|
| 1 | +import sys |
| 2 | +import argparse |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +from scipy.misc import imread, imresize |
| 6 | + |
| 7 | +import cPickle as pickle |
| 8 | + |
| 9 | +parser = argparse.ArgumentParser() |
| 10 | +parser.add_argument('--caffe', |
| 11 | + help='path to caffe installation') |
| 12 | +parser.add_argument('--model_def', |
| 13 | + help='path to model definition prototxt') |
| 14 | +parser.add_argument('--model', |
| 15 | + help='path to model parameters') |
| 16 | +parser.add_argument('--files', |
| 17 | + help='path to a file contsining a list of images') |
| 18 | +parser.add_argument('--gpu', |
| 19 | + action='store_true', |
| 20 | + help='whether to use gpu training') |
| 21 | +parser.add_argument('--out', |
| 22 | + help='name of the pickle file where to store the features') |
| 23 | + |
| 24 | +args = parser.parse_args() |
| 25 | + |
| 26 | +caffepath = args.caffe + '/python' |
| 27 | +sys.path.append(caffepath) |
| 28 | + |
| 29 | +import caffe |
| 30 | + |
| 31 | +def predict(in_data, net): |
| 32 | + """ |
| 33 | + Get the features for a batch of data using network |
| 34 | +
|
| 35 | + Inputs: |
| 36 | + in_data: data batch |
| 37 | + """ |
| 38 | + |
| 39 | + out = net.forward(**{net.inputs[0]: in_data}) |
| 40 | + features = out[net.outputs[0]].squeeze(axis=(2,3)) |
| 41 | + return features |
| 42 | + |
| 43 | + |
| 44 | +def batch_predict(filenames, net): |
| 45 | + """ |
| 46 | + Get the features for all images from filenames using a network |
| 47 | +
|
| 48 | + Inputs: |
| 49 | + filenames: a list of names of image files |
| 50 | +
|
| 51 | + Returns: |
| 52 | + an array of feature vectors for the images in that file |
| 53 | + """ |
| 54 | + |
| 55 | + N, C, H, W = net.blobs[net.inputs[0]].data.shape |
| 56 | + F = net.blobs[net.outputs[0]].data.shape[1] |
| 57 | + Nf = len(filenames) |
| 58 | + Hi, Wi, _ = imread(filenames[0]).shape |
| 59 | + allftrs = np.zeros((Nf, F)) |
| 60 | + for i in range(0, Nf, N): |
| 61 | + in_data = np.zeros((N, C, H, W), dtype=np.float32) |
| 62 | + |
| 63 | + batch_range = range(i, min(i+N, Nf)) |
| 64 | + batch_filenames = [filenames[j] for j in batch_range] |
| 65 | + Nb = len(batch_range) |
| 66 | + |
| 67 | + batch_images = np.zeros((Nb, 3, H, W)) |
| 68 | + for j,fname in enumerate(batch_filenames): |
| 69 | + im = imread(fname) |
| 70 | + if len(im.shape) == 2: |
| 71 | + im = np.tile(im[:,:,np.newaxis], (1,1,3)) |
| 72 | + # RGB -> BGR |
| 73 | + im = im[:,:,(2,1,0)] |
| 74 | + # mean subtraction |
| 75 | + im = im - np.array([103.939, 116.779, 123.68]) |
| 76 | + # resize |
| 77 | + im = imresize(im, (H, W)) |
| 78 | + # get channel in correct dimension |
| 79 | + im = np.transpose(im, (2, 0, 1)) |
| 80 | + batch_images[j,:,:,:] = im |
| 81 | + |
| 82 | + # insert into correct place |
| 83 | + in_data[0:len(batch_range), :, :, :] = batch_images |
| 84 | + |
| 85 | + # predict features |
| 86 | + ftrs = predict(in_data, net) |
| 87 | + |
| 88 | + for j in range(len(batch_range)): |
| 89 | + allftrs[i+j,:] = ftrs[j,:] |
| 90 | + |
| 91 | + print 'Done %d/%d files' % (i+len(batch_range), len(filenames)) |
| 92 | + |
| 93 | + return allftrs |
| 94 | + |
| 95 | + |
| 96 | +if args.gpu: |
| 97 | + caffe.set_mode_gpu() |
| 98 | +else: |
| 99 | + caffe.set_mode_cpu() |
| 100 | + |
| 101 | +net = caffe.Net(args.model_def, args.model) |
| 102 | +caffe.set_phase_test() |
| 103 | + |
| 104 | +filenames = [] |
| 105 | +with open(args.files) as fp: |
| 106 | + for line in fp: |
| 107 | + filename = line.strip().split()[0] |
| 108 | + filenames.append(filename) |
| 109 | + |
| 110 | +allftrs = batch_predict(filenames, net) |
| 111 | + |
| 112 | +# store the features in a pickle file |
| 113 | +with open(args.out, 'w') as fp: |
| 114 | + pickle.dump(allftrs, fp) |
0 commit comments