Skip to content

Commit 98ef5ac

Browse files
谢昕辰xiexinch
谢昕辰
and
xiexinch
authored
add upsample neck (open-mmlab#512)
* init * upsample v1.0 * fix errors * change to in_channels list * add unittest, docstring, norm/act config and rename Co-authored-by: xiexinch <[email protected]>
1 parent 84fb600 commit 98ef5ac

File tree

3 files changed

+100
-1
lines changed

3 files changed

+100
-1
lines changed

mmseg/models/necks/__init__.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
11
from .fpn import FPN
2+
from .multilevel_neck import MultiLevelNeck
23

3-
__all__ = ['FPN']
4+
__all__ = ['FPN', 'MultiLevelNeck']

mmseg/models/necks/multilevel_neck.py

Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
import torch.nn as nn
2+
import torch.nn.functional as F
3+
from mmcv.cnn import ConvModule
4+
5+
from ..builder import NECKS
6+
7+
8+
@NECKS.register_module()
9+
class MultiLevelNeck(nn.Module):
10+
"""MultiLevelNeck.
11+
12+
A neck structure connect vit backbone and decoder_heads.
13+
Args:
14+
in_channels (List[int]): Number of input channels per scale.
15+
out_channels (int): Number of output channels (used at each scale).
16+
scales (List[int]): Scale factors for each input feature map.
17+
norm_cfg (dict): Config dict for normalization layer. Default: None.
18+
act_cfg (dict): Config dict for activation layer in ConvModule.
19+
Default: None.
20+
"""
21+
22+
def __init__(self,
23+
in_channels,
24+
out_channels,
25+
scales=[0.5, 1, 2, 4],
26+
norm_cfg=None,
27+
act_cfg=None):
28+
super(MultiLevelNeck, self).__init__()
29+
assert isinstance(in_channels, list)
30+
self.in_channels = in_channels
31+
self.out_channels = out_channels
32+
self.scales = scales
33+
self.num_outs = len(scales)
34+
self.lateral_convs = nn.ModuleList()
35+
self.convs = nn.ModuleList()
36+
for in_channel in in_channels:
37+
self.lateral_convs.append(
38+
ConvModule(
39+
in_channel,
40+
out_channels,
41+
kernel_size=1,
42+
norm_cfg=norm_cfg,
43+
act_cfg=act_cfg))
44+
for _ in range(self.num_outs):
45+
self.convs.append(
46+
ConvModule(
47+
out_channels,
48+
out_channels,
49+
kernel_size=3,
50+
padding=1,
51+
stride=1,
52+
norm_cfg=norm_cfg,
53+
act_cfg=act_cfg))
54+
55+
def forward(self, inputs):
56+
assert len(inputs) == len(self.in_channels)
57+
print(inputs[0].shape)
58+
inputs = [
59+
lateral_conv(inputs[i])
60+
for i, lateral_conv in enumerate(self.lateral_convs)
61+
]
62+
# for len(inputs) not equal to self.num_outs
63+
if len(inputs) == 1:
64+
inputs = [inputs[0] for _ in range(self.num_outs)]
65+
outs = []
66+
for i in range(self.num_outs):
67+
x_resize = F.interpolate(
68+
inputs[i], scale_factor=self.scales[i], mode='bilinear')
69+
outs.append(self.convs[i](x_resize))
70+
return tuple(outs)
Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
import torch
2+
3+
from mmseg.models import MultiLevelNeck
4+
5+
6+
def test_multilevel_neck():
7+
8+
# Test multi feature maps
9+
in_channels = [256, 512, 1024, 2048]
10+
inputs = [torch.randn(1, c, 14, 14) for i, c in enumerate(in_channels)]
11+
12+
neck = MultiLevelNeck(in_channels, 256)
13+
outputs = neck(inputs)
14+
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
15+
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
16+
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
17+
assert outputs[3].shape == torch.Size([1, 256, 56, 56])
18+
19+
# Test one feature map
20+
in_channels = [768]
21+
inputs = [torch.randn(1, 768, 14, 14)]
22+
23+
neck = MultiLevelNeck(in_channels, 256)
24+
outputs = neck(inputs)
25+
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
26+
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
27+
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
28+
assert outputs[3].shape == torch.Size([1, 256, 56, 56])

0 commit comments

Comments
 (0)