|
| 1 | +// Time: O(n) |
| 2 | +// Space: O(n) |
| 3 | + |
| 4 | +class Solution { |
| 5 | +public: |
| 6 | + bool checkPartitioning(string s) { |
| 7 | + return modifiedManacher(s); |
| 8 | + } |
| 9 | + |
| 10 | +private: |
| 11 | + bool modifiedManacher(const string& s) { |
| 12 | + string T = preProcess(s); |
| 13 | + const int n = T.length(); |
| 14 | + vector<int> P(n); |
| 15 | + vector<bool> dp1(n); // dp1[i]: s[:i] is a palindromic string |
| 16 | + vector<bool> dp2(n); // dp2[i]: s[:i+1] is composed of 2 palindromic strings |
| 17 | + int C = 0, R = 0; |
| 18 | + for (int i = 1; i < n - 1; ++i) { |
| 19 | + int i_mirror = 2 * C - i; |
| 20 | + P[i] = (R > i) ? min(R - i, P[i_mirror]) : 0; |
| 21 | + while (T[i + 1 + P[i]] == T[i - 1 - P[i]]) { |
| 22 | + if (dp1[i - 1 - P[i]]) { |
| 23 | + dp2[i + 1 + P[i]] = true; |
| 24 | + } |
| 25 | + ++P[i]; |
| 26 | + } |
| 27 | + if (i + 1 + P[i] == n - 1 && dp2[i - 1 - P[i]]) { |
| 28 | + return true; |
| 29 | + } |
| 30 | + if (i - 1 - P[i] == 0) { |
| 31 | + dp1[i + 1 + P[i]] = true; |
| 32 | + } |
| 33 | + if (i + P[i] > R) { |
| 34 | + C = i; |
| 35 | + R = i + P[i]; |
| 36 | + } |
| 37 | + } |
| 38 | + return false; |
| 39 | + } |
| 40 | + |
| 41 | + string preProcess(const string& s) { |
| 42 | + if (s.empty()) { |
| 43 | + return "^$"; |
| 44 | + } |
| 45 | + string ret = "^"; |
| 46 | + for (int i = 0; i < s.length(); ++i) { |
| 47 | + ret += "#" + s.substr(i, 1); |
| 48 | + } |
| 49 | + ret += "#$"; |
| 50 | + return ret; |
| 51 | + } |
| 52 | +}; |
| 53 | + |
| 54 | +// Time: O(n^2) |
| 55 | +// Space: O(n) |
| 56 | +class Solution2 { |
| 57 | +public: |
| 58 | + bool checkPartitioning(string s) { |
| 59 | + vector<vector<bool>> dp(size(s), vector<bool>(size(s))); |
| 60 | + for (int i = size(s) - 1; i >= 0; --i) { |
| 61 | + for (int j = i; j < size(s); ++j) { |
| 62 | + if (s[i] == s[j] && (j - i < 2 || dp[i + 1][j - 1])) { |
| 63 | + dp[i][j] = true; |
| 64 | + } |
| 65 | + } |
| 66 | + } |
| 67 | + for (int i = 1; i + 1 < size(s); ++i) { |
| 68 | + for (int j = i + 1; j < size(s); ++j) { |
| 69 | + if (dp[0][i - 1] && dp[i][j - 1] && dp[j][size(s) - 1]) { |
| 70 | + return true; |
| 71 | + } |
| 72 | + } |
| 73 | + } |
| 74 | + return false; |
| 75 | + } |
| 76 | +}; |
0 commit comments