Skip to content

Misc. bug: -sm row results in gibberish output on HIP (ROCm 6.3.3) #13545

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
vega20user opened this issue May 14, 2025 · 0 comments
Open

Misc. bug: -sm row results in gibberish output on HIP (ROCm 6.3.3) #13545

vega20user opened this issue May 14, 2025 · 0 comments

Comments

@vega20user
Copy link

vega20user commented May 14, 2025

Name and Version

./llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 ROCm devices:
Device 0: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64
Device 1: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64
version: 5384 (4696d56)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

Which llama.cpp modules do you know to be affected?

llama-server

Command line

./llama-server --model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row

./llama-server --model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row -ub 128

./llama-server --model '/media/rocm/edisk/a/AI/models/Mistral-Small-Instruct-2409-Q8_0.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row

./llama-server --model '/media/rocm/edisk/a/AI/models/Mistral-Small-Instruct-2409-Q8_0.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row -ub 128

Problem description & steps to reproduce

the models return gibberish. llama.cpp compiled with

HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)"     cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx906 -DCMAKE_BUILD_TYPE=Release     && cmake --build build --config Release -- -j 12`

First Bad Commit

No response

Relevant log output

Tell me a random fun fact about the Roman Empire 
Qwen3, regardless of ub set to 128 or not: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG 

Mistral Small 2, regardless of ub set to 128 or not: ialize torsoleialize frameializeializeializeialize uniqueializeialize Art frame uniqueializeialize uniqueialize Univers frameialize autoializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeialize

./llama-server --model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 ROCm devices:
  Device 0: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64
  Device 1: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64
build: 5384 (4696d567) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 6, n_threads_batch = 6, total_threads = 12

