Skip to content

Eval bug: llama-speculative core dump with Qwen3, GGML_ASSERT(batch.n_tokens > 0) failed #13433

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
jagusztinl opened this issue May 10, 2025 · 0 comments

Comments

@jagusztinl
Copy link

Name and Version

version: 5307 (814f795)
built with cc (Ubuntu 14.2.0-4ubuntu2~24.04) 14.2.0 for aarch64-linux-gnu

Operating systems

Linux

GGML backends

BLAS

Hardware

Cobalt-100 Azure ARM

Models

Qwen3-4B-128K-Q4* tried all

Problem description & steps to reproduce

../build/bin/llama-speculative -m Qwen3-4B-128K-IQ4_XS.gguf -md Qwen3-4B-128K-Q4_0.gguf

First Bad Commit

No response

Relevant log output

build: 5307 (814f795e) with cc (Ubuntu 14.2.0-4ubuntu2~24.04) 14.2.0 for aarch64-linux-gnu
llama_model_loader: loaded meta data with 44 key-value pairs and 398 tensors from Qwen3-4B-128K-IQ4_XS.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-4B-128K
llama_model_loader: - kv   3:                           general.finetune str              = 128k
llama_model_loader: - kv   4:                           general.basename str              = Qwen3-4B-128K
llama_model_loader: - kv   5:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   6:                         general.size_label str              = 4B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                       general.license.link str              = https://huggingface.co/Qwen/Qwen3-4B/...
llama_model_loader: - kv   9:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv  10:                   general.base_model.count u32              = 1
llama_model_loader: - kv  11:                  general.base_model.0.name str              = Qwen3 4B
llama_model_loader: - kv  12:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  13:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen3-4B
llama_model_loader: - kv  14:                               general.tags arr[str,2]       = ["unsloth", "text-generation"]
llama_model_loader: - kv  15:                          qwen3.block_count u32              = 36
llama_model_loader: - kv  16:                       qwen3.context_length u32              = 131072
llama_model_loader: - kv  17:                     qwen3.embedding_length u32              = 2560
llama_model_loader: - kv  18:                  qwen3.feed_forward_length u32              = 9728
llama_model_loader: - kv  19:                 qwen3.attention.head_count u32              = 32
llama_model_loader: - kv  20:              qwen3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  21:                       qwen3.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  22:     qwen3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  23:                 qwen3.attention.key_length u32              = 128
llama_model_loader: - kv  24:               qwen3.attention.value_length u32              = 128
llama_model_loader: - kv  25:                    qwen3.rope.scaling.type str              = yarn
llama_model_loader: - kv  26:                  qwen3.rope.scaling.factor f32              = 4.000000
llama_model_loader: - kv  27: qwen3.rope.scaling.original_context_length u32              = 32768
llama_model_loader: - kv  28:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  29:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  30:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  31:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  32:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  33:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  34:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  35:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  36:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  37:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  38:               general.quantization_version u32              = 2
llama_model_loader: - kv  39:                          general.file_type u32              = 30
llama_model_loader: - kv  40:                      quantize.imatrix.file str              = Qwen3-4B-128K-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv  41:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-4B-128K.txt
llama_model_loader: - kv  42:             quantize.imatrix.entries_count i32              = 252
llama_model_loader: - kv  43:              quantize.imatrix.chunks_count i32              = 10
llama_model_loader: - type  f32:  145 tensors
llama_model_loader: - type q5_K:   36 tensors
llama_model_loader: - type q6_K:    1 tensors
llama_model_loader: - type iq4_xs:  216 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = IQ4_XS - 4.25 bpw
print_info: file size   = 2.11 GiB (4.50 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 2560
print_info: n_layer          = 36
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 9728
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = yarn
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 0.25
print_info: n_ctx_orig_yarn  = 32768
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 4B
print_info: model params     = 4.02 B
print_info: general.name     = Qwen3-4B-128K
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151643 '<|endoftext|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors:   CPU_Mapped model buffer size =  2159.88 MiB
.......................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 0.25
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.58 MiB
llama_kv_cache_unified: kv_size = 4096, type_k = 'f16', type_v = 'f16', n_layer = 36, can_shift = 1, padding = 32
llama_kv_cache_unified:        CPU KV buffer size =   576.00 MiB
llama_kv_cache_unified: KV self size  =  576.00 MiB, K (f16):  288.00 MiB, V (f16):  288.00 MiB
llama_context:        CPU compute buffer size =   301.75 MiB
llama_context: graph nodes  = 1374
llama_context: graph splits = 578 (with bs=512), 1 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_model_loader: loaded meta data with 44 key-value pairs and 398 tensors from Qwen3-4B-128K-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-4B-128K
llama_model_loader: - kv   3:                           general.finetune str              = 128k
llama_model_loader: - kv   4:                           general.basename str              = Qwen3-4B-128K
llama_model_loader: - kv   5:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   6:                         general.size_label str              = 4B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                       general.license.link str              = https://huggingface.co/Qwen/Qwen3-4B/...
llama_model_loader: - kv   9:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv  10:                   general.base_model.count u32              = 1
llama_model_loader: - kv  11:                  general.base_model.0.name str              = Qwen3 4B
llama_model_loader: - kv  12:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  13:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen3-4B
llama_model_loader: - kv  14:                               general.tags arr[str,2]       = ["unsloth", "text-generation"]
llama_model_loader: - kv  15:                          qwen3.block_count u32              = 36
llama_model_loader: - kv  16:                       qwen3.context_length u32              = 131072
llama_model_loader: - kv  17:                     qwen3.embedding_length u32              = 2560
llama_model_loader: - kv  18:                  qwen3.feed_forward_length u32              = 9728
llama_model_loader: - kv  19:                 qwen3.attention.head_count u32              = 32
llama_model_loader: - kv  20:              qwen3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  21:                       qwen3.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  22:     qwen3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  23:                 qwen3.attention.key_length u32              = 128
llama_model_loader: - kv  24:               qwen3.attention.value_length u32              = 128
llama_model_loader: - kv  25:                    qwen3.rope.scaling.type str              = yarn
llama_model_loader: - kv  26:                  qwen3.rope.scaling.factor f32              = 4.000000
llama_model_loader: - kv  27: qwen3.rope.scaling.original_context_length u32              = 32768
llama_model_loader: - kv  28:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  29:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  30:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  31:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  32:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  33:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  34:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  35:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  36:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  37:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  38:               general.quantization_version u32              = 2
llama_model_loader: - kv  39:                          general.file_type u32              = 2
llama_model_loader: - kv  40:                      quantize.imatrix.file str              = Qwen3-4B-128K-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv  41:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-4B-128K.txt
llama_model_loader: - kv  42:             quantize.imatrix.entries_count i32              = 252
llama_model_loader: - kv  43:              quantize.imatrix.chunks_count i32              = 10
llama_model_loader: - type  f32:  145 tensors
llama_model_loader: - type q4_0:  248 tensors
llama_model_loader: - type q4_1:    4 tensors
llama_model_loader: - type q6_K:    1 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_0
print_info: file size   = 2.21 GiB (4.71 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 2560
print_info: n_layer          = 36
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 9728
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = yarn
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 0.25
print_info: n_ctx_orig_yarn  = 32768
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 4B
print_info: model params     = 4.02 B
print_info: general.name     = Qwen3-4B-128K
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151643 '<|endoftext|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors:   CPU_Mapped model buffer size =  2246.67 MiB
load_tensors: CPU_KLEIDIAI model buffer size =  1895.62 MiB
........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 0.25
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.58 MiB
llama_kv_cache_unified: kv_size = 4096, type_k = 'f16', type_v = 'f16', n_layer = 36, can_shift = 1, padding = 32
llama_kv_cache_unified:        CPU KV buffer size =   576.00 MiB
llama_kv_cache_unified: KV self size  =  576.00 MiB, K (f16):  288.00 MiB, V (f16):  288.00 MiB
llama_context:        CPU compute buffer size =   301.75 MiB
llama_context: graph nodes  = 1374
llama_context: graph splits = 82 (with bs=512), 1 (with bs=1)
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
/home/alerant/llama.cpp/src/llama-batch.cpp:282: GGML_ASSERT(batch.n_tokens > 0) failed


../build/bin/llama-speculative(+0x1bfcd4)[0xc69700a3fcd4]
../build/bin/llama-speculative(+0x1bfe9c)[0xc69700a3fe9c]
../build/bin/llama-speculative(+0xf15bc)[0xc697009715bc]
../build/bin/llama-speculative(+0xfc234)[0xc6970097c234]
../build/bin/llama-speculative(+0x22976c)[0xc69700aa976c]
../build/bin/llama-speculative(+0x224f0)[0xc697008a24f0]
/lib/aarch64-linux-gnu/libc.so.6(+0x284c4)[0xf5652a3d84c4]
/lib/aarch64-linux-gnu/libc.so.6(__libc_start_main+0x98)[0xf5652a3d8598]
../build/bin/llama-speculative(+0x2b3f0)[0xc697008ab3f0]
Aborted (core dumped)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant