@@ -824,10 +824,8 @@ <h1 id="_准备开始" class="sect0">准备开始</h1>
824
824
< div class ="sect1 ">
825
825
< h2 id ="_些许简单数学 "> 1. 些许简单数学</ h2 >
826
826
< div class ="sectionbody ">
827
- < hr >
828
827
< div class ="paragraph text-center ">
829
- < p > < a href ="#_前言 "> < span class ="icon "> < i class ="fa fa-arrow-circle-left "> </ i > </ span > </ a > |
830
- < a href ="#_简单时钟系统 "> < span class ="icon "> < i class ="fa fa-arrow-circle-right "> </ i > </ span > </ a > </ p >
828
+ < p > < a href ="#_前言 "> < span class ="icon "> < i class ="fa fa-arrow-circle-left "> </ i > </ span > </ a > < a href ="#_简单时钟系统 "> < span class ="icon "> < i class ="fa fa-arrow-circle-right "> </ i > </ span > </ a > </ p >
831
829
</ div >
832
830
< hr >
833
831
< div class ="sect2 ">
@@ -895,14 +893,12 @@ <h3 id="_命题逻辑">1.1. 命题逻辑</h3>
895
893
< col style ="width: 33.3333%; ">
896
894
< col style ="width: 33.3334%; ">
897
895
</ colgroup >
898
- < thead >
896
+ < tbody >
899
897
< tr >
900
- < th class ="tableblock halign-left valign-top "> < em > F </ em > </ th >
901
- < th class ="tableblock halign-left valign-top "> < em > G </ em > </ th >
902
- < th class ="tableblock halign-left valign-top "> < em > F </ em > ⇒ < em > G </ em > </ th >
898
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(F\) </ p > </ td >
899
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(G\) </ p > </ td >
900
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(F \implies G\) </ p > </ td >
903
901
</ tr >
904
- </ thead >
905
- < tbody >
906
902
< tr >
907
903
< td class ="tableblock halign-left valign-top "> < p class ="tableblock "> 真</ p > </ td >
908
904
< td class ="tableblock halign-left valign-top "> < p class ="tableblock "> 真</ p > </ td >
@@ -948,24 +944,22 @@ <h3 id="_命题逻辑">1.1. 命题逻辑</h3>
948
944
</ div >
949
945
< table class ="tableblock frame-all grid-all " style ="width: 90%; ">
950
946
< colgroup >
951
- < col style ="width: 7.6923 %; ">
952
- < col style ="width: 7.6923 %; ">
953
- < col style ="width: 15.3846 %; ">
954
- < col style ="width: 15.3846 %; ">
955
- < col style ="width: 23.0769 %; ">
956
- < col style ="width: 30.7693 %; ">
947
+ < col style ="width: 8.3333 %; ">
948
+ < col style ="width: 8.3333 %; ">
949
+ < col style ="width: 16.6666 %; ">
950
+ < col style ="width: 16.6666 %; ">
951
+ < col style ="width: 16.6666 %; ">
952
+ < col style ="width: 33.3336 %; ">
957
953
</ colgroup >
958
- < thead >
954
+ < tbody >
959
955
< tr >
960
- < th class ="tableblock halign-left valign-top "> < em > F </ em > </ th >
961
- < th class ="tableblock halign-left valign-top "> < em > G </ em > </ th >
962
- < th class ="tableblock halign-left valign-top "> < em > F </ em > ⇒ < em > G </ em > </ th >
963
- < th class ="tableblock halign-left valign-top "> ¬ < em > F </ em > </ th >
964
- < th class ="tableblock halign-left valign-top "> ¬ < em > F </ em > \/ < em > G </ em > </ th >
965
- < th class ="tableblock halign-left valign-top "> ( < em > F </ em > ⇒ < em > G </ em > ) & equiv; ¬ < em > F </ em > \/ < em > G </ em > </ th >
956
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(F\) </ p > </ td >
957
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(G\) </ p > </ td >
958
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(F \implies G\) </ p > </ td >
959
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(\neg F\) </ p > </ td >
960
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \(\neg F \vee G\) </ p > </ td >
961
+ < td class ="tableblock halign-left valign-top "> < p class =" tableblock " > \((F \implies G) \ equiv \neg F \vee G\) </ p > </ td >
966
962
</ tr >
967
- </ thead >
968
- < tbody >
969
963
< tr >
970
964
< td class ="tableblock halign-left valign-top "> < p class ="tableblock "> 真</ p > </ td >
971
965
< td class ="tableblock halign-left valign-top "> < p class ="tableblock "> 真</ p > </ td >
0 commit comments