Skip to content

Commit 9c89ecb

Browse files
authored
update README.md for some missing links (oneapi-src#824)
* update README.md for some missing links * Update README.md * update README.md according to review
1 parent e2ab7d0 commit 9c89ecb

File tree

1 file changed

+10
-7
lines changed
  • AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_PerformanceAnalysis

1 file changed

+10
-7
lines changed

AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_PerformanceAnalysis/README.md

Lines changed: 10 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -18,14 +18,17 @@ This sample helps demonstrate AI workloads and deep learning models optimized by
1818
## Key implementation details
1919
### Jupyter Notebooks
2020

21-
These Jupyter notebooks help users analyze the performance benefit from using Intel Optimizations for Tensorflow with the oneDNN library.
21+
Jupyter notebooks help users analyze the performance benefit from using Intel Optimizations for Tensorflow with the oneDNN library.
22+
23+
>The notebooks are released with oneAPI AI Analytics Toolkit, and they are under the /opt/intel/oneapi/modelzoo/latest/models/docs/notebooks/perf_analysis folder.
24+
Users could also find the notebooks in Model Zoo Github by following the links in the below table.
2225

2326
| Analysis Type | Notebook | Notes|
2427
| ------ | ------ | ------ |
25-
|stock vs. Intel Tensorflow | 1. [benchmark_perf_comparison](benchmark_perf_comparison.ipynb) | Compare performance between Stock and Intel Tensorflow among different models |
26-
|^| 2. [benchmark_perf_timeline_analysis](benchmark_perf_timeline_analysis.ipynb) | Analyze the performance benefit from oneDNN among different layers by using Tensorflow Timeline |
27-
|fp32 vs. bf16 vs. int8 | 1. [benchmark_data_types_perf_comparison](benchmark_data_types_perf_comparison.ipynb) | Compare Model Zoo benchmark performance among different data types on Intel Optimizations for Tensorflow |
28-
|^| 2.[benchmark_data_types_perf_timeline_analysis](benchmark_data_types_perf_timeline_analysis.ipynb) | Analyze the bf16/int8 data type performance benefit from oneDNN among different layers by using Tensorflow Timeline |
28+
|stock vs. Intel Tensorflow | 1. [benchmark_perf_comparison](https://github.com/IntelAI/models/blob/master/docs/notebooks/perf_analysis/benchmark_perf_comparison.ipynb) | Compare performance between Stock and Intel Tensorflow among different models |
29+
|^| 2. [benchmark_perf_timeline_analysis](https://github.com/IntelAI/models/blob/master/docs/notebooks/perf_analysis/benchmark_perf_comparison.ipynb) | Analyze the performance benefit from oneDNN among different layers by using Tensorflow Timeline |
30+
|fp32 vs. bf16 vs. int8 | 1. [benchmark_data_types_perf_comparison](https://github.com/IntelAI/models/blob/master/docs/notebooks/perf_analysis/benchmark_data_types_perf_comparison.ipynb) | Compare Model Zoo benchmark performance among different data types on Intel Optimizations for Tensorflow |
31+
|^| 2.[benchmark_data_types_perf_timeline_analysis](https://github.com/IntelAI/models/blob/master/docs/notebooks/perf_analysis/benchmark_data_types_perf_timeline_analysis.ipynb) | Analyze the bf16/int8 data type performance benefit from oneDNN among different layers by using Tensorflow Timeline |
2932

3033

3134
## License
@@ -55,7 +58,7 @@ Third party program Licenses can be found here: [third-party-programs.txt](https
5558

5659
1. Create conda env: `$conda create -n stock-tensorflow python matplotlib ipykernel psutil pandas gitpython`
5760
2. Activate the created conda env: `$source activate stock-tensorflow.`
58-
3. Install stock Tensorflow with a specific version: `(stock-tensorflow) $pip install tensorflow==2.5.0`
61+
3. Install stock Tensorflow with a specific version: `(stock-tensorflow) $pip install tensorflow==2.6.0`
5962
4. Install extra needed package: `(stock-tensorflow) $pip install cxxfilt`
6063
5. Deactivate conda env: `(stock-tensorflow)$conda deactivate`
6164
6. Register the kernel to Jupyter NB: `$~/.conda/envs/stock-tensorflow/bin/python -m ipykernel install --user --name=stock-tensorflow`
@@ -85,7 +88,7 @@ Third party program Licenses can be found here: [third-party-programs.txt](https
8588
1. Create conda env: `$conda create -n stock-tensorflow python matplotlib ipykernel psutil pandas gitpython`
8689

8790
2. Activate the created conda env: `$conda activate stock-tensorflow`
88-
3. Install stock tensorflow with a specific version: `(stock-tensorflow) $pip install tensorflow==2.5.0`
91+
3. Install stock tensorflow with a specific version: `(stock-tensorflow) $pip install tensorflow==2.6.0`
8992
4. Install extra needed package: `(stock-tensorflow) $pip install cxxfilt`
9093
5. Deactivate conda env: `(stock-tensorflow)$conda deactivate`
9194
6. Register the kernel to Jupyter NB: `$~/anaconda3/envs/stock-tensorflow/bin/python -m ipykernel install --user --name=stock-tensorflow`

0 commit comments

Comments
 (0)