|
| 1 | +####################################################################### |
| 2 | +# Copyright (C) # |
| 3 | +# 2016 - 2018 Shangtong Zhang([email protected]) # |
| 4 | +# 2016 Kenta Shimada([email protected]) # |
| 5 | +# Permission given to modify the code as long as you keep this # |
| 6 | +# declaration at the top # |
| 7 | +####################################################################### |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +import matplotlib |
| 11 | +matplotlib.use('Agg') |
| 12 | +import matplotlib.pyplot as plt |
| 13 | +from tqdm import tqdm |
| 14 | +from mpl_toolkits.mplot3d.axes3d import Axes3D |
| 15 | + |
| 16 | +# all states: state 0-5 are upper states |
| 17 | +STATES = np.arange(0, 7) |
| 18 | +# state 6 is lower state |
| 19 | +LOWER_STATE = 6 |
| 20 | +# discount factor |
| 21 | +DISCOUNT = 0.99 |
| 22 | + |
| 23 | +# each state is represented by a vector of length 8 |
| 24 | +FEATURE_SIZE = 8 |
| 25 | +FEATURES = np.zeros((len(STATES), FEATURE_SIZE)) |
| 26 | +for i in range(LOWER_STATE): |
| 27 | + FEATURES[i, i] = 2 |
| 28 | + FEATURES[i, 7] = 1 |
| 29 | +FEATURES[LOWER_STATE, 6] = 1 |
| 30 | +FEATURES[LOWER_STATE, 7] = 2 |
| 31 | + |
| 32 | +# all possible actions |
| 33 | +DASHED = 0 |
| 34 | +SOLID = 1 |
| 35 | +ACTIONS = [DASHED, SOLID] |
| 36 | + |
| 37 | +# reward is always zero |
| 38 | +REWARD = 0 |
| 39 | + |
| 40 | +# take @action at @state, return the new state |
| 41 | +def step(state, action): |
| 42 | + if action == SOLID: |
| 43 | + return LOWER_STATE |
| 44 | + return np.random.choice(STATES[: LOWER_STATE]) |
| 45 | + |
| 46 | +# target policy |
| 47 | +def target_policy(state): |
| 48 | + return SOLID |
| 49 | + |
| 50 | +# state distribution for the behavior policy |
| 51 | +STATE_DISTRIBUTION = np.ones(len(STATES)) / 7 |
| 52 | +STATE_DISTRIBUTION_MAT = np.matrix(np.diag(STATE_DISTRIBUTION)) |
| 53 | +# projection matrix for minimize MSVE |
| 54 | +PROJECTION_MAT = np.matrix(FEATURES) * \ |
| 55 | + np.linalg.pinv(np.matrix(FEATURES.T) * STATE_DISTRIBUTION_MAT * np.matrix(FEATURES)) * \ |
| 56 | + np.matrix(FEATURES.T) * \ |
| 57 | + STATE_DISTRIBUTION_MAT |
| 58 | + |
| 59 | +# behavior policy |
| 60 | +BEHAVIOR_SOLID_PROBABILITY = 1.0 / 7 |
| 61 | +def behavior_policy(state): |
| 62 | + if np.random.binomial(1, BEHAVIOR_SOLID_PROBABILITY) == 1: |
| 63 | + return SOLID |
| 64 | + return DASHED |
| 65 | + |
| 66 | +# Semi-gradient off-policy temporal difference |
| 67 | +# @state: current state |
| 68 | +# @theta: weight for each component of the feature vector |
| 69 | +# @alpha: step size |
| 70 | +# @return: next state |
| 71 | +def semi_gradient_off_policy_TD(state, theta, alpha): |
| 72 | + action = behavior_policy(state) |
| 73 | + next_state = step(state, action) |
| 74 | + # get the importance ratio |
| 75 | + if action == DASHED: |
| 76 | + rho = 0.0 |
| 77 | + else: |
| 78 | + rho = 1.0 / BEHAVIOR_SOLID_PROBABILITY |
| 79 | + delta = REWARD + DISCOUNT * np.dot(FEATURES[next_state, :], theta) - \ |
| 80 | + np.dot(FEATURES[state, :], theta) |
| 81 | + delta *= rho * alpha |
| 82 | + # derivatives happen to be the same matrix due to the linearity |
| 83 | + theta += FEATURES[state, :] * delta |
| 84 | + return next_state |
| 85 | + |
| 86 | +# Semi-gradient DP |
| 87 | +# @theta: weight for each component of the feature vector |
| 88 | +# @alpha: step size |
| 89 | +def semi_gradient_DP(theta, alpha): |
| 90 | + delta = 0.0 |
| 91 | + # go through all the states |
| 92 | + for state in STATES: |
| 93 | + expected_return = 0.0 |
| 94 | + # compute bellman error for each state |
| 95 | + for next_state in STATES: |
| 96 | + if next_state == LOWER_STATE: |
| 97 | + expected_return += REWARD + DISCOUNT * np.dot(theta, FEATURES[next_state, :]) |
| 98 | + bellmanError = expected_return - np.dot(theta, FEATURES[state, :]) |
| 99 | + # accumulate gradients |
| 100 | + delta += bellmanError * FEATURES[state, :] |
| 101 | + # derivatives happen to be the same matrix due to the linearity |
| 102 | + theta += alpha / len(STATES) * delta |
| 103 | + |
| 104 | +# temporal difference with gradient correction |
| 105 | +# @state: current state |
| 106 | +# @theta: weight of each component of the feature vector |
| 107 | +# @weight: auxiliary trace for gradient correction |
| 108 | +# @alpha: step size of @theta |
| 109 | +# @beta: step size of @weight |
| 110 | +def TDC(state, theta, weight, alpha, beta): |
| 111 | + action = behavior_policy(state) |
| 112 | + next_state = step(state, action) |
| 113 | + # get the importance ratio |
| 114 | + if action == DASHED: |
| 115 | + rho = 0.0 |
| 116 | + else: |
| 117 | + rho = 1.0 / BEHAVIOR_SOLID_PROBABILITY |
| 118 | + delta = REWARD + DISCOUNT * np.dot(FEATURES[next_state, :], theta) - \ |
| 119 | + np.dot(FEATURES[state, :], theta) |
| 120 | + theta += alpha * rho * (delta * FEATURES[state, :] - DISCOUNT * FEATURES[next_state, :] * np.dot(FEATURES[state, :], weight)) |
| 121 | + weight += beta * rho * (delta - np.dot(FEATURES[state, :], weight)) * FEATURES[state, :] |
| 122 | + return next_state |
| 123 | + |
| 124 | +# expected temporal difference with gradient correction |
| 125 | +# @theta: weight of each component of the feature vector |
| 126 | +# @weight: auxiliary trace for gradient correction |
| 127 | +# @alpha: step size of @theta |
| 128 | +# @beta: step size of @weight |
| 129 | +def expected_TDC(theta, weight, alpha, beta): |
| 130 | + for state in STATES: |
| 131 | + # When computing expected update target, if next state is not lower state, importance ratio will be 0, |
| 132 | + # so we can safely ignore this case and assume next state is always lower state |
| 133 | + delta = REWARD + DISCOUNT * np.dot(FEATURES[LOWER_STATE, :], theta) - np.dot(FEATURES[state, :], theta) |
| 134 | + rho = 1 / BEHAVIOR_SOLID_PROBABILITY |
| 135 | + # Under behavior policy, state distribution is uniform, so the probability for each state is 1.0 / len(STATES) |
| 136 | + expected_update_theta = 1.0 / len(STATES) * BEHAVIOR_SOLID_PROBABILITY * rho * ( |
| 137 | + delta * FEATURES[state, :] - DISCOUNT * FEATURES[LOWER_STATE, :] * np.dot(weight, FEATURES[state, :])) |
| 138 | + theta += alpha * expected_update_theta |
| 139 | + expected_update_weight = 1.0 / len(STATES) * BEHAVIOR_SOLID_PROBABILITY * rho * ( |
| 140 | + delta - np.dot(weight, FEATURES[state, :])) * FEATURES[state, :] |
| 141 | + weight += beta * expected_update_weight |
| 142 | + |
| 143 | + # if *accumulate* expected update and actually apply update here, then it's synchronous |
| 144 | + # theta += alpha * expectedUpdateTheta |
| 145 | + # weight += beta * expectedUpdateWeight |
| 146 | + |
| 147 | +# interest is 1 for every state |
| 148 | +INTEREST = 1 |
| 149 | + |
| 150 | +# expected update of ETD |
| 151 | +# @theta: weight of each component of the feature vector |
| 152 | +# @emphasis: current emphasis |
| 153 | +# @alpha: step size of @theta |
| 154 | +# @return: expected next emphasis |
| 155 | +def expected_emphatic_TD(theta, emphasis, alpha): |
| 156 | + # we perform synchronous update for both theta and emphasis |
| 157 | + expected_update = 0 |
| 158 | + expected_next_emphasis = 0.0 |
| 159 | + # go through all the states |
| 160 | + for state in STATES: |
| 161 | + # compute rho(t-1) |
| 162 | + if state == LOWER_STATE: |
| 163 | + rho = 1.0 / BEHAVIOR_SOLID_PROBABILITY |
| 164 | + else: |
| 165 | + rho = 0 |
| 166 | + # update emphasis |
| 167 | + next_emphasis = DISCOUNT * rho * emphasis + INTEREST |
| 168 | + expected_next_emphasis += next_emphasis |
| 169 | + # When computing expected update target, if next state is not lower state, importance ratio will be 0, |
| 170 | + # so we can safely ignore this case and assume next state is always lower state |
| 171 | + next_state = LOWER_STATE |
| 172 | + delta = REWARD + DISCOUNT * np.dot(FEATURES[next_state, :], theta) - np.dot(FEATURES[state, :], theta) |
| 173 | + expected_update += 1.0 / len(STATES) * BEHAVIOR_SOLID_PROBABILITY * next_emphasis * 1 / BEHAVIOR_SOLID_PROBABILITY * delta * FEATURES[state, :] |
| 174 | + theta += alpha * expected_update |
| 175 | + return expected_next_emphasis / len(STATES) |
| 176 | + |
| 177 | +# compute RMSVE for a value function parameterized by @theta |
| 178 | +# true value function is always 0 in this example |
| 179 | +def compute_RMSVE(theta): |
| 180 | + return np.sqrt(np.dot(np.power(np.dot(FEATURES, theta), 2), STATE_DISTRIBUTION)) |
| 181 | + |
| 182 | +# compute RMSPBE for a value function parameterized by @theta |
| 183 | +# true value function is always 0 in this example |
| 184 | +def compute_RMSPBE(theta): |
| 185 | + bellman_error = np.zeros(len(STATES)) |
| 186 | + for state in STATES: |
| 187 | + for next_state in STATES: |
| 188 | + if next_state == LOWER_STATE: |
| 189 | + bellman_error[state] += REWARD + DISCOUNT * np.dot(theta, FEATURES[next_state, :]) - np.dot(theta, FEATURES[state, :]) |
| 190 | + bellman_error = np.dot(np.asarray(PROJECTION_MAT), bellman_error) |
| 191 | + return np.sqrt(np.dot(np.power(bellman_error, 2), STATE_DISTRIBUTION)) |
| 192 | + |
| 193 | +figureIndex = 0 |
| 194 | + |
| 195 | +# Figure 11.2(left), semi-gradient off-policy TD |
| 196 | +def figure_11_2_left(): |
| 197 | + # Initialize the theta |
| 198 | + theta = np.ones(FEATURE_SIZE) |
| 199 | + theta[6] = 10 |
| 200 | + |
| 201 | + alpha = 0.01 |
| 202 | + |
| 203 | + steps = 1000 |
| 204 | + thetas = np.zeros((FEATURE_SIZE, steps)) |
| 205 | + state = np.random.choice(STATES) |
| 206 | + for step in tqdm(range(steps)): |
| 207 | + state = semi_gradient_off_policy_TD(state, theta, alpha) |
| 208 | + thetas[:, step] = theta |
| 209 | + |
| 210 | + for i in range(FEATURE_SIZE): |
| 211 | + plt.plot(thetas[i, :], label='theta' + str(i + 1)) |
| 212 | + plt.xlabel('Steps') |
| 213 | + plt.ylabel('Theta value') |
| 214 | + plt.title('semi-gradient off-policy TD') |
| 215 | + plt.legend() |
| 216 | + |
| 217 | +# Figure 11.2(right), semi-gradient DP |
| 218 | +def figure_11_2_right(): |
| 219 | + # Initialize the theta |
| 220 | + theta = np.ones(FEATURE_SIZE) |
| 221 | + theta[6] = 10 |
| 222 | + |
| 223 | + alpha = 0.01 |
| 224 | + |
| 225 | + sweeps = 1000 |
| 226 | + thetas = np.zeros((FEATURE_SIZE, sweeps)) |
| 227 | + for sweep in tqdm(range(sweeps)): |
| 228 | + semi_gradient_DP(theta, alpha) |
| 229 | + thetas[:, sweep] = theta |
| 230 | + |
| 231 | + for i in range(FEATURE_SIZE): |
| 232 | + plt.plot(thetas[i, :], label='theta' + str(i + 1)) |
| 233 | + plt.xlabel('Sweeps') |
| 234 | + plt.ylabel('Theta value') |
| 235 | + plt.title('semi-gradient DP') |
| 236 | + plt.legend() |
| 237 | + |
| 238 | +def figure_11_2(): |
| 239 | + plt.figure(figsize=(10, 20)) |
| 240 | + plt.subplot(2, 1, 1) |
| 241 | + figure_11_2_left() |
| 242 | + plt.subplot(2, 1, 2) |
| 243 | + figure_11_2_right() |
| 244 | + |
| 245 | + plt.savefig('../images/figure_11_2.png') |
| 246 | + plt.close() |
| 247 | + |
| 248 | +# Figure 11.6(left), temporal difference with gradient correction |
| 249 | +def figure_11_6_left(): |
| 250 | + # Initialize the theta |
| 251 | + theta = np.ones(FEATURE_SIZE) |
| 252 | + theta[6] = 10 |
| 253 | + weight = np.zeros(FEATURE_SIZE) |
| 254 | + |
| 255 | + alpha = 0.005 |
| 256 | + beta = 0.05 |
| 257 | + |
| 258 | + steps = 1000 |
| 259 | + thetas = np.zeros((FEATURE_SIZE, steps)) |
| 260 | + RMSVE = np.zeros(steps) |
| 261 | + RMSPBE = np.zeros(steps) |
| 262 | + state = np.random.choice(STATES) |
| 263 | + for step in tqdm(range(steps)): |
| 264 | + state = TDC(state, theta, weight, alpha, beta) |
| 265 | + thetas[:, step] = theta |
| 266 | + RMSVE[step] = compute_RMSVE(theta) |
| 267 | + RMSPBE[step] = compute_RMSPBE(theta) |
| 268 | + |
| 269 | + for i in range(FEATURE_SIZE): |
| 270 | + plt.plot(thetas[i, :], label='theta' + str(i + 1)) |
| 271 | + plt.plot(RMSVE, label='RMSVE') |
| 272 | + plt.plot(RMSPBE, label='RMSPBE') |
| 273 | + plt.xlabel('Steps') |
| 274 | + plt.title('TDC') |
| 275 | + plt.legend() |
| 276 | + |
| 277 | +# Figure 11.6(right), expected temporal difference with gradient correction |
| 278 | +def figure_11_6_right(): |
| 279 | + # Initialize the theta |
| 280 | + theta = np.ones(FEATURE_SIZE) |
| 281 | + theta[6] = 10 |
| 282 | + weight = np.zeros(FEATURE_SIZE) |
| 283 | + |
| 284 | + alpha = 0.005 |
| 285 | + beta = 0.05 |
| 286 | + |
| 287 | + sweeps = 1000 |
| 288 | + thetas = np.zeros((FEATURE_SIZE, sweeps)) |
| 289 | + RMSVE = np.zeros(sweeps) |
| 290 | + RMSPBE = np.zeros(sweeps) |
| 291 | + for sweep in tqdm(range(sweeps)): |
| 292 | + expected_TDC(theta, weight, alpha, beta) |
| 293 | + thetas[:, sweep] = theta |
| 294 | + RMSVE[sweep] = compute_RMSVE(theta) |
| 295 | + RMSPBE[sweep] = compute_RMSPBE(theta) |
| 296 | + |
| 297 | + for i in range(FEATURE_SIZE): |
| 298 | + plt.plot(thetas[i, :], label='theta' + str(i + 1)) |
| 299 | + plt.plot(RMSVE, label='RMSVE') |
| 300 | + plt.plot(RMSPBE, label='RMSPBE') |
| 301 | + plt.xlabel('Sweeps') |
| 302 | + plt.title('Expected TDC') |
| 303 | + plt.legend() |
| 304 | + |
| 305 | +def figure_11_6(): |
| 306 | + plt.figure(figsize=(10, 20)) |
| 307 | + plt.subplot(2, 1, 1) |
| 308 | + figure_11_6_left() |
| 309 | + plt.subplot(2, 1, 2) |
| 310 | + figure_11_6_right() |
| 311 | + |
| 312 | + plt.savefig('../images/figure_11_6.png') |
| 313 | + plt.close() |
| 314 | + |
| 315 | +# Figure 11.7, expected ETD |
| 316 | +def figure_11_7(): |
| 317 | + # Initialize the theta |
| 318 | + theta = np.ones(FEATURE_SIZE) |
| 319 | + theta[6] = 10 |
| 320 | + |
| 321 | + alpha = 0.03 |
| 322 | + |
| 323 | + sweeps = 1000 |
| 324 | + thetas = np.zeros((FEATURE_SIZE, sweeps)) |
| 325 | + RMSVE = np.zeros(sweeps) |
| 326 | + emphasis = 0.0 |
| 327 | + for sweep in tqdm(range(sweeps)): |
| 328 | + emphasis = expected_emphatic_TD(theta, emphasis, alpha) |
| 329 | + thetas[:, sweep] = theta |
| 330 | + RMSVE[sweep] = compute_RMSVE(theta) |
| 331 | + |
| 332 | + for i in range(FEATURE_SIZE): |
| 333 | + plt.plot(thetas[i, :], label='theta' + str(i + 1)) |
| 334 | + plt.plot(RMSVE, label='RMSVE') |
| 335 | + plt.xlabel('Sweeps') |
| 336 | + plt.title('emphatic TD') |
| 337 | + plt.legend() |
| 338 | + |
| 339 | + plt.savefig('../images/figure_11_7.png') |
| 340 | + plt.close() |
| 341 | + |
| 342 | +if __name__ == '__main__': |
| 343 | + figure_11_2() |
| 344 | + figure_11_6() |
| 345 | + figure_11_7() |
0 commit comments