Skip to content

Commit 580887a

Browse files
authored
[Doc] Update version info in doc (open-mmlab#2851)
1 parent 997d147 commit 580887a

File tree

4 files changed

+21
-22
lines changed

4 files changed

+21
-22
lines changed

docs/en/get_started.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ We recommend that users follow our best practices to install MMSegmentation. How
4343
```shell
4444
pip install -U openmim
4545
mim install mmengine
46-
mim install "mmcv>=2.0.0rc1"
46+
mim install "mmcv>=2.0.0"
4747
```
4848

4949
**Step 1.** Install MMSegmentation.
@@ -62,7 +62,7 @@ pip install -v -e .
6262
Case b: If you use mmsegmentation as a dependency or third-party package, install it with pip:
6363

6464
```shell
65-
pip install "mmsegmentation>=1.0.0rc0"
65+
pip install "mmsegmentation>=1.0.0"
6666
```
6767

6868
### Verify the installation
@@ -136,15 +136,15 @@ MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex wa
136136

137137
To install MMCV with pip instead of MIM, please follow [MMCV installation guides](https://mmcv.readthedocs.io/en/latest/get_started/installation.html). This requires manually specifying a find-url based on PyTorch version and its CUDA version.
138138

139-
For example, the following command install mmcv==2.0.0rc1 built for PyTorch 1.10.x and CUDA 11.3.
139+
For example, the following command install mmcv==2.0.0 built for PyTorch 1.10.x and CUDA 11.3.
140140

141141
```shell
142-
pip install mmcv==2.0.0rc1 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
142+
pip install mmcv==2.0.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
143143
```
144144

145145
#### Install on CPU-only platforms
146146

147-
MMSegmentation can be built for CPU only environment. In CPU mode you can train (requires MMCV-Lite version >= 2.0.0rc0), test or inference a model.
147+
MMSegmentation can be built for CPU only environment. In CPU mode you can train (requires MMCV version >= 2.0.0), test or inference a model.
148148

149149
#### Install on Google Colab
150150

@@ -156,7 +156,7 @@ thus we only need to install MMCV and MMSegmentation with the following commands
156156
```shell
157157
!pip3 install openmim
158158
!mim install mmengine
159-
!mim install "mmcv>=2.0.0rc1"
159+
!mim install "mmcv>=2.0.0"
160160
```
161161

162162
**Step 2.** Install MMSegmentation from the source.
@@ -173,7 +173,7 @@ thus we only need to install MMCV and MMSegmentation with the following commands
173173
```python
174174
import mmseg
175175
print(mmseg.__version__)
176-
# Example output: 1.0.0rc0
176+
# Example output: 1.0.0
177177
```
178178

179179
**Note:**

docs/en/migration/interface.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -12,11 +12,11 @@ Or install the below packages manually.
1212

1313
1. [MMEngine](https://github.com/open-mmlab/mmengine): MMEngine is the core the OpenMMLab 2.0 architecture, and we splited many compentents unrelated to computer vision from MMCV to MMEngine.
1414

15-
2. [MMCV](https://github.com/open-mmlab/mmcv): The computer vision package of OpenMMLab. This is not a new dependency, but you need to upgrade it to above **2.0.0rc1** version.
15+
2. [MMCV](https://github.com/open-mmlab/mmcv): The computer vision package of OpenMMLab. This is not a new dependency, but you need to upgrade it to **2.0.0** version or above.
1616

17-
3. [MMClassification](https://github.com/open-mmlab/mmclassification)(Optional): The image classification toolbox and benchmark of OpenMMLab. This is not a new dependency, but you need to upgrade it to above **1.0.0rc0** version.
17+
3. [MMClassification](https://github.com/open-mmlab/mmclassification)(Optional): The image classification toolbox and benchmark of OpenMMLab. This is not a new dependency, but you need to upgrade it to **1.0.0rc6** version.
1818

19-
4. [MMDetection](https://github.com/open-mmlab/mmdetection)(Optional): The object detection toolbox and benchmark of OpenMMLab. This is not a new dependency, but you need to upgrade it to above **3.0.0rc0** version.
19+
4. [MMDetection](https://github.com/open-mmlab/mmdetection)(Optional): The object detection toolbox and benchmark of OpenMMLab. This is not a new dependency, but you need to upgrade it to **3.0.0** version or above.
2020

2121
## Train launch
2222

docs/zh_cn/get_started.md

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ conda install pytorch torchvision cpuonly -c pytorch
4343
```shell
4444
pip install -U openmim
4545
mim install mmengine
46-
mim install "mmcv>=2.0.0rc1"
46+
mim install "mmcv>=2.0.0"
4747
```
4848

4949
**步骤 1.** 安装 MMSegmentation
@@ -62,7 +62,7 @@ pip install -v -e .
6262
情况 b: 如果您把 mmsegmentation 作为依赖库或者第三方库,可以通过 pip 安装:
6363

6464
```shell
65-
pip install "mmsegmentation>=1.0.0rc0"
65+
pip install "mmsegmentation>=1.0.0"
6666
```
6767

6868
### 验证是否安装成功
@@ -87,8 +87,7 @@ python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_ci
8787

8888
您将在当前文件夹中看到一个新图像 `result.jpg`,其中所有目标都覆盖了分割 mask
8989

90-
选项 (b). 如果您通过 pip 安装 mmsegmentation, 打开您的 python
91-
解释器,复制粘贴以下代码:
90+
选项 (b). 如果您通过 pip 安装 mmsegmentation, 打开您的 python 解释器,复制粘贴以下代码:
9291

9392
```python
9493
from mmseg.apis import inference_model, init_model, show_result_pyplot
@@ -137,15 +136,15 @@ MMCV 包含 C++ 和 CUDA 扩展,因此与 PyTorch 的依赖方式比较复杂
137136

138137
为了使用 pip 而不是 MIM 安装 MMCV, 请参考 [MMCV 安装指南](https://mmcv.readthedocs.io/en/latest/get_started/installation.html). 这需要手动指定一个基于 PyTorch 版本及其 CUDA 版本的 find-url.
139138

140-
例如,以下命令可为 PyTorch 1.10.x and CUDA 11.3 安装 mmcv==2.0.0rc1
139+
例如,以下命令可为 PyTorch 1.10.x and CUDA 11.3 安装 mmcv==2.0.0
141140

142141
```shell
143-
pip install mmcv==2.0.0rc1 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
142+
pip install mmcv==2.0.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
144143
```
145144

146145
#### 在仅有 CPU 的平台安装
147146

148-
MMSegmentation 可以在仅有 CPU 的版本上运行。在 CPU 模式,您可以训练(需要 MMCV-Lite 版本 >= 2.0.0rc0),测试和推理模型。
147+
MMSegmentation 可以在仅有 CPU 的版本上运行。在 CPU 模式,您可以训练(需要 MMCV 版本 >= 2.0.0),测试和推理模型。
149148

150149
#### 在 Google Colab 上安装
151150

@@ -156,7 +155,7 @@ MMSegmentation 可以在仅有 CPU 的版本上运行。在 CPU 模式,您可
156155
```shell
157156
!pip3 install openmim
158157
!mim install mmengine
159-
!mim install "mmcv>=2.0.0rc1"
158+
!mim install "mmcv>=2.0.0"
160159
```
161160

162161
**Step 2.** 通过源码安装 MMSegmentation
@@ -173,7 +172,7 @@ MMSegmentation 可以在仅有 CPU 的版本上运行。在 CPU 模式,您可
173172
```python
174173
import mmseg
175174
print(mmseg.__version__)
176-
# 示例输出: 1.0.0rc0
175+
# 示例输出: 1.0.0
177176
```
178177

179178
**注意:**

docs/zh_cn/migration/interface.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -12,11 +12,11 @@ MMSegmentation 1.x 依赖于一些新的软件包,您可以准备一个新的
1212

1313
1. [MMEngine](https://github.com/open-mmlab/mmengine):MMEngine 是 OpenMMLab 2.0 架构的核心,我们将许多与计算机视觉无关的内容从 MMCV 拆分到 MMEngine 中。
1414

15-
2. [MMCV](https://github.com/open-mmlab/mmcv):OpenMMLab 的计算机视觉包。这不是一个新的依赖,但您需要将其升级到 **2.0.0rc1** 以上的版本
15+
2. [MMCV](https://github.com/open-mmlab/mmcv):OpenMMLab 的计算机视觉包。这不是一个新的依赖,但您需要将其升级到 **2.0.0** 或以上的版本
1616

17-
3. [MMClassification](https://github.com/open-mmlab/mmclassification)(可选):OpenMMLab 的图像分类工具箱和基准。这不是一个新的依赖,但您需要将其升级到 **1.0.0rc0** 以上的版本
17+
3. [MMClassification](https://github.com/open-mmlab/mmclassification)(可选):OpenMMLab 的图像分类工具箱和基准。这不是一个新的依赖,但您需要将其升级到 **1.0.0rc6** 版本
1818

19-
4. [MMDetection](https://github.com/open-mmlab/mmdetection)(可选): OpenMMLab 的目标检测工具箱和基准。这不是一个新的依赖,但您需要将其升级到 **3.0.0rc0** 以上的版本
19+
4. [MMDetection](https://github.com/open-mmlab/mmdetection)(可选): OpenMMLab 的目标检测工具箱和基准。这不是一个新的依赖,但您需要将其升级到 **3.0.0** 或以上的版本
2020

2121
## 启动训练
2222

0 commit comments

Comments
 (0)