You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-[Natural Language Understanding](#natural-language-understanding)
@@ -269,45 +269,38 @@ timesteps, thereby achieving strong performance in many text classification task
269
269
*[arXiv: Sequence to Sequence Learning with Neural Networks](http://arxiv.org/pdf/1409.3215v3.pdf) Sutskever, Vinyals, Le 2014 proved the effectiivenss of **LSTM** for Machine Translation. Check their ([nips presentation](http://research.microsoft.com/apps/video/?id=239083))
270
270
*[arXiv: Neural Machine Translation by jointly learning to align and translate](http://arxiv.org/pdf/1409.0473v6.pdf)
271
271
Bahdanau, Cho 2014 introduced the **attention mechanism** in NLP
272
-
*[arXiv: A Convolutional encoder model for neural machine translation](https://arxiv.org/pdf/1611.02344.pdf) by Gehring et al, 2017. The paper is from Facebook AI research and its code is available [here](https://github.com/facebookresearch/fairseq).
273
-
*[Convolutional Sequence to Sequence learning](https://arxiv.org/pdf/1705.03122.pdf) by Gehring et al, 2017. The paper is from Facebook AI research and its code is available [here](https://github.com/facebookresearch/fairseq).
274
-
*[Convolutional over Recurrent Encoder for neural machine translation](https://ufal.mff.cuni.cz/pbml/108/art-dakwale-monz.pdf) by Dakwale and Monz from University of Amsterdam compare the CNNs with a recurrent neural network with additional convolutonal layers.
275
-
* Open Source code: [OpenNMT](http://opennmt.net/) is an open source initiative for neural machine translation and neural sequence modeling. It has a [PyTorch](https://github.com/OpenNMT/OpenNMT-py), [Tensorflow](https://github.com/OpenNMT/OpenNMT-tf) and the original [LuaTorch](https://github.com/OpenNMT/OpenNMT) implementation.
272
+
*[arXiv: A Convolutional encoder model for neural machine translation](https://arxiv.org/pdf/1611.02344.pdf) by Gehring et al, 2017. The paper is from Facebook AI research and its code is available [here](https://github.com/facebookresearch/fairseq)
273
+
*[Convolutional Sequence to Sequence learning](https://arxiv.org/pdf/1705.03122.pdf) by Gehring et al, 2017. The paper is from Facebook AI research and its code is available [here](https://github.com/facebookresearch/fairseq)
274
+
*[Convolutional over Recurrent Encoder for neural machine translation](https://ufal.mff.cuni.cz/pbml/108/art-dakwale-monz.pdf) by Dakwale and Monz from University of Amsterdam compare the CNNs with a recurrent neural network with additional convolutonal layers
275
+
* Open Source code: [OpenNMT](http://opennmt.net/) is an open source initiative for neural machine translation and neural sequence modeling. [PyTorch](https://github.com/OpenNMT/OpenNMT-py), [Tensorflow](https://github.com/OpenNMT/OpenNMT-tf) and the original [LuaTorch](https://github.com/OpenNMT/OpenNMT) implementation
276
276
277
-
### Single Exchange Dialogs
277
+
### Dialogs and Conversational
278
278
279
279
[Back to Top](#contents)
280
-
281
280
*[A Neural Network Approach to Context-Sensitive Generation of Conversational Responses](http://arxiv.org/pdf/1506.06714v1.pdf)
282
-
Sordoni 2015. Generates responses to tweets.
283
-
* Uses [Recurrent Neural Network Language Model (RLM) architecture
284
-
of (Mikolov et al., 2010).](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf). Source code: [RNNLM Toolkit](http://www.fit.vutbr.cz/~imikolov/rnnlm/index.html)
281
+
Sordoni 2015. Generates responses to tweets.
282
+
* Uses [Recurrent Neural Network Language Model (RLM) architecture of (Mikolov et al., 2010).](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf). [Code of RNNLM Toolkit](http://www.fit.vutbr.cz/~imikolov/rnnlm/index.html)
285
283
* RNNLM Tutorial: [Implementing RNN Language Models by Denny Britz](http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/)
286
-
287
284
*[Neural Responding Machine for Short-Text Conversation](http://arxiv.org/pdf/1503.02364v2.pdf)
288
285
Shang et al. 2015 Uses Neural Responding Machine. Trained on Weibo dataset. Achieves one round conversations with 75% appropriate responses.
289
-
290
286
*[arXiv: A Neural Conversation Model](http://arxiv.org/pdf/1506.05869v3.pdf) Vinyals, [Le](https://scholar.google.com/citations?user=vfT6-XIAAAAJ) 2015. Uses LSTM RNNs to generate conversational responses
291
287
292
288
### Memory and Attention Models
293
289
294
290
[Back to Top](#contents)
291
+
Some are courtesy [andrewt3000/DL4NLP](https://github.com/andrewt3000/DL4NLP)
295
292
296
-
Most are courtesy [andrewt3000/DL4NLP](https://github.com/andrewt3000/DL4NLP)
297
293
* Interactive tutorial on [Augmented RNNs](www.distill.pub/2016/augmented-rnns/) including Attention and Memory networks
298
-
*[Reasoning, Attention and Memory RAM workshop at NIPS 2015. slides included](http://www.thespermwhale.com/jaseweston/ram/)
294
+
*[Annotated Transformer](http://nlp.seas.harvard.edu//2018/04/03/attention.html) from the [Attention is All You Need](https://arxiv.org/abs/1706.03762) work explains Tranformer implementation in line by line detail. Both links highly recommended.
299
295
*[Memory Networks](http://arxiv.org/pdf/1410.3916v10.pdf) Weston et. al 2014
300
296
*[End-To-End Memory Networks](http://arxiv.org/pdf/1503.08895v4.pdf) Sukhbaatar et. al 2015
301
297
Memory networks are implemented in [MemNN](https://github.com/facebook/MemNN). Attempts to solve task of reason attention and memory
302
-
*[Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks](http://arxiv.org/pdf/1502.05698v7.pdf)
303
-
Weston 2015. Classifies QA tasks like single factoid, yes/no etc. Extends memory networks
304
-
*[Evaluating prerequisite qualities for learning end to end dialog systems](http://arxiv.org/pdf/1511.06931.pdf)
305
-
Dodge et. al 2015. Tests Memory Networks on 4 tasks including reddit dialog task
306
-
*[Jason Weston lecture on MemNN](https://www.youtube.com/watch?v=Xumy3Yjq4zk)
298
+
*[Reasoning, Attention and Memory RAM workshop at NIPS 2015. slides included](http://www.thespermwhale.com/jaseweston/ram/)
307
299
*[Neural Turing Machines](http://arxiv.org/pdf/1410.5401v2.pdf), Graves et al. 2014
308
300
*[Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets](http://arxiv.org/pdf/1503.01007v4.pdf), Joulin, Mikolov 2015
309
301
*[Stack RNN source code](https://github.com/facebook/Stack-RNN) and [blog post](https://research.facebook.com/blog/1642778845966521/inferring-algorithmic-patterns-with-stack/)
0 commit comments