Skip to content

Commit afc029d

Browse files
authored
1 parent 3c11486 commit afc029d

File tree

8 files changed

+101
-100
lines changed

8 files changed

+101
-100
lines changed

docs/_config.yml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,7 @@ kramdown:
3838
exclude:
3939
- jekyllbook
4040
- en/index.md
41+
- vendor
4142

4243
################################### English ####################################
4344
prologues:

docs/en/week11/11-1.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ There are variations in ReLU. The Random ReLU (RReLU) is defined as follows.
3030

3131
$$
3232
\text{RReLU}(x) = \begin{cases}
33-
x, & \text{if $x \geq 0$}\\
33+
x, & \text{if} x \geq 0\\
3434
ax, & \text{otherwise}
3535
\end{cases}
3636
$$
@@ -47,7 +47,7 @@ Note that for RReLU, $a$ is a random variable that keeps samplings in a given ra
4747

4848
$$
4949
\text{LeakyReLU}(x) = \begin{cases}
50-
x, & \text{if $x \geq 0$}\\
50+
x, & \text{if} x \geq 0\\
5151
a_\text{negative slope}x, & \text{otherwise}
5252
\end{cases}
5353
$$
@@ -66,7 +66,7 @@ LeakyReLU is necessary for skinny network, which is almost impossible to get gra
6666

6767
$$
6868
\text{PReLU}(x) = \begin{cases}
69-
x, & \text{if $x \geq 0$}\\
69+
x, & \text{if} x \geq 0\\
7070
ax, & \text{otherwise}
7171
\end{cases}
7272
$$
@@ -209,8 +209,8 @@ It is similar to the Sigmoid function but gets to the asymptote slowly and allev
209209

210210
$$
211211
\text{HardTanh}(x) = \begin{cases}
212-
1, & \text{if $x > 1$}\\
213-
-1, & \text{if $x < -1$}\\
212+
1, & \text{if} x > 1\\
213+
-1, & \text{if} x < -1\\
214214
x, & \text{otherwise}
215215
\end{cases}
216216
$$
@@ -229,7 +229,7 @@ It works surprisingly well especially when weights are kept within the small val
229229

230230
$$
231231
y = \begin{cases}
232-
x, & \text{if $x > \text{threshold}$}\\
232+
x, & \text{if} x > \text{threshold}\\
233233
v, & \text{otherwise}
234234
\end{cases}
235235
$$
@@ -255,8 +255,8 @@ It is rarely used except for sparse coding to compute the value of the latent va
255255

256256
$$
257257
\text{SoftShrinkage}(x) = \begin{cases}
258-
x - \lambda, & \text{if $x > \lambda$}\\
259-
x + \lambda, & \text{if $x < -\lambda$}\\
258+
x - \lambda, & \text{if} x > \lambda\\
259+
x + \lambda, & \text{if} x < -\lambda\\
260260
0, & \text{otherwise}
261261
\end{cases}
262262
$$
@@ -273,8 +273,8 @@ This basically shrinks the variable by a constant towards 0, and forces to 0 if
273273

274274
$$
275275
\text{HardShrinkage}(x) = \begin{cases}
276-
x, & \text{if $x > \lambda$}\\
277-
x, & \text{if $x < -\lambda$}\\
276+
x, & \text{if} x > \lambda\\
277+
x, & \text{if} x < -\lambda\\
278278
0, & \text{otherwise}
279279
\end{cases}
280280
$$

docs/en/week13/13-2.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -156,7 +156,7 @@ Matrix representation being,
156156

157157
$$h^{l+1} = \eta(\boldsymbol{D}^{-1}\boldsymbol{A}h^{l}\boldsymbol{W}^{l})$$
158158

159-
where, \boldsymbol{A} has the dimensions $n \times n$, $h^{l}$ has dimensions $n \times d$ and $W^{l}$ has $d \times d$, which results in a $n \times d$ $h^{l+1}$ matrix.
159+
where, $\boldsymbol{A}$ has the dimensions $n \times n$, $h^{l}$ has dimensions $n \times d$ and $W^{l}$ has $d \times d$, which results in a $n \times d$ $h^{l+1}$ matrix.
160160

161161
And the vectorial representation being,
162162

docs/es/week11/11-1.md

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -62,15 +62,15 @@ Hay variaciones de la ReLU. La ReLU Aleatoria (RReLU, por sus siglas en inglés)
6262

6363
<!--$$
6464
\text{RReLU}(x) = \begin{cases}
65-
x, & \text{if $x \geq 0$}\\
65+
x, & \text{if} x \geq 0\\
6666
ax, & \text{otherwise}
6767
\end{cases}
6868
$$
6969
-->
7070

7171
$$
7272
\text{RReLU}(x) = \begin{cases}
73-
x, & \text{si $x \geq 0$}\\
73+
x, & \text{si} x \geq 0\\
7474
ax, & \text{en otro caso}
7575
\end{cases}
7676
$$
@@ -100,15 +100,15 @@ Recuerda que para la RReLU, $a$ es una variable aleatoria que se muestrea consta
100100

101101
<!--$$
102102
\text{LeakyReLU}(x) = \begin{cases}
103-
x, & \text{if $x \geq 0$}\\
103+
x, & \text{if} x \geq 0\\
104104
a_\text{negative slope}x, & \text{otherwise}
105105
\end{cases}
106106
$$
107107
-->
108108

109109
$$
110110
\text{LeakyReLU}(x) = \begin{cases}
111-
x, & \text{si $x \geq 0$}\\
111+
x, & \text{si} x \geq 0\\
112112
a_\text{pendiente negativa}x, & \text{en otro caso}
113113
\end{cases}
114114
$$
@@ -143,15 +143,15 @@ La LeakyReLU es necesaria para las redes neuronales delgadas, en las que es casi
143143

144144
<!--$$
145145
\text{PReLU}(x) = \begin{cases}
146-
x, & \text{if $x \geq 0$}\\
146+
x, & \text{if} x \geq 0\\
147147
ax, & \text{otherwise}
148148
\end{cases}
149149
$$
150150
-->
151151

152152
$$
153153
\text{PReLU}(x) = \begin{cases}
154-
x, & \text{si $x \geq 0$}\\
154+
x, & \text{si} x \geq 0\\
155155
ax, & \text{en otro caso}
156156
\end{cases}
157157
$$
@@ -469,17 +469,17 @@ Es similar a la función Sigmoide pero se acerca lentamente a la asíntota y has
469469

470470
<!--$$
471471
\text{HardTanh}(x) = \begin{cases}
472-
1, & \text{if $x > 1$}\\
473-
-1, & \text{if $x < -1$}\\
472+
1, & \text{if} x > 1\\
473+
-1, & \text{if} x < -1\\
474474
x, & \text{otherwise}
475475
\end{cases}
476476
$$
477477
-->
478478

479479
$$
480480
\text{Tanh dura}(x) = \begin{cases}
481-
1, & \text{si $x > 1$}\\
482-
-1, & \text{si $x < -1$}\\
481+
1, & \text{si} x > 1\\
482+
-1, & \text{si} x < -1\\
483483
x, & \text{en otro caso}
484484
\end{cases}
485485
$$
@@ -514,15 +514,15 @@ Funciona sorprendentemente bien, en especial cuando los pesos se mantienen dentr
514514

515515
<!--$$
516516
y = \begin{cases}
517-
x, & \text{if $x > \text{threshold}$}\\
517+
x, & \text{if} x > \text{threshold}\\
518518
v, & \text{otherwise}
519519
\end{cases}
520520
$$
521521
-->
522522

523523
$$
524524
y = \begin{cases}
525-
x, & \text{si $x > \text{umbral}$}\\
525+
x, & \text{si} x > \text{umbral}\\
526526
v, & \text{en otro caso}
527527
\end{cases}
528528
$$
@@ -573,17 +573,17 @@ Se usa muy raramente, con la excepción de la codificación dispersa, donde se u
573573

574574
<!--$$
575575
\text{SoftShrinkage}(x) = \begin{cases}
576-
x - \lambda, & \text{if $x > \lambda$}\\
577-
x + \lambda, & \text{if $x < -\lambda$}\\
576+
x - \lambda, & \text{if} x > \lambda\\
577+
x + \lambda, & \text{if} x < -\lambda\\
578578
0, & \text{otherwise}
579579
\end{cases}
580580
$$
581581
-->
582582

583583
$$
584584
\text{Encogimiento suave}(x) = \begin{cases}
585-
x - \lambda, & \text{si $x > \lambda$}\\
586-
x + \lambda, & \text{si $x < -\lambda$}\\
585+
x - \lambda, & \text{si} x > \lambda\\
586+
x + \lambda, & \text{si} x < -\lambda\\
587587
0, & \text{en otro caso}
588588
\end{cases}
589589
$$
@@ -613,17 +613,17 @@ Esta función básicamente encoge la variable por un valor constante hacía 0, y
613613

614614
<!--$$
615615
\text{HardShrinkage}(x) = \begin{cases}
616-
x, & \text{if $x > \lambda$}\\
617-
x, & \text{if $x < -\lambda$}\\
616+
x, & \text{if} x > \lambda\\
617+
x, & \text{if} x < -\lambda\\
618618
0, & \text{otherwise}
619619
\end{cases}
620620
$$
621621
-->
622622

623623
$$
624624
\text{EncogimientoDuro}(x) = \begin{cases}
625-
x, & \text{si $x > \lambda$}\\
626-
x, & \text{si $x < -\lambda$}\\
625+
x, & \text{si} x > \lambda\\
626+
x, & \text{si} x < -\lambda\\
627627
0, & \text{en otro caso}
628628
\end{cases}
629629
$$

docs/fr/week11/11-1.md

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ There are variations in ReLU. The Random ReLU (RReLU) is defined as follows.
5353
5454
$$
5555
\text{RReLU}(x) = \begin{cases}
56-
x, & \text{if $x \geq 0$}\\
56+
x, & \text{if} x \geq 0\\
5757
ax, & \text{otherwise}
5858
\end{cases}
5959
$$
@@ -73,7 +73,7 @@ Il y a des variations dans ReLU. Le ReLU aléatoire (RReLU) est défini comme su
7373

7474
$$
7575
\text{RReLU}(x) = \begin{cases}
76-
x, & \text{if $x \geq 0$}\\
76+
x, & \text{if} x \geq 0\\
7777
ax, & \text{otherwise}
7878
\end{cases}
7979
$$
@@ -93,7 +93,7 @@ Notez que pour RReLU, $a$ est une variable aléatoire qui maintient les prélèv
9393
9494
$$
9595
\text{LeakyReLU}(x) = \begin{cases}
96-
x, & \text{if $x \geq 0$}\\
96+
x, & \text{if} x \geq 0\\
9797
a_\text{negative slope}x, & \text{otherwise}
9898
\end{cases}
9999
$$
@@ -112,7 +112,7 @@ LeakyReLU is necessary for skinny network, which is almost impossible to get gra
112112

113113
$$
114114
\text{LeakyReLU}(x) = \begin{cases}
115-
x, & \text{if $x \geq 0$}\\
115+
x, & \text{if} x \geq 0\\
116116
a_\text{negative slope}x, & \text{otherwise}
117117
\end{cases}
118118
$$
@@ -131,7 +131,7 @@ Avec LeakyReLU, le réseau peut toujours avoir des gradients même si nous somme
131131
132132
$$
133133
\text{PReLU}(x) = \begin{cases}
134-
x, & \text{if $x \geq 0$}\\
134+
x, & \text{if} x \geq 0\\
135135
ax, & \text{otherwise}
136136
\end{cases}
137137
$$
@@ -150,7 +150,7 @@ The above activation functions (*i.e.* ReLU, LeakyReLU, PReLU) are scale-invaria
150150