system_info: n_threads = 6 (n_threads_batch = 6) / 12 | ROCm : NO_VMM = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8040, http threads: 11
main: loading model
srv    load_model: loading model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf'
llama_model_load_from_file_impl: using device ROCm0 (AMD Radeon Graphics) - 32732 MiB free
llama_model_load_from_file_impl: using device ROCm1 (AMD Radeon Graphics) - 32732 MiB free
llama_model_loader: loaded meta data with 39 key-value pairs and 579 tensors from /home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3moe
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-30B-A3B-128K
llama_model_loader: - kv   3:                           general.finetune str              = 128k
llama_model_loader: - kv   4:                           general.basename str              = Qwen3-30B-A3B-128K
llama_model_loader: - kv   5:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   6:                         general.size_label str              = 30B-A3B
llama_model_loader: - kv   7:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   8:                       qwen3moe.block_count u32              = 48
llama_model_loader: - kv   9:                    qwen3moe.context_length u32              = 131072
llama_model_loader: - kv  10:                  qwen3moe.embedding_length u32              = 2048
llama_model_loader: - kv  11:               qwen3moe.feed_forward_length u32              = 6144
llama_model_loader: - kv  12:              qwen3moe.attention.head_count u32              = 32
llama_model_loader: - kv  13:           qwen3moe.attention.head_count_kv u32              = 4
llama_model_loader: - kv  14:                    qwen3moe.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  15:  qwen3moe.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  16:                 qwen3moe.expert_used_count u32              = 8
llama_model_loader: - kv  17:              qwen3moe.attention.key_length u32              = 128
llama_model_loader: - kv  18:            qwen3moe.attention.value_length u32              = 128
llama_model_loader: - kv  19:                      qwen3moe.expert_count u32              = 128
llama_model_loader: - kv  20:        qwen3moe.expert_feed_forward_length u32              = 768
llama_model_loader: - kv  21:                 qwen3moe.rope.scaling.type str              = yarn
llama_model_loader: - kv  22:               qwen3moe.rope.scaling.factor f32              = 4.000000
llama_model_loader: - kv  23: qwen3moe.rope.scaling.original_context_length u32              = 32768
llama_model_loader: - kv  24:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  25:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  26:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  27:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  28:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  29:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  30:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  31:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  32:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - kv  34:                          general.file_type u32              = 7
llama_model_loader: - kv  35:                      quantize.imatrix.file str              = Qwen3-30B-A3B-128K-GGUF/imatrix_unslo...
llama_model_loader: - kv  36:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-30B-A3B-128...
llama_model_loader: - kv  37:             quantize.imatrix.entries_count i32              = 384
llama_model_loader: - kv  38:              quantize.imatrix.chunks_count i32              = 685
llama_model_loader: - type  f32:  241 tensors
llama_model_loader: - type q8_0:  263 tensors
llama_model_loader: - type bf16:   75 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 33.51 GiB (9.43 BPW) 
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3moe
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 2048
print_info: n_layer          = 48
print_info: n_head           = 32
print_info: n_head_kv        = 4
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 8
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 6144
print_info: n_expert         = 128
print_info: n_expert_used    = 8
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = yarn
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 0.25
print_info: n_ctx_orig_yarn  = 32768
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 30B.A3B
print_info: model params     = 30.53 B
print_info: general.name     = Qwen3-30B-A3B-128K
print_info: n_ff_exp         = 768
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 11 ','
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors:  ROCm0_Split model buffer size =   526.88 MiB
load_tensors:  ROCm1_Split model buffer size =  1094.81 MiB
load_tensors:        ROCm0 model buffer size = 16945.42 MiB
load_tensors:        ROCm1 model buffer size = 15156.40 MiB
load_tensors:   CPU_Mapped model buffer size =   593.50 MiB
................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 1
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 0.25
llama_context: n_ctx_per_seq (32768) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:  ROCm_Host  output buffer size =     0.58 MiB
llama_kv_cache_unified: kv_size = 32768, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1, padding = 256
llama_kv_cache_unified:      ROCm0 KV buffer size =  1600.00 MiB
llama_kv_cache_unified:      ROCm1 KV buffer size =  1472.00 MiB
llama_kv_cache_unified: KV self size  = 3072.00 MiB, K (f16): 1536.00 MiB, V (f16): 1536.00 MiB
llama_context:      ROCm0 compute buffer size =   120.00 MiB
llama_context:      ROCm1 compute buffer size =   300.75 MiB
llama_context:  ROCm_Host compute buffer size =    68.01 MiB
llama_context: graph nodes  = 2935
llama_context: graph splits = 3
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 32768
main: model loaded
main: chat template, chat_template: {%- if tools %}
    {{- '<|im_start|>system\n' }}
    {%- if messages[0].role == 'system' %}
        {{- messages[0].content + '\n\n' }}
    {%- endif %}
    {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
    {%- for tool in tools %}
        {{- "\n" }}
        {{- tool | tojson }}
    {%- endfor %}
    {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
    {%- if messages[0].role == 'system' %}
        {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
    {%- endif %}
{%- endif %}
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
{%- for forward_message in messages %}
    {%- set index = (messages|length - 1) - loop.index0 %}
    {%- set message = messages[index] %}
    {%- set current_content = message.content if message.content is defined and message.content is not none else '' %}
    {%- set tool_start = '<tool_response>' %}
    {%- set tool_start_length = tool_start|length %}
    {%- set start_of_message = current_content[:tool_start_length] %}
    {%- set tool_end = '</tool_response>' %}
    {%- set tool_end_length = tool_end|length %}
    {%- set start_pos = (current_content|length) - tool_end_length %}
    {%- if start_pos < 0 %}
        {%- set start_pos = 0 %}
    {%- endif %}
    {%- set end_of_message = current_content[start_pos:] %}
    {%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
        {%- set ns.multi_step_tool = false %}
        {%- set ns.last_query_index = index %}
    {%- endif %}
{%- endfor %}
{%- for message in messages %}
    {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
        {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
    {%- elif message.role == "assistant" %}
        {%- set m_content = message.content if message.content is defined and message.content is not none else '' %}
        {%- set content = m_content %}
        {%- set reasoning_content = '' %}
        {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
            {%- set reasoning_content = message.reasoning_content %}
        {%- else %}
            {%- if '</think>' in m_content %}
                {%- set content = (m_content.split('</think>')|last).lstrip('\n') %}
                {%- set reasoning_content = (m_content.split('</think>')|first).rstrip('\n') %}
                {%- set reasoning_content = (reasoning_content.split('<think>')|last).lstrip('\n') %}
            {%- endif %}
        {%- endif %}
        {%- if loop.index0 > ns.last_query_index %}
            {%- if loop.last or (not loop.last and (not reasoning_content.strip() == '')) %}
                {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
            {%- else %}
                {{- '<|im_start|>' + message.role + '\n' + content }}
            {%- endif %}
        {%- else %}
            {{- '<|im_start|>' + message.role + '\n' + content }}
        {%- endif %}
        {%- if message.tool_calls %}
            {%- for tool_call in message.tool_calls %}
                {%- if (loop.first and content) or (not loop.first) %}
                    {{- '\n' }}
                {%- endif %}
                {%- if tool_call.function %}
                    {%- set tool_call = tool_call.function %}
                {%- endif %}
                {{- '<tool_call>\n{"name": "' }}
                {{- tool_call.name }}
                {{- '", "arguments": ' }}
                {%- if tool_call.arguments is string %}
                    {{- tool_call.arguments }}
                {%- else %}
                    {{- tool_call.arguments | tojson }}
                {%- endif %}
                {{- '}\n</tool_call>' }}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "tool" %}
        {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
            {{- '<|im_start|>user' }}
        {%- endif %}
        {{- '\n<tool_response>\n' }}
        {{- message.content }}
        {{- '\n</tool_response>' }}
        {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
            {{- '<|im_end|>\n' }}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
    {%- if enable_thinking is defined and enable_thinking is false %}
        {{- '<think>\n\n</think>\n\n' }}
    {%- endif %}
{%- endif %}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:8040 - starting the main loop
srv  update_slots: all slots are idle
srv  log_server_r: request: OPTIONS /v1/chat/completions 127.0.0.1 200
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 18
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 18, n_tokens = 18, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 18, n_tokens = 18
^Csrv    operator(): operator(): cleaning up before exit...
terminate called without an active exception
Aborted (core dumped)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant