Open
Description
Hello, I tried to replicate some experiment (from RapidBenthos on github) using segment-anything and I get a runtime error "RuntimeError: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3"
I have no clue about the root cause of that error and I would like some explanations about what is going on in that stack trace to know in which direction to look.
the code is using segment-anything-py==1.0 through segment-geospatial==0.9.0
File [~/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/automatic_mask_generator.py:163](http://127.0.0.1:8888/lab/tree/Git/RapidBenthos/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/automatic_mask_generator.py#line=162), in SamAutomaticMaskGenerator.generate(self, image)
138 """
139 Generates masks for the given image.
140
(...)
159 the mask, given in XYWH format.
160 """
162 # Generate masks
--> 163 mask_data = self._generate_masks(image)
165 # Filter small disconnected regions and holes in masks
166 if self.min_mask_region_area > 0:
File [~/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/automatic_mask_generator.py:206](http://127.0.0.1:8888/lab/tree/Git/RapidBenthos/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/automatic_mask_generator.py#line=205), in SamAutomaticMaskGenerator._generate_masks(self, image)
204 data = MaskData()
205 for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
--> 206 crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
207 data.cat(crop_data)
209 # Remove duplicate masks between crops
File [~/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/automatic_mask_generator.py:236](http://127.0.0.1:8888/lab/tree/Git/RapidBenthos/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/automatic_mask_generator.py#line=235), in SamAutomaticMaskGenerator._process_crop(self, image, crop_box, crop_layer_idx, orig_size)
234 cropped_im = image[y0:y1, x0:x1, :]
235 cropped_im_size = cropped_im.shape[:2]
--> 236 self.predictor.set_image(cropped_im)
238 # Get points for this crop
239 points_scale = np.array(cropped_im_size)[None, ::-1]
File [~/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/predictor.py:58](http://127.0.0.1:8888/lab/tree/Git/RapidBenthos/Git/RapidBenthos/venv/lib/python3.12/site-packages/segment_anything/predictor.py#line=57), in SamPredictor.set_image(self, image, image_format)
56 input_image = self.transform.apply_image(image)
57 input_image_torch = torch.as_tensor(input_image, device=self.device)
---> 58 input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
60 self.set_torch_image(input_image_torch, image.shape[:2])
RuntimeError: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3
Metadata
Metadata
Assignees
Labels
No labels