|
| 1 | +import sys |
| 2 | +import collections |
| 3 | + |
| 4 | +Word = collections.namedtuple('Word', ['begin_char_offset', 'end_char_offset', 'word', 'lemma', 'pos', 'ner', 'dep_par', 'dep_label']) |
| 5 | +Span = collections.namedtuple('Span', ['begin_word_id', 'length']) |
| 6 | +Sequence = collections.namedtuple('Sequence', ['is_inversed', 'elements']) |
| 7 | +DepEdge = collections.namedtuple('DepEdge', ['word1', 'word2', 'label', 'is_bottom_up']) |
| 8 | + |
| 9 | +def unpack_words(input_dict, character_offset_begin=None, character_offset_end=None, lemma=None, |
| 10 | + pos=None, ner = None, words = None, dep_graph = None, dep_graph_parser = lambda x: x.split('\t')): |
| 11 | + |
| 12 | + array_character_offset_begin = input_dict[character_offset_begin] if character_offset_begin != None else () |
| 13 | + array_character_offset_end = input_dict[character_offset_end] if character_offset_end != None else () |
| 14 | + array_lemma = input_dict[lemma] if lemma != None else () |
| 15 | + array_pos = input_dict[pos] if pos != None else () |
| 16 | + array_ner = input_dict[ner] if ner != None else () |
| 17 | + array_words = input_dict[words] if words != None else () |
| 18 | + dep_graph = input_dict[dep_graph] if dep_graph != None else () |
| 19 | + |
| 20 | + dep_tree = {} |
| 21 | + for path in dep_graph: |
| 22 | + (parent, label, child) = dep_graph_parser(path) |
| 23 | + parent, child = int(parent), int(child) |
| 24 | + dep_tree[child] = {"parent":parent, "label":label} |
| 25 | + if parent not in dep_tree: dep_tree[parent] = {"parent":-1, "label":"ROOT"} |
| 26 | + |
| 27 | + ziped_tags = map(None, array_character_offset_begin, array_character_offset_end, array_lemma, |
| 28 | + array_pos, array_ner, array_words) |
| 29 | + wordobjs = [] |
| 30 | + for i in range(0,len(ziped_tags)): |
| 31 | + if i not in dep_tree : dep_tree[i] = {"parent":-1, "label":"ROOT"} |
| 32 | + wordobjs.append(Word(begin_char_offset=ziped_tags[i][0], |
| 33 | + end_char_offset=ziped_tags[i][1], lemma=ziped_tags[i][2], word=ziped_tags[i][3], pos=ziped_tags[i][4], |
| 34 | + ner=ziped_tags[i][5], dep_par=dep_tree[i]["parent"], dep_label=dep_tree[i]["label"])) |
| 35 | + return wordobjs |
| 36 | + |
| 37 | + |
| 38 | +def log(obj): |
| 39 | + """Print the string form of an object to STDERR. |
| 40 | + |
| 41 | + Args: |
| 42 | + obj: The object that the user wants to log to STDERR. |
| 43 | + """ |
| 44 | + sys.stderr.write(obj.__str__() + "\n") |
| 45 | + |
| 46 | +def materialize_span(words, span, func=lambda x:x): |
| 47 | + """Given a sequence of objects and a span, return the subsequence that corresponds to the span. |
| 48 | +
|
| 49 | + Args: |
| 50 | + words: A sequence of objects. |
| 51 | + span: A Span namedtuple |
| 52 | + func: Optional function that will be applied to each element in the result subsequence. |
| 53 | + """ |
| 54 | + return map(func, words[span.begin_word_id:(span.begin_word_id+span.length)]) |
| 55 | + |
| 56 | +def _fe_seq_between_words(words, begin_idx, end_idx, func=lambda x:x): |
| 57 | + if begin_idx < end_idx: |
| 58 | + return Sequence(elements=map(func, words[begin_idx+1:end_idx]), is_inversed=False) |
| 59 | + else: |
| 60 | + return Sequence(elements=map(func, words[end_idx+1:begin_idx]), is_inversed=True) |
| 61 | + |
| 62 | + |
| 63 | +def tokens_between_spans(words, span1, span2, func=lambda x:x): |
| 64 | + """Given a sequence of objects and two spans, return the subsequence that is between these spans. |
| 65 | +
|
| 66 | + Args: |
| 67 | + words: A sequence of objects. |
| 68 | + span1: A Span namedtuple |
| 69 | + span2: A Span namedtuple |
| 70 | + func: Optional function that will be applied to each element in the result subsequence. |
| 71 | +
|
| 72 | + Returns: |
| 73 | + A Sequence namedtuple between these two spans. The "is_inversed" label is set |
| 74 | + to be True if span1 is *AFTER* span 2. |
| 75 | +
|
| 76 | + """ |
| 77 | + if span1.begin_word_id < span2.begin_word_id: |
| 78 | + return _fe_seq_between_words(words, span1.begin_word_id+span1.length-1, span2.begin_word_id, func) |
| 79 | + else: |
| 80 | + return _fe_seq_between_words(words, span1.begin_word_id, span2.begin_word_id+span2.length-1, func) |
| 81 | + |
| 82 | +def _path_to_root(words, word_idx): |
| 83 | + rs = [] |
| 84 | + c_word_idx = word_idx |
| 85 | + while True: |
| 86 | + rs.append(words[c_word_idx]) |
| 87 | + if words[c_word_idx].dep_par == -1 or words[c_word_idx].dep_par == c_word_idx: |
| 88 | + break |
| 89 | + c_word_idx = words[c_word_idx].dep_par |
| 90 | + return rs |
| 91 | + |
| 92 | +def dep_path_between_words(words, begin_idx, end_idx): |
| 93 | + """Given a sequence of Word objects and two indices, return the sequence of Edges |
| 94 | + corresponding to the dependency path between these two words. |
| 95 | +
|
| 96 | + Args: |
| 97 | + words: A sequence of Word objects. |
| 98 | + span1: A word index |
| 99 | + span2: A word index |
| 100 | +
|
| 101 | + Returns: |
| 102 | + An Array of Edge objects, each of which corresponds to one edge on the dependency path. |
| 103 | + """ |
| 104 | + path_to_root1 = _path_to_root(words, begin_idx) |
| 105 | + path_to_root2 = _path_to_root(words, end_idx) |
| 106 | + common = set(path_to_root1) & set(path_to_root2) |
| 107 | + #if len(common) == 0: |
| 108 | + # raise Exception('Dep Path Must be Wrong: No Common Element Between Word %d & %d.' % (begin_idx, end_idx)) |
| 109 | + path = [] |
| 110 | + for word in path_to_root1: |
| 111 | + if word in common: break |
| 112 | + path.append(DepEdge(word1=word, word2=words[word.dep_par], label=word.dep_label, is_bottom_up=True)) |
| 113 | + path_right = [] |
| 114 | + for word in path_to_root2: |
| 115 | + if word in common: break |
| 116 | + path_right.append(DepEdge(word1=words[word.dep_par], word2=word, label=word.dep_label, is_bottom_up=False)) |
| 117 | + for e in reversed(path_right): |
| 118 | + path.append(e) |
| 119 | + return path |
| 120 | + |
0 commit comments