|
| 1 | +from typing import Tuple |
| 2 | +import numpy as np |
| 3 | +import os |
| 4 | +import cv2 |
| 5 | +import random |
| 6 | +import pandas |
| 7 | + |
| 8 | +from decision_trees.datasets.dataset_base import DatasetBase |
| 9 | + |
| 10 | + |
| 11 | +class AerialCactusRaw(DatasetBase): |
| 12 | + def __init__( |
| 13 | + self, path: str, |
| 14 | + number_of_train_samples: int, number_of_test_samples: int |
| 15 | + ): |
| 16 | + random.seed(42) |
| 17 | + self._path = path |
| 18 | + self._number_of_train_samples = number_of_train_samples |
| 19 | + self._number_of_test_samples = number_of_test_samples |
| 20 | + |
| 21 | + # NOTE(MF): does not work, as it gives a string as bte array that can not be easily used to index |
| 22 | + # labels2 = dict(np.genfromtxt( |
| 23 | + # os.path.join(self._path, 'train.csv'), |
| 24 | + # delimiter=',', skip_header=1, |
| 25 | + # dtype=[('file_name', '<S50'), ('flag', 'i1')] |
| 26 | + # )) |
| 27 | + # print(len(labels2)) |
| 28 | + # print(labels2) |
| 29 | + |
| 30 | + labels = dict(pandas.read_csv(os.path.join(self._path, 'train.csv')).as_matrix()) |
| 31 | + # print(len(labels)) |
| 32 | + # print(labels) |
| 33 | + |
| 34 | + files = [] |
| 35 | + # r=root, d=directories, f = files |
| 36 | + for r, d, f in os.walk(os.path.join(self._path, 'train')): |
| 37 | + for file in f: |
| 38 | + if '.jpg' in file: |
| 39 | + files.append(os.path.join(r, file)) |
| 40 | + |
| 41 | + print(len(files)) |
| 42 | + data = {} |
| 43 | + for f in files: |
| 44 | + data[os.path.basename(f)] = cv2.imread(f, cv2.IMREAD_GRAYSCALE) |
| 45 | + print(len(data)) |
| 46 | + |
| 47 | + keys = list(data.keys()) |
| 48 | + random.shuffle(keys) |
| 49 | + |
| 50 | + self._train_data = [] |
| 51 | + self._train_target = [] |
| 52 | + self._test_data = [] |
| 53 | + self._test_target = [] |
| 54 | + for key in keys[:self._number_of_train_samples]: |
| 55 | + # print(data[key].shape) |
| 56 | + # data has to be flatten (8x8 image -> 64x1 matrix) |
| 57 | + d = data[key].flatten() |
| 58 | + # print(d.shape) |
| 59 | + # print(d) |
| 60 | + d = self._normalise(d) |
| 61 | + # print(d) |
| 62 | + self._train_data.append(d) |
| 63 | + self._train_target.append(labels[key]) |
| 64 | + for key in keys[self._number_of_train_samples:self._number_of_train_samples + self._number_of_train_samples]: |
| 65 | + d = self._normalise(data[key].flatten()) |
| 66 | + self._test_data.append(d) |
| 67 | + self._test_target.append(labels[key]) |
| 68 | + |
| 69 | + def load_data(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
| 70 | + return np.asarray(self._train_data), np.asarray(self._train_target), \ |
| 71 | + np.asarray(self._test_data), np.asarray(self._test_target) |
| 72 | + |
| 73 | + @staticmethod |
| 74 | + def _normalise(data: np.ndarray): |
| 75 | + # in case of digits data it is possible to just divide each data by maximum value |
| 76 | + # each feature is in range 0-16 |
| 77 | + data = data / 256 |
| 78 | + |
| 79 | + return data |
| 80 | + |
| 81 | + |
| 82 | +def main(): |
| 83 | + # d = AerialCactusRaw('./../../data/datasets/aerial-cactus-identification/', 15000, 2500) |
| 84 | + d = AerialCactusRaw('./../../data/datasets/aerial-cactus-identification/', 15000, 250) |
| 85 | + |
| 86 | + # train_data, train_target, test_data, test_target = d.load_data() |
| 87 | + # print(train_data[0]) |
| 88 | + # print(train_target[0]) |
| 89 | + # |
| 90 | + # print(test_data[10]) |
| 91 | + # print(test_target[10]) |
| 92 | + |
| 93 | + for i in range(1, 9): |
| 94 | + d.test_as_classifier(i, './../../data/vhdl/') |
| 95 | + |
| 96 | + |
| 97 | +if __name__ == '__main__': |
| 98 | + main() |
0 commit comments