We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
./llama-cli --version ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 2 ROCm devices: Device 0: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64 Device 1: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64 version: 5384 (4696d56) built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
Linux
llama-server
./llama-server --model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row ./llama-server --model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row -ub 128 ./llama-server --model '/media/rocm/edisk/a/AI/models/Mistral-Small-Instruct-2409-Q8_0.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row ./llama-server --model '/media/rocm/edisk/a/AI/models/Mistral-Small-Instruct-2409-Q8_0.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row -ub 128
the models return gibberish. llama.cpp compiled with
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx906 -DCMAKE_BUILD_TYPE=Release && cmake --build build --config Release -- -j 12`
No response
Tell me a random fun fact about the Roman Empire Qwen3, regardless of ub set to 128 or not: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG Mistral Small 2, regardless of ub set to 128 or not: ialize torsoleialize frameializeializeializeialize uniqueializeialize Art frame uniqueializeialize uniqueialize Univers frameialize autoializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeializeialize ./llama-server --model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf' -ngl 999 --ctx-size 32768 -fa --port 8040 -sm row ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 2 ROCm devices: Device 0: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64 Device 1: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64 build: 5384 (4696d567) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu system info: n_threads = 6, n_threads_batch = 6, total_threads = 12 system_info: n_threads = 6 (n_threads_batch = 6) / 12 | ROCm : NO_VMM = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | main: binding port with default address family main: HTTP server is listening, hostname: 127.0.0.1, port: 8040, http threads: 11 main: loading model srv load_model: loading model '/home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf' llama_model_load_from_file_impl: using device ROCm0 (AMD Radeon Graphics) - 32732 MiB free llama_model_load_from_file_impl: using device ROCm1 (AMD Radeon Graphics) - 32732 MiB free llama_model_loader: loaded meta data with 39 key-value pairs and 579 tensors from /home/rocm/AI/Qwen3-30B-A3B-128K-UD-Q8_K_XL.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen3moe llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen3-30B-A3B-128K llama_model_loader: - kv 3: general.finetune str = 128k llama_model_loader: - kv 4: general.basename str = Qwen3-30B-A3B-128K llama_model_loader: - kv 5: general.quantized_by str = Unsloth llama_model_loader: - kv 6: general.size_label str = 30B-A3B llama_model_loader: - kv 7: general.repo_url str = https://huggingface.co/unsloth llama_model_loader: - kv 8: qwen3moe.block_count u32 = 48 llama_model_loader: - kv 9: qwen3moe.context_length u32 = 131072 llama_model_loader: - kv 10: qwen3moe.embedding_length u32 = 2048 llama_model_loader: - kv 11: qwen3moe.feed_forward_length u32 = 6144 llama_model_loader: - kv 12: qwen3moe.attention.head_count u32 = 32 llama_model_loader: - kv 13: qwen3moe.attention.head_count_kv u32 = 4 llama_model_loader: - kv 14: qwen3moe.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 15: qwen3moe.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 16: qwen3moe.expert_used_count u32 = 8 llama_model_loader: - kv 17: qwen3moe.attention.key_length u32 = 128 llama_model_loader: - kv 18: qwen3moe.attention.value_length u32 = 128 llama_model_loader: - kv 19: qwen3moe.expert_count u32 = 128 llama_model_loader: - kv 20: qwen3moe.expert_feed_forward_length u32 = 768 llama_model_loader: - kv 21: qwen3moe.rope.scaling.type str = yarn llama_model_loader: - kv 22: qwen3moe.rope.scaling.factor f32 = 4.000000 llama_model_loader: - kv 23: qwen3moe.rope.scaling.original_context_length u32 = 32768 llama_model_loader: - kv 24: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 25: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 26: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 27: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 28: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 29: tokenizer.ggml.eos_token_id u32 = 151645 llama_model_loader: - kv 30: tokenizer.ggml.padding_token_id u32 = 151654 llama_model_loader: - kv 31: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 32: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>... llama_model_loader: - kv 33: general.quantization_version u32 = 2 llama_model_loader: - kv 34: general.file_type u32 = 7 llama_model_loader: - kv 35: quantize.imatrix.file str = Qwen3-30B-A3B-128K-GGUF/imatrix_unslo... llama_model_loader: - kv 36: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-30B-A3B-128... llama_model_loader: - kv 37: quantize.imatrix.entries_count i32 = 384 llama_model_loader: - kv 38: quantize.imatrix.chunks_count i32 = 685 llama_model_loader: - type f32: 241 tensors llama_model_loader: - type q8_0: 263 tensors llama_model_loader: - type bf16: 75 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q8_0 print_info: file size = 33.51 GiB (9.43 BPW) load: special tokens cache size = 26 load: token to piece cache size = 0.9311 MB print_info: arch = qwen3moe print_info: vocab_only = 0 print_info: n_ctx_train = 131072 print_info: n_embd = 2048 print_info: n_layer = 48 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 128 print_info: n_swa = 0 print_info: n_swa_pattern = 1 print_info: n_embd_head_k = 128 print_info: n_embd_head_v = 128 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 512 print_info: n_embd_v_gqa = 512 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-06 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 6144 print_info: n_expert = 128 print_info: n_expert_used = 8 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 2 print_info: rope scaling = yarn print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 0.25 print_info: n_ctx_orig_yarn = 32768 print_info: rope_finetuned = unknown print_info: ssm_d_conv = 0 print_info: ssm_d_inner = 0 print_info: ssm_d_state = 0 print_info: ssm_dt_rank = 0 print_info: ssm_dt_b_c_rms = 0 print_info: model type = 30B.A3B print_info: model params = 30.53 B print_info: general.name = Qwen3-30B-A3B-128K print_info: n_ff_exp = 768 print_info: vocab type = BPE print_info: n_vocab = 151936 print_info: n_merges = 151387 print_info: BOS token = 11 ',' print_info: EOS token = 151645 '<|im_end|>' print_info: EOT token = 151645 '<|im_end|>' print_info: PAD token = 151654 '<|vision_pad|>' print_info: LF token = 198 'Ċ' print_info: FIM PRE token = 151659 '<|fim_prefix|>' print_info: FIM SUF token = 151661 '<|fim_suffix|>' print_info: FIM MID token = 151660 '<|fim_middle|>' print_info: FIM PAD token = 151662 '<|fim_pad|>' print_info: FIM REP token = 151663 '<|repo_name|>' print_info: FIM SEP token = 151664 '<|file_sep|>' print_info: EOG token = 151643 '<|endoftext|>' print_info: EOG token = 151645 '<|im_end|>' print_info: EOG token = 151662 '<|fim_pad|>' print_info: EOG token = 151663 '<|repo_name|>' print_info: EOG token = 151664 '<|file_sep|>' print_info: max token length = 256 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: offloading 48 repeating layers to GPU load_tensors: offloading output layer to GPU load_tensors: offloaded 49/49 layers to GPU load_tensors: ROCm0_Split model buffer size = 526.88 MiB load_tensors: ROCm1_Split model buffer size = 1094.81 MiB load_tensors: ROCm0 model buffer size = 16945.42 MiB load_tensors: ROCm1 model buffer size = 15156.40 MiB load_tensors: CPU_Mapped model buffer size = 593.50 MiB ................................................................................................ llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 32768 llama_context: n_ctx_per_seq = 32768 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 1 llama_context: freq_base = 1000000.0 llama_context: freq_scale = 0.25 llama_context: n_ctx_per_seq (32768) < n_ctx_train (131072) -- the full capacity of the model will not be utilized llama_context: ROCm_Host output buffer size = 0.58 MiB llama_kv_cache_unified: kv_size = 32768, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1, padding = 256 llama_kv_cache_unified: ROCm0 KV buffer size = 1600.00 MiB llama_kv_cache_unified: ROCm1 KV buffer size = 1472.00 MiB llama_kv_cache_unified: KV self size = 3072.00 MiB, K (f16): 1536.00 MiB, V (f16): 1536.00 MiB llama_context: ROCm0 compute buffer size = 120.00 MiB llama_context: ROCm1 compute buffer size = 300.75 MiB llama_context: ROCm_Host compute buffer size = 68.01 MiB llama_context: graph nodes = 2935 llama_context: graph splits = 3 common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) srv init: initializing slots, n_slots = 1 slot init: id 0 | task -1 | new slot n_ctx_slot = 32768 main: model loaded main: chat template, chat_template: {%- if tools %} {{- '<|im_start|>system\n' }} {%- if messages[0].role == 'system' %} {{- messages[0].content + '\n\n' }} {%- endif %} {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }} {%- for tool in tools %} {{- "\n" }} {{- tool | tojson }} {%- endfor %} {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }} {%- else %} {%- if messages[0].role == 'system' %} {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }} {%- endif %} {%- endif %} {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %} {%- for forward_message in messages %} {%- set index = (messages|length - 1) - loop.index0 %} {%- set message = messages[index] %} {%- set current_content = message.content if message.content is defined and message.content is not none else '' %} {%- set tool_start = '<tool_response>' %} {%- set tool_start_length = tool_start|length %} {%- set start_of_message = current_content[:tool_start_length] %} {%- set tool_end = '</tool_response>' %} {%- set tool_end_length = tool_end|length %} {%- set start_pos = (current_content|length) - tool_end_length %} {%- if start_pos < 0 %} {%- set start_pos = 0 %} {%- endif %} {%- set end_of_message = current_content[start_pos:] %} {%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %} {%- set ns.multi_step_tool = false %} {%- set ns.last_query_index = index %} {%- endif %} {%- endfor %} {%- for message in messages %} {%- if (message.role == "user") or (message.role == "system" and not loop.first) %} {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }} {%- elif message.role == "assistant" %} {%- set m_content = message.content if message.content is defined and message.content is not none else '' %} {%- set content = m_content %} {%- set reasoning_content = '' %} {%- if message.reasoning_content is defined and message.reasoning_content is not none %} {%- set reasoning_content = message.reasoning_content %} {%- else %} {%- if '</think>' in m_content %} {%- set content = (m_content.split('</think>')|last).lstrip('\n') %} {%- set reasoning_content = (m_content.split('</think>')|first).rstrip('\n') %} {%- set reasoning_content = (reasoning_content.split('<think>')|last).lstrip('\n') %} {%- endif %} {%- endif %} {%- if loop.index0 > ns.last_query_index %} {%- if loop.last or (not loop.last and (not reasoning_content.strip() == '')) %} {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }} {%- else %} {{- '<|im_start|>' + message.role + '\n' + content }} {%- endif %} {%- else %} {{- '<|im_start|>' + message.role + '\n' + content }} {%- endif %} {%- if message.tool_calls %} {%- for tool_call in message.tool_calls %} {%- if (loop.first and content) or (not loop.first) %} {{- '\n' }} {%- endif %} {%- if tool_call.function %} {%- set tool_call = tool_call.function %} {%- endif %} {{- '<tool_call>\n{"name": "' }} {{- tool_call.name }} {{- '", "arguments": ' }} {%- if tool_call.arguments is string %} {{- tool_call.arguments }} {%- else %} {{- tool_call.arguments | tojson }} {%- endif %} {{- '}\n</tool_call>' }} {%- endfor %} {%- endif %} {{- '<|im_end|>\n' }} {%- elif message.role == "tool" %} {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %} {{- '<|im_start|>user' }} {%- endif %} {{- '\n<tool_response>\n' }} {{- message.content }} {{- '\n</tool_response>' }} {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %} {{- '<|im_end|>\n' }} {%- endif %} {%- endif %} {%- endfor %} {%- if add_generation_prompt %} {{- '<|im_start|>assistant\n' }} {%- if enable_thinking is defined and enable_thinking is false %} {{- '<think>\n\n</think>\n\n' }} {%- endif %} {%- endif %}, example_format: '<|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistant ' main: server is listening on http://127.0.0.1:8040 - starting the main loop srv update_slots: all slots are idle srv log_server_r: request: OPTIONS /v1/chat/completions 127.0.0.1 200 srv params_from_: Chat format: Content-only slot launch_slot_: id 0 | task 0 | processing task slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 18 slot update_slots: id 0 | task 0 | kv cache rm [0, end) slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 18, n_tokens = 18, progress = 1.000000 slot update_slots: id 0 | task 0 | prompt done, n_past = 18, n_tokens = 18 ^Csrv operator(): operator(): cleaning up before exit... terminate called without an active exception Aborted (core dumped)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Name and Version
./llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 ROCm devices:
Device 0: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64
Device 1: AMD Radeon Graphics, gfx906:sramecc+:xnack- (0x906), VMM: no, Wave Size: 64
version: 5384 (4696d56)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
Operating systems
Linux
Which llama.cpp modules do you know to be affected?
llama-server
Command line
Problem description & steps to reproduce
the models return gibberish. llama.cpp compiled with
First Bad Commit
No response
Relevant log output
The text was updated successfully, but these errors were encountered: