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Abstract 

Both the 4-point and the uniform cubic B-spline subdivisions double the number of vertices of a closed-loop polygon kP and 
produce sequences of vertices fj and bj respectively. We study the J-spline subdivision scheme Js, introduced by Maillot and Stam, 
which blends these two methods to produce vertices of the form vj=(1–s)fj+sbj. Iterative applications of Js yield a family of limit 
curves, the shape of which is parameterized by s. They include four-point subdivision curves (J0), uniform cubic B-spline curves 
(J1), and uniform quintic B-spline curves (J1.5). We show that the limit curve is at least C1 when –1.7≤s≤5.8, C2 when 0<s<4, C3 
when 1<s≤2.8, and C4 when s=3/2, even though 4-point yields only C1 curves and cubic B-spline yields only C2

 curves. We 
generalize the Js scheme to a two-parameter family Ja,b and propose data-dependent and data-independent solutions for computing 
values of parameters a and b that minimize various objective functions (distance to the control vertices, deviation from the control 
polygon, change in surface area, and popping when switching levels of subdivision in multi-resolution rendering). We extend the 
J-spline subdivision to open curves and to a smooth surface subdivision scheme for quad-meshes with arbitrary connectivity. 

1. Introduction 
Because of its simplicity and expressive power, subdivision has become a standard tool for modeling curves and surfaces in CAD, 
Graphics, and Animation. Subdivision is a set of rules that refine polygonal curves (in any dimension) by increasing the number 
of their vertices. Applying a subdivision operator repeatedly to a control polygon produces a sequence of curves that, if the 
subdivision rules are chosen correctly, converge to a smooth limit curve. 

There are many ways of choosing subdivision rules. We concentrate on linear subdivision schemes, where the new vertices are 
linear combinations of old ones, and restrict ourselves to binary subdivisions, where the number of vertices doubles at each 
refinement. One such scheme [Ros04] averages the results for cubic B-spline and 4-point subdivisions. Averaging these rules 
generates C2 curves [PR08]. This was unexpected, since the 4-point rule produces C1 curves. Inspired by this discovery, we 
investigate a generalized form based on an arbitrary affine combination of the cubic B-spline and 4-point subdivision rules. 
Specifically, we introduce what we named the J-spline scheme, Ja,b, whose rules are of the form 

k+1P2j  = (a kPj–1 + (8–2a) kPj + a kPj+1)/8 
k+1P2j+1  = ((b–1) kPj–1 + (9–b) kPj + (9–b) kPj+1 + (b–1) kPj+2)/16 

where kPj represents the jth control point at the kth level of subdivision.  

Note that setting a=b yields the subclass of J-splines, Js,s which we denote Js, originally proposed by Maillot and Stam [MS01]. 
Several known curve subdivision schemes fall in this subclass. Specifically, J0 is the 4-point scheme [NDG87, DD89], J1/2 is the 
scheme promoted in [Ros04], and J1 is the uniform cubic B-spline scheme [Sab02, LR80] (Fig. 1).   

 
Fig. 1: Results of 1, 2, and 6 refinements of 4-point J0 (outer), the compromise [Ros04] J1/2 (intermediate), cubic B-spline J1 (inner). 
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2. Previous Work 
Several researchers have considered subdivision schemes with a tunable parameter. For example, splines in tension [Sch96, Cli74] 
are a generalization of polynomial splines with a tunable parameter that controls the degree of “tightness” of the curve. However, 
these subdivision rules are not linear in the tension parameter, which complicates the analysis of their smoothness. Barsky et al. 
[BB83] created a generalization of B-splines, called Beta-splines, which provides bias and tension controls. Later, Dyn et al. 
[NDG87] developed an interpolatory 4-point subdivision scheme with a tunable parameter that blends between local cubic 
Lagrange interpolation and linear interpolation. The smoothness of the curves generated with this subdivision scheme depends on 
the parameter, but is at most C1. Maillot and Stam [MS01] proposed a one-parameter family of subdivision schemes that 
corresponds to the Js subclass of our J-splines (they used α=1–s as the blending parameter). They also mention applications to 
subdivision surfaces and silhouette accuracy, but do not provide any smoothness analysis in the curve or surface case, nor any 
automatic parameter optimization. More recently Dyn et al. [DFH05] introduced a subdivision scheme based on local cubic 
Lagrange interpolation blended with Chaikin's subdivision scheme [Cha74] for C1 B-spline curves. In the present paper, we prove 
strong and unanticipated continuity results for Js curves, including the fact that Js  subdivision can generate C3 and C4 curves.  

Despite the fact that several subdivisions schemes with tunable parameters exist, there has been little work on optimizing these 
parameters to achieve geometric properties, such as vertex or mid-edge point interpolation or area preservation. Dyn et al. 
[DFH05] show that their method generates C2 curves for a large range of parameter values and optimize this parameter to create a 
subdivision scheme that is as close as possible to being interpolatory. Most subdivision optimization has focused on fitting 
subdivision surfaces to other data [LLS01, MK04]. Typically these methods are data dependent (their optimization is dependent on 
the input data) and either use parametric correspondence or attempt to find some geometric correspondence to match the given 
data. Halstead et al. [HKD93] also show how to set up an optimization problem to find the control vertices for a Catmull-Clark 
surface that minimizes various energy functionals such as thin-plate energy. Since these optimizations are model dependent, they 
must be recomputed whenever vertices are modified. To minimize this optimization cost, we aim to choose the optimal 
parameters for our subdivision scheme independently of any given data and ensure that our curves still maintain local control. To 
do so, we generalize the Js scheme [MS01] to a two-parameter family Ja,b and propose data-dependent and data-independent 
solutions for computing values of parameters a and b that minimize various objective functions (closeness to uniform B-splines, 
distance to the control vertices, deviation from the control polygon, change in surface area, and popping when switching levels of 
subdivision in multi-resolution rendering). We also extend the J-spline subdivision to open curves and to a smooth surface 
subdivision scheme for meshes with arbitrary connectivity. 

3. Continuity of Js curves 
The Js subdivision of a given control polygon converges to a limit curve whose shape and degree of smoothness depend on the 
value of the parameter s (Fig. 2). We know the smoothness of the curves generated by the two parent subdivision schemes (J0 is 
C1 and J1 is C2). Naively we might assume that, for other values of s, Js will inherit the lower C1 smoothness of the 4-point scheme.  
We show here that this is not the case. 

Consider two loops, P = {P0, P1,… Pk} and Q = {Q0, Q1,… Qk}. Let the subdivision rule Ls(P,Q) produce a new loop R={R0, R1,… 
Rk}, where Ri=(1–s)Pi+sQi. Note that although Js(0P)=Ls(J0(0P),J1(0P)), in general, kJs(0P)≠Ls(kJ0(0P), kJ1(0P)). Hence, the curves 
produced by iterations of Js refinements are not linear combinations of the curves produced by iterations of 4-point and cubic B-
spline schemes. This observation explains why the limit curves produced by iterative Js refinements may exhibit smoothness 
properties that are superior to those of J0.  

As the number k of refinements grows, kP converges to a limit curve *Js(0P), which we denote by *Js. We prove below that: 
• for –1.7 ≤ s < 0 and 4 ≤ s ≤ 5.8, *Js is C1,  
• for 0 < s ≤ 1 and 2.8 < s < 4, *Js is C2,  
• for 1 < s < 3/2 and 3/2 < s ≤ 2.8, *Js is C3, and 
• for s = 3/2, *Js is C4. 

To establish the continuity of *Js for different values of s, we first consider the necessary conditions for continuity due to Reif 
[Rei95]. Given the subdivision matrix for Js, if the subdivision scheme produces curves that are Cm, then the eigenvalues of its 
subdivision matrix are of the form 1, (1/2), (1/4), …, (1/2)m, λ, … where λ<(1/2)m.  The eigenvalues of the subdivision matrix for 
the Js subdivision are 1, (1/2), (1/4), (1/8), (2–s)/8, (s–1)/16, (s–1)/16, 0, 0.  It is easy to verify that Js subdivision satisfies the 
necessary conditions for C1 continuity when –2<s<6, C2 continuity when 0<s<4, C3 continuity when 1<s<3, and C4 continuity 
when s=3/2. Notice that these conditions are only necessary, they are not sufficient. 

To determine sufficient conditions on the subdivision scheme, we use the Laurent polynomial of the subdivision scheme given by  
S(z) = (s–1)/16   + s/8 z  + (9–s)/16 z2  + (1–s/4) z3  + (9–s)/16 z4  + s/8 z5 + (s–1)/16 z6,  (1) 

which encodes the columns of the infinite subdivision matrix in a compact form.  
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Fig. 2: 5J0, 5J2/8, 5J4/8, 5J6/8, 5J8/8, 5J10/8, 5J12/8, from outer to inner (left & center). *J0 is the C1 four-point curve. *J4/8 is the C2 curve of 
[Ros04]. *J8/8 is the C2 uniform cubic B-spline curve. *J12/8 is the C4 quintic uniform B-spline curve. A denser sampling of *Js curves 
is also shown (right). 

The subdivision scheme generates Cm curves if the infinity norm of the kth power of the subdivision matrix for the mth divided 
differences is less than 1 for some k [WW02, p. 77]. The columns of this divided difference subdivision matrix are given by 
(2m/(1+z)m+1)S(z). We can numerically check what range of s satisfies these bounds for different continuity levels. We have 
verified that Js subdivision produces curves that are at least C1 for –1.7≤s≤ 5.8, C2 for 0<s<4, C3 for 1<s≤2.8 and C4 for s=3/2. In 
fact, s=3/2 corresponds to uniform quintic b-spline subdivision—indeed their Laurent polynomials are identical. Although the 
sufficient bounds that we were able to verify numerically are slightly more restrictive than the proven necessary bounds, we 
strongly suspect that the true sufficient bounds extend to match the necessary bounds for continuity in the limit. We were not able 
to verify this conjecture because the numerical verification is exponential in k and difficult to compute for large values of k. 

4. Relation between Js curves and uniform B-splines 
Lane and Riesenfeld [LR80] showed that uniform B-spline curves Bd of degree d have a simple subdivision rule: First double the 
vertices by inserting new vertices as mid-edge points. Then, take the dual (replace vertices by mid-edge points) d–1 times. Stam 
points out [Sta01] that a pair of dual operations may be combined into a single smoothing step where each vertex moves towards 
the average of its two neighboring vertices. These subdivision rules create curves that are Cd–1.   

Js exactly reproduces the odd degree B-splines B3 and B5 for s=1 and s=3/2. It does not reproduce even degree B-splines exactly 
though. However, we can compute the optimal values of the parameter s in a data-independent manner to best match the basis 
functions created by B2 and B4 subdivisions. To perform this optimization in a data-independent manner, we minimize the 
difference between the basis function values on a dense uniform grid (we use a grid of 1531 samples). The optimal parameter s 
will depend on what norm is used to measure the distance between the values. For example, we prove that the disparity between 
*J.689 and B2 never exceeds a fifth of the maximum edge length of 0P, but also notice that in practice (Fig. 3) *J.689 is a much closer 
approximation of B2 than suggested by this conservative upper bound. 

 
Fig. 3: From outer to inner: *J.689 approximates B2, *J1 is B3, *J1.27 approximates B4, and *J1.5 is B5. To facilitate comparison, the J 
curves are drawn on top of their thicker B counterparts. 

L2 is a popular norm because the resulting optimization problem is polynomial and easy to solve. However, the L2 norm gives 
more weight to areas with large discrepancy and hence may not correspond to how we perceive average closeness of shapes. 
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Since we perform optimization in a data-independent manner, we only need to optimize the parameter s once and can afford to 
solve a more expensive minimization problem using other norms. Hence, we have considered the L1 and L∞ norms. The L1 norm 
measures total variation or the integral of the absolute value of the difference between the two shapes. We believe that it matches 
our intuitive perception of similarity between shapes as it attempts to minimize the average discrepancy between the curves. The 
L∞ norm provides a strict error bound in that this norm measures the largest deviation of the curve but provides no measure of 
how similar the curves are away from the point where they are furthest apart. For quartic B-splines, we obtain an optimal value of 
s=1.27 for both norms. When optimizing the Js subdivision to match the quadratic B-spline subdivision, the L1 and L∞ norms 
produce very different values s=.689 and s=.639 respectively. We advocate the L1 norm, since it produces what we perceive as a 
closer match.  

Notice that a quadratic B-spline curve is C1, whereas *J.689, which approximates it, is C2. *J1 is a cubic B-spline curve B3. *J1.27 is a 
C3 curve that closely approximates the quartic B-spline curve B4 (the curves appear identical in Fig. 3). Finally, *J1.5 is a C4 quintic 
B-spline curve (Fig. 3). 

5. Retrofitting Js curves 
As the value of s increases towards 1.5, the smoothness of our curve increases, but the limit curve drifts farther away from the 
vertices of the original control polygon C. To remedy this problem, we can perform a simple optimization to obtain a polygon 0P 
for which the limit curve *P exactly interpolates the vertices of C. The limit mask for a subdivision scheme is given by the 
dominant left eigenvector of the subdivision matrix [HKD93]. For Js subdivision, the limit mask has the closed-form {(s–1)s, 2s(8–
s), 72+2(s–9)s, 2s(8–s), (s–1)s}/(12(6+s)) for arbitrary parameter values s. 

We can solve a global system of equations using a matrix whose rows contain shifts of the limit mask to find control points such 
that the limit curve exactly interpolates the vertices of the control polygon [WW02, p. 182], but this solution may be expensive to 
calculate for large numbers of control vertices. 

As an alternative, we have developed a simple and effective iterative retrofitting scheme (Fig. 4), which converges rapidly to the 
solution of these equations. We initialize 0P with the vertices of C. Then, for each vertex 0Pj, we compute its limit position *Pj 
using the limit mask provided above. We then adjust each vertex 0Pj to 0Pj + (Cj – *Pj). We iterate this process until the difference 
between *Pj and Cj for all j falls below a desired threshold.  

 
Fig. 4: We compute the vectors Cj–*Pj (left) and apply them (center-left) to adjust 0Pj. We repeat this process (center-right), 
quickly converging to a new control polygon (orange), which yields an interpolating curve (right).  

 
Fig. 5: Retrofitted versions of the refined triangle and square (left) of Fig. 3. The original (center-right) and retrofitted (right) Js 
curves for another shape. 
This retrofitting process may be applied to any Js scheme (Fig. 5). Our experiment show that the iterative solver converges in 
realtime for a range of values of s that supports the needs of practical design situations, making the proposed retrofitting suitable 
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for interactive editing. Unfortunately, we have no proof of convergence. Furthermore, this method fails to converge for values of s 
outside of this range. To investigate when these failure might occur, we compute the spectral radius (largest absolute eigenvalue) 
of the infinite matrix (I–L) where I is the identity matrix and L is a matrix whose rows contains shifts of the limit mask. Despite 
the fact that this matrix is infinite, we can use techniques from block-circulant matrices to write down the infinite set of 
eigenvalues and bound their norm. If the spectral radius of the matrix (I–L) is greater than or equal to 1, then this iterative method 
for interpolating the vertices of the control polygon will fail. The Js subdivision violates this convergence criterion when s≤–0.86 
and when 2≤s. Therefore, the iterative retrofitting will diverge for these values of s. The iterative technique converged in realtime 
when –0.75<s<1.5 and the convergence speed deteriorates as s approaches 2.  

6. Vertex-interpolation through a model-independent mixed schemes  
In the retrofitting schemes discussed above, the effect of tweaking a control vertex of C is usually most significant in the nearby 
portion of *P, but may affect the whole curve because the global nature of the retrofitting solution leads to a loss of local control, 
possibly making this approach impractical for local shape editing in some applications. Therefore, we propose an alternative that 
makes it possible to retain local control and obtain refined curves that nearly interpolate the vertices of C. Following [Lev03], we 
use our J-spline generalization of the Js refinement and precede the series of Js steps by a single anticipation step Ja,b (as defined in 
Section 1) with optimized value of parameters a and b. The value of parameter a defines the position of each even vertex of 1P as 
a linear combination of the corresponding vertex of 0P and the cubic B-spline subdivision tucked version of that original vertex. 
The value of parameter b similarly defines the position of each odd vertex of 1P as a linear combination of the corresponding mid-
edge point of 0P and the four-point subdivision tucked version of that point. We use the subdivision sequence {Ja,b , *Js}. To ensure 
local control, we solve for the optimal values of a and b in a model-independent manner. We compute a limit mask for the original 
vertices produced by the subdivision sequence {Ja,b , *Js} and optimize the parameters a, b, and s to minimize the worst-case 
distance between the original and limit positions of these control vertices.   

The coefficients of the limit mask can be extracted easily by multiplying the corresponding Laurent polynomials.  For example, 
assume that we are building a C4 curve that is as close as possible to the vertices of the control polygon. Then, combining 
equation 1 with the Laurent polynomial representing the limit mask for s=3/2, (L(z) = 1/120 z + 13/60 z2 + 11/20 z3 + 13/60 z4 + 
1/120 z5), yields a polynomial whose even degree coefficients encode the corresponding limit point. Minimizing the difference 
between this mask and the identity mask in the infinity norm provides a solution independent of a particular control polygon.  For 
example, this optimization yields a single anticipation step Jr, with r = –33/26, which, when followed by a series of J1.5 steps, 
produces to a C4 quintic B-spline curve that nearly interpolates the original vertices (Fig. 6). A different anticipation J-spline step 
Ja,b with a= –7/4 and b= 59/52, yields exact interpolation of the control vertices, but the final shape is slightly flattened along the 
edges (Fig. 7).  

 
Fig. 6: From left to right: Original. After an “anticipation” step of Jr with r = –33/26. After a subsequent step J1.5. Subsequent 
iterations of J1.5 converge to a C4 curve close to the original vertices (right). 

 
Fig. 7: From left: *J12/8, Ja,b with a= –7/4 and b= 59/52, followed by J1.5, followed by several additional J1.5. 
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7. Mid-edge interpolation 
While the previous section concentrated on interpolating the original control vertices, we interpolating mid-edge points is easier 
and tends to produces a more pleasant shape. This solution makes sense when the control polygon is designed around the desired 
curve and when its vertices are not computed or measured samples on the desired shape. The optimization problem is exactly the 
same as in Section 6. However, instead of applying the limit mask to the vertices corresponding to control vertices, we apply the 
limit mask to the vertices inserted on the edges during our anticipation subdivision step. To make the limit curve interpolate the 
mid-edge points of the control polygon, we minimize the difference between this limit mask and the mid-edge point mask (½, ½) 
in the infinity norm. 

We have computed optimized values of parameters for several approaches to mid-edge interpolation (Fig. 8): the C1 quadratic B-
spline B2 curve; the C2 curve produced using a Jr step with r=2/3 followed by a series of J1 steps, the C2 *Js with s=0.751, and the 
C4 curve produced using a Jr step, with r = 29/59, followed by a series of J1.5 steps. Note that, even though all four limit curves are 
similar, the first two schemes interpolate the mid-edge points exactly, while the other two only pass very close to them. 

 
Fig. 8: From left-to-right: B2, J2/3 followed by *J1, *J0.751, J29/59 followed by *J1.5. 

8. Area preservation in 2D 
For each control polygon, the a, b, and s parameters of our {Ja,b , *Js} combination or the r and s parameters of our {Jr , *Js} 
combination may be adjusted in a shape-dependent manner through numerical iteration to ensure that the refined curve has the 
same area as 0P. Adjusting s in *Js will typically produce a C2 curve though this level of smoothness is not guaranteed (Fig. 9a). 
Adjusting r, or a and b, while keeping s=1.5 will produce a C4 curve (Fig. 9b). However, in all cases, when a control vertex is 
moved a new optimization must be performed to recomputed s and change the whole curve. Hence, local control is lost. 

 
Fig. 9: Model-dependent optimizations, *J.476 (a) and {J.050, *J1.5} (b), both yield E=0, where E is the relative area error. Model-
independent optimizations produce small errors: *J.46 yields E=0.79% (c), {J–0.03 , *J1.5} yields E=3.4% (d), {J0.84 , *J-0.53} yields 
E=0.035% (e). {J–0.0053,1.03 , *J0.47} preserves the area exactly (f). 

To avoid this shape-dependent optimization and preserve local control, we perform an optimization over the free parameters in 
our subdivision scheme in a model-independent fashion to preserve the area of the control polygon.  [WW02, p. 165] showed how 
to compute exact inner products of non-polynomial subdivision schemes and how to use it to compute the exact area enclosed by 
the limit curve of a subdivision scheme. To minimize the difference in the area of the limit curve from the control polygon, we 
compute the area mask corresponding to linear subdivision and our parameterized subdivision scheme. The optimal parameters 
are given by minimizing the difference between these two masks in the infinity norm. 

To reduce area change without an anticipation step, our optimization suggest to use *Js with s = 0.46 (Fig. 9c). If a C4 curve is 
desired, we recommend { Jr , *J1.5 } with an optimized parameter value r = –0.030 (Fig. 9d). If high levels of smoothness are not 
important, one may further reduce area change by using { J0.84  , *J–0.53 }, which yields a C1 curve that may have visible kinks (Fig. 
9e). Note that these solutions are independent of the particular control polygon, but do not guarantee that area will be preserved 
exactly. If exact area preservation is required with a model-independent solution, we suggest the mixed J-spline scheme { J–

0.0053,1.03  , *J0.47 }, which produces a C2 curve noticeably flattened along the edges of the control polygon (Fig. 9f). 

9. Open curves 
The extension of the Js refinements to open curves is straightforward: we add two new control points 0P-1, 0P-2 and 0Pn, 0Pn+1 to 
each end of the curve and proceed as described above, although we do not generate the spans that are produced through 



J. Rossignac & S. Schaefer J-splines 7 / 11 

subdivision corresponding to the 5 edges of the control polyloop that are incident upon these added vertices. This way, we ensure 
two things: (1) the refinement rules apply only to vertices with a sufficient number of neighbor vertices to multiply by the non-
zero coefficients in the subdivision rules and (2) the added vertices at one end of the control polygon do not influence the other 
end (Fig. 10 a, b).  

Often, one may want the final curve to start at the first control vertex 0P0 and to end at 0Pn–1. To ensure that the subdivided curve 
goes through 0P0, we set 0P–1 = 20P0 – 0P1 and 0P–2 = 20P0 – 0P2. To ensure that it goes through 0Pn–1, we set 0Pn = 20Pn–1 – 0Pn–2 and 
0Pn+1 = 20Pn–1 – 0Pn–3. 

 
 (a) (b) (c) (d) (e) 
Fig. 10: (a) *J0.5 for a closed loop;  (b) Same with 4 vertices added between 0P5 and 0P0 and 5 spans removed; (c) Added vertices 
adjusted to interpolate 0P5 and 0P0 in position and direction; (d) Same for *J1; (e) And for *J0. In each curve, the vertices are labeled 
with numbers starting at zero. For example, in (c), (d), and (e), the vertex labeled 0 is 0P–2. 
In addition to interpolating the ends of the control curve, one may want to force the limit curve to be tangent to the control 
polygon at these ends, that is to interpolate 0P0 and 0Pn–1 with a tangents in the direction of 0P1 – 0P0 and 0Pn–2 – 0P n–1 respectively. 
Using the limit mask from Section 5 and the tangent mask {1–s, 2(s–4), 0, –2(s–4), –(1–s)}/12 derived from the left eigenvector 
of the subdivision matrix corresponding to ½, we solve a simple set of equations for these additional control points to enforce the 
specified properties. The solution adds end points 0P–1 = (9–s)/4 0P0 + (s–3)/2 0P1 + (1–s)/4 0P2 and 0P–2 = (12–s)/2 0P0 + (s–8) 0P1 + 
(6–s)/2 0P2 to the beginning of the curve. The masks for the opposite end of the curve are mirror images of these (Fig. 10 c, d, e). 

10. Extensions to surfaces  
Although, for clarity, we used 2D curves for illustration, subdivision can operate on control vertices in arbitrary dimension. These 
extra dimensions may be used to define space-curves in 3D or to add local properties to points on the curve such as color or 
thickness. This curve subdivision technique also trivially extends to quadrilateral, tensor product surfaces. For example, to 
tessellate such a surface, we subdivide edges of polygons along parallel u-parameter lines. Next, we use these control points to 
form curves in the orthogonal v-parameter direction and subdivide these curves to form one round of subdivision (Fig. 11). The 
limit surfaces produced by this process have the same smoothness properties of the original Js subdivision scheme for curves.  

To produce surfaces with borders, we add border vertices in each parametric direction, as described in Section 9 (Fig. 12). 

For surfaces with extraordinary vertices (valence not equal to four), we need a different set of subdivision rules. Catmull-Clark 
subdivision [CC78] is a generalization of cubic b-spline subdivision (s=1) to quadrilateral surfaces with extraordinary vertices. 
Kobbelt also created an interpolatory quadrilateral subdivision scheme [Kob96] by generalizing the four-point curve subdivision 
rules (s=0) to surfaces. A natural generalization of our method would be to build a surface subdivision scheme that is a 
combination of these two methods (1–s)Sc + sSk where Sc is Catmull-Clark subdivision and Sk is Kobbelt’s quad subdivision 
scheme. In ordinary regions of the surfaces (vertices with valence 4), these subdivision schemes reduce to the tensor-product of 
the corresponding curve subdivision schemes and our combination will have the same smoothness properties as our curve 
subdivision scheme for the particular value of s used. However, at extraordinary vertices, analyzing the smoothness of our 
combined subdivision method is more involved. 

A surface subdivision scheme produces smooth surfaces at extraordinary vertices if several conditions hold, which are due to Reif 
[Rei95].  First, the subdivision matrix must have eigenvalues of the form 1, λ1, λ2, λi, … where λ2= λ1 and λi < λ2 for i>2 when 
sorted from highest to lowest magnitude. Furthermore, the characteristic map formed from the sub-dominant left eigenvectors of 
the subdivision matrix must be regular and injective for all valences. Unfortunately, it is impossible to symbolically extract the 
eigenvectors/values for this subdivision scheme because the result requires symbolic roots of high degree polynomials. We can, 
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however, compute the eigenvalues and eigenvectors numerically for various valences and values of s. Our numerical experiments 
indicate that the surface is not always smooth at the extraordinary vertex especially at high valence vertices with values of s near -
2 or 6. However, we conjecture that the surfaces are smooth for –¼ < s < 3/2 up to at least valence 30 (we computed all 
eigenvalues and eigenvectors for valences 3 through 30 for ¼ increments of s). Fig. 13 shows some examples of the characteristic 
maps generated for s = –1/4, ½, and 3/2 and for valences 3, 5, 6, 7, 8, and 20.  
 

 
Fig. 11: Top: A torus-like surface defined by 4 control curves with 4 control vertices each. The refined curves are shown left. 
Each set of 4 vertices, one on each curve, controls a transversal curve (center). Triangle strips formed by pairs of consecutive 
transversal curves are shaded (right). Below: The control polyhedron (left), *J1 (center), and Jr 5J12/8 (right) are shown for three 
control meshes. The rendering was performed using a footprint of respectively 5, 6, and 8 rings of 5 points each. 

 
Fig. 12: A surface defined by 3 curves of 5 vertices each. From left to right: control polyhedron, four-point, compromise [Ros04], 
and the quintic B-spline. Closed surfaces (top row), open surfaces with one border (middle), and quads drawn (bottom). 
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Fig. 13: The characteristic maps for our combined surface subdivision scheme at valences 3, 5, 6, 7, 8 and 20.  The parameter s is 
-1/4 for the top row, ½ for the middle row and 3/2 for the last row. 

Fig. 14 shows an example surface containing extraordinary vertices of many different valences subdivided for various parameter 
values of s. This control mesh was originally designed to model the desired shape using the Catmull-Clark subdivision and, 
therefore, surfaces produced by other schemes look somewhat unnatural. However, the example is useful for comparing the 
output of the different subdivision schemes. Notice that, in each case, the surface is smooth, even at extraordinary vertices. 
 

 
Fig. 14: From left to right: the control polygon for a complex shape with many extraordinary vertices, J0 surface subdivision 
(Kobbelt’s quad subdivision scheme), J1/2 surface subdivision, J1 surface subdivision (Catmull-Clark) and J1.5 surface subdivision. 

11. Popping reduction in multi-resolution rendering 
When switching between consecutive levels of detail (LoDs) in multi-resolution rendering, a distracting popping artifact occurs. 
The effect may be diminished by using a geomorph that linearly blends over time between the results of applying J0,1 and applying 
another Js step to the previous level. As observed by Maillot and Stam [MS01], the need for a geomorph and the amount of shape 
disparity that it serves to mask may be considerably reduced by selecting a subdivision scheme that minimizes the discrepancy 
between consecutive levels of subdivision (Fig. 15 and 16). Maillot and Stam show this benefit using s=0.3, but did not attempt to 
find an optimal value of s. Through experimentation, we have found that *J0.375 works well. Beyond this empirical evaluation, we 
compute, in a model-independent manner, as explained below, the value of s that minimizes the difference between one level of 
subdivision and a linear subdivision J0,1. Notice, however, that the optimal value will change with the level of refinement. 

Let L(z) be the Laurent polynomial for linear subdivision. For the first level of subdivision, we minimize the magnitude of the 
coefficients of the polynomial L(z)–S(z) in the infinity norm where S(z) comes from Equation 1 producing an optimal value of 
s=0.2.  However, if we subdivide again, the optimal value will change. Minimizing the magnitude coefficients of the coefficients 
of the polynomial (L(z) – S(z)) S(z2) yields s=0.366.  Repeating this process for further subdivision levels yields a non-stationary 
subdivision scheme where the rules change at each level of subdivision. The optimized values of s for the first nine levels of 
subdivision are 0.2, 0.366, 0.421, 0.449, 0.465, 0.475, 0.482, 0.487, and 0.491. Since we do not have a closed-form expression for 
the values of s as we subdivide, it is very difficult to analyze the smoothness of the curve generated by this non-stationary 
subdivision scheme.  However, given that all values of s fall within the C2 range of the stationary subdivision scheme, we strongly 
suspect that the smoothness of the curve is at least C2. 

 
 

Fig. 15: The current (darker) and previous (lighter) levels of a polygon refinement are shown for various values of r and s. The 
disparity between consecutive levels is smaller (left) for the suggested parameter values.  
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Fig. 16: The images of the current (lighter) and previous (darker) refinements of a surface are superimposed to show silhouette 
disparities for J0 (left with the lighter image painted on top), J3/8 (center with lighter on top), and J1 (right with darker on top). 

12. Conclusions 
In this paper, we analyze the Js family of polygon subdivision rules invented by Maillot and Stam that blend the 4-point J0 and the 
uniform cubic B-spline J1 schemes. We prove that the limit curve *Js is at least C1 when –1.7≤s≤5.8, C2 when 0<s<4, C3 when 
1<s≤2.8 and C4 when s=3/2. We point out that J1.5 is the quintic uniform B-spline subdivision. We propose *J.69 as a C2 
approximation of quadratic B-splines. We provide several solutions for producing limit curves that interpolate or closely 
approximate the control vertices. To provide a model-independent solution with local control, we use a mixed scheme {Ja,b,*Js}, 
where the Js iterations are preceded by an anticipation step Ja,b of the J-spline scheme introduced here as a generalization of 
Maillot and Stam subdivision. Through model-independent optimization, we computed two subdivision schemes that generate C4 
curves: {J–7/4, 59/52 ,*J1.5} which interpolates the vertices exactly and {J-33/26, -33/26 ,*J1.5} which approximates them very closely and 
yields more rounded and hence aesthetically preferable results. We show that one can easily produce C4 curves that have the same 
area as their control polygon, either by iteratively adjusting the parameter of the anticipation step, or by using { J-0.03 , *J1.5 }, which 
preserves local control. We explain how to subdivide open curves ensuring that the limit curve interpolates the ends of the control 
polygon in position and direction. By blending the Catmull-Clark and the Kobbelt schemes, we provide an extension of this 
approach to quad-mesh surfaces with arbitrary connectivity and analyze their smoothness. Finally, we propose *J0.375 or a specific 
series of s-parameter values (a different one for each subdivision level) for minimizing the disparity between consecutive 
refinements. This result is useful when it is desired to produce a limit shape that is close to the control shape (in the Hausdorff 
distance sense) or to reduce the popping between consecutive levels of subdivision during multi-resolution rendering. 
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