Skip to content

Eval bug: qwen3 with <think> infer Incomplete #14578

Open
@gitqinxinyu

Description

@gitqinxinyu

Name and Version

ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3080 Laptop GPU, compute capability 8.6, VMM: yes
version: 0 (unknown)
built with gcc (Ubuntu 11.2.0-19ubuntu1) 11.2.0 for x86_64-linux-gn

Operating systems

Linux

GGML backends

CUDA

Hardware

NVIDIA GeForce RTX 3080 Laptop GPU

Models

No response

Problem description & steps to reproduce

when i run llama-cli infer qwen3 with , when infer 2th/3th/... round,Unable to obtain complete output。

First Bad Commit

No response

Relevant log output

./llama-cli -m '/home/qxy/Desktop/Qwen3-752M-0___6B-F16.gguf' 
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3080 Laptop GPU, compute capability 8.6, VMM: yes
build: 0 (unknown) with gcc (Ubuntu 11.2.0-19ubuntu1) 11.2.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3080 Laptop GPU) - 13784 MiB free
llama_model_loader: loaded meta data with 35 key-value pairs and 311 tensors from /home/qxy/Desktop/Qwen3-752M-0___6B-F16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3 0___6B
llama_model_loader: - kv   3:                           general.finetune str              = 0___6B
llama_model_loader: - kv   4:                           general.basename str              = Qwen3
llama_model_loader: - kv   5:                         general.size_label str              = 752M
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                       general.license.link str              = https://huggingface.co/Qwen/Qwen3-0.6...
llama_model_loader: - kv   8:                   general.base_model.count u32              = 1
llama_model_loader: - kv   9:                  general.base_model.0.name str              = Qwen3 0.6B Base
llama_model_loader: - kv  10:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  11:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen3-0.6...
llama_model_loader: - kv  12:                               general.tags arr[str,1]       = ["text-generation"]
llama_model_loader: - kv  13:                          qwen3.block_count u32              = 28
llama_model_loader: - kv  14:                       qwen3.context_length u32              = 40960
llama_model_loader: - kv  15:                     qwen3.embedding_length u32              = 1024
llama_model_loader: - kv  16:                  qwen3.feed_forward_length u32              = 3072
llama_model_loader: - kv  17:                 qwen3.attention.head_count u32              = 16
llama_model_loader: - kv  18:              qwen3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  19:                       qwen3.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  20:     qwen3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  21:                 qwen3.attention.key_length u32              = 128
llama_model_loader: - kv  22:               qwen3.attention.value_length u32              = 128
llama_model_loader: - kv  23:                          general.file_type u32              = 1
llama_model_loader: - kv  24:               general.quantization_version u32              = 2
llama_model_loader: - kv  25:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  26:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  27:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  28:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  29:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  30:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  31:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  32:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  33:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  34:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - type  f32:  113 tensors
llama_model_loader: - type  f16:  198 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = F16
print_info: file size   = 1.40 GiB (16.00 BPW) 
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 40960
print_info: n_embd           = 1024
print_info: n_layer          = 28
print_info: n_head           = 16
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 2
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 3072
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 40960
print_info: rope_finetuned   = unknown
print_info: model type       = 0.6B
print_info: model params     = 751.63 M
print_info: general.name     = Qwen3 0___6B
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151643 '<|endoftext|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 0 repeating layers to GPU
load_tensors: offloaded 0/29 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  1433.75 MiB
.............................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.58 MiB
llama_kv_cache_unified:        CPU KV buffer size =   448.00 MiB
llama_kv_cache_unified: size =  448.00 MiB (  4096 cells,  28 layers,  1 seqs), K (f16):  224.00 MiB, V (f16):  224.00 MiB
llama_kv_cache_unified: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility
llama_context:      CUDA0 compute buffer size =   601.50 MiB
llama_context:  CUDA_Host compute buffer size =    12.01 MiB
llama_context: graph nodes  = 1126
llama_context: graph splits = 368 (with bs=512), 1 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 8
main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example:
<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant


system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CUDA : ARCHS = 500,610,700,750,800,860,890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 

main: interactive mode on.
sampler seed: 4269913888
sampler params: 
	repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
	dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
	top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
	mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 0

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to the AI.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.
 - Not using system message. To change it, set a different value via -sys PROMPT


> 你好
<think>
好的,用户发来“你好”,我需要保持礼貌和友好。首先,确认用户是否想进行某种交流,比如问候或询问。然后,我应该用自然的中文回应,避免使用技术术语,让对话更轻松。同时,要确保回应符合中国的语言习惯,避免不自然的表达。最后,询问用户是否需要帮助,以促进进一步的互动。
</think>

你好!有什么可以帮助你的吗?需要聊天或讨论什么内容?

> 杭州天气
<think>
好的,用户现在问的是杭州的天气情况。我需要先确认用户的需求是什么。可能是想了解当前杭州的天气,或者计划去杭州旅游,想知道天气如何。在回答时,应该保持友好和专业的态度,同时提供有用的信息。首先,我应该确认天气的具体情况,比如温度、风速和天气状况。然后,考虑到用户可能需要帮助,可以询问是否需要进一步的信息或建议。另外,要注意用词自然,避免使用过于正式或复杂的句子,让用户感到舒适。最后,确保回应简洁明了,信息准确,同时保持开放式的提问,让用户有进一步交流的意愿。

> 上海呢
<think>
好的,用户之前询问了杭州的天气,现在转向上海。我需要先确认用户当前的需求。可能是想了解上海的天气,或者计划前往上海,想知道天气如何。在回答时,应该保持礼貌和友好,同时提供有用的信息。首先,我需要确认上海当前的天气情况,比如温度、风速和天气状况。然后,考虑到用户可能需要帮助,可以询问是否需要进一步的信息或建议。此外,要使用自然的中文表达,避免使用技术术语,让对话更顺畅。最后,确保回应简洁明了,信息准确,同时保持开放式的提问,让用户有进一步交流的意愿。

>

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions