@@ -39,32 +39,32 @@ def get_tuned_parameters(clf_type: ClassifierType) -> Dict:
39
39
40
40
if clf_type == ClassifierType .DECISION_TREE :
41
41
tuned_parameters = {
42
- 'max_depth' : [10 , 20 , 50 , 100 ], # [5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
42
+ 'max_depth' : [10 , 20 , 50 , 100 , None ], # [5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
43
43
# 'splitter': ["best", "random"],
44
- 'min_samples_split' : [2 , 10 ], # [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]
44
+ 'min_samples_split' : [2 , 5 , 10 ], # [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]
45
45
# 'min_samples_split': [0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.02, 0.05]
46
46
'random_state' : [42 ]
47
47
}
48
48
elif clf_type == ClassifierType .RANDOM_FOREST :
49
49
tuned_parameters = {
50
50
'max_depth' : [10 , 20 , 50 , 100 , None ],
51
51
# criterion
52
- 'n_estimators' : [10 , 20 , 50 , 100 , 200 ],
52
+ 'n_estimators' : [16 , 32 , 64 , 128 , 256 ],
53
53
# 'max_features': ['sqrt', 'log2'],
54
54
# 'min_samples_leaf': [1, 5, 10, 25, 50, 100, 125, 150, 175, 200],
55
- 'min_samples_split' : [2 ], # [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100]
56
- 'class_weight' : [None ], # , 'balanced'],
55
+ 'min_samples_split' : [2 , 5 , 10 ], # [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100]
56
+ # 'class_weight': [None], # , 'balanced'],
57
57
# 'n_jobs': [-1],
58
58
'random_state' : [42 ]
59
59
}
60
60
elif clf_type == ClassifierType .RANDOM_FOREST_REGRESSOR :
61
61
tuned_parameters = {
62
62
'max_depth' : [10 , 20 , 50 , 100 , None ],
63
63
# criterion
64
- 'n_estimators' : [10 , 20 , 50 , 100 , 200 ],
64
+ 'n_estimators' : [16 , 32 , 64 , 128 , 256 ],
65
65
# 'max_features': ['sqrt', 'log2'],
66
66
# 'min_samples_leaf': [1, 5, 10, 25, 50, 100, 125, 150, 175, 200],
67
- 'min_samples_split' : [2 ], # [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100]
67
+ 'min_samples_split' : [2 , 5 , 10 ], # [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100]
68
68
# 'n_jobs': [-1],
69
69
'random_state' : [42 ]
70
70
}
0 commit comments