You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
*[NIPS Neural Abstract Machines and Program Induction workshop](ucmlr.github.io/nampi)
51
+
*<imgsrc="badges/origin-academia-green.svg"alt="origin-academia"align="top"> [NIPS Neural Abstract Machines and Program Induction workshop](ucmlr.github.io/nampi)
@@ -88,6 +89,7 @@ A curated list of awesome machine learning frameworks and algorithms that work o
88
89
89
90
#### Source Code Analysis and Language modeling
90
91
92
+
* <imgsrc="badges/25-pages-gray.svg"alt="25-pages"align="top"> [code2vec: Learning Distributed Representations of Code](https://arxiv.org/abs/1803.09473v2) - Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav, 2018.
91
93
* <imgsrc="badges/36-pages-gray.svg"alt="36-pages"align="top"> [A Survey of Machine Learning for Big Code and Naturalness](https://arxiv.org/abs/1709.06182v1) - Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, Charles Sutton, 2017.
92
94
* <imgsrc="badges/16-pages-gray.svg"alt="16-pages"align="top"> [Learning to Represent Programs with Graphs](https://arxiv.org/abs/1711.00740v1) - Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi, 2017.
93
95
* <imgsrc="badges/4-pages-gray.svg"alt="4-pages"align="top"> [A deep language model for software code](https://arxiv.org/abs/1608.02715v1) - Hoa Khanh Dam, Truyen Tran, Trang Pham, 2016.
@@ -96,6 +98,7 @@ A curated list of awesome machine learning frameworks and algorithms that work o
96
98
97
99
#### Neural Network Architectures and Algorithms
98
100
101
+
* <imgsrc="badges/16-pages-gray.svg"alt="16-pages"align="top"> [A General Path-Based Representation for Predicting Program Properties](https://arxiv.org/abs/1803.09544) - Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav, 2018.
99
102
* <imgsrc="badges/4-pages-gray.svg"alt="4-pages"align="top"> [Cross-Language Learning for Program Classification using Bilateral Tree-Based Convolutional Neural Networks](https://arxiv.org/abs/1710.06159v2) - Nghi D. Q. Bui, Lingxiao Jiang, Yijun Yu, 2017.
100
103
* <imgsrc="badges/17-pages-gray.svg"alt="17-pages"align="top"> [Syntax-Directed Variational Autoencoder for Structured Data](https://openreview.net/pdf?id=SyqShMZRb) - Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, Le Song, 2018.
101
104
* <imgsrc="badges/19-pages-gray.svg"alt="19-pages"align="top"> [Divide and Conquer with Neural Networks](http://arxiv.org/abs/1611.02401) - Nowak, Alex, and Joan Bruna, 2017.
@@ -177,6 +180,7 @@ A curated list of awesome machine learning frameworks and algorithms that work o
177
180
178
181
#### Differentiable Interpreters
179
182
183
+
* <imgsrc="badges/12-pages-gray.svg"alt="12-pages"align="top"> [DDRprog: A CLEVR Differentiable Dynamic Reasoning Programmer](https://arxiv.org/abs/1803.11361v1) - Joseph Suarez, Justin Johnson, Fei-Fei Li, 2018.
180
184
* <imgsrc="badges/16-pages-gray.svg"alt="16-pages"align="top"> [Improving the Universality and Learnability of Neural Programmer-Interpreters with Combinator Abstraction](https://arxiv.org/abs/1802.02696v1) - Da Xiao, Jo-Yu Liao, Xingyuan Yuan, 2018.
181
185
* <imgsrc="badges/10-pages-gray.svg"alt="10-pages"align="top"> [Differentiable Programs with Neural Libraries](https://arxiv.org/abs/1611.02109v2) - Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow, 2017.
182
186
* <imgsrc="badges/15-pages-gray.svg"alt="15-pages"align="top"> [Differentiable Functional Program Interpreters](https://arxiv.org/abs/1611.01988v2) - John K. Feser, Marc Brockschmidt, Alexander L. Gaunt, Daniel Tarlow, 2017.
0 commit comments