@@ -145,6 +145,11 @@ Please cite our paper if you find it helpful.
145
145
[ paper] ( https://aaai.org/ojs/index.php/AAAI/article/view/6281 )
146
146
[ code] ( https://github.com/thunlp/Neural-Snowball )
147
147
148
+ 1 . ** Associative alignment for few-shot image classification,** in ECCV, 2020.
149
+ * A. Afrasiyabi, J. Lalonde, and C. Gagné.*
150
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500018.pdf )
151
+ [ code] ( https://github.com/ArmanAfrasiyabi/associative-alignment-fs )
152
+
148
153
## [ Model] ( #content )
149
154
150
155
### Multitask Learning
@@ -153,7 +158,7 @@ Please cite our paper if you find it helpful.
153
158
* W. Yan, J. Yap, and G. Mori.*
154
159
[ paper] ( http://www.bmva.org/bmvc/2015/papers/paper037/index.html )
155
160
156
- 1 . ** Label efficient learning of transferable representations acrosss domains and tasks,** in NeurIPS, 2017.
161
+ 1 . ** Label efficient learning of transferable representations across domains and tasks,** in NeurIPS, 2017.
157
162
* Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei.*
158
163
[ paper] ( https://papers.nips.cc/paper/6621-label-efficient-learning-of-transferable-representations-acrosss-domains-and-tasks.pdf )
159
164
@@ -190,6 +195,10 @@ Please cite our paper if you find it helpful.
190
195
* S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord*
191
196
[ paper] ( http://openaccess.thecvf.com/content_ICCV_2019/papers/Gidaris_Boosting_Few-Shot_Visual_Learning_With_Self-Supervision_ICCV_2019_paper.pdf )
192
197
198
+ 1 . ** When does self-supervision improve few-shot learning?,** in ECCV, 2020.
199
+ * J. Su, S. Maji, and B. Hariharan.*
200
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520630.pdf )
201
+
193
202
### Embedding Learning
194
203
195
204
1 . ** Object classification from a single example utilizing class relevance metrics,** in NeurIPS, 2005.
@@ -259,7 +268,7 @@ Please cite our paper if you find it helpful.
259
268
* B. Oreshkin, P. R. López, and A. Lacoste.*
260
269
[ paper] ( https://papers.nips.cc/paper/7352-tadam-task-dependent-adaptive-metric-for-improved-few-shot-learning.pdf )
261
270
262
- 1 . ** Meta-learning for semi- supervised few-shot classification,** in ICLR, 2018.
271
+ 1 . ** Meta-learning for semi-supervised few-shot classification,** in ICLR, 2018.
263
272
* M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenen- baum, H. Larochelle, and R. S. Zemel.*
264
273
[ paper] ( https://openreview.net/forum?id=r1n5Osurf )
265
274
[ code] ( https://github.com/renmengye/few-shot-ssl-public )
@@ -277,7 +286,7 @@ Please cite our paper if you find it helpful.
277
286
* L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi.*
278
287
[ paper] ( https://openreview.net/forum?id=HyxnZh0ct7 )
279
288
280
- 1 . ** Learning to propopagate labels: Transductive propagation network for few-shot learning,** in ICLR, 2019.
289
+ 1 . ** Learning to propagate labels: Transductive propagation network for few-shot learning,** in ICLR, 2019.
281
290
* Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang.*
282
291
[ paper] ( https://openreview.net/forum?id=SyVuRiC5K7 )
283
292
[ code] ( https://github.com/csyanbin/TPN-pytorch )
@@ -340,9 +349,6 @@ Please cite our paper if you find it helpful.
340
349
* Z. Wu, Y. Li, L. Guo, and K. Jia.*
341
350
[ paper] ( https://openaccess.thecvf.com/content_ICCV_2019/papers/Wu_PARN_Position-Aware_Relation_Networks_for_Few-Shot_Learning_ICCV_2019_paper.pdf )
342
351
343
- 1 . ** Collect and select: Semantic alignment metric learning for few-shot learning,** in ICCV, 2019.
344
- * F. Hao, F. He, J. Cheng, L. Wang, J. Cao, D. Tao.*
345
- [ paper] ( http://openaccess.thecvf.com/content_ICCV_2019/papers/Hao_Collect_and_Select_Semantic_Alignment_Metric_Learning_for_Few-Shot_Learning_ICCV_2019_paper.pdf )
346
352
347
353
1 . ** PANet: Few-shot image semantic segmentation with prototype alignment,** in ICCV, 2019.
348
354
* K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng.*
@@ -441,6 +447,38 @@ Please cite our paper if you find it helpful.
441
447
* W. Xue, and W. Wang.*
442
448
[ paper] ( https://aaai.org/ojs/index.php/AAAI/article/view/6130 )
443
449
450
+ 1 . ** Negative margin matters: Understanding margin in few-shot classification,** in ECCV, 2020.
451
+ * B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, and H. Hu.*
452
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123490426.pdf )
453
+ [ code] ( https://github.com/bl0/negative-margin.few-shot )
454
+
455
+ 1 . ** Prototype rectification for few-shot learning,** in ECCV, 2020.
456
+ * J. Liu, L. Song, and Y. Qin.*
457
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123460715.pdf )
458
+
459
+ 1 . ** Rethinking few-shot image classification: A good embedding is all you need?,** in ECCV, 2020.
460
+ * Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola.*
461
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123590256.pdf )
462
+ [ code] ( https://github.com/WangYueFt/rfs/ )
463
+
464
+ 1 . ** SEN: A novel feature normalization dissimilarity measure for prototypical few-shot learning networks,** in ECCV, 2020.
465
+ * V. N. Nguyen, S. Løkse, K. Wickstrøm, M. Kampffmeyer, D. Roverso, and R. Jenssen.*
466
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123680120.pdf )
467
+
468
+ 1 . ** TAFSSL: Task-adaptive feature sub-space learning for few-shot classification,** in ECCV, 2020.
469
+ * M. Lichtenstein, P. Sattigeri, R. Feris, R. Giryes, and L. Karlinsky.*
470
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520511.pdf )
471
+
472
+ 1 . ** Attentive prototype few-shot learning with capsule network-based embedding,** in ECCV, 2020.
473
+ * F. Wu, J. S.Smith, W. Lu, C. Pang, and B. Zhang.*
474
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123730239.pdf )
475
+
476
+ 1 . ** Embedding propagation: Smoother manifold for few-shot classification,** in ECCV, 2020.
477
+ * P. Rodríguez, I. Laradji, A. Drouin, and A. Lacoste.*
478
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123710120.pdf )
479
+ [ code] ( https://github.com/ElementAI/embedding-propagation )
480
+
481
+
444
482
### Learning with External Memory
445
483
446
484
1 . ** Meta-learning with memory-augmented neural networks,** in ICML, 2016.
@@ -687,6 +725,11 @@ and L. Van Gool.*
687
725
* Z. Yang, Y. Wang, X. Chen, J. Liu, and Y. Qiao.*
688
726
[ paper] ( https://aaai.org/ojs/index.php/AAAI/article/view/6957 )
689
727
728
+ 1 . ** Selecting relevant features from a multi-domain representation for few-shot classification,** in ECCV, 2020.
729
+ * N. Dvornik, C. Schmid, and J. Mairal.*
730
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550766.pdf )
731
+ [ code] ( https://github.com/dvornikita/SUR )
732
+
690
733
### Refining Meta-learned Parameters
691
734
692
735
1 . ** Model-agnostic meta-learning for fast adaptation of deep networks,** in ICML, 2017.
@@ -796,6 +839,19 @@ and L. Van Gool.*
796
839
* Y. Zhu, C. Liu, and S. Jiang.*
797
840
[ paper] ( https://www.ijcai.org/Proceedings/2020/0152.pdf )
798
841
842
+ 1 . ** An ensemble of epoch-wise empirical Bayes for few-shot learning,** in ECCV, 2020.
843
+ * Y. Liu, B. Schiele, and Q. Sun.*
844
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123610392.pdf )
845
+ [ code] ( https://gitlab.mpi-klsb.mpg.de/yaoyaoliu/e3bm )
846
+
847
+ 1 . ** Incremental few-shot meta-learning via indirect discriminant alignment,** in ECCV, 2020.
848
+ * Q. Liu, O. Majumder, A. Achille, A. Ravichandran, R. Bhotika, and S. Soatto.*
849
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520664.pdf )
850
+
851
+ 1 . ** Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning,** in ECCV, 2020.
852
+ * J. Kim, H. Kim, and G. Kim.*
853
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123460579.pdf )
854
+ [ code] ( https://github.com/jaekyeom/MABAS )
799
855
800
856
### Learning Search Steps
801
857
@@ -818,10 +874,6 @@ and L. Van Gool.*
818
874
* H. Yang, X. He, and F. Porikli.*
819
875
[ paper] ( http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_One-Shot_Action_Localization_CVPR_2018_paper.pdf )
820
876
821
- 1 . ** Few-shot and zero-shot multi-label learning for structured label spaces,** in EMNLP, 2018.
822
- * A. Rios and R. Kavuluru.*
823
- [ paper] ( https://www.aclweb.org/anthology/D18-1352.pdf )
824
-
825
877
1 . ** Incremental few-shot learning for pedestrian attribute recognition,** in EMNLP, 2018.
826
878
* L. Xiang, X. Jin, G. Ding, J. Han, and L. Li.*
827
879
[ paper] ( https://www.ijcai.org/Proceedings/2019/0543.pdf )
@@ -950,6 +1002,69 @@ and L. Van Gool.*
950
1002
* P. Tian, Z. Wu, L. Qi, L. Wang, Y. Shi, and Y. Gao.*
951
1003
[ paper] ( https://aaai.org/ojs/index.php/AAAI/article/view/6887 )
952
1004
1005
+ 1 . ** Part-aware prototype network for few-shot semantic segmentation,** in ECCV, 2020.
1006
+ * Y. Liu, X. Zhang, S. Zhang, and X. He.*
1007
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123540137.pdf )
1008
+ [ code] ( https://github.com/Xiangyi1996/PPNet-PyTorch )
1009
+
1010
+ 1 . ** Prototype mixture models for few-shot semantic segmentation,** in ECCV, 2020.
1011
+ * B. Yang, C. Liu, B. Li, J. Jiao, and Q. Ye.*
1012
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123530749.pdf )
1013
+ [ code] ( https://github.com/Yang-Bob/PMMs )
1014
+
1015
+ 1 . ** Self-supervision with superpixels: Training few-shot medical image segmentation without annotation,** in ECCV, 2020.
1016
+ * C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Qiu, and D. Rueckert.*
1017
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740749.pdf )
1018
+ [ code] ( https://github.com/cheng-01037/Self-supervised-Fewshot-Medical-Image-Segmentation )
1019
+
1020
+ 1 . ** Few-shot action recognition with permutation-invariant attention,** in ECCV, 2020.
1021
+ * H. Zhang, L. Zhang, X. Qi, H. Li, P. H. S. Torr, and P. Koniusz.*
1022
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500511.pdf )
1023
+
1024
+ 1 . ** Few-shot compositional font generation with dual memory,** in ECCV, 2020.
1025
+ * J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, and H. Lee.*
1026
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123640715.pdf )
1027
+ [ code] ( https://github.com/clovaai/dmfont )
1028
+
1029
+ 1 . ** Few-shot object detection and viewpoint estimation for objects in the wild,** in ECCV, 2020.
1030
+ * Y. Xiao, and R. Marlet.*
1031
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123620188.pdf )
1032
+
1033
+ 1 . ** Few-shot scene-adaptive anomaly detection,** in ECCV, 2020.
1034
+ * Y. Lu, F. Yu, M. K. K. Reddy, and Y. Wang.*
1035
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500120.pdf )
1036
+ [ code] ( https://github.com/yiweilu3/Few-shot-Scene-adaptive-Anomaly-Detection )
1037
+
1038
+ 1 . ** Few-shot semantic segmentation with democratic attention networks,** in ECCV, 2020.
1039
+ * H. Wang, X. Zhang, Y. Hu, Y. Yang, X. Cao, and X. Zhen.*
1040
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123580715.pdf )
1041
+
1042
+ 1 . ** Few-shot single-view 3-D object reconstruction with compositional priors,** in ECCV, 2020.
1043
+ * M. Michalkiewicz, S. Parisot, S. Tsogkas, M. Baktashmotlagh, A. Eriksson, and E. Belilovsky.*
1044
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700613.pdf )
1045
+
1046
+ 1 . ** COCO-FUNIT: Few-shot unsupervised image translation with a content conditioned style encoder,** in ECCV, 2020.
1047
+ * K. Saito, K. Saenko, and M. Liu.*
1048
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123480392.pdf )
1049
+ [ code] ( https://nvlabs.github.io/COCO-FUNIT/ )
1050
+
1051
+ 1 . ** Deep complementary joint model for complex scene registration and few-shot segmentation on medical images,** in ECCV, 2020.
1052
+ * Y. He, T. Li, G. Yang, Y. Kong, Y. Chen, H. Shu, J. Coatrieux, J. Dillenseger, and S. Li.*
1053
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123630749.pdf )
1054
+
1055
+ 1 . ** Multi-scale positive sample refinement for few-shot object detection,** in ECCV, 2020.
1056
+ * J. Wu, S. Liu, D. Huang, and Y. Wang.*
1057
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123610443.pdf )
1058
+ [ code] ( https://github.com/jiaxi-wu/MPSR )
1059
+
1060
+ 1 . ** Large-scale few-shot learning via multi-modal knowledge discovery,** in ECCV, 2020.
1061
+ * S. Wang, J. Yue, J. Liu, Q. Tian, and M. Wang.*
1062
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550715.pdf )
1063
+
1064
+ 1 . ** Graph convolutional networks for learning with few clean and many noisy labels,** in ECCV, 2020.
1065
+ * A. Iscen, G. Tolias, Y. Avrithis, O. Chum, and C. Schmid.*
1066
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550290.pdf )
1067
+
953
1068
### Robotics
954
1069
955
1070
1 . ** Towards one shot learning by imitation for humanoid robots,** in ICRA, 2010.
@@ -1018,6 +1133,46 @@ and L. Van Gool.*
1018
1133
* C. Zhang, H. Yao, C. Huang, M. Jiang, Z. Li, and N. V. Chawla.*
1019
1134
[ paper] ( https://aaai.org/ojs/index.php/AAAI/article/view/5698 )
1020
1135
1136
+ 1 . ** Universal natural language processing with limited annotations: Try few-shot textual entailment as a start,** in EMNLP, 2020.
1137
+ * W. Yin, N. F. Rajani, D. Radev, R. Socher, and C. Xiong.*
1138
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.660.pdf )
1139
+ [ code] ( https://github.com/salesforce/UniversalFewShotNLP )
1140
+
1141
+ 1 . ** Simple and effective few-shot named entity recognition with structured nearest neighbor learning,** in EMNLP, 2020.
1142
+ * Y. Yang, and A. Katiyar.*
1143
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.516.pdf )
1144
+ [ code] ( https://github.com/asappresearch/structshot )
1145
+
1146
+ 1 . ** Discriminative nearest neighbor few-shot intent detection by transferring natural language inference,** in EMNLP, 2020.
1147
+ * J. Zhang, K. Hashimoto, W. Liu, C. Wu, Y. Wan, P. Yu, R. Socher, and C. Xiong.*
1148
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.411.pdf )
1149
+ [ code] ( https://github.com/salesforce/DNNC-few-shot-intent )
1150
+
1151
+ 1 . ** Few-shot learning for opinion summarization,** in EMNLP, 2020.
1152
+ * A. Bražinskas, M. Lapata, and I. Titov.*
1153
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.337.pdf )
1154
+ [ code] ( https://github.com/abrazinskas/FewSum )
1155
+
1156
+ 1 . ** Adaptive attentional network for few-shot knowledge graph completion,** in EMNLP, 2020.
1157
+ * J. Sheng, S. Guo, Z. Chen, J. Yue, L. Wang, T. Liu, and H. Xu.*
1158
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.131.pdf )
1159
+ [ code] ( https://github.com/JiaweiSheng/FAAN )
1160
+
1161
+ 1 . ** Few-shot complex knowledge base question answering via meta reinforcement learning,** in EMNLP, 2020.
1162
+ * Y. Hua, Y. Li, G. Haffari, G. Qi, and T. Wu.*
1163
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.469.pdf )
1164
+ [ code] ( https://github.com/DevinJake/MRL-CQA )
1165
+
1166
+ 1 . ** Self-supervised meta-learning for few-shot natural language classification tasks,** in EMNLP, 2020.
1167
+ * T. Bansal, R. Jha, T. Munkhdalai, and A. McCallum.*
1168
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.38.pdf )
1169
+ [ code] ( https://github.com/iesl/metanlp )
1170
+
1171
+ 1 . ** Structural supervision improves few-shot learning and syntactic generalization in neural language models,** in EMNLP, 2020.
1172
+ * E. Wilcox, P. Qian, R. Futrell, R. Kohita, R. Levy, and M. Ballesteros.*
1173
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.375.pdf )
1174
+ [ code] ( https://github.com/wilcoxeg/fsl_invar )
1175
+
1021
1176
### Acoustic Signal Processing
1022
1177
1023
1178
1 . ** One-shot learning of generative speech concepts,** in CogSci, 2014.
@@ -1138,13 +1293,24 @@ and L. Van Gool.*
1138
1293
[ paper] ( https://openaccess.thecvf.com/content_CVPR_2020/papers/Li_FSS-1000_A_1000-Class_Dataset_for_Few-Shot_Segmentation_CVPR_2020_paper.pdf )
1139
1294
[ code] ( https://github.com/HKUSTCV/FSS-1000 )
1140
1295
1296
+ 1 . ** A broader study of cross-domain few-shot learning,** in ECCV, 2020.
1297
+ * Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and R. Feris.*
1298
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123720120.pdf )
1299
+ [ code] ( https://github.com/IBM/cdfsl-benchmark )
1300
+
1301
+ 1 . ** Impact of base dataset design on few-shot image classification,** in ECCV, 2020.
1302
+ * O. Sbai, C. Couprie, and M. Aubry.*
1303
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123610579.pdf )
1304
+ [ code] ( https://github.com/facebookresearch/fewshotDatasetDesign )
1305
+
1306
+
1141
1307
## [ Few-shot Learning and Zero-shot Learning] ( #content )
1142
1308
1143
- 1 . ** Label-embedding for attribute-based classifcation ,** in CVPR, 2013.
1309
+ 1 . ** Label-embedding for attribute-based classification ,** in CVPR, 2013.
1144
1310
* Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid.*
1145
1311
[ paper] ( http://openaccess.thecvf.com/content_cvpr_2013/papers/Akata_Label-Embedding_for_Attribute-Based_2013_CVPR_paper.pdf )
1146
1312
1147
- 1 . ** A unifed semantic embedding: Relating taxonomies and attributes,** in NeurIPS, 2014.
1313
+ 1 . ** A unified semantic embedding: Relating taxonomies and attributes,** in NeurIPS, 2014.
1148
1314
* S. J. Hwang and L. Sigal.*
1149
1315
[ paper] ( https://papers.nips.cc/paper/5289-a-unified-semantic-embedding-relating-taxonomies-and-attributes.pdf )
1150
1316
@@ -1185,3 +1351,15 @@ and L. Van Gool.*
1185
1351
1 . ** Learning meta model for zero- and few-shot face anti-spoofing,** in AAAI, 2020.
1186
1352
* Y. Qin, C. Zhao, X. Zhu, Z. Wang, Z. Yu, T. Fu, F. Zhou, J. Shi, and Z. Lei.*
1187
1353
[ paper] ( https://aaai.org/ojs/index.php/AAAI/article/view/6866 )
1354
+
1355
+ 1 . ** RD-GAN: Few/Zero-shot chinese character style transfer via radical decomposition and rendering,** in ECCV, 2020.
1356
+ * Y. Huang, M. He, L. Jin, and Y. Wang.*
1357
+ [ paper] ( https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123510154.pdf )
1358
+
1359
+ 1 . ** An empirical study on large-scale multi-label text classification including few and zero-shot labels,** in EMNLP, 2020.
1360
+ * I. Chalkidis, M. Fergadiotis, S. Kotitsas, P. Malakasiotis, N. Aletras, and I. Androutsopoulos.*
1361
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.607.pdf )
1362
+
1363
+ 1 . ** Multi-label few/zero-shot learning with knowledge aggregated from multiple label graphs,** in EMNLP, 2020.
1364
+ * J. Lu, L. Du, M. Liu, and J. Dipnall.*
1365
+ [ paper] ( https://www.aclweb.org/anthology/2020.emnlp-main.235.pdf )
0 commit comments