|
| 1 | +/*! gcc -std=c89 -pedantic -Wall -g -o test2 test2.c libkdtree.a -lm */ |
| 2 | +/* Extended test program, contributed by David Underhill */ |
| 3 | +#include <assert.h> |
| 4 | +#include <math.h> |
| 5 | +#include <stdio.h> |
| 6 | +#include <stdlib.h> |
| 7 | +#include <ctype.h> |
| 8 | +#include <time.h> |
| 9 | +#include "kdtree.h" |
| 10 | + |
| 11 | +#define DEF_NUM_PTS 1000000 |
| 12 | + |
| 13 | +/* returns the distance squared between two dims-dimensional double arrays */ |
| 14 | +static double dist_sq( double *a1, double *a2, int dims ); |
| 15 | + |
| 16 | +/* get a random double between -10 and 10 */ |
| 17 | +static double rd( void ); |
| 18 | + |
| 19 | +/* generate an array of random values for dimensions */ |
| 20 | +static void generate_dims(int num, double *nums); |
| 21 | + |
| 22 | +int main(int argc, char **argv) { |
| 23 | + int i, num_pts = DEF_NUM_PTS; |
| 24 | + void *ptree; |
| 25 | + char *data, *pch; |
| 26 | + struct kdres *presults; |
| 27 | + double pos[50], dist; |
| 28 | + double pt[50]; |
| 29 | + double nums[50]; |
| 30 | + double radius = 40; |
| 31 | + |
| 32 | + for (i=0; i<50; ++i) { |
| 33 | + pt[i] = rd(); |
| 34 | + } |
| 35 | + |
| 36 | + if(!(data = malloc(num_pts))) { |
| 37 | + perror("malloc failed"); |
| 38 | + return 1; |
| 39 | + } |
| 40 | + |
| 41 | + srand( time(0) ); |
| 42 | + |
| 43 | + /* create a k-d tree for 50-dimensional points */ |
| 44 | + ptree = kd_create(50); |
| 45 | + |
| 46 | + /* add some random nodes to the tree (assert nodes are successfully inserted) */ |
| 47 | + printf("Seeding %d entries of %d dimensions...\n", num_pts, 50); |
| 48 | + for( i=0; i<num_pts; ++i ) { |
| 49 | + data[i] = 'a' + i; |
| 50 | + generate_dims(50, nums); |
| 51 | + assert( 0 == kd_insert( ptree, nums, &data[i] ) ); |
| 52 | + } |
| 53 | + |
| 54 | + /* find points closest to the origin and within distance radius */ |
| 55 | + printf("Searching in radius of %1.02f...\n", radius); |
| 56 | + presults = kd_nearest_range( ptree, pt, radius ); |
| 57 | + |
| 58 | + /* print out all the points found in results */ |
| 59 | + printf( "found %d results:\n", kd_res_size(presults) ); |
| 60 | + |
| 61 | + while( !kd_res_end( presults ) ) { |
| 62 | + /* get the data and position of the current result item */ |
| 63 | + pch = (char*)kd_res_item( presults, pos ); |
| 64 | + |
| 65 | + /* compute the distance of the current result from the pt */ |
| 66 | + dist = sqrt( dist_sq( pt, pos, 50 ) ); |
| 67 | + |
| 68 | + /* print out the retrieved data */ |
| 69 | + //printf( "node at (%.3f, %.3f, %.3f) is %.3f away and has data=%c\n", |
| 70 | + // pos[0], pos[1], pos[2], dist, *pch ); |
| 71 | + |
| 72 | + /* go to the next entry */ |
| 73 | + kd_res_next( presults ); |
| 74 | + } |
| 75 | + |
| 76 | + /* free our tree, results set, and other allocated memory */ |
| 77 | + free( data ); |
| 78 | + kd_res_free( presults ); |
| 79 | + kd_free( ptree ); |
| 80 | + |
| 81 | + return 0; |
| 82 | +} |
| 83 | + |
| 84 | +static double dist_sq( double *a1, double *a2, int dims ) { |
| 85 | + double dist_sq = 0, diff; |
| 86 | + while( --dims >= 0 ) { |
| 87 | + diff = (a1[dims] - a2[dims]); |
| 88 | + dist_sq += diff*diff; |
| 89 | + } |
| 90 | + return dist_sq; |
| 91 | +} |
| 92 | + |
| 93 | +static double rd( void ) { |
| 94 | + return (double)rand()/RAND_MAX * 20.0 - 10.0; |
| 95 | +} |
| 96 | + |
| 97 | +static void generate_dims(int num, double *nums) |
| 98 | +{ |
| 99 | + int i = 0; |
| 100 | + for (i=0; i<50; ++i) { |
| 101 | + nums[i] = rd(); |
| 102 | + } |
| 103 | +} |
0 commit comments