Closed
Description
Describe the bug
It work when loading stable-diffusion-v1-5
But not work with stable-diffusion-xl-base-1.0
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-depth-sdxl-1.0-small",
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter-plus_sdxl_vit-h.safetensors",
)
pipeline.set_ip_adapter_scale(0.7)
Reproduction
When inference:
images = pipeline(
prompt = "best quality, high quality",
image=image,
control_image=depth_image,
ip_adapter_image=ip_adapter_image,
strength=0.99,
num_inference_steps=50,
controlnet_conditioning_scale=0.5,
).images[0]
It failed
Logs
RuntimeError: mat1 and mat2 shapes cannot be multiplied (12850x1664 and 1280x1280)
System Info
- Diffusers version: 0.35.0.dev0
- Platform: Linux-5.15.0-43-generic-x86_64-with-glibc2.35
- Python version: 3.10.18
- PyTorch version (GPU?): 2.6.0+cu124 (True)
- Huggingface_hub version: 0.33.1
- Transformers version: 4.53.0
- Accelerate version: 1.8.1
- PEFT version: not installed
- Bitsandbytes version: not installed
- Safetensors version: 0.5.3
- xFormers version: not installed
- Accelerator: NVIDIA GeForce RTX 3090, 24576 MiB
Who can help?
No response