imagine that you have not just a single
benchmark in your suite, but hundreds. It would become very expensive to collect statistically
sufficient data even if you distribute the work across multiple machines.

How do you know how many samples are required to reach statistically sufficient distribution?
The answer to this question again depends on how much accuracy you want your comparison
to have. The lower the variance between the samples in the distribution, the lower number
of samples you need. Standard deviation40 is the metric that tells you how consistent the
measurements in the distribution are. One can implement an adaptive strategy by dynamically
limiting the number of benchmark iterations based on standard deviation, i.e., you collect
samples until you get a standard deviation that lies in a certain range41. Once you have a
standard deviation lower than some threshold, you could stop collecting measurements. This
strategy is explained in more detail in [Akinshin, 2019, Chapter 4].

Another important thing to watch out for is the presence of outliers. It is OK to discard some
samples (for example, cold runs) as outliers by using confidence intervals, but do not deliberately
discard unwanted samples from the measurement set. For some types of benchmarks, outliers
can be one of the most important metrics. For example, when benchmarking SW that has
real-time constraints, 99-percentile could be very interesting. There is a series of talks about
measuring latency by Gil Tene on YouTube that covers this topic well.

2.5 Software and Hardware Timers

To benchmark execution time, engineers usually use two different timers, which all the modern
platforms provide:

• System-wide high-resolution timer. This is a system timer that is typically imple-
mented as a simple count of the number of ticks that have transpired since some arbitrary
starting date, called the epoch42. This clock is monotonic; i.e., it always goes up. System

40 Standard deviation - https://en.wikipedia.org/wiki/Standard_deviation
41 This approach requires the number of measurements to be more than 1. Otherwise, the algorithm will stop

after the first sample because a single run of a benchmark has std.dev. equals to zero.
42 Unix epoch starts at 1 January 1970 00:00:00 UT: https://en.wikipedia.org/wiki/Unix_epoch.

25

https://en.wikipedia.org/wiki/Standard_deviation
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://en.wikipedia.org/wiki/Epoch_(computing)
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Unix_epoch

2.5 Software and Hardware Timers

timer has a nano-seconds resolution43 and is consistent between all the CPUs. It is
suitable for measuring events with a duration of more than a microsecond. System time
can be retrieved from the OS with a system call44. The system-wide timer is independent
of CPU frequency. Accessing the system timer on Linux systems is possible via the
clock_gettime system call45. The de facto standard for accessing system timer in
C++ is using std::chrono as shown in Listing 1.

Listing 1 Using C++ std::chrono to access system timer

#include <cstdint>
#include <chrono>

// returns elapsed time in nanoseconds
uint64_t timeWithChrono() {

using namespace std::chrono;
uint64_t start = duration_cast<nanoseconds>

(steady_clock::now().time_since_epoch()).count();
// run something
uint64_t end = duration_cast<nanoseconds>

(steady_clock::now().time_since_epoch()).count();
uint64_t delta = end - start;
return delta;

}

• Time Stamp Counter (TSC). This is an HW timer which is implemented as an HW
register. TSC is monotonic and has a constant rate, i.e., it doesn’t account for frequency
changes. Every CPU has its own TSC, which is simply the number of reference cycles
(see section 4.6) elapsed. It is suitable for measuring short events with a duration from
nanoseconds and up to a minute. The value of TSC can be retrieved by using compiler
built-in function __rdtsc as shown in Listing 2, which uses RDTSC assembly instruction
under the hood. More low-level details on benchmarking the code using RDTSC assembly
instruction can be accessed in a white paper [Paoloni, 2010].

Listing 2 Using __rdtsc compiler builtins to access TSC

#include <x86intrin.h>
#include <cstdint>

// returns the number of elapsed reference clocks
uint64_t timeWithTSC() {

uint64_t start = __rdtsc();
// run something
return __rdtsc() - start;

}

43 Even though the system timer can return timestamps with nano-seconds accuracy, it is not suitable for
measuring short running events because it takes a long time to obtain the timestamp via the clock_gettime
system call.

44 Retrieving system time - https://en.wikipedia.org/wiki/System_time#Retrieving_system_time
45 On Linux, one can query CPU time for each thread using the pthread_getcpuclockid system call.

26

https://en.wikipedia.org/wiki/System_time#Retrieving_system_time

2.6 Microbenchmarks

Choosing which timer to use is very simple and depends on how long the thing is that you
want to measure. If you measure something over a very small time period, TSC will give you
better accuracy. Conversely, it’s pointless to use the TSC to measure a program that runs for
hours. Unless you really need cycle accuracy, the system timer should be enough for a large
proportion of cases. It’s important to keep in mind that accessing system timer usually has
higher latency than accessing TSC. Making a clock_gettime system call can be easily ten
times slower than executing RDTSC instruction, which takes 20+ CPU cycles. This may become
important for minimizing measurement overhead, especially in the production environment.
Performance comparison of different APIs for accessing timers on various platforms is available
on wiki page46 of CppPerformanceBenchmarks repository.

2.6 Microbenchmarks

It’s possible to write a self-contained microbenchmark for quickly testing some hypotheses.
Usually, microbenchmarks are used to track progress while optimizing some particular function-
ality. Nearly all modern languages have benchmarking frameworks, for C++ use the Google
benchmark47 library, C# has BenchmarkDotNet48 library, Julia has the BenchmarkTools49

package, Java has JMH50 (Java Microbenchmark Harness), etc.

When writing microbenchmarks, it’s very important to ensure that the scenario you want
to test is actually executed by your microbenchmark at runtime. Optimizing compilers can
eliminate important code that could make the experiment useless, or even worse, drive you
to the wrong conclusion. In the example below, modern compilers are likely to eliminate the
whole loop:

// foo DOES NOT benchmark string creation
void foo() {

for (int i = 0; i < 1000; i++)
std::string s("hi");

}

A simple way to test this is to check the profile of the benchmark and see if the intended
code stands out as the hotspot. Sometimes abnormal timings can be spotted instantly, so use
common sense while analyzing and comparing benchmark runs. One of the popular ways to
keep the compiler from optimizing away important code is to use DoNotOptimize-like51 helper
functions, which do the necessary inline assembly magic under the hood:

// foo benchmarks string creation
void foo() {

for (int i = 0; i < 1000; i++) {
std::string s("hi");
DoNotOptimize(s);

}
}

46 CppPerformanceBenchmarks wiki - https://gitlab.com/chriscox/CppPerformanceBenchmarks/-/wikis/Clo
ckTimeAnalysis

47 Google benchmark library - https://github.com/google/benchmark
48 BenchmarkDotNet - https://github.com/dotnet/BenchmarkDotNet
49 Julia BenchmarkTools - https://github.com/JuliaCI/BenchmarkTools.jl
50 Java Microbenchmark Harness - http://openjdk.java.net/projects/code-tools/jmh/etc
51 For JMH, this is known as the Blackhole.consume().

27

https://gitlab.com/chriscox/CppPerformanceBenchmarks/-/wikis/ClockTimeAnalysis
https://github.com/google/benchmark
https://github.com/dotnet/BenchmarkDotNet
https://github.com/JuliaCI/BenchmarkTools.jl
http://openjdk.java.net/projects/code-tools/jmh/etc
https://github.com/google/benchmark/blob/c078337494086f9372a46b4ed31a3ae7b3f1a6a2/include/benchmark/benchmark.h#L307
https://gitlab.com/chriscox/CppPerformanceBenchmarks/-/wikis/ClockTimeAnalysis
https://gitlab.com/chriscox/CppPerformanceBenchmarks/-/wikis/ClockTimeAnalysis
https://github.com/google/benchmark
https://github.com/dotnet/BenchmarkDotNet
https://github.com/JuliaCI/BenchmarkTools.jl
http://openjdk.java.net/projects/code-tools/jmh/etc

2.7 Chapter Summary

If written well, microbenchmarks can be a good source of performance data. They are often
used for comparing the performance of different implementations of a critical function. What
defines a good benchmark is whether it tests performance in realistic conditions in which
functionality will be used. If a benchmark uses synthetic input that is different from what
will be given in practice, then the benchmark will likely mislead you and will drive you to
the wrong conclusions. Besides that, when a benchmark runs on a system free from other
demanding processes, it has all resources available to it, including DRAM and cache space.
Such a benchmark will likely champion the faster version of the function even if it consumes
more memory than the other version. However, the outcome can be the opposite if there are
neighbor processes that consume a significant part of DRAM, which causes memory regions
that belong to the benchmark process to be swapped to the disk.

For the same reason, be careful when concluding results obtained from unit-testing a function.
Modern unit-testing frameworks52 provide the duration of each test. However, this information
cannot substitute a carefully written benchmark that tests the function in practical conditions
using realistic input (see more in [Fog, 2004, chapter 16.2]). It is not always possible to replicate
the exact input and environment as it will be in practice, but it is something developers should
take into account when writing a good benchmark.

2.7 Chapter Summary

• Debugging performance issues is usually harder than debugging functional bugs due to
measurement instability.

• You can never stop optimizing unless you set a particular goal. To know if you reached
the desired goal, you need to come up with meaningful definitions and metrics for how
you will measure that. Depending on what you care about, it could be throughput,
latency, operations per second (roofline performance), etc.

• Modern systems have non-deterministic performance. Eliminating non-determinism in a
system is helpful for well-defined, stable performance tests, e.g., microbenchmarks. Mea-
suring performance in production deployment requires dealing with a noisy environment
by using statistical methods for analyzing results.

• More and more often, vendors of large distributed SW choose to profile and monitor
performance directly on production systems, which requires using only light-weight
profiling techniques.

• It is very beneficial to employ an automated performance tracking system for preventing
performance regressions from leaking into production software. Such CI systems are
supposed to run automated performance tests, visualize results, and flag potential defects.

• Visualizing performance distributions may help to discover performance anomalies. It is
also a safe way of presenting performance results to a wide audience.

• Statistical relationship between performance distributions is identified using Hypothesis
Testing methods, e.g., Student’s T-test. Once it’s determined that the difference is
statistically significant, then the speedup can be calculated as a ratio between the means
or geometric means.

• It’s OK to discard cold runs in order to ensure that everything is running hot, but do
not deliberately discard unwanted data. If you choose to discard some samples, do it
uniformly for all distributions.

• To benchmark execution time, engineers can use two different timers, which all the modern
platforms provide. The system-wide high-resolution timer is suitable for measuring
events whose duration is more than a microsecond. For measuring short events with

52 For instance, GoogleTest (https://github.com/google/googletest).

28

https://github.com/google/googletest

2.7 Chapter Summary

high accuracy, use Time Stamp Counter.
• Microbenchmarks are good for proving something quickly, but you should always ver-

ify your ideas on a real application in practical conditions. Make sure that you are
benchmarking the meaningful code by checking performance profiles.

29

3 CPU Microarchitecture

This chapter provides a brief summary of the critical CPU architecture and microarchitecture
features that impact performance. The goal of this chapter is not to cover the details and
trade-offs of CPU architectures, covered extensively in the literature [Hennessy and Patterson,
2011]. We will provide a quick recap of the CPU hardware features that have a direct impact
on software performance.

3.1 Instruction Set Architecture

The instruction set is the vocabulary used by software to communicate with the hardware. The
instruction set architecture (ISA) defines the contract between the software and the hardware.
Intel x86, ARM v8, RISC-V are examples of current-day ISA that are most widely deployed.
All of these are 64-bit architectures, i.e., all address computation uses 64-bit. ISA developers
typically ensure that software or firmware that conforms to the specification will execute on
any processor built using the specification. Widely deployed ISA franchises also typically
ensure backward compatibility such that code written for the GenX version of a processor will
continue to execute on GenX+i.

Most modern architectures can be classified as general purpose register-based, load-store
architectures where the operands are explicitly specified, and memory is accessed only using
load and store instructions. In addition to providing the basic functions in the ISA such as
load, store, control, scalar arithmetic operations using integers and floating-point, the widely
deployed architectures continue to enhance their ISA to support new computing paradigms.
These include enhanced vector processing instructions (e.g., Intel AVX2, AVX512, ARM
SVE) and matrix/tensor instructions (Intel AMX). Software mapped to use these advanced
instructions typically provide orders of magnitude improvement in performance.

With the fast-evolving field of deep learning, the industry has a renewed interest in alternate
numeric formats for variables to drive significant performance improvements. Research has
shown that deep learning models perform just as good, using fewer bits to represent the
variables, saving on both compute and memory bandwidth. As a result, several CPU franchises
have recently added support for lower precision data types such as 8bit integers (int8, e.g.,
Intel VNNI), 16b floating-point (fp16, bf16) in the ISA, in addition to the traditional 32-bit
and 64-bit formats.

3.2 Pipelining

Pipelining is the foundational technique used to make CPUs fast wherein multiple instructions
are overlapped during their execution. Pipelining in CPUs drew inspiration from the automotive
assembly lines. The processing of instructions is divided into stages. The stages operate in
parallel, working on different parts of different instructions. DLX is an example of a simple
5-stage pipeline defined by [Hennessy and Patterson, 2011] and consists of:

1. Instruction fetch (IF)
2. Instruction decode (ID)
3. Execute (EXE)
4. Memory access (MEM)
5. Write back (WB)

Figure 7 shows an ideal pipeline view of the 5-stage pipeline CPU. In cycle 1, instruction x

30

3.2 Pipelining

Figure 7: Simple 5-stage pipeline diagram.

enters the IF stage of the pipeline. In the next cycle, as instruction x moves to the ID stage,
the next instruction in the program enters the IF stage, and so on. Once the pipeline is full,
as in cycle 5 above, all pipeline stages of the CPU are busy working on different instructions.
Without pipelining, instruction x+1 couldn’t start its execution until instruction 1 finishes its
work.

Most modern CPUs are deeply pipelined, aka super pipelined. The throughput of a pipelined
CPU is defined as the number of instructions that complete and exit the pipeline per unit
of time. The latency for any given instruction is the total time through all the stages of the
pipeline. Since all the stages of the pipeline are linked together, each stage must be ready
to move to the instruction in lockstep. The time required to move an instruction from one
stage to the other defines the basic machine cycle or clock for the CPU. The value chosen for
the clock for a given pipeline is defined by the slowest stage of the pipeline. CPU hardware
designers strive to balance the amount of work that can be done in a stage as this directly
defines the frequency of operation of the CPU. Increasing the frequency improves performance
and typically involves balancing and re-pipelining to eliminate bottlenecks caused by the
slowest pipeline stages.

In an ideal pipeline that is perfectly balanced and doesn’t incur any stalls, the time per
instruction in the pipelined machine is given by

Time per instruction on pipelined machine = Time per instruction on nonpipelined machine
Number of pipe stages

In real implementations, pipelining introduces several constraints that limit the ideal model
shown above. Pipeline hazards prevent the ideal pipeline behavior resulting in stalls. The
three classes of hazards are structural hazards, data hazards, and control hazards. Luckily for
the programmer, in modern CPUs, all classes of hazards are handled by the hardware.

• Structural hazards are caused by resource conflicts. To a large extent, they could be
eliminated by replicating the hardware resources, such as using multi-ported registers
or memories. However, eliminating all such hazards could potentially become quite
expensive in terms of silicon area and power.

• Data hazards are caused by data dependencies in the program and are classified into
three types:

Read-after-write (RAW) hazard requires dependent read to execute after write. It occurs
when an instruction x+1 reads a source before a previous instruction x writes to the
source, resulting in the wrong value being read. CPUs implement data forwarding from a
later stage of the pipeline to an earlier stage (called “bypassing”) to mitigate the penalty

31

3.3 Exploiting Instruction Level Parallelism (ILP)

associated with the RAW hazard. The idea is that results from instruction x can be
forwarded to instruction x+1 before instruction x is fully completed. If we take a look
at the example:

R1 = R0 ADD 1
R2 = R1 ADD 2

There is a RAW dependency for register R1. If we take the value directly after addition
R0 ADD 1 is done (from the EXE pipeline stage), we don’t need to wait until the WB stage
finishes, and the value will be written to the register file. Bypassing helps to save a few
cycles. The longer the pipeline, the more effective bypassing becomes.

Write-after-read (WAR) hazard requires dependent write to execute after read. It occurs
when an instruction x+1 writes a source before a previous instruction x reads the source,
resulting in the wrong new value being read. WAR hazard is not a true dependency and
is eliminated by a technique called register renaming53. It is a technique that abstracts
logical registers from physical registers. CPUs support register renaming by keeping a
large number of physical registers. Logical (architectural) registers, the ones that are
defined by the ISA, are just aliases over a wider register file. With such decoupling of
architectural state54, solving WAR hazards is simple; we just need to use a different
physical register for the write operation. For example:

R1 = R0 ADD 1
R0 = R2 ADD 2

There is a WAR dependency for register R0. Since we have a large pool of physical
registers, we can simply rename all the occurrences of R0 register starting from the write
operation and below. Once we eliminated WAR hazard by renaming register R0, we can
safely execute the two operations in any order.

Write-after-write (WAW) hazard requires dependent write to execute after write. It
occurs when instruction x+1 writes a source before instruction x writes to the source,
resulting in the wrong order of writes. WAW hazards are also eliminated by register
renaming, allowing both writes to execute in any order while preserving the correct final
result.

• Control hazards are caused due to changes in the program flow. They arise from
pipelining branches and other instructions that change the program flow. The branch
condition that determines the direction of the branch (taken vs. not-taken) is resolved
in the execute pipeline stage. As a result, the fetch of the next instruction cannot be
pipelined unless the control hazard is eliminated. Techniques such as dynamic branch
prediction and speculative execution described in the next section are used to overcome
control hazards.

3.3 Exploiting Instruction Level Parallelism (ILP)

Most instructions in a program lend themselves to be pipelined and executed in parallel, as
they are independent. Modern CPUs implement a large menu of additional hardware features
to exploit such instruction-level parallelism (ILP). Working in concert with advanced compiler
techniques, these hardware features provide significant performance improvements.

53 Register renaming - https://en.wikipedia.org/wiki/Register_renaming.
54 Architectural state - https://en.wikipedia.org/wiki/Architectural_state.

32

https://en.wikipedia.org/wiki/Register_renaming
https://en.wikipedia.org/wiki/Architectural_state
https://en.wikipedia.org/wiki/Register_renaming
https://en.wikipedia.org/wiki/Architectural_state

3.3 Exploiting Instruction Level Parallelism (ILP)

3.3.1 OOO Execution

The pipeline example in Figure 7 shows all instructions moving through the different stages of
the pipeline in-order, i.e., in the same order as they appear in the program. Most modern CPUs
support out-of-order (OOO) execution, i.e., sequential instructions can enter the execution
pipeline stage in any arbitrary order only limited by their dependencies. OOO execution CPUs
must still give the same result as if all instructions were executed in the program order. An
instruction is called retired when it is finally executed, and its results are correct and visible
in the architectural state. To ensure correctness, CPUs must retire all instructions in the
program order. OOO is primarily used to avoid underutilization of CPU resources due to
stalls caused by dependencies, especially in superscalar engines described in the next section.

Dynamic scheduling of these instructions is enabled by sophisticated hardware structures
such as scoreboards and techniques such as register renaming to reduce data hazards. The
scoreboard is used to schedule the in-order retirement and all machine state updates. It keeps
track of data dependencies of every instruction and where in the pipe the data is available.
Most implementations strive to balance the hardware cost with the potential return. Typically,
the size of the scoreboard determines how far ahead the hardware can look for scheduling such
independent instructions.

Figure 8: The concept of Out-Of-Order execution.

Figure 8 details the concept underlying out-of-order execution with an example. Assume
instruction x+1 cannot execute in cycles 4 and 5 due to some conflict. An in-order CPU
would stall all subsequent instructions from entering the EXE pipeline stage. In an OOO
CPU, subsequent instructions that do not have any conflicts (e.g., instruction x+2) can enter
and complete its execution. All instructions still retire in order, i.e., the instructions complete
the WB stage in the program order.

3.3.2 Superscalar Engines and VLIW

Most modern CPUs are superscalar i.e., they can issue more than one instruction in a given
cycle. Issue-width is the maximum number of instructions that can be issued during the
same cycle. Typical issue-width of current generation CPUs ranges from 2-6. To ensure the
right balance, such superscalar engines also support more than one execution unit and/or
pipelined execution units. CPUs also combine superscalar capability with deep pipelines and
out-of-order execution to extract the maximum ILP for a given piece of software.

Figure 9 shows an example CPU that supports 2-wide issue width, i.e., in each cycle, two
instructions are processed in each stage of the pipeline. Superscalar CPUs typically support
multiple, independent execution units to keep the instructions in the pipeline flowing through
without conflicts. Replicated execution units increase the throughput of the machine in contrast
with simple pipelined processors shown in figure 7.

33

https://en.wikipedia.org/wiki/Architectural_state

3.3 Exploiting Instruction Level Parallelism (ILP)

Figure 9: The pipeline diagram for a simple 2-way superscalar CPU.

Architectures such as the Intel Itanium moved the burden of scheduling a superscalar, multi-
execution unit machine from the hardware to the compiler using a technique known as VLIW
- Very Long Instruction Word. The rationale is to simplify the hardware by requiring the
compiler to choose the right mix of instructions to keep the machine fully utilized. Compilers
can use techniques such as software pipelining, loop unrolling, etc. to look further ahead than
can be reasonably supported by hardware structures to find the right ILP.

3.3.3 Speculative Execution

As noted in the previous section, control hazards can cause significant performance loss in a
pipeline if instructions are stalled until the branch condition is resolved. One technique to
avoid this performance loss is hardware branch prediction logic to predict the likely direction
of branches and allow executing instructions from the predicted path (speculative execution).

Let’s consider a short code example in Listing 3. For a processor to understand which function
it should execute next, it should know whether the condition a < b is false or true. Without
knowing that, the CPU waits until the result of the branch instruction will be determined, as
shown in figure 10a.

Listing 3 Speculative execution

if (a < b)
foo();

else
bar();

With speculative execution, the CPU takes a guess on an outcome of the branch and initiates
processing instructions from the chosen path. Suppose a processor predicted that condition
a < b will be evaluated as true. It proceeded without waiting for the branch outcome and
speculatively called function foo (see figure 10b, speculative work is marked with *). State
changes to the machine cannot be committed until the condition is resolved to ensure that the
architecture state of the machine is never impacted by speculatively executing instructions. In
the example above, the branch instruction compares two scalar values, which is fast. But in
reality, a branch instruction can be dependent on a value loaded from memory, which can take
hundreds of cycles. If the prediction turns out to be correct, it saves a lot of cycles. However,
sometimes the prediction is incorrect, and the function bar should be called instead. In such a
case, the results from the speculative execution must be squashed and thrown away. This is
called the branch misprediction penalty, which we discuss in section 4.8.

34

3.4 Exploiting Thread Level Parallelism

(a) No speculation

(b) Speculative execution

Figure 10: The concept of speculative execution.

To track the progress of speculation, the CPU supports a structure called the reorder buffer
(ROB). The ROB maintains the status of all instruction execution and retires instructions
in-order. Results from speculative execution are written to the ROB and are committed to
the architecture registers, in the same order as the program flow and only if the speculation is
correct. CPUs can also combine speculative execution with out-of-order execution and use the
ROB to track both speculation and out-of-order execution.

3.4 Exploiting Thread Level Parallelism

Techniques described previously rely on the available parallelism in a program to speed up
execution. In addition, CPUs support techniques to exploit parallelism across processes and/or
threads executing on the CPU. A hardware multi-threaded CPU supports dedicated hardware
resources to track the state (aka context) of each thread independently in the CPU instead
of tracking the state for only a single executing thread or process. The main motivation for
such a multi-threaded CPU is to switch from one context to another with the smallest latency
(without incurring the cost of saving and restoring thread context) when a thread is blocked
due to a long latency activity such as memory references.

3.4.1 Simultaneous Multithreading

Modern CPUs combine ILP techniques and multi-threading by supporting simultaneous multi-
threading to eke out the most efficiency from the available hardware resources. Instructions
from multiple threads execute concurrently in the same cycle. Dispatching instructions
simultaneously from multiple threads increases the probability of utilizing the available
superscalar resources, improving the overall performance of the CPU. In order to support
SMT, the CPU must replicate hardware to store the thread state (program counter, registers).
Resources to track OOO and speculative execution can either be replicated or partitioned
across threads. Typically cache resources are dynamically shared amongst the hardware
threads.

35

3.5 Memory Hierarchy

3.5 Memory Hierarchy

In order to effectively utilize all the hardware resources provisioned in the CPU, the machine
needs to be fed with the right data at the right time. Understanding the memory hierarchy
is critically important to deliver on the performance capabilities of a CPU. Most programs
exhibit the property of locality; they don’t access all code or data uniformly. A CPU memory
hierarchy is built on two fundamental properties:

• Temporal locality: when a given memory location was accessed, it is likely that the
same location is accessed again in the near future. Ideally, we want this information to
be in the cache next time we need it.

• Spatial locality: when a given memory location was accessed, it is likely that nearby
locations are accessed in the near future. This refers to placing related data close to each
other. When the program reads a single byte from memory, typically, a larger chunk of
memory (cache line) is fetched because very often, the program will require that data
soon.

This section provides a summary of the key attributes of memory hierarchy systems supported
on modern CPUs.

3.5.1 Cache Hierarchy

A cache is the first level of the memory hierarchy for any request (for code or data) issued
from the CPU pipeline. Ideally, the pipeline performs best with an infinite cache with the
smallest access latency. In reality, the access time for any cache increases as a function of the
size. Therefore, the cache is organized as a hierarchy of small, fast storage blocks closest to the
execution units, backed up by larger, slower blocks. A particular level of the cache hierarchy
can be used exclusively for code (instruction cache, i-cache) or for data (data cache, d-cache),
or shared between code and data (unified cache). Furthermore, some levels of the hierarchy
can be private to a particular CPU, while other levels can be shared among CPUs.

Caches are organized as blocks with a defined block size (cache line). The typical cache line
size in modern CPUs is 64 bytes. Caches closest to the execution pipeline typically range
in size from 8KiB to 32KiB. Caches further out in the hierarchy can be 64KiB to 16MiB
in modern CPUs. The architecture for any level of a cache is defined by the following four
attributes.

3.5.1.1 Placement of data within the cache. The address for a request is used to
access the cache. In direct-mapped caches, a given block address can appear only in one
location in the cache and is defined by a mapping function shown below.

Number of Blocks in the Cache = Cache Size
Cache Block Size

Direct mapped location = (block address) mod (Number of Blocks in the Cache)

In a fully associative cache, a given block can be placed in any location in the cache.

An intermediate option between the direct mapping and fully associative mapping is a set-
associative mapping. In such a cache, the blocks are organized as sets, typically each set
containing 2,4 or 8 blocks. A given address is first mapped to a set. Within a set, the address
can be placed anywhere, among the blocks in that set. A cache with m blocks per set is

36

3.5 Memory Hierarchy

described as an m-way set-associative cache. The formulas for a set-associative cache are:

Number of Sets in the Cache = Number of Blocks in the Cache
Number of Blocks per Set (associativity)

Set (m-way) associative location = (block address) mod (Number of Sets in the Cache)

3.5.1.2 Finding data in the cache. Every block in the m-way set-associative cache has
an address tag associated with it. In addition, the tag also contains state bits such as valid
bits to indicate whether the data is valid. Tags can also contain additional bits to indicate
access information, sharing information, etc. that will be described in later sections.

Figure 11: Address organization for cache lookup.

The figure 11 shows how the address generated from the pipeline is used to check the caches.
The lowest order address bits define the offset within a given block; the block offset bits (5
bits for 32-byte cache lines, 6 bits for 64-byte cache lines). The set is selected using the index
bits based on the formulas described above. Once the set is selected, the tag bits are used to
compare against all the tags in that set. If one of the tags matches the tag of the incoming
request and the valid bit is set, a cache hit results. The data associated with that block
entry (read out of the data array of the cache in parallel to the tag lookup) is provided to the
execution pipeline. A cache miss occurs in cases where the tag is not a match.

3.5.1.3 Managing misses. When a cache miss occurs, the controller must select a block
in the cache to be replaced to allocate the address that incurred the miss. For a direct-mapped
cache, since the new address can be allocated only in a single location, the previous entry
mapping to that location is deallocated, and the new entry is installed in its place. In a
set-associative cache, since the new cache block can be placed in any of the blocks of the set, a
replacement algorithm is required. The typical replacement algorithm used is the LRU (least
recently used) policy, where the block that was least recently accessed is evicted to make
room for the miss address. Another alternative is to randomly select one of the blocks as the
victim block. Most CPUs define these capabilities in hardware, making it easier for executing
software.

3.5.1.4 Managing writes. Read accesses to caches are the most common case as programs
typically read instructions, and data reads are larger than data writes. Handling writes in
caches is harder, and CPU implementations use various techniques to handle this complexity.
Software developers should pay special attention to the various write caching flows supported
by the hardware to ensure the best performance of their code.

CPU designs use two basic mechanisms to handle writes that hit in the cache:

• In a write-through cache, hit data is written to both the block in the cache and to the
next lower level of the hierarchy.

• In a write-back cache, hit data is only written to the cache. Subsequently, lower levels
of the hierarchy contain stale data. The state of the modified line is tracked through a
dirty bit in the tag. When a modified cache line is eventually evicted from the cache, a
write-back operation forces the data to be written back to the next lower level.

37

3.5 Memory Hierarchy

Cache misses on write operations can be handled using two different options:

• In a write-allocate or fetch on write miss cache, the data for the missed location is
loaded into the cache from the lower level of the hierarchy, and the write operation is
subsequently handled like a write hit.

• If the cache uses a no-write-allocate policy, the cache miss transaction is sent directly to
the lower levels of the hierarchy, and the block is not loaded into the cache.

Out of these options, most designs typically choose to implement a write-back cache with a
write-allocate policy as both of these techniques try to convert subsequent write transactions
into cache-hits, without additional traffic to the lower levels of the hierarchy. Write through
caches typically use the no-write-allocate policy.

3.5.1.5 Other cache optimization techniques. For a programmer, understanding the
behavior of the cache hierarchy is critical to extract performance from any application. This is
especially true when CPU clock frequencies increase while the memory technology speeds lag
behind. From the perspective of the pipeline, the latency to access any request is given by the
following formula that can be applied recursively to all the levels of the cache hierarchy up to
the main memory:

Average Access Latency = Hit Time + Miss Rate × Miss Penalty

Hardware designers take on the challenge of reducing the hit time and miss penalty through
many novel micro-architecture techniques. Fundamentally, cache misses stall the pipeline and
hurt performance. The miss rate for any cache is highly dependent on the cache architecture
(block size, associativity) and the software running on the machine. As a result, optimizing the
miss rate becomes a hardware-software co-design effort. As described in the previous sections,
CPUs provide optimal hardware organization for the caches. Additional techniques that can
be implemented both in hardware and software to minimize cache miss rates are described
below.

3.5.1.5.1 HW and SW Prefetching. One method to reduce a cache miss and the
subsequent stall is to prefetch instructions as well as data into different levels of the cache
hierarchy prior to when the pipeline demands. The assumption is the time to handle the miss
penalty can be mostly hidden if the prefetch request is issued sufficiently ahead in the pipeline.
Most CPUs support hardware-based prefetchers that programmers can control.

Hardware prefetchers observe the behavior of a running application and initiate prefetching
on repetitive patterns of cache misses. Hardware prefetching can automatically adapt to the
dynamic behavior of the application, such as varying data sets, and does not require support
from an optimizing compiler or profiling support. Also, the hardware prefetching works without
the overhead of additional address-generation and prefetch instructions. However, hardware
prefetching is limited to learning and prefetching for a limited set of cache-miss patterns that
are implemented in hardware.

Software memory prefetching complements the one done by the HW. Developers can specify
which memory locations are needed ahead of time via dedicated HW instruction (see sec-
tion 8.1.2). Compilers can also automatically add prefetch instructions into the code to request
data before it is required. Prefetch techniques need to balance between demand and prefetch
requests to guard against prefetch traffic slowing down demand traffic.

38

3.6 Virtual Memory

3.5.2 Main Memory

Main memory is the next level of the hierarchy, downstream from the caches. Main memory
uses DRAM (dynamic RAM) technology that supports large capacities at reasonable cost
points. The main memory is described by three main attributes - latency, bandwidth, and
capacity. Latency is typically specified by two components. Memory access time is the time
elapsed between the request to when the data word is available. Memory cycle time defines
the minimum time required between two consecutive accesses to the memory.

DDR (double data rate) DRAM technology is the predominant DRAM technology supported
by most CPUs. Historically, DRAM bandwidths have improved every generation while the
DRAM latencies have stayed the same or even increased. The table 2 shows the top data rate
and the corresponding latency for the last three generations of DDR technologies. The data
rate is measured as a million transfers per sec (MT/s).

Table 2: The top data rate and the corresponding latency for the last three generations of
DDR technologies.

DDR
Generation

Highest Data
Rate (MT/s)

Typical Read
Latency (ns)

DDR3 2133 10.3
DDR4 3200 12.5
DDR5 6400 14

New DRAM technologies such as GDDR (Graphics DDR) and HBM (High Bandwidth Memory)
are used by custom processors that require higher bandwidth, not supported by DDR interfaces.

Modern CPUs support multiple, independent channels of DDR DRAM memory. Typically,
each channel of memory is either 32-bit or 64-bit wide.

3.6 Virtual Memory

Virtual memory is the mechanism to share the physical memory attached to a CPU with
all the processes executing on the CPU. Virtual memory provides a protection mechanism,
restricting access to the memory allocated to a given process from other processes. Virtual
memory also provides relocation, the ability to load a program anywhere in physical memory
without changing the addressing in the program.

In a CPU that supports virtual memory, programs use virtual addresses for their accesses.
These virtual addresses are translated to a physical address by dedicated hardware tables that
provide a mapping between virtual addresses and physical addresses. These tables are referred
to as page tables. The address translation mechanism is shown below. The virtual address is
split into two parts. The virtual page number is used to index into the page table (the page
table can either be a single level or nested) to produce a mapping between the virtual page
number and the corresponding physical page. The page offset from the virtual address is then
used to access the physical memory location at the same offset in the mapped physical page.
A page fault results if a requested page is not in the main memory. The operating system
is responsible for providing hints to the hardware to handle page faults such that one of the
least recently used pages can be swapped out to make space for the new page.

CPUs typically use a hierarchical page table format to map virtual address bits efficiently to
the available physical memory. A page miss in such a system would be expensive, requiring

39

3.7 SIMD Multiprocessors

Figure 12: Address organization for cache lookup.

traversing through the hierarchy. To reduce the address translation time, CPUs support a
hardware structure called translation lookaside buffer (TLB) to cache the most recently used
translations.

3.7 SIMD Multiprocessors

Another variant of multiprocessing that is widely used for certain workloads is referred to as
SIMD (Single Instruction, Multiple Data) multiprocessors, in contrast to the MIMD approach
described in the previous section. As the name indicates, in SIMD processors, a single
instruction typically operates on many data elements in a single cycle using many independent
functional units. Scientific computations on vectors and matrices lend themselves well to
SIMD architectures as every element of a vector or matrix needs to be processed using the
same instruction. SIMD multiprocessors are used primarily for such special purpose tasks that
are data-parallel and require only a limited set of functions and operations.

Figure 13 shows scalar and SIMD execution modes for the code listed in Listing 4. In a
traditional SISD (Single Instruction, Single Data) mode, addition operation is separately
applied to each element of array a and b. However, in SIMD mode, addition is applied to
multiple elements at the same time. SIMD CPUs support execution units that are capable
of performing different operations on vector elements. The data elements themselves can be
either integers or floating-point numbers. SIMD architecture allows more efficient processing
of a large amount of data and works best for data-parallel applications that involve vector
operations.

Listing 4 SIMD execution

double *a, *b, *c;
for (int i = 0; i < N; ++i) {

c[i] = a[i] + b[i];
}

Most of the popular CPU architectures feature vector instructions, including x86, PowerPC,
ARM, and RISC-V. In 1996 Intel released a new instruction set, MMX, which was a SIMD
instruction set that was designed for multimedia applications. Following MMX, Intel introduced
new instruction sets with added capabilities and increased vector size: SSE, AVX, AVX2,

40

3.8 Modern CPU design

Figure 13: Example of scalar and SIMD operations.

AVX512. As soon as the new instruction sets became available, work began to make them
usable to software engineers. At first, the new SIMD instructions were programmed in assembly.
Later, special compiler intrinsics were introduced. Today all of the major compilers support
vectorization for the popular processors.

3.8 Modern CPU design

The block diagram in figure 14 shows the details of Intel’s 6th generation core, Skylake, that
was announced in 2015 and is widely spread all over the world. The Skylake core is split
into an in-order front-end that fetches and decodes x86 instructions into u-ops and an 8-way
superscalar, out-of-order backend.

The core supports 2-way SMT. It has a 32KB, 8-way first-level instruction cache (L1 I-cache),
and a 32KB, 8-way first-level data cache (L1 D-cache). The L1 caches are backed up by a
unified 1MB second-level cache, the L2 cache. The L1 and L2 caches are private to each core.

3.8.1 CPU Front-End

The CPU Front-End consists of a number of data structures that serve the main goal to
efficiently fetch and decode instructions from memory. Its main purpose is to feed prepared
instructions to the CPU Back-End, which is responsible for the actual execution of instructions.

The CPU Front-End fetches 16 bytes per cycle of x86 instructions from the L1 I-cache. This
is shared among the two threads, so each thread gets 16 bytes every other cycle. These are
complex, variable-length x86 instructions. The pre-decode and decode stages of the pipeline
convert these complex x86 instructions into micro Ops (UOPs, see section 4.4) that are queued
into the Allocation Queue (IDQ).

First, the pre-decode determines and marks the boundaries of the variable instructions by
inspecting the instruction. In x86, the instruction length can range from 1-byte to 15-bytes
instructions. This stage also identifies branch instructions. The pre-decode stage moves up to
6 instructions (also referred to as Macro Instructions) to the instruction queue that is split
between the two threads. The instruction queue also supports a macro-op fusion unit that

41

3.8 Modern CPU design

Figure 14: Block diagram of a CPU Core in the Intel Skylake Microarchitecture. © Image
from [Int, 2020].

detects that two macroinstructions can be fused into a single instruction (see section 4.4).
This optimization saves bandwidth in the rest of the pipeline.

Up to five pre-decoded instructions are sent from the instruction queue to the decoder every
cycle. The two threads share this interface and get access to every other cycle. The 5-way
decoder converts the complex macro-Ops into fixed-length UOPs.

A major performance-boosting feature of the front-end is the Decoded Stream Buffer (DSB) or
the UOP Cache. The motivation is to cache the macro-ops to UOPs conversion in a separate
structure (DSB) that works in parallel with the L1 I-cache. During instruction fetch, the DSB
is also checked to see if the UOPs translations are already available in the DSB. Frequently
occurring macro-ops will hit in the DSB, and the pipeline will avoid repeating the expensive
pre-decode and decode operations for the 16 bytes bundle. The DSB provides six UOPs that
match the capacity of the front-end to back-end interface and helps to maintain the balance
across the entire core. The DSB works in concert with the BPU, the branch prediction unit.
The BPU predicts the direction of all branch instructions and steers the next instruction fetch
based on this prediction.

Some very complicated instructions may require more UOPs than decoders can handle.
UOPs for such instruction are served from Microcode Sequencer (MSROM). Examples of such
instructions include HW operation support for string manipulation, encryption, synchronization,
and others. Also, MSROM keeps the microcode operations to handle exceptional situations
like branch misprediction (which requires pipeline flush), floating-point assist (e.g., when an
instruction operates with denormal floating-point value), and others.

The Instruction Decode Queue (IDQ) provides the interface between the in-order front-end

42

3.9 Performance Monitoring Unit

and the out-of-order backend. IDQ queues up the UOPs in order. The IDQ has a total of 128
UOPs, 64 UOPs per hardware thread.

3.8.2 CPU Back-End

The CPU Back-End employs an Out-Of-Order engine that executes instructions and stores
results.

The heart of the CPU backend is the 224 entry ReOrder buffer (ROB). This unit handles data
dependencies. The ROB maps the architecture-visible registers to the physical registers used
in the scheduler/reservation station unit. ROB also provides register renaming and tracks
speculative execution. ROB entries are always retired in program order.

The Reservation Station/Scheduler (RS) is the structure that tracks the availability of all
resources for a given UOP and dispatches the UOP to the assigned port once it is ready. The
core is 8-way superscalar. Thus the RS can dispatch up to 8 UOPs per cycle. As shown in
figure 14, each dispatch port supports different operations:

• Ports 0, 1, 5, and 6 provide all the integer, FP, and vector ALU. UOPs dispatched to
those ports do not require memory operations.

• Ports 2 and 3 are used for address generation and for load operations.
• Port 4 is used for store operations.
• Port 7 is used for address generation.

3.9 Performance Monitoring Unit

Every modern CPU provides means to monitor performance, which are combined into the
Performance Monitoring Unit (PMU). It incorporates features that help developers in analyzing
the performance of their applications. An example of a PMU in a modern Intel CPU is provided
in figure 15. Most modern PMUs have a set of Performance Monitoring Counters (PMC)
that can be used to collect various performance events that happen during the execution of a
program. Later in section 5.3, we will discuss how PMCs can be used in performance analysis.
Also, there could be other features that enhance performance analysis, like LBR, PEBS, and
PT, for which entire chapter 6 is devoted.

Figure 15: Performance Monitoring Unit of a modern Intel CPU.

As CPU design evolves with every new generation, so do their PMUs. It is possible to determine
the version of the PMU in your CPU using the cpuid command, as shown on Listing 5.55

Characteristics of each Intel PMU version, as well as changes to the previous version, can be
found in [Int, 2020, Volume 3B, Chapter 18].

55 The same information can be extracted from the kernel message buffer by using the dmesg command.

43

3.9 Performance Monitoring Unit

Listing 5 Querying your PMU

$ cpuid
...
Architecture Performance Monitoring Features (0xa/eax):

version ID = 0x4 (4)
number of counters per logical processor = 0x4 (4)
bit width of counter = 0x30 (48)

...
Architecture Performance Monitoring Features (0xa/edx):

number of fixed counters = 0x3 (3)
bit width of fixed counters = 0x30 (48)

...

3.9.1 Performance Monitoring Counters

If we imagine a simplified view of the processor, it may look something like what is shown in
Figure 16. As we discussed earlier in this chapter, a modern CPU has caches, branch predictor,
execution pipeline, and other units. When connected to multiple units, a PMC can collect
interesting statistics from them. For example, it can count how many clock cycles have passed,
how many instructions executed, how many cache misses or branch mispredictions happened
during that time, and other performance events.

Figure 16: Simplified view of a CPU with a performance monitoring counter.

Typically, PMCs are 48 bit wide, which allows analysis tools to run longer without interrupting
the program’s execution56. Performance counters are HW registers implemented as Model
Specific Registers (MSR). That means that the number of counters and their width can vary
from model to model, and you can not rely on the same number of counters in your CPU. You
should always query that first, using tools like cpuid, for example. PMCs are accessible via
the RDMSR and WRMSR instructions, which can only be executed from kernel space.

It is so common that engineers want to count the number of executed instructions and elapsed
cycles that the Intel PMU has dedicated PMCs for collecting such events. The Intel PMU
has fixed and programmable PMCs. Fixed counters always measure the same thing inside

56 When the value of PMCs overflows, the execution of a program must be interrupted. SW then should save
the fact of overflow.

44

3.9 Performance Monitoring Unit

the CPU core. With programmable counters, it’s up to the user to choose what they want to
measure. Often there are four fully programmable counters and three fixed-function counters
per logical core. Fixed counters usually are set to count core clocks, reference clocks, and
instructions retired (see section 4 for more details on these metrics).

It’s not unusual for PMU to have a large number of performance events. Figure 15 shows just
a small part of all the performance events available for monitoring on a modern Intel CPU.
It’s not hard to notice that the number of available PMCs is much smaller than the number of
performance events. It’s not possible to count all the events at the same time, but analysis
tools solve this problem by multiplexing between groups of performance events during the
execution of a program (see section 5.3.3).

The complete list of performance events for Intel CPUs can be found in [Int, 2020, Volume
3B, Chapter 19]. For ARM chips, it is not that strictly defined. Vendors implement cores
following an ARM architecture, but performance events vary widely, both in what they mean
and what events are supported.

45

4 Terminology and metrics in performance analysis

For a beginner, it can be a very hard time looking into a profile generated by an analysis
tool like Linux perf and Intel VTune Profiler. Those profiles have lots of complex terms and
metrics. This chapter is a gentle introduction to the basic terminology and metrics used in
performance analysis.

4.1 Retired vs. Executed Instruction

Modern processors typically execute more instructions than the program flow requires. This
happens because some of them are executed speculatively, as discussed in section 3.3.3.
For usual instructions, the CPU commits results once they are available, and all preceding
instructions are already retired. But for instructions executed speculatively, the CPU keeps
their results without immediately committing their results. When the speculation turns out to
be correct, the CPU unblocks such instructions and proceeds as normal. But when it comes
out that the speculation happens to be wrong, the CPU throws away all the changes done by
speculative instructions and does not retire them. So, an instruction processed by the CPU
can be executed but not necessarily retired. Taking this into account, we can usually expect
the number of executed instructions to be higher than the number of retired instructions.57

There is a fixed performance counter (PMC) that collects the number of retired instructions.
It can be easily obtained with Linux perf by running:

$ perf stat -e instructions ./a.exe
2173414 instructions # 0.80 insn per cycle

or just simply do:
$ perf stat ./a.exe

4.2 CPU Utilization

CPU utilization is the percentage of time the CPU was busy during some time period.
Technically, a CPU is considered utilized when it is not running the kernel idle thread.

CPU Utilization = CPU_CLK_UNHALTED.REF_TSC

TSC
,

where CPU_CLK_UNHALTED.REF_TSC PMC counts the number of reference cycles when the core
is not in a halt state, TSC stands for timestamp counter (discussed in section 2.5), which is
always ticking.

If CPU utilization is low, it usually means the poor performance of the application since some
portion of the time was wasted by the CPU. However, high CPU utilization is not always good
either. It is a sign that the system is doing some work but does not exactly say what it is
doing: the CPU might be highly utilized even though it is stalled waiting on memory accesses.
In a multithreaded context, a thread can also spin while waiting for resources to proceed, so
there is Effective CPU utilization that filters spinning time (see section 11.2).

57 Usually, a retired instruction has also gone through the execution stage, except those times when it does
not require an execution unit. An example of it can be “MOV elimination” and “zero idiom”. Read more
on easyperf blog: https://easyperf.net/blog/2018/04/22/What-optimizations-you-can-expect-from-CPU.
So, theoretically, there could be a case when the number of retired instructions is higher than the number of
executed instructions.

46

https://easyperf.net/blog/2018/04/22/What-optimizations-you-can-expect-from-CPU

4.3 CPI & IPC

Linux perf automatically calculates CPU utilization across all CPUs on the system:

$ perf stat -- a.exe
0.634874 task-clock (msec) # 0.773 CPUs utilized

4.3 CPI & IPC

Those are two very important metrics that stand for:

• Cycles Per Instruction (CPI) - how many cycles it took to retire one instruction on
average.

• Instructions Per Cycle (IPC) - how many instructions were retired per one cycle on
average.

IPC = INST_RETIRED.ANY

CPU_CLK_UNHALTED.THREAD

CPI = 1
IPC

,

where INST_RETIRED.ANY PMC counts the number of retired instructions, CPU_CLK_UNHALTED.THREAD
counts the number of core cycles while the thread is not in a halt state.

There are many types of analysis that can be done based on those metrics. It is useful for both
evaluating HW and SW efficiency. HW engineers use this metric to compare CPU generations
and CPUs from different vendors. SW engineers look at IPC and CPI when they optimize
their application. Universally, we want to have low CPI and high IPC. Linux perf users can
get to know IPC for their workload by running:

$ perf stat -e cycles,instructions -- a.exe
2369632 cycles
1725916 instructions # 0,73 insn per cycle

or just simply do:
$ perf stat ./a.exe

4.4 UOPs (micro-ops)

Microprocessors with the x86 architecture translate complex CISC-like58 instructions into
simple RISC-like59 microoperations - abbreviated µops or uops. The main advantage of
this is that µops can be executed out of order [Fog, 2012, chapter 2.1]. A simple addition
instruction such as ADD EAX,EBX generates only one µop, while more complex instruction
like ADD EAX,[MEM1] may generate two: one for reading from memory into a temporary
(un-named) register, and one for adding the contents of the temporary register to EAX. The
instruction ADD [MEM1],EAX may generate three µops: one for reading from memory, one for
adding, and one for writing the result back to memory. The relationship between instructions
and the way they are split into microoperations can vary across CPU generations60.

On the opposite of splitting complex CISC-like instructions into RISC-like microoperations
(Uops), the latter can also be fused. There are two types of fusion in modern Intel CPUs:

58 CISC - https://en.wikipedia.org/wiki/Complex_instruction_set_computer.
59 RISC - https://en.wikipedia.org/wiki/Reduced_instruction_set_computer.
60 However, for the latest Intel CPUs, the vast majority of instructions operating on registers generate exactly

one uop.

47

https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer

4.5 Pipeline Slot

• Microfusion61 - fuse uops from the same machine instruction. Microfusion can only
be applied to two types of combinations: memory write operations and read-modify
operations. For example:

Read the memory location [ESI] and add it to EAX
Two uops are fused into one at the decoding step.
add eax, [esi]

• Macrofusion62 - fuse uops from different machine instructions. The decoders can fuse
arithmetic or logic instruction with a subsequent conditional jump instruction into a
single compute-and-branch µop in certain cases. For example:

Two uops from DEC and JNZ instructions are fused into one
.loop:

dec rdi
jnz .loop

Both Micro- and Macrofusion save bandwidth in all stages of the pipeline from decoding
to retirement. The fused operations share a single entry in the reorder buffer (ROB). The
capacity of the ROB is increased when a fused uop uses only one entry. This single ROB entry
represents two operations that have to be done by two different execution units. The fused
ROB entry is dispatched to two different execution ports but is retired again as a single unit.
[Fog, 2012]

Linux perf users can collect the number of issued, executed, and retired uops for their workload
by running63:

$ perf stat -e uops_issued.any,uops_executed.thread,uops_retired.all -- a.exe
2856278 uops_issued.any
2720241 uops_executed.thread
2557884 uops_retired.all

Latency, throughput, port usage, and the number of uops for instructions on recent x86
microarchitectures can be found at uops.info website.

4.5 Pipeline Slot

A pipeline slot represents hardware resources needed to process one uop. Figure 17 demonstrates
the execution pipeline of a CPU that can handle four uops every cycle. Nearly all modern
x86 CPUs are made with a pipeline width of 4 (4-wide). During six consecutive cycles on the
diagram, only half of the available slots were utilized. From a microarchitecture perspective,
the efficiency of executing such code is only 50%.

Pipeline slot is one of the core metrics in Top-Down Microarchitecture Analysis (see section 6.1).
For example, Front-End Bound and Back-End Bound metrics are expressed as a percentage of
unutilized Pipeline Slots due to various reasons.

4.6 Core vs. Reference Cycles

Most CPUs employ a clock signal to pace their sequential operations. The clock signal is
produced by an external generator that provides a consistent number of pulses each second.

61 UOP Microfusion - https://easyperf.net/blog/2018/02/15/MicroFusion-in-Intel-CPUs.
62 UOP Macrofusion - https://easyperf.net/blog/2018/02/23/MacroFusion-in-Intel-CPUs.
63 UOPS_RETIRED.ALL event is not available since Skylake. Use UOPS_RETIRED.RETIRE_SLOTS.

48

https://easyperf.net/blog/2018/02/15/MicroFusion-in-Intel-CPUs
https://easyperf.net/blog/2018/02/23/MacroFusion-in-Intel-CPUs
https://uops.info/
https://easyperf.net/blog/2018/02/15/MicroFusion-in-Intel-CPUs
https://easyperf.net/blog/2018/02/23/MacroFusion-in-Intel-CPUs

4.6 Core vs. Reference Cycles

Figure 17: Pipeline diagram of a 4-wide CPU.

The frequency of the clock pulses determines the rate at which a CPU executes instructions.
Consequently, the faster the clock, the more instructions the CPU will execute each second.

Frequency = Clockticks

T ime

The majority of modern CPUs, including Intel and AMD CPUs, don’t have a fixed frequency
at which they operate. Instead, they implement dynamic frequency scaling64. In Intel’s CPUs
this technology is called Turbo Boost65, in AMD’s processors it’s called Turbo Core66. It allows
the CPU to increase and decrease its frequency dynamically – scaling the frequency reduces
power-consumption at the expense of performance, and scaling the frequency up improves
performance but sacrifices power savings.

The core clock cycles counter is counting clock cycles at the actual clock frequency that the
CPU core is running at, rather than the external clock (reference cycles). Let’s take a look at
an experiment on Skylake i7-6000 processor, which has a base frequency of 3.4 GHz:

$ perf stat -e cycles,ref-cycles ./a.exe
43340884632 cycles # 3.97 GHz
37028245322 ref-cycles # 3.39 GHz

10,899462364 seconds time elapsed

Metric ref-cycles counts cycles as if there were no frequency scaling. The external clock on
the setup has a frequency of 100 MHz, and if we scale it by clock multiplier, we will get the
base frequency of the processor. The clock multiplier for Skylake i7-6000 processor equals 34:
it means that for every external pulse, the CPU executes 34 internal cycles when it’s running
on the base frequency.

Metric "cycles" counts real CPU cycles, i.e., taking into account frequency scaling. We can
also calculate how well the dynamic frequency scaling feature was utilized as:

Turbo Utilization = Core Cycles

Reference Cycles
,

The core clock cycle counter is very useful when testing which version of a piece of code is
fastest because you can avoid the problem that the clock frequency goes up and down.[Fog,
2004]

64 Dynamic frequency scaling - https://en.wikipedia.org/wiki/Dynamic_frequency_scaling.
65 Intel Turbo Boost - https://en.wikipedia.org/wiki/Intel_Turbo_Boost.
66 AMD Turbo Core - https://en.wikipedia.org/wiki/AMD_Turbo_Core.

49

https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
https://en.wikipedia.org/wiki/Intel_Turbo_Boost
https://en.wikipedia.org/wiki/AMD_Turbo_Core
https://en.wikipedia.org/wiki/CPU_multiplier
https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
https://en.wikipedia.org/wiki/Intel_Turbo_Boost
https://en.wikipedia.org/wiki/AMD_Turbo_Core

4.7 Cache miss

4.7 Cache miss

As discussed in section 3.5, any memory request missing in a particular level of cache must be
serviced by higher-level caches or DRAM. This implies a significant increase in the latency of
such memory access. The typical latency of memory subsystem components is shown in table
3.67 Performance greatly suffers, especially when a memory request misses in Last Level Cache
(LLC) and goes all the way down to the main memory (DRAM). Intel® Memory Latency
Checker68 (MLC) is a tool used to measure memory latencies and bandwidth and how they
change with increasing load on the system. MLC is useful for establishing a baseline for the
system under test and for performance analysis.

Table 3: Typical latency of a memory subsystem.

Memory Hierarchy Component Latency (cycle/time)

L1 Cache 4 cycles (~1 ns)
L2 Cache 10-25 cycles (5-10 ns)
L3 Cache ~40 cycles (20 ns)
Main Memory 200+ cycles (100 ns)

A cache miss might happen both for instructions and data. According to Top-Down Microar-
chitecture Analysis (see section 6.1), an instruction (I-cache) cache miss is characterized as
a Front-End stall, while a data cache (D-cache) miss is characterized as a Back-End stall.
When an I-cache miss happens during instruction fetch, it is attributed as a Front-End issue.
Consequently, when the data requested by this load is not found in the D-cache, this will be
categorized as a Back-End issue.

Linux perf users can collect the number of L1-cache misses by running:

$ perf stat -e mem_load_retired.fb_hit,mem_load_retired.l1_miss,
mem_load_retired.l1_hit,mem_inst_retired.all_loads -- a.exe
29580 mem_load_retired.fb_hit
19036 mem_load_retired.l1_miss

497204 mem_load_retired.l1_hit
546230 mem_inst_retired.all_loads

Above is the breakdown of all loads for the L1 data cache. We can see that only 3.5% of all
loads miss in the L1 cache. We can further break down L1 data misses and analyze L2 cache
behavior by running:

$ perf stat -e mem_load_retired.l1_miss,
mem_load_retired.l2_hit,mem_load_retired.l2_miss -- a.exe
19521 mem_load_retired.l1_miss
12360 mem_load_retired.l2_hit
7188 mem_load_retired.l2_miss

From this example, we can see that 37% of loads that missed in the L1 D-cache also missed in
the L2 cache. In a similar way, a breakdown for the L3 cache can be made.

67 There is also an interactive view that visualizes the cost of different operations in modern systems:
https://colin-scott.github.io/personal_website/research/interactive_latency.html.

68 Memory Latency Checker - https://www.intel.com/software/mlc.

50

https://www.intel.com/software/mlc
https://www.intel.com/software/mlc
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://www.intel.com/software/mlc

4.8 Mispredicted branch

4.8 Mispredicted branch

Modern CPUs try to predict the outcome of a branch instruction (taken or not taken). For
example, when the processor sees code like this:

dec eax
jz .zero
eax is not 0
...
zero:
eax is 0

Instruction jz is a branch instruction, and in order to increase performance, modern CPU
architectures try to predict the result of such a branch. This is also called “Speculative
Execution”. The processor will speculate that, for example, the branch will not be taken and
will execute the code that corresponds to the situation when eax is not 0. However, if the
guess was wrong, this is called “branch misprediction”, and the CPU is required to undo all
the speculative work that it has done recently. This typically involves a penalty between 10
and 20 clock cycles.

Linux perf users can check the number of branch mispredictions by running:

$ perf stat -e branches,branch-misses -- a.exe
358209 branches
14026 branch-misses # 3,92% of all branches

or simply do:
$ perf stat -- a.exe

51

5 Performance Analysis Approaches

When doing high-level optimization, it is usually easy to tell whether the performance was
improved or not. When you write a better version of an algorithm, you expect to see a visible
difference in the running time of the program. But also, there are situations when you see
a change in execution time, but you have no clue where it’s coming from. Time alone does
not provide any insight into why that happens. In this case, we need more information about
how our program executes. That’s the situation when we need to do performance analysis to
understand the underlying nature of the slowdown or speedup that we observe.

Both HW and SW track performance data while our program is running. In this context, by
HW, we mean CPU, which executes the program, and by SW, we mean OS and all the tools
enabled for analysis. Typically, the SW stack provides high-level metrics like time, number
of context switches, and page-faults, while CPU is capable of observing cache-misses, branch
mispredictions, etc. Depending on the problem we are trying to solve, some metrics would
be more useful than others. So, it doesn’t mean that HW metrics will always give us a more
precise overview of the program execution. Some metrics, like the number of context-switches,
for instance, cannot be provided by CPU. Performance analysis tools, like Linux perf, can
consume data both from OS and CPU.

We will use Linux perf extensively throughout the book as it is one of the most popular
performance analysis tools. This tool is available on most Linux distributions, which makes it
accessible for a wide range of users. Another reason why the author prefers showcasing Linux
perf is that it is open-sourced, which allows us to see the mechanics of what is going on in a
typical profiling tool. This is especially useful for learning concepts presented in this book
because GUI-based tools, like Intel® VTune™ Profiler, tend to hide all the complexity. More
information about Linux perf is available on its wiki page69.

In this chapter, we will introduce some of the most popular performance analysis techniques:
Code Instrumentation, Tracing, Characterization, and Sampling. We also discuss static
performance analysis techniques and compiler optimization reports which do not involve
running the actual application.

5.1 Code Instrumentation

Probably the first approach for doing performance analysis ever invented is Code Instrumenta-
tion. It is a technique that inserts extra code into a program to collect runtime information.
Listing 6 shows the simplest example of inserting printf statements at the beginning of the
function to count the number of times this function was called. I think every programmer in
the world did it at some point at least once. This method provides very detailed information
when you need specific knowledge about the execution of the program. Code instrumentation
allows us to track any information about every variable in the program.

Instrumentation based profiling methods are mostly used on a macro level, not on the micro(low)
level. Using such a method often yields the best insight when optimizing big pieces of code
because you can use a top-down approach (instrumenting the main function then drilling down
to its callees) of locating performance issues. While code instrumentation is not very helpful
in the case of small programs, it gives the most value and insight by letting developers observe

69 Linux perf wiki - https://perf.wiki.kernel.org/index.php/Main_Page.

52

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

5.1 Code Instrumentation

Listing 6 Code Instrumentation

int foo(int x) {
printf("foo is called");
// function body...

}

the architecture and flow of an application. This technique is especially helpful for someone
working with an unfamiliar codebase.

It’s also worth mentioning that code instrumentation shines in complex systems with many
different components that react differently based on inputs or over time. Sampling techniques
(discussed in section 5.4) squash that valuable information, not allowing us to detect abnormal
behaviors. For example, in games, usually, there is a renderer thread, physics thread, animations
thread, etc. Instrumenting such big modules help to reasonably quickly to understand what
module is the source of issues. As sometimes, optimizing is not only a matter of optimizing
code but also data. For example, rendering is too slow because of uncompressed mesh, or
physics are too slow because of too many objects in the scene.

The technique is heavily used in real-time scenarios, such as video games and embedded
development. Many profilers70 mix up instrumentation with other techniques discussed in this
chapter (tracing, sampling).

While code instrumentation is powerful in many cases, it does not provide any information
about how the code executes from the OS or CPU perspective. For example, it can’t give you
information about how often the process was scheduled in and out from the execution (known
by the OS) or how much branch mispredictions occurred (known by the CPU). Instrumented
code is a part of an application and has the same privileges as the application itself. It runs in
userspace and doesn’t have access to the kernel.

But more importantly, the downside of this technique is that every time something new needs
to be instrumented, say another variable, recompilation is required. This can become a burden
to an engineer and increase analysis time. It is not all downsides, unfortunately. Since usually,
you care about hot paths in the application, you’re instrumenting the things that reside in the
performance-critical part of the code. Inserting instrumentation code in a hot piece of code
might easily result in a 2x slowdown of the overall benchmark71. Finally, by instrumenting
the code, you change the behavior of the program, so you might not see the same effects you
saw earlier.

All of the above increases time between experiments and consumes more development time,
which is why engineers don’t manually instrument their code very often these days. However,
automated code instrumentation is still widely used by compilers. Compilers are capable of
automatically instrumenting the whole program and collect interesting statistics about the
execution. The most widely known use cases are code coverage analysis and Profile Guided
Optimizations (see section 7.7).

When talking about instrumentation, it’s important to mention binary instrumentation
techniques. The idea behind binary instrumentation is similar but done on an already
built executable file as opposed to on a source code level. There are two types of binary

70 A few examples: optick (https://optick.dev), tracy (https://bitbucket.org/wolfpld/tracy), superluminal
(https://superluminal.eu).

71 Remember not to benchmark instrumented code, i.e., do not measure score and do analysis in the same run.

53

https://optick.dev
https://bitbucket.org/wolfpld/tracy
https://superluminal.eu

5.2 Tracing

instrumentation: static (done ahead of time) and dynamic (instrumentation code inserted on-
demand as a program executes). The main advantage of dynamic binary instrumentation is that
it does not require program recompilation and relinking. Also, with dynamic instrumentation,
one can limit the amount of instrumentation to only interesting code regions, not the whole
program.

Binary instrumentation is very useful in performance analysis and debugging. One of the most
popular tools for binary instrumentation is Intel Pin72 tool. Pin intercepts the execution of
the program in the occurrence of an interesting event and generates new instrumented code
starting at this point in the program. It allows collecting various runtime information, for
example:

• instruction count and function call counts.
• intercepting function calls and execution of any instruction in an application.
• allows “record and replay” the program region by capturing the memory and HW registers

state at the beginning of the region.

Like code instrumentation, binary instrumentation only allows instrumenting user-level code
and can be very slow.

5.2 Tracing

Tracing is conceptually very similar to instrumentation yet slightly different. Code instru-
mentation assumes that the user can orchestrate the code of their application. On the other
hand, tracing relies on the existing instrumentation of a program’s external dependencies. For
example, strace tool allows us to trace system calls and can be considered as the instrumen-
tation of the Linux kernel. Intel Processor Traces (see section 6.4) allows to log instructions
executed by the program and can be considered as the instrumentation of a CPU. Traces
can be obtained from components that were appropriately instrumented in advance and are
not subject to change. Tracing is often used as the black-box approach, where a user cannot
modify the code of the application, yet they want insight on what the program is doing behind
the scenes.

An example of tracing system calls with Linux strace tool is demonstrated in Listing 7. This
listing shows the first several lines of output when running the git status command. By
tracing system calls with strace it’s possible to know the timestamp for each system call (the
leftmost column), its exit status, and the duration of each system call (in the angle brackets).

The overhead of tracing very much depends on what exactly we try to trace. For example, if
we trace the program that almost never does system calls, the overhead of running it under
strace will be close to zero. On the opposite, if we trace the program that heavily relies
on system calls, the overhead could be very large, like 100x 73. Also, tracing can generate a
massive amount of data since it doesn’t skip any sample. To compensate this, tracing tools
provide the means to filter collection only for specific time slice or piece of code.

Usually, tracing similar to instrumentation is used for exploring anomalies in the system. For
example, you may want to find what was going on in the application during the 10s period
of unresponsiveness. Profiling is not designed for this, but with tracing, you can see what
lead to the program being unresponsive. For example, with Intel PT (see section 6.4), we can
reconstruct the control flow of the program and know exactly what instructions were executed.

72 PIN - https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
73 An article about strace by B. Gregg - http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-

syscall.html

54

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html

5.3 Workload Characterization

Listing 7 Tracing system calls with strace.

$ strace -tt -T -- git status
17:46:16.798861 execve("/usr/bin/git", ["git", "status"], 0x7ffe705dcd78

/* 75 vars */) = 0 <0.000300>
17:46:16.799493 brk(NULL) = 0x55f81d929000 <0.000062>
17:46:16.799692 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT

(No such file or directory) <0.000063>
17:46:16.799863 access("/etc/ld.so.preload", R_OK) = -1 ENOENT

(No such file or directory) <0.000074>
17:46:16.800032 openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

<0.000072>
17:46:16.800255 fstat(3, {st_mode=S_IFREG|0644, st_size=144852, ...}) = 0

<0.000058>
17:46:16.800408 mmap(NULL, 144852, PROT_READ, MAP_PRIVATE, 3, 0)

= 0x7f6ea7e48000 <0.000066>
17:46:16.800619 close(3) = 0 <0.000123>
...

Tracing is also very useful for debugging. Its underlying nature enables “record and replay”
use cases based on recorded traces. One of such tools is Mozilla rr74 debugger, which does
record and replay of processes, allows for backwards single stepping and much more. Most of
the tracing tools are capable of decorating events with timestamps (see example in Listing 7),
which allows us to have a correlation with external events that were happening during that
time. I.e. when we observe a glitch in a program, we can take a look at the traces of our
application and correlate this glitch with what was happening in the whole system during that
time.

5.3 Workload Characterization

Workload characterization is a process of describing a workload by means of quantitative
parameters and functions. Its goal is to define the behavior of the workload and its most
important features. On a high level, an application can belong to one or many of the
following types: interactive, database, network-based, parallel, etc. Different workloads can
be characterized using different metrics and parameters to address a particular application
domain.

In section 6.1, we will closely look at Top-Down Microarchitecture Analysis (TMA) methodology,
which attempts to characterize an application by putting it into one of 4 buckets: Front End
Bound, Back End Bound, Retiring, and Bad Speculation. TMA uses Performance Monitoring
Counters (PMC, see section 3.9.1) to collect the needed information and identify the inefficient
use of CPU microarchitecture.

5.3.1 Counting Performance Events

PMCs are a very important instrument of low-level performance analysis. They can provide
unique information about the execution of our program. PMCs are generally used in two
modes: “Counting” and “Sampling”. Counting mode is used for workload characterization,
while Sampling mode is used for finding hotspots, which we will discuss in section 5.4. The

74 Mozilla rr debugger - https://rr-project.org/.

55

https://rr-project.org/
https://rr-project.org/

5.3 Workload Characterization

idea behind Counting is very simple: we want to count the number of certain performance
events during the time our program was running. Figure 18 illustrates the process of counting
performance events in the time perspective.

Figure 18: Counting performance events.

The steps outlined in figure 18 roughly represent what a typical analysis tool will do to count
performance events. This process is implemented in the perf stat tool, which can be used to
count various HW events, like the number of instructions, cycles, cache-misses, etc. Below is
the example of output from perf stat:

$ perf stat -- ./a.exe
10580290629 cycles # 3,677 GHz
8067576938 instructions # 0,76 insn per cycle
3005772086 branches # 1044,472 M/sec
239298395 branch-misses # 7,96% of all branches

It is very informative to know this data. First of all, it allows us to quickly spot some anomalies
like a high cache miss rate or poor IPC. But also, it might come in handy when you’ve just
made code improvement and you want to validate performance gain. Looking at absolute
numbers might help you justify or reject the code change.

Personal Experience: I use ‘perf stat‘ as a simple benchmark wrapper.
Since the overhead of counting events is minimal, I run almost all benchmarks
automatically under ‘perf stat‘. It serves me as a first step in performance
investigation. Sometimes the anomalies can be spotted right away, which can
save you some analysis time.

5.3.2 Manual performance counters collection

Modern CPUs have hundreds of countable performance events. It’s very hard to remember all
of them and their meanings. Understanding when to use a particular PMC is even harder.
That is why generally, we don’t recommend manually collecting specific PMCs unless you
really know what you are doing. Instead, we recommend using tools like Intel Vtune Profiler
that automate this process. Nevertheless, there are situations when you are interested in
collecting specific PMC.

A complete list of performance events for all Intel CPU generations can be found in [Int, 2020,
Volume 3B, Chapter 19].75 Every event is encoded with Event and Umask hexadecimal values.

75 PMCs description is also available here: https://download.01.org/perfmon/index/.

56

https://download.01.org/perfmon/index/

5.3 Workload Characterization

Sometimes performance events can also be encoded with additional parameters, like Cmask
and Inv and others. An example of encoding two performance events for the Intel Skylake
microarchitecture is shown in the table 4.

Table 4: Example of encoding Skylake performance events.

Event
Num.

Umask
Value Event Mask Mnemonic Description

C0H 00H INST_RETIRED.
ANY_P

Number of instructions at retirement.

C4H 00H BR_INST_RETIRED.
ALL_BRANCHES

Branch instructions that retired.

Linux perf provides mappings for commonly used performance counters. They can be accessed
via pseudo names instead of specifying Event and Umask hexadecimal values. For example,
branches is just a synonym for BR_INST_RETIRED.ALL_BRANCHES and will measure the same
thing. List of available mapping names can be viewed with perf list:

$ perf list
branches [Hardware event]
branch-misses [Hardware event]
bus-cycles [Hardware event]
cache-misses [Hardware event]
cycles [Hardware event]
instructions [Hardware event]
ref-cycles [Hardware event]

However, Linux perf doesn’t provide mappings for all performance counters for every CPU
architecture. If the PMC you are looking for doesn’t have a mapping, it can be collected with
the following syntax:

$ perf stat -e cpu/event=0xc4,umask=0x0,name=BR_INST_RETIRED.ALL_BRANCHES/
-- ./a.exe

Also there are wrappers around Linux perf that can do the mapping, for example, oprofile76

and ocperf.py77. Below is an example of their usage:

$ ocperf -e uops_retired ./a.exe
$ ocperf.py stat -e uops_retired.retire_slots -- ./a.exe

Performance counters are not available in every environment since accessing PMCs requires
root access, which applications running in a virtualized environment typically do not have.
For programs executing in a public cloud, running a PMU-based profiler directly in a guest
container does not result in useful output if a virtual machine (VM) manager does not
expose the PMU programming interfaces properly to a guest. Thus profilers based on CPU
performance counters do not work well in a virtualized and cloud environment [Du et al., 2010].
Although the situation is improving. VmWare® was one of the first VM managers to enable

76 Oprofile - https://oprofile.sourceforge.io/about/
77 PMU tools - https://github.com/andikleen/pmu-tools/blob/master/ocperf.py

57

https://oprofile.sourceforge.io/about/
https://github.com/andikleen/pmu-tools/blob/master/ocperf.py
https://oprofile.sourceforge.io/about/
https://github.com/andikleen/pmu-tools/blob/master/ocperf.py

5.3 Workload Characterization

virtual CPU Performance Counters (vPMC). 78 AWS EC2 cloud enabled PMCs for dedicated
hosts. 79

5.3.3 Multiplexing and scaling events

There are situations when we want to count many different events at the same time. But
with only one counter, it’s possible to count only one thing at a time. That’s why PMUs
have multiple counters in it (typically 4 per HW thread). Even then, the number of fixed
and programmable counter is not always sufficient. Top-Down Analysis Methodology (TMA)
requires collecting up to 100 different performance events in a single execution of a program.
Obviously, CPUs don’t have that many counters, and here is when multiplexing comes into
play.

If there are more events than counters, the analysis tool uses time multiplexing to give each
event a chance to access the monitoring hardware. Figure 19 shows an example of multiplexing
between 8 performance events with only 4 PMCs available.

(a)

(b)

Figure 19: Multiplexing between 8 performance events with only 4 PMCs available.

With multiplexing, an event is not measured all the time, but rather only during some portion
of it. At the end of the run, a profiling tool needs to scale the raw count based on total time
enabled:

final count = raw count ∗ (time running/time enabled)

For example, say during profiling, we were able to measure some counter during five time
intervals. Each measurement interval lasted 100ms (time enabled). The program running
time was 1s (time running). The total number of events for this counter was measured as
10000 (raw count). So, we need to scale the final count by 2, which will be equal to 20000:

final count = 10000 ∗ (1000ms/500ms) = 20000

This provides an estimate of what the count would have been had the event been measured
during the entire run. It is very important to understand that this is an estimate, not an

78 VMWare PMCs - https://www.vladan.fr/what-are-vmware-virtual-cpu-performance-monitoring-counters-
vpmcs/

79 Amazon EC2 PMCs - http://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html

58

https://www.vladan.fr/what-are-vmware-virtual-cpu-performance-monitoring-counters-vpmcs/
https://www.vladan.fr/what-are-vmware-virtual-cpu-performance-monitoring-counters-vpmcs/
http://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html

5.4 Sampling

actual count. Multiplexing and scaling can be used safely on steady workloads that execute
the same code during long time intervals. On the opposite, if the program regularly jumps
between different hotspots, there will be blind spots that can introduce errors during scaling.
To avoid scaling, one can try to reduce the number of events to be not bigger than the number
of physical PMCs available. However, this will require running the benchmark multiple times
to measure all the counters one is interested in.

5.4 Sampling

Sampling is the most frequently used approach for doing performance analysis. People usually
associate it with finding hotspots in the program. In general terms, sampling gives the
answer to the question: which place in the code contributes to the greatest number of certain
performance events. If we consider finding hotspots, the problem can be reformulated as
which place in the code consumes the biggest amount of CPU cycles. People often use the
term “Profiling” for what is technically called sampling. According to Wikipedia80, profiling
is a much broader term and includes a wide variety of techniques to collect data, including
interrupts, code instrumentation, and PMC.

It may come as a surprise, but the simplest sampling profiler one can imagine is a debugger.
In fact, you can identify hotspots by a) run the program under the debugger, b) pause the
program every 10 seconds, and c) record the place where it stopped. If you repeat b) and c)
many times, you will build a collection of samples. The line of code where you stopped the most
will be the hottest place in the program. 81 Of course, this is an oversimplified description of
how real profiling tools work. Modern profilers are capable of collecting thousands of samples
per second, which gives a pretty accurate estimate about the hottest places in a benchmark.

As in the example with a debugger, the execution of the analyzed program is interrupted every
time a new sample is captured. At the time of interrupt, the profiler collects the snapshot of
the program state, which constitutes one sample. Information collected for every sample may
include an instruction address that was executed at the time of interrupt, register state, call
stack (see section 5.4.3), etc. Collected samples are stored in data collection files, which can
be further used to display a call graph, the most time-consuming parts of the program, and
control flow for statistically important code sections.

5.4.1 User-Mode And Hardware Event-based Sampling

Sampling can be performed in 2 different modes, using user-mode or HW event-based sampling
(EBS). User-mode sampling is a pure SW approach that embeds an agent library into the
profiled application. The agent sets up the OS timer for each thread in the application. Upon
timer expiration, the application receives the SIGPROF signal that is handled by the collector.
EBS uses hardware PMCs to trigger interrupts. In particular, the counter overflow feature of
the PMU is used, which we will discuss in the next section.[Int, 2020]

User-mode sampling can only be used to identify hotspots, while EBS can be used for additional
analysis types that involve PMCs, e.g., sampling on cache-misses, TMA (see section 6.1), etc.

User-mode sampling incurs more runtime overhead than EBS. The average overhead of the
user-mode sampling is about 5% when sampling is using the default interval of 10ms. The
average overhead of event-based sampling is about 2% on a 1ms sampling interval. Typically,

80 Profiling(wikipedia) - https://en.wikipedia.org/wiki/Profiling_(computer_programming).
81 This is an awkward way, though, and we don’t recommend doing this. It’s just to illustrate the concept.

59

https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)

5.4 Sampling

EBS is more accurate since it allows collecting samples with higher frequency. However,
user-mode sampling generates much fewer data to analyze, and it takes less time to process it.

5.4.2 Finding Hotspots

In this section, we will discuss the scenario of using PMCs with EBS. Figure 20 illustrates
the counter overflow feature of the PMU, which is used to trigger performance monitoring
interrupt (PMI).

Figure 20: Using performance counter for sampling

In the beginning, we configure the event that we want to sample on. Identifying hotspots
means knowing where the program spends most of the time. So sampling on cycles is very
natural, and it is a default for many profiling tools. But it’s not necessarily a strict rule; we
can sample on any performance event we want. For example, if we would like to know the
place where the program experiences the biggest number of L3-cache misses, we would sample
on the corresponding event, i.e., MEM_LOAD_RETIRED.L3_MISS.

After preparations are done, we enable counting and let the benchmark go. We configured
PMC to count cycles, so it will be incremented every cycle. Eventually, it will overflow. At
the time the counter overflows, HW will raise PMI. The profiling tool is configured to capture
PMIs and has an Interrupt Service Routine (ISR) for handling them. Inside this routine, we
do multiple steps: first of all, we disable counting; after that, we record the instruction which
was executed by the CPU at the time the counter overflowed; then, we reset the counter to N
and resume the benchmark.

Now, let us go back to the value N. Using this value, we can control how frequently we want
to get a new interrupt. Say we want a finer granularity and have one sample every 1 million
instructions. To achieve this, we can set the counter to -1 million so that it will overflow after
every 1 million instructions. This value is usually referred to as the “sample after” value.

We repeat the process many times to build a sufficient collection of samples. If we later
aggregate those samples, we could build a histogram of the hottest places in our program,
like the one shown on the output from Linux perf record/report below. This gives us the
breakdown of the overhead for functions of a program sorted in descending order (hotspots).

60

5.4 Sampling

Example of sampling x26482 benchmark from Phoronix test suite83 is shown below:

$ perf record -- ./x264 -o /dev/null --slow --threads 8
Bosphorus_1920x1080_120fps_420_8bit_YUV.y4m

$ perf report -n --stdio
Samples: 364K of event 'cycles:ppp'
Event count (approx.): 300110884245
Overhead Samples Shared Object Symbol
........
#

6.99% 25349 x264 [.] x264_8_me_search_ref
6.70% 24294 x264 [.] get_ref_avx2
6.50% 23397 x264 [.] refine_subpel
5.20% 18590 x264 [.] x264_8_pixel_satd_8x8_internal_avx2
4.69% 17272 x264 [.] x264_8_pixel_avg2_w16_sse2
4.22% 15081 x264 [.] x264_8_pixel_avg2_w8_mmx2
3.63% 13024 x264 [.] x264_8_mc_chroma_avx2
3.21% 11827 x264 [.] x264_8_pixel_satd_16x8_internal_avx2
2.25% 8192 x264 [.] rd_cost_mb

...

We would then naturally want to know the hot piece of code inside every function that
appears in the hotspot list. To see the profiling data for functions that were inlined as well as
assembly code generated for a particular source code region requires the application being
built with debug information (-g compiler flag). Users can reduce84 the amount of debugging
information to just line numbers of the symbols as they appear in the source code by using the
-gline-tables-only option. Tools like Linux perf that don’t have full, rich graphic support
usually intermix source code with the generated assembly, as shown below:

snippet of annotating source code of 'x264_8_me_search_ref' function
$ perf annotate x264_8_me_search_ref --stdio
Percent | Source code & Disassembly of x264 for cycles:ppp
--

...
: bmx += square1[bcost&15][0]; <== source code

1.43 : 4eb10d: movsx ecx,BYTE PTR [r8+rdx*2] <== corresponding
machine code

: bmy += square1[bcost&15][1];
0.36 : 4eb112: movsx r12d,BYTE PTR [r8+rdx*2+0x1]

: bmx += square1[bcost&15][0];
0.63 : 4eb118: add DWORD PTR [rsp+0x38],ecx

: bmy += square1[bcost&15][1];
...

Most profilers with Graphical User Interface (GUI), like Intel VTune Profiler, can show source
code and associated assembly side-by-side, as shown in figure 21.

82 x264 benchmark - https://openbenchmarking.org/test/pts/x264.
83 Phoronix test suite - https://www.phoronix-test-suite.com/.
84 If a user doesn’t need full debug experience, having line numbers is enough for profiling the application.

There were cases when LLVM transformation passes incorrectly, treated the presence of debugging intrinsics,
and made wrong transformations in the presence of debug information.

61

https://openbenchmarking.org/test/pts/x264
https://www.phoronix-test-suite.com/
https://openbenchmarking.org/test/pts/x264
https://www.phoronix-test-suite.com/

5.4 Sampling

Figure 21: Intel® VTune™ Profiler source code and assembly view for x264 benchmark.

5.4.3 Collecting Call Stacks

Often when sampling, we might encounter a situation when the hottest function in a program
gets called by multiple callers. An example of such a scenario is shown on 22. The output
from the profiling tool might reveal that function foo is one of the hottest functions in the
program, but if it has multiple callers, we would like to know which one of them call foo the
most number of times. It is a typical situation for applications that have library functions like
memcpy or sqrt appear in the hotspots. To understand why a particular function appeared as
a hotspot, we need to know which path in the Control Flow Graph (CFG) of the program
caused it.

Figure 22: Control Flow Graph: hot function “foo” has multiple callers.

Analyzing the logic of all the callers of foo might be very time-consuming. We want to focus
only on those callers that caused foo to appear as a hotspot. In other words, we want to
know the hottest path in the CFG of a program. Profiling tools achieve this by capturing the
call stack of the process along with other information at the time of collecting performance
samples. Then, all collected stacks are grouped, allowing us to see the hottest path that led to
a particular function.

Collecting call stacks in Linux perf is possible with three methods:

1. Frame pointers (perf record --call-graph fp). Requires binary being built with
--fnoomit-frame-pointer. Historically, frame pointer (RBP) was used for debugging
since it allows us to get the call stack without popping all the arguments from the stack
(stack unwinding). The frame pointer can tell the return address immediately. However,
it consumes one register just for this purpose, so it was expensive. It is also used for
profiling since it enables cheap stack unwinding.

2. DWARF debug info (perf record --call-graph dwarf). Requires binary being built
with DWARF debug information -g (-gline-tables-only).

3. Intel Last Branch Record (LBR) Hardware feature perf record --call-graph lbr.

62

https://openbenchmarking.org/test/pts/x264

5.4 Sampling

Not as deep call graph as the first two methods. See more information about LBR in
the section 6.2.

Below is the example of collecting call stacks in a program using Linux perf. By looking at
the output, we know that 55% of the time foo was called from func1. We can clearly see the
distribution of the overhead between callers of foo and can now focus our attention on the
hottest edges in the CFG of the program.

$ perf record --call-graph lbr -- ./a.out
$ perf report -n --stdio --no-children
Samples: 65K of event 'cycles:ppp'
Event count (approx.): 61363317007
Overhead Samples Command Shared Object Symbol
........

99.96% 65217 a.out a.out [.] foo
|
--99.96%--foo

|
|--55.52%--func1
| main
| __libc_start_main
| _start
|
|--33.32%--func2
| main
| __libc_start_main
| _start
|
--11.12%--func3

main
__libc_start_main
_start

When using Intel Vtune Profiler, one can collect call stacks data by checking the corresponding
“Collect stacks” box while configuring analysis85. When using command-line interface specify
-knob enable-stack-collection=true option.

Personal Experience: Mechanism of collecting call stacks is very important
to understand. I’ve seen some developers that are not familiar with the
concept try to obtain this information by using a debugger. They do this
by interrupting the execution of a program and analyze the call stack (like
‘backtrace‘ command in ‘gdb‘ debugger). Developers should allow profiling
tools to do the job, which is much faster and gives more accurate data.

5.4.4 Flame Graphs

A popular way of visualizing the profiling data and the most frequent code-paths in the
program is by using flame graphs. It allows us to see which function calls take the biggest
portion of execution time. Figure 23 shows the example of a flame graph for x264 bench-
mark. From the mentioned flame graph we can see that the path that takes the most

85 See more details in Intel® VTune™ Profiler User Guide.

63

https://openbenchmarking.org/test/pts/x264
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hardware-event-based-sampling-collection/hardware-event-based-sampling-collection-with-stacks.html

5.5 Roofline Performance Model

amount of execution time is x264 -> threadpool_thread_internal -> slices_write ->
slice_write -> x264_8_macroblock_analyse. The original output is interactive and allows
us to zoom into a particular code path. The flame graph was generated with opensource
scripts86 developed by Brendan Gregg. There are other tools capable of emitting flame graphs,
perhaps KDAB Hotspot87being the most popular alternative.

Figure 23: A Flame Graph for x264 benchmark.

5.5 Roofline Performance Model

Roofline Performance Model was developed at the University of California, Berkeley, in 2009.
It is a throughput-oriented performance model that is heavily used in the HPC world. The
“roofline” in this model expresses the fact that the performance of an application cannot exceed
the machine’s capabilities. Every function and every loop in a program is limited by either
compute or memory capacity of a machine. This concept is represented in figure 24: the
performance of an application will always be limited by a certain “roofline” function.

Hardware has two main limitations: how fast it can make calculations (peak compute perfor-
mance, FLOPS) and how fast it can move the data (peak memory bandwidth, GB/s). The
maximum performance of an application is limited by the minimum between peak FLOPS
(horizontal line) and the platform bandwidth multiplied by arithmetic intensity (diagonal line).
A roofline chart that is shown in figure 24 plots the performance of two applications A and B
against hardware limitations. Different parts of a program could have different performance
characteristics. Roofline model accounts for that and allows to display multiple functions and
loops of an application on the same chart.

Arithmetic Intensity (AI) is a ratio between FLOPS and bytes and can be extracted for every
loop in a program. Let’s calculate the arithmetic intensity of code in Listing 8. In the innermost
loop body, we have an addition and a multiplication; thus, we have 2 FLOPS. Also, we have
three read operations and one write operation; thus, we transfer 4 ops * 4 bytes = 16 bytes.
Arithmetic intensity of that code is 2 / 16 = 0.125. AI serves as the value on the X-axis of
a given performance point.

Traditional ways to speed up an application’s performance is to fully utilize the SIMD and
multicore capabilities of a machine. Often times, we need to optimize for many aspects:

86 Flame Graphs by Brendan Gregg: https://github.com/brendangregg/FlameGraph. See more details about
all the features on Brendan’s dedicated web page: http://www.brendangregg.com/flamegraphs.html.

87 Hotspot profiler by KDAB - https://github.com/KDAB/hotspot.

64

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://github.com/KDAB/hotspot
https://openbenchmarking.org/test/pts/x264
https://github.com/brendangregg/FlameGraph
http://www.brendangregg.com/flamegraphs.html
https://github.com/KDAB/hotspot

5.5 Roofline Performance Model

Figure 24: Roofline model. © Image taken from NERSC Documentation.

vectorization, memory, threading. Roofline methodology can assist in assessing these charac-
teristics of your application. On a roofline chart, we can plot theoretical maximums for scalar
single-core, SIMD single-core, and SIMD multicore performance (see figure 25). This will give
us an understanding of the room for improving the performance of an application. If we found
that our application is compute-bound (i.e., has high arithmetic intensity) and is below the
peak scalar single-core performance, we should consider forcing vectorization (see section 8.2.3)
and distributing the work among multiple threads. Conversely, if an application has a low
arithmetic intensity, we should seek ways to improve memory accesses (see section 8.1). The
ultimate goal of optimizing performance using the Roofline model is to move the points up.
Vectorization and threading move the dot up while optimizing memory accesses by increasing
arithmetic intensity will move the dot to the right and also likely improve performance.

Theoretical maximums (roof lines) can be calculated88 based on the characteristics of the
machine you are using. Usually, it is not hard to do once you know the parameters of your
machine. For Intel Core i5-8259U processor, the maximum number of FLOPs (single-precision
floats) with AVX2 and 2 Fused Multiply Add (FMA) units can be calculated as:

Peak FLOPS = 8 (number of logical cores) × 256 (AVX bit width)
32 bit (size of float) × 2 (FMA)

× 3800 GHz (Max Turbo Frequency) = 486.4 GFLOPs

The maximum memory bandwidth of Intel NUC Kit NUC8i5BEH, which I used for experiments,
88 Note that often theoretical maximums are often presented in a device specification and can be easily looked

up.

65

https://docs.nersc.gov/development/performance-debugging-tools/roofline/#arithmetic-intensity-ai-and-achieved-performance-flops-for-application-characterization

5.5 Roofline Performance Model

Listing 8 Naive parallel matrix multiplication.

1 void matmul(int N, float a[][2048], float b[][2048], float c[][2048]) {
2 #pragma omp parallel for
3 for(int i = 0; i < N; i++) {
4 for(int j = 0; j < N; j++) {
5 for(int k = 0; k < N; k++) {
6 c[i][j] = c[i][j] + a[i][k] * b[k][j];
7 }
8 }
9 }
10 }

Figure 25: Roofline model.

can be calculated as:

Peak Memory Bandwidth = 2400 (DDR4 memory transfer rate) × 2 (memory channels) ×
8 (bytes per memory access) × 1 (socket) = 38.4 GiB/s

Automated tools like Empirical Roofline Tool89and Intel Advisor90 (see figure 26) are capable
of empirically determine theoretical maximums by running a set of prepared benchmarks.

If a calculation can reuse the data in cache, much higher FLOP rates are possible. Roofline
can account for that by introducing a dedicated roofline for each level of the memory hierarchy
(see figure 26).

After hardware limitations are determined, we can start assessing the performance of an
application against the roofline. The two most frequently used methods for automated
collection of Roofline data are sampling (used by likwid91tool) and binary instrumentation

89 Empirical Roofline Tool - https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/.
90 Intel Advisor - https://software.intel.com/content/www/us/en/develop/tools/advisor.html.
91 Likwid - https://github.com/RRZE-HPC/likwid.

66

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/
https://software.intel.com/content/www/us/en/develop/tools/advisor.html
https://github.com/RRZE-HPC/likwid
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/
https://software.intel.com/content/www/us/en/develop/tools/advisor.html
https://github.com/RRZE-HPC/likwid

5.5 Roofline Performance Model

(used by Intel Software Development Emulator (SDE92)). Sampling incurs the lower overhead
of collecting data, while binary instrumentation gives more accurate results93. Intel Advisor is
capable of automatically building a Roofline chart and even providing hints for performance
optimization of a given loop. An example of a chart generated by Intel Advisor is presented in
figure 26. Notice, Roofline charts have logarithmic scales.

Roofline methodology allows for tracking optimization progress by printing “before” and “after”
points on the same chart. So, it is an iterative process that guides developers to make their
applications fully utilize HW capabilities. Figure 26 reflects performance gains as a result of
making two code transformations in code from Listing 8:

• Interchange two innermost loops (swap lines 4 and 5). This allows cache-friendly memory
accesses (see section 8.1).

• Vectorizing innermost loop using AVX2 instructions.

Figure 26: Roofline analysis for matrix multiplication on Intel NUC Kit NUC8i5BEH with
8GB RAM using clang 10 compiler.

In summary, the Roofline Performance Model can be helpful to:

• Identify performance bottlenecks.
• Guide software optimizations.
• Determine when we’re done optimizing.
• Assess performance relative to machine capabilities.

Additional resources and links:

• NERSC Documentation, URL: https://docs.nersc.gov/development/performance-
debugging-tools/roofline/.

92 Intel SDE - https://software.intel.com/content/www/us/en/develop/articles/intel-software-development-
emulator.html.

93 See a more detailed comparison between methods of collecting roofline data in this presentation: https:
//crd.lbl.gov/assets/Uploads/ECP20-Roofline-4-cpu.pdf.

67

https://software.intel.com/content/www/us/en/develop/articles/intel-software-development-emulator.html
https://docs.nersc.gov/development/performance-debugging-tools/roofline/
https://docs.nersc.gov/development/performance-debugging-tools/roofline/
https://software.intel.com/content/www/us/en/develop/articles/intel-software-development-emulator.html
https://software.intel.com/content/www/us/en/develop/articles/intel-software-development-emulator.html
https://crd.lbl.gov/assets/Uploads/ECP20-Roofline-4-cpu.pdf
https://crd.lbl.gov/assets/Uploads/ECP20-Roofline-4-cpu.pdf

5.6 Static Performance Analysis

• Lawrence Berkeley National Laboratory research, URL: https://crd.lbl.gov/department
s/computer-science/par/research/roofline/

• Collection of video presentations about Roofline model and Intel Advisor, URL: https:
//techdecoded.intel.io/ (search “Roofline”).

• Perfplot is a collection of scripts and tools that allow a user to instrument performance
counters on a recent Intel platform, measure them, and use the results to generate
roofline and performance plots. URL: https://github.com/GeorgOfenbeck/perfplot

5.6 Static Performance Analysis

Today we have extensive tooling for static code analysis. For C and C++ languages we have
such well known tools like Clang Static Analyzer, Klocwork, Cppcheck and others94. They aim
at checking the correctness and semantics of the code. Likewise, there are tools that try to
address the performance aspect of the code. Static performance analyzers don’t run the actual
code. Instead, they simulate the code as if it is executed on a real HW. Statically predicting
performance is almost impossible, so there are many limitations to this type of analysis.

First, it is not possible to statically analyze C/C++ code for performance since we don’t
know the machine code to which it will be compiled. So, static performance analysis works on
assembly code.

Second, static analysis tools simulate the workload instead of executing it. It is obviously very
slow, so it’s not possible to statically analyze the entire program. Instead, tools take some
assembly code snippet and try to predict how it will behave on real hardware. The user should
pick specific assembly instructions (usually small loop) for analysis. So, the scope of static
performance analysis is very narrow.

The output of the static analyzers is fairly low-level and sometimes breaks execution down to
CPU cycles. Usually, developers use it for fine-grained tuning of the critical code region where
every cycle matter.

5.6.1 Static vs. Dynamic Analyzers

Static tools don’t run the actual code but try to simulate the execution, keeping as many
microarchitectural details as they can. They are not capable of doing real measurements
(execution time, performance counters) because they don’t run the code. The upside here
is that you don’t need to have the real HW and can simulate the code for different CPU
generations. Another benefit is that you don’t need to worry about consistency of the results:
static analyzers will always give you stable output because simulation (in comparison with the
execution on real hardware) is not biased in any way. The downside of static tools is that they
usually can’t predict and simulate everything inside a modern CPU: they are based on some
model that may have bugs and limitations in it. Examples of static performance analyzers are
IACA95 and llvm-mca96.

Dynamic tools are based on running the code on the real HW and collecting all sorts of
information about the execution. This is the only 100% reliable method of proving any
performance hypothesis. As a downside, usually, you are required to have privileged access
rights to collect low-level performance data like PMCs. It’s not always easy to write a good

94 Tools for static code analysis - https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysi
s#C,_C++.

95 IACA - https://software.intel.com/en-us/articles/intel-architecture-code-analyzer. In April 2019, the tools
has reached its End Of Life and is no longer supported.

96 LLVM MCA - https://llvm.org/docs/CommandGuide/llvm-mca.html

68

https://crd.lbl.gov/departments/computer-science/par/research/roofline/
https://crd.lbl.gov/departments/computer-science/par/research/roofline/
https://techdecoded.intel.io/
https://techdecoded.intel.io/
https://github.com/GeorgOfenbeck/perfplot
https://clang-analyzer.llvm.org/
https://www.perforce.com/products/klocwork
http://cppcheck.sourceforge.net/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis#C,_C++
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis#C,_C++
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://llvm.org/docs/CommandGuide/llvm-mca.html

5.7 Compiler Optimization Reports

benchmark and measure what you want to measure. Finally, you need to filter the noise and
different kinds of side effects. Examples of dynamic performance analyzers are Linux perf,
likwid97and uarch-bench98. Examples of usage and output for the tools mentioned above can
be found on easyperf blog 99.

A big collection of tools both for static and dynamic microarchitectural performance analysis
is available here100.

Personal Experience: I use those tools whenever I need to explore some
interesting CPU microarchitecture effect. Static and low-level dynamic ana-
lyzers (like likwid and uarch-bench) allow us to observe HW effects in practice
while doing performance experiments. They are a great help for building up
your mental model of how CPU works.

5.7 Compiler Optimization Reports

Nowadays, software development relies very much on compilers to do performance optimizations.
Compilers play a very important role in speeding up our software. Usually, developers leave
this job to compilers, interfering only when they see an opportunity to improve something
compilers cannot accomplish. Fair to say, this is a good default strategy. For better interaction,
compilers provide optimization reports which developers can use for performance analysis.

Sometimes you want to know if some function was inlined or loop was vectorized, unrolled,
etc. If it was unrolled, what is the unroll factor? There is a hard way to know this: by
studying generated assembly instructions. Unfortunately, not all people are comfortable at
reading assembly language. This can be especially hard if the function is big, it calls other
functions or has many loops that were also vectorized, or if the compiler created multiple
versions of the same loop. Fortunately, most compilers, including GCC, ICC, and Clang, provide
optimization reports to check what optimizations were done for a particular piece of code.
Another example of a hint from a compiler can be Intel® ISPC101 compiler (see more in
section 8.2.3.7), which issues a number of performance warnings for code constructs that
compile to relatively inefficient code.

Listing 9 shows an example of the loop that is not vectorized by clang 6.0.

To emit an optimization report in clang, you need to use -Rpass* flags:

$ clang -O3 -Rpass-analysis=.* -Rpass=.* -Rpass-missed=.* a.c -c
a.c:5:3: remark: loop not vectorized [-Rpass-missed=loop-vectorize]

for (unsigned i = 1; i < N; i++) {
^

a.c:5:3: remark: unrolled loop by a factor of 4 with run-time trip count
[-Rpass=loop-unroll]

for (unsigned i = 1; i < N; i++) {
^

97 LIKWID - https://github.com/RRZE-HPC/likwid
98 Uarch bench - https://github.com/travisdowns/uarch-bench
99 An article about tools for microarchitectural benchmarking - https://easyperf.net/blog/2018/04/03/Tools-

for-microarchitectural-benchmarking
100 Collection of links for C++ performance tools - https://github.com/MattPD/cpplinks/blob/master/perfo
rmance.tools.md#microarchitecture.

101 ISPC - https://ispc.github.io/ispc.html.

69

https://github.com/RRZE-HPC/likwid
https://github.com/travisdowns/uarch-bench
https://easyperf.net/blog/2018/04/03/Tools-for-microarchitectural-benchmarking
https://github.com/MattPD/cpplinks/blob/master/performance.tools.md#microarchitecture
https://ispc.github.io/ispc.html
https://llvm.org/docs/Vectorizers.html#diagnostics
https://github.com/RRZE-HPC/likwid
https://github.com/travisdowns/uarch-bench
https://easyperf.net/blog/2018/04/03/Tools-for-microarchitectural-benchmarking
https://easyperf.net/blog/2018/04/03/Tools-for-microarchitectural-benchmarking
https://github.com/MattPD/cpplinks/blob/master/performance.tools.md#microarchitecture
https://github.com/MattPD/cpplinks/blob/master/performance.tools.md#microarchitecture
https://ispc.github.io/ispc.html

5.7 Compiler Optimization Reports

Listing 9 a.c

1 void foo(float* __restrict__ a,
2 float* __restrict__ b,
3 float* __restrict__ c,
4 unsigned N) {
5 for (unsigned i = 1; i < N; i++) {
6 a[i] = c[i-1]; // value is carried over from previous iteration
7 c[i] = b[i];
8 }
9 }

By checking the optimization report above, we could see that the loop was not vectorized,
but it was unrolled instead. It’s not always easy for a developer to recognize the existence
of vector dependency in the loop on line 5 in Listing 9. The value that is loaded by c[i-1]
depends on the store from the previous iteration (see operations #2 and #3 in Figure 27).
The dependency can be revealed by manually unrolling a few first iterations of the loop:

// iteration 1
a[1] = c[0];
c[1] = b[1]; // writing the value to c[1]

// iteration 2
a[2] = c[1]; // reading the value of c[1]
c[2] = b[2];

...

Figure 27: Visualizing the order of operations in Listing 9.

If we were to vectorize the code in Listing 9, it would result in the wrong values written in the
array a. Assuming a CPU SIMD unit can process four floats at a time, we would get the code
that can be expressed with the following pseudocode:

// iteration 1
a[1..4] = c[0..3]; // oops, a[2..4] get the wrong values
c[1..4] = b[1..4];

...

The code in Listing 9 cannot be vectorized because the order of operations inside the loop

70

5.7 Compiler Optimization Reports

matter. This example can be fixed102 by swapping lines 6 and 7 without changing the semantics
of the function, as shown in Listing 10. For more information on discovering vectorization
opportunities and examples using compiler optimization reports, see section 8.2.3.

Listing 10 a.c

1 void foo(float* __restrict__ a,
2 float* __restrict__ b,
3 float* __restrict__ c,
4 unsigned N) {
5 for (unsigned i = 1; i < N; i++) {
6 c[i] = b[i];
7 a[i] = c[i-1];
8 }
9 }

In the optimization report, we can see that the loop was now vectorized:

$ clang -O3 -Rpass-analysis=.* -Rpass=.* -Rpass-missed=.* a.c -c
a.cpp:5:3: remark: vectorized loop (vectorization width: 4, interleaved

count: 2) [-Rpass=loop-vectorize]
for (unsigned i = 1; i < N; i++) {
^

Compiler reports are generated per source file, which can be quite big. A user can simply search
the source lines of interest in the output. Compiler Explorer103 website has the “Optimization
Output” tool for LLVM-based compilers that reports performed transformations when you
hover your mouse over the corresponding line of source code.

In LTO104 mode, some optimizations are made during the linking stage. To emit compiler
reports from both compilation and linking stages, one should pass dedicated options to both
the compiler and the linker. See LLVM “Remarks” guide105 for more information.

Compiler optimization reports not only help in finding missed optimization opportunities and
explain why that happened but also are useful for testing hypotheses. The compiler often
decides whether a certain transformation will be beneficial based on its cost model analysis.
But it doesn’t always make the optimal choice, which we can be tuned further. One can detect
missing optimization in a report and provide a hint to a compiler by using #pragma, attributes,
compiler built-ins, etc. See an example of using such hints on easyperf blog106. As always,
verify your hypothesis by measuring it in a practical environment.

Personal Experience: Compiler optimization reports could be one of the
key items in your toolbox. It is a fast way to check what optimizations were
done for a particular hotspot and see if some important ones failed. I have
found many improvement opportunities by using opt reports.

102 Alternatively, the code can be improved by splitting the loop into two separate loops.
103 Compiler Explorer - https://godbolt.org/.
104 Link-Time optimizations, also called InterProcedural Optimizations (IPO). Read more here: https:
//en.wikipedia.org/wiki/Interprocedural_optimization.

105 LLVM compiler remarks - https://llvm.org/docs/Remarks.html.
106 Using compiler optimization pragmas - https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_c
ounts.

71

https://godbolt.org/
https://llvm.org/docs/Remarks.html
https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_counts
https://godbolt.org/
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://llvm.org/docs/Remarks.html
https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_counts
https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_counts

5.8 Chapter Summary

5.8 Chapter Summary

• Latency and throughput are often the ultimate metrics of the program performance.
When seeking ways to improve them, we need to get more detailed information on
how the application executes. Both HW and SW provide data that can be used for
performance monitoring.

• Code instrumentation allows us to track many things in the program but causes relatively
large overhead both on the development and runtime side. While developers do not
manually instrument their code these days very often, this approach is still relevant for
automated processes, e.g., PGO.

• Tracing is conceptually similar to instrumentation and is useful for exploring anomalies
in the system. Tracing allows us to catch the entire sequence of events with timestamps
attached to each event.

• Workload Characterization is a way to compare and group applications based on their run-
time behavior. Once characterized, specific recipes could be followed to find optimization
headrooms in the program.

• Sampling skips the large portion of the program execution and take just one sample that
is supposed to represent the entire interval. Even though sampling usually gives precise
enough distributions. The most well-known use case of sampling is finding hotspots
in the code. Sampling is the most popular analysis approach since it doesn’t require
recompilation of the program and has very little runtime overhead.

• Generally, counting and sampling incur very low runtime overhead (usually below 2%).
Counting gets more expensive once you start multiplexing between different events
(5-15% overhead), sampling gets more expensive with increasing sampling frequency
[Nowak and Bitzes, 2014]. Consider using user-mode sampling for analyzing long-running
workloads or when you don’t need very accurate data.

• Roofline is a throughput-oriented performance model that is heavily used in the HPC
world. It allows plotting the performance of an application against hardware limitations.
Roofline model helps to identify performance bottlenecks, guides software optimizations,
and keeps track of optimization progress.

• There are tools that try to statically analyze the performance of the code. Such tools
simulate the piece of code instead of executing it. Many limitations and constraints
apply to this approach, but you get a very detailed and low-level report in return.

• Compiler Opt reports help to find missing compiler optimizations. It may also guide
developers in composing new performance experiments.

72

6 CPU Features For Performance Analysis

The ultimate goal of performance analysis is to identify the bottleneck and locate the place in
the code that associates with it. Unfortunately, there are no predetermined steps to follow, so
it can be approached in many different ways.

Usually, profiling the application can give quick insights about the hotspots of the application.
Sometimes it is everything developers need to do to fix performance inefficiencies. Especially
high-level performance problems can often be revealed by profiling. For example, consider a
situation when you profile an application with interest in a particular function. According to
your mental model of the application, you expect that function to be cold. But when you open
the profile, you see it consumes a lot of time and is called a large number of times. Based on
that information, you can apply techniques like caching or memoization to reduce the number
of calls to that function and expect to see significant performance gains.

However, when you have fixed all the major performance inefficiencies, but you still need to
squeeze more performance from your application, basic information like the time spent in a
particular function is not enough. Here is when you need additional support from the CPU to
understand where the performance bottlenecks are. So, before using the information presented
in this chapter, make sure that the application you are trying to optimize does not suffer from
major performance flaws. Because if it does, using CPU performance monitoring features for
low-level tuning doesn’t make sense. It will likely steer you in the wrong direction, and instead
of fixing real high-level performance problems, you will be tuning bad code, which is just a
waste of time.

Personal Experience: When I was starting with performance optimization
work, I usually just profiled the app and tried to grasp through the hotspots
of the benchmark, hoping to find something there. This often led me to
random experiments with unrolling, vectorization, inlining, you name it. I’m
not saying it’s always a losing strategy. Sometimes you can be lucky to get a
big performance boost from random experiments. But usually, you need to
have very good intuition and luck.

Modern CPUs are constantly getting new features that enhance performance analysis in
different ways. Using those features greatly simplifies finding low-level issues like cache-misses,
branch mispredictions, etc. In this chapter, we will take a look at a few HW performance
monitoring capabilities available on modern Intel CPUs. Most of them also have their
counterparts in CPUs from other vendors like AMD, ARM, and others. Look for more details
in the corresponding sections.

• Top-Down Microarchitecture Analysis Methodology (TMA) - a powerful technique for
identifying ineffective usage of CPU microarchitecture by the program. It characterizes
the bottleneck of the workload and allows locating the exact place in the source code
where it occurs. It abstracts away intricacies of the CPU microarchitecture and is easy
to use even for inexperienced developers.

• Last Branch Record (LBR) - a mechanism that continuously logs the most recent branch
outcomes in parallel with executing the program. It is used for collecting call stacks,
identify hot branches, calculating misprediction rates of individual branches, and more.

• Processor Event-Based Sampling (PEBS) - a feature that enhances sampling. Among
its primary advantages are: lowering the overhead of sampling and providing “Precise

73

6.1 Top-Down Microarchitecture Analysis

Events” capability, which allows pinpointing exact instruction that caused a particular
performance event.

• Intel Processor Traces (PT) - a facility to record and reconstruct the program execution
with a timestamp on every instruction. Its main usages are postmortem analysis and
root-causing performance glitches.

The features mentioned above provide insights on the efficiency of a program from the CPU
perspective and how to make it more CPU-friendly. Profiling tools leverage them to provide
many different types of performance analysis.

6.1 Top-Down Microarchitecture Analysis

Top-Down Microarchitecture Analysis Methodology (TMA) is a very powerful technique for
identifying CPU bottlenecks in the program. It is a robust and formal methodology that is
easy to use even for inexperienced developers. The best part of this methodology is that it
does not require a developer to have a deep understanding of the microarchitecture and PMCs
in the system and still efficiently find CPU bottlenecks. However, it does not automatically fix
problems; otherwise, this book would not exist.

At a high-level, TMA identifies what was stalling the execution of every hotspot in the program.
The bottleneck can be related to one of the four components: Front End Bound, Back End
Bound, Retiring, Bad Speculation. Figure 28 illustrates this concept. Here is a short guide on
how to read this diagram. As we know from section 3, there are internal buffers in the CPU
that keep track of information about instructions that are being executed. Whenever new
instruction gets fetched and decoded, new entries in those buffers are allocated. If uop for
instruction was not allocated during a particular cycle of execution, it could be for two reasons:
we were not able to fetch and decode it (Front End Bound), or Back End was overloaded with
work and resources for new uop could not be allocated (Back End Bound). Uop that was
allocated and scheduled for execution but not retired is related to the Bad Speculation bucket.
An example of such a uop can be some instruction that was executed speculatively but later
was proven to be on a wrong program path and was not retired. Finally, Retiring is the bucket
where we want all our uops to be, although there are exceptions. A high Retiring value for
non-vectorized code may be a good hint for users to vectorize the code (see section 8.2.3).
Another situation when we might see high Retiring value but slow overall performance may
happen in the program that operates on denormal floating-point values making such operations
extremely slow (see section 10.4).

Figure 28 gives a breakdown for every instruction in a program. However, analyzing every
single instruction in the workload is definitely overkill, and of course, TMA doesn’t do that.
Instead, we are usually interested in knowing what is stalling the program as a whole. To
accomplish this goal, TMA observes the execution of the program by collecting specific metrics
(ratios of PMCs). Based on those metrics, it characterizes application by relating it to one of
the four high-level buckets. There are nested categories for each high-level bucket (see Figure
29) that give a better breakdown of the CPU performance bottlenecks in the program. We run
the workload several times107, each time focusing on specific metrics and drilling down until
we get to the more detailed classification of performance bottleneck. For example, initially,
we collect metrics for four main buckets: Front End Bound, Back End Bound, Retiring,
Bad Speculation. Say, we found out that the big portion of the program execution was
stalled by memory accesses (which is a Back End Bound bucket, see Figure 29). The next

107 In reality, it is sufficient to run the workload once to collect all the metrics required for TMA. Profiling
tools achieve that by multiplexing between different performance events during a single run (see section 5.3.3).

74

6.1 Top-Down Microarchitecture Analysis

Figure 28: The concept behind TMA’s top-level breakdown. © Image from [Yasin, 2014]

step is to run the workload again and collect metrics specific for the Memory Bound bucket
only (drilling down). The process is repeated until we know the exact root cause, for example,
L3 Bound.

In a real-world application, performance could be limited by multiple factors. E.g., it can
experience a large number of branch mispredicts (Bad Speculation) and cache misses (Back
End Bound) at the same time. In this case, TMA will drill down into multiple buckets
simultaneously and will identify the impact that each type of bottleneck makes on the
performance of a program. Analysis tools such as Intel VTune Profiler, AMD uprof, and Linux
perf can calculate all the metrics with a single run of the benchmark.108

The top two-levels of TMA metrics are expressed in the percentage of all pipeline slots (see
section 4.5) that were available during the execution of the program. It allows TMA to give
an accurate representation of CPU microarchitecture utilization, taking into account the full
bandwidth of the processor.

After we identified the performance bottleneck in the program, we would be interested to know
where exactly in the code it is happening. The second stage of TMA is locating the source of
the problem down to the exact line of code and assembly instruction. Analysis methodology
provides exact PMC that one should use for each category of the performance problem. Then
the developer can use this PMC to find the area in the source code that contributes to the
most critical performance bottleneck identified by the first stage. This correspondence can be
found in TMA metrics109 table in “Locate-with” column. For example, to locate the bottleneck
associated with a high DRAM_Bound metric in an application running on the Intel Skylake
processor, one should sample on MEM_LOAD_RETIRED.L3_MISS_PS performance event.

108 This only is acceptable if the workload is steady. Otherwise, you would better fall back to the original
strategy of multiple runs and drilling down with each run.

109 TMA metrics - https://download.01.org/perfmon/TMA_Metrics.xlsx.

75

https://download.01.org/perfmon/TMA_Metrics.xlsx
https://download.01.org/perfmon/TMA_Metrics.xlsx

6.1 Top-Down Microarchitecture Analysis

Figure 29: The TMA hierarchy of performance bottlenecks. © Image by Ahmad Yasin.

6.1.1 TMA in Intel® VTune™ Profiler

TMA is featured through the “Microarchitecture Exploration”110 analysis in the latest Intel
VTune Profiler. Figure 30 shows analysis summary for 7-zip benchmark 111. On the diagram,
you can see that a significant amount of execution time was wasted due to CPU Bad
Speculation and, in particular, due to mispredicted branches.

The beauty of the tool is that you can click on the metric you are interested in, and the tool
will get you to the page that shows top functions that contribute to that particular metric.
For example, if you click on the Bad Speculation metric, you will see something like what is
shown in Figure 31. 112

From there, if you double click on the LzmaDec_DecodeReal2 function, Intel® VTune™ Profiler
will get you to the source level view like the one that is shown in Figure 32. The highlighted
line contributes to the biggest number of branch mispredicts in the LzmaDec_DecodeReal2
function.

6.1.2 TMA in Linux Perf

As of Linux kernel 4.8, perf has an option --topdown used in perf stat command113 that
prints TMA level 1 metrics, i.e., only four high-level buckets:

$ perf stat --topdown -a -- taskset -c 0 ./7zip-benchmark b
110 VTune microarchitecture analysis - https://software.intel.com/en-us/vtune-help-general-exploration-
analysis. In pre-2019 versions of Intel® VTune Profiler, it was called as “General Exploration” analysis.

111 7zip benchmark - https://github.com/llvm-mirror/test-suite/tree/master/MultiSource/Benchmarks/7zip.
112 Per-function view of TMA metrics is a feature unique to Intel® VTune profiler.
113 Linux perf stat manual page - http://man7.org/linux/man-pages/man1/perf-stat.1.html#STAT_REP
ORT.

76

https://software.intel.com/en-us/vtune-help-general-exploration-analysis
https://github.com/llvm-mirror/test-suite/tree/master/MultiSource/Benchmarks/7zip
https://software.intel.com/en-us/vtune-help-general-exploration-analysis
https://software.intel.com/en-us/vtune-help-general-exploration-analysis
https://github.com/llvm-mirror/test-suite/tree/master/MultiSource/Benchmarks/7zip
http://man7.org/linux/man-pages/man1/perf-stat.1.html#STAT_REPORT
http://man7.org/linux/man-pages/man1/perf-stat.1.html#STAT_REPORT

6.1 Top-Down Microarchitecture Analysis

Figure 30: Intel VTune Profiler “Microarchitecture Exploration” analysis.

Figure 31: “Microarchitecture Exploration” Bottom-up view.

Figure 32: “Microarchitecture Exploration” source code and assembly view.

77

6.1 Top-Down Microarchitecture Analysis

retiring bad speculat FE bound BE bound
S0-C0 30.8% 41.8% 8.8% 18.6% <==
S0-C1 17.4% 2.3% 12.0% 68.2%
S0-C2 10.1% 5.8% 32.5% 51.6%
S0-C3 47.3% 0.3% 2.9% 49.6%
...

To get values for high-level TMA metrics, Linux perf requires profiling the whole system (-a).
This is why we see metrics for all cores. But since we pinned the benchmark to core0 with
taskset -c 0, we can only focus on the first row that corresponds to S0-C0.

To get access to Top-Down metrics level 2, 3, etc. one can use toplev114 tool that is a part
of pmu-tools115 written by Andi Kleen. It is implemented in Python and invokes Linux perf
under the hood. You will see examples of using it in the next section. Specific Linux kernel
settings must be enabled to use toplev, check the documentation for more details. To better
present the workflow, the next section provides a step-by-step example of using TMA to
improve the performance of a memory-bound application.

Personal Experience: Intel® VTune™ Profiler is an extremely powerful
tool, no doubt about it. However, for quick experiments, I often use Linux
perf that is available on every Linux distribution I’m working on. Thus, the
motivation for the example in the next section being explored with Linux
perf.

6.1.3 Step1: Identify the bottleneck

Suppose we have a tiny benchmark (a.out) that runs for 8.5 sec. The complete source code of
the benchmark can be found on github116.

$ time -p ./a.out
real 8.53

As a first step, we run our application and collect specific metrics that will help us to
characterize it, i.e., we try to detect to which category our application belongs. Below are
level-1 metrics for our benchmark:117

$ ~/pmu-tools/toplev.py --core S0-C0 -l1 -v --no-desc taskset -c 0 ./a.out
...
Level 1
S0-C0 Frontend_Bound: 13.81 % Slots
S0-C0 Bad_Speculation: 0.22 % Slots
S0-C0 Backend_Bound: 53.43 % Slots <==
S0-C0 Retiring: 32.53 % Slots

Notice, the process is pinned to CPU0 (using taskset -c 0), and the output of toplev
is limited to this core only (--core S0-C0). By looking at the output, we can tell that

114 Toplev - https://github.com/andikleen/pmu-tools/wiki/toplev-manual
115 PMU tools - https://github.com/andikleen/pmu-tools.
116 Benchmark for TMA section - https://github.com/dendibakh/dendibakh.github.io/tree/master/_posts/c
ode/TMAM.

117 Outputs in this section are trimmed to fit on the page. Do not rely on the exact format that is presented.

78

https://github.com/andikleen/pmu-tools/wiki/toplev-manual
https://github.com/andikleen/pmu-tools
https://github.com/dendibakh/dendibakh.github.io/tree/master/_posts/code/TMAM
https://github.com/andikleen/pmu-tools/wiki/toplev-manual
https://github.com/andikleen/pmu-tools
https://github.com/dendibakh/dendibakh.github.io/tree/master/_posts/code/TMAM
https://github.com/dendibakh/dendibakh.github.io/tree/master/_posts/code/TMAM

6.1 Top-Down Microarchitecture Analysis

performance of the application is bound by the CPU backend. Without trying to analyze it
right now, let us drill one level down: 118

$ ~/pmu-tools/toplev.py --core S0-C0 -l2 -v --no-desc taskset -c 0 ./a.out
...
Level 1
S0-C0 Frontend_Bound: 13.92 % Slots
S0-C0 Bad_Speculation: 0.23 % Slots
S0-C0 Backend_Bound: 53.39 % Slots
S0-C0 Retiring: 32.49 % Slots
Level 2
S0-C0 Frontend_Bound.FE_Latency: 12.11 % Slots
S0-C0 Frontend_Bound.FE_Bandwidth: 1.84 % Slots
S0-C0 Bad_Speculation.Branch_Mispred: 0.22 % Slots
S0-C0 Bad_Speculation.Machine_Clears: 0.01 % Slots
S0-C0 Backend_Bound.Memory_Bound: 44.59 % Slots <==
S0-C0 Backend_Bound.Core_Bound: 8.80 % Slots
S0-C0 Retiring.Base: 24.83 % Slots
S0-C0 Retiring.Microcode_Sequencer: 7.65 % Slots

We see that the application’s performance is bound by memory accesses. Almost half of the
CPU execution resources were wasted waiting for memory requests to complete. Now let us
dig one level deeper: 119

$ ~/pmu-tools/toplev.py --core S0-C0 -l3 -v --no-desc taskset -c 0 ./a.out
...
Level 1
S0-C0 Frontend_Bound: 13.91 % Slots
S0-C0 Bad_Speculation: 0.24 % Slots
S0-C0 Backend_Bound: 53.36 % Slots
S0-C0 Retiring: 32.41 % Slots
Level 2
S0-C0 FE_Bound.FE_Latency: 12.10 % Slots
S0-C0 FE_Bound.FE_Bandwidth: 1.85 % Slots
S0-C0 BE_Bound.Memory_Bound: 44.58 % Slots
S0-C0 BE_Bound.Core_Bound: 8.78 % Slots
Level 3
S0-C0-T0 BE_Bound.Mem_Bound.L1_Bound: 4.39 % Stalls
S0-C0-T0 BE_Bound.Mem_Bound.L2_Bound: 2.42 % Stalls
S0-C0-T0 BE_Bound.Mem_Bound.L3_Bound: 5.75 % Stalls
S0-C0-T0 BE_Bound.Mem_Bound.DRAM_Bound: 47.11 % Stalls <==
S0-C0-T0 BE_Bound.Mem_Bound.Store_Bound: 0.69 % Stalls
S0-C0-T0 BE_Bound.Core_Bound.Divider: 8.56 % Clocks
S0-C0-T0 BE_Bound.Core_Bound.Ports_Util: 11.31 % Clocks

We found the bottleneck to be in DRAM_Bound. This tells us that many memory accesses miss
in all levels of caches and go all the way down to the main memory. We can also confirm if we

118 Alternatively, we could use -l1 --nodes Core_Bound,Memory_Bound instead of -l2 to limit the collection
of all the metrics since we know from the first level metrics that the application is bound by CPU Backend.

119 Alternatively, we could use -l2 --nodes L1_Bound,L2_Bound,L3_Bound,DRAM_Bound,Store_Bound,
Divider,Ports_Utilization option instead of -l3 to limit collection, since we knew from the second level
metrics that the application is bound by memory.

79

6.1 Top-Down Microarchitecture Analysis

collect the absolute number of L3 cache misses (DRAM hit) for the program. For Skylake
architecture, the DRAM_Bound metric is calculated using the CYCLE_ACTIVITY.STALLS_L3_MISS
performance event. Let’s collect it:

$ perf stat -e cycles,cycle_activity.stalls_l3_miss -- ./a.out
32226253316 cycles
19764641315 cycle_activity.stalls_l3_miss

According to the definition of CYCLE_ACTIVITY.STALLS_L3_MISS, it counts cycles when exe-
cution stalls, while the L3 cache miss demand load is outstanding. We can see that there are
~60% of such cycles, which is pretty bad.

6.1.4 Step2: Locate the place in the code

As the second step in the TMA process, we would locate the place in the code where the
bottleneck occurs most frequently. In order to do so, one should sample the workload using a
performance event that corresponds to the type of bottleneck that was identified during Step
1.

A recommended way to find such an event is to run toplev tool with the --show-sample
option that will suggest the perf record command line that can be used to locate the
issue. For the purpose of understanding the mechanics of TMA, we also present the manual
way to find an event associated with a particular performance bottleneck. Correspondence
between performance bottlenecks and performance events that should be used for locating
the place in the code where such bottlenecks take place can be done with the help of TMA
metrics120 table introduced earlier in the chapter. The Locate-with column denotes a
performance event that should be used to locate the exact place in the code where the issue
occurs. For the purpose of our example, in order to find memory accesses that contribute
to such a high value of the DRAM_Bound metric (miss in the L3 cache), we should sample on
MEM_LOAD_RETIRED.L3_MISS_PS precise event as shown in the listing above:

$ perf record -e cpu/event=0xd1,umask=0x20,name=MEM_LOAD_RETIRED.L3_MISS/ppp
./a.out

$ perf report -n --stdio
...
Samples: 33K of event ‘MEM_LOAD_RETIRED.’L3_MISS
Event count (approx.): 71363893
Overhead Samples Shared Object Symbol
........
#

99.95% 33811 a.out [.] foo
0.03% 52 [kernel] [k] get_page_from_freelist
0.01% 3 [kernel] [k] free_pages_prepare
0.00% 1 [kernel] [k] free_pcppages_bulk

The majority of L3 misses are caused by memory accesses in function foo inside executable
a.out. In order to avoid compiler optimizations, function foo is implemented in assembly lan-
guage, which is presented in Listing 11. The “driver” portion of the benchmark is implemented
in the main function, as shown in Listing 12. We allocate a big enough array a to make it

120 TMA metrics - https://download.01.org/perfmon/TMA_Metrics.xlsx.

80

https://download.01.org/perfmon/TMA_Metrics.xlsx
https://download.01.org/perfmon/TMA_Metrics.xlsx
https://download.01.org/perfmon/TMA_Metrics.xlsx

6.1 Top-Down Microarchitecture Analysis

not fit in the L3 cache121. The benchmark basically generates a random index to array a and
passes it to the foo function along with the address of array a. Later foo function reads this
random memory location. 122

Listing 11 Assembly code of function foo.

$ perf annotate --stdio -M intel foo
Percent | Disassembly of a.out for MEM_LOAD_RETIRED.L3_MISS
--

: Disassembly of section .text:
:
: 0000000000400a00 <foo>:
: foo():

0.00 : 400a00: nop DWORD PTR [rax+rax*1+0x0]
0.00 : 400a08: nop DWORD PTR [rax+rax*1+0x0]

...
100.00 : 400e07: mov rax,QWORD PTR [rdi+rsi*1] <==

...
0.00 : 400e13: xor rax,rax
0.00 : 400e16: ret

Listing 12 Source code of function main.

extern "C" { void foo(char* a, int n); }
const int _200MB = 1024*1024*200;
int main() {

char* a = (char*)malloc(_200MB); // 200 MB buffer
...
for (int i = 0; i < 100000000; i++) {

int random_int = distribution(generator);
foo(a, random_int);

}
...

}

By looking at Listing 11, we can see that all L3-Cache misses in function foo are tagged to a
single instruction. Now that we know which instruction caused so many L3 misses, let’s fix it.

6.1.5 Step3: Fix the issue

Because there is a time window between the moment when we get the next address that will
be accessed and actual load instruction, we can add a prefetch hint123 as shown on Listing 13.
More information about memory prefetching can be found in section 8.1.2.

This hint improved execution time by 2 seconds, which is a 30% speedup. Notice 10x less
value for CYCLE_ACTIVITY.STALLS_L3_MISS event:

121 L3 cache on the machine I was using is 38.5 MB - Intel(R) Xeon(R) Platinum 8180 CPU.
122 According to x86 calling conventions (https://en.wikipedia.org/wiki/X86_calling_conventions), first 2
arguments land in rdi and rsi registers respectively.

123 Documentation about __builtin_prefetch can be found at https://gcc.gnu.org/onlinedocs/gcc/Other-
Builtins.html.

81

https://en.wikipedia.org/wiki/X86_calling_conventions
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

6.1 Top-Down Microarchitecture Analysis

Listing 13 Inserting memory prefetch into main.

for (int i = 0; i < 100000000; i++) {
int random_int = distribution(generator);

+ __builtin_prefetch (a + random_int, 0, 1);
foo(a, random_int);

}

$ perf stat -e cycles,cycle_activity.stalls_l3_miss -- ./a.out
24621931288 cycles
2069238765 cycle_activity.stalls_l3_miss

6,498080824 seconds time elapsed

TMA is an iterative process, so we now need to repeat the process starting from the Step1.
Likely it will move the bottleneck into some other bucket, in this case, Retiring. This was
an easy example demonstrating the workflow of TMA methodology. Analyzing real-world
application is unlikely to be that easy. The next entire chapter in this book is organized in a
way to be conveniently used with the TMA process. E.g., its sections are broken down to reflect
each high-level category of performance bottlenecks. The idea behind such a structure is to
provide some kind of checklist which developer can use to drive code changes after performance
issue has been found. For instance, when developers see that the application they are working
on is Memory Bound, they can look up section 8.1 for ideas.

6.1.6 Summary

TMA is great for identifying CPU performance bottlenecks in the code. Ideally, when we run
it on some application, we would like to see the Retiring metric at 100%. This would mean
that this application fully saturates the CPU. It is possible to achieve results close to this
on a toy program. However, real-world applications are far from getting there. Figure 33
shows top-level TMA metrics for SPEC CPU2006124 benchmark for Skylake CPU generation.
Keep in mind that the numbers are likely to change for other CPU generations as architects
constantly try to improve the CPU design. The numbers are also likely to change for other
instruction set architectures (ISA) and compiler versions.

Using TMA on a code that has major performance flaws is not recommended because it
will likely steer you in the wrong direction, and instead of fixing real high-level performance
problems, you will be tuning bad code, which is just a waste of time. Similarly, make sure the
environment doesn’t get in the way of profiling. For example, if you drop filesystem cache and
run the benchmark under TMA, it will likely show that your application is Memory Bound,
which in fact, may be false when filesystem cache is warmed up.

Workload characterization provided by the TMA can increase the scope of potential optimiza-
tions beyond source code. For example, if the application is memory bound and all possible
ways to speed it up on the software level are examined, it is possible to improve the memory
subsystem by using faster memory. This enables educated experiments since the money will
only be spent once you found that the program is memory bound and it will benefit from
faster memory.

At the time of this writing, the first level of TMA metrics is also available on AMD processors.
124 SPCE CPU 2006 - http://spec.org/cpu2006/.

82

http://spec.org/cpu2006/
http://spec.org/cpu2006/

6.2 Last Branch Record

Figure 33: Top Level TMA metrics for SPEC CPU2006. © Image by Ahmad Yasin, http:
//cs.haifa.ac.il/~yosi/PARC/yasin.pdf .

Additional resources and links:

• Ahmad Yasin’s paper “A top-down method for performance analysis and counters
architecture” [Yasin, 2014].

• Presentation “Software Optimizations Become Simple with Top-Down Analysis on Intel
Skylake” by Ahmad Yasin at IDF’15, URL: https://youtu.be/kjufVhyuV_A.

• Andi Kleen’s blog - pmu-tools, part II: toplev, URL: http://halobates.de/blog/p/262.

• Toplev manual, URL: https://github.com/andikleen/pmu-tools/wiki/toplev-manual.

• Understanding How General Exploration Works in Intel® VTune™ Profiler, URL:
https://software.intel.com/en-us/articles/understanding-how-general-exploration-
works-in-intel-vtune-amplifier-xe.

6.2 Last Branch Record

Modern Intel and AMD CPUs have a feature called Last Branch Record (LBR), where the
CPU continuously logs a number of previously executed branches. But before going into the
details, one might ask: Why are we so interested in branches? Well, because this is how we
are able to determine the control flow of our program. We largely ignore other instructions in
a basic block (see section 7.2) because branches are always the last instruction in a basic block.
Since all instructions in the basic block are guaranteed to be executed once, we can only focus
on branches that will “represent” the entire basic block. Thus, it’s possible to reconstruct
the entire line-by-line execution path of the program if we track the outcome of every branch.
In fact, this is what Intel Processor Traces (PT) feature is capable of doing, which will be
discussed in section 6.4. LBR feature predates PT and has different use cases and special
features.

Thanks to the LBR mechanism, the CPU can continuously log branches to a set of model-
specific registers (MSRs) in parallel with executing the program, causing minimal slowdown125.
Hardware logs the “from” and “to” address of each branch along with some additional

125 Runtime overhead for the majority of LBR use cases is below 1%. [Nowak and Bitzes, 2014]

83

http://cs.haifa.ac.il/~yosi/PARC/yasin.pdf
http://cs.haifa.ac.il/~yosi/PARC/yasin.pdf
https://youtu.be/kjufVhyuV_A
http://halobates.de/blog/p/262
https://github.com/andikleen/pmu-tools/wiki/toplev-manual
https://software.intel.com/en-us/articles/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe
https://software.intel.com/en-us/articles/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe

6.2 Last Branch Record

metadata (see Figure 34). The registers act like a ring buffer that is continuously overwritten
and provides only 32 most recent branch outcomes126. If we collect a long enough history of
source-destination pairs, we will be able to unwind the control flow of our program, just like a
call stack with limited depth.

Figure 34: 64-bit Address Layout of LBR MSR. © Image from [Int, 2020].

With LBRs, we can sample branches, but during each sample, look at the previous branches
inside the LBR stack that were executed. This gives reasonable coverage of the control flow in
the hot code paths but does not overwhelm us with too much information, as only a smaller
number of the total branches are examined. It is important to keep in mind that this is still
sampling, so not every executed branch can be examined. CPU generally executes too fast for
that to be feasible.[Kleen, 2016]

• Last Branch Record (LBR) Stack — since Skylake provides 32 pairs of MSRs that
store the source and destination address of recently taken branches.

• Last Branch Record Top-of-Stack (TOS) Pointer — contains a pointer to the
MSR in the LBR stack that contains the most recent branch, interrupt or exception
recorded.

It is very important to keep in mind that only taken branches are being logged with the LBR
mechanism. Below is an example that shows how branch results are tracked in the LBR stack.

----> 4eda10: mov edi,DWORD PTR [rbx]
| 4eda12: test edi,edi
| --- 4eda14: jns 4eda1e <== NOT taken
| | 4eda16: mov eax,edi
| | 4eda18: shl eax,0x7
| | 4eda1b: lea edi,[rax+rdi*8]
| > 4eda1e: call 4edb26
| 4eda23: add rbx,0x4
| 4eda27: mov DWORD PTR [rbx-0x4],eax
| 4eda2a: cmp rbx,rbp
---- 4eda2d: jne 4eda10 <== taken

Below is what we expect to see in the LBR stack at the moment we executed the CALL
instruction. Because the JNS branch (4eda14 -> 4eda1e) was not taken, it is not logged and
thus does not appear in the LBR stack:

FROM_IP TO_IP
... ...

126 Only since Skylake microarchitecture. In Haswell and Broadwell architectures LBR stack is 16 entries deep.
Check the Intel manual for information about other architectures.

84

6.2 Last Branch Record

4eda2d 4eda10
4eda1e 4edb26 <== LBR TOS

Personal Experience: Untaken branches not being logged might add some
additional burden for analysis but usually doesn’t complicate it too much.
We can still unwind the LBR stack since we know that the control flow was
sequential from TO_IP(N-1) to FROM_IP(N).

Starting from Haswell, LBR entry received additional components to detect branch mispredic-
tion. There is a dedicated bit for it in the LBR entry (see [Int, 2020, Volume 3B, Chapter
17]). Since Skylake additional LBR_INFO component was added to the LBR entry, which has
Cycle Count field that counts elapsed core clocks since the last update to the LBR stack.
There are important applications to those additions, which we will discuss later. The exact
format of LBR entry for a specific processor can be found in [Int, 2020, Volume 3B, Chapters
17,18].

Users can make sure LBRs are enabled on their system by doing the following command:

$ dmesg | grep -i lbr
[0.228149] Performance Events: PEBS fmt3+, 32-deep LBR, Skylake events,

full-width counters, Intel PMU driver.

6.2.1 Collecting LBR stacks

With Linux perf, one can collect LBR stacks using the command below:

$ ~/perf record -b -e cycles ./a.exe
[perf record: Woken up 68 times to write data]
[perf record: Captured and wrote 17.205 MB perf.data (22089 samples)]

LBR stacks can also be collected using perf record --call-graph lbr command, but the
amount of information collected is less than using perf record -b. For example, branch
misprediction and cycles data is not collected when running perf record --call-graph lbr.

Because each collected sample captures the entire LBR stack (32 last branch records), the size
of collected data (perf.data) is significantly bigger than sampling without LBRs. Below is
the Linux perf command one can use to dump the contents of collected branch stacks:

$ perf script -F brstack &> dump.txt

If we look inside the dump.txt (it might be big) we will see something like as shown below:

...
0x4edabd/0x4edad0/P/-/-/2 0x4edaf9/0x4edab0/P/-/-/29
0x4edabd/0x4edad0/P/-/-/2 0x4edb24/0x4edab0/P/-/-/23
0x4edadd/0x4edb00/M/-/-/4 0x4edabd/0x4edad0/P/-/-/2
0x4edb24/0x4edab0/P/-/-/24 0x4edadd/0x4edb00/M/-/-/4
0x4edabd/0x4edad0/P/-/-/2 0x4edb24/0x4edab0/P/-/-/23
0x4edadd/0x4edb00/M/-/-/1 0x4edabd/0x4edad0/P/-/-/1
0x4edb24/0x4edab0/P/-/-/3 0x4edadd/0x4edb00/P/-/-/1
0x4edabd/0x4edad0/P/-/-/1 0x4edb24/0x4edab0/P/-/-/3
...

85

6.2 Last Branch Record

On the block above, we present eight entries from the LBR stack, which typically consists
of 32 LBR entries. Each entry has FROM and TO addresses (hexadecimal values), predicted
flag (M/P)127, and a number of cycles (number in the last position of each entry). Compo-
nents marked with “-” are related to transactional memory (TSX), which we won’t discuss
here. Curious readers can look up the format of decoded LBR entry in the perf script
specification128.

There is a number of important use cases for LBR. In the next sections, we will address the
most important ones.

6.2.2 Capture call graph

Discussions on collecting call graph and its importance were covered in section 5.4.3. LBR can
be used for collecting call-graph information even if you compiled a program without frame
pointers (controlled by compiler option -fomit-frame-pointer, ON by default) or debug
information129:

$ perf record --call-graph lbr -- ./a.exe
$ perf report -n --stdio
Children Self Samples Command Object Symbol
........

99.96% 99.94% 65447 a.out a.out [.] bar
|
--99.94%--main

|
|--90.86%--foo
| |
| --90.86%--bar
|
--9.08%--zoo

bar

As you can see, we identified the hottest function in the program (which is bar). Also, we
found out callers that contribute to the most time spent in function bar (it is foo). In this
case, we can see that 91% of samples in bar have foo as its caller function.130

Using the LBR feature, we can determine a Hyper Block (sometimes called Super Block),
which is a chain of basic blocks executed most frequently in the whole program. Basic blocks
from that chain are not necessarily laid in the sequential physical order; they’re executed
sequentially.

6.2.3 Identify hot branches

The LBR feature also allows us to know what were the most frequently taken branches:

$ perf record -e cycles -b -- ./a.exe
[perf record: Woken up 3 times to write data]

127 M - Mispredicted, P - Predicted.
128 Linux perf script manual page - http://man7.org/linux/man-pages/man1/perf-script.1.html.
129 Utilized by perf record --call-graph dwarf.
130 We cannot necessarily drive conclusions about function call counts in this case. For example, we cannot say
that foo calls bar 10 times more than zoo. It could be the case that foo calls bar once, but it executes some
expensive path inside bar while zoo calls bar lots of times but returns quickly from it.

86

http://man7.org/linux/man-pages/man1/perf-script.1.html
http://man7.org/linux/man-pages/man1/perf-script.1.html

6.2 Last Branch Record

[perf record: Captured and wrote 0.535 MB perf.data (670 samples)]
$ perf report -n --sort overhead,srcline_from,srcline_to -F

+dso,symbol_from,symbol_to --stdio
Samples: 21K of event 'cycles'
Event count (approx.): 21440
Overhead Samples Object Source Sym Target Sym From Line To Line
........

51.65% 11074 a.exe [.] bar [.] bar a.c:4 a.c:5
22.30% 4782 a.exe [.] foo [.] bar a.c:10 (null)
21.89% 4693 a.exe [.] foo [.] zoo a.c:11 (null)
4.03% 863 a.exe [.] main [.] foo a.c:21 (null)

From this example, we can see that more than 50% of taken branches are inside the bar
function, 22% of branches are function calls from foo to bar, and so on. Notice how perf
switched from cycles events to analyzing LBR stacks: only 670 samples were collected, yet
we have an entire LBR stack captured with every sample. This gives us 670 * 32 = 21440
LBR entries (branch outcomes) for analysis.131

Most of the time, it’s possible to determine the location of the branch just from the line of
code and target symbol. However, theoretically, one could write code with two if statements
written on a single line. Also, when expanding the macro definition, all the expanded code
gets the same source line, which is another situation when this might happen. This issue does
not totally block the analysis but only makes it a little more difficult. In order to disambiguate
two branches, you likely need to analyze raw LBR stacks yourself (see example on easyperf132

blog).

6.2.4 Analyze branch misprediction rate

It’s also possible to know the misprediction rate for hot branches 133:

$ perf record -e cycles -b -- ./a.exe
$ perf report -n --sort symbol_from,symbol_to -F

+mispredict,srcline_from,srcline_to --stdio
Samples: 657K of event 'cycles'
Event count (approx.): 657888
Overhead Samples Mis From Line To Line Source Sym Target Sym
........

46.12% 303391 N dec.c:36 dec.c:40 LzmaDec LzmaDec
22.33% 146900 N enc.c:25 enc.c:26 LzmaFind LzmaFind
6.70% 44074 N lz.c:13 lz.c:27 LzmaEnc LzmaEnc
6.33% 41665 Y dec.c:36 dec.c:40 LzmaDec LzmaDec

In this example134, lines that correspond to function LzmaDec are of particular interest to
us. Using the reasoning from section 6.2.3, we can conclude that the branch on source line

131 The report header generated by perf confuses users because it says 21K of event cycles. But there are
21K LBR entries, not cycles.

132 Analyzing raw LBR stacks - https://easyperf.net/blog/2019/05/06/Estimating-branch-probability.
133 Adding -F +srcline_from,srcline_to slows down building report. Hopefully, in newer versions of perf,
decoding time will be improved.

134 This example is taken from the real-world application, 7-zip benchmark: https://github.com/llvm-
mirror/test-suite/tree/master/MultiSource/Benchmarks/7zip. Although the output of perf report is trimmed a
little bit to fit nicely on a page.

87

https://easyperf.net/blog/2019/05/06/Estimating-branch-probability
https://easyperf.net/blog/2019/05/06/Estimating-branch-probability
https://github.com/llvm-mirror/test-suite/tree/master/MultiSource/Benchmarks/7zip
https://github.com/llvm-mirror/test-suite/tree/master/MultiSource/Benchmarks/7zip

6.2 Last Branch Record

dec.c:36 is the most executed branch in the benchmark. In the output that Linux perf
provides, we can spot two entries that correspond to the LzmaDec function: one with Y and
one with N letters. Analyzing those two entries together gives us a misprediction rate of the
branch. In this case, we know that the branch on line dec.c:36 was predicted 303391 times
(corresponds to N) and was mispredicted 41665 times (corresponds to Y), which gives us 88%
prediction rate.

Linux perf calculates the misprediction rate by analyzing each LBR entry and extracting
misprediction bits from it. So that for every branch, we have a number of times it was predicted
correctly and a number of mispredictions. Again, due to the nature of sampling, it is possible
that some branches might have an N entry but no corresponding Y entry. It could mean that
there are no LBR entries for that branch being mispredicted, but it doesn’t necessarily mean
that the prediction rate equals to 100%.

6.2.5 Precise timing of machine code

As it was discussed in section 6.2, starting from Skylake architecture, LBR entries have
Cycle Count information. This additional field gives us a number of cycles elapsed between
two taken branches. If the target address in the previous LBR entry is the beginning of some
basic block (BB) and the source address of the current LBR entry is the last instruction of the
same basic block, then the cycle count is the latency of this basic block. For example:

400618: movb $0x0, (%rbp,%rdx,1) <= start of a BB
40061d: add $0x1, %rdx
400621: cmp $0xc800000, %rdx
400628: jnz 0x400644 <= end of a BB

Suppose we have two entries in the LBR stack:

FROM_IP TO_IP Cycle Count
...
40060a 400618 10
400628 400644 5 <== LBR TOS

Given that information, we know that there was one occurrence when the basic block that
starts at offset 400618 was executed in 5 cycles. If we collect enough samples, we could plot a
probability density function of the latency for that basic block (see figure 35). This chart was
compiled by analyzing all LBR entries that satisfy the rule described above. For example, the
basic block was executed in ~75 cycles only 4% of the time, but more often, it was executed
between 260 and 314 cycles. This block has a random load inside a huge array that doesn’t fit
in CPU L3 cache, so the latency of the basic block largely depends on this load. There are two
important spikes on the chart that is shown in Figure 35: first, around 80 cycles corresponds
to the L3 cache hit, and the second spike, around 300 cycles, corresponds to L3 cache miss
where the load request goes all the way down to the main memory.

This information can be used for further fine-grained tuning of this basic block. This example
might benefit from memory prefetching, which we will discuss in section 8.1.2. Also, this cycle
information can be used for timing loop iterations, where every loop iteration ends with a
taken branch (back edge).

An example of how one can build a probability density function for the latency of an arbitrary

88

6.2 Last Branch Record

Figure 35: Probability density function for latency of the basic block that starts at address
0x400618.

basic block can be found on easyperf blog135. However, in newer versions of Linux perf, getting
this information is much easier. For example136:

$ perf record -e cycles -b -- ./a.exe
$ perf report -n --sort symbol_from,symbol_to -F

+cycles,srcline_from,srcline_to --stdio
Samples: 658K of event 'cycles'
Event count (approx.): 658240
Overhead Samples BBCycles FromSrcLine ToSrcLine
........

2.82% 18581 1 dec.c:325 dec.c:326
2.54% 16728 2 dec.c:174 dec.c:174
2.40% 15815 4 dec.c:174 dec.c:174
2.28% 15032 2 find.c:375 find.c:376
1.59% 10484 1 dec.c:174 dec.c:174
1.44% 9474 1 enc.c:1310 enc.c:1315
1.43% 9392 10 7zCrc.c:15 7zCrc.c:17
0.85% 5567 32 dec.c:174 dec.c:174
0.78% 5126 1 enc.c:820 find.c:540
0.77% 5066 1 enc.c:1335 enc.c:1325
0.76% 5014 6 dec.c:299 dec.c:299
0.72% 4770 6 dec.c:174 dec.c:174
0.71% 4681 2 dec.c:396 dec.c:395
0.69% 4563 3 dec.c:174 dec.c:174
0.58% 3804 24 dec.c:174 dec.c:174

Several not significant lines were removed from the output of perf record in order to make it
fit on the page. If we now focus on the branch in which source and destination is dec.c:174137,
we can find multiple lines associated with it. Linux perf sorts entries by overhead first, which

135 Building a probability density function for the latency of an arbitrary basic block - https://easyperf.net/b
log/2019/04/03/Precise-timing-of-machine-code-with-Linux-perf.

136 Adding -F +srcline_from,srcline_to slows down building report. Hopefully, in newer versions of perf,
decoding time will be improved.

137 In the source code, line dec.c:174 expands a macro that has a self-contained branch. That’s why the
source and destination happen to be on the same line.

89

https://easyperf.net/blog/2019/04/03/Precise-timing-of-machine-code-with-Linux-perf
https://easyperf.net/blog/2019/04/03/Precise-timing-of-machine-code-with-Linux-perf
https://easyperf.net/blog/2019/04/03/Precise-timing-of-machine-code-with-Linux-perf

6.2 Last Branch Record

requires us to manually filter entries for the branch which we are interested in. In fact, if we
filter them, we will get the latency distribution for the basic block that ends with this branch,
as shown in the table 5. Later user can plot this data and get a chart similar to Figure 35.

Table 5: Probability density for basic block latency.

Cycles Number of samples Probability density

1 10484 17.0%
2 16728 27.1%
3 4563 7.4%
4 15815 25.6%
6 4770 7.7%
24 3804 6.2%
32 5567 9.0%

Currently, timed LBR is the most precise cycle-accurate source of timing information in the
system.

6.2.6 Estimating branch outcome probability

Later in section 7, we will discuss the importance of code layout for performance. Going
forward a little bit, having a hot path in a fall through manner138 generally improves the
performance of the program. Considering a single branch, knowing that condition 99% of
the time is false or true is essential for a compiler to make better optimizing decisions.

LBR feature allows us to get this data without instrumenting the code. As the outcome from
the analysis, the user will get a ratio between true and false outcomes of the condition, i.e.,
how many times the branch was taken and how much not taken. This feature especially shines
when analyzing indirect jumps (switch statement) and indirect calls (virtual calls). One can
find examples of using it on a real-world application on easyperf blog139.

6.2.7 Other use cases

• Profile guided optimizations. LBR feature can provide profiling feedback data for op-
timizing compilers. LBR can be a better choice as opposed to static code instrumentation
when runtime overhead is considered.

• Capturing function arguments. When LBR features is used together with PEBS
(see section 6.3), it is possible to capture function arguments, since according to x86
calling conventions140 first few arguments of a callee land in registers which are captured
by PEBS record. [Int, 2020, Appendix B, Chapter B.3.3.4]

• Basic Block Execution Counts. Since all the basic blocks between a branch IP
(source) and the previous target in the LBR stack are executed exactly once, it’s possible
to evaluate the execution rate of basic blocks inside a program. This process involves
building a map of starting addresses of each basic block and then traversing collected
LBR stacks backward. [Int, 2020, Appendix B, Chapter B.3.3.4]

138 I.e., when outcomes of branches are not taken.
139 Analyzing raw LBR stacks - https://easyperf.net/blog/2019/05/06/Estimating-branch-probability.
140 X86 calling conventions - https://en.wikipedia.org/wiki/X86_calling_conventions

90

https://easyperf.net/blog/2019/05/06/Estimating-branch-probability
https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/X86_calling_conventions
https://easyperf.net/blog/2019/05/06/Estimating-branch-probability
https://en.wikipedia.org/wiki/X86_calling_conventions

6.3 Processor Event-Based Sampling

6.3 Processor Event-Based Sampling

The Processor Event-Based Sampling (PEBS) is another very useful feature in CPUs that
provides many different ways to enhance performance analysis. Similar to Last Branch Record
(see section 6.2), PEBS is used while profiling the program to capture additional data with
every collected sample. In Intel processors, the PEBS feature was introduced in NetBurst
microarchitecture. A similar feature on AMD processors is called Instruction Based Sampling
(IBS) and is available starting with the Family 10h generation of cores (code-named “Barcelona”
and “Shanghai”).

The set of additional data has a defined format, which is called the PEBS record. When a
performance counter is configured for PEBS, the processor saves the contents of the PEBS buffer,
which is later stored in memory. The record contains the architectural state of the processor,
for instance, the state of the general-purpose registers (EAX, EBX, ESP, etc.), instruction pointer
register (EIP), flags register (EFLAGS) and more. The content layout of a PEBS record varies
across different implementations that support PEBS. See [Int, 2020, Volume 3B, Chapter
18.6.2.4 Processor Event-Based Sampling (PEBS)] for details of enumerating PEBS record
format. PEBS Record Format for Intel Skylake CPU is shown in Figure 36.

Figure 36: PEBS Record Format for 6th Generation, 7th Generation and 8th Generation Intel
Core Processor Families. © Image from [Int, 2020, Volume 3B, Chapter 18].

Users can check if PEBS is enabled by executing dmesg:

$ dmesg | grep PEBS
[0.061116] Performance Events: PEBS fmt1+, IvyBridge events, 16-deep

LBR, full-width counters, Intel PMU driver.

Linux perf doesn’t export the raw PEBS output as it does for LBR141. Instead, it processes
PEBS records and extracts only the subset of data depending on a particular need. So,
it’s not possible to access the collection of raw PEBS records with Linux perf. Although,
Linux perf provides some PEBS data processed from raw samples, which can be accessed by
perf report -D. To dump raw PEBS records, one can use pebs-grabber142 tool.

141 For LBR, Linux perf dumps entire contents of LBR stack with every collected sample. So, it’s possible to
analyze raw LBR dumps collected by Linux perf.

142 PEBS grabber tool - https://github.com/andikleen/pmu-tools/tree/master/pebs-grabber. Requires root
access.

91

https://github.com/andikleen/pmu-tools/tree/master/pebs-grabber
https://github.com/andikleen/pmu-tools/tree/master/pebs-grabber

6.3 Processor Event-Based Sampling

There is a number of benefits that the PEBS mechanism brings to performance monitoring,
which we will discuss in the next section.

6.3.1 Precise events

One of the major problems in profiling is pinpointing the exact instruction that caused a
particular performance event. As discussed in section 5.4, interrupt-based sampling is based on
counting specific performance events and waiting until it overflows. When an overflow interrupt
happens, it takes a processor some amount of time to stop the execution and tag instruction
that caused the overflow. This is especially difficult for modern complex out-of-order CPU
architectures.

It introduces the notion of a skid, which is defined as the distance between the IP that caused
the event to the IP where the event is tagged (in the IP field inside the PEBS record). Skid
makes it difficult to discover the instruction, which is actually causing the performance issue.
Consider an application with a big number of cache misses and the hot assembly code that
looks like this:

; load1
; load2
; load3

The profiler might attribute load3 as the instruction that causes a large number of cache
misses, while in reality, load1 is the instruction to blame. This usually causes a lot of confusion
for beginners. Interested readers could learn more about underlying reasons for such issues on
Intel Developer Zone website143.

The problem with the skid is mitigated by having the processor itself store the instruction
pointer (along with other information) in a PEBS record. The EventingIP field in the PEBS
record indicates the instruction that caused the event. This needs to be supported by the
hardware and is typically available only for a subset of supported events, called “Precise
Events”. A complete list of precise events for specific microarchitecture can be found in [Int,
2020, Volume 3B, Chapter 18]. Below listed precise events for the Skylake Microarchitecture:

INST_RETIRED.*
OTHER_ASSISTS.*
BR_INST_RETIRED.*
BR_MISP_RETIRED.*
FRONTEND_RETIRED.*
HLE_RETIRED.*
RTM_RETIRED.*
MEM_INST_RETIRED.*
MEM_LOAD_RETIRED.*
MEM_LOAD_L3_HIT_RETIRED.*

, where .* means that all sub-events inside a group can be configured as precise events.

TMA methodology (see section 6.1) heavily relies on precise events to locate the source of
inefficient execution of the code. An example of using precise events to mitigate skid can be
found on easyperf blog144. Users of Linux perf should add ppp suffix to the event to enable
precise tagging:

143 Hardware event skid - https://software.intel.com/en-us/vtune-help-hardware-event-skid.
144 Performance skid - https://easyperf.net/blog/2018/08/29/Understanding-performance-events-skid.

92

https://software.intel.com/en-us/vtune-help-hardware-event-skid
https://easyperf.net/blog/2018/08/29/Understanding-performance-events-skid
https://software.intel.com/en-us/vtune-help-hardware-event-skid
https://easyperf.net/blog/2018/08/29/Understanding-performance-events-skid

6.3 Processor Event-Based Sampling

$ perf record -e cpu/event=0xd1,umask=0x20,name=MEM_LOAD_RETIRED.L3_MISS/ppp
-- ./a.exe

6.3.2 Lower sampling overhead

Frequently generating interrupts and having an analysis tool itself capture program state
inside the interrupt service routine is very costly since it involves OS interaction. This is why
some hardware allows automatically sampling multiple times to a dedicated buffer without
any interrupts. Only when the dedicated buffer is full, the processor raises interrupt, and the
buffer gets flushed to memory. This has a lower overhead than traditional interrupt-based
sampling.

When a performance counter is configured for PEBS, an overflow condition in the counter will
arm the PEBS mechanism. On the subsequent event following overflow, the processor will
generate a PEBS event. On a PEBS event, the processor stores the PEBS record in the PEBS
buffer area, clears the counter overflow status and reloads the counter with the initial value. If
the buffer is full, the CPU will raise an interrupt. [Int, 2020, Volume 3B, Chapter 18]

Note that the PEBS buffer itself is located in the main memory, and its size is configurable.
Again, it is the job of a performance analysis tool to allocate and configure the memory area
for the CPU to be able to dump PEBS records in it.

6.3.3 Analyzing memory accesses

Memory accesses are a critical factor for the performance of many applications. With PEBS, it
is possible to gather detailed information about memory accesses in the program. The feature
that allows this to happen is called Data Address Profiling. To provide additional information
about sampled loads and stores, it leverages the following fields inside the PEBS facility (see
Figure 36):

• Data Linear Address (0x98)
• Data Source Encoding (0xA0)
• Latency value (0xA8)

If the performance event supports Data Linear Address (DLA) facility, and it is enabled, CPU
will dump memory addresses and latency of the sampled memory access. Keep in mind; this
feature does not trace all the stores and loads. Otherwise, the overhead would be too big.
Instead, it samples on memory accesses, i.e., analyzes only one from 1000 accesses or so. It is
customizable how much samples per second you want.

One of the most important use cases for this PEBS extension is detecting True/False sharing145,
which we will discuss in section 11.7. Linux perf c2c tool heavily relies on DLA data to find
contested memory accesses, which could experience True/False sharing.

Also, with the help of Data Address Profiling, user can get general statistics about memory
accesses in the program:

$ perf mem record -- ./a.exe
$ perf mem -t load report --sort=mem --stdio
Samples: 656 of event 'cpu/mem-loads,ldlat=30/P'
Total weight : 136578
Overhead Samples Memory access

145 False sharing - https://en.wikipedia.org/wiki/False_sharing.

93

https://en.wikipedia.org/wiki/False_sharing
https://en.wikipedia.org/wiki/False_sharing

6.4 Intel Processor Traces

........
44.23% 267 LFB or LFB hit
18.87% 111 L3 or L3 hit
15.19% 78 Local RAM or RAM hit
13.38% 77 L2 or L2 hit
8.34% 123 L1 or L1 hit

From this output, we can see that 8% of the loads in the application were satisfied with L1
cache, 15% from DRAM, and so on.

6.4 Intel Processor Traces

The Intel Processor Traces (PT) is a CPU feature that records the program execution by
encoding packets in a highly compressed binary format that can be used to reconstruct
execution flow with a timestamp on every instruction. PT has extensive coverage and relatively
small overhead146, which is usually below 5%. Its main usages are postmortem analysis and
root-causing performance glitches.

6.4.1 Workflow

Similar to sampling techniques, PT does not require any modifications to the source code. All
you need to collect traces is just to run the program under the tool that supports PT. Once
PT is enabled and the benchmark launches, the analysis tool starts writing tracing packets to
DRAM.

Similar to LBR, Intel PT works by recording branches. At runtime, whenever a CPU encounters
any branch instruction, PT will record the outcome of this branch. For a simple conditional
jump instruction, a CPU will record whether it was taken (T) or not taken (NT) using just
1 bit. For an indirect call, PT will record the destination address. Note that unconditional
branches are ignored since we statically know their targets.

An example of encoding for a small instruction sequence is shown in Figure 37. Instructions
like PUSH, MOV, ADD, and CMP are ignored because they don’t change the control flow. However,
JE instruction may jump to .label, so its result needs to be recorded. Later there is an
indirect call for which destination address is saved.

At the time of analysis, we bring together the application binary and collected PT trace. SW
decoder needs the application binary file in order to reconstruct the execution flow of the
program. It starts from the entry point and then uses collected traces as a lookup reference to
determine the control flow. Figure 38 shows an example of decoding Intel Processor Traces.
Suppose that the PUSH instruction is an entry point of the application binary file. Then PUSH,
MOV, ADD, and CMP are reconstructed as-is without looking into encoded traces. Later SW
decoder encounters JE instruction, which is a conditional branch and for which we need to
look up the outcome. According to the traces on fig. 38, JE was taken (T), so we skip the
next MOV instruction and go to the CALL instruction. Again, CALL(edx) is an instruction that
changes the control flow, so we look up the destination address in encoded traces, which is
0x407e1d8. Instructions highlighted in yellow were executed when our program was running.
Note that this is exact reconstruction of program execution; we did not skip any instruction.
Later we can map assembly instructions back to the source code by using debug information
and have a log of source code that was executed line by line.

146 See more information on overhead in [Sharma and Dagenais, 2016].

94

6.4 Intel Processor Traces

Figure 37: Intel Processor Traces encoding

Figure 38: Intel Processor Traces decoding

95

6.4 Intel Processor Traces

6.4.2 Timing Packets

With Intel PT, not only execution flow can be traced but also timing information. In addition to
saving jump destinations, PT can also emit timing packets. Figure 39 provides a visualization
of how time packets can be used to restore timestamps for instructions. As in the previous
example, we first see that JNZ was not taken, so we update it and all the instructions above
with timestamp 0ns. Then we see a timing update of 2ns and JE being taken, so we update it
and all the instructions above JE (and below JNZ) with timestamp 2ns. After that, there is an
indirect call, but no timing packet is attached to it, so we do not update timestamps. Then
we see that 100ns elapsed, and JB was not taken, so we update all the instructions above it
with the timestamp of 102ns.

Figure 39: Intel Processor Traces timings

In the example shown in figure 39, instruction data (control flow) is perfectly accurate, but
timing information is less accurate. Obviously, CALL(edx), TEST, and JB instructions were
not happening at the same time, yet we do not have more accurate timing information for
them. Having timestamps allows us to align the time interval of our program with some
other event in the system, and it’s easy to compare to wall clock time. Trace timing in some
implementations can further be improved by a cycle-accurate mode, in which the hardware
keeps a record of cycle counts between normal packets (see more details in [Int, 2020, Volume
3C, Chapter 36]).

6.4.3 Collecting and Decoding Traces

Intel PT traces can be easily collected with the Linux perf tool:

$ perf record -e intel_pt/cyc=1/u ./a.out

In the command line above, we asked the PT mechanism to update timing information every
cycle. But likely, it will not increase our accuracy greatly since timing packets will only be
sent when paired with some other control flow packet (see section 6.4.2).

After collecting, raw PT traces can be obtained by executing:

$ perf report -D > trace.dump

96

6.4 Intel Processor Traces

PT bundles up to 6 conditional branches before it emits a timing packet. Since the Intel
Skylake CPU generation, timing packets have cycle count elapsed from the previous packet. If
we then look into the trace.dump, we might see something like the following:
000073b3: 2d 98 8c TIP 0x8c98 // target address (IP)
000073b6: 13 CYC 0x2 // timing update
000073b7: c0 TNT TNNNNN (6) // 6 conditional branches
000073b8: 43 CYC 0x8 // 8 cycles passed
000073b9: b6 TNT NTTNTT (6)

Above we showed the raw PT packets, which are not very useful for performance analysis. To
decode processor traces to human-readable form, one can execute:
$ perf script --ns --itrace=i1t -F time,srcline,insn,srccode

Below is the example of decoded traces one might get:
timestamp srcline instruction srccode
...
253.555413143: a.cpp:24 call 0x35c foo(arr, j);
253.555413143: b.cpp:7 test esi, esi for (int i = 0; i <= n; i++)
253.555413508: b.cpp:7 js 0x1e
253.555413508: b.cpp:7 movsxd rsi, esi
...

Above is shown just a small snippet from the long execution log. In this log, we have traces of
every instruction executed while our program was running. We can literally observe
every step that was made by the program. It is a very strong foundation for further analysis.

6.4.4 Usages

Here are some of the cases when PT can be useful:

1. Analyze performance glitches. Because PT captures the entire instruction stream,
it is possible to analyze what was going on during the small-time period when the
application was not responding. More detailed examples can be found in an article147 on
easyperf blog.

2. Postmortem debugging. PT traces can be replayed by traditional debuggers like gdb.
In addition to that, PT provides call stack information, which is always valid even if the
stack is corrupted148. PT traces could be collected on a remote machine once and then
analyzed offline. This is especially useful when the issue is hard to reproduce or access
to the system is limited.

3. Introspect execution of the program.
• We can immediately tell if some code path was never executed.
• Thanks to timestamps, it’s possible to calculate how much time was spent waiting

while spinning on a lock attempt, etc.
• Security mitigation by detecting specific instruction pattern.

6.4.5 Disk Space and Decoding Time

Even taking into account the compressed format of the traces, encoded data can consume a lot
of disk space. Typically, it’s less than 1 byte per instruction, however taking into account the

147 Analyze performance glitches with Intel PT - https://easyperf.net/blog/2019/09/06/Intel-PT-part3.
148 Postmortem debugging with Intel PT - https://easyperf.net/blog/2019/08/30/Intel-PT-part2.

97

https://easyperf.net/blog/2019/09/06/Intel-PT-part3
https://easyperf.net/blog/2019/09/06/Intel-PT-part3
https://easyperf.net/blog/2019/08/30/Intel-PT-part2

6.5 Chapter Summary

speed at which CPU executes instructions, it is still a lot. Depending on a workload, it’s very
common for CPU to encode PT at a speed of 100 MB/s. Decoded traces might easily be ten
times more (~1GB/s). This makes PT not practical for using on long-running workloads. But
it is affordable to run it for a small period of time, even on a big workload. In this case, the
user can attach to the running process just for the period of time when the glitch happened.
Or they can use a circular buffer, where new traces will overwrite old ones, i.e., always having
traces for the last 10 seconds or so.

Users can limit collection even further in several ways. They can limit collecting traces only
on user/kernel space code. Also, there is an address range filter, so it’s possible to opt-in and
opt-out of tracing dynamically to limit the memory bandwidth. This allows us to trace just a
single function or even a single loop. 149

Decoding PT traces can take a long time. On an Intel Core i5-8259U machine, for a
workload that runs for 7 milliseconds, encoded PT trace takes around 1MB. Decoding this
trace using perf script takes ~20 seconds. The decoded output from perf script -F
time,ip,sym,symoff,insn takes ~1.3GB of disk space.

Personal Experience: Intel PT is supposed to be an end game for perfor-
mance analysis. With its low runtime overhead, it is a very powerful analysis
feature. However, right now (February 2020), decoding traces with ‘perf script
-F‘ with ‘+srcline‘ or ‘+srccode‘ gets extremely slow and is not practical for
daily usage. The implementation of Linux perf might be improved. Intel
VTune Profiler support for PT is still experimental.

References and links

• Intel publication “Processor Tracing”, URL: https://software.intel.com/en-us/blogs/201
3/09/18/processor-tracing.

• Intel® 64 and IA-32 Architectures Software Developer Manuals [Int, 2020, Volume 3C,
Chapter 36].

• Whitepaper “Hardware-assisted instruction profiling and latency detection” [Sharma
and Dagenais, 2016].

• Andi Kleen article on LWN, URL: https://lwn.net/Articles/648154.
• Intel PT Micro Tutorial, URL: https://sites.google.com/site/intelptmicrotutorial/.
• simple_pt: Simple Intel CPU processor tracing on Linux, URL: https://github.com/andikleen/simple-

pt/.
• Intel PT documentation in the Linux kernel, URL: https://github.com/torvalds/linux/

blob/master/tools/perf/Documentation/intel-pt.txt.
• Cheatsheet for Intel Processor Trace, URL: http://halobates.de/blog/p/410.

6.5 Chapter Summary

• Utilizing HW features for low-level tuning is recommended only once all high-level
performance issues are fixed. Tuning poorly designed algorithms is a bad investment of
a developer’s time. Once all the major performance problems get eliminated, one can
use CPU performance monitoring features to analyze and further tune their application.

• Top-Down Microarchitecture Analysis (TMA) methodology is a very powerful technique
for identifying ineffective usage of CPU microarchitecture by the program. It is a robust
and formal methodology that is easy to use even for inexperienced developers. TMA is

149 Cheat sheet for Intel PT - http://halobates.de/blog/p/410.

98

https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://lwn.net/Articles/648154
https://sites.google.com/site/intelptmicrotutorial/
https://github.com/andikleen/simple-pt
https://github.com/andikleen/simple-pt
https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt
https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt
http://halobates.de/blog/p/410
http://halobates.de/blog/p/410

6.5 Chapter Summary

an iterative process that consists of multiple steps, including characterizing the workload
and locating the exact place in the source code where the bottleneck occurs. We advise
that TMA should be a starting point of analysis for every low-level tuning effort. TMA
is available on Intel and AMD150 processors.

• Last Branch Record (LBR) mechanism continuously logs the most recent branch outcomes
in parallel with executing the program, causing a minimal slowdown. It allows us to
have a deep enough call stack for every sample we collect while profiling. Also, LBR
helps identify hot branches, misprediction rates and allows for precise timing of machine
code. LBR is supported on Intel and AMD processors.

• Processor Event-Based Sampling (PEBS) feature is another enhancement for profiling.
It lowers the sampling overhead by automatically sampling multiple times to a dedicated
buffer without interrupts. However, PEBS are more widely known for introducing
“Precise Events”, which allow pinpointing exact instruction that caused a particular
performance event. The feature is supported on Intel processors. AMD CPUs have a
similar feature called Instruction Based Sampling (IBS).

• Intel Processor Traces (PT) is a CPU feature that records the program execution by
encoding packets in a highly compressed binary format that can be used to reconstruct
execution flow with a timestamp on every instruction. PT has extensive coverage and
relatively small overhead. Its main usages are postmortem analysis and finding the root
cause(s) of performance glitches. Processors based on ARM architecture also have a
tracing capability called CoreSight151, but it is mostly used for debugging rather than
for performance analysis.

Performance profilers leverage HW features presented in this chapter to enable many different
types of analysis.

150 Although at the time of writing, AMD processors only support the first level of TMA metrics, i.e., Front
End Bound, Back End Bound, Retiring, and Bad Speculation.

151 ARM CoreSight: https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace

99

https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace

Part2. Source Code Tuning For CPU

Part2. Source Code Tuning For CPU

In part 2, we will take a look at how to use CPU monitoring features (see section 6) to find
the places in the code which can be tuned for execution on a CPU. For performance-critical
applications like large distributed cloud services, scientific HPC software, ‘AAA’ games, etc.
it is very important to know how underlying HW works. It is a fail-from-the-start when the
program is being developed without HW focus.

Standard algorithms and data structures don’t always work well for performance-critical
workloads. For example, a linked list is pretty much deprecated in favor of ‘flat’ data
structures. Traditionally every new node of the linked list is dynamically allocated. Besides
invoking many costly152 memory allocations, this will likely result in a situation where all the
elements of the list are scattered in memory. Traversing such a data structure requires random
memory access for every element. Even though algorithmic complexity is still O(N), in practice,
the timings will be much worse than of a plain array. Some data structures, like binary trees,
have natural linked-list-like representation, so it might be tempting to implement them in a
pointer chasing manner. However, more efficient “flat” versions of those data structures exist,
see boost::flat_map, boost::flat_set.

Even though the algorithm you choose is best known for a particular problem, it might not
work best for your particular case. For example, a binary search is optimal for finding an
element in a sorted array. However, this algorithm usually suffers from branch mispredictions
since every test of the element value has a 50% chance of being true. This is why on a
small-sized (less than 20 elements) array of integers, linear search is usually better.

Performance engineering is an art. And like in any art, the set of possible scenarios is endless.
This chapter tries to address optimizations specific to CPU microarchitecture without trying
to cover all existing optimization opportunities one can imagine. Still, I think it is important
to at least name some high-level ones:

• If a program is written using interpreted languages (python, javascript, etc.), rewrite its
performance-critical portion in a language with less overhead.

• Analyze the algorithms and data structures used in the program, see if you can find
better ones.

• Tune compiler options. Check that you use at least these three compiler flags: -O3 (en-
ables machine-independent optimizations), -march (enables optimizations for particular
CPU generation), -flto (enables inter-procedural optimizations).

• If a problem is a highly parallelizable computation, make it threaded, or consider running
it on a GPU.

• Use async IO to avoid blocking while waiting for IO operations.
• Leverage using more RAM to reduce the amount of CPU and IO you have to use

(memoization, look-up tables, caching of data, compression, etc.)

Data-Driven Optimizations

One of the most important techniques for tuning is called “Data-Driven” optimization that
is based on introspecting the data the program is working on. The approach is to focus

152 By default, memory allocation involves an expensive system call (malloc), which can be especially costly in
a multithreaded context.

100

Part2. Source Code Tuning For CPU

on the layout of the data and how it is transformed throughout the program.153 A classic
example of such an approach is Structure-Of-Array to Array-Of-Structures (SOA-to-AOS154)
transformation, which is shown on Listing 14.

Listing 14 SOA to AOS transformation.

struct S {
int a[N];
int b[N];
int c[N];
// many other fields

};

<=>

struct S {
int a;
int b;
int c;
// many other fields

};
S s[N];

The answer to the question of which layout is better depends on how the code is accessing
the data. If the program iterates over the data structure and only accesses field b, then SOA
is better because all memory accesses will be sequential (spatial locality). However, if the
program iterates over the data structure and does excessive operations on all the fields of the
object (i.e. a, b, c), then AOS is better because it’s likely that all the members of the structure
will reside in the same cache line. It will additionally better utilize the memory bandwidth
since fewer cache line reads will be required.

This class of optimizations is based on knowing the data on which the program operates, how
it is laid out, and modifying the program accordingly.

Personal Experience: In fact, we can say that all optimizations are data-
driven in some sense. Even the transformations that we will look at in the
next sections are based on some feedback we receive from the execution of
the program: function call counts, profiling data, performance counters, etc.

Another very important example of data-driven optimization is “Small Size optimization”.
Its idea is to preallocate some amount of memory for a container to avoid dynamic memory
allocations. It is especially useful for small and medium-sized containers when the upper limit
of elements can be well-predicted. This approach was successfully deployed across the whole
LLVM infrastructure and provided significant performance benefits (search SmallVector, for
example). The same concept is implemented in boost::static_vector.

Obviously, it’s not a complete list of data-driven optimizations, but as was written earlier,
there was no attempt to list them all. Readers can find some more examples on easyperf

153 Data-Driven optimizations - https://en.wikipedia.org/wiki/Data-oriented_design.
154 AoS to SoA transformation - https://en.wikipedia.org/wiki/AoS_and_SoA.

101

https://en.wikipedia.org/wiki/AoS_and_SoA
https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call
https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call
https://en.wikipedia.org/wiki/Data-oriented_design
https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call
https://en.wikipedia.org/wiki/AoS_and_SoA
https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call

Part2. Source Code Tuning For CPU

blog155.

Modern CPU is a very complicated device, and it’s nearly impossible to predict how certain
pieces of code will perform. Instruction execution by the CPU depends on many factors, and
the number of moving parts is too big for a human mind to overlook. Hopefully, knowing
how your code looks like from a CPU perspective is possible thanks to all the performance
monitoring capabilities we discussed in section 6.

Note that optimization that you implement might not be beneficial for every platform. For
example, loop blocking156 very much depends on the characteristics of the memory hierarchy in
the system, especially L2 and L3 cache sizes. So, an algorithm tuned for CPU with particular
sizes of L2 and L3 caches might not work well for CPUs with smaller caches157. It is important
to test the change on the platforms your application will be running on.

The next three chapters are organized in the most convenient way to be used with TMA
(see section 6.1). The idea behind this classification is to offer some kind of checklist which
engineers can use in order to effectively eliminate inefficiencies that TMA reveals. Again, this
is not supposed to be a complete list of transformations one can come up with. However, this
is an attempt to describe the typical ones.

155 Examples of data-driven tuning - https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-
indirect-call and https://easyperf.net/blog/2019/11/22/data-driven-tuning-specialize-switch.

156 Loop nest optimizations - https://en.wikipedia.org/wiki/Loop_nest_optimization.
157 Alternatively, one can use cache-oblivious algorithms whose goal is to work reasonably well for any size of
the cache. See https://en.wikipedia.org/wiki/Cache-oblivious_algorithm.

102

https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call
https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call
https://en.wikipedia.org/wiki/Loop_nest_optimization
https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call
https://easyperf.net/blog/2019/11/27/data-driven-tuning-specialize-indirect-call
https://easyperf.net/blog/2019/11/22/data-driven-tuning-specialize-switch
https://en.wikipedia.org/wiki/Loop_nest_optimization
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm

7 CPU Front-End Optimizations

CPU Front-End (FE) component is discussed in section 3.8.1. Most of the time, inefficiencies
in CPU FE can be described as a situation when Back-End is waiting for instructions to
execute, but FE is not able to provide them. As a result, CPU cycles are wasted without doing
any actual useful work. Because modern processors are 4-wide (i.e., they can provide four
uops every cycle), there can be a situation when not all four available slots are filled. This can
be a source of inefficient execution as well. In fact, IDQ_UOPS_NOT_DELIVERED158 performance
event is counting how many available slots were not utilized due to a front-end stall. TMA
uses this performance counter value to calculate its “Front-End Bound” metric159.

The reasons for why FE could not deliver instructions to the execution units can be plenty.
But usually, it boils down to caches utilization and inability to fetch instructions from memory.
It’s recommended to start looking into optimizing code for CPU FE only when TMA points
to a high “Front-End Bound” metric.

Personal Experience: Most of the real-world applications will experience a
non-zero "Front-End Bound" metric, meaning that some percentage of running
time will be lost on suboptimal instruction fetching and decoding. Luckily it
is usually below 10%. If you see the "Front-End Bound" metric being around
20%, it’s definitely worth to spend time on it.

7.1 Machine code layout

When a compiler translates your source code into machine code (binary encoding), it generates
a serial byte sequence. For example, for the following C code:

if (a <= b)
c = 1;

the compiler could generate assembly like this:

; a is in rax
; b is in rdx
; c is in rcx
cmp rax, rdx
jg .label
mov rcx, 1
.label:

Assembly instructions will be encoded and laid out in memory consequently:

400510 cmp rax, rdx
400512 jg 40051a
400514 mov rcx, 1
40051a ...

158 See more information about this performance event here: https://easyperf.net/blog/2018/12/29/Underst
anding-IDQ_UOPS_NOT_DELIVERED

159 See exact formulas in TMA metrics table: https://download.01.org/perfmon/TMA_Metrics.xlsx.

103

https://easyperf.net/blog/2018/12/29/Understanding-IDQ_UOPS_NOT_DELIVERED
https://easyperf.net/blog/2018/12/29/Understanding-IDQ_UOPS_NOT_DELIVERED
https://easyperf.net/blog/2018/12/29/Understanding-IDQ_UOPS_NOT_DELIVERED
https://download.01.org/perfmon/TMA_Metrics.xlsx

7.2 Basic Block

This is what is called machine code layout. Note that for the same program, it’s possible to lay
out the code in many different ways. For example, given two functions: foo and bar, we can
place bar first in the binary and then foo or reverse the order. This affects offsets at which
instructions will be placed in memory, which in turn affects the performance of the generated
binary. For the rest of this chapter, we will take a look at some typical optimizations for the
machine code layout.

7.2 Basic Block

A basic block is a sequence of instructions with a single entry and single exit. Figure 40
shows a simple example of a basic block, where MOV instruction is an entry, and JA is an
exit instruction. While basic block can have one or many predecessors and successors, no
instruction in the middle can exit the block.

Figure 40: Basic Block of assembly instructions.

It is guaranteed that every instruction in the basic block will be executed exactly once. This
is a very important property that is utilized by many compiler transformations. For example,
it greatly reduces the problem of control flow graph analysis and transformations since, for
some class of problems, we can treat all instructions in the basic block as one entity.

7.3 Basic block placement

Suppose we have a hot path in the program that has some error handling code (coldFunc) in
between:

// hot path
if (cond)

coldFunc();
// hot path again

Figure 41 shows two possible physical layouts for this snippet of code. Figure 41a is the layout
most compiler will emit by default, given no hints provided. The layout that is shown in figure
41b can be achieved if we invert the condition cond and place hot code as a fall-through.

Which layout is better in the common case greatly depends on whether cond is usually true or
not. If cond is usually true, then we would better choose the default layout because otherwise,
we would be doing two jumps instead of one. Also, in the general case, we want to inline
the function that is guarded under cond. However, in this particular example, we know that
coldFunc is an error handling function and is likely not executed very often. By choosing
layout 41b, we maintain fall through between hot pieces of the code and convert taken branch
into not taken one.

104

7.3 Basic block placement

(a) default layout (b) improved layout

Figure 41: Two different machine code layouts.

There are a few reasons why for the code presented earlier in this section, layout 41b performs
better. First of all, not taken branches are fundamentally cheaper than taken. In the general
case, modern Intel CPUs can execute two untaken branches per cycle but only one taken
branch every two cycles. 160

Secondly, layout 41b makes better use of the instruction and uop-cache (DSB, see section 3.8.1).
With all hot code contiguous, there is no cache line fragmentation: all the cache lines in the
L1I-cache are used by hot code. The same is true for the uop-cache since it caches based on
the underlying code layout as well.

Finally, taken branches are also more expensive for the fetch unit. It fetches contiguous chunks
of 16 bytes, so every taken jump means the bytes after the jump are useless. This reduces the
maximum effective fetch throughput.

In order to suggest the compiler to generate an improved version of the machine code layout,
one can provide a hint using __builtin_expect161 construct:

// hot path
if (__builtin_expect(cond, 0)) // NOT likely to be taken

coldFunc();
// hot path again

Developers usually write LIKELY helper macros to make the code more readable, so more often,
you can find the code that looks like the one shown below. Since C++20, there is a standard
[[likely]]162 attribute, which should be preferred.

#define LIKELY(EXPR) __builtin_expect((bool)(EXPR), true)
#define UNLIKELY(EXPR) __builtin_expect((bool)(EXPR), false)

if (LIKELY(ptr != nullptr))
// do something with ptr

160 There is a special small loop optimization that allows very small loops to have one taken branch per cycle.
161 More about builtin-expect here: https://llvm.org/docs/BranchWeightMetadata.html#builtin-expect.
162 C++ standard [[likely]] attribute: https://en.cppreference.com/w/cpp/language/attributes/likely.

105

https://llvm.org/docs/BranchWeightMetadata.html#builtin-expect
https://llvm.org/docs/BranchWeightMetadata.html#builtin-expect
https://en.cppreference.com/w/cpp/language/attributes/likely

7.4 Basic block alignment

Optimizing compilers will not only improve code layout when they encounter LIKELY/UNLIKELY
hints. They will also leverage this information in other places. For example, when UNLIKELY
hint is applied to our original example in this section, the compiler will prevent inlining
coldFunc as it now knows that it is unlikely to be executed often and it’s more beneficial to
optimize it for size, i.e., just leave a CALL to this function. Inserting __builtin_expect hint
is also possible for a switch statement as presented in Listing 15.

Listing 15 Built-in expect hint for switch statement

for (;;) {
switch (__builtin_expect(instruction, ADD)) {

// handle different instructions
}

}

Using this hint, a compiler will be able to reorder code a little bit differently and optimize the
hot switch for faster processing ADD instructions. More details about this transformation is
available on easyperf163 blog.

7.4 Basic block alignment

Sometimes performance can significantly change depending on the offset at which instructions
are laid out in memory. Consider a simple function presented in Listing 16.

Listing 16 Basic block alignment

void benchmark_func(int* a) {
for (int i = 0; i < 32; ++i)

a[i] += 1;
}

A decent optimizing compiler might come up with machine code for Skylake architecture that
may look like below:

00000000004046a0 <_Z14benchmark_funcPi>:
4046a0: mov rax,0xffffffffffffff80
4046a7: vpcmpeqd ymm0,ymm0,ymm0
4046ab: nop DWORD PTR [rax+rax*1+0x0]
4046b0: vmovdqu ymm1,YMMWORD PTR [rdi+rax*1+0x80] # loop begins
4046b9: vpsubd ymm1,ymm1,ymm0
4046bd: vmovdqu YMMWORD PTR [rdi+rax*1+0x80],ymm1
4046c6: add rax,0x20
4046ca: jne 4046b0 # loop ends
4046cc: vzeroupper
4046cf: ret

The code itself is pretty reasonable164 for Skylake architecture, but its layout is not perfect
(see Figure 42a). Instructions that correspond to the loop are highlighted in yellow. As well as

163 Using __builtin_expect for a switch statement - https://easyperf.net/blog/2019/11/22/data-driven-
tuning-specialize-switch.

164 Loop unrolling is disabled for illustrating the idea of the section.

106

https://easyperf.net/blog/2019/11/22/data-driven-tuning-specialize-switch
https://easyperf.net/blog/2019/11/22/data-driven-tuning-specialize-switch
https://easyperf.net/blog/2019/11/22/data-driven-tuning-specialize-switch

7.4 Basic block alignment

for data caches, instruction cache lines are usually 64 bytes long. On Figure 42 thick boxes
denote cache line borders. Notice that the loop spans multiple cache lines: it begins on the
cache line 0x80 - 0xBF and ends in the cache-line 0xC0 - 0xFF. Those kinds of situations
usually cause performance problems for the CPU Front-End, especially for the small loops like
presented above.

To fix this, we can shift the loop instructions forward by 16 bytes using NOPs so that the
whole loop will reside in one cache line. Figure 42b shows the effect of doing this with NOP
instructions highlighted in blue. Note that since the benchmark runs nothing but this hot
loop, it is pretty much guaranteed that both cache lines will remain in L1I-cache. The reason
for the better performance of the layout 42b is not trivial to explain and will involve a fair
amount of microarchitectural details165, which we will avoid in this book.

(a) default layout

(b) improved layout

Figure 42: Two different alignments for the loop.

Even though CPU architects try hard to hide such kind of bottlenecks in their designs, there
are still cases when code placement (alignment) can make a difference in performance.

By default, the LLVM compiler recognizes loops and aligns them at 16B boundaries, as we saw
in Figure 42a. To reach the desired code placement for our example, as shown in Figure 42b,
one should use the -mllvm -align-all-blocks option166. However, be careful with using
this option, as it can easily degrade performance. Inserting NOPs that will be executed can
add overhead to the program, especially if they stand on a critical path. NOPs do not require
execution; however, they still require to be fetched from memory, decoded, and retired. The
latter additionally consumes space in FE data structures and buffers for bookkeeping, similar
to all other instructions.

In order to have fine-grained control over alignment, it is also possible to use ALIGN167 assembler
directives. For experimental purposes, the developer can emit assembly listing and then insert
the ALIGN directive:

165 Interested readers can find more information in the article on easyperf blog Code alignment issues.
166 For other available options to control code placement, one can take a look at the article on easyperf blog:
Code alignment options in llvm.

167 x86 assembler directives manual - https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html. This
example uses MASM. Otherwise, you will see the .align directive.

107

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html
https://easyperf.net/blog/2018/01/18/Code_alignment_issues
https://easyperf.net/blog/2018/01/25/Code_alignment_options_in_llvm
https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

7.5 Function splitting

; will place the .loop at the beginning of 256 bytes boundary
ALIGN 256
.loop

dec rdi
jnz rdi

7.5 Function splitting

The idea behind function splitting168 is to separate hot code from the cold. This optimization
is beneficial for relatively big functions with complex CFG and big pieces of cold code inside
a hot path. An example of code when such transformation might be profitable is shown on
Listing 17. To remove cold basic blocks from the hot path, we could cut and put them into its
own new function and create a call to it (see Listing 18).

Listing 17 Function splitting: baseline version.

void foo(bool cond1, bool cond2) {
// hot path
if (cond1) {

// large amount of cold code (1)
}
// hot path
if (cond2) {

// large amount of cold code (2)
}

}

Listing 18 Function splitting: cold code outlined.

void foo(bool cond1, bool cond2) {
// hot path
if (cond1)

cold1();
// hot path
if (cond2)

cold2();
}

void cold1() __attribute__((noinline)) { // cold code (1) }
void cold2() __attribute__((noinline)) { // cold code (2) }

Figure 43 gives a graphical representation of this transformation. Because we left just the
CALL instruction inside the hot path, it’s likely that the next hot instruction will reside in the
same cache line. This improves the utilization of CPU Front-End data structures like I-cache
and DSB.

This transformation contains another important idea: disable inlining of cold functions. Even
if we create a new function for the cold code, the compiler may decide to inline it, which

168 Such transformation is also often called “outlining”. Readers can find LLVM implementation of this
functionality in lib/Transforms/IPO/HotColdSplitting.cpp.

108

http://llvm.org/doxygen/HotColdSplitting_8cpp_source.html

7.6 Function grouping

(a) default layout (b) improved layout

Figure 43: Splitting cold code into a separate function.

will effectively undo our transformation. This is why we want to use the noinline function
attribute to prevent inlining. Alternatively, we could apply the UNLIKELY macro (see section 7.3)
on both cond1 and cond2 branches to convey to the compiler that inlining cold1 and cold2
functions is not desired.

Finally, new functions should be created outside of .text segment, for example in .text.cold.
This may improve memory footprint if the function is never called since it won’t be loaded
into memory in the runtime.

7.6 Function grouping

Following the principles described in previous sections, hot functions can be grouped together
to further improve the utilization of caches in the CPU Front-End. When hot functions are
grouped together, they might share the same cache line, which reduces the number of cache
lines the CPU needs to fetch.

Figure 44 gives a graphical representation of grouping foo, bar, and zoo. The default layout
(see fig. 44a) requires four cache line reads, while in the improved version (see fig. 44b), code
of foo, bar and zoo fits in only three cache lines. Additionally, when we call zoo from foo,
the beginning of zoo is already in the I-cache since we fetched that cache line already.

Similar to previous optimizations, function grouping improves the utilization of I-cache and
DSB-cache. This optimization works best when there are many small hot functions.

The linker is responsible for laying out all the functions of the program in the resulting
binary output. While developers can try to reorder functions in a program themselves, there
is no guarantee on the desired physical layout. For decades people have been using linker
scripts to achieve this goal. Still, this is the way to go if you are using the GNU linker.
The Gold linker (ld.gold) has an easier approach to this problem. To get the desired
ordering of functions in the binary with the Gold linker, one can first compile the code
with the -ffunction-sections flag, which will put each function into a separate section.
Then --section-ordering-file=order.txt option should be used to provide a file with a
sorted list of function names that reflects the desired final layout. The same feature exists

109

https://manpages.debian.org/unstable/binutils/x86_64-linux-gnu-ld.gold.1.en.html

7.7 Profile Guided Optimizations

(a) default layout (b) improved layout

Figure 44: Grouping hot functions together.

in the LLD linker, which is a part of LLVM compiler infrastructure and is accessible via the
--symbol-ordering-file option.

An interesting approach to solving the problem of grouping hot functions together is im-
plemented in the tool called HFSort169. It is a tool that generates the section ordering file
automatically based on profiling data [Ottoni and Maher, 2017]. Using this tool, Facebook
engineers got a 2% performance speedup of large distributed cloud applications like Facebook,
Baidu, and Wikipedia. Right now, HFSort is integrated into Facebook’s HHVM project and is
not available as a standalone tool. The LLD linker employs implementation170 of the HFSort
algorithm, which sorts sections based on the profiling data.

7.7 Profile Guided Optimizations

Compiling a program and generating optimal assembly listing is all about heuristics. Code
transformation algorithms have many corner cases that aim for optimal performance in specific
situations. For a lot of decisions that compiler makes, it tries to guess the best choice based
on some typical cases. For example, when deciding whether a particular function should be
inlined, the compiler could take into account the number of times this function will be called.
The problem is that compiler doesn’t know that beforehand.

Here is when profiling information becomes handy. Given profiling information compiler can
make better optimization decisions. There is a set of transformations in most compilers that can
adjust their algorithms based on profiling data fed back to them. This set of transformations
is called Profile Guided Optimizations (PGO). Sometimes in literature, one can find the term
Feedback Directed Optimizations (FDO), which essentially refers to the same thing as PGO.
Often times a compiler will rely on profiling data when it is available. Otherwise, it will fall
back to using its standard algorithms and heuristics.

It is not uncommon to see real workloads performance increase by up to 15% from using
Profile Guided Optimizations. PGO does not only improve inlining and code placement but
also improves register allocation171and more.

169 HFSort - https://github.com/facebook/hhvm/tree/master/hphp/tools/hfsort.
170 HFSort in LLD - https://github.com/llvm-project/lld/blob/master/ELF/CallGraphSort.cpp.
171 because with PGO compiler can put all the hot variables into registers, etc.

110

https://github.com/facebook/hhvm/tree/master/hphp/tools/hfsort
https://github.com/facebook/hhvm/tree/master/hphp/tools/hfsort
https://github.com/llvm-project/lld/blob/master/ELF/CallGraphSort.cpp

7.8 Optimizing for ITLB

Profiling data can be generated based on two different ways: code instrumentation (see
section 5.1) and sample-based profiling (see section 5.4). Both are relatively easy to use and
have associated benefits and drawbacks discussed in section 5.8.

The first method can be utilized in the LLVM compiler by building the program with the
-fprofile-instr-generate option. This will instruct the compiler to instrument the code,
which will collect profiling information at runtime. After that LLVM compiler can consume
profiling data with the -fprofile-instr-use option to recompile the program and output
PGO-tuned binary. The guide for using PGO in clang is described in the documentation172.
GCC compiler uses different set of options -fprofile-generate and -fprofile-use as
described in GCC documentation.

The second method, which is generating profiling data input for the compiler based on sampling,
can be utilized thanks to AutoFDO173 tool, which converts sampling data generated by Linux
perf into a format that compilers like GCC and LLVM can understand. [Chen et al., 2016]

Keep in mind that the compiler “blindly” uses the profile data you provided. The compiler
assumes that all the workloads will behave the same, so it optimizes your app just for that
single workload. Users of PGO should be careful about choosing the workload to profile
because while improving one use case of the application, other might be pessimized. Luckily,
it doesn’t have to be exactly a single workload since profile data from different workloads can
be merged together to represent a set of use cases for the application.

In the mid-2018, Facebook open-sourced its binary relinker tool called BOLT. BOLT works on
the already compiled binary. It first disassembles the code, then it uses profile information
to do various layout transformations (including basic blocks reordering, function splitting,
and grouping) and generates optimized binary [Panchenko et al., 2018]. A similar tool was
developed at Google called Propeller, which serves a similar purpose as BOLT but claim certain
advantages over it. It is possible to integrate optimizing relinker into the build system and
enjoy an extra 5-10% performance speedup from the optimized code layout. The only thing
one needs to worry about is to have a representative and meaningful workload for collecting
profiling information.

7.8 Optimizing for ITLB

Another important area of tuning FE efficiency is virtual-to-physical address translation of
memory addresses. Primarily those translations are served by TLB (see section 3), which
caches most recently used memory page translations in dedicated entries. When TLB cannot
serve translation request, a time-consuming page walk of the kernel page table takes place to
calculate the correct physical address for each referenced virtual address. When TMA points
to a high ITLB Overhead 174, the advice in this section may become handy.

ITLB pressure can be reduced by mapping the portions of the performance-critical code of an
application onto large pages. This requires relinking the binary to align text segments at the
proper page boundary in preparation for large page mapping (see guide175 to libhugetlbfs).
For general discussion on large pages, see section 8.1.3.

Besides from employing large pages, standard techniques for optimizing I-cache performance
can be used for improving ITLB performance; namely, reordering functions so that hot functions

172 PGO in Clang - https://clang.llvm.org/docs/UsersManual.html#profiling-with-instrumentation.
173 AutoFDO - https://github.com/google/autofdo.
174 ITLB Overhead - https://software.intel.com/content/www/us/en/develop/documentation/vtune-
help/top/reference/cpu-metrics-reference/front-end-bound/itlb-overhead.html

175 libhugetlbfs guide - https://github.com/libhugetlbfs/libhugetlbfs/blob/master/HOWTO.

111

https://clang.llvm.org/docs/UsersManual.html#profiling-with-instrumentation
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://github.com/google/autofdo
https://code.fb.com/data-infrastructure/accelerate-large-scale-applications-with-bolt/
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/front-end-bound/itlb-overhead.html
https://github.com/libhugetlbfs/libhugetlbfs/blob/master/HOWTO
https://clang.llvm.org/docs/UsersManual.html#profiling-with-instrumentation
https://github.com/google/autofdo
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/front-end-bound/itlb-overhead.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/front-end-bound/itlb-overhead.html
https://github.com/libhugetlbfs/libhugetlbfs/blob/master/HOWTO

7.9 Chapter Summary

are more collocated, reducing the size of hot regions via LTO/IPO 176, using profile-guided
optimization, and less aggressive inlining.

7.9 Chapter Summary

Summary of CPU Front-End optimizations is presented in table 6.

Table 6: Summary of CPU Front-End optimizations.

Transform How transformed? Why helps? Works best for Done by

Basic block
placement

maintain fall
through hot code

not taken
branches are
cheaper; better
cache
utilization

any code, especially
with a lot of branches

compiler

Basic block
alignment

shift the hot code
using NOPS

better cache
utilization

hot loops compiler

Function
splitting

split cold blocks of
code and place
them in separate
functions

better cache
utilization

functions with complex
CFG when there are
big blocks of cold code
between hot parts

compiler

Function
grouping

group hot functions
together

better cache
utilization

many small hot
functions

linker

Personal Experience: I think code layout improvements are often under-
estimated and end up being omitted and forgotten. I agree that you might
want to start with low hanging fruits like loop unrolling and vectorization
opportunities. But knowing that you might get an extra 5-10% just from
better laying out the machine code is still useful. It is usually the best option
to use PGO if you can come up with a set of typical use cases for your
application.

176 Interprocedural optimizations - https://en.wikipedia.org/wiki/Interprocedural_optimization.

112

https://en.wikipedia.org/wiki/Interprocedural_optimization
https://en.wikipedia.org/wiki/Interprocedural_optimization

8 CPU Back-End Optimizations

CPU Back-End (BE) component is discussed in section 3.8.2. Most of the time, inefficiencies
in CPU BE can be described as a situation when FE has fetched and decoded instructions,
but BE is overloaded and can’t handle new instructions. Technically speaking, it is a situation
when FE cannot deliver uops due to a lack of required resources for accepting new uops in the
Backend. An example of it may be a stall due to data-cache miss or a stall due to the divider
unit being overloaded.

I want to emphasize to the reader that it’s recommended to start looking into optimizing
code for CPU BE only when TMA points to a high “Back-End Bound” metric. TMA further
divides the Backend Bound metric into two main categories: Memory Bound and Core Bound,
which we will discuss next.

8.1 Memory Bound

When an application executes a large number of memory accesses and spends significant time
waiting for them to finish, such an application is characterized as being bounded by memory.
It means that to further improve its performance, we likely need to improve how we access
memory, reduce the number of such accesses or upgrade the memory subsystem itself.

The statement that memory hierarchy performance is very important is backed by Figure 45.
It shows the growth of the gap in performance between memory and processors. The vertical
axis is on a logarithmic scale and shows the growth of the CPU-DRAM performance gap. The
memory baseline is the latency of memory access of 64 KB DRAM chips from 1980. Typical
DRAM performance improvement is 7% per year, while CPUs enjoy 20-50% improvement per
year.[Hennessy and Patterson, 2011]

Figure 45: The gap in performance between memory and processors. © Image from [Hennessy
and Patterson, 2011].

In TMA, Memory Bound estimates a fraction of slots where the CPU pipeline is likely stalled
due to demand load or store instructions. The first step to solving such a performance

113

8.1 Memory Bound

problem is to locate the memory accesses that contribute to the high Memory Bound metric
(see section 6.1.4). Once guilty memory access is identified, several optimization strategies
could be applied. Below we will discuss a few typical cases.

8.1.1 Cache-Friendly Data Structures

A variable can be fetched from the cache in just a few clock cycles, but it can take more than
a hundred clock cycles to fetch the variable from RAM memory if it is not in the cache. There
is a lot of information written on the importance of writing cache-friendly algorithms and
data structures, as it is one of the key items in the recipe for a well-performing application.
The key pillar of cache-friendly code is the principles of temporal and spatial locality (see
section 3.5), which goal is to allow efficient fetching of required data from caches. When
designing a cache-friendly code, it’s helpful to think in terms of cache lines, not only individual
variables and their places in memory.

8.1.1.1 Access data sequentially. The best way to exploit the spatial locality of the
caches is to make sequential memory accesses. By doing so, we allow the HW prefetcher (see
section 3.5.1.5.1) to recognize the memory access pattern and bring in the next chunk of data
ahead of time. An example of a C-code that does such cache-friendly accesses is shown on
Listing 19. The code is “cache-friendly” because it accesses the elements of the matrix in the
order in which they are laid out in memory (row-major traversal177). Swapping the order of
indexes in the array (i.e., matrix[column][row]) will result in column-major order traversal
of the matrix, which does not exploit spatial locality and hurts performance.

Listing 19 Cache-friendly memory accesses.

for (row = 0; row < NUMROWS; row++)
for (column = 0; column < NUMCOLUMNS; column++)

matrix[row][column] = row + column;

The example presented in Listing 19 is classical, but usually, real-world applications are
much more complicated than this. Sometimes you need to go an additional mile to write
cache-friendly code. For instance, the standard implementation of binary search in a sorted
large array does not exploit spatial locality since it tests elements in different locations that
are far away from each other and do not share the same cache line. The most famous way of
solving this problem is storing elements of the array using the Eytzinger layout [Khuong and
Morin, 2015]. The idea of it is to maintain an implicit binary search tree packed into an array
using the BFS-like layout, usually seen with binary heaps. If the code performs a large number
of binary searches in the array, it may be beneficial to convert it to the Eytzinger layout.

8.1.1.2 Use appropriate containers. There is a wide variety of ready-to-use containers
in almost any language. But it’s important to know their underlying storage and performance
implications. A good step-by-step guide for choosing appropriate C++ containers can be
found in [Fog, 2004, Chapter 9.7 Data structures, and container classes].

Additionally, choose the data storage, bearing in mind what the code will do with it. Consider
a situation when there is a need to choose between storing objects in the array versus storing
pointers to those objects while the object size is big. An array of pointers take less amount of
memory. This will benefit operations that modify the array since an array of pointers requires

177 Row- and column-major order - https://en.wikipedia.org/wiki/Row-_and_column-major_order.

114

https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order

8.1 Memory Bound

less memory being transferred. However, a linear scan through an array will be faster when
keeping the objects themselves since it is more cache-friendly and does not require indirect
memory accesses.178

8.1.1.3 Packing the data. Memory hierarchy utilization can be improved by making the
data more compact. There are many ways to pack data. One of the classic examples is to use
bitfields. An example of code when packing data might be profitable is shown on Listing 20.
If we know that a, b, and c represent enum values which take a certain number of bits to
encode, we can reduce the storage of the struct S (see Listing 21).

Listing 20 Packing Data: baseline struct.

struct S {
unsigned a;
unsigned b;
unsigned c;

}; // S is sizeof(unsigned int) * 3

Listing 21 Packing Data: packed struct.

struct S {
unsigned a:4;
unsigned b:2;
unsigned c:2;

}; // S is only 1 byte

This greatly reduces the amount of memory transferred back and forth and saves cache space.
Keep in mind that this comes with the cost of accessing every packed element. Since the bits
of b share the same machine word with a and c, compiler need to perform a >> (shift right)
and & (AND) operation to load it. Similarly, << (shift left) and | (OR) operations are needed
to store the value back. Packing the data is beneficial in places where additional computation
is cheaper than the delay caused by inefficient memory transfers.

Also, a programmer can reduce the memory usage by rearranging fields in a struct or class
when it avoids padding added by a compiler (see example in Listing 22). The reason for a
compiler to insert unused bytes of memory (pads) is to allow efficient storing and fetching of
individual members of a struct. In the example, the size of S1 can be reduced if its members
are declared in the order of decreasing their sizes.

8.1.1.4 Aligning and padding. Another technique to improve the utilization of the
memory subsystem is to align the data. There could be a situation when an object of size
16 bytes occupies two cache lines, i.e., it starts on one cache line and ends in the next cache
line. Fetching such an object requires two cache line reads, which could be avoided would the
object be aligned properly. Listing 23 shows how memory objects can be aligned using C++11
alignas keyword.

A variable is accessed most efficiently if it is stored at a memory address, which is divisible
by the size of the variable. For example, a double takes 8 bytes of storage space. It should,

178 Blog article “Vector of Objects vs Vector of Pointers” by B. Filipek - https://www.bfilipek.com/2014/05/v
ector-of-objects-vs-vector-of-pointers.html.

115

https://www.bfilipek.com/2014/05/vector-of-objects-vs-vector-of-pointers.html
https://www.bfilipek.com/2014/05/vector-of-objects-vs-vector-of-pointers.html

8.1 Memory Bound

Listing 22 Avoid compiler padding.

struct S1 {
bool b;
int i;
short s;

}; // S1 is sizeof(int) * 3

struct S2 {
int i;
short s;
bool b;

}; // S2 is sizeof(int) * 2

Listing 23 Aligning data using the “alignas” keyword.

// Make an aligned array
alignas(16) int16_t a[N];

// Objects of struct S are aligned at cache line boundaries
#define CACHELINE_ALIGN alignas(64)
struct CACHELINE_ALIGN S {

//...
};

therefore, preferably be stored at an address divisible by 8. The size should always be a power
of 2. Objects bigger than 16 bytes should be stored at an address divisible by 16. [Fog, 2004]

Alignment can cause holes of unused bytes, which potentially decreases memory bandwidth
utilization. If, in the example above, struct S is only 40 bytes, the next object of S starts at
the beginning of the next cache line, which leaves 64 - 40 = 24 unused bytes in every cache
line which holds objects of struct S.

Sometimes padding data structure members is required to avoid edge cases like cache contentions
[Fog, 2004, Chapter 9.10 Cache contentions] and false sharing (see section 11.7.3). For example,
false sharing issues might occur in multithreaded applications when two threads, A and B,
access different fields of the same structure. An example of code when such a situation might
happen is shown on Listing 24. Because a and b members of struct S could potentially occupy
the same cache line, cache coherency issues might significantly slow down the program. In
order to resolve the problem, one can pad S such that members a and b do not share the same
cache line as shown in Listing 25.

Listing 24 Padding data: baseline version.

struct S {
int a; // written by thread A
int b; // written by thread B

};

When it comes to dynamic allocations via malloc, it is guaranteed that the returned memory

116

8.1 Memory Bound

Listing 25 Padding data: improved version.

#define CACHELINE_ALIGN alignas(64)
struct S {

int a; // written by thread A
CACHELINE_ALIGN int b; // written by thread B

};

address satisfies the target platform’s minimum alignment requirements. Some applications
might benefit from a stricter alignment. For example, dynamically allocating 16 bytes with a
64 bytes alignment instead of the default 16 bytes alignment. In order to leverage this, users
of POSIX systems can use memalign179 API. Others can roll their own like described here180.

One of the most important areas for alignment considerations is the SIMD code. When relying
on compiler auto-vectorization, the developer doesn’t have to do anything special. However,
when you write the code using compiler vector intrinsics (see section 10.2), it’s pretty common
that they require addresses divisible by 16, 32, or 64. Vector types provided by the compiler
intrinsic header files are already annotated to ensure the appropriate alignment. [Fog, 2004]

// ptr will be aligned by alignof(__m512) if using C++17
__m512 * ptr = new __m512[N];

8.1.1.5 Dynamic memory allocation. First of all, there are many drop-in replacements
for malloc, which are faster, more scalable181, and address fragmentation182 problems better.
You can have a few percent performance improvement just by using a non-standard memory
allocator. A typical issue with dynamic memory allocation is when at startup threads race
with each other trying to allocate their memory regions at the same time183. One of the most
popular memory allocation libraries are jemalloc184 and tcmalloc185.

Secondly, it is possible to speed up allocations using custom allocators, for example, arena
allocators186. One of the main advantages is their low overhead since such allocators don’t
execute system calls for every memory allocation. Another advantage is its high flexibility.
Developers can implement their own allocation strategies based on the memory region provided
by the OS. One simple strategy could be to maintain two different allocators with their own
arenas (memory regions): one for the hot data and one for the cold data. Keeping hot data
together creates opportunities for it to share cache lines, which improves memory bandwidth
utilization and spatial locality. It also improves TLB utilization since hot data occupies less
amount of memory pages. Also, custom memory allocators can use thread-local storage to
implement per-thread allocation and get rid of any synchronization between threads. This
becomes useful when an application is based on a thread pool and does not spawn a large
number of threads.

179 Linux manual page for memalign - https://linux.die.net/man/3/memalign.
180 Generating aligned memory - https://embeddedartistry.com/blog/2017/02/22/generating-aligned-
memory/.

181 Typical malloc implementation involves synchronization in case multiple threads would try to dynamically
allocate the memory

182 Fragmentation - https://en.wikipedia.org/wiki/Fragmentation_(computing).
183 The same applies to memory deallocation.
184 jemalloc - http://jemalloc.net/.
185 tcmalloc - https://github.com/google/tcmalloc
186 Region-based memory management - https://en.wikipedia.org/wiki/Region-based_memory_management

117

https://linux.die.net/man/3/memalign
https://embeddedartistry.com/blog/2017/02/22/generating-aligned-memory/
https://en.wikipedia.org/wiki/Fragmentation_(computing)
http://jemalloc.net/
https://github.com/google/tcmalloc
https://en.wikipedia.org/wiki/Region-based_memory_management
https://en.wikipedia.org/wiki/Region-based_memory_management
https://linux.die.net/man/3/memalign
https://embeddedartistry.com/blog/2017/02/22/generating-aligned-memory/
https://embeddedartistry.com/blog/2017/02/22/generating-aligned-memory/
https://en.wikipedia.org/wiki/Fragmentation_(computing)
http://jemalloc.net/
https://github.com/google/tcmalloc
https://en.wikipedia.org/wiki/Region-based_memory_management

8.1 Memory Bound

8.1.1.6 Tune the code for memory hierarchy. The performance of some applications
depends on the size of the cache on a particular level. The most famous example here is
improving matrix multiplication with loop blocking (tiling). The idea is to break the working
size of the matrix into smaller pieces (tiles) such that each tile will fit in the L2 cache187.
Most of the architectures provide CPUID-like instruction188, which allows us to query the size
of caches. Alternatively, one can use cache-oblivious algorithms189 whose goal is to work
reasonably well for any size of the cache.

Intel CPUs have Data Linear Address HW feature (see section 6.3.3) that supports cache
blocking as described on easyperf blogpost190.

8.1.2 Explicit Memory Prefetching

Often, in general-purpose workloads, there are situations when data accesses have no clear
pattern or are random, so hardware can’t effectively prefetch the data ahead of time (see
information about HW prefetchers in section 3.5.1.5.1). Those are cases when cache misses
could not be eliminated by choosing a better data structure either. An example of code when
such transformation might be profitable is shown on Listing 26. Suppose calcNextIndex
returns random values that significantly differ from each other. In this situation, we would
have a subsequent load arr[j] go to a completely new place in memory and will frequently
miss in caches. When the arr array is big enough191, the HW prefetcher won’t be able
to catch the pattern and fail to pull the required data ahead of time. In the example in
Listing 26, there is some time window between the index j is calculated, and the element
arr[j] is requested. Thanks to that, we can manually add explicit prefetching instructions
with __builtin_prefetch192 as shown on Listing 27.

Listing 26 Memory Prefetching: baseline version.

for (int i = 0; i < N; ++i) {
int j = calcNextIndex();
// ...
doSomeExtensiveComputation();
// ...
x = arr[j]; // this load misses in L3 cache a lot

}

For prefetch hints to take effect, be sure to insert it well ahead of time so that by the time the
loaded value will be used in other calculations, it will be already in the cache. Also, do not
insert it too early since it may pollute the cache with the data that is not used for some time.
In order to estimate the prefetch window, use the method described in section 6.2.5. 193

The most common scenario where engineers use explicit memory prefetching is to get the data
required for the next iteration of the loop. However, linear function prefetching can also be

187 Usually, people tune for the size of the L2 cache since it is not shared between the cores.
188 In Intel processors CPUID instruction is described in [Int, 2020, Volume 2]
189 Cache-oblivious algorithm - https://en.wikipedia.org/wiki/Cache-oblivious_algorithm.
190 Blog article “Detecting false sharing” - https://easyperf.net/blog/2019/12/17/Detecting-false-sharing-
using-perf#2-tune-the-code-for-better-utilization-of-cache-hierarchy.

191 For this example, we define “big enough” to be more than this size of L3 cache inside a typical desktop
CPU, which, at the time of writing, varies from 5 to 20 MB.

192 GCC builtins - https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html.
193 Readers can also find an example of estimating the prefetch window in the article: https://easyperf.net/blo
g/2019/04/03/Precise-timing-of-machine-code-with-Linux-perf#application-estimating-prefetch-window.

118

https://en.wikipedia.org/wiki/Loop_nest_optimization
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://easyperf.net/blog/2019/12/17/Detecting-false-sharing-using-perf#2-tune-the-code-for-better-utilization-of-cache-hierarchy
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
https://easyperf.net/blog/2019/12/17/Detecting-false-sharing-using-perf#2-tune-the-code-for-better-utilization-of-cache-hierarchy
https://easyperf.net/blog/2019/12/17/Detecting-false-sharing-using-perf#2-tune-the-code-for-better-utilization-of-cache-hierarchy
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://easyperf.net/blog/2019/04/03/Precise-timing-of-machine-code-with-Linux-perf#application-estimating-prefetch-window
https://easyperf.net/blog/2019/04/03/Precise-timing-of-machine-code-with-Linux-perf#application-estimating-prefetch-window

8.1 Memory Bound

Listing 27 Memory Prefetching: using built-in prefetch hints.

for (int i = 0; i < N; ++i) {
int j = calcNextIndex();
__builtin_prefetch(a + j, 0, 1); // well before the load
// ...
doSomeExtensiveComputation();
// ...
x = arr[j];

}

very helpful, e.g., when you know the address of the data ahead of time but request the data
with some delay (prefetch window).

Explicit memory prefetching is not portable, meaning that if it gives performance gains on one
platform, it doesn’t guarantee similar speedups on another platform. Even worse, when used
badly, it can worsen the performance of caches. When using the wrong size of a memory block
or requesting prefetches too often, it can force other useful data to be evicted from the caches.

While software prefetching gives programmer control and flexibility, it’s not always easy to get
it right. Consider a situation when we want to insert a prefetch instruction into the piece of
code that has average IPC=2, and every DRAM access takes 100 cycles. To have the best
effect, we would need to insert prefetching instruction 200 instructions before the load. It is
not always possible, especially if the load address is computed right before the load itself. The
pointer chasing problem can be a good example when explicit prefetching is helpless. [Nima
Honarmand]

Finally, an explicit prefetch instruction increases code size and adds pressure on the CPU
Front-End. The prefetch instruction is just like any other instruction: it consumes CPU
resources, and when using it wrong, it can pessimize the performance of a program.

8.1.3 Optimizing For DTLB

As described in section 3, the TLB is a fast but finite per-core cache for virtual-to-physical
address translations of memory addresses. Without it, every memory access by an application
would require a time-consuming page walk of the kernel page table to calculate the correct
physical address for each referenced virtual address.

TLB hierarchy typically consists of L1 ITLB (instructions), L1 DTLB (data), and L2 STLB
(unified cache for instructions and data). A miss in the L1 (first level) ITLBs results in a very
small penalty that can usually be hidden by the Out of Order (OOO) execution. A miss in
the STLB results in the page walker being invoked. This penalty can be noticeable in the
runtime because, during this process, the CPU is stalled [Suresh Srinivas, 2019]. Assuming
the default page size in Linux kernel is 4KB, modern L1 level TLB caches can keep only up
to a few hundred most recently used page-table entries, which covers address space of ~1MB,
while L2 STLB can hold up to a few thousand page-table entries. Exact numbers for a specific
processor can be found at https://ark.intel.com.

On Linux and Windows systems, applications are loaded into memory into 4KB pages, which
is the default on most systems. Allocating many small pages is expensive. If an application
actively references tens or hundreds of GBs of memory, that would require many 4KB-sized
pages, each of which will contend for a limited set of TLB entries. Using large 2MB pages,

119

https://ark.intel.com

8.1 Memory Bound

20MB of memory can be mapped with just ten pages, whereas with 4KB pages, 5120 pages
are required. This means fewer TLB entries are needed, in turn reducing the number of
TLB misses. Both Windows and Linux allow applications to establish large-page memory
regions. HugeTLB subsystem support depends on the architecture, while AMD64 and Intel 64
architecture support both 2 MB (huge) and 1 GB (gigantic) pages.

As we just learned, one way to reduce the number of ITLB misses is to use the larger page
size. Thankfully, TLB is capable of caching entries for 2MB and 1GB pages as well. If the
aforementioned application employed 2MB pages instead of the default 4KB pages, it would
reduce TLB pressure by a factor of 512. Likewise, if it updated from using 2MB pages to
1GB pages, it would reduce TLB pressure by yet another factor of 512. That is quite an
improvement! Using a larger page size may be beneficial for some applications because less
space is used in the cache for storing translations, allowing more space to be available for the
application code. Huge pages typically lead to fewer page walks, and the penalty for walking
the kernel page table in the event of a TLB miss is reduced since the table itself is more
compact.

Large pages can be used for code, data, or both. Large pages for data are good to try if
your workload has a large heap. Large memory applications such as relational database
systems (e.g., MySQL, PostgreSQL, Oracle, etc.) and Java applications configured with large
heap regions frequently benefit from using large pages. One example of using huge pages for
optimizing runtimes is presented in [Suresh Srinivas, 2019], showing how this feature improves
performance and reduces ITLB misses (up to 50%) in three applications in three environments.
However, as it is with many other features, large pages are not for every application. An
application that wants to allocate only one byte of data would be better off using a 4k page
rather than a huge one; that way, memory is used more efficiently.

On Linux OS, there are two ways of using large pages in an application: Explicit and
Transparent Huge Pages.

8.1.3.1 Explicit Hugepages. Are available as a part of the system memory, exposed as a
huge page file system (hugetlbfs), applications can access it using system calls, e.g., mmap. One
can check Huge Pages appropriately configured on the system through cat /proc/meminfo
and look at HugePages_Total entries. Huge pages can be reserved at boot time or at run
time. Reserving at boot time increases the possibility of success because the memory has not
yet been significantly fragmented. Exact instructions for reserving huge pages can be found in
Red Hat Performance Tuning Guide 194.

There is an option to dynamically allocate memory on top of large pages with libhugetlbfs195

library that overrides malloc calls used in existing dynamically linked binary executables. It
doesn’t require modifying the code or even relink the binary; end-users just need to configure
several environment variables. It can use both explicitly reserved huge pages as well as
transparent ones. See libhugetlbfs how-to documentation196 for more details.

For more fine-grained control over accesses to large pages from the code (i.e., not affecting
every memory allocation), developers have the following alternatives:

194 Red Hat Performance Tuning Guide - https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-
performance_tuning_guide-memory-configuring-huge-pages#sect-Red_Hat_Enterprise_Linux-
Performance_tuning_guide-Memory-Configuring-huge-pages-at-run-tim.

195 libhugetlbfs - https://github.com/libhugetlbfs/libhugetlbfs.
196 libhugetlbfs “how-to” page - https://github.com/libhugetlbfs/libhugetlbfs/blob/master/HOWTO.

120

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages#sect-Red_Hat_Enterprise_Linux-Performance_tuning_guide-Memory-Configuring-huge-pages-at-run-time
https://github.com/libhugetlbfs/libhugetlbfs
https://github.com/libhugetlbfs/libhugetlbfs/blob/master/HOWTO
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages#sect-Red_Hat_Enterprise_Linux-Performance_tuning_guide-Memory-Configuring-huge-pages-at-run-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages#sect-Red_Hat_Enterprise_Linux-Performance_tuning_guide-Memory-Configuring-huge-pages-at-run-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages#sect-Red_Hat_Enterprise_Linux-Performance_tuning_guide-Memory-Configuring-huge-pages-at-run-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages#sect-Red_Hat_Enterprise_Linux-Performance_tuning_guide-Memory-Configuring-huge-pages-at-run-time
https://github.com/libhugetlbfs/libhugetlbfs
https://github.com/libhugetlbfs/libhugetlbfs/blob/master/HOWTO

8.2 Core Bound

• mmap using the MAP_HUGETLB flag (exampe code197).
• mmap using a file from a mounted hugetlbfs filesystem (exampe code198).
• shmget using the SHM_HUGETLB flag (exampe code199).

8.1.3.2 Transparent Hugepages. Linux also offers Transparent Hugepage Support
(THP), which manages large pages200 automatically and is transparent for applications. Under
Linux, you can enable THP, which dynamically switches to huge pages when large blocks
of memory are needed. The THP feature has two modes of operation: system-wide and
per-process. When THP is enabled system-wide, the kernel tries to assign huge pages to any
process when it is possible to allocate such, so huge pages do not need to be reserved manually.
If THP is enabled per-process, the kernel only assigns huge pages to individual processes’
memory areas attributed to the madvise system call. You can check if THP enabled in the
system with:

$ cat /sys/kernel/mm/transparent_hugepage/enabled
always [madvise] never

If the values are always (system-wide) or madvise (per-process), then THP is available for
your application. With the madvise option, THP is enabled only inside memory regions
attributed with MADV_HUGEPAGE via madvise system call. Complete specification for every
option can be found in Linux kernel documentation201 regarding THP.

8.1.3.3 Explicit vs. Transparent Hugepages. Whilst Explicit Huge Pages (EHP) are
reserved in virtual memory upfront, THPs are not. In the background, the kernel attempts
to allocate a THP, and if it fails, it will default to the standard 4k page. This all happens
transparently to the user. The allocation process can potentially involve a number of kernel
processes responsible for making space in the virtual memory for a future THP (which may
include swapping memory to the disk, fragmentation, or compacting pages202). Background
maintenance of transparent huge pages incurs non-deterministic latency overhead from the
kernel as it manages the inevitable fragmentation and swapping issues. EHP is not subject to
memory fragmentation and cannot be swapped to the disk.

Secondly, EHP is available for use on all segments of an application, including text segments
(i.e., benefits both DTLB and ITLB), while THP is only available for dynamically allocated
memory regions.

One advantage of THP is that less OS configuration effort is required than with EHP, which
enables faster experiments.

8.2 Core Bound

The second type of CPU Back-End bottleneck is Core Bound. Generally speaking, this metric
represents all the stalls inside a CPU Out-Of-Order execution engine that was not caused by

197 MAP_HUGETLB example - https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/ma
p_hugetlb.c.

198 Mounted hugetlbfs filesystem - https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/
hugepage-mmap.c.

199 SHM_HUGETLB example - https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/hu
gepage-shm.c.

200 Note that the THP feature only supports 2MB pages.
201 Linux kernel THP documentation - https://www.kernel.org/doc/Documentation/vm/transhuge.txt
202 E.g., compacting 4KB pages into 2MB, breaking 2MB pages back into 4KB, etc.

121

https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/map_hugetlb.c
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/hugepage-mmap.c
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/hugepage-shm.c
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/map_hugetlb.c
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/map_hugetlb.c
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/hugepage-mmap.c
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/hugepage-mmap.c
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/hugepage-shm.c
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/vm/hugepage-shm.c
https://www.kernel.org/doc/Documentation/vm/transhuge.txt

8.2 Core Bound

memory issues. There are two main categories that represent Core Bound metric:

• Shortage in hardware compute resources. It indicates that certain execution units are
overloaded (execution port contention). This can happen when a workload frequently
performs lots of heavy instructions. For example, division and square root operations
are served by the Divider unit and can take considerably longer latency than other
instructions.

• Dependencies between software’s instructions. It indicates that dependencies in the pro-
gram’s data- or instruction-flow are limiting the performance. For example, floating-point
dependent long-latency arithmetic operations lead to low Instruction Level Parallelism
(ILP).

In this subsection, we will take a look at the most well-known optimizations like function
inlining, vectorization, and loop optimizations. Those optimizations aim at reducing the
total amount of executed instructions, which, technically, is also helpful when the workload
experience a high Retiring metric. But the author believes that it is appropriate to discuss
them here.

8.2.1 Inlining Functions

Function inlining is replacing a call to a function F with the code for F specialized with the
actual arguments of the call. Inlining is one of the most important compiler optimizations.
Not only because it eliminates the overhead of calling a function203, but also it enables other
optimizations. This happens because when a compiler inlines a function, the scope of compiler
analysis widens to a much larger chunk of code. However, there are disadvantages as well:
inlining can potentially increase the code size and compile time204.

The primary mechanism for function inlining in many compilers relies on some sort of a cost
model. For example, for the LLVM compiler, it is based on computing cost and a threshold for
each function call (callsite). Inlining happens if the cost is less than the threshold. Generally,
the cost of inlining a function call is based on the number and type of instructions in that
function. A threshold is usually fixed; however, it can be varied under certain circumstances205.
There are many heuristics that surround that general cost model. For instance:

• Tiny functions (wrappers) are almost always inlined.
• Functions with a single callsite are preferred candidates for inlining.
• Large functions usually are not inlined as they bloat the code of the caller function.

Also, there are situations when inlining is problematic:

• A recursive function cannot be inlined into itself.
• Function that is referred to through a pointer can be inlined in place of a direct call but

has to stay in the binary, i.e., cannot be fully inlined and eliminated. The same is true
for functions with external linkage.

As we said earlier, compilers tend to use a cost model approach when making a decision about
inlining a function, which typically works well in practice. In general, it is a good strategy to
rely on the compiler for making all the inlining decisions and adjust if needed. The cost model
cannot account for every possible situation, which leaves room for improvement. Sometimes

203 Overhead of calling a function usually consists of executing CALL, PUSH, POP, and RET instructions. Series of
PUSH instructions are called “Prologue”, and series of POP instructions are called “Epilogue”.

204 See the article: https://aras-p.info/blog/2017/10/09/Forced-Inlining-Might-Be-Slow/.
205 For example, 1) when a function declaration has a hint for inlining, 2) when there is profiling data for the
function, or 3) when a compiler optimizes for size (-Os) rather than performance (-O2).

122

https://aras-p.info/blog/2017/10/09/Forced-Inlining-Might-Be-Slow/

8.2 Core Bound

compilers require special hints from the developer. One way to find potential candidates for
inlining in a program is by looking at the profiling data, and in particular, how hot is the
prologue and the epilogue206 of the function. Below is an example207 of a function profile with
prologue and epilogue consuming ~50% of the function time:

Overhead | Source code & Disassembly
(%) | of function `foo`

--
3.77 : 418be0: push r15 # prologue
4.62 : 418be2: mov r15d,0x64
2.14 : 418be8: push r14
1.34 : 418bea: mov r14,rsi
3.43 : 418bed: push r13
3.08 : 418bef: mov r13,rdi
1.24 : 418bf2: push r12
1.14 : 418bf4: mov r12,rcx
3.08 : 418bf7: push rbp
3.43 : 418bf8: mov rbp,rdx
1.94 : 418bfb: push rbx
0.50 : 418bfc: sub rsp,0x8
...
function body
...
4.17 : 418d43: add rsp,0x8 # epilogue
3.67 : 418d47: pop rbx
0.35 : 418d48: pop rbp
0.94 : 418d49: pop r12
4.72 : 418d4b: pop r13
4.12 : 418d4d: pop r14
0.00 : 418d4f: pop r15
1.59 : 418d51: ret

This might be a strong indicator that the time consumed by the prologue and epilogue of the
function might be saved if we inline the function. Note that even if the prologue and epilogue
are hot, it doesn’t necessarily mean it will be profitable to inline the function. Inlining triggers
a lot of different changes, so it’s hard to predict the outcome. Always measure the performance
of the changed code to confirm the need to force inlining.

For GCC and Clang compilers, one can make a hint for inlining foo with the help of C++11
[[gnu::always_inline]] attribute208 as shown in the code example below. For the MSVC
compiler, one can use the __forceinline keyword.

[[gnu::always_inline]] int foo() {
// foo body

}

206 Inlining a function with hot prologue and epilogue - https://en.wikipedia.org/wiki/Function_prologue.
207 https://easyperf.net/blog/2019/05/28/Performance-analysis-and-tuning-contest-3#inlining-functions-
with-hot-prolog-and-epilog-265.

208 For earlier C++ standards one can use __attribute__((always_inline)).

123

https://en.wikipedia.org/wiki/Function_prologue
https://en.wikipedia.org/wiki/Function_prologue
https://easyperf.net/blog/2019/05/28/Performance-analysis-and-tuning-contest-3#inlining-functions-with-hot-prolog-and-epilog-265
https://easyperf.net/blog/2019/05/28/Performance-analysis-and-tuning-contest-3#inlining-functions-with-hot-prolog-and-epilog-265

8.2 Core Bound

8.2.2 Loop Optimizations

Loops are the heart of nearly all high performance (HPC) programs. Since loops represent a
piece of code that is executed a large number of times, they are where the majority of the
execution time is spent. Small changes in such a critical piece of code may have a high impact
on the performance of a program. That’s why it is so important to carefully analyze the
performance of hot loops in a program and know possible options to improve them.

To effectively optimize a loop, it is crucial to know what is the bottleneck of the loop. Once you
find the loops that are using the most time, try to determine their bottlenecks. Usually, the
performance of the loops is limited by one or many of the following: memory latency, memory
bandwidth, or compute capabilities of a machine. Roofline Performance Model (section 5.5) is a
good starting point for assessing the performance of different loops against the HW theoretical
maximums. Top-Down Microarchitecture Analysis (section 6.1) can be another good source of
information about the bottlenecks.

In this section, we will take a look at the most well-known loop optimizations that address the
types of bottlenecks mentioned above. We first discuss low-level optimizations that only move
code around in a single loop. Such optimizations typically help make computations inside
the loop more effective. Next, we will take a look at high-level optimizations that restructure
loops, which often affects multiple loops. The second class of optimizations generally aims
at improving memory accesses eliminating memory bandwidth and memory latency issues.
Note, this is not a complete list of all discovered loop transformations. For more detailed
information on each of the transformations discussed below, readers can refer to [Cooper and
Torczon, 2012].

Compilers can automatically recognize an opportunity to perform a certain loop transformation.
However, sometimes developer’s interference may be required to reach the desired outcome. In
the second part of this section, we will take a look at possible ways to discover performance
improvement opportunities in the loops. Understanding what transformations were performed
on a given loop and what optimizations compiler failed to do is one of the keys to successful
performance tuning. In the end, we will consider an alternative way of optimizing loops with
polyhedral frameworks.

8.2.2.1 Low-level optimizations. First, we will consider simple loop optimizations that
transform the code inside a single loop: Loop Invariant Code Motion, Loop Unrolling, Loop
Strength Reduction, and Loop Unswitching. Such optimizations usually help improve the
performance of loops with high arithmetic intensity (see section 5.5), i.e., when a loop is bound
by CPU compute capabilities. Generally, compilers are good at doing such transformations;
however, there are still cases when a compiler might need a developer’s support. We will talk
about that in subsequent sections.

Loop Invariant Code Motion (LICM). Expressions evaluated in a loop that never change
are called loop invariants. Since their value doesn’t change across loop iterations, we can move
loop invariant expressions outside of the loop. We do so by storing the result in a temporary
and just use the temporary inside the loop (see Listing 28).

Loop Unrolling. An induction variable is a variable in a loop, whose value is a function of
the loop iteration number. For example, v = f(i), where i is an iteration number. Modifying
the induction variable in each iteration can be expensive. Instead, we can unroll a loop and
perform multiple iterations for each increment of the induction variable (see Listing 29).

The primary benefit of loop unrolling is to perform more computations per iteration. At the

124

8.2 Core Bound

Listing 28 Loop Invariant Code motion

for (int i = 0; i < N; ++i) for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) => auto temp = c[i];

a[j] = b[j] * c[i]; for (int j = 0; j < N; ++j)
a[j] = b[j] * temp;

}

Listing 29 Loop Unrolling

for (int i = 0; i < N; ++i) for (int i = 0; i < N; i+=2) {
a[i] = b[i] * c[i]; => a[i] = b[i] * c[i];

a[i+1] = b[i+1] * c[i+1];
}

end of each iteration, the index value must be incremented, tested, and the control is branched
back to the top of the loop if it has more iterations to process. This work can be considered
as loop “tax”, which can be reduced. By unrolling the loop in Listing 29 by a factor of 2, we
reduce the number of executed compare and branch instructions by half.

Loop unrolling is a well-known optimization; still, many people are confused about it and try
to unroll the loops manually. I suggest that no developer should unroll any loop by hand. First,
compilers are very good at doing this and usually do loop unrolling quite optimally. The second
reason is that processors have an “embedded unroller” thanks to their out-of-order speculative
execution engine (see section 3). While the processor is waiting for the load from the first
iteration to finish, it may speculatively start executing the load from the second iteration. This
spans to multiple iterations ahead, effectively unrolling the loop in the instruction Reorder
Buffer (ROB).

Loop Strength Reduction (LSR). The idea of LSR is to replace expensive instructions
with cheaper ones. Such transformation can be applied to all expressions that use an induction
variable. Strength reduction is often applied to array indexing. Compilers perform LSR by
analyzing how the value of a variable evolves209 across the loop iterations (see Listing 30).

Listing 30 Loop Strength Reduction

for (int i = 0; i < N; ++i) int j = 0;
a[i] = b[i * 10] * c[i]; => for (int i = 0; i < N; ++i) {

a[i] = b[j] * c[i];
j += 10;

}

Loop Unswitching. If a loop has a conditional inside and it is invariant, we can move it
outside of the loop. We do so by duplicating the body of the loop and placing a version of
it inside each of the if and else clauses of the conditional (see Listing 31). While the loop
unswitching may double the amount of code written, each of these new loops may now be
separately optimized.

209 In LLVM, it is known as Scalar Evolution (SCEV).

125

8.2 Core Bound

Listing 31 Loop Unswitching

for (i = 0; i < N; i++) { if (c)
a[i] += b[i]; for (i = 0; i < N; i++) {
if (c) => a[i] += b[i];

b[i] = 0; b[i] = 0;
} }

else
for (i = 0; i < N; i++) {

a[i] += b[i];
}

8.2.2.2 High-level optimizations. There is another class of loop transformations that
change the structure of loops and often affect multiple nested loops. We will take a look
at Loop Interchange, Loop Blocking (Tiling), and Loop Fusion and Distribution (Fission).
This set of transformations aims at improving memory accesses and eliminating memory
bandwidth and memory latency bottlenecks. From a compiler perspective, doing high-level
loop transformations legally and automatically is very difficult. It is often hard to justify
the benefit of making any of the optimizations mentioned in this paragraph. In that sense,
developers are in a better position since they only have to care about the legality of the
transformation in their particular piece of code, not about every possible scenario that may
happen. Unfortunately, that also means that often times, we have to do such transformations
manually.

Loop Interchange. It is a process of exchanging the loop order of nested loops. The induction
variable used in the inner loop switches to the outer loop, and vice versa. Listing 32 shows an
example of interchanging nested loops for i and j. The major purpose of loop interchange
is to perform sequential memory accesses to the elements of a multi-dimensional array. By
following the order in which elements are laid out in memory, we can improve the spatial
locality of memory accesses and make our code more cache-friendly (see section 8.1.1). This
transformation helps to eliminate memory bandwidth and memory latency bottlenecks.

Listing 32 Loop Interchange

for (i = 0; i < N; i++) for (j = 0; j < N; j++)
for (j = 0; j < N; j++) => for (i = 0; i < N; i++)

a[j][i] += b[j][i] * c[j][i]; a[j][i] += b[j][i] * c[j][i];

Loop Blocking (Tiling). The idea of this transformation is to split the multi-dimensional
execution range into smaller chunks (blocks or tiles) so that each block will fit in the CPU
caches210. If an algorithm works with large multi-dimensional arrays and performs strided
accesses to their elements, there is a high chance of poor cache utilization. Every such access
may push the data that will be requested by future accesses out of the cache (cache eviction).
By partitioning an algorithm in smaller multi-dimensional blocks, we ensure the data used in
a loop stays in the cache until it is reused.

In the example shown in Listing 33, an algorithm performs row-major traversal of elements of
array a while doing column-major traversal of array b. The loop nest can be partitioned into

210 Typically, engineers optimize a tiled algorithm for the size of the L2 cache since it is private for each CPU
core.

126

8.2 Core Bound

smaller blocks in order to maximize the reuse of elements of the array b.

Listing 33 Loop Blocking

// linear traversal // traverse in 8*8 blocks
for (int i = 0; i < N; i++) for (int ii = 0; ii < N; ii+=8)

for (int j = 0; j < N; j++) => for (int jj = 0; jj < N; jj+=8)
a[i][j] += b[j][i]; for (int i = ii; i < ii+8; i++)

for (int j = jj; j < jj+8; j++)
a[i][j] += b[j][i];

Loop Blocking is a widely known method of optimizing GEneral Matrix Multiplication (GEMM)
algorithms. It enhances the cache reuse of the memory accesses and improves both memory
bandwidth and memory latency of an algorithm.

Loop Fusion and Distribution (Fission). Separate loops can be fused together when they
iterate over the same range and do not reference each other’s data. An example of a Loop
Fusion is shown in Listing 34. The opposite procedure is called Loop Distribution (Fission)
when the loop is split into separate loops.

Listing 34 Loop Fusion and Distribution

for (int i = 0; i < N; i++) for (int i = 0; i < N; i++) {
a[i].x = b[i].x; a[i].x = b[i].x;

=> a[i].y = b[i].y;
for (int j = 0; j < N; j++) }

a[i].y = b[i].y;

Loop Fusion helps to reduce the loop overhead (see discussion in Loop Unrolling) since both
loops can use the same induction variable. Also, loop fusion can help to improve the temporal
locality of memory accesses. In Listing 34, if both x and y members of a structure happen to
reside on the same cache line, it is better to fuse the two loops since we can avoid loading the
same cache line twice. This will reduce the cache footprint and improve memory bandwidth
utilization.

However, loop fusion does not always improve performance. Sometimes it is better to split
a loop into multiple passes, pre-filter the data, sort and reorganize it, etc. By distributing
the large loop into multiple smaller ones, we limit the amount of data required for each
iteration of the loop, effectively increasing the temporal locality of memory accesses. This
helps in situations with a high cache contention, which typically happens in large loops. Loop
distribution also reduces register pressure since, again, fewer operations are being done within
each iteration of the loop. Also, breaking a big loop into multiple smaller ones will likely
be beneficial for the performance of the CPU Front-End because of better instruction cache
utilization (see section 7). Finally, when distributed, each small loop can be further optimized
separately by the compiler.

8.2.2.3 Discovering loop optimization opportunities. As we discussed at the begin-
ning of this section, compilers will do the heavy-lifting part of optimizing your loops. You
can count on them on making all the obvious improvements in the code of your loops, like
eliminating unnecessary work, doing various peephole optimizations, etc. Sometimes a compiler
is clever enough to generate the fast versions of the loops by default, and other times we have

127

8.2 Core Bound

to do some rewriting ourselves to help the compiler. As we said earlier, from a compiler’s
perspective, doing loop transformations legally and automatically is very difficult. Often,
compilers have to be conservative when they cannot prove the legality of a transformation.

Consider a code in Listing 35. A compiler cannot move the expression strlen(a) out of the
loop body. So, the loop checks if we reached the end of the string on each iteration, which
is obviously slow. The reason why a compiler cannot hoist the call is that there could be a
situation when the memory regions of arrays a and b overlap. In this case, it would be illegal
to move strlen(a) out of the loop body. If developers are sure that the memory regions do
not overlap, they can declare both parameters of function foo with the restrict keyword,
i.e., char* __restrict__ a.

Listing 35 Cannot move strlen out of the loop

void foo(char* a, char* b) {
for (int i = 0; i < strlen(a); ++i)

b[i] = (a[i] == 'x') ? 'y' : 'n';
}

Sometimes compilers can inform us about failed transformations via compiler optimization
remarks (see section 5.7). However, in this case, neither Clang 10.0.1 nor GCC 10.2 were able
to explicitly tell that the expression strlen(a) was not hoisted out of the loop. The only
way to find this out is to examine hot parts of the generated assembly code according to the
profile of the application. Analyzing machine code requires the basic ability to read assembly
language, but it is a highly rewarding activity.

It is a reasonable strategy to try to get the low-hanging fruits first. Developers could
use compiler optimizations reports or examine the machine code of a loop to search for easy
improvements. Sometimes, it’s possible to adjust compiler transformations using user directives.
For example, when we find out that the compiler unrolled our loop by a factor of 4, we may
check if using a higher unrolling factor will benefit performance. Most compilers support
#pragma unroll(8), which will instruct a compiler to use the unrolling factor specified by
the user. There are other pragmas that control certain transformations, like loop vectorization,
loop distribution, and others. For a complete list of user directives, we invite the user to check
the compiler’s manual.

Next, developers should identify the bottlenecks in the loop and assess performance against
the HW theoretical maximum. Start with the Roofline Performance Model (section 5.5), which
will reveal the bottlenecks that developers should try to address. The performance of the loops
is limited by one or many of the following factors: memory latency, memory bandwidth, or
compute capabilities of a machine. Once the bottlenecks of the loop were identified, developers
can try to apply one of the transformations we discussed earlier in this section.

Personal Experience: Even though there are well-known optimization
techniques for a particular set of computational problems, for a large part,
loop optimizations are sort of "black art" that comes with experience. I
recommend you to rely on a compiler and only complement it with making
needed transformations yourself. Finally, keep the code as simple as possible
and do not introduce unreasonable complicated changes if the performance
benefits are negligible.

128

8.2 Core Bound

8.2.2.4 Use Loop Optimization Frameworks Over the years, researchers have devel-
oped techniques to determine the legality of loop transformations and automatically transform
the loops. One such invention is the polyhedral framework211. GRAPHITE212 was among
the first set of polyhedral tools that were integrated into a production compiler. GRAPHITE
performs a set of classical loop optimizations based on the polyhedral information, extracted
from GIMPLE, GCC’s low-level intermediate representation. GRAPHITE has demonstrated
the feasibility of the approach.

LLVM-based compilers employ their own polyhedral framework: Polly213. Polly is a high-level
loop and data-locality optimizer and optimization infrastructure for LLVM. It uses an abstract
mathematical representation based on integer polyhedral to analyze and optimize the memory
access pattern of a program. Polly performs classical loop transformations, especially tiling
and loop fusion, to improve data-locality. This framework has shown significant speedups on a
number of well-known benchmarks [Grosser et al., 2012]. Below we show an example of how
Polly can give an almost 30 times speedup of a GEneral Matrix-Multiply (GEMM) kernel
from Polybench 2.0214 benchmark suite:

$ clang -O3 gemm.c -o gemm.clang
$ time ./gemm.clang
real 0m6.574s
$ clang -O3 gemm.c -o gemm.polly -mllvm -polly
$ time ./gemm.polly
real 0m0.227s

Polly is a powerful framework for loop optimizations; however, it still misses out on some
common and important situations215. It is not enabled in the standard optimization pipeline
in the LLVM infrastructure and requires that the user provide an explicit compiler option for
using it (-mllvm -polly). Using polyhedral frameworks is a viable option when searching for
a way to speed up your loops.

8.2.3 Vectorization

On modern processors, the use of SIMD instructions can result in a great speedup over regular
un-vectorized (scalar) code. When doing performance analysis, one of the top priorities of the
software engineer is to ensure that the hot parts of the code are vectorized by the compiler.
This section is supposed to guide engineers towards discovering vectorization opportunities.
To recap on general information about the SIMD capabilities of modern CPUs, readers can
take a look at section 3.7.

Most vectorization happens automatically without any intervention of the user (Autovec-
torization). That is when a compiler automatically recognizes the opportunity to produce
SIMD machine code from the source code. It is a good strategy to rely on autovectorization
since modern compilers generate fast vectorized code for a wide variety of source code inputs.
Echoing advice given earlier, the author recommends to let the compiler do its job and only
interfere when it is needed.

211 Polyhedral framework - https://en.wikipedia.org/wiki/Loop_optimization#The_polyhedral_or_constrain
t-based_framework.

212 GRAPHITE polyhedral framework - https://gcc.gnu.org/wiki/Graphite.
213 Polly - https://polly.llvm.org/.
214 Polybench - https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/.
215 Why not Polly? - https://sites.google.com/site/parallelizationforllvm/why-not-polly.

129

https://en.wikipedia.org/wiki/Loop_optimization#The_polyhedral_or_constraint-based_framework
https://gcc.gnu.org/wiki/Graphite
https://polly.llvm.org/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://en.wikipedia.org/wiki/Loop_optimization#The_polyhedral_or_constraint-based_framework
https://en.wikipedia.org/wiki/Loop_optimization#The_polyhedral_or_constraint-based_framework
https://gcc.gnu.org/wiki/Graphite
https://polly.llvm.org/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://sites.google.com/site/parallelizationforllvm/why-not-polly

8.2 Core Bound

In rather rare cases, software engineers need to adjust autovectorization, based on the feed-
back216 that they get from a compiler or profiling data. In such cases, programmers need
to tell the compiler that some code region is vectorizable or that vectorization is profitable.
Modern compilers have extensions that allow power users to control the vectorizer directly
and make sure that certain parts of the code are vectorized efficiently. There will be several
examples of using compiler hints in the subsequent sections.

It is important to note that there is a range of problems where SIMD is invaluable and where
autovectorization just does not work and is not likely to work in the near future (one can find
an example in [Muła and Lemire, 2019]). If it is not possible to make a compiler generate
desired assembly instructions, a code snippet can be rewritten with the help of compiler
intrinsics. In most cases, compiler intrinsics provide a 1-to-1 mapping into assembly instruction
(see section 10.2).

Personal Opinion: Even though in some cases developers need to mess
around with compiler intrinsics, I recommend to mostly rely on compiler
auto-vectorization and only use intrinsics when necessary. A code that uses
compiler intrinsics resembles inline assembly and quickly becomes unreadable.
Compiler auto-vectorization can often be adjusted using pragmas and other
hints.

Generally, three kinds of vectorization are done in a compiler: inner loop vectorization, outer
loop vectorization, and SLP (Superword-Level Parallelism) vectorization. In this section, we
will mostly consider inner loop vectorization since this is the most common case. We provide
general information about the outer loop and SLP vectorization in appendix B.

8.2.3.1 Compiler Autovectorization. Multiple hurdles can prevent auto-vectorization,
some of which are inherent to the semantics of programming languages. For example, the
compiler must assume that unsigned loop-indices may overflow, and this can prevent certain
loop transformations. Another example is the assumption that the C programming language
makes: pointers in the program may point to overlapping memory regions, which can make
the analysis of the program very difficult. Another major hurdle is the design of the processor
itself. In some cases processors, don’t have efficient vector instructions for certain operations.
For example, performing predicated (bitmask-controlled) load and store operations are not
available on most processors. Another example is vector-wide format conversion between
signed integers to doubles because the result operates on vector registers of different sizes.
Despite all of the challenges, the software developer can work around many of the challenges
and enable vectorization. Later in the section, we provide guidance on how to work with the
compiler and ensure that the hot code is vectorized by the compiler.

The vectorizer is usually structured in three phases: legality-check, profitability-check, and
transformation itself:

• Legality-check. In this phase, the compiler checks if it is legal to transform the loop
(or some other code region) into using vectors. The loop vectorizer checks that the
iterations of the loop are consecutive, which means that the loop progresses linearly.
The vectorizer also ensures that all of the memory and arithmetic operations in the
loop can be widened into consecutive operations. That the control flow of the loop is
uniform across all lanes and that the memory access patterns are uniform. The compiler
has to check or ensure somehow that the generated code won’t touch memory that it

216 For example, compiler optimization reports, see section 5.7.

130

8.2 Core Bound

is not supposed to and that the order of operations will be preserved. The compiler
needs to analyze the possible range of pointers, and if it has some missing information,
it has to assume that the transformation is illegal. The legality phase collects a list of
requirements that need to happen for vectorization of the loop to be legal.

• Profitability-check. Next, the vectorizer checks if a transformation is profitable. It
compares different vectorization factors and figures out which vectorization factor would
be the fastest to execute. The vectorizer uses a cost model to predict the cost of different
operations, such as scalar add or vector load. It needs to take into account the added
instructions that shuffle data into registers, predict register pressure, and estimate the
cost of the loop guards that ensure that preconditions that allow vectorizations are
met. The algorithm for checking profitability is simple: 1) add-up the cost of all of the
operations in the code, 2) compare the costs of each version of the code, 3) divide the
cost by the expected execution count. For example, if the scalar code costs 8 cycles,
and the vectorized code costs 12 cycles, but performs 4 loop iterations at once, then the
vectorized version of the loop is probably faster.

• Transformation. Finally, after the vectorizer figures out that the transformation is
legal and profitable, they transform the code. This process also includes the insertion of
guards that enable vectorization. For example, most loops use an unknown iteration
count, so the compiler has to generate a scalar version of the loop, in addition to the
vectorized version of the loop, to handle the last few iterations. The compiler also has
to check if pointers don’t overlap, etc. All of these transformations are done using
information that is collected during the legality check phase.

8.2.3.2 Discovering vectorization opportunities. Amdahl’s law217 teaches us that we
should spend time analyzing only those parts of code that are used the most during the
execution of a program. Thus, the performance engineer should focus on hot parts of the code
that were highlighted by a profiling tool (see section 5.4). As mentioned earlier, vectorization
is most frequently applied to loops.

Discovering opportunities for improving vectorization should start by analyzing hot loops
in the program and checking what optimizations were performed by the compiler to them.
Checking compiler vectorization remarks (see section 5.7) is the easiest way to know that.
Modern compilers can report whether a certain loop was vectorized, provide additional details,
like vectorization factor (VF). In the case when the compiler cannot vectorize a loop, it is also
able to tell the reason why it failed.

An alternative way to using compiler optimization reports is to check assembly output. It
is best to analyze the output from a profiling tool that shows the correspondence between
the source code and generated assembly instructions for a given loop. However, this method
requires the ability to read and understand assembly language. It may take some time to
figure out the semantics of the instructions generated by the compiler218. But this skill is
highly rewarding and often provide additional insights. For example, one can spot suboptimal
generated code, such as lack of vectorization, suboptimal vectorization factor, performing
unnecessary computations, etc.

There are a few common cases that developers frequently run into when trying to accelerate
217 Amdahl’s_law - https://en.wikipedia.org/wiki/Amdahl’s_law.
218 Although one can quickly tell if the code was vectorized or not just by looking at instruction mnemonics or
at register names used by those instructions. Vector instructions operate on packed data (thus have P in their
name) and use XMM, YMM, or ZMM registers.

131

https://en.wikipedia.org/wiki/Amdahl's_law
https://en.wikipedia.org/wiki/Amdahl's_law

8.2 Core Bound

vectorizable code. Below we present four typical scenarios and give general guidance on how
to proceed in each case.

8.2.3.3 Vectorization is illegal. In some cases, the code that iterates over elements of
an array is simply not vectorizable. Vectorization remarks are very effective at explaining
what went wrong and why the compiler can’t vectorize the code. Listing 36 shows an example
of dependence inside a loop that prevents vectorization219.

Listing 36 Vectorization: read-after-write dependence.

void vectorDependence(int *A, int n) {
for (int i = 1; i < n; i++)

A[i] = A[i-1] * 2;
}

While some loops cannot be vectorized due to the hard limitations described above, others
could be vectorized when certain constraints are relaxed. There are situations when the
compiler cannot vectorize a loop because it simply cannot prove it is legal to do so. Compilers
are generally very conservative and only do transformations when they are sure it doesn’t
break the code. Such soft limitations could be relaxed by providing additional hints to the
compiler. For example, when transforming the code that performs floating-point arithmetic,
vectorization may change the behavior of the program. The floating-point addition and
multiplication are commutative, which means that you can swap the left-hand side and the
right-hand side without changing the result: (a + b == b + a). However, these operations
are not associative, because rounding happens at different times: ((a + b) + c) != (a +
(b + c)). The code in Listing 37 cannot be auto vectorized by the compiler. The reason
is that vectorization would change the variable sum into a vector accumulator, and this will
change the order of operations and may lead to different rounding decisions and a different
result.

Listing 37 Vectorization: floating-point arithmetic.

1 // a.cpp
2 float calcSum(float* a, unsigned N) {
3 float sum = 0.0f;
4 for (unsigned i = 0; i < N; i++) {
5 sum += a[i];
6 }
7 return sum;
8 }

However, if the program can tolerate a bit of inaccuracy in the final result (which usually is
the case), we can convey this information to the compiler to enable vectorization. Clang and
GCC compilers have a flag, -ffast-math220, that allows this kind of transformation:

$ clang++ -c a.cpp -O3 -march=core-avx2 -Rpass-analysis=.*
...

219 It is easy to spot read-after-write dependency once you unroll a couple of iterations of the loop. See example
in section 5.7.

220 The compiler flag -Ofast enables -ffast-math as well as the -O3 compilation mode.

132

8.2 Core Bound

a.cpp:5:9: remark: loop not vectorized: cannot prove it is safe to reorder
floating-point operations; allow reordering by specifying '#pragma clang
loop vectorize(enable)' before the loop or by providing the compiler
option '-ffast-math'. [-Rpass-analysis=loop-vectorize]

...
$ clang++ -c a.cpp -O3 -ffast-math -Rpass=.*
...
a.cpp:4:3: remark: vectorized loop (vectorization width: 4, interleaved

count: 2) [-Rpass=loop-vectorize]
...

Let’s look at another typical situation when a compiler may need support from a developer
to perform vectorization. When compilers cannot prove that a loop operates on arrays with
non-overlapping memory regions, they usually choose to be on the safe side. Let’s revisit the
example from Listing 9 provided in section 5.7. When the compiler tries to vectorize the code
presented in Listing 38, it generally cannot do this because the memory regions of arrays a, b,
and c can overlap.

Listing 38 a.c

1 void foo(float* a, float* b, float* c, unsigned N) {
2 for (unsigned i = 1; i < N; i++) {
3 c[i] = b[i];
4 a[i] = c[i-1];
5 }
6 }

Here is the optimization report (enabled with -fopt-info) provided by GCC 10.2:

$ gcc -O3 -march=core-avx2 -fopt-info
a.cpp:2:26: optimized: loop vectorized using 32 byte vectors
a.cpp:2:26: optimized: loop versioned for vectorization because of possible

aliasing

GCC has recognized potential overlap between memory regions of arrays a, b, and c, and created
multiple versions of the same loop. The compiler inserted runtime checks221 for detecting if the
memory regions overlap. Based on that checks, it dispatches between vectorized and scalar222

versions. In this case, vectorization comes with the cost of inserting potentially expensive
runtime checks. If a developer knows that memory regions of arrays a, b, and c do not overlap,
it can insert #pragma GCC ivdep223 right before the loop or use the __restrict__ keyword
as shown in Listing 10. Such compiler hints will eliminate the need for the GCC compiler to
insert runtime checks mentioned earlier.

By their nature, compilers are static tools: they only reason based on the code they work
with. For example, some of the dynamic tools, such as Intel Advisor, can detect if issues like
cross-iteration dependence or access to arrays with overlapping memory regions actually occur
in a given loop. But be aware that such tools only provide a suggestion. Carelessly inserting
compiler hints can cause real problems.

221 See example on easyperf blog: https://easyperf.net/blog/2017/11/03/Multiversioning_by_DD.
222 But the scalar version of the loop still may be unrolled.
223 It is GCC specific pragma. For other compilers, check the corresponding manuals.

133

https://easyperf.net/blog/2017/11/03/Multiversioning_by_DD

8.2 Core Bound

8.2.3.4 Vectorization is not beneficial. In some cases, the compiler can vectorize the
loop but figures that doing so is not profitable. In the code presented on Listing 39, the
compiler could vectorize the memory access to array A but would need to split the access to
array B into multiple scalar loads. The scatter/gather pattern is relatively expensive, and
compilers that can simulate the cost of operations often decide to avoid vectorizing code with
such patterns.

Listing 39 Vectorization: not beneficial.

1 // a.cpp
2 void stridedLoads(int *A, int *B, int n) {
3 for (int i = 0; i < n; i++)
4 A[i] += B[i * 3];
5 }

Here is the compiler optimization report for the code in Listing 39:

$ clang -c -O3 -march=core-avx2 a.cpp -Rpass-missed=loop-vectorize
a.cpp:3:3: remark: the cost-model indicates that vectorization is not

beneficial [-Rpass-missed=loop-vectorize]
for (int i = 0; i < n; i++)
^

Users can force the Clang compiler to vectorize the loop by using the #pragma hint, as shown
in Listing 40. However, keep in mind that the true fact of whether vectorization is profitable
or not largely depends on the runtime data, for example, the number of iterations of the
loop. Compilers don’t have this information available224, so they often tend to be conservative.
Developers can use such hints when searching for performance headrooms.

Listing 40 Vectorization: not beneficial.

1 // a.cpp
2 void stridedLoads(int *A, int *B, int n) {
3 #pragma clang loop vectorize(enable)
4 for (int i = 0; i < n; i++)
5 A[i] += B[i * 3];
6 }

Developers should be aware of the hidden cost of using vectorized code. Using AVX and
especially AVX512 vector instructions would lead to a big frequency downclocking. The
vectorized portion of the code should be hot enough to justify using AVX512.225

8.2.3.5 Loop vectorized but scalar version used. In some cases, the compiler can
successfully vectorize the code, but the vectorized code does not show in the profiler. When
inspecting the corresponding assembly of a loop, it is usually easy to find the vectorized version
of the loop body because it uses the vector registers, which are not commonly used in other
parts of the program, and the code is unrolled and filled with checks and multiple versions for
enabling different edge cases.

224 Besides Profile Guided Optimizations (see section 7.7).
225 For more details read this blog post: https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html.

134

https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html

8.2 Core Bound

If the generated code is not executed, one possible reason for this is that the code that the
compiler has generated assumes loop trip counts that are higher than what the program uses.
For example, to vectorize efficiently on a modern CPU, programmers need to vectorize and
utilize AVX2 and also unroll the loop 4-5 times in order to generate enough work for the
pipelined FMA units. This means that each loop iteration needs to process around 40 elements.
Many loops may run with loop trip counts that are below this value and may fall back to use
the scalar remainder loop. It is easy to detect these cases because the scalar remainder loop
would light up in the profiler, and the vectorized code would remain cold.

The solution to this problem is to force the vectorizer to use a lower vectorization factor or unroll
count, to reduce the number of elements that loops process and enable more loops with lower
trip counts to visit the fast vectorized loop body. Developers can achieve that with the help of
#pragma hints. For Clang compiler one can use #pragma clang loop vectorize_width(N)
as shown in the article226on easyperf blog.

8.2.3.6 Loop vectorized in a suboptimal way. When you see a loop being vectorized
and is executed at runtime, likely this part of the program already performs well. However,
there are exceptions. Sometimes human experts can come up with the code that outperforms
the one generated by the compiler.

The optimal vectorization factor can be unintuitive because of several factors. First, it is
difficult for humans to simulate the operations of the CPU in their heads, and there is no
alternative to actually trying multiple configurations. Vector shuffles that touch multiple vector
lanes could be more or less expensive than expected, depending on many factors. Second, at
runtime, the program may behave in unpredictable ways, depending on port pressure and
many other factors. The advice here is to try to force the vectorizer to pick one specific
vectorization factor and unroll factor and measure the result. Vectorization pragmas can help
the user enumerate different vectorization factors and figure out the most performant one.
There are relatively few possible configurations for each loop, and running the loop on typical
inputs is something that humans can do that compilers can’t.

Finally, there are situations when the scalar un-vectorized version of a loop performs bet-
ter than the vectorized one. This could happen due to expensive vector operations like
gather/scatter loads, masking, shuffles, etc. which compiler is required to use in order to
make vectorization happen. Performance engineers could also try to disable vectorization in
different ways. For the Clang compiler, it can be done via compiler options -fno-vectorize
and -fno-slp-vectorize, or with a hint specific for a particular loop, e.g. #pragma clang
loop vectorize(enable).

8.2.3.7 Use languages with explicit vectorization. Vectorization can also be achieved
by rewriting parts of a program in a programming language that is dedicated to parallel
computing. Those languages use special constructs and knowledge of the program’s data to
compile the code efficiently into parallel programs. Originally such languages were mainly used
to offload work to specific processing units such as graphics processing units (GPU), digital
signal processors (DSP), or field-programmable gate arrays (FPGAs). However, some of those
programming models can also target your CPU (such as OpenCL and OpenMP).

One such parallel language is Intel® Implicit SPMD Program Compiler (ISPC)227, which we
will cover a bit in this section. The ISPC language is based on the C programming language and

226 Using Clang’s optimization pragmas - https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_c
ounts

227 ISPC compiler: https://ispc.github.io/.

135

https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_counts
https://ispc.github.io/
https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_counts
https://easyperf.net/blog/2017/11/09/Multiversioning_by_trip_counts
https://ispc.github.io/

8.2 Core Bound

uses the LLVM compiler infrastructure to emit optimized code for many different architectures.
The key feature of ISPC is the “close to the metal” programming model and performance
portability across SIMD architectures. It requires a shift from the traditional thinking of
writing programs but gives programmers more control over CPU resource utilization.

Another advantage of ISPC is its interoperability and ease of use. ISPC compiler generates
standard object files that can be linked with the code generated by conventional C/C++
compilers. ISPC code can be easily plugged in any native project since functions written with
ISPC can be called as if it was C code.

Listing 41 shows a simple example of a function that we presented earlier in Listing 37,
rewritten with ISPC. ISPC considers that the program will run in parallel instances, based
on the target instruction set. For example, when using SSE with floats, it can compute
4 operations in parallel. Each program instance would operate on vector values of i being
(0,1,2,3), then (4,5,6,7), and so on, effectively computing 4 sums at a time. As you can
see, a few keywords not typical for C and C++ are used:

• The export keyword means that the function can be called from a C-compatible language.

• The uniform keyword means that a variable is shared between program instances.

• The varying keyword means that each program instance has its own local copy of the
variable.

• The foreach is the same as a classic for loop except that it will distribute the work
across the different program instances.

Listing 41 ISPC version of summing elements of an array.

export uniform float calcSum(const uniform float array[],
uniform ptrdiff_t count)

{
varying float sum = 0;
foreach (i = 0 ... count)

sum += array[i];
return reduce_add(sum);

}

Since function calcSum must return a single value (a uniform variable) and our sum variable is
a varying, we then need to gather the values of each program instance using the reduce_add
function. ISPC also takes care of generating peeled and remainder loops as needed to take into
account the data that is not correctly aligned or that is not a multiple of the vector width.

“Close to the metal” programming model. One of the problems with traditional C and
C++ languages is that compiler doesn’t always vectorize critical parts of code. Often times
programmers resort to using compiler intrinsics (see section 10.2), which bypasses compiler
autovectorization but is generally difficult and requires updating when new instruction sets
come along. ISPC helps to resolve this problem by assuming every operation is SIMD by
default. For example, the ISPC statement sum += array[i] is implicitly considered as a SIMD
operation that makes multiple additions in parallel. ISPC is not an autovectorizing compiler,
and it does not automatically discover vectorization opportunities. Since the ISPC language is
very similar to C and C++, it is much better than using intrinsics as it allows you to focus on
the algorithm rather than the low-level instructions. Also, it has reportedly matched[Pharr

136

8.3 Chapter Summary

and Mark, 2012] or beaten228 hand-written intrinsics code in terms of performance.

Performance portability. ISPC can automatically detect features of your CPU to fully
utilize all the resources available. Programmers can write ISPC code once and compile to
many vector instruction sets, such as SSE4, AVX, and AVX2. ISPC can also emit code for
different architectures like x86 CPU, ARM NEON, and has experimental support for GPU
offloading.

8.3 Chapter Summary

• Most of the real-world applications experience performance bottlenecks that can be
related to the CPU Backend. It is not surprising since all the memory-related issues, as
well as inefficient computations, belong to this category.

• Performance of the memory subsystem is not growing as fast as CPU performance. Yet,
memory accesses are a frequent source of performance problems in many applications.
Speeding up such programs requires revising the way they access memory.

• In section 8.1, we discussed some of the popular recipes for cache-friendly data structures,
memory prefetching, and utilizing large memory pages to improve DTLB performance.

• Inefficient computations also represent a significant portion of the bottlenecks in real-world
applications. Modern compilers are very good at removing unnecessary computation
overhead by performing many different code transformations. Still, there is a high chance
that we can do better than what compilers can offer.

• In section 8.2, we showed how one could search performance headrooms in a program
by forcing certain code optimizations. We discussed such popular transformations as
function inlining, loop optimizations, and vectorization.

228 Some parts of the Unreal Engine which used SIMD intrinsics were rewritten using ISPC, which gave
speedups: https://software.intel.com/content/www/us/en/develop/articles/unreal-engines-new-chaos-physics-
system-screams-with-in-depth-intel-cpu-optimizations.html.

137

https://software.intel.com/content/www/us/en/develop/articles/unreal-engines-new-chaos-physics-system-screams-with-in-depth-intel-cpu-optimizations.html
https://software.intel.com/content/www/us/en/develop/articles/unreal-engines-new-chaos-physics-system-screams-with-in-depth-intel-cpu-optimizations.html

9 Optimizing Bad Speculation

The speculation feature in modern CPUs is described in section 3.3.3. Mispredicting a branch
can add a significant speed penalty when it happens regularly. When such an event happens,
a CPU is required to clear all the speculative work that was done ahead of time and later
was proven to be wrong. It also needs to flush the whole pipeline and start filling it with
instructions from the correct path. Typically, modern CPUs experience a 15-20 cycles penalty
as a result of a branch misprediction.

Nowadays, processors are very good at predicting branch outcomes. They not only can follow
static prediction rules229 but also detect dynamic patterns. Usually, branch predictors save
the history of previous outcomes for the branches and try to guess what will be the next result.
However, when the pattern becomes hard for the CPU branch predictor to follow, it may hurt
performance. One can find out how much a program suffers from branch mispredictions by
looking at TMA Bad Speculation metric.

Personal Experience: The program will always experience some number
of branch mispredictions. It is normal for general purpose applications to
have a "Bad Speculation" rate in the range of 5-10%. My recommendation is
to pay attention to this metric if it goes higher than 10%.

Since the branch predictors are good at finding patterns, old advice for optimizing branch
prediction is no longer valid. One could provide a prediction hint to the processor in the
form of a prefix to the branch instruction (0x2E: Branch Not Taken, 0x3E: Branch Taken).
While this technique can improve performance on older platforms, it won’t produce gains on
newer ones230.

Perhaps, the only direct way to get rid of branch mispredictions is to get rid of the branch
itself. In the two subsequent sections, we will take a look at how branches can be replaced
with lookup tables and predication.

9.1 Replace branches with lookup

Frequently branches can be avoided by using lookup tables. An example of code when such
transformation might be profitable is shown in Listing 42. Function mapToBucket maps
values into corresponding buckets. For uniformly distributed values of v, we will have an
equal probability for v to fall into any of the buckets. In generated assembly for the baseline
version, we will likely see many branches, which could have high misprediction rates. Hopefully,
it’s possible to rewrite the function mapToBucket using a single array lookup, as shown in
Listing 43.

The assembly code of the mapToBucket function from Listing 43 should be using only one
branch instead of many. A typical hot path through this function will execute the untaken
branch and one load instruction. Since we expect most of the input values to fall into the
range covered by the buckets array, the branch that guards out-of-bounds access will be
well-predicted by CPU. Also, the buckets array is relatively small, so we can expect it to
reside in CPU caches, which should allow for fast accesses to it.[Lemire, 2020]

229 For example, a backward jump is usually taken, since most of the time, it represents the loop backedge.
230 Anything newer than Pentium 4.

138

9.2 Replace branches with predication

Listing 42 Replacing branches: baseline version.

int mapToBucket(unsigned v) {
if (v >= 0 && v < 10) return 0;
if (v >= 10 && v < 20) return 1;
if (v >= 20 && v < 30) return 2;
if (v >= 30 && v < 40) return 3;
if (v >= 40 && v < 50) return 4;
return -1;

}

Listing 43 Replacing branches: lookup version.

int buckets[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
... };

int mapToBucket(unsigned v) {
if (v < (sizeof (buckets) / sizeof (int)))

return buckets[v];
return -1;

}

If we have a need to map a bigger range of values, allocating a very large array is not practical.
In this case, we might use interval map data structures that accomplish that goal using much
less memory but logarithmic lookup complexity. Readers can find existing implementations of
interval map container in Boost231 and LLVM 232.

9.2 Replace branches with predication

Some branches could be effectively eliminated by executing both parts of the branch and then
selecting the right result (predication). Example233 of code when such transformation might be
profitable is shown on Listing 44. If TMA suggests that the if (cond) branch has a very high
number of mispredictions, one can try to eliminate the branch by doing the transformation
shown on Listing 45.

For the version of code in Listing 45, the compiler can get rid of the branch and generate CMOV
231 C++ Boost interval_map - https://www.boost.org/doc/libs/1_65_0/libs/icl/doc/html/boost/icl/interva
l_map.html

232 LLVM’s IntervalMap - https://llvm.org/doxygen/IntervalMap_8h_source.html
233 Example of replacing branches with CMOV - https://easyperf.net/blog/2019/04/10/Performance-analysis-
and-tuning-contest-2#fighting-branch-mispredictions-9

139

https://www.boost.org/doc/libs/1_65_0/libs/icl/doc/html/boost/icl/interval_map.html
https://llvm.org/doxygen/IntervalMap_8h_source.html
https://www.boost.org/doc/libs/1_65_0/libs/icl/doc/html/boost/icl/interval_map.html
https://www.boost.org/doc/libs/1_65_0/libs/icl/doc/html/boost/icl/interval_map.html
https://llvm.org/doxygen/IntervalMap_8h_source.html
https://easyperf.net/blog/2019/04/10/Performance-analysis-and-tuning-contest-2#fighting-branch-mispredictions-9
https://easyperf.net/blog/2019/04/10/Performance-analysis-and-tuning-contest-2#fighting-branch-mispredictions-9

9.2 Replace branches with predication

Listing 44 Predicating branches: baseline version.

int a;
if (cond) { // branch has high misprediction rate

a = computeX();
} else {

a = computeY();
}

Listing 45 Predicating branches: branchless version.

int x = computeX();
int y = computeY();
int a = cond ? x : y;

instruction234 instead. The CMOVcc instructions check the state of one or more of the status
flags in the EFLAGS register (CF, OF, PF, SF and ZF) and perform a move operation if the
flags are in a specified state (or condition). [Int, 2020, Volume 2] Below are the two assembly
listings for the baseline and improved version, respectively:

baseline version
400504: test edi,edi
400506: je 400514 # branch on cond
400508: mov eax,0x0
40050d: call <computeX>
400512: jmp 40051e
400514: mov eax,0x0
400519: call <computeY>
40051e: mov edi,eax

=>

branchless version
400537: mov eax,0x0
40053c: call <computeX> # compute x
400541: mov ebp,eax # assign x to a
400543: mov eax,0x0
400548: call <computeY> # compute y
40054d: test ebx,ebx # test cond
40054f: cmovne eax,ebp # override a with y if needed

The modified assembly sequence doesn’t have original branch instruction. However, in the
second version, both x and y are calculated independently, and then only one of the values
is selected. While this transformation eliminates the penalty of branch mispredictions, it
is potentially doing more work than the original code. Performance improvement, in this
case, very much depends on the characteristics of computeX and computeY functions. If the
functions are small and the compiler is able to inline them, then it might bring noticeable
performance benefits. If the functions are big, it might be cheaper to take the cost of a branch

234 Similar transformation can be done for floating-point numbers with FCMOVcc,VMAXSS/VMINSS instruction.

140

9.3 Chapter Summary

misprediction than to execute both functions.

It is important to note that predication does not always benefit the performance of the
application. The issue with predication is that it limits the parallel execution capabilities of
the CPU. For the code snippet in Listing 44, the CPU can choose, say, true branch of the if
condition, and continue speculative execution of the code with the value of a = computeX().
If, for example, there is a subsequent load that uses a to index an element in an array, this load
can be issued well before we know the true outcome of the if branch. This type of speculation
is not possible for the code in the Listing 45 since the CPU cannot issue a load that uses a
before the CMOVNE instruction completes.

The typical example of the tradeoffs involved when choosing between the standard and the
branchless versions of the code is binary search235:

• For a search over a large array that doesn’t fit in CPU caches, a branch-based binary
search version performs better because the penalty of a branch misprediction is low
comparing to the latency of memory accesses (which are high because of the cache
misses). Because of the branches in place, the CPU can speculate on their outcome,
which allows loading the array element from the current iteration and the next at the
same time. It doesn’t end there: the speculation continues, and you might have multiple
loads in flight at the same time.

• The situation is reversed for small arrays that fit in CPU caches. The branchless search
still has all the memory accesses serialized, as explained earlier. But this time, the
load latency is small (only a handful of cycles) since the array fits in CPU caches. The
branch-based binary search suffers constant mispredictions, which cost on the order of
~20 cycles. In this case, the cost of misprediction is much more than the cost of memory
access, so that the benefits of speculative execution are hindered. The branchless version
usually ends up being faster in this case.

The binary search is a neat example that shows how one can reason about when choosing
between standard and branchless implementation. The real-world scenario can be more difficult
to analyze, so again, measure to find out if it would be beneficial to replace branches in your
case.

9.3 Chapter Summary

• Modern processors are very good at predicting branch outcomes. So, I recommend
starting the work on fixing branch mispredictions only when the TMA report points to
a high Bad Speculation metric.

• When the outcome pattern becomes hard for the CPU branch predictor to follow, the
performance of the application may suffer. In this case, the branchless version of an
algorithm can be better. In this chapter, we showed how branches could be replaced
with lookup tables and predication. In some situations, it is also possible to use compiler
intrinsics to eliminate branches, as shown in [Kapoor, 2009].

• Branchless algorithms are not universally beneficial. Always measure to find out if that
works better in your case.

235 See more detailed discussion here: https://stackoverflow.com/a/54273248.

141

https://stackoverflow.com/a/54273248

10 Other Tuning Areas

In this chapter, we will take a look at some of the optimization topics not specifically related
to any of the categories covered in the previous three chapters, still important enough to find
their place in this book.

10.1 Compile-Time Computations

If a portion of a program does some calculations that don’t depend on the input, it can be
precomputed ahead of time instead of doing it in the runtime. Modern optimizing compilers
already move a lot of computations into compile-time, especially trivial cases like int x =
2 * 10 into int x = 20. Although, they cannot handle more complicated calculations at
compile time if they involve branches, loops, function calls. C++ language provides features
that allow us to make sure that certain calculations happen at compile time.

In C++, it’s possible to move computations into compile-time with various metaprogramming
techniques. Before C++11/14, developers were using templates to achieve this result. It is
theoretically possible to express any algorithm with template metaprogramming; however, this
method tends to be syntactically obtuse and often compile quite slowly. Still, it was a success
that enabled a new class of optimizations. Fortunately, metaprogramming gradually becomes
a lot simpler with every new C++ standard. The C++14 standard allows having constexpr
functions, and the C++17 standard provides compile-time branches with the if constexpr
keyword. This new way of metaprogramming allows doing many computations in compile-time
without sacrificing code readability. [Fog, 2004, Chapter 15 Metaprogramming]

An example of optimizing an application by moving computations into compile-time is shown
in Listing 46. Suppose a program involves a test for a number being prime. If we know that
a large portion of tested numbers is less than 1024, we can precompute the results ahead of
time and keep them in a constexpr array primes. At runtime, most of the calls of isPrime
will involve just one load from the primes array, which is much cheaper than computing it at
runtime.

10.2 Compiler Intrinsics

There are types of applications that have very few hotspots that call for tuning them heavily.
However, compilers do not always do what we want in terms of generated code in those hot
places. For example, a program does some computation in a loop which the compiler vectorizes
in a suboptimal way. It usually involves some tricky or specialized algorithms, for which we
can come up with a better sequence of instructions. It can be very hard or even impossible to
make the compiler generate the desired assembly code using standard constructs of the C and
C++ languages.

Hopefully, it’s possible to force the compiler to generate particular assembly instructions without
writing in low-level assembly language. To achieve that, one can use compiler intrinsics, which
in turn are translated into specific assembly instructions. Intrinsics provide the same benefit
as using inline assembly, but also they improve code readability, allow compiler type checking,
assist instruction scheduling, and help reduce debugging. Example in Listing 47 shows how
the same loop in function foo can be coded via compiler intrinsics (function bar).

Both functions in Listing 47 generate similar assembly instructions. However, there are several
caveats. First, when relying on auto-vectorization, the compiler will insert all necessary

142

10.3 Cache Warming

Listing 46 Precomputing prime numbers in compile-time

constexpr unsigned N = 1024;

// function pre-calculates first N primes in compile-time
constexpr std::array<bool, N> sieve() {

std::array<bool, N> Nprimes{true};
Nprimes[0] = Nprimes[1] = false;
for(long i = 2; i < N; i++)

Nprimes[i] = true;
for(long i = 2; i < N; i++) {

if (Nprimes[i])
for(long k = i + i; k < N; k += i)

Nprimes[k] = false;
}
return Nprimes;

}

constexpr std::array<bool, N> primes = sieve();

bool isPrime(unsigned value) {
// primes is accessible both in compile-time and runtime
static_assert(primes[97], "");
static_assert(!primes[98], "");
if (value < N)

return primes[value];
// fall back to computing in runtime

}

runtime checks. For instance, it will ensure that there are enough elements to feed the vector
execution units. Secondly, function foo will have a fallback scalar version of the loop for
processing the remainder of the loop. And finally, most vector intrinsics assume aligned data,
so movaps (aligned load) is generated for bar, while movups (unaligned load) is generated for
foo. Keeping that in mind, developers using compiler intrinsics have to take care of safety
aspects themselves.

When writing code using non-portable platform-specific intrinsics, developers should also
provide a fallback option for other architectures. A list of all available intrinsics for the Intel
platform can be found in this reference236.

10.3 Cache Warming

Instruction and data caches, and the performance impact of each, were explained in section 7
and section 8.1.1, along with specific techniques to get the most benefit from each. However,
in some application workloads, the portions of code that are most latency-sensitive are the
least frequently executed. This results in the function blocks and associated data from aging
out of the I-cache and D-cache after some time. Then, just when we need that critical piece
of rarely executed code to execute, we take I-cache and D-cache miss penalties, which may

236 Intel Intrinsics Guide - https://software.intel.com/sites/landingpage/IntrinsicsGuide/.

143

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

10.4 Detecting Slow FP Arithmetic

Listing 47 Compiler Intrinsics

1 void foo(float *a, float *b, float *c, unsigned N) {
2 for (unsigned i = 0; i < N; i++)
3 c[i] = a[i] + b[i];
4 }
5
6 #include <xmmintrin.h>
7
8 void bar(float *a, float *b, float *c, unsigned N) {
9 __m128 rA, rB, rC;
10 for (int i = 0; i < N; i += 4){
11 rA = _mm_load_ps(&a[i]);
12 rB = _mm_load_ps(&b[i]);
13 rC = _mm_add_ps(rA,rB);
14 _mm_store_ps(&c[i], rC);
15 }
16 }

exceed our target performance budget.

An example of such a workload might be a high-frequency trading application that continuously
reads market data signals from the stock exchange and, once a favorable market signal is
detected, sends a BUY order to the exchange. In the aforementioned workload, the code paths
involved with reading the market data is most commonly executed, while the code paths for
executing a BUY order is rarely executed. If we want our BUY order to reach the exchange
as fast as possible and to take advantage of the favorable signal detected in the market data,
then the last thing we want is to incur cache misses right at the moment we decide to execute
that critical piece of code. This is where the technique of Cache Warming would be helpful.

Cache Warming involves periodically exercising the latency-sensitive code to keep it in the cache
while ensuring it does not follow all the way through with any unwanted actions. Exercising
the latency-sensitive code also “warms up” the D-cache by bringing latency-sensitive data into
it. In fact, this technique is routinely employed for trading applications like the one described
in CppCon 2018 lightning talk237.

10.4 Detecting Slow FP Arithmetic

For applications that operate with floating-point values, there is some probability of hitting
an exceptional scenario when the FP values become denormalized238. Operations on denormal
values could be easy 10 times slower or more. When CPU handles instruction that tries to
do arithmetic operation on denormal FP values, it requires special treatment for such cases.
Since it is exceptional situation, CPU requests a microcode assist239. Microcode Sequencer
(MSROM) will then feed the pipeline with lots of uops (see section 4.4) for handling such a
scenario.

TMA methodology classifies such bottlenecks under the Retiring category. This is one of the
situations when high Retiring doesn’t mean a good thing. Since operations on denormal values

237 Cache Warming technique - https://www.youtube.com/watch?v=XzRxikGgaHI.
238 Denormal number - https://en.wikipedia.org/wiki/Denormal_number.
239 CPU assists - https://software.intel.com/en-us/vtune-help-assists.

144

https://www.youtube.com/watch?v=XzRxikGgaHI
https://en.wikipedia.org/wiki/Denormal_number
https://software.intel.com/en-us/vtune-help-assists
https://www.youtube.com/watch?v=XzRxikGgaHI
https://en.wikipedia.org/wiki/Denormal_number
https://software.intel.com/en-us/vtune-help-assists

10.5 System Tuning

likely represent unwanted behavior of the program, one can just collect the FP_ASSIST.ANY
performance counter. The value should be close to zero. An example of a program that
does denormal FP arithmetics and thus experiences many FP assists is presented on easyperf
blog240. C++ developers can prevent their application fall into operations with subnormal
values by using std::isnormal()241function. Alternatively, one can change the mode of SIMD
floating-point operations, enabling “flush-to-zero” (FTZ) and “denormals-are-zero” (DAZ) flags
in the CPU control register242, preventing SIMD instructions from producing denormalized
numbers243. Disabling denormal floats at the code level can be done using dedicated macros,
which can vary for different compilers244.

10.5 System Tuning

After successfully completing all the hard work of tuning an application to exploit all the
intricate facilities of the CPU microarchitecture, the last thing we want is for the system
firmware, the OS, or the kernel to destroy all our efforts. The most highly tuned application
will mean very little if it is intermittently disrupted by a System Management Interrupt (SMI),
a BIOS interrupt that halts the entire OS in order to execute firmware code. Such interrupt
might run for up to 10s to 100s of milliseconds at a time.

Fair to say, developers usually have little to no control over the environment in which the
application is executed. When we ship the product, it’s unrealistic to tune every setup a
customer might have. Usually, large-enough organizations have separate Operations (Ops)
Teams, which handles such sort of issues. Nevertheless, when communicating with members of
such teams, it’s important to understand what else can limit the application to show its best
performance.

As shown in section 2.1, there are many things to tune in the modern system, and avoiding
system-based interference is not an easy task. An example of a performance tuning manual of
x86-based server deployments is Red Hat guidelines245. There, you will find tips for eliminating
or significantly minimizing cache disrupting interrupts from sources like the system BIOS, the
Linux kernel, and from device drivers, among many other sources of application interference.
These guidelines should serve as a baseline image for all new server builds before any application
is deployed into a production environment.

When it comes to tuning a specific system setting, it is not always an easy ‘yes’ or ‘no’ answer.
For example, it’s not clear upfront whether your application will benefit from the Simultaneous
Multi-Threading (SMT) feature enabled in the environment in which your SW is running. The
general guideline is to enable SMT only for heterogenous workloads246 that exhibit a relatively
low IPC. On the other hand, CPU manufacturers these days offer processors with such high
core counts that SMT is far less necessary than it was in the past. However, this is just a
general guideline, and as with everything stressed so far in this book, it is best to measure for
yourself.

240 Denormal FP arithmetics - https://easyperf.net/blog/2018/11/08/Using-denormal-floats-is-slow-how-to-
detect-it.

241 std::isnormal() - https://en.cppreference.com/w/cpp/numeric/math/isnormal.
242 See more about FTZ and DAZ modes here: https://software.intel.com/content/www/us/en/develop/artic
les/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz.html.

243 However, FTZ and DAZ modes make such operations not being compliant with the IEEE standard.
244 See this wiki page as a starting point: https://en.wikipedia.org/wiki/Denormal_number#Disabling_denor
mal_floats_at_the_code_level.

245 Red Hat low latency tuning guidelines - https://access.redhat.com/sites/default/files/attachments/201501-
perf-brief-low-latency-tuning-rhel7-v2.1.pdf

246 I.e., when sibling threads execute differing instruction patterns

145

https://easyperf.net/blog/2018/11/08/Using-denormal-floats-is-slow-how-to-detect-it
https://en.cppreference.com/w/cpp/numeric/math/isnormal
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://easyperf.net/blog/2018/11/08/Using-denormal-floats-is-slow-how-to-detect-it
https://easyperf.net/blog/2018/11/08/Using-denormal-floats-is-slow-how-to-detect-it
https://en.cppreference.com/w/cpp/numeric/math/isnormal
https://software.intel.com/content/www/us/en/develop/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz.html
https://software.intel.com/content/www/us/en/develop/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz.html
https://en.wikipedia.org/wiki/Denormal_number#Disabling_denormal_floats_at_the_code_level
https://en.wikipedia.org/wiki/Denormal_number#Disabling_denormal_floats_at_the_code_level
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf

10.5 System Tuning

Most out-of-the-box platforms are configured for optimal throughput while saving power when
it’s possible. But there are industries with real-time requirements, which care more about
having lower latency than everything else. An example of such an industry can be robots
operating in automotive assembly lines. Actions performed by such robots are triggered by
external events and usually have a predetermined time budget to finish because the next
interrupt will come shortly (it is usually called “control loop”). Meeting real-time goals for
such a platform may require sacrificing the overall throughput of the machine or allowing it
to consume more energy. One of the popular techniques in that area is to disable processor
sleeping states247 to keep it ready to react immediately. Another interesting approach is called
Cache Locking248, where portions of the CPU cache is reserved for a particular set of data; it
helps to streamline the memory latencies within an application.

247 Power Management States: P-States, C-States. See details here: https://software.intel.com/content/www
/us/en/develop/articles/power-management-states-p-states-c-states-and-package-c-states.html.

248 Cache Locking. Survey of cache locking techniques [Mittal, 2016]. Example of pseudo-locking a portion
of the cache, which is exposed as a character device in Linux filesystem available for mmaping from: https:
//events19.linuxfoundation.org/wp-content/uploads/2017/11/Introducing-Cache-Pseudo-Locking-to-Reduce-
Memory-Access-Latency-Reinette-Chatre-Intel.pdf.

146

https://software.intel.com/content/www/us/en/develop/articles/power-management-states-p-states-c-states-and-package-c-states.html
https://software.intel.com/content/www/us/en/develop/articles/power-management-states-p-states-c-states-and-package-c-states.html
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/Introducing-Cache-Pseudo-Locking-to-Reduce-Memory-Access-Latency-Reinette-Chatre-Intel.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/Introducing-Cache-Pseudo-Locking-to-Reduce-Memory-Access-Latency-Reinette-Chatre-Intel.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/Introducing-Cache-Pseudo-Locking-to-Reduce-Memory-Access-Latency-Reinette-Chatre-Intel.pdf

11 Optimizing Multithreaded Applications

Modern CPUs are getting more and more cores each year. As of 2020, you can buy an x86
server processor which will have more than 50 cores! And even a mid-range desktop with 8
execution threads is a pretty usual setup. Since there is so much processing power in every
CPU, the challenge is how to utilize all the HW threads efficiently. Preparing software to
scale well with a growing amount of CPU cores is very important for the future success of the
application.

Multithreaded applications have their own specifics. Certain assumptions of single-threaded
execution get invalidated when we’re dealing with multiple threads. For example, we can no
longer identify hotspots by looking at a single thread since each thread might have its own
hotspot. In a popular producer-consumer249 design, the producer thread may sleep during
most of the time. Profiling such a thread won’t shed light on the reason why our multithreaded
application is not scaling well.

11.1 Performance Scaling And Overhead

When dealing with a single-threaded application, optimizing one portion of the program usually
yields positive results on performance. However, it’s not necessarily the case for multithreaded
applications. There could be an application in which thread A does some very heavy operation,
while thread B finishes its task early and just waits for thread A to finish. No matter how
much we improve thread B, application latency will not be reduced since it will be limited by
a longer-running thread A.

This effect is widely known as Amdahl’s law250, which constitutes that the speedup of a parallel
program is limited by its serial part. Figure 46 illustrates the theoretical speedup limit as a
function of the number of processors. For a program, 75% of which is parallel, the speedup
factor converges to 4.

Figure 47a shows performance scaling of the h264dec benchmark from Starbench parallel
benchmark suite. I tested it on Intel Core i5-8259U, which has 4 cores/8 threads. Notice that
after using 4 threads, performance doesn’t scale much. Likely, getting a CPU with more cores
won’t improve performance. 251

In reality, further adding computing nodes to the system may yield retrograde speed up.
This effect is explained by Neil Gunther as Universal Scalability Law252 (USL), which is an
extension of Amdahl’s law. USL describes communication between computing nodes (threads)
as yet another gating factor against performance. As the system is scaled up, overheads start
to hinder the gains. Beyond a critical point, the capability of the system starts to decrease
(see fig. 48). USL is widely used for modeling the capacity and scalability of the systems.

Slowdowns described by USL are driven by several factors. First, as the number of computing
nodes increases, they start to compete for resources (contention). This results in additional
time being spent on synchronizing those accesses. Another issue occurs with resources that are
shared between many workers. We need to maintain a consistent state of the shared resource
between many workers (coherence). For example, when multiple workers frequently change

249 Producer-consumer pattern - https://en.wikipedia.org/wiki/Producer-consumer_problem
250 Amdahl’s law - https://en.wikipedia.org/wiki/Amdahl’s_law.
251 However, it will benefit from a CPU with a higher frequency.
252 USL law - http://www.perfdynamics.com/Manifesto/USLscalability.html#tth_sEc1.

147

https://en.wikipedia.org/wiki/Producer\T1\textendash consumer_problem
https://en.wikipedia.org/wiki/Amdahl's_law
https://www.aes.tu-berlin.de/menue/research/projects/completed_projects/starbench_parallel_benchmark_suite/
https://www.aes.tu-berlin.de/menue/research/projects/completed_projects/starbench_parallel_benchmark_suite/
http://www.perfdynamics.com/Manifesto/USLscalability.html#tth_sEc1
https://en.wikipedia.org/wiki/Producer-consumer_problem
https://en.wikipedia.org/wiki/Amdahl's_law
http://www.perfdynamics.com/Manifesto/USLscalability.html#tth_sEc1

11.1 Performance Scaling And Overhead

Figure 46: The theoretical speedup of the latency of the execution of a program as a function
of the number of processors executing it, according to Amdahl’s law. © Image by Daniels220
via Wikipedia.

(a) Performance scaling with different number
of threads.

(b) Overhead of using different number of
threads.

Figure 47: Performance scaling and overhead of h264dec benchmark on Intel Core i5-8259U.

148

11.2 Parallel Efficiency Metrics

Figure 48: Universal Scalability Law and Amdahl’s law. © Image by Neha Bhardwaj via
Knoldus Blogs.

some globally visible object, those changes need to be broadcasted to all nodes that use that
object. Suddenly, usual operations start getting more time to finish due to the additional
need to maintain coherence. The communication overhead of the h264dec benchmark on Intel
Core i5-8259U can be observed in Figure 47b. Notice how the benchmark experience more
overhead both in terms of executed instructions and elapsed core cycles as we assign more
than 4 threads to the task. 253

Optimizing multithreaded applications not only involves all the techniques described in
this book so far but also involves detecting and mitigating the aforementioned effects of
contention and coherence. The following subsections will describe techniques for addressing
these additional challenges for tuning multithreaded programs.

11.2 Parallel Efficiency Metrics

When dealing with multithreaded applications, engineers should be careful with analyzing
basic metrics like CPU utilization and IPC (see section 4). One of the threads can show high
CPU utilization and high IPC, but it could turn out that all it was doing was just spinning on
a lock. That’s why when evaluating the parallel efficiency of the application, it’s recommended
to use Effective CPU Utilization, which is based only on the Effective time254.

11.2.1 Effective CPU Utilization

Represents how efficiently the application utilized the CPUs available. It shows the percent
of average CPU utilization by all logical CPUs on the system. CPU utilization metric is
based only on the Effective time and does not include the overhead introduced by the parallel
runtime system255 and Spin time. A CPU utilization of 100% means that your application
keeps all the logical CPU cores busy for the entire time that it runs. [Int, 2020]

For a specified time interval T, Effective CPU Utilization can be calculated as

Effective CPU Utilization =
∑ThreadsCount

i=1 Effective Cpu Time(T,i)
T × ThreadsCount

253 There is an interesting spike in the number of retired instruction when using 5 and 6 worker threads. This
should be investigated by profiling the workload.

254 Performance analysis tools such as Intel VTune Profiler can distinguish profiling samples that were taken
while the thread was spinning. They do that with the help of call stacks for every sample (see section 5.4.3).

255 Threading libraries and APIs like pthread, OpenMP, and Intel TBB have their own overhead for creating
and managing threads.

149

https://blog.knoldus.com/understanding-laws-of-scalability-and-the-effects-on-a-distributed-system/

11.3 Analysis With Intel VTune Profiler

11.2.2 Thread Count

Applications usually have a configurable number of threads, which allows them to run efficiently
on platforms with a different number of cores. Obviously, running an application using a lower
number of threads than is available on the system underutilizes its resources. On the other
hand, running an excessive number of threads can cause a higher CPU time because some of
the threads may be waiting on others to complete, or time may be wasted on context switches.

Besides actual worker threads, multithreaded applications usually have helper threads: main
thread, input and output threads, etc. If those threads consume significant time, they require
dedicated HW thread themselves. This is why it is important to know the total thread count
and configure the number of worker threads properly.

To avoid a penalty for threads creation and destruction, engineers usually allocate a pool of
threads256 with multiple threads waiting for tasks to be allocated for concurrent execution by
the supervising program. This is especially beneficial for executing short-lived tasks.

11.2.3 Wait Time

Wait Time occurs when software threads are waiting due to APIs that block or cause synchro-
nization. Wait Time is per-thread; therefore, the total Wait Time can exceed the application
Elapsed Time. [Int, 2020]

A thread can be switched off from execution by the OS scheduler due to either synchronization
or preemption. So, Wait Time can be further divided into Sync Wait Time and Preemption
Wait Time. A large amount of Sync Wait Time likely indicates that the application has
highly contended synchronization objects. We will explore how to find them in the following
sections. Significant Preemption Wait Time can signal a thread oversubscription257 problem
either because of a big number of application threads or a conflict with OS threads or other
applications on the system. In this case, the developer should consider reducing the total
number of threads or increasing task granularity for every worker thread.

11.2.4 Spin Time

Spin time is Wait Time, during which the CPU is busy. This often occurs when a synchroniza-
tion API causes the CPU to poll while the software thread is waiting. [Int, 2020]. In reality,
implementation of kernel synchronization primitives prefers to spin on a lock for some time to
the alternative of doing an immediate thread context switch (which is expensive). Too much
Spin Time, however, can reflect the lost opportunity for productive work.

11.3 Analysis With Intel VTune Profiler

Intel VTune Profiler has a dedicated type of analysis for multithreaded applications called
Threading Analysis. Its summary window (see fig. 49) displays statistics on the overall
application execution, identifying all the metrics we described in section 11.2. From Effective
CPU Utilization Histogram, we could learn several interesting facts about the captured
application behavior. First, on average, only 5 HW threads (logical cores on the diagram)
were utilized at the same time. Second, almost never all 8 HW threads were active at the
same time.

256 Thread pool - https://en.wikipedia.org/wiki/Thread_pool.
257 Thread oversubscription - https://software.intel.com/en-us/vtune-help-thread-oversubscription.

150

https://en.wikipedia.org/wiki/Thread_pool
https://en.wikipedia.org/wiki/Thread_pool
https://software.intel.com/en-us/vtune-help-thread-oversubscription
https://software.intel.com/en-us/vtune-help-threading-analysis
https://en.wikipedia.org/wiki/Thread_pool
https://software.intel.com/en-us/vtune-help-thread-oversubscription

11.3 Analysis With Intel VTune Profiler

Figure 49: Intel VTune Profiler Threading Analysis summary for x264 benchmark from
Phoronix test suite.

11.3.1 Find Expensive Locks

Next, the workflow suggests that we identify the most contended synchronization objects.
Figure 50 shows the list of such objects. We can see that __pthread_cond_wait definitely
stands out, but since we might have dozens of conditional variables in the program, we need
to know which one is the reason for poor CPU utilization.

Figure 50: Intel VTune Profiler Threading Analysis showing the most contended synchroniza-
tion objects for x264 benchmark.

In order to know this, we can simply click on __pthread_cond_wait, which will get us to
the Bottom-Up view that is shown on fig. 51. We can see the most frequent path (47% of
wait time) that lead to threads waiting on conditional variable: __pthread_cond_wait <-
x264_8_frame_cond_wait <- mb_analyse_init.

We can next jump into the source code of x264_8_frame_cond_wait by double-clicking on
the corresponding row in the analysis (see fig. 52). Next, we can study the reason behind the

151

https://openbenchmarking.org/test/pts/x264
https://www.phoronix-test-suite.com/
https://openbenchmarking.org/test/pts/x264

11.4 Analysis with Linux Perf

Figure 51: Intel VTune Profiler Threading Analysis showing the call stack for the most
contended conditional variable in x264 benchmark.

lock and possible ways to make thread communication in this place more efficient. 258

Figure 52: Source code view for x264_8_frame_cond_wait function in x264 benchmark.

11.3.2 Platform View

Another very useful feature of Intel VTune Profiler is Platform View (see fig. 53), which
allows us to observe what each thread was doing in any given moment of program execution.
This is very helpful for understanding the behavior of the application and finding potential
performance headrooms. For example, we can see that during the time interval from 1s to 3s,
only two threads were consistently utilizing ~100% of the corresponding CPU core (threads
with TID 7675 and 7678). CPU utilization of other threads was bursty during that time
interval.

Platform View also has zooming and filtering capabilities. This allows us to understand what
each thread was executing during a specified time frame. To see this, select the range on the
timeline, right-click and choose Zoom In and Filter In by Selection. Intel VTune Profiler will
display functions or sync objects used during this time range.

11.4 Analysis with Linux Perf

Linux perf tool profiles all the threads that the application might spawn. It has the -s option,
which records per-thread event counts. Using this option, at the end of the report, perf lists

258 I don’t claim that it will be necessary an easy road, and there is no guarantee that you will find a way to
make it better.

152

https://openbenchmarking.org/test/pts/x264
https://openbenchmarking.org/test/pts/x264

11.4 Analysis with Linux Perf

Figure 53: Vtune Platform view for x264 benchmark.

all the thread IDs along with the number of samples collected for each of them:

$ perf record -s ./x264 -o /dev/null --slow --threads 8
Bosphorus_1920x1080_120fps_420_8bit_YUV.y4m

$ perf report -n -T
...
PID TID cycles:ppp

6966 6976 41570283106
6966 6971 25991235047
6966 6969 20251062678
6966 6975 17598710694
6966 6970 27688808973
6966 6972 23739208014
6966 6973 20901059568
6966 6968 18508542853
6966 6967 48399587
6966 6966 2464885318

To filter samples for a particular software thread, one can use the --tid option:

$ perf report -T --tid 6976 -n
Overhead Samples Shared Object Symbol
........

7.17% 19877 x264 get_ref_avx2
7.06% 19078 x264 x264_8_me_search_ref
6.34% 18367 x264 refine_subpel
5.34% 15690 x264 x264_8_pixel_satd_8x8_internal_avx2
4.55% 11703 x264 x264_8_pixel_avg2_w16_sse2
3.83% 11646 x264 x264_8_pixel_avg2_w8_mmx2

Linux perf also automatically provides some of the metrics we discussed in section 11.2:

153

https://openbenchmarking.org/test/pts/x264

11.4 Analysis with Linux Perf

$ perf stat ./x264 -o /dev/null --slow --threads 8
Bosphorus_1920x1080_120fps_420_8bit_YUV.y4m

86,720.71 msec task-clock # 5.701 CPUs utilized
28,386 context-switches # 0.327 K/sec
7,375 cpu-migrations # 0.085 K/sec

38,174 page-faults # 0.440 K/sec
299,884,445,581 cycles # 3.458 GHz
436,045,473,289 instructions # 1.45 insn per cycle
32,281,697,229 branches # 372.249 M/sec

971,433,345 branch-misses # 3.01% of all branches

11.4.1 Find Expensive Locks

In order to find the most contended synchronization objects with Linux perf, one needs to
sample on scheduler context switches (sched:sched_switch), which is a kernel event and thus
requires root access:

$ sudo perf record -s -e sched:sched_switch -g --call-graph dwarf -- ./x264
-o /dev/null --slow --threads 8
Bosphorus_1920x1080_120fps_420_8bit_YUV.y4m

$ sudo perf report -n --stdio -T --sort=overhead,prev_comm,prev_pid
--no-call-graph -F overhead,sample

Samples: 27K of event 'sched:sched_switch'
Event count (approx.): 27327
Overhead Samples prev_comm prev_pid
........

15.43% 4217 x264 2973
14.71% 4019 x264 2972
13.35% 3647 x264 2976
11.37% 3107 x264 2975
10.67% 2916 x264 2970
10.41% 2844 x264 2971
9.69% 2649 x264 2974
6.87% 1876 x264 2969
4.10% 1120 x264 2967
2.66% 727 x264 2968
0.75% 205 x264 2977

The output above shows which threads were switched out from the execution most frequently.
Notice, we also collect call stacks (--call-graph dwarf, see section 5.4.3) because we need it
for analyzing paths that lead to the expensive synchronization events:

$ sudo perf report -n --stdio -T --sort=overhead,symbol -F overhead,sample -G
Overhead Samples Symbol
........

100.00% 27327 [k] __sched_text_start
|
|--95.25%--0xffffffffffffffff
| |
| |--86.23%--x264_8_macroblock_analyse
| | |

154

11.5 Analysis with Coz

| | --84.50%--mb_analyse_init (inlined)
| | |
| | --84.39%--x264_8_frame_cond_wait
| | |
| | --84.11%--__pthread_cond_wait (inlined)
| | __pthread_cond_wait_common (inlined)
| | |
| | --83.88%--futex_wait_cancelable (inlined)
| | entry_SYSCALL_64
| | do_syscall_64
| | __x64_sys_futex
| | do_futex
| | futex_wait
| | futex_wait_queue_me
| | schedule
| | __sched_text_start
...

The listing above shows the most frequent path that leads to waiting on a conditional variable
(__pthread_cond_wait) and later context switch. This path is x264_8_macroblock_analyse
-> mb_analyse_init -> x264_8_frame_cond_wait. From this output, we can learn that
84% of all context switches were caused by threads waiting on a conditional variable inside
x264_8_frame_cond_wait.

11.5 Analysis with Coz

In section 11.1, we defined the challenge of identifying parts of code that affects the overall
performance of a multithreaded program. Due to various reasons, optimizing one part of a
multithreaded program might not always give visible results. Coz259 is a new kind of profiler
that addresses this problem and fills the gaps left behind by traditional software profilers. It
uses a novel technique called “causal profiling”, whereby experiments are conducted during
the runtime of an application by virtually speeding up segments of code to predict the overall
effect of certain optimizations. It accomplishes these “virtual speedups” by inserting pauses
that slow down all other concurrently running code. [Curtsinger and Berger, 2015]

Example of applying Coz profiler to C-Ray benchmark from Phoronix test suite is shown on
54. According to the chart, if we improve the performance of line 540 in c-ray-mt.c by 20%,
Coz expects a corresponding increase in application performance of C-Ray benchmark overall
of about 17%. Once we reach ~45% improvement on that line, the impact on the application
begins to level off by COZ’s estimation. For more details on this example, see the article260 on
easyperf blog.

11.6 Analysis with eBPF and GAPP

Linux supports a variety of thread synchronization primitives – mutexes, semaphores, condition
variables, etc. The kernel supports these thread primitives via the futex system call. Therefore,
by tracing the execution of the futex system call in the kernel while gathering useful metadata
from the threads involved, contention bottlenecks can be more readily identified. Linux provides

259 COZ source code - https://github.com/plasma-umass/coz.
260 Blog article “COZ vs Sampling Profilers” - https://easyperf.net/blog/2020/02/26/coz-vs-sampling-profilers.

155

https://github.com/plasma-umass/coz
https://openbenchmarking.org/test/pts/c-ray
https://www.phoronix-test-suite.com/
https://easyperf.net/blog/2020/02/26/coz-vs-sampling-profilers
https://github.com/plasma-umass/coz
https://easyperf.net/blog/2020/02/26/coz-vs-sampling-profilers

11.7 Detecting Coherence Issues

Figure 54: Coz profile for C-Ray benchmark.

kernel tracing/profiling tools that make this possible, none more powerful than Extended
Berkley Packet Filter261 (eBPF).

eBPF is based around a sandboxed virtual machine running in the kernel that allows the
execution of user-defined programs safely and efficiently inside the kernel. The user-defined
programs can be written in C and compiled into BPF bytecode by the BCC compiler262 in
preparation for loading into the kernel VM. These BPF programs can be written to launch
upon the execution of certain kernel events and communicate raw or processed data back to
userspace via a variety of means.

The Opensource Community has provided many eBPF programs for general use. One such
tool is the Generic Automatic Parallel Profiler (GAPP), which helps to track multithreaded
contention issues. GAPP uses eBPF to track contention overhead of a multithreaded application
by ranking the criticality of identified serialization bottlenecks, collects stack traces of threads
that were blocked and the one that caused the blocking. The best thing about GAPP is that
it does not require code changes, expensive instrumentation, or recompilation. Creators of
the GAPP profiler were able to confirm known bottlenecks and also expose new, previously
unreported bottlenecks on Parsec 3.0 Benchmark Suite263and some large open-source projects.
[Nair and Field, 2020]

11.7 Detecting Coherence Issues

11.7.1 Cache Coherency Protocols

Multiprocessor systems incorporate Cache Coherency Protocols to ensure data consistency
during shared usage of memory by each individual core containing its own, separate cache
entity. Without such a protocol, if both CPU A and CPU B read memory location L into
their individual caches, and processor B subsequently modified its cached value for L, then
the CPUs would have inconsistent values of the same memory location L. Cache Coherency
Protocols ensure that any updates to cached entries are dutifully updated in any other cached
entry of the same location.

One of the most well-known cache coherency protocols is MESI (Modified Exclusive Shared
Invalid), which is used to support writeback caches like those used in modern CPUs. Its
acronym denotes the four states with which a cache line can be marked (see fig. 55):

261 eBPF docs - https://prototype-kernel.readthedocs.io/en/latest/bpf/
262 BCC compiler - https://github.com/iovisor/bcc
263 Parsec 3.0 Benchmark Suite - https://parsec.cs.princeton.edu/index.htm

156

https://openbenchmarking.org/test/pts/c-ray
https://prototype-kernel.readthedocs.io/en/latest/bpf/
https://prototype-kernel.readthedocs.io/en/latest/bpf/
https://github.com/iovisor/bcc
https://github.com/RN-dev-repo/GAPP/
https://parsec.cs.princeton.edu/index.htm
https://prototype-kernel.readthedocs.io/en/latest/bpf/
https://github.com/iovisor/bcc
https://parsec.cs.princeton.edu/index.htm

11.7 Detecting Coherence Issues

• Modified – cache line is present only in the current cache and has been modified from
its value in RAM

• Exclusive – cache line is present only in the current cache and matches its value in
RAM

• Shared – cache line is present here and in other cache lines and matches its value in
RAM

• Invalid – cache line is unused (i.e., does not contain any RAM location)

Figure 55: MESI States Diagram. © Image by University of Washington via
courses.cs.washington.edu.

When fetched from memory, each cache line has one of the states encoded into its tag. Then
the cache line state keeps transiting from one state to another264. In reality, CPU vendors
usually implement slightly improved variants of MESI. For example, Intel uses MESIF265,
which adds a Forwarding (F) state, while AMD employs MOESI266, which adds the Owning
(O) state. But these protocols still maintain the essence of the base MESI protocol.

As an earlier example demonstrates, the cache coherency problem can cause sequentially
inconsistent programs. This problem can be mitigated by having snoopy caches to watch
all memory transactions and cooperate with each other to maintain memory consistency.
Unfortunately, it comes with a cost since modification done by one processor invalidates
the corresponding cache line in another processor’s cache. This causes memory stalls and
wastes system bandwidth. In contrast to serialization and locking issues, which can only put a
ceiling on the performance of the application, coherency issues can cause retrograde effects as
attributed by USL in section 11.1. Two widely known types of coherency problems are “True

264 Readers can watch and test animated MESI protocol here: https://www.scss.tcd.ie/Jeremy.Jones/vivio/c
aches/MESI.htm.

265 MESIF - https://en.wikipedia.org/wiki/MESIF_protocol
266 MOESI - https://en.wikipedia.org/wiki/MOESI_protocol

157

https://en.wikipedia.org/wiki/MESIF_protocol
https://en.wikipedia.org/wiki/MOESI_protocol
https://www.scss.tcd.ie/Jeremy.Jones/vivio/caches/MESI.htm
https://www.scss.tcd.ie/Jeremy.Jones/vivio/caches/MESI.htm
https://en.wikipedia.org/wiki/MESIF_protocol
https://en.wikipedia.org/wiki/MOESI_protocol

11.7 Detecting Coherence Issues

Sharing” and “False Sharing”, which we will explore next.

11.7.2 True Sharing

True sharing occurs when two different processors access the same variable (see Listing 48).

Listing 48 True Sharing Example.

unsigned int sum;
{ // parallel section

for (int i = 0; i < N; i++)
sum += a[i]; // sum is shared between all threads

}

First of all, true sharing implies data races that can be tricky to detect. Fortunately, there are
tools that can help identify such issues. Thread sanitizer267 from Clang and helgrind268 are
among such tools. In order to prevent data race in Listing 48 one should declare sum variable
as std::atomic<unsigned int> sum.

Using C++ atomics can help to solve data races when true sharing happens. However, it
effectively serializes accesses to the atomic variable, which may hurt performance. Another way
of solving true sharing issues is by using Thread Local Storage (TLS). TLS is the method by
which each thread in a given multithreaded process can allocate memory to store thread-specific
data. By doing so, threads modify their local copies instead of contending for a globally
available memory location. Example in Listing 48 can be fixed by declaring sum with TLS
class specifier: thread_local unsigned int sum (since C++11). The main thread should
then incorporate results from all the local copies of each worker thread.

11.7.3 False Sharing

False Sharing269 occurs when two different processors modify different variables that happen to
reside on the same cache line (see Listing 49). Figure 56 illustrates the false sharing problem.

False sharing is a frequent source of performance issues for multithreaded applications. Because
of that, modern analysis tools have built-in support for detecting such cases. TMA characterizes
applications that experience true/false sharing as Memory Bound. Typically, in such cases,
you would see a high value for Contested Accesses270 metric.

When using Intel VTune Profiler, the user needs two types of analysis to find and eliminate
false sharing issues. Firstly, run Microarchitecture Exploration271 analysis that implements
TMA methodology to detect the presence of false sharing in the application. As noted before,
the high value for the Contested Accesses metric prompts us to dig deeper and run the Memory
Access analysis with the “Analyze dynamic memory objects” option enabled. This analysis
helps in finding out accesses to the data structure that caused contention issues. Typically,

267 Clang’s thread sanitizer tool: https://clang.llvm.org/docs/ThreadSanitizer.html.
268 Helgrind, a thread error detector tool: https://www.valgrind.org/docs/manual/hg-manual.html.
269 It’s worth saying that false sharing is not something that can be observed only in low-level languages, like
C/C++/Ada, but also in higher-level ones, like Java/C#.

270 Contested accesses - https://software.intel.com/en-us/vtune-help-contested-accesses.
271 Vtune general exploration analysis - https://software.intel.com/en-us/vtune-help-general-exploration-
analysis.

158

https://clang.llvm.org/docs/ThreadSanitizer.html
https://www.valgrind.org/docs/manual/hg-manual.html
https://software.intel.com/en-us/vtune-help-contested-accesses
https://software.intel.com/en-us/vtune-help-general-exploration-analysis
https://software.intel.com/en-us/vtune-help-memory-access-analysis
https://software.intel.com/en-us/vtune-help-memory-access-analysis
https://clang.llvm.org/docs/ThreadSanitizer.html
https://www.valgrind.org/docs/manual/hg-manual.html
https://software.intel.com/en-us/vtune-help-contested-accesses
https://software.intel.com/en-us/vtune-help-general-exploration-analysis
https://software.intel.com/en-us/vtune-help-general-exploration-analysis

11.8 Chapter Summary

Listing 49 False Sharing Example.

struct S {
int sumA; // sumA and sumB are likely to
int sumB; // reside in the same cache line

};
S s;

{ // section executed by thread A
for (int i = 0; i < N; i++)

s.sumA += a[i];
}

{ // section executed by thread B
for (int i = 0; i < N; i++)

s.sumB += b[i];
}

such memory accesses have high latency, which will be revealed by the analysis. See an example
of using Intel VTune Profiler for fixing false sharing issues on Intel Developer Zone272.

Linux perf has support for finding false sharing as well. As with Intel VTune Profiler, run
TMA first (see section 6.1.2) to find out that the program experience false/true sharing issues.
If that’s the case, use the perf c2c tool to detect memory accesses with high cache coherency
cost. perf c2c matches store/load addresses for different threads and see if the hit in a
modified cache line occurred. Readers can find a detailed explanation of the process and how
to use the tool in dedicated blog post273.

It is possible to eliminate false sharing with the help of aligning/padding memory objects.
Example in section 11.7.2 can be fixed by ensuring sumA and sumB do not share the same cache
line (see details in section 8.1.1.4).

From a general performance perspective, the most important thing to consider is the cost of
the possible state transitions. Of all cache states, the only ones that do not involve a costly
cross-cache subsystem communication and data transfer during CPU read/write operations are
the Modified (M) and Exclusive (E) states. Thus, the longer the cache line maintains the M or
E states (i.e., the less sharing of data across caches), the lower the coherence cost incurred by
a multithreaded application. An example demonstrating how this property has been employed
can be found in Nitsan Wakart’s blog post “Diving Deeper into Cache Coherency”274.

11.8 Chapter Summary

• Applications not taking advantage of modern multicore CPUs are lagging behind their
competitors. Preparing software to scale well with a growing amount of CPU cores is
very important for the future success of the application.

• When dealing with the single-threaded application, optimizing one portion of the program
usually yields positive results on performance. However, it’s not necessarily the case

272 Vtune cookbook: false-sharing - https://software.intel.com/en-us/vtune-cookbook-false-sharing.
273 An article on perf c2c - https://joemario.github.io/blog/2016/09/01/c2c-blog/.
274 Blog post “Diving Deeper into Cache Coherency” - http://psy-lob-saw.blogspot.com/2013/09/diving-
deeper-into-cache-coherency.html

159

https://software.intel.com/en-us/vtune-cookbook-false-sharing
https://joemario.github.io/blog/2016/09/01/c2c-blog/
http://psy-lob-saw.blogspot.com/2013/09/diving-deeper-into-cache-coherency.html
https://software.intel.com/en-us/vtune-cookbook-false-sharing
https://joemario.github.io/blog/2016/09/01/c2c-blog/
http://psy-lob-saw.blogspot.com/2013/09/diving-deeper-into-cache-coherency.html
http://psy-lob-saw.blogspot.com/2013/09/diving-deeper-into-cache-coherency.html

11.8 Chapter Summary

Figure 56: False Sharing: two threads access the same cache line. © Image by Intel Developer
Zone via software.intel.com.

for multithreaded applications. This effect is widely known as Amdahl’s law, which
constitutes that the speedup of a parallel program is limited by its serial part.

• Threads communication can yield retrograde speedup as explained by Universal Scalabil-
ity Law. This poses additional challenges for tuning multithreaded programs. Optimizing
the performance of multithreaded applications also involves detecting and mitigating the
effects of contention and coherence.

• Intel VTune Profiler is a “go-to” tool for analyzing multithreaded applications. But
during the past years, other tools emerged with a unique set of features, e.g., Coz and
GAPP.

160

11.8 Chapter Summary

Epilog

Thanks for reading through the whole book. I hope you enjoyed it and found it useful. I would
be even happier if the book will help you solve a real-world problem. In such a case, I would
consider it a success and proof that my efforts were not wasted. Before you continue with
your endeavors, let me briefly highlight the essential points of the book and give you final
recommendations:

• HW performance is not growing as fast as it used to in the past years. Performance
tuning is becoming more critical than it has been for the last 40 years. It will be one of
the key drivers for performance gains in the near future.

• Software doesn’t have an optimal performance by default. Certain limitations exist
that prevent applications to reach their full performance potential. Both HW and SW
components have such limitations.

• “Premature optimization is the root of all evil”275. But the opposite is often true as
well. Postponed performance engineering work may be too late and cause as much evil
as premature optimization. Do not neglect performance aspects when designing your
future product.

• Performance of the modern system is not deterministic and depends on many factors.
Meaningful performance analysis should account for noise and use statistical methods to
analyze performance measurements.

• Knowledge of the CPU microarchitecture might become handy in understanding the
results of experiments you conduct. However, don’t rely on this knowledge too much
when you make a specific change in your code. Your mental model can never be as
accurate as the actual design of the CPU internals. Predicting the performance of a
particular piece of code is nearly impossible. Always measure!

• Performance is hard because there are no predetermined steps you should follow, no
algorithm. Engineers need to tackle problems from different angles. Know performance
analysis methods and tools (both HW and SW) that are available to you. I strongly
suggest embracing the Roofline model and TMA methodology if they are available on
your platform. It will help you to steer your work in the right direction. Also, know
when you can leverage other HW performance monitoring features like LBR, PEBS, and
PT in your work.

• Understand the limiting factor for the performance of your application and possible ways
to fix that. Part 2 covers some of the essential optimizations for every type of CPU
performance bottleneck: Front End Bound, Back End Bound, Retiring, Bad Speculation.
Use chapters 7-10 to see what options are available when your application falls into one
of the four categories mentioned above.

• If the benefit of the modification is negligible, you should keep the code in its most
simple and clean form.

• Sometimes modifications that improve performance on one system slow down execution
on another system. Make sure you test your changes on all the platforms that you care
about.

I hope this book will help you better understand your application’s performance and CPU
performance in general. Of course, it doesn’t cover every possible scenario you may encounter
while working on performance optimization. My goal was to give you a starting point and to
show you potential options and strategies for dealing with performance analysis and tuning on

275 This is a famous quote by Donald Knuth.

161

11.8 Chapter Summary

modern CPUs.

If you enjoyed reading this book, make sure to pass it to your friends and colleagues. I would
appreciate your help in spreading the word about the book by endorsing it on social media
platforms.

I would love to hear your feedback on my email dendibakh@gmail.com. Let me know your
thoughts, comments, and suggestions for the book. I will post all the updates and future
information about the book on my blog easyperf.net.

Happy performance tuning!

162

https://easyperf.net/contact/

11.8 Chapter Summary

Glossary

AOS Array Of Structures

BB Basic Block

BIOS Basic Input Output System

CI/CD Contiguous Integration/ Contiguous
Development

CPI Clocks Per Instruction

CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

DSB Decoded Stream Buffer

FPGA Field-Programmable Gate Array

GPU Graphics processing unit

HFT High-Frequency Trading

HPC High Performance Computing

HW Hardware

I/O Input/Output

IDE Integrated Development Environment

ILP Instruction-Level Parallelism

IPC Instructions Per Clock

IPO Inter-Procedural Optimizations

LBR Last Branch Record

LLC Last Level Cache

LSD Loop Stream Detector

MSR Model Specific Register

MS-ROM Microcode Sequencer Read-Only
Memory

NUMA Non-Uniform Memory Access

OS Operating System

PEBS Processor Event-Based Sampling

PGO Profile Guided Optimizations

PMC Performance Monitoring Counter

PMU Performance Monitoring Unit

PT Processor Traces

RAT Register Alias Table

ROB ReOrder Buffer

SIMD Single Instruction Multiple Data

SMT Simultaneous MultiThreading

SOA Structure Of Arrays

SW Software

TLB Translation Lookaside Buffer

TMA Top-Down Microarchitecture Analysis

TSC Time Stamp Counter

UOP MicroOperation

163

References

References

[1] Andrey Akinshin. Pro .NET Benchmarking. Apress, 1 edition, 2019. ISBN 978-1-4842-
4940-6. doi: 10.1007/978-1-4842-4941-3.

[2] Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier S Turek, Tim Mattson, and
Abdullah Muzahid. A zero-positive learning approach for diagnosing software performance
regressions. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 11627–
11639. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/9337-a-zero-
positive-learning-approach-for-diagnosing-software-performance-regressions.pdf.

[3] Dehao Chen, David Xinliang Li, and Tipp Moseley. Autofdo: Automatic feedback-directed
optimization for warehouse-scale applications. In CGO 2016 Proceedings of the 2016
International Symposium on Code Generation and Optimization, pages 12–23, New York,
NY, USA, 2016.

[4] K.D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kaufmann. Morgan
Kaufmann, 2012. ISBN 9780120884780. URL https://books.google.co.in/books?id=CG
TOlAEACAAJ.

[5] Charlie Curtsinger and Emery Berger. Stabilizer: statistically sound performance evalua-
tion. volume 48, pages 219–228, 03 2013. doi: 10.1145/2451116.2451141.

[6] Charlie Curtsinger and Emery Berger. Coz: Finding code that counts with causal profiling.
pages 184–197, 10 2015. doi: 10.1145/2815400.2815409.

[7] David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford. The use
of change point detection to identify software performance regressions in a continuous
integration system. In Proceedings of the ACM/SPEC International Conference on
Performance Engineering, ICPE ’20, page 67–75, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450369916. doi: 10.1145/3358960.3375791. URL
https://doi.org/10.1145/3358960.3375791.

[8] Data Never Sleeps 5.0. Domo, Inc, 2017. URL https://www.domo.com/learn/data-never-
sleeps-5?aid=ogsm072517_1&sf100871281=1.

[9] Jiaqing Du, Nipun Sehrawat, and Willy Zwaenepoel. Performance profiling in a virtualized
environment. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, page 2, USA, 2010. USENIX Association.

[10] Agner Fog. Optimizing software in c++: An optimization guide for windows, linux and
mac platforms, 2004. URL https://www.agner.org/optimize/optimizing_cpp.pdf.

[11] Agner Fog. The microarchitecture of intel, amd and via cpus: An optimization guide
for assembly programmers and compiler makers. Copenhagen University College of
Engineering, 2012. URL https://www.agner.org/optimize/microarchitecture.pdf.

[12] Brendan Gregg. Systems Performance: Enterprise and the Cloud. Prentice Hall Press,
USA, 1st edition, 2013. ISBN 0133390098.

[13] Tobias Grosser, Armin Größlinger, and C. Lengauer. Polly - performing polyhedral
optimizations on a low-level intermediate representation. Parallel Process. Lett., 22, 2012.

164

http://papers.nips.cc/paper/9337-a-zero-positive-learning-approach-for-diagnosing-software-performance-regressions.pdf
http://papers.nips.cc/paper/9337-a-zero-positive-learning-approach-for-diagnosing-software-performance-regressions.pdf
https://books.google.co.in/books?id=CGTOlAEACAAJ
https://books.google.co.in/books?id=CGTOlAEACAAJ
https://doi.org/10.1145/3358960.3375791
https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.agner.org/optimize/microarchitecture.pdf

References

[14] John L. Hennessy. The future of computing, 2018. URL https://youtu.be/Azt8Nc-
mtKM?t=329.

[15] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th
edition, 2011. ISBN 012383872X.

[16] Henrik Ingo and David Daly. Automated system performance testing at mongodb.
In Proceedings of the Workshop on Testing Database Systems, DBTest ’20, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380010. doi:
10.1145/3395032.3395323. URL https://doi.org/10.1145/3395032.3395323.

[17] CPU Metrics Reference. Intel® Corporation, 2020. URL https://software.intel.com/en-
us/vtune-help-cpu-metrics-reference.

[18] Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel® Corporation,
2020. URL https://software.intel.com/content/www/us/en/develop/download/intel-64-
and-ia-32-architectures-optimization-reference-manual.html.

[19] Intel® 64 and IA-32 Architectures Software Developer Manuals. Intel® Corporation, 2020.
URL https://software.intel.com/en-us/articles/intel-sdm.

[20] Intel® VTune™ Profiler User Guide. Intel® Corporation, 2020. URL https://softwa
re.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-
performance/hardware-event-based-sampling-collection.html.

[21] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understanding
and detecting real-world performance bugs. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, page 77–88,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450312059.
doi: 10.1145/2254064.2254075. URL https://doi.org/10.1145/2254064.2254075.

[22] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer.
SIGARCH Comput. Archit. News, 43(3S):158–169, June 2015. ISSN 0163-5964. doi:
10.1145/2872887.2750392. URL https://doi.org/10.1145/2872887.2750392.

[23] Rajiv Kapoor. Avoiding the cost of branch misprediction. 2009. URL https://software.i
ntel.com/en-us/articles/avoiding-the-cost-of-branch-misprediction.

[24] Paul-Virak Khuong and Pat Morin. Array layouts for comparison-based searching, 2015.

[25] Andi Kleen. An introduction to last branch records. 2016. URL https://lwn.net/Articles
/680985/.

[26] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W.
Lampson, Daniel Sanchez, and Tao B. Schardl. There’s plenty of room at the top: What
will drive computer performance after moore’s law? Science, 368(6495), 2020. ISSN
0036-8075. doi: 10.1126/science.aam9744. URL https://science.sciencemag.org/content/3
68/6495/eaam9744.

[27] Daniel Lemire. Making your code faster by taming branches. 2020. URL https://www.in
foq.com/articles/making-code-faster-taming-branches/.

[28] Min Liu, Xiaohui Sun, Maneesh Varshney, and Ya Xu. Large-scale online experimentation
with quantile metrics, 2019.

165

https://youtu.be/Azt8Nc-mtKM?t=329
https://youtu.be/Azt8Nc-mtKM?t=329
https://doi.org/10.1145/3395032.3395323
https://software.intel.com/en-us/vtune-help-cpu-metrics-reference
https://software.intel.com/en-us/vtune-help-cpu-metrics-reference
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hardware-event-based-sampling-collection.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hardware-event-based-sampling-collection.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hardware-event-based-sampling-collection.html
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2872887.2750392
https://software.intel.com/en-us/articles/avoiding-the-cost-of-branch-misprediction
https://software.intel.com/en-us/articles/avoiding-the-cost-of-branch-misprediction
https://lwn.net/Articles/680985/
https://lwn.net/Articles/680985/
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744
https://www.infoq.com/articles/making-code-faster-taming-branches/
https://www.infoq.com/articles/making-code-faster-taming-branches/

References

[29] David S. Matteson and Nicholas A. James. A nonparametric approach for multiple change
point analysis of multivariate data. Journal of the American Statistical Association, 109
(505):334–345, 2014. doi: 10.1080/01621459.2013.849605. URL https://doi.org/10.1080/
01621459.2013.849605.

[30] Sparsh Mittal. A survey of techniques for cache locking. ACM Transactions on Design
Automation of Electronic Systems, 21, 05 2016. doi: 10.1145/2858792.

[31] Wojciech Muła and Daniel Lemire. Base64 encoding and decoding at almost the speed
of a memory copy. Software: Practice and Experience, 50(2):89–97, Nov 2019. ISSN
1097-024X. doi: 10.1002/spe.2777. URL http://dx.doi.org/10.1002/spe.2777.

[32] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Produc-
ing wrong data without doing anything obviously wrong! In Proceedings of the 14th
International Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS XIV, page 265–276, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605584065. doi: 10.1145/1508244.1508275. URL
https://doi.org/10.1145/1508244.1508275.

[33] Reena Nair and Tony Field. Gapp: A fast profiler for detecting serialization bottlenecks
in parallel linux applications. Proceedings of the ACM/SPEC International Conference
on Performance Engineering, Apr 2020. doi: 10.1145/3358960.3379136. URL http:
//dx.doi.org/10.1145/3358960.3379136.

[34] Nima Honarmand. Memory prefetching. URL https://compas.cs.stonybrook.edu/~nhon
armand/courses/sp15/cse502/slides/13-prefetch.pdf.

[35] Andrzej Nowak and Georgios Bitzes. The overhead of profiling using pmu hardware
counters. 2014.

[36] Guilherme Ottoni and Bertrand Maher. Optimizing function placement for large-scale data-
center applications. In Proceedings of the 2017 International Symposium on Code Genera-
tion and Optimization, CGO ’17, page 233–244. IEEE Press, 2017. ISBN 9781509049318.

[37] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. BOLT: A practical
binary optimizer for data centers and beyond. CoRR, abs/1807.06735, 2018. URL
http://arxiv.org/abs/1807.06735.

[38] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel® IA-32 and IA-64
Instruction Set Architectures. Intel® Corporation, 2010. URL https://www.intel.com/co
ntent/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-
execution-paper.pdf.

[39] M. Pharr and W. R. Mark. ispc: A spmd compiler for high-performance cpu programming.
In 2012 Innovative Parallel Computing (InPar), pages 1–13, 2012.

[40] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt. Google-
wide profiling: A continuous profiling infrastructure for data centers. IEEE Micro, pages
65–79, 2010. URL http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68.

[41] S. D. Sharma and M. Dagenais. Hardware-assisted instruction profiling and latency
detection. The Journal of Engineering, 2016(10):367–376, 2016.

[42] Volume of data/information created worldwide from 2010 to 2025. Statista, Inc, 2018.
URL https://www.statista.com/statistics/871513/worldwide-data-created/.

166

https://doi.org/10.1080/01621459.2013.849605
https://doi.org/10.1080/01621459.2013.849605
http://dx.doi.org/10.1002/spe.2777
https://doi.org/10.1145/1508244.1508275
http://dx.doi.org/10.1145/3358960.3379136
http://dx.doi.org/10.1145/3358960.3379136
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/slides/13-prefetch.pdf
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/slides/13-prefetch.pdf
http://arxiv.org/abs/1807.06735
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68
https://www.statista.com/statistics/871513/worldwide-data-created/

References

[43] et al. Suresh Srinivas. Runtime performance optimization blueprint: Intel® architecture
optimization with large code pages, 2019. URL https://www.intel.com/content/www/us
/en/develop/articles/runtime-performance-optimization-blueprint-intel-architecture-
optimization-with-large-code.html.

[44] Ahmad Yasin. A top-down method for performance analysis and counters architecture.
pages 35–44, 03 2014. ISBN 978-1-4799-3606-9. doi: 10.1109/ISPASS.2014.6844459.

167

https://www.intel.com/content/www/us/en/develop/articles/runtime-performance-optimization-blueprint-intel-architecture-optimization-with-large-code.html
https://www.intel.com/content/www/us/en/develop/articles/runtime-performance-optimization-blueprint-intel-architecture-optimization-with-large-code.html
https://www.intel.com/content/www/us/en/develop/articles/runtime-performance-optimization-blueprint-intel-architecture-optimization-with-large-code.html

Appendix A

Appendix A. Reducing Measurement Noise

Below are some examples of features that can contribute to increased non-determinism in
performance measurements. See complete discussion in section 2.1.

Dynamic Frequency Scaling

Dynamic Frequency Scaling276 (DFS) is a technique to increase the performance of the system
by automatically raising CPU operating frequency when it runs demanding tasks. As an
example of DFS implementation, Intel CPUs have a feature called Turbo Boost277 and AMD
CPUs employ Turbo Core278functionality.

Example of an impact Turbo Boost can make for a single-threaded workload running on Intel®
Core™ i5-8259U:

TurboBoost enabled
$ cat /sys/devices/system/cpu/intel_pstate/no_turbo
0
$ perf stat -e task-clock,cycles -- ./a.exe

11984.691958 task-clock (msec) # 1.000 CPUs utilized
32,427,294,227 cycles # 2.706 GHz

11.989164338 seconds time elapsed

TurboBoost disabled
$ echo 1 | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo
1
$ perf stat -e task-clock,cycles -- ./a.exe

13055.200832 task-clock (msec) # 0.993 CPUs utilized
29,946,969,255 cycles # 2.294 GHz

13.142983989 seconds time elapsed

The average frequency is much higher when Turbo Boost is on.

DFS can be permanently disabled in BIOS279. To programmatically disable the DFS feature
on Linux systems, you need root access. Here is how one can achieve this:

Intel
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
AMD
echo 0 > /sys/devices/system/cpu/cpufreq/boost

Simultaneous Multithreading

Modern CPU cores are often made in the simultaneous multithreading (SMT280) manner. It
means that in one physical core, you can have two threads of simultaneous execution. Typically,

276 Dynamic frequency scaling - https://en.wikipedia.org/wiki/Dynamic_frequency_scaling.
277 Intel Turbo Boost - https://en.wikipedia.org/wiki/Intel_Turbo_Boost.
278 AMD Turbo Core - https://en.wikipedia.org/wiki/AMD_Turbo_Core.
279 Intel Turbo Boost FAQ - https://www.intel.com/content/www/us/en/support/articles/000007359/process
ors/intel-core-processors.html.

280 SMT - https://en.wikipedia.org/wiki/Simultaneous_multithreading.

168

https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
https://en.wikipedia.org/wiki/Intel_Turbo_Boost
https://en.wikipedia.org/wiki/AMD_Turbo_Core
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
https://en.wikipedia.org/wiki/Intel_Turbo_Boost
https://en.wikipedia.org/wiki/AMD_Turbo_Core
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://en.wikipedia.org/wiki/Simultaneous_multithreading

Appendix A

architectural state281 is replicated, but the execution resources (ALUs, caches, etc.) are not.
That means that if we have two separate processes running on the same core “simultaneously”
(in different threads), they can steal resources from each other, for example, cache space.

SMT can be permanently disabled in BIOS282. To programmatically disable SMT on Linux
systems, you need root access. Here is how one can turn down a sibling thread in each core:

echo 0 > /sys/devices/system/cpu/cpuX/online

The sibling pairs of CPU threads can be found in the following files:

/sys/devices/system/cpu/cpuN/topology/thread_siblings_list

For example, on Intel® Core™ i5-8259U, which has 4 cores and 8 threads:

all 8 HW threads enabled:
$ lscpu
...
CPU(s): 8
On-line CPU(s) list: 0-7
...
$ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list
0,4
$ cat /sys/devices/system/cpu/cpu1/topology/thread_siblings_list
1,5
$ cat /sys/devices/system/cpu/cpu2/topology/thread_siblings_list
2,6
$ cat /sys/devices/system/cpu/cpu3/topology/thread_siblings_list
3,7

Disabling SMT on core 0
$ echo 0 | sudo tee /sys/devices/system/cpu/cpu4/online
0
$ lscpu
CPU(s): 8
On-line CPU(s) list: 0-3,5-7
Off-line CPU(s) list: 4
...
$ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list
0

Scaling Governor

Linux kernel is able to control CPU frequency for different purposes. One such purpose is to
save the power, in which case the scaling governor283 inside the Linux Kernel can decide to
decrease CPU operating frequency. For performance measurements, it is recommended to set
the scaling governor policy to performance to avoid sub-nominal clocking. Here is how we
can set it for all the cores:

281 Architectural state - https://en.wikipedia.org/wiki/Architectural_state.
282 “How to disable hyperthreading” - https://www.pcmag.com/article/314585/how-to-disable-hyperthreading.
283 Documentation for Linux CPU frequency governors: https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt.

169

https://en.wikipedia.org/wiki/Architectural_state
https://en.wikipedia.org/wiki/Architectural_state
https://www.pcmag.com/article/314585/how-to-disable-hyperthreading
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

Appendix A

for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
do

echo performance > $i
done

CPU Affinity

Processor affinity284 enables the binding of a process to a certain CPU core(s). In Linux, one
can do this with taskset285 tool. Here

no affinity
$ perf stat -e context-switches,cpu-migrations -r 10 -- a.exe

151 context-switches
10 cpu-migrations

process is bound to the CPU0
$ perf stat -e context-switches,cpu-migrations -r 10 -- taskset -c 0 a.exe

102 context-switches
0 cpu-migrations

Notice the number of cpu-migrations gets down to 0, i.e., the process never leaves the core0.

Alternatively, you can use cset286 tool to reserve CPUs for just the program you are bench-
marking. If using Linux perf, leave at least two cores so that perf runs on one core, and
your program runs in another. The command below will move all threads out of N1 and N2
(-k on means that even kernel threads are moved out):

$ cset shield -c N1,N2 -k on

The command below will run the command after -- in the isolated CPUs:

$ cset shield --exec -- perf stat -r 10 <cmd>

Process Priority

In Linux, one can increase process priority using the nice tool. By increasing the priority
process gets more CPU time, and the Linux scheduler favors it more in comparison with
processes with normal priority. Niceness ranges from -20 (highest priority value) to 19 (lowest
priority value) with the default of 0.

Notice in the previous example, execution of the benchmarked process was interrupted by
the OS more than 100 times. If we increase process priority by run the benchmark with
sudo nice -n -N:

$ perf stat -r 10 -- sudo nice -n -5 taskset -c 1 a.exe
0 context-switches
0 cpu-migrations

Notice the number of context-switches gets to 0, so the process received all the computation
time uninterrupted.

284 Processor affinity - https://en.wikipedia.org/wiki/Processor_affinity.
285 taskset manual - https://linux.die.net/man/1/taskset.
286 cpuset manual - https://github.com/lpechacek/cpuset.

170

https://en.wikipedia.org/wiki/Processor_affinity
https://linux.die.net/man/1/taskset
https://github.com/lpechacek/cpuset
https://en.wikipedia.org/wiki/Processor_affinity
https://linux.die.net/man/1/taskset
https://github.com/lpechacek/cpuset

Appendix A

Filesystem Cache

Usually, some area of main memory is assigned to cache the file system contents, including
various data. This reduces the need for an application to go all the way down to the disk.
Here is an example of how file system cache can affect the running time of simple git status
command:

clean fs cache
$ echo 3 | sudo tee /proc/sys/vm/drop_caches && sync && time -p git status
real 2,57
warmed fs cache
$ time -p git status
real 0,40

One can drop the current filesystem cache by running the following two commands:

$ echo 3 | sudo tee /proc/sys/vm/drop_caches
$ sync

Alternatively, you can make one dry run just to warm up the filesystem cache and exclude
it from the measurements. This dry iteration can be combined with the validation of the
benchmark output.

171

Appendix B

Appendix B. The LLVM Vectorizer

This section describes the state of the LLVM Loop Vectorizer inside the Clang compiler as of
the year 2020. Innerloop vectorization is the process of transforming code in the innermost
loops into code that uses vectors across multiple loop iterations. Each lane in the SIMD vector
performs independent arithmetic on consecutive loop iterations. Usually, loops are not found
in a clean state, and the Vectorizer has to guess and assume missing information and check for
details at runtime. If the assumptions are proven wrong, the Vectorizer falls back to running
the scalar loop. The examples below highlight some of the code patterns that the LLVM
Vectorizer supports.

Loops with unknown trip count

The LLVM Loop Vectorizer supports loops with an unknown trip count. In the loop below,
the iteration start and finish points are unknown, and the Vectorizer has a mechanism to
vectorize loops that do not start at zero. In this example, n may not be a multiple of the
vector width, and the Vectorizer has to execute the last few iterations as scalar code. Keeping
a scalar copy of the loop increases the code size.

void bar(float A, float B, float K, int start, int end) {
for (int i = start; i < end; ++i)

A[i] *= B[i] + K;
}

Runtime Checks of Pointers

In the example below, if the pointers A and B point to consecutive addresses, then it is illegal
to vectorize the code because some elements of A will be written before they are read from
array B.

Some programmers use the restrict keyword to notify the compiler that the pointers are
disjointed, but in our example, the LLVM Loop Vectorizer has no way of knowing that the
pointers A and B are unique. The Loop Vectorizer handles this loop by placing code that
checks, at runtime, if the arrays A and B point to disjointed memory locations. If arrays A
and B overlap, then the scalar version of the loop is executed.

void bar(float A, float B, float K, int n) {
for (int i = 0; i < n; ++i)

A[i] *= B[i] + K;
}

Reductions

In this example, the sum variable is used by consecutive iterations of the loop. Normally, this
would prevent vectorization, but the Vectorizer can detect that sum is a reduction variable.
The variable sum becomes a vector of integers, and at the end of the loop, the elements of the
array are added together to create the correct result. The LLVM Vectorizer supports a number
of different reduction operations, such as addition, multiplication, XOR, AND, and OR.

int foo(int *A, int *B, int n) {
unsigned sum = 0;

172

Appendix B

for (int i = 0; i < n; ++i)
sum += A[i] + 5;

return sum;
}

The LLVM Vectorizer supports floating-point reduction operations when -ffast-math is used.

Inductions

In this example, the value of the induction variable i is saved into an array. The LLVM Loop
Vectorizer knows to vectorize induction variables.

void bar(float A, float B, float K, int n) {
for (int i = 0; i < n; ++i)

A[i] = i;
}

If Conversion

The LLVM Loop Vectorizer is able to “flatten” the IF statement in the code and generate a
single stream of instructions. The Vectorizer supports any control flow in the innermost loop.
The innermost loop may contain complex nesting of IFs, ELSEs, and even GOTOs.

int foo(int *A, int *B, int n) {
unsigned sum = 0;
for (int i = 0; i < n; ++i)

if (A[i] > B[i])
sum += A[i] + 5;

return sum;
}

Pointer Induction Variables

This example uses the std::accumulate function from the standard c++ library. This loop
uses C++ iterators, which are pointers, and not integer indices. The LLVM Loop Vectorizer
detects pointer induction variables and can vectorize this loop. This feature is important
because many C++ programs use iterators.

int baz(int *A, int n) {
return std::accumulate(A, A + n, 0);

}

Reverse Iterators

The LLVM Loop Vectorizer can vectorize loops that count backward.

int foo(int *A, int *B, int n) {
for (int i = n; i > 0; --i)

A[i] +=1;
}

173

Appendix B

Scatter / Gather

The LLVM Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions
that scatter/gathers memory.

int foo(int * A, int * B, int n) {
for (intptr_t i = 0; i < n; ++i)

A[i] += B[i * 4];
}

In many situations, the cost model will decide that this transformation is not profitable.

Vectorization of Mixed Types

The LLVM Loop Vectorizer can vectorize programs with mixed types. The Vectorizer cost
model can estimate the cost of the type conversion and decide if vectorization is profitable.

int foo(int *A, char *B, int n, int k) {
for (int i = 0; i < n; ++i)

A[i] += 4 * B[i];
}

Vectorization of function calls

The LLVM Loop Vectorizer can vectorize intrinsic math functions. See the table below for a
list of these functions.

pow exp exp2
sin cos sqrt
log log2 log10
fabs floor ceil
fma trunc nearbyint
fmuladd

Partial unrolling during vectorization

Modern processors feature multiple execution units, and only programs that contain a high
degree of parallelism can fully utilize the entire width of the machine. The LLVM Loop
Vectorizer increases the instruction-level parallelism (ILP) by performing partial-unrolling of
loops.

In the example below, the entire array is accumulated into the variable sum. This is inefficient
because only a single execution port can be used by the processor. By unrolling the code, the
Loop Vectorizer allows two or more execution ports to be used simultaneously.

int foo(int *A, int *B, int n) {
unsigned sum = 0;
for (int i = 0; i < n; ++i)

sum += A[i];
return sum;

}

The LLVM Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
The decision to unroll the loop depends on the register pressure and the generated code size.

174

Appendix B

SLP vectorization

SLP (Superword-Level Parallelism) vectorizer tries to glue multiple scalar operations together
into vector operations. It processes the code bottom-up, across basic blocks, in search of scalars
to combine. The goal of SLP vectorization is to combine similar independent instructions into
vector instructions. Memory accesses, arithmetic operations, comparison operations can all
be vectorized using this technique. For example, the following function performs very similar
operations on its inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine the
following function into vector operations.

void foo(int a1, int a2, int b1, int b2, int *A) {
A[0] = a1*(a1 + b1);
A[1] = a2*(a2 + b2);
A[2] = a1*(a1 + b1);
A[3] = a2*(a2 + b2);

}

Outer loop vectorization.

Outer loop vectorization is the kind of vectorization that happens at the outermost loops of
programs in the domain of data-parallel applications. For example, OpenCL and CUDA rely
on outer loop vectorization because they specify that iterations on the outer dimension of the
loop are independent of one another.

175

	Table Of Contents
	1 Introduction
	1.1 Why Do We Still Need Performance Tuning?
	1.2 Who Needs Performance Tuning?
	1.3 What Is Performance Analysis?
	1.4 What is discussed in this book?
	1.5 What is not in this book?
	1.6 Chapter Summary

	Part1. Performance analysis on a modern CPU
	2 Measuring Performance
	2.1 Noise In Modern Systems
	2.2 Measuring Performance In Production
	2.3 Automated Detection of Performance Regressions
	2.4 Manual Performance Testing
	2.5 Software and Hardware Timers
	2.6 Microbenchmarks
	2.7 Chapter Summary

	3 CPU Microarchitecture
	3.1 Instruction Set Architecture
	3.2 Pipelining
	3.3 Exploiting Instruction Level Parallelism (ILP)
	3.3.1 OOO Execution
	3.3.2 Superscalar Engines and VLIW
	3.3.3 Speculative Execution

	3.4 Exploiting Thread Level Parallelism
	3.4.1 Simultaneous Multithreading

	3.5 Memory Hierarchy
	3.5.1 Cache Hierarchy
	3.5.1.1 Placement of data within the cache.
	3.5.1.2 Finding data in the cache.
	3.5.1.3 Managing misses.
	3.5.1.4 Managing writes.
	3.5.1.5 Other cache optimization techniques.

	3.5.2 Main Memory

	3.6 Virtual Memory
	3.7 SIMD Multiprocessors
	3.8 Modern CPU design
	3.8.1 CPU Front-End
	3.8.2 CPU Back-End

	3.9 Performance Monitoring Unit
	3.9.1 Performance Monitoring Counters

	4 Terminology and metrics in performance analysis
	4.1 Retired vs. Executed Instruction
	4.2 CPU Utilization
	4.3 CPI & IPC
	4.4 UOPs (micro-ops)
	4.5 Pipeline Slot
	4.6 Core vs. Reference Cycles
	4.7 Cache miss
	4.8 Mispredicted branch

	5 Performance Analysis Approaches
	5.1 Code Instrumentation
	5.2 Tracing
	5.3 Workload Characterization
	5.3.1 Counting Performance Events
	5.3.2 Manual performance counters collection
	5.3.3 Multiplexing and scaling events

	5.4 Sampling
	5.4.1 User-Mode And Hardware Event-based Sampling
	5.4.2 Finding Hotspots
	5.4.3 Collecting Call Stacks
	5.4.4 Flame Graphs

	5.5 Roofline Performance Model
	5.6 Static Performance Analysis
	5.6.1 Static vs. Dynamic Analyzers

	5.7 Compiler Optimization Reports
	5.8 Chapter Summary

	6 CPU Features For Performance Analysis
	6.1 Top-Down Microarchitecture Analysis
	6.1.1 TMA in Intel® VTune™ Profiler
	6.1.2 TMA in Linux Perf
	6.1.3 Step1: Identify the bottleneck
	6.1.4 Step2: Locate the place in the code
	6.1.5 Step3: Fix the issue
	6.1.6 Summary

	6.2 Last Branch Record
	6.2.1 Collecting LBR stacks
	6.2.2 Capture call graph
	6.2.3 Identify hot branches
	6.2.4 Analyze branch misprediction rate
	6.2.5 Precise timing of machine code
	6.2.6 Estimating branch outcome probability
	6.2.7 Other use cases

	6.3 Processor Event-Based Sampling
	6.3.1 Precise events
	6.3.2 Lower sampling overhead
	6.3.3 Analyzing memory accesses

	6.4 Intel Processor Traces
	6.4.1 Workflow
	6.4.2 Timing Packets
	6.4.3 Collecting and Decoding Traces
	6.4.4 Usages
	6.4.5 Disk Space and Decoding Time

	6.5 Chapter Summary

	Part2. Source Code Tuning For CPU
	7 CPU Front-End Optimizations
	7.1 Machine code layout
	7.2 Basic Block
	7.3 Basic block placement
	7.4 Basic block alignment
	7.5 Function splitting
	7.6 Function grouping
	7.7 Profile Guided Optimizations
	7.8 Optimizing for ITLB
	7.9 Chapter Summary

	8 CPU Back-End Optimizations
	8.1 Memory Bound
	8.1.1 Cache-Friendly Data Structures
	8.1.1.1 Access data sequentially.
	8.1.1.2 Use appropriate containers.
	8.1.1.3 Packing the data.
	8.1.1.4 Aligning and padding.
	8.1.1.5 Dynamic memory allocation.
	8.1.1.6 Tune the code for memory hierarchy.

	8.1.2 Explicit Memory Prefetching
	8.1.3 Optimizing For DTLB
	8.1.3.1 Explicit Hugepages.
	8.1.3.2 Transparent Hugepages.
	8.1.3.3 Explicit vs. Transparent Hugepages.

	8.2 Core Bound
	8.2.1 Inlining Functions
	8.2.2 Loop Optimizations
	8.2.2.1 Low-level optimizations.
	8.2.2.2 High-level optimizations.
	8.2.2.3 Discovering loop optimization opportunities.
	8.2.2.4 Use Loop Optimization Frameworks

	8.2.3 Vectorization
	8.2.3.1 Compiler Autovectorization.
	8.2.3.2 Discovering vectorization opportunities.
	8.2.3.3 Vectorization is illegal.
	8.2.3.4 Vectorization is not beneficial.
	8.2.3.5 Loop vectorized but scalar version used.
	8.2.3.6 Loop vectorized in a suboptimal way.
	8.2.3.7 Use languages with explicit vectorization.

	8.3 Chapter Summary

	9 Optimizing Bad Speculation
	9.1 Replace branches with lookup
	9.2 Replace branches with predication
	9.3 Chapter Summary

	10 Other Tuning Areas
	10.1 Compile-Time Computations
	10.2 Compiler Intrinsics
	10.3 Cache Warming
	10.4 Detecting Slow FP Arithmetic
	10.5 System Tuning

	11 Optimizing Multithreaded Applications
	11.1 Performance Scaling And Overhead
	11.2 Parallel Efficiency Metrics
	11.2.1 Effective CPU Utilization
	11.2.2 Thread Count
	11.2.3 Wait Time
	11.2.4 Spin Time

	11.3 Analysis With Intel VTune Profiler
	11.3.1 Find Expensive Locks
	11.3.2 Platform View

	11.4 Analysis with Linux Perf
	11.4.1 Find Expensive Locks

	11.5 Analysis with Coz
	11.6 Analysis with eBPF and GAPP
	11.7 Detecting Coherence Issues
	11.7.1 Cache Coherency Protocols
	11.7.2 True Sharing
	11.7.3 False Sharing

	11.8 Chapter Summary

	Epilog
	Glossary
	References
	Appendix A. Reducing Measurement Noise
	Appendix B. The LLVM Vectorizer

