|
| 1 | +%Model Description+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 2 | +This is just a standard RBC model, but the one used and paramterized |
| 3 | +in Schmidt-Grohe and Uribe's 2004 paper showing the 2nd-order accurate |
| 4 | +solution of a fairly standard RBC model |
| 5 | + |
| 6 | + |
| 7 | +%Model Information+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 8 | +Name = Standard RBC Model, SGU03; |
| 9 | + |
| 10 | + |
| 11 | +%Parameters++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 12 | +alpha = 0.3; |
| 13 | +delta = 1.0; |
| 14 | +betta = 0.95; |
| 15 | +gamma = 2.0; |
| 16 | +rho = 0.0; |
| 17 | +z_bar = 1.0; |
| 18 | +sigma_eps = 1.0; |
| 19 | + |
| 20 | + |
| 21 | +%Variable Vectors+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 22 | +[1] k(t):capital{endo}[log,bk] |
| 23 | +[2] c(t):consumption{con}[log,bk] |
| 24 | +[4] y(t):output{con}[log,bk] |
| 25 | +[4] R(t):rrate{con}[log,bk] |
| 26 | +[5] z(t):eps(t):productivity{exo}[log,bk] |
| 27 | + |
| 28 | +%Boundary Conditions++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 29 | +None |
| 30 | + |
| 31 | + |
| 32 | +%Variable Substitution Non-Linear System++++++++++++++++++++++++++++++++++++++++++++++++ |
| 33 | +[1] @inv(t) = k(t)-(1-delta)*k(t-1); |
| 34 | +[2] @inv_bar = SS{@inv(t)}; |
| 35 | +[2] @F(t) = z(t-1)*k(t-1)**alpha; |
| 36 | +[2] @Fk(t) = DIFF{@F(t),k(t-1)}; |
| 37 | +[2] @Fk_bar = SS{@Fk(t)}; |
| 38 | +[2] @F_bar = SS{@F(t)}; |
| 39 | +[4] @U(t) = @I{gamma!=1.0}{c(t)**(1-gamma)/(1-gamma)}+@I{gamma==1.0}{LOG(c(t))}; |
| 40 | +[5] @MU(t) = DIFF{@U(t),c(t)}; |
| 41 | +[5] @MU_bar = SS{@MU(t)}; |
| 42 | +[6] @MU(t+1) = FF_1{@MU(t)}; |
| 43 | + |
| 44 | + |
| 45 | + |
| 46 | +%Non-Linear First-Order Conditions++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 47 | +# Insert here the non-linear FOCs in format g(x)=0 |
| 48 | + |
| 49 | +[1] y(t)-@inv(t)-c(t) = 0; |
| 50 | +[2] betta*(@MU(t+1)/@MU(t))*E(t)|R(t+1)-1 = 0; |
| 51 | +[3] @F(t)-y(t) = 0; |
| 52 | +[4] R(t) - (1+@Fk(t)-delta) = 0; |
| 53 | +[5] LOG(z(t))-rho*LOG(z(t-1))-eps(t) = 0; |
| 54 | + |
| 55 | + |
| 56 | +%Steady States [Closed Form]+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 57 | +[1] k_bar = ((1/betta-1+delta)/(z_bar*alpha))**(1/(alpha-1)); |
| 58 | +[2] y_bar = z_bar*k_bar**alpha; |
| 59 | +[3] c_bar = y_bar - delta*k_bar; |
| 60 | +[4] R_bar = 1/betta; |
| 61 | + |
| 62 | + |
| 63 | +%Steady State Non-Linear System [Manual]+++++++++++++++++++++++++++++++++++++++++++++++++ |
| 64 | +None |
| 65 | + |
| 66 | +%Log-Linearized Model Equations++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 67 | +None |
| 68 | + |
| 69 | + |
| 70 | +%Variance-Covariance Matrix++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 71 | +Sigma = [sigma_eps**2]; |
| 72 | + |
| 73 | + |
| 74 | +%End Of Model File+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
0 commit comments