|
| 1 | +/* |
| 2 | + * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. |
| 3 | + * |
| 4 | + * Redistribution and use in source and binary forms, with or without |
| 5 | + * modification, are permitted provided that the following conditions |
| 6 | + * are met: |
| 7 | + * * Redistributions of source code must retain the above copyright |
| 8 | + * notice, this list of conditions and the following disclaimer. |
| 9 | + * * Redistributions in binary form must reproduce the above copyright |
| 10 | + * notice, this list of conditions and the following disclaimer in the |
| 11 | + * documentation and/or other materials provided with the distribution. |
| 12 | + * * Neither the name of NVIDIA CORPORATION nor the names of its |
| 13 | + * contributors may be used to endorse or promote products derived |
| 14 | + * from this software without specific prior written permission. |
| 15 | + * |
| 16 | + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY |
| 17 | + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 19 | + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 20 | + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 21 | + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 22 | + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 23 | + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 24 | + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | + */ |
| 28 | + |
| 29 | +#pragma once |
| 30 | + |
| 31 | +#include <sycl/sycl.hpp> |
| 32 | +#include <dpct/dpct.hpp> |
| 33 | +#include <cmath> |
| 34 | +#include <functional> |
| 35 | +#include <iostream> |
| 36 | +#include <random> |
| 37 | +#include <stdexcept> |
| 38 | +#include <string> |
| 39 | +#include <dpct/lib_common_utils.hpp> |
| 40 | + |
| 41 | +#include <complex> |
| 42 | + |
| 43 | +// CUDA API error checking |
| 44 | +/* |
| 45 | +DPCT1001:1: The statement could not be removed. |
| 46 | +*/ |
| 47 | +/* |
| 48 | +DPCT1000:2: Error handling if-stmt was detected but could not be rewritten. |
| 49 | +*/ |
| 50 | +#define CUDA_CHECK(err) \ |
| 51 | + do { \ |
| 52 | + int err_ = (err); \ |
| 53 | + if (err_ != 0) { \ |
| 54 | + std::printf("CUDA error %d at %s:%d\n", err_, __FILE__, __LINE__); \ |
| 55 | + throw std::runtime_error("CUDA error"); \ |
| 56 | + } \ |
| 57 | + } while (0) |
| 58 | + |
| 59 | +// cublas API error checking |
| 60 | +#define CUBLAS_CHECK(err) \ |
| 61 | + do { \ |
| 62 | + int err_ = (err); \ |
| 63 | + if (err_ != 0) { \ |
| 64 | + std::printf("cublas error %d at %s:%d\n", err_, __FILE__, \ |
| 65 | + __LINE__); \ |
| 66 | + throw std::runtime_error("cublas error"); \ |
| 67 | + } \ |
| 68 | + } while (0) |
| 69 | + |
| 70 | +// memory alignment |
| 71 | +#define ALIGN_TO(A, B) (((A + B - 1) / B) * B) |
| 72 | + |
| 73 | +// device memory pitch alignment |
| 74 | +static const size_t device_alignment = 32; |
| 75 | + |
| 76 | +// type traits |
| 77 | +template <typename T> struct traits; |
| 78 | + |
| 79 | +template <> struct traits<float> { |
| 80 | + // scalar type |
| 81 | + typedef float T; |
| 82 | + typedef T S; |
| 83 | + |
| 84 | + static constexpr T zero = 0.f; |
| 85 | + static constexpr dpct::library_data_t cuda_data_type = |
| 86 | + dpct::library_data_t::real_float; |
| 87 | + |
| 88 | + inline static S abs(T val) { return fabs(val); } |
| 89 | + |
| 90 | + template <typename RNG> inline static T rand(RNG &gen) { return (S)gen(); } |
| 91 | + |
| 92 | + inline static T add(T a, T b) { return a + b; } |
| 93 | + |
| 94 | + inline static T mul(T v, double f) { return v * f; } |
| 95 | +}; |
| 96 | + |
| 97 | +template <> struct traits<double> { |
| 98 | + // scalar type |
| 99 | + typedef double T; |
| 100 | + typedef T S; |
| 101 | + |
| 102 | + static constexpr T zero = 0.; |
| 103 | + static constexpr dpct::library_data_t cuda_data_type = |
| 104 | + dpct::library_data_t::real_double; |
| 105 | + |
| 106 | + inline static S abs(T val) { return fabs(val); } |
| 107 | + |
| 108 | + template <typename RNG> inline static T rand(RNG &gen) { return (S)gen(); } |
| 109 | + |
| 110 | + inline static T add(T a, T b) { return a + b; } |
| 111 | + |
| 112 | + inline static T mul(T v, double f) { return v * f; } |
| 113 | +}; |
| 114 | + |
| 115 | +template <> struct traits<sycl::float2> { |
| 116 | + // scalar type |
| 117 | + typedef float S; |
| 118 | + typedef sycl::float2 T; |
| 119 | + |
| 120 | + static constexpr T zero = {0.f, 0.f}; |
| 121 | + static constexpr dpct::library_data_t cuda_data_type = |
| 122 | + dpct::library_data_t::complex_float; |
| 123 | + |
| 124 | + inline static S abs(T val) { return dpct::cabs<float>(val); } |
| 125 | + |
| 126 | + template <typename RNG> inline static T rand(RNG &gen) { |
| 127 | + return sycl::float2((S)gen(), (S)gen()); |
| 128 | + } |
| 129 | + |
| 130 | + inline static T add(T a, T b) { return a + b; } |
| 131 | + inline static T add(T a, S b) { return a + sycl::float2(b, 0.f); } |
| 132 | + |
| 133 | + inline static T mul(T v, double f) { |
| 134 | + return sycl::float2(v.x() * f, v.y() * f); |
| 135 | + } |
| 136 | +}; |
| 137 | + |
| 138 | +template <> struct traits<sycl::double2> { |
| 139 | + // scalar type |
| 140 | + typedef double S; |
| 141 | + typedef sycl::double2 T; |
| 142 | + |
| 143 | + static constexpr T zero = {0., 0.}; |
| 144 | + static constexpr dpct::library_data_t cuda_data_type = |
| 145 | + dpct::library_data_t::complex_double; |
| 146 | + |
| 147 | + inline static S abs(T val) { return dpct::cabs<double>(val); } |
| 148 | + |
| 149 | + template <typename RNG> inline static T rand(RNG &gen) { |
| 150 | + return sycl::double2((S)gen(), (S)gen()); |
| 151 | + } |
| 152 | + |
| 153 | + inline static T add(T a, T b) { return a + b; } |
| 154 | + inline static T add(T a, S b) { return a + sycl::double2(b, 0.); } |
| 155 | + |
| 156 | + inline static T mul(T v, double f) { |
| 157 | + return sycl::double2(v.x() * f, v.y() * f); |
| 158 | + } |
| 159 | +}; |
| 160 | + |
| 161 | +template <typename T> void print_matrix(const int &m, const int &n, const T *A, const int &lda); |
| 162 | + |
| 163 | +template <> void print_matrix(const int &m, const int &n, const float *A, const int &lda) { |
| 164 | + for (int i = 0; i < m; i++) { |
| 165 | + for (int j = 0; j < n; j++) { |
| 166 | + std::printf("%0.2f ", A[j * lda + i]); |
| 167 | + } |
| 168 | + std::printf("\n"); |
| 169 | + } |
| 170 | +} |
| 171 | + |
| 172 | +template <> void print_matrix(const int &m, const int &n, const double *A, const int &lda) { |
| 173 | + for (int i = 0; i < m; i++) { |
| 174 | + for (int j = 0; j < n; j++) { |
| 175 | + std::printf("%0.2f ", A[j * lda + i]); |
| 176 | + } |
| 177 | + std::printf("\n"); |
| 178 | + } |
| 179 | +} |
| 180 | + |
| 181 | +template <> |
| 182 | +void print_matrix(const int &m, const int &n, const sycl::float2 *A, |
| 183 | + const int &lda) { |
| 184 | + for (int i = 0; i < m; i++) { |
| 185 | + for (int j = 0; j < n; j++) { |
| 186 | + std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(), |
| 187 | + A[j * lda + i].y()); |
| 188 | + } |
| 189 | + std::printf("\n"); |
| 190 | + } |
| 191 | +} |
| 192 | + |
| 193 | +template <> |
| 194 | +void print_matrix(const int &m, const int &n, const sycl::double2 *A, |
| 195 | + const int &lda) { |
| 196 | + for (int i = 0; i < m; i++) { |
| 197 | + for (int j = 0; j < n; j++) { |
| 198 | + std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(), |
| 199 | + A[j * lda + i].y()); |
| 200 | + } |
| 201 | + std::printf("\n"); |
| 202 | + } |
| 203 | +} |
| 204 | + |
| 205 | +template <typename T> void print_vector(const int &m, const T *A); |
| 206 | + |
| 207 | +template <> void print_vector(const int &m, const float *A) { |
| 208 | + for (int i = 0; i < m; i++) { |
| 209 | + std::printf("%0.2f ", A[i]); |
| 210 | + } |
| 211 | + std::printf("\n"); |
| 212 | +} |
| 213 | + |
| 214 | +template <> void print_vector(const int &m, const double *A) { |
| 215 | + for (int i = 0; i < m; i++) { |
| 216 | + std::printf("%0.2f ", A[i]); |
| 217 | + } |
| 218 | + std::printf("\n"); |
| 219 | +} |
| 220 | + |
| 221 | +template <> void print_vector(const int &m, const sycl::float2 *A) { |
| 222 | + for (int i = 0; i < m; i++) { |
| 223 | + std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y()); |
| 224 | + } |
| 225 | + std::printf("\n"); |
| 226 | +} |
| 227 | + |
| 228 | +template <> void print_vector(const int &m, const sycl::double2 *A) { |
| 229 | + for (int i = 0; i < m; i++) { |
| 230 | + std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y()); |
| 231 | + } |
| 232 | + std::printf("\n"); |
| 233 | +} |
| 234 | + |
| 235 | +template <typename T> void generate_random_matrix(int m, int n, T **A, int *lda) { |
| 236 | + std::random_device rd; |
| 237 | + std::mt19937 gen(rd()); |
| 238 | + std::uniform_real_distribution<typename traits<T>::S> dis(-1.0, 1.0); |
| 239 | + auto rand_gen = std::bind(dis, gen); |
| 240 | + |
| 241 | + *lda = n; |
| 242 | + |
| 243 | + size_t matrix_mem_size = static_cast<size_t>(*lda * m * sizeof(T)); |
| 244 | + // suppress gcc 7 size warning |
| 245 | + if (matrix_mem_size <= PTRDIFF_MAX) |
| 246 | + *A = (T *)malloc(matrix_mem_size); |
| 247 | + else |
| 248 | + throw std::runtime_error("Memory allocation size is too large"); |
| 249 | + |
| 250 | + if (*A == NULL) |
| 251 | + throw std::runtime_error("Unable to allocate host matrix"); |
| 252 | + |
| 253 | + // random matrix and accumulate row sums |
| 254 | + for (int i = 0; i < m; ++i) { |
| 255 | + for (int j = 0; j < n; ++j) { |
| 256 | + T *A_row = (*A) + *lda * i; |
| 257 | + A_row[j] = traits<T>::rand(rand_gen); |
| 258 | + } |
| 259 | + } |
| 260 | +} |
| 261 | + |
| 262 | +// Makes matrix A of size mxn and leading dimension lda diagonal dominant |
| 263 | +template <typename T> void make_diag_dominant_matrix(int m, int n, T *A, int lda) { |
| 264 | + for (int i = 0; i < std::min(m, n); ++i) { |
| 265 | + T *A_row = A + lda * i; |
| 266 | + auto row_sum = traits<typename traits<T>::S>::zero; |
| 267 | + for (int j = 0; j < n; ++j) { |
| 268 | + row_sum += traits<T>::abs(A_row[j]); |
| 269 | + } |
| 270 | + A_row[i] = traits<T>::add(A_row[i], row_sum); |
| 271 | + } |
| 272 | +} |
| 273 | + |
| 274 | +// Returns cudaDataType value as defined in library_types.h for the string |
| 275 | +// containing type name |
| 276 | +dpct::library_data_t get_cuda_library_type(std::string type_string) { |
| 277 | + if (type_string.compare("CUDA_R_16F") == 0) |
| 278 | + return dpct::library_data_t::real_half; |
| 279 | + else if (type_string.compare("CUDA_C_16F") == 0) |
| 280 | + return dpct::library_data_t::complex_half; |
| 281 | + else if (type_string.compare("CUDA_R_32F") == 0) |
| 282 | + return dpct::library_data_t::real_float; |
| 283 | + else if (type_string.compare("CUDA_C_32F") == 0) |
| 284 | + return dpct::library_data_t::complex_float; |
| 285 | + else if (type_string.compare("CUDA_R_64F") == 0) |
| 286 | + return dpct::library_data_t::real_double; |
| 287 | + else if (type_string.compare("CUDA_C_64F") == 0) |
| 288 | + return dpct::library_data_t::complex_double; |
| 289 | + else if (type_string.compare("CUDA_R_8I") == 0) |
| 290 | + return dpct::library_data_t::real_int8; |
| 291 | + else if (type_string.compare("CUDA_C_8I") == 0) |
| 292 | + return dpct::library_data_t::complex_int8; |
| 293 | + else if (type_string.compare("CUDA_R_8U") == 0) |
| 294 | + return dpct::library_data_t::real_uint8; |
| 295 | + else if (type_string.compare("CUDA_C_8U") == 0) |
| 296 | + return dpct::library_data_t::complex_uint8; |
| 297 | + else if (type_string.compare("CUDA_R_32I") == 0) |
| 298 | + return dpct::library_data_t::real_int32; |
| 299 | + else if (type_string.compare("CUDA_C_32I") == 0) |
| 300 | + return dpct::library_data_t::complex_int32; |
| 301 | + else if (type_string.compare("CUDA_R_32U") == 0) |
| 302 | + return dpct::library_data_t::real_uint32; |
| 303 | + else if (type_string.compare("CUDA_C_32U") == 0) |
| 304 | + return dpct::library_data_t::complex_uint32; |
| 305 | + else |
| 306 | + throw std::runtime_error("Unknown CUDA datatype"); |
| 307 | +} |
0 commit comments