|
| 1 | +from probability import normal_cdf, inverse_normal_cdf |
| 2 | +import math, random |
| 3 | + |
| 4 | +def normal_approximation_to_binomial(n, p): |
| 5 | + """finds mu and sigma corresponding to a Binomial(n, p)""" |
| 6 | + mu = p * n |
| 7 | + sigma = math.sqrt(p * (1 - p) * n) |
| 8 | + return mu, sigma |
| 9 | + |
| 10 | +##### |
| 11 | +# |
| 12 | +# probabilities a normal lies in an interval |
| 13 | +# |
| 14 | +###### |
| 15 | + |
| 16 | +# the normal cdf _is_ the probability the variable is below a threshold |
| 17 | +normal_probability_below = normal_cdf |
| 18 | + |
| 19 | +# it's above the threshold if it's not below the threshold |
| 20 | +def normal_probability_above(lo, mu=0, sigma=1): |
| 21 | + return 1 - normal_cdf(lo, mu, sigma) |
| 22 | + |
| 23 | +# it's between if it's less than hi, but not less than lo |
| 24 | +def normal_probability_between(lo, hi, mu=0, sigma=1): |
| 25 | + return normal_cdf(hi, mu, sigma) - normal_cdf(lo, mu, sigma) |
| 26 | + |
| 27 | +# it's outside if it's not between |
| 28 | +def normal_probability_outside(lo, hi, mu=0, sigma=1): |
| 29 | + return 1 - normal_probability_between(lo, hi, mu, sigma) |
| 30 | + |
| 31 | +###### |
| 32 | +# |
| 33 | +# normal bounds |
| 34 | +# |
| 35 | +###### |
| 36 | + |
| 37 | + |
| 38 | +def normal_upper_bound(probability, mu=0, sigma=1): |
| 39 | + """returns the z for which P(Z <= z) = probability""" |
| 40 | + return inverse_normal_cdf(probability, mu, sigma) |
| 41 | + |
| 42 | +def normal_lower_bound(probability, mu=0, sigma=1): |
| 43 | + """returns the z for which P(Z >= z) = probability""" |
| 44 | + return inverse_normal_cdf(1 - probability, mu, sigma) |
| 45 | + |
| 46 | +def normal_two_sided_bounds(probability, mu=0, sigma=1): |
| 47 | + """returns the symmetric (about the mean) bounds |
| 48 | + that contain the specified probability""" |
| 49 | + tail_probability = (1 - probability) / 2 |
| 50 | + |
| 51 | + # upper bound should have tail_probability above it |
| 52 | + upper_bound = normal_lower_bound(tail_probability, mu, sigma) |
| 53 | + |
| 54 | + # lower bound should have tail_probability below it |
| 55 | + lower_bound = normal_upper_bound(tail_probability, mu, sigma) |
| 56 | + |
| 57 | + return lower_bound, upper_bound |
| 58 | + |
| 59 | +def two_sided_p_value(x, mu=0, sigma=1): |
| 60 | + if x >= mu: |
| 61 | + # if x is greater than the mean, the tail is above x |
| 62 | + return 2 * normal_probability_above(x, mu, sigma) |
| 63 | + else: |
| 64 | + # if x is less than the mean, the tail is below x |
| 65 | + return 2 * normal_probability_below(x, mu, sigma) |
| 66 | + |
| 67 | +def count_extreme_values(): |
| 68 | + extreme_value_count = 0 |
| 69 | + for _ in range(100000): |
| 70 | + num_heads = sum(1 if random.random() < 0.5 else 0 # count # of heads |
| 71 | + for _ in range(1000)) # in 1000 flips |
| 72 | + if num_heads >= 530 or num_heads <= 470: # and count how often |
| 73 | + extreme_value_count += 1 # the # is 'extreme' |
| 74 | + |
| 75 | + return extreme_value_count / 100000 |
| 76 | + |
| 77 | +upper_p_value = normal_probability_above |
| 78 | +lower_p_value = normal_probability_below |
| 79 | + |
| 80 | +## |
| 81 | +# |
| 82 | +# P-hacking |
| 83 | +# |
| 84 | +## |
| 85 | + |
| 86 | +def run_experiment(): |
| 87 | + """flip a fair coin 1000 times, True = heads, False = tails""" |
| 88 | + return [random.random() < 0.5 for _ in range(1000)] |
| 89 | + |
| 90 | +def reject_fairness(experiment): |
| 91 | + """using the 5% significance levels""" |
| 92 | + num_heads = len([flip for flip in experiment if flip]) |
| 93 | + return num_heads < 469 or num_heads > 531 |
| 94 | + |
| 95 | + |
| 96 | +## |
| 97 | +# |
| 98 | +# running an A/B test |
| 99 | +# |
| 100 | +## |
| 101 | + |
| 102 | +def estimated_parameters(N, n): |
| 103 | + p = n / N |
| 104 | + sigma = math.sqrt(p * (1 - p) / N) |
| 105 | + return p, sigma |
| 106 | + |
| 107 | +def a_b_test_statistic(N_A, n_A, N_B, n_B): |
| 108 | + p_A, sigma_A = estimated_parameters(N_A, n_A) |
| 109 | + p_B, sigma_B = estimated_parameters(N_B, n_B) |
| 110 | + return (p_B - p_A) / math.sqrt(sigma_A ** 2 + sigma_B ** 2) |
| 111 | + |
| 112 | +## |
| 113 | +# |
| 114 | +# Bayesian Inference |
| 115 | +# |
| 116 | +## |
| 117 | + |
| 118 | +def B(alpha, beta): |
| 119 | + """a normalizing constant so that the total probability is 1""" |
| 120 | + return math.gamma(alpha) * math.gamma(beta) / math.gamma(alpha + beta) |
| 121 | + |
| 122 | +def beta_pdf(x, alpha, beta): |
| 123 | + if x < 0 or x > 1: # no weight outside of [0, 1] |
| 124 | + return 0 |
| 125 | + return x ** (alpha - 1) * (1 - x) ** (beta - 1) / B(alpha, beta) |
| 126 | + |
| 127 | + |
| 128 | +if __name__ == "__main__": |
| 129 | + |
| 130 | + mu_0, sigma_0 = normal_approximation_to_binomial(1000, 0.5) |
| 131 | + print("mu_0", mu_0) |
| 132 | + print("sigma_0", sigma_0) |
| 133 | + print("normal_two_sided_bounds(0.95, mu_0, sigma_0)", normal_two_sided_bounds(0.95, mu_0, sigma_0)) |
| 134 | + print() |
| 135 | + print("power of a test") |
| 136 | + |
| 137 | + print("95% bounds based on assumption p is 0.5") |
| 138 | + |
| 139 | + lo, hi = normal_two_sided_bounds(0.95, mu_0, sigma_0) |
| 140 | + print("lo", lo) |
| 141 | + print("hi", hi) |
| 142 | + |
| 143 | + print("actual mu and sigma based on p = 0.55") |
| 144 | + mu_1, sigma_1 = normal_approximation_to_binomial(1000, 0.55) |
| 145 | + print("mu_1", mu_1) |
| 146 | + print("sigma_1", sigma_1) |
| 147 | + |
| 148 | + # a type 2 error means we fail to reject the null hypothesis |
| 149 | + # which will happen when X is still in our original interval |
| 150 | + type_2_probability = normal_probability_between(lo, hi, mu_1, sigma_1) |
| 151 | + power = 1 - type_2_probability # 0.887 |
| 152 | + |
| 153 | + print("type 2 probability", type_2_probability) |
| 154 | + print("power", power) |
| 155 | + print |
| 156 | + |
| 157 | + print("one-sided test") |
| 158 | + hi = normal_upper_bound(0.95, mu_0, sigma_0) |
| 159 | + print("hi", hi) # is 526 (< 531, since we need more probability in the upper tail) |
| 160 | + type_2_probability = normal_probability_below(hi, mu_1, sigma_1) |
| 161 | + power = 1 - type_2_probability # = 0.936 |
| 162 | + print("type 2 probability", type_2_probability) |
| 163 | + print("power", power) |
| 164 | + print() |
| 165 | + |
| 166 | + print("two_sided_p_value(529.5, mu_0, sigma_0)", two_sided_p_value(529.5, mu_0, sigma_0)) |
| 167 | + |
| 168 | + print("two_sided_p_value(531.5, mu_0, sigma_0)", two_sided_p_value(531.5, mu_0, sigma_0)) |
| 169 | + |
| 170 | + print("upper_p_value(525, mu_0, sigma_0)", upper_p_value(525, mu_0, sigma_0)) |
| 171 | + print("upper_p_value(527, mu_0, sigma_0)", upper_p_value(527, mu_0, sigma_0)) |
| 172 | + print() |
| 173 | + |
| 174 | + print("P-hacking") |
| 175 | + |
| 176 | + random.seed(0) |
| 177 | + experiments = [run_experiment() for _ in range(1000)] |
| 178 | + num_rejections = len([experiment |
| 179 | + for experiment in experiments |
| 180 | + if reject_fairness(experiment)]) |
| 181 | + |
| 182 | + print(num_rejections, "rejections out of 1000") |
| 183 | + print() |
| 184 | + |
| 185 | + print("A/B testing") |
| 186 | + z = a_b_test_statistic(1000, 200, 1000, 180) |
| 187 | + print("a_b_test_statistic(1000, 200, 1000, 180)", z) |
| 188 | + print("p-value", two_sided_p_value(z)) |
| 189 | + z = a_b_test_statistic(1000, 200, 1000, 150) |
| 190 | + print("a_b_test_statistic(1000, 200, 1000, 150)", z) |
| 191 | + print("p-value", two_sided_p_value(z)) |
0 commit comments