|
8 | 8 |
|
9 | 9 | | MMSegmentation version | MMCV version | MMEngine version | MMClassification (optional) version | MMDetection (optional) version |
|
10 | 10 | | :--------------------: | :----------------------------: | :---------------: | :---------------------------------: | :----------------------------: |
|
11 |
| -| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | |
12 |
| -| 1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | |
| 11 | +| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | |
| 12 | +| main branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | |
| 13 | +| 1.0.0 | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | |
13 | 14 | | 1.0.0rc6 | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
14 | 15 | | 1.0.0rc5 | mmcv >= 2.0.0rc4 | MMEngine >= 0.2.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc6 |
|
15 | 16 | | 1.0.0rc4 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 |
|
16 |
| -| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 | |
17 |
| -| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 | |
| 17 | +| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | |
| 18 | +| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | |
18 | 19 | | 1.0.0rc1 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required |
|
19 | 20 | | 1.0.0rc0 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required |
|
20 | 21 |
|
@@ -112,7 +113,7 @@ if self.reduce_zero_label:
|
112 | 113 |
|
113 | 114 | 关于您的数据集是否需要使用 reduce_zero_label,有以下两类情况:
|
114 | 115 |
|
115 |
| -- 例如在 [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) 数据集上,有 0-不透水面、1-建筑、2-低矮植被、3-树、4-汽车、5-杂乱,六类。但该数据集提供了两种RGB标签,一种为图像边缘处有黑色像素的标签,另一种是没有黑色边缘的标签。对于有黑色边缘的标签,在 [dataset_converters.py](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/dataset_converters/potsdam.py)中,其将黑色边缘转换为 label 0,其余标签分别为 1-不透水面、2-建筑、3-低矮植被、4-树、5-汽车、6-杂乱,那么此时,就应该在数据集 [potsdam.py](https://github.com/open-mmlab/mmsegmentation/blob/ff95416c3b5ce8d62b9289f743531398efce534f/mmseg/datasets/potsdam.py#L23) 中将`reduce_zero_label=True`。如果使用的是没有黑色边缘的标签,那么 mask label 中只有 0-5,此时就应该使`reduce_zero_label=False`。需要结合您的实际情况来使用。 |
116 |
| -- 例如在第 0 类为background类别的数据集上,如果您最终是需要将背景和您的其余类别分开时,是不需要使用`reduce_zero_label`的,此时在数据集中应该将其设置为`reduce_zero_label=False` |
| 116 | +- 例如在 [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) 数据集上,有 0-不透水面、1-建筑、2-低矮植被、3-树、4-汽车、5-杂乱,六类。但该数据集提供了两种 RGB 标签,一种为图像边缘处有黑色像素的标签,另一种是没有黑色边缘的标签。对于有黑色边缘的标签,在 [dataset_converters.py](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/dataset_converters/potsdam.py)中,其将黑色边缘转换为 label 0,其余标签分别为 1-不透水面、2-建筑、3-低矮植被、4-树、5-汽车、6-杂乱,那么此时,就应该在数据集 [potsdam.py](https://github.com/open-mmlab/mmsegmentation/blob/ff95416c3b5ce8d62b9289f743531398efce534f/mmseg/datasets/potsdam.py#L23) 中将`reduce_zero_label=True`。如果使用的是没有黑色边缘的标签,那么 mask label 中只有 0-5,此时就应该使`reduce_zero_label=False`。需要结合您的实际情况来使用。 |
| 117 | +- 例如在第 0 类为 background 类别的数据集上,如果您最终是需要将背景和您的其余类别分开时,是不需要使用`reduce_zero_label`的,此时在数据集中应该将其设置为`reduce_zero_label=False` |
117 | 118 |
|
118 | 119 | **注意:** 使用 `reduce_zero_label` 请确认数据集原始类别个数,如果只有两类,需要关闭 `reduce_zero_label` 即设置 `reduce_zero_label=False`。
|
0 commit comments