|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# <font color='blue'>Data Science Academy - Python Fundamentos</font>\n", |
| 8 | + "# <font color='blue'>Capítulo 1</font>\n" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "metadata": {}, |
| 15 | + "outputs": [ |
| 16 | + { |
| 17 | + "name": "stdout", |
| 18 | + "output_type": "stream", |
| 19 | + "text": [ |
| 20 | + "Versão da Linguagem Python Usada Neste Jupyter Notebook: 3.8.8\n" |
| 21 | + ] |
| 22 | + } |
| 23 | + ], |
| 24 | + "source": [ |
| 25 | + "# Versão da Linguagem Python\n", |
| 26 | + "from platform import python_version\n", |
| 27 | + "print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version())" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "markdown", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "## Como Utilizar o Jupyter Notebook" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 2, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [ |
| 42 | + { |
| 43 | + "name": "stdout", |
| 44 | + "output_type": "stream", |
| 45 | + "text": [ |
| 46 | + "Hello World\n" |
| 47 | + ] |
| 48 | + } |
| 49 | + ], |
| 50 | + "source": [ |
| 51 | + "print(\"Hello World\")" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": 3, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [ |
| 59 | + { |
| 60 | + "data": { |
| 61 | + "text/plain": [ |
| 62 | + "4" |
| 63 | + ] |
| 64 | + }, |
| 65 | + "execution_count": 3, |
| 66 | + "metadata": {}, |
| 67 | + "output_type": "execute_result" |
| 68 | + } |
| 69 | + ], |
| 70 | + "source": [ |
| 71 | + "2 + 2" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 4, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [ |
| 79 | + { |
| 80 | + "data": { |
| 81 | + "text/html": [ |
| 82 | + "\n", |
| 83 | + " <iframe\n", |
| 84 | + " width=\"560\"\n", |
| 85 | + " height=\"315\"\n", |
| 86 | + " src=\"https://www.youtube.com/embed/pu-pz77W1P8\"\n", |
| 87 | + " frameborder=\"0\"\n", |
| 88 | + " allowfullscreen\n", |
| 89 | + " ></iframe>\n", |
| 90 | + " " |
| 91 | + ], |
| 92 | + "text/plain": [ |
| 93 | + "<IPython.lib.display.IFrame at 0x7f9eb80adc40>" |
| 94 | + ] |
| 95 | + }, |
| 96 | + "execution_count": 4, |
| 97 | + "metadata": {}, |
| 98 | + "output_type": "execute_result" |
| 99 | + } |
| 100 | + ], |
| 101 | + "source": [ |
| 102 | + "# Pressione as teclas shift e enter para executar esse código e assista o vídeo.\n", |
| 103 | + "\n", |
| 104 | + "from IPython.display import IFrame\n", |
| 105 | + "IFrame(src=\"https://www.youtube.com/embed/pu-pz77W1P8\", width = \"560\", height = \"315\")" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "markdown", |
| 110 | + "metadata": {}, |
| 111 | + "source": [ |
| 112 | + "# Fim" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "markdown", |
| 117 | + "metadata": {}, |
| 118 | + "source": [ |
| 119 | + "### Obrigado\n", |
| 120 | + "\n", |
| 121 | + "### Visite o Blog da Data Science Academy - <a href=\"http://blog.dsacademy.com.br\">Blog DSA</a>" |
| 122 | + ] |
| 123 | + } |
| 124 | + ], |
| 125 | + "metadata": { |
| 126 | + "anaconda-cloud": {}, |
| 127 | + "kernelspec": { |
| 128 | + "display_name": "Python 3", |
| 129 | + "language": "python", |
| 130 | + "name": "python3" |
| 131 | + }, |
| 132 | + "language_info": { |
| 133 | + "codemirror_mode": { |
| 134 | + "name": "ipython", |
| 135 | + "version": 3 |
| 136 | + }, |
| 137 | + "file_extension": ".py", |
| 138 | + "mimetype": "text/x-python", |
| 139 | + "name": "python", |
| 140 | + "nbconvert_exporter": "python", |
| 141 | + "pygments_lexer": "ipython3", |
| 142 | + "version": "3.8.8" |
| 143 | + } |
| 144 | + }, |
| 145 | + "nbformat": 4, |
| 146 | + "nbformat_minor": 1 |
| 147 | +} |
0 commit comments