We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
llama-server --version load_backend: loaded RPC backend from D:\AI\app\llama.cpp\ggml-rpc.dll ggml_vulkan: Found 1 Vulkan devices: ggml_vulkan: 0 = AMD Radeon RX 6600M (AMD proprietary driver) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none load_backend: loaded Vulkan backend from D:\AI\app\llama.cpp\ggml-vulkan.dll load_backend: loaded CPU backend from D:\AI\app\llama.cpp\ggml-cpu-haswell.dll version: 5342 (0208355) built with MSVC 19.43.34808.0 for x64
Windows
Vulkan
AMD Ryzen 7 5800H/AMD Radeon RX 6600M
https://www.modelscope.cn/models/bartowski/Qwen_Qwen2.5-VL-7B-Instruct-GGUF/Qwen_Qwen2.5-VL-7B-Instruct-Q5_K_S.gguf 和https://www.modelscope.cn/models/bartowski/Qwen_Qwen2.5-VL-7B-Instruct-GGUF/mmproj-Qwen_Qwen2.5-VL-7B-Instruct-bf16.gguf 也试过:https://www.modelscope.cn/models/ggml-org/Qwen2.5-VL-7B-Instruct-GGUF/Qwen2.5-VL-7B-Instruct-Q4_K_M.gguf 和 https://www.modelscope.cn/models/ggml-org/Qwen2.5-VL-7B-Instruct-GGUF/mmproj-Qwen2.5-VL-7B-Instruct-f16.gguf
Qwen2.5-VL-7B-Instruct 在做图像识别时:分辨率为328409,没有问题;分辨率为1242881 时 模型会崩溃,但是如果在加载模型的参数中添加--no-mmproj-offload,可以正常工作(很慢)。Gemma-3-4B、12B都没有问题。
从llama-server可以支持多模态开始就存在该错误
PS D:\AI> ./llama-swap -config config.yaml llama-swap listening on :8080 "20.Qwen2.5-VL-7B-Instruct": cmd: > llama-server --host 0.0.0.0 --port ${PORT} --model models/Bartowski/Qwen2.5-VL-7B-Instruct-GGUF/Qwen2.5-VL-7B-Instruct-Q5_K_S.gguf --mmproj models/Bartowski/Qwen2.5-VL-7B-Instruct-GGUF/mmproj-Qwen2.5-VL-7B-Instruct-f16.gguf -ngl 99 proxy: # list of model name aliases this llama.cpp instance can serve aliases: - Qwen2.5-VL-7B-Instruct # `useModelName` overrides the model name in the request # and sends a specific name to the upstream server useModelName: "Qwen2.5-VL-7B-Instruct" # check this path for a HTTP 200 response for the server to be ready checkEndpoint: /health load_backend: loaded RPC backend from D:\AI\app\llama.cpp\ggml-rpc.dll ggml_vulkan: Found 1 Vulkan devices: ggml_vulkan: 0 = AMD Radeon RX 6600M (AMD proprietary driver) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none load_backend: loaded Vulkan backend from D:\AI\app\llama.cpp\ggml-vulkan.dll load_backend: loaded CPU backend from D:\AI\app\llama.cpp\ggml-cpu-haswell.dll build: 5342 (0208355f) with MSVC 19.43.34808.0 for x64 system info: n_threads = 8, n_threads_batch = 8, total_threads = 16 system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | main: binding port with default address family main: HTTP server is listening, hostname: 0.0.0.0, port: 8090, http threads: 15 main: loading model srv load_model: loading model 'models/Bartowski/Qwen2.5-VL-7B-Instruct-GGUF/Qwen2.5-VL-7B-Instruct-Q5_K_S.gguf' llama_model_load_from_file_impl: using device Vulkan0 (AMD Radeon RX 6600M) - 8176 MiB free llama_model_loader: loaded meta data with 31 key-value pairs and 339 tensors from models/Bartowski/Qwen2.5-VL-7B-Instruct-GGUF/Qwen2.5-VL-7B-Instruct-Q5_K_S.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen2vl llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen2.5 VL 7B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Qwen2.5-VL llama_model_loader: - kv 5: general.size_label str = 7B llama_model_loader: - kv 6: qwen2vl.block_count u32 = 28 llama_model_loader: - kv 7: qwen2vl.context_length u32 = 128000 llama_model_loader: - kv 8: qwen2vl.embedding_length u32 = 3584 llama_model_loader: - kv 9: qwen2vl.feed_forward_length u32 = 18944 llama_model_loader: - kv 10: qwen2vl.attention.head_count u32 = 28 llama_model_loader: - kv 11: qwen2vl.attention.head_count_kv u32 = 4 llama_model_loader: - kv 12: qwen2vl.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 13: qwen2vl.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 14: qwen2vl.rope.dimension_sections arr[i32,4] = [16, 24, 24, 0] llama_model_loader: - kv 15: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 16: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... srv log_server_r: request: GET /health 127.0.0.1 503 [INFO] <20.Qwen2.5-VL-7B-Instruct> Health check error on http://localhost:8090/health, status code: 503 llama_model_loader: - kv 19: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645 llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151643 llama_model_loader: - kv 22: tokenizer.ggml.bos_token_id u32 = 151643 llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 24: tokenizer.chat_template str = {% set image_count = namespace(value=... llama_model_loader: - kv 25: general.quantization_version u32 = 2 llama_model_loader: - kv 26: general.file_type u32 = 16 llama_model_loader: - kv 27: quantize.imatrix.file str = /models_out/Qwen2.5-VL-7B-Instruct-GG... llama_model_loader: - kv 28: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt llama_model_loader: - kv 29: quantize.imatrix.entries_count i32 = 196 llama_model_loader: - kv 30: quantize.imatrix.chunks_count i32 = 128 llama_model_loader: - type f32: 141 tensors llama_model_loader: - type q5_K: 197 tensors llama_model_loader: - type q6_K: 1 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q5_K - Small print_info: file size = 4.94 GiB (5.58 BPW) load: special tokens cache size = 22 load: token to piece cache size = 0.9310 MB print_info: arch = qwen2vl print_info: vocab_only = 0 print_info: n_ctx_train = 128000 print_info: n_embd = 3584 print_info: n_layer = 28 print_info: n_head = 28 print_info: n_head_kv = 4 print_info: n_rot = 128 print_info: n_swa = 0 print_info: n_swa_pattern = 1 print_info: n_embd_head_k = 128 print_info: n_embd_head_v = 128 print_info: n_gqa = 7 print_info: n_embd_k_gqa = 512 print_info: n_embd_v_gqa = 512 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-06 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 18944 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = -1 print_info: rope type = 8 print_info: rope scaling = linear print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 128000 print_info: rope_finetuned = unknown print_info: ssm_d_conv = 0 print_info: ssm_d_inner = 0 print_info: ssm_d_state = 0 print_info: ssm_dt_rank = 0 print_info: ssm_dt_b_c_rms = 0 print_info: model type = 7B print_info: model params = 7.62 B print_info: general.name = Qwen2.5 VL 7B Instruct print_info: vocab type = BPE print_info: n_vocab = 152064 print_info: n_merges = 151387 print_info: BOS token = 151643 '<|endoftext|>' print_info: EOS token = 151645 '<|im_end|>' print_info: EOT token = 151645 '<|im_end|>' print_info: PAD token = 151643 '<|endoftext|>' print_info: LF token = 198 'Ċ' print_info: FIM PRE token = 151659 '<|fim_prefix|>' print_info: FIM SUF token = 151661 '<|fim_suffix|>' print_info: FIM MID token = 151660 '<|fim_middle|>' print_info: FIM PAD token = 151662 '<|fim_pad|>' print_info: FIM REP token = 151663 '<|repo_name|>' print_info: FIM SEP token = 151664 '<|file_sep|>' print_info: EOG token = 151643 '<|endoftext|>' print_info: EOG token = 151645 '<|im_end|>' print_info: EOG token = 151662 '<|fim_pad|>' print_info: EOG token = 151663 '<|repo_name|>' print_info: EOG token = 151664 '<|file_sep|>' print_info: max token length = 256 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: offloading 28 repeating layers to GPU load_tensors: offloading output layer to GPU load_tensors: offloaded 29/29 layers to GPU load_tensors: Vulkan0 model buffer size = 4705.94 MiB load_tensors: CPU_Mapped model buffer size = 357.33 MiB ...................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 4096 llama_context: n_ctx_per_seq = 4096 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: freq_base = 1000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (4096) < n_ctx_train (128000) -- the full capacity of the model will not be utilized llama_context: Vulkan_Host output buffer size = 0.58 MiB llama_kv_cache_unified: kv_size = 4096, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1, padding = 32 llama_kv_cache_unified: Vulkan0 KV buffer size = 224.00 MiB llama_kv_cache_unified: KV self size = 224.00 MiB, K (f16): 112.00 MiB, V (f16): 112.00 MiB llama_context: Vulkan0 compute buffer size = 304.00 MiB llama_context: Vulkan_Host compute buffer size = 15.01 MiB llama_context: graph nodes = 1042 llama_context: graph splits = 2 common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) clip_ctx: CLIP using Vulkan0 backend clip_model_loader: model name: Qwen2.5 VL 7B Instruct clip_model_loader: description: clip_model_loader: GGUF version: 3 clip_model_loader: alignment: 32 clip_model_loader: n_tensors: 519 clip_model_loader: n_kv: 22 load_hparams: projector: qwen2.5vl_merger load_hparams: n_embd: 1280 load_hparams: n_head: 16 load_hparams: n_ff: 3420 load_hparams: n_layer: 32 load_hparams: projection_dim: 3584 load_hparams: image_size: 3584 load_hparams: patch_size: 14 load_hparams: has_llava_proj: 0 load_hparams: minicpmv_version: 0 load_hparams: proj_scale_factor: 0 load_hparams: n_wa_pattern: 8 load_hparams: ffn_op: silu load_hparams: model size: 1291.40 MiB load_hparams: metadata size: 0.18 MiB srv log_server_r: request: GET /health 127.0.0.1 503 [INFO] <20.Qwen2.5-VL-7B-Instruct> Health check error on http://localhost:8090/health, status code: 503 alloc_compute_meta: Vulkan0 compute buffer size = 2.77 MiB alloc_compute_meta: CPU compute buffer size = 0.16 MiB srv load_model: loaded multimodal model, 'models/Bartowski/Qwen2.5-VL-7B-Instruct-GGUF/mmproj-Qwen2.5-VL-7B-Instruct-f16.gguf' srv load_model: ctx_shift is not supported by multimodal, it will be disabled srv init: initializing slots, n_slots = 1 slot init: id 0 | task -1 | new slot n_ctx_slot = 4096 main: model loaded main: chat template, chat_template: {% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system You are a helpful assistant.<|im_end|> {% endif %}<|im_start|>{{ message['role'] }} {% if message['content'] is string %}{{ message['content'] }}<|im_end|> {% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|> {% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant {% endif %}, example_format: '<|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistant ' main: server is listening on http://0.0.0.0:8090 - starting the main loop srv update_slots: all slots are idle srv log_server_r: request: GET /health 127.0.0.1 200 [INFO] <20.Qwen2.5-VL-7B-Instruct> Health check passed on http://localhost:8090/health srv log_server_r: request: GET / 127.0.0.1 200 [INFO] Request ::1 "GET /upstream/20.Qwen2.5-VL-7B-Instruct/ HTTP/1.1" 200 1290053 "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36 Edg/136.0.0.0" 10.3580702s srv log_server_r: request: GET /props 127.0.0.1 200 [INFO] Request ::1 "GET /upstream/20.Qwen2.5-VL-7B-Instruct/props HTTP/1.1" 200 2535 "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36 Edg/136.0.0.0" 2.0878ms srv params_from_: Chat format: Content-only slot launch_slot_: id 0 | task 0 | processing task slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 4096, n_keep = 0, n_prompt_tokens = 24 slot update_slots: id 0 | task 0 | kv cache rm [0, end) slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 14, n_tokens = 14, progress = 0.583333 slot update_slots: id 0 | task 0 | kv cache rm [14, end) srv process_chun: processing image... ggml_vulkan: Device memory allocation of size 2417184000 failed. ggml_vulkan: Requested buffer size exceeds device memory allocation limit: ErrorOutOfDeviceMemory ggml_gallocr_reserve_n: failed to allocate Vulkan0 buffer of size 2417184000 D:\a\llama.cpp\llama.cpp\ggml\src\ggml-backend.cpp:1663: GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <= (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer)) failed [INFO] Request ::1 "POST /upstream/20.Qwen2.5-VL-7B-Instruct/v1/chat/completions HTTP/1.1" 502 114 "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/136.0.0.0 Safari/537.36 Edg/136.0.0.0" 757.1853ms
The text was updated successfully, but these errors were encountered:
Successfully merging a pull request may close this issue.
Name and Version
llama-server --version
load_backend: loaded RPC backend from D:\AI\app\llama.cpp\ggml-rpc.dll
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = AMD Radeon RX 6600M (AMD proprietary driver) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
load_backend: loaded Vulkan backend from D:\AI\app\llama.cpp\ggml-vulkan.dll
load_backend: loaded CPU backend from D:\AI\app\llama.cpp\ggml-cpu-haswell.dll
version: 5342 (0208355)
built with MSVC 19.43.34808.0 for x64
Operating systems
Windows
GGML backends
Vulkan
Hardware
AMD Ryzen 7 5800H/AMD Radeon RX 6600M
Models
https://www.modelscope.cn/models/bartowski/Qwen_Qwen2.5-VL-7B-Instruct-GGUF/Qwen_Qwen2.5-VL-7B-Instruct-Q5_K_S.gguf 和https://www.modelscope.cn/models/bartowski/Qwen_Qwen2.5-VL-7B-Instruct-GGUF/mmproj-Qwen_Qwen2.5-VL-7B-Instruct-bf16.gguf
也试过:https://www.modelscope.cn/models/ggml-org/Qwen2.5-VL-7B-Instruct-GGUF/Qwen2.5-VL-7B-Instruct-Q4_K_M.gguf 和 https://www.modelscope.cn/models/ggml-org/Qwen2.5-VL-7B-Instruct-GGUF/mmproj-Qwen2.5-VL-7B-Instruct-f16.gguf
Problem description & steps to reproduce
Qwen2.5-VL-7B-Instruct 在做图像识别时:分辨率为328409,没有问题;分辨率为1242881 时 模型会崩溃,但是如果在加载模型的参数中添加--no-mmproj-offload,可以正常工作(很慢)。Gemma-3-4B、12B都没有问题。
First Bad Commit
从llama-server可以支持多模态开始就存在该错误
Relevant log output
The text was updated successfully, but these errors were encountered: