|
| 1 | +// Time: ctor: O(n + m), m is the max number of calls |
| 2 | +// Space: fetch: O(log(n + m)) |
| 3 | + |
| 4 | +class MRUQueue { |
| 5 | +public: |
| 6 | + MRUQueue(int n) |
| 7 | + : bit_{n} |
| 8 | + , curr_{n} { |
| 9 | + for (int i = 0; i < n; ++i) { |
| 10 | + lookup_[i] = i + 1; |
| 11 | + } |
| 12 | + } |
| 13 | + |
| 14 | + int fetch(int k) { |
| 15 | + int pos = bit_.binary_lift(k); |
| 16 | + int val = lookup_[pos]; |
| 17 | + lookup_.erase(pos); |
| 18 | + bit_.add(pos, -1); |
| 19 | + bit_.add(curr_, 1); |
| 20 | + lookup_[curr_++] = val; |
| 21 | + return val; |
| 22 | + } |
| 23 | + |
| 24 | +private: |
| 25 | + class BIT { |
| 26 | + public: |
| 27 | + static const int MAX_CALLS = 2000; |
| 28 | + |
| 29 | + BIT(int n) : bit_(n + MAX_CALLS + 1) { // 0-indexed |
| 30 | + for (int i = 1; i < size(bit_); ++i) { |
| 31 | + bit_[i] = ((i - 1 < n) ? 1 : 0) + bit_[i - 1]; |
| 32 | + } |
| 33 | + for (int i = size(bit_) - 1; i >= 1; --i) { |
| 34 | + int last_i = i - lower_bit(i); |
| 35 | + bit_[i] -= bit_[last_i]; |
| 36 | + } |
| 37 | + } |
| 38 | + |
| 39 | + void add(int i, int val) { |
| 40 | + ++i; |
| 41 | + for (; i < size(bit_); i += lower_bit(i)) { |
| 42 | + bit_[i] += val; |
| 43 | + } |
| 44 | + } |
| 45 | + |
| 46 | + int query(int i) const { |
| 47 | + ++i; |
| 48 | + int total = 0; |
| 49 | + for (; i > 0; i -= lower_bit(i)) { |
| 50 | + total += bit_[i]; |
| 51 | + } |
| 52 | + return total; |
| 53 | + } |
| 54 | + |
| 55 | + int binary_lift(int k) const { |
| 56 | + int total = 0; |
| 57 | + int pos = 0; |
| 58 | + for (int i = floor_log2_x(size(bit_)); i >= 0; --i) { |
| 59 | + if (pos + (1 << i) < size(bit_) && !(total + bit_[pos + (1 << i)] >= k)) { |
| 60 | + total += bit_[pos + (1 << i)]; |
| 61 | + pos += (1 << i); |
| 62 | + } |
| 63 | + } |
| 64 | + return (pos + 1) - 1; |
| 65 | + } |
| 66 | + |
| 67 | + private: |
| 68 | + int lower_bit(int i) const { |
| 69 | + return i & -i; |
| 70 | + } |
| 71 | + |
| 72 | + int floor_log2_x(int x) const { |
| 73 | + return 8 * sizeof(int) - __builtin_clz(x) - 1; |
| 74 | + }; |
| 75 | + |
| 76 | + vector<int> bit_; |
| 77 | + }; |
| 78 | + |
| 79 | + BIT bit_; |
| 80 | + unordered_map<int, int> lookup_; |
| 81 | + int curr_; |
| 82 | +}; |
| 83 | + |
| 84 | +// Time: ctor: O(n) |
| 85 | +// Space: fetch: O(sqrt(n)) |
| 86 | +// sqrt decomposition solution |
| 87 | +class MRUQueue2 { |
| 88 | +public: |
| 89 | + MRUQueue2(int n) |
| 90 | + : buckets_(ceil(sqrt(n))) { |
| 91 | + for (int i = 0; i < n; ++i) { |
| 92 | + buckets_[i / size(buckets_)].emplace_back(i + 1); |
| 93 | + } |
| 94 | + } |
| 95 | + |
| 96 | + int fetch(int k) { |
| 97 | + --k; |
| 98 | + int left = k / size(buckets_); |
| 99 | + int idx = k % size(buckets_); |
| 100 | + auto cit = begin(buckets_[left]); |
| 101 | + advance(cit, idx); |
| 102 | + int val = *cit; |
| 103 | + buckets_[left].erase(cit); |
| 104 | + buckets_.back().emplace_back(val); |
| 105 | + for (int i = size(buckets_) - 2; i >= left; --i) { |
| 106 | + int x = buckets_[i + 1].front(); |
| 107 | + buckets_[i + 1].pop_front(); |
| 108 | + buckets_[i].emplace_back(x); |
| 109 | + } |
| 110 | + return val; |
| 111 | + } |
| 112 | + |
| 113 | +private: |
| 114 | + vector<list<int>> buckets_; |
| 115 | +}; |
0 commit comments