@@ -25,16 +25,20 @@ The primary stem typically contains the instrumental part of the audio, while th
25
25
💬 If successfully configured, you should see this log message when running audio-separator:
26
26
` ONNXruntime has CUDAExecutionProvider available, enabling acceleration `
27
27
28
- Conda: ` conda install pytorch=*=*cuda* onnxruntime=*=*cuda* ffmpeg audio-separator -c beveradb -c conda-forge `
28
+ Conda: ` conda install pytorch=*=*cuda* onnxruntime=*=*cuda* audio-separator -c beveradb -c pytorch -c conda-forge --override-channels `
29
29
30
30
Pip: ` pip install "audio-separator[gpu]" `
31
31
32
+ Docker: ` beveradb/audio-separator:gpu `
33
+
32
34
### 🐢 No hardware acceleration, CPU only:
33
35
34
- Conda: ` conda install - c beveradb -c conda-forge audio-separator `
36
+ Conda: ` conda install audio-separator - c beveradb -c pytorch -c conda-forge --override-channels `
35
37
36
38
Pip: ` pip install "audio-separator[cpu]" `
37
39
40
+ Docker: ` beveradb/audio-separator `
41
+
38
42
### Apple Silicon, macOS Sonoma+ with CoreML acceleration
39
43
40
44
💬 If successfully configured, you should see this log message when running audio-separator:
@@ -52,7 +56,7 @@ This should be easy to install on most platforms, e.g.:
52
56
macOS:` brew update; brew install ffmpeg `
53
57
54
58
55
- ## GPU / CUDA specific installation steps
59
+ ## GPU / CUDA specific installation steps with Pip
56
60
57
61
In theory, all you should need to do to get ` audio-separator ` working with a GPU is install it with the ` [gpu] ` extra as above.
58
62
0 commit comments