Skip to content

Commit 1c1d3a4

Browse files
authored
reformatted samples not in specific folder (dotnet#3949)
1 parent 01b3ec7 commit 1c1d3a4

File tree

4 files changed

+295
-143
lines changed

4 files changed

+295
-143
lines changed

docs/samples/Microsoft.ML.Samples/Dynamic/NgramExtraction.cs

Lines changed: 61 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -9,15 +9,21 @@ public static partial class TransformSamples
99
{
1010
public static void Example()
1111
{
12-
// Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
13-
// as well as the source of randomness.
12+
// Create a new ML context, for ML.NET operations. It can be used for
13+
// exception tracking and logging, as well as the source of randomness.
1414
var ml = new MLContext();
1515

1616
// Get a small dataset as an IEnumerable and convert to IDataView.
1717
var data = new List<SampleSentimentData>() {
18-
new SampleSentimentData { Sentiment = true, SentimentText = "Best game I've ever played." },
19-
new SampleSentimentData { Sentiment = false, SentimentText = "==RUDE== Dude, 2" },
20-
new SampleSentimentData { Sentiment = true, SentimentText = "Until the next game, this is the best Xbox game!" } };
18+
new SampleSentimentData { Sentiment = true,
19+
SentimentText = "Best game I've ever played." },
20+
21+
new SampleSentimentData { Sentiment = false,
22+
SentimentText = "==RUDE== Dude, 2" },
23+
24+
new SampleSentimentData { Sentiment = true,
25+
SentimentText = "Until the next game," +
26+
"this is the best Xbox game!" } };
2127

2228
// Convert IEnumerable to IDataView.
2329
var trainData = ml.Data.LoadFromEnumerable(data);
@@ -29,23 +35,42 @@ public static void Example()
2935
// false ==RUDE== Dude, 2.
3036
// true Until the next game, this is the best Xbox game!
3137

32-
// A pipeline to tokenize text as characters and then combine them together into n-grams
33-
// The pipeline uses the default settings to featurize.
38+
// A pipeline to tokenize text as characters and then combine them
39+
// together into n-grams. The pipeline uses the default settings to
40+
// featurize.
41+
42+
var charsPipeline = ml.Transforms.Text
43+
.TokenizeIntoCharactersAsKeys("Chars", "SentimentText",
44+
useMarkerCharacters: false);
45+
46+
var ngramOnePipeline = ml.Transforms.Text
47+
.ProduceNgrams("CharsUnigrams", "Chars", ngramLength: 1);
3448

35-
var charsPipeline = ml.Transforms.Text.TokenizeIntoCharactersAsKeys("Chars", "SentimentText", useMarkerCharacters: false);
36-
var ngramOnePipeline = ml.Transforms.Text.ProduceNgrams("CharsUnigrams", "Chars", ngramLength: 1);
37-
var ngramTwpPipeline = ml.Transforms.Text.ProduceNgrams("CharsTwograms", "Chars");
38-
var oneCharsPipeline = charsPipeline.Append(ngramOnePipeline);
39-
var twoCharsPipeline = charsPipeline.Append(ngramTwpPipeline);
49+
var ngramTwpPipeline = ml.Transforms.Text
50+
.ProduceNgrams("CharsTwograms", "Chars");
51+
52+
var oneCharsPipeline = charsPipeline
53+
.Append(ngramOnePipeline);
54+
55+
var twoCharsPipeline = charsPipeline
56+
.Append(ngramTwpPipeline);
4057

4158
// The transformed data for pipelines.
42-
var transformedData_onechars = oneCharsPipeline.Fit(trainData).Transform(trainData);
43-
var transformedData_twochars = twoCharsPipeline.Fit(trainData).Transform(trainData);
59+
var transformedData_onechars = oneCharsPipeline.Fit(trainData)
60+
.Transform(trainData);
61+
62+
var transformedData_twochars = twoCharsPipeline.Fit(trainData)
63+
.Transform(trainData);
4464

4565
// Small helper to print the text inside the columns, in the console.
46-
Action<string, IEnumerable<VBuffer<float>>, VBuffer<ReadOnlyMemory<char>>> printHelper = (columnName, column, names) =>
66+
Action<string, IEnumerable<VBuffer<float>>,
67+
VBuffer<ReadOnlyMemory<char>>>
68+
printHelper = (columnName, column, names) =>
69+
4770
{
48-
Console.WriteLine($"{columnName} column obtained post-transformation.");
71+
Console.WriteLine(
72+
$"{columnName} column obtained post-transformation.");
73+
4974
var slots = names.GetValues();
5075
foreach (var featureRow in column)
5176
{
@@ -54,21 +79,33 @@ public static void Example()
5479
Console.WriteLine("");
5580
}
5681

57-
Console.WriteLine("===================================================");
82+
Console.WriteLine(
83+
"===================================================");
5884
};
59-
// Preview of the CharsUnigrams column obtained after processing the input.
85+
// Preview of the CharsUnigrams column obtained after processing the
86+
// input.
6087
VBuffer<ReadOnlyMemory<char>> slotNames = default;
61-
transformedData_onechars.Schema["CharsUnigrams"].GetSlotNames(ref slotNames);
62-
var charsOneGramColumn = transformedData_onechars.GetColumn<VBuffer<float>>(transformedData_onechars.Schema["CharsUnigrams"]);
88+
transformedData_onechars.Schema["CharsUnigrams"]
89+
.GetSlotNames(ref slotNames);
90+
91+
var charsOneGramColumn = transformedData_onechars
92+
.GetColumn<VBuffer<float>>(transformedData_onechars
93+
.Schema["CharsUnigrams"]);
94+
6395
printHelper("CharsUnigrams", charsOneGramColumn, slotNames);
6496

6597
// CharsUnigrams column obtained post-transformation.
6698
// 'B' - 1 'e' - 6 's' - 1 't' - 1 '<?>' - 4 'g' - 1 'a' - 2 'm' - 1 'I' - 1 ''' - 1 'v' - 2 ...
6799
// 'e' - 1 '<?>' - 2 'd' - 1 '=' - 4 'R' - 1 'U' - 1 'D' - 2 'E' - 1 'u' - 1 ',' - 1 '2' - 1
68100
// 'B' - 0 'e' - 6 's' - 3 't' - 6 '<?>' - 9 'g' - 2 'a' - 2 'm' - 2 'I' - 0 ''' - 0 'v' - 0 ...
69101
// Preview of the CharsTwoGrams column obtained after processing the input.
70-
var charsTwoGramColumn = transformedData_twochars.GetColumn<VBuffer<float>>(transformedData_twochars.Schema["CharsTwograms"]);
71-
transformedData_twochars.Schema["CharsTwograms"].GetSlotNames(ref slotNames);
102+
var charsTwoGramColumn = transformedData_twochars
103+
.GetColumn<VBuffer<float>>(transformedData_twochars
104+
.Schema["CharsTwograms"]);
105+
106+
transformedData_twochars.Schema["CharsTwograms"]
107+
.GetSlotNames(ref slotNames);
108+
72109
printHelper("CharsTwograms", charsTwoGramColumn, slotNames);
73110

74111
// CharsTwograms column obtained post-transformation.
@@ -78,7 +115,8 @@ public static void Example()
78115
}
79116

80117
/// <summary>
81-
/// A dataset that contains a tweet and the sentiment assigned to that tweet: 0 - negative and 1 - positive sentiment.
118+
/// A dataset that contains a tweet and the sentiment assigned to that
119+
/// tweet: 0 - negative and 1 - positive sentiment.
82120
/// </summary>
83121
public class SampleSentimentData
84122
{

0 commit comments

Comments
 (0)