|
8 | 8 | // option. This file may not be copied, modified, or distributed
|
9 | 9 | // except according to those terms.
|
10 | 10 |
|
11 |
| -//! The Gamma distribution. |
| 11 | +//! The Gamma and derived distributions. |
12 | 12 |
|
13 | 13 | use rand::{Rng, Open01};
|
14 | 14 | use super::{IndependentSample, Sample, Exp};
|
@@ -169,6 +169,103 @@ impl IndependentSample<f64> for GammaLargeShape {
|
169 | 169 | }
|
170 | 170 | }
|
171 | 171 |
|
| 172 | +/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of |
| 173 | +/// freedom. |
| 174 | +/// |
| 175 | +/// For `k > 0` integral, this distribution is the sum of the squares |
| 176 | +/// of `k` independent standard normal random variables. For other |
| 177 | +/// `k`, this uses the equivalent characterisation `χ²(k) = Gamma(k/2, |
| 178 | +/// 2)`. |
| 179 | +/// |
| 180 | +/// # Example |
| 181 | +/// |
| 182 | +/// ```rust |
| 183 | +/// use std::rand; |
| 184 | +/// use std::rand::distributions::{ChiSquared, IndependentSample}; |
| 185 | +/// |
| 186 | +/// fn main() { |
| 187 | +/// let chi = ChiSquared::new(11.0); |
| 188 | +/// let v = chi.ind_sample(&mut rand::task_rng()); |
| 189 | +/// println!("{} is from a χ²(11) distribution", v) |
| 190 | +/// } |
| 191 | +/// ``` |
| 192 | +pub enum ChiSquared { |
| 193 | + // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1, |
| 194 | + // e.g. when alpha = 1/2 as it would be for this case, so special- |
| 195 | + // casing and using the definition of N(0,1)^2 is faster. |
| 196 | + priv DoFExactlyOne, |
| 197 | + priv DoFAnythingElse(Gamma) |
| 198 | +} |
| 199 | + |
| 200 | +impl ChiSquared { |
| 201 | + /// Create a new chi-squared distribution with degrees-of-freedom |
| 202 | + /// `k`. Fails if `k < 0`. |
| 203 | + pub fn new(k: f64) -> ChiSquared { |
| 204 | + if k == 1.0 { |
| 205 | + DoFExactlyOne |
| 206 | + } else { |
| 207 | + assert!(k > 0.0, "ChiSquared::new called with `k` < 0"); |
| 208 | + DoFAnythingElse(Gamma::new(0.5 * k, 2.0)) |
| 209 | + } |
| 210 | + } |
| 211 | +} |
| 212 | +impl Sample<f64> for ChiSquared { |
| 213 | + fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } |
| 214 | +} |
| 215 | +impl IndependentSample<f64> for ChiSquared { |
| 216 | + fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { |
| 217 | + match *self { |
| 218 | + DoFExactlyOne => { |
| 219 | + // k == 1 => N(0,1)^2 |
| 220 | + let norm = *rng.gen::<StandardNormal>(); |
| 221 | + norm * norm |
| 222 | + } |
| 223 | + DoFAnythingElse(ref g) => g.ind_sample(rng) |
| 224 | + } |
| 225 | + } |
| 226 | +} |
| 227 | + |
| 228 | +#[cfg(test)] |
| 229 | +mod test { |
| 230 | + use rand::*; |
| 231 | + use super::*; |
| 232 | + use iter::range; |
| 233 | + use option::{Some, None}; |
| 234 | + |
| 235 | + #[test] |
| 236 | + fn test_chi_squared_one() { |
| 237 | + let mut chi = ChiSquared::new(1.0); |
| 238 | + let mut rng = task_rng(); |
| 239 | + for _ in range(0, 1000) { |
| 240 | + chi.sample(&mut rng); |
| 241 | + chi.ind_sample(&mut rng); |
| 242 | + } |
| 243 | + } |
| 244 | + #[test] |
| 245 | + fn test_chi_squared_small() { |
| 246 | + let mut chi = ChiSquared::new(0.5); |
| 247 | + let mut rng = task_rng(); |
| 248 | + for _ in range(0, 1000) { |
| 249 | + chi.sample(&mut rng); |
| 250 | + chi.ind_sample(&mut rng); |
| 251 | + } |
| 252 | + } |
| 253 | + #[test] |
| 254 | + fn test_chi_squared_large() { |
| 255 | + let mut chi = ChiSquared::new(30.0); |
| 256 | + let mut rng = task_rng(); |
| 257 | + for _ in range(0, 1000) { |
| 258 | + chi.sample(&mut rng); |
| 259 | + chi.ind_sample(&mut rng); |
| 260 | + } |
| 261 | + } |
| 262 | + #[test] |
| 263 | + #[should_fail] |
| 264 | + fn test_log_normal_invalid_dof() { |
| 265 | + ChiSquared::new(-1.0); |
| 266 | + } |
| 267 | +} |
| 268 | + |
172 | 269 | #[cfg(test)]
|
173 | 270 | mod bench {
|
174 | 271 | use super::*;
|
|
0 commit comments