|
| 1 | +import os |
| 2 | +#os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
1 | 3 | import numpy as np
|
2 | 4 | from keras.models import *
|
3 | 5 | from keras.layers import Input, merge, Conv2D, MaxPooling2D, UpSampling2D, Dropout, Cropping2D
|
4 | 6 | from keras.optimizers import *
|
5 | 7 | from keras.callbacks import ModelCheckpoint, LearningRateScheduler
|
6 | 8 | from keras import backend as keras
|
7 |
| -from data import dataProcess |
| 9 | +from data import * |
8 | 10 |
|
9 | 11 | class myUnet(object):
|
10 | 12 |
|
@@ -155,16 +157,28 @@ def train(self):
|
155 | 157 |
|
156 | 158 | model_checkpoint = ModelCheckpoint('unet.hdf5', monitor='loss',verbose=1, save_best_only=True)
|
157 | 159 | print('Fitting model...')
|
158 |
| - model.fit(imgs_train, imgs_mask_train, batch_size=1, nb_epoch=10, verbose=1, shuffle=True, callbacks=[model_checkpoint]) |
| 160 | + model.fit(imgs_train, imgs_mask_train, batch_size=4, nb_epoch=10, verbose=1,validation_split=0.2, shuffle=True, callbacks=[model_checkpoint]) |
159 | 161 |
|
160 | 162 | print('predict test data')
|
161 | 163 | imgs_mask_test = model.predict(imgs_test, batch_size=1, verbose=1)
|
162 |
| - np.save('imgs_mask_test.npy', imgs_mask_test) |
| 164 | + np.save('../results/imgs_mask_test.npy', imgs_mask_test) |
| 165 | + |
| 166 | + def save_img(self): |
| 167 | + |
| 168 | + print("array to image") |
| 169 | + imgs = np.load('imgs_mask_test.npy') |
| 170 | + for i in range(imgs.shape[0]): |
| 171 | + img = imgs[i] |
| 172 | + img = array_to_img(img) |
| 173 | + img.save("../results/%d.jpg"%(i)) |
| 174 | + |
| 175 | + |
163 | 176 |
|
164 | 177 |
|
165 | 178 | if __name__ == '__main__':
|
166 | 179 | myunet = myUnet()
|
167 | 180 | myunet.train()
|
| 181 | + myunet.save_img() |
168 | 182 |
|
169 | 183 |
|
170 | 184 |
|
|
0 commit comments