151151
$$
152152
\text{PReLU}(x) = \begin{cases}
153-
x, & \text{if $x \geq 0$}\\
153+
x, & \text{if} x \geq 0\\
154154
ax, & \text{otherwise}
155155
\end{cases}
156156
$$
@@ -422,8 +422,8 @@ Elle est similaire à la fonction Sigmoïde mais arrive lentement à l'asymptote
422422
423423
$$
424424
\text{HardTanh}(x) = \begin{cases}
425-
1, & \text{if $x > 1$}\\
426-
-1, & \text{if $x < -1$}\\
425+
1, & \text{if} x > 1\\
426+
-1, & \text{if} x < -1\\
427427
x, & \text{otherwise}
428428
\end{cases}
429429
$$
@@ -442,8 +442,8 @@ It works surprisingly well especially when weights are kept within the small val
442442

443443
$$
444444
\text{HardTanh}(x) = \begin{cases}
445-
1, & \text{if $x > 1$}\\
446-
-1, & \text{if $x < -1$}\\
445+
1, & \text{if} x > 1\\
446+
-1, & \text{if} x < -1\\
447447
x, & \text{otherwise}
448448
\end{cases}
449449
$$
@@ -464,7 +464,7 @@ Elle fonctionne étonnamment bien, surtout lorsque les poids sont maintenus dans
464464
465465
$$
466466
y = \begin{cases}
467-
x, & \text{if $x > \text{threshold}$}\\
467+
x, & \text{if} x > \text{threshold}\\
468468
v, & \text{otherwise}
469469
\end{cases}
470470
$$
@@ -477,7 +477,7 @@ It is rarely used because we cannot propagate the gradient back. And it is also
477477

478478
$$
479479
y = \begin{cases}
480-
x, & \text{if $x > \text{threshold}$}\\
480+
x, & \text{if} x > \text{threshold}\\
481481
v, & \text{otherwise}
482482
\end{cases}
483483
$$
@@ -519,8 +519,8 @@ Elle est rarement utilisée sauf pour les codages épars afin de calculer la val
519519
520520
$$
521521
\text{SoftShrinkage}(x) = \begin{cases}
522-
x - \lambda, & \text{if $x > \lambda$}\\
523-
x + \lambda, & \text{if $x < -\lambda$}\\
522+
x - \lambda, & \text{if} x > \lambda\\
523+
x + \lambda, & \text{if} x < -\lambda\\
524524
0, & \text{otherwise}
525525
\end{cases}
526526
$$
@@ -537,8 +537,8 @@ This basically shrinks the variable by a constant towards 0, and forces to 0 if
537537

538538
$$
539539
\text{SoftShrinkage}(x) = \begin{cases}
540-
x - \lambda, & \text{if $x > \lambda$}\\
541-
x + \lambda, & \text{if $x < -\lambda$}\\
540+
x - \lambda, & \text{if} x > \lambda\\
541+
x + \lambda, & \text{if} x < -\lambda\\
542542
0, & \text{otherwise}
543543
\end{cases}
544544
$$
@@ -556,8 +556,8 @@ Essentiellement, cela réduit la variable d'une constante vers 0 et la force à
556556
557557
$$
558558
\text{HardShrinkage}(x) = \begin{cases}
559-
x, & \text{if $x > \lambda$}\\
560-
x, & \text{if $x < -\lambda$}\\
559+
x, & \text{if} x > \lambda\\
560+
x, & \text{if} x < -\lambda\\
561561
0, & \text{otherwise}
562562
\end{cases}
563563
$$
@@ -574,8 +574,8 @@ It is rarely used except for sparse coding.
574574

575575
$$
576576
\text{HardShrinkage}(x) = \begin{cases}
577-
x, & \text{if $x > \lambda$}\\
578-
x, & \text{if $x < -\lambda$}\\
577+
x, & \text{if} x > \lambda\\
578+
x, & \text{if} x < -\lambda\\
579579
0, & \text{otherwise}
580580
\end{cases}
581581
$$

0 commit comments

Comments
 (0)