@@ -29,10 +29,6 @@ internal static class Program
29
29
30
30
private static string ModelPath = GetAbsolutePath ( ModelRelativePath ) ;
31
31
32
- private static string VendorIdEncoded = nameof ( VendorIdEncoded ) ;
33
- private static string RateCodeEncoded = nameof ( RateCodeEncoded ) ;
34
- private static string PaymentTypeEncoded = nameof ( PaymentTypeEncoded ) ;
35
-
36
32
static void Main ( string [ ] args ) //If args[0] == "svg" a vector-based chart will be created instead a .png chart
37
33
{
38
34
//Create ML Context with seed for repeteable/deterministic results
@@ -64,13 +60,13 @@ private static ITransformer BuildTrainEvaluateAndSaveModel(MLContext mlContext)
64
60
65
61
// STEP 2: Common data process configuration with pipeline data transformations
66
62
var dataProcessPipeline = mlContext . Transforms . CopyColumns ( outputColumnName : DefaultColumnNames . Label , inputColumnName : nameof ( TaxiTrip . FareAmount ) )
67
- . Append ( mlContext . Transforms . Categorical . OneHotEncoding ( outputColumnName : VendorIdEncoded , inputColumnName : nameof ( TaxiTrip . VendorId ) ) )
68
- . Append ( mlContext . Transforms . Categorical . OneHotEncoding ( outputColumnName : RateCodeEncoded , inputColumnName : nameof ( TaxiTrip . RateCode ) ) )
69
- . Append ( mlContext . Transforms . Categorical . OneHotEncoding ( outputColumnName : PaymentTypeEncoded , inputColumnName : nameof ( TaxiTrip . PaymentType ) ) )
63
+ . Append ( mlContext . Transforms . Categorical . OneHotEncoding ( outputColumnName : " VendorIdEncoded" , inputColumnName : nameof ( TaxiTrip . VendorId ) ) )
64
+ . Append ( mlContext . Transforms . Categorical . OneHotEncoding ( outputColumnName : " RateCodeEncoded" , inputColumnName : nameof ( TaxiTrip . RateCode ) ) )
65
+ . Append ( mlContext . Transforms . Categorical . OneHotEncoding ( outputColumnName : " PaymentTypeEncoded" , inputColumnName : nameof ( TaxiTrip . PaymentType ) ) )
70
66
. Append ( mlContext . Transforms . Normalize ( outputColumnName : nameof ( TaxiTrip . PassengerCount ) , mode : NormalizerMode . MeanVariance ) )
71
67
. Append ( mlContext . Transforms . Normalize ( outputColumnName : nameof ( TaxiTrip . TripTime ) , mode : NormalizerMode . MeanVariance ) )
72
68
. Append ( mlContext . Transforms . Normalize ( outputColumnName : nameof ( TaxiTrip . TripDistance ) , mode : NormalizerMode . MeanVariance ) )
73
- . Append ( mlContext . Transforms . Concatenate ( DefaultColumnNames . Features , VendorIdEncoded , RateCodeEncoded , PaymentTypeEncoded , nameof ( TaxiTrip . PassengerCount )
69
+ . Append ( mlContext . Transforms . Concatenate ( DefaultColumnNames . Features , " VendorIdEncoded" , " RateCodeEncoded" , " PaymentTypeEncoded" , nameof ( TaxiTrip . PassengerCount )
74
70
, nameof ( TaxiTrip . TripTime ) , nameof ( TaxiTrip . TripDistance ) ) ) ;
75
71
76
72
// (OPTIONAL) Peek data (such as 5 records) in training DataView after applying the ProcessPipeline's transformations into "Features"
0 commit comments