|
| 1 | +from string import Template |
| 2 | + |
| 3 | +from compatibility_core import Case, LibraryType |
| 4 | + |
| 5 | + |
| 6 | +LIGHTGBM_VERSIONS = [ |
| 7 | + '2.3.0', |
| 8 | + '2.2.3', |
| 9 | + '2.2.2', |
| 10 | + '2.2.1', |
| 11 | + '2.2.0', |
| 12 | + '2.1.2', |
| 13 | + '2.1.1', |
| 14 | + '2.1.0', |
| 15 | + '2.0.12', |
| 16 | + '2.0.11', |
| 17 | + '2.0.10', |
| 18 | +] |
| 19 | + |
| 20 | +XGBOOST_VERSIONS = [ |
| 21 | + '0.90', |
| 22 | + '0.82', |
| 23 | + '0.72.1', |
| 24 | +] |
| 25 | + |
| 26 | + |
| 27 | +class BaseCase(Case): |
| 28 | + files = dict( |
| 29 | + model_filename='model.txt', |
| 30 | + true_predictions_filename='true_predictions.txt', |
| 31 | + predictions_filename='predictions.txt', |
| 32 | + data_filename='data.txt', |
| 33 | + ) |
| 34 | + python_template=None |
| 35 | + go_template=None |
| 36 | + |
| 37 | + def compare(self): |
| 38 | + self.compare_matrices( |
| 39 | + matrix1_filename=self.files['true_predictions_filename'], |
| 40 | + matrix2_filename=self.files['predictions_filename'], |
| 41 | + tolerance=1e-10, |
| 42 | + max_number_of_mismatches_ratio=0.0 |
| 43 | + ) |
| 44 | + |
| 45 | + def go_code(self): |
| 46 | + return self.go_template.substitute(self.files) |
| 47 | + |
| 48 | + def python_code(self): |
| 49 | + return self.python_template.substitute(self.files) |
| 50 | + |
| 51 | +class LGBaseCase(BaseCase): |
| 52 | + library = LibraryType.LIGHTGBM |
| 53 | + versions = LIGHTGBM_VERSIONS |
| 54 | + |
| 55 | + |
| 56 | +class XGBaseCase(BaseCase): |
| 57 | + library = LibraryType.XGBOOST |
| 58 | + versions = XGBOOST_VERSIONS |
| 59 | + |
| 60 | + |
| 61 | +class LGBreastCancer(LGBaseCase): |
| 62 | + python_template = Template(""" |
| 63 | +import lightgbm as lgb |
| 64 | +import numpy as np |
| 65 | +from sklearn import datasets |
| 66 | +from sklearn.model_selection import train_test_split |
| 67 | +
|
| 68 | +X, y = datasets.load_breast_cancer(return_X_y=True) |
| 69 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) |
| 70 | +
|
| 71 | +n_estimators = 30 |
| 72 | +d_train = lgb.Dataset(X_train, label=y_train) |
| 73 | +params = { |
| 74 | + 'boosting_type': 'gbdt', |
| 75 | + 'objective': 'binary', |
| 76 | +} |
| 77 | +clf = lgb.train(params, d_train, n_estimators) |
| 78 | +y_pred = clf.predict(X_test, raw_score=True) |
| 79 | +
|
| 80 | +clf.save_model('$model_filename') # save the model in txt format |
| 81 | +np.savetxt('$true_predictions_filename', y_pred) |
| 82 | +np.savetxt('$data_filename', X_test, delimiter='\t') |
| 83 | +""") |
| 84 | + |
| 85 | + go_template = Template(""" |
| 86 | +package main |
| 87 | +
|
| 88 | +import ( |
| 89 | + "github.com/dmitryikh/leaves" |
| 90 | + "github.com/dmitryikh/leaves/mat" |
| 91 | +) |
| 92 | +
|
| 93 | +func main() { |
| 94 | + test, err := mat.DenseMatFromCsvFile("$data_filename", 0, false, "\t", 0.0) |
| 95 | + if err != nil { |
| 96 | + panic(err) |
| 97 | + } |
| 98 | +
|
| 99 | + model, err := leaves.LGEnsembleFromFile("$model_filename", false) |
| 100 | + if err != nil { |
| 101 | + panic(err) |
| 102 | + } |
| 103 | + predictions := mat.DenseMatZero(test.Rows, model.NOutputGroups()) |
| 104 | + err = model.PredictDense(test.Values, test.Rows, test.Cols, predictions.Values, 0, 1) |
| 105 | + if err != nil { |
| 106 | + panic(err) |
| 107 | + } |
| 108 | +
|
| 109 | + err = predictions.ToCsvFile("$predictions_filename", "\t") |
| 110 | + if err != nil { |
| 111 | + panic(err) |
| 112 | + } |
| 113 | +} |
| 114 | +""") |
| 115 | + |
| 116 | + |
| 117 | +class LGIrisRandomForest(LGBaseCase): |
| 118 | + python_template = Template(""" |
| 119 | +import numpy as np |
| 120 | +import pickle |
| 121 | +from sklearn import datasets |
| 122 | +import lightgbm as lgb |
| 123 | +from sklearn.model_selection import train_test_split |
| 124 | +
|
| 125 | +
|
| 126 | +data = datasets.load_iris() |
| 127 | +X = data['data'] |
| 128 | +y = data['target'] |
| 129 | +y[y > 0] = 1 |
| 130 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) |
| 131 | +
|
| 132 | +n_estimators = 30 |
| 133 | +d_train = lgb.Dataset(X_train, label=y_train) |
| 134 | +params = { |
| 135 | + 'boosting_type': 'rf', |
| 136 | + 'objective': 'binary', |
| 137 | + 'bagging_fraction': 0.8, |
| 138 | + 'feature_fraction': 0.8, |
| 139 | + 'bagging_freq': 1, |
| 140 | +} |
| 141 | +
|
| 142 | +clf = lgb.train(params, d_train, n_estimators) |
| 143 | +
|
| 144 | +y_pred = clf.predict(X_test) |
| 145 | +
|
| 146 | +model_filename = 'lg_rf_iris.model' |
| 147 | +pred_filename = 'lg_rf_iris_true_predictions.txt' |
| 148 | +# test_filename = 'iris_test.libsvm' |
| 149 | +
|
| 150 | +clf.save_model('$model_filename') |
| 151 | +np.savetxt('$true_predictions_filename', y_pred) |
| 152 | +datasets.dump_svmlight_file(X_test, y_test, '$data_filename') |
| 153 | +""") |
| 154 | + |
| 155 | + go_template = Template(""" |
| 156 | +package main |
| 157 | +
|
| 158 | +import ( |
| 159 | + "github.com/dmitryikh/leaves" |
| 160 | + "github.com/dmitryikh/leaves/mat" |
| 161 | +) |
| 162 | +
|
| 163 | +func main() { |
| 164 | + test, err := mat.CSRMatFromLibsvmFile("$data_filename", 0, true) |
| 165 | + if err != nil { |
| 166 | + panic(err) |
| 167 | + } |
| 168 | +
|
| 169 | + model, err := leaves.LGEnsembleFromFile("$model_filename", false) |
| 170 | + if err != nil { |
| 171 | + panic(err) |
| 172 | + } |
| 173 | +
|
| 174 | + predictions := mat.DenseMatZero(test.Rows(), model.NOutputGroups()) |
| 175 | + err = model.PredictCSR(test.RowHeaders, test.ColIndexes, test.Values, predictions.Values, 0, 1) |
| 176 | + if err != nil { |
| 177 | + panic(err) |
| 178 | + } |
| 179 | +
|
| 180 | + err = predictions.ToCsvFile("$predictions_filename", "\t") |
| 181 | + if err != nil { |
| 182 | + panic(err) |
| 183 | + } |
| 184 | +} |
| 185 | +""") |
| 186 | + |
| 187 | + |
| 188 | +class XGIrisMulticlass(XGBaseCase): |
| 189 | + python_template = Template(""" |
| 190 | +import numpy as np |
| 191 | +from sklearn import datasets |
| 192 | +from sklearn.model_selection import train_test_split |
| 193 | +import xgboost as xgb |
| 194 | +
|
| 195 | +X, y = datasets.load_iris(return_X_y=True) |
| 196 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) |
| 197 | +
|
| 198 | +xg_train = xgb.DMatrix(X_train, label=y_train) |
| 199 | +xg_test = xgb.DMatrix(X_test, label=y_test) |
| 200 | +params = { |
| 201 | + 'objective': 'multi:softmax', |
| 202 | + 'num_class': 3, |
| 203 | +} |
| 204 | +n_estimators = 20 |
| 205 | +clf = xgb.train(params, xg_train, n_estimators) |
| 206 | +y_pred = clf.predict(xg_test, output_margin=True) |
| 207 | +# save the model in binary format |
| 208 | +clf.save_model('$model_filename') |
| 209 | +np.savetxt('$true_predictions_filename', y_pred, delimiter='\t') |
| 210 | +datasets.dump_svmlight_file(X_test, y_test, '$data_filename') |
| 211 | +""") |
| 212 | + |
| 213 | + go_template = Template(""" |
| 214 | +package main |
| 215 | +
|
| 216 | +import ( |
| 217 | + "github.com/dmitryikh/leaves" |
| 218 | + "github.com/dmitryikh/leaves/mat" |
| 219 | +) |
| 220 | +
|
| 221 | +func main() { |
| 222 | + test, err := mat.CSRMatFromLibsvmFile("$data_filename", 0, true) |
| 223 | + if err != nil { |
| 224 | + panic(err) |
| 225 | + } |
| 226 | +
|
| 227 | + model, err := leaves.XGEnsembleFromFile("$model_filename", false) |
| 228 | + if err != nil { |
| 229 | + panic(err) |
| 230 | + } |
| 231 | +
|
| 232 | + predictions := mat.DenseMatZero(test.Rows(), model.NOutputGroups()) |
| 233 | + err = model.PredictCSR(test.RowHeaders, test.ColIndexes, test.Values, predictions.Values, 0, 1) |
| 234 | + if err != nil { |
| 235 | + panic(err) |
| 236 | + } |
| 237 | +
|
| 238 | + err = predictions.ToCsvFile("$predictions_filename", "\t") |
| 239 | + if err != nil { |
| 240 | + panic(err) |
| 241 | + } |
| 242 | +} |
| 243 | +""") |
| 244 | + |
| 245 | + def compare(self): |
| 246 | + self.compare_matrices( |
| 247 | + matrix1_filename=self.files['true_predictions_filename'], |
| 248 | + matrix2_filename=self.files['predictions_filename'], |
| 249 | + tolerance=1e-6, |
| 250 | + max_number_of_mismatches_ratio=0.0 |
| 251 | + ) |
| 252 | + |
| 253 | + |
| 254 | +cases = [ |
| 255 | + LGBreastCancer, |
| 256 | + LGIrisRandomForest, |
| 257 | + XGIrisMulticlass, |
| 258 | +] |
0 commit comments