Skip to content

Commit e964c0b

Browse files
committed
New projects for London class
1 parent 9de3ae1 commit e964c0b

File tree

4 files changed

+20
-17
lines changed

4 files changed

+20
-17
lines changed

keras-cnn/wandb/settings

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
[default]
22
entity: mlclass
3-
project: digits-oct31
3+
project: digits-nov16
44
base_url: https://api.wandb.ai

keras-mlp/wandb/settings

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
[default]
2-
entity: qualcomm
3-
project: digits-oct25
2+
entity: mlclass
3+
project: digits-nov16
44
base_url: https://api.wandb.ai

keras-perceptron/wandb/settings

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
[default]
22
entity: mlclass
3-
project: digits-oct31
3+
project: digits-nov16
44
base_url: https://api.wandb.ai

simpsons-challenge/train.py

Lines changed: 16 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,8 @@
2121
# download the data if it doesn't exist
2222
if not os.path.exists("simpsons"):
2323
print("Downloading Simpsons dataset...")
24-
subprocess.check_output("curl https://storage.googleapis.com/wandb-production.appspot.com/mlclass/simpsons.tar.gz | tar xvz", shell=True)
24+
subprocess.check_output(
25+
"curl https://storage.googleapis.com/wandb-production.appspot.com/mlclass/simpsons.tar.gz | tar xvz", shell=True)
2526

2627
# this is the augmentation configuration we will use for training
2728
# see: https://keras.io/preprocessing/image/#imagedatagenerator-class
@@ -36,19 +37,20 @@
3637
# batches of augmented image data
3738
train_generator = train_datagen.flow_from_directory(
3839
'simpsons/train', # this is the target directory
39-
target_size=(config.img_size,config.img_size),
40+
target_size=(config.img_size, config.img_size),
4041
batch_size=config.batch_size)
4142

4243
# this is a similar generator, for validation data
4344
test_generator = test_datagen.flow_from_directory(
44-
'simpsons/test',
45-
target_size=(config.img_size,config.img_size),
46-
batch_size=config.batch_size)
45+
'simpsons/test',
46+
target_size=(config.img_size, config.img_size),
47+
batch_size=config.batch_size)
4748

4849
labels = list(test_generator.class_indices.keys())
4950

5051
model = Sequential()
51-
model.add(Conv2D(16, (3,3), input_shape=(config.img_size, config.img_size, 3), activation="relu"))
52+
model.add(Conv2D(16, (3, 3), input_shape=(
53+
config.img_size, config.img_size, 3), activation="relu"))
5254
model.add(MaxPooling2D())
5355
model.add(Flatten())
5456
model.add(Dropout(0.4))
@@ -57,10 +59,11 @@
5759
loss='categorical_crossentropy', metrics=['accuracy'])
5860

5961
model.fit_generator(
60-
train_generator,
61-
steps_per_epoch=len(train_generator),
62-
epochs=config.epochs,
63-
workers=4,
64-
validation_data=test_generator,
65-
callbacks=[WandbCallback(data_type="image", labels=labels, generator=test_generator, save_model=False)],
66-
validation_steps=len(test_generator))
62+
train_generator,
63+
steps_per_epoch=len(train_generator),
64+
epochs=config.epochs,
65+
workers=4,
66+
validation_data=test_generator,
67+
callbacks=[WandbCallback(
68+
data_type="image", labels=labels, generator=test_generator, save_model=False)],
69+
validation_steps=len(test_generator))

0 commit comments

Comments
 (0)