Skip to content

Commit cdafd92

Browse files
author
Mustafa Aldemir
committed
updated installation steps, added new examples
1 parent 017f2bf commit cdafd92

12 files changed

+1154
-1097
lines changed

2_MachineLearning.pdf

-169 KB
Binary file not shown.

CNN.ipynb

Lines changed: 0 additions & 601 deletions
This file was deleted.

CompareRegressionMethods.ipynb

Lines changed: 97 additions & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -4,16 +4,15 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"Example of Regression Analysis Using the Boston Housing Data Set\n",
8-
"http://facweb.cs.depaul.edu/mobasher/classes/CSC478/Data/housing-dscr.txt"
7+
"Example of Regression Analysis Using the Boston Housing Data Set: http://facweb.cs.depaul.edu/mobasher/classes/CSC478/Data/housing-dscr.txt\n",
8+
"\n",
9+
"Source: http://facweb.cs.depaul.edu/mobasher/classes/CSC478/Notes/IPython%20Notebook%20-%20Regression.html"
910
]
1011
},
1112
{
1213
"cell_type": "code",
1314
"execution_count": 1,
14-
"metadata": {
15-
"collapsed": false
16-
},
15+
"metadata": {},
1716
"outputs": [
1817
{
1918
"name": "stderr",
@@ -47,9 +46,7 @@
4746
{
4847
"cell_type": "code",
4948
"execution_count": 3,
50-
"metadata": {
51-
"collapsed": false
52-
},
49+
"metadata": {},
5350
"outputs": [
5451
{
5552
"data": {
@@ -142,9 +139,7 @@
142139
{
143140
"cell_type": "code",
144141
"execution_count": 4,
145-
"metadata": {
146-
"collapsed": false
147-
},
142+
"metadata": {},
148143
"outputs": [
149144
{
150145
"data": {
@@ -164,9 +159,7 @@
164159
{
165160
"cell_type": "code",
166161
"execution_count": 5,
167-
"metadata": {
168-
"collapsed": false
169-
},
162+
"metadata": {},
170163
"outputs": [
171164
{
172165
"data": {
@@ -186,9 +179,7 @@
186179
{
187180
"cell_type": "code",
188181
"execution_count": 6,
189-
"metadata": {
190-
"collapsed": false
191-
},
182+
"metadata": {},
192183
"outputs": [
193184
{
194185
"data": {
@@ -241,9 +232,7 @@
241232
{
242233
"cell_type": "code",
243234
"execution_count": 10,
244-
"metadata": {
245-
"collapsed": false
246-
},
235+
"metadata": {},
247236
"outputs": [
248237
{
249238
"data": {
@@ -284,9 +273,7 @@
284273
{
285274
"cell_type": "code",
286275
"execution_count": 15,
287-
"metadata": {
288-
"collapsed": false
289-
},
276+
"metadata": {},
290277
"outputs": [
291278
{
292279
"data": {
@@ -326,9 +313,7 @@
326313
{
327314
"cell_type": "code",
328315
"execution_count": 17,
329-
"metadata": {
330-
"collapsed": false
331-
},
316+
"metadata": {},
332317
"outputs": [
333318
{
334319
"data": {
@@ -356,9 +341,7 @@
356341
{
357342
"cell_type": "code",
358343
"execution_count": 18,
359-
"metadata": {
360-
"collapsed": false
361-
},
344+
"metadata": {},
362345
"outputs": [
363346
{
364347
"data": {
@@ -379,9 +362,7 @@
379362
{
380363
"cell_type": "code",
381364
"execution_count": 19,
382-
"metadata": {
383-
"collapsed": false
384-
},
365+
"metadata": {},
385366
"outputs": [
386367
{
387368
"data": {
@@ -402,9 +383,7 @@
402383
{
403384
"cell_type": "code",
404385
"execution_count": 21,
405-
"metadata": {
406-
"collapsed": false
407-
},
386+
"metadata": {},
408387
"outputs": [
409388
{
410389
"data": {
@@ -425,9 +404,7 @@
425404
{
426405
"cell_type": "code",
427406
"execution_count": 23,
428-
"metadata": {
429-
"collapsed": false
430-
},
407+
"metadata": {},
431408
"outputs": [
432409
{
433410
"data": {
@@ -454,9 +431,7 @@
454431
{
455432
"cell_type": "code",
456433
"execution_count": 24,
457-
"metadata": {
458-
"collapsed": false
459-
},
434+
"metadata": {},
460435
"outputs": [
461436
{
462437
"data": {
@@ -480,9 +455,7 @@
480455
{
481456
"cell_type": "code",
482457
"execution_count": 26,
483-
"metadata": {
484-
"collapsed": false
485-
},
458+
"metadata": {},
486459
"outputs": [
487460
{
488461
"name": "stdout",
@@ -501,9 +474,7 @@
501474
{
502475
"cell_type": "code",
503476
"execution_count": 27,
504-
"metadata": {
505-
"collapsed": false
506-
},
477+
"metadata": {},
507478
"outputs": [
508479
{
509480
"data": {
@@ -529,9 +500,7 @@
529500
{
530501
"cell_type": "code",
531502
"execution_count": 34,
532-
"metadata": {
533-
"collapsed": false
534-
},
503+
"metadata": {},
535504
"outputs": [
536505
{
537506
"data": {
@@ -562,9 +531,7 @@
562531
{
563532
"cell_type": "code",
564533
"execution_count": 35,
565-
"metadata": {
566-
"collapsed": false
567-
},
534+
"metadata": {},
568535
"outputs": [
569536
{
570537
"name": "stdout",
@@ -605,9 +572,7 @@
605572
{
606573
"cell_type": "code",
607574
"execution_count": 32,
608-
"metadata": {
609-
"collapsed": false
610-
},
575+
"metadata": {},
611576
"outputs": [
612577
{
613578
"data": {
@@ -629,9 +594,7 @@
629594
{
630595
"cell_type": "code",
631596
"execution_count": 33,
632-
"metadata": {
633-
"collapsed": false
634-
},
597+
"metadata": {},
635598
"outputs": [
636599
{
637600
"data": {
@@ -657,9 +620,7 @@
657620
{
658621
"cell_type": "code",
659622
"execution_count": 37,
660-
"metadata": {
661-
"collapsed": false
662-
},
623+
"metadata": {},
663624
"outputs": [
664625
{
665626
"data": {
@@ -688,9 +649,7 @@
688649
{
689650
"cell_type": "code",
690651
"execution_count": 38,
691-
"metadata": {
692-
"collapsed": false
693-
},
652+
"metadata": {},
694653
"outputs": [
695654
{
696655
"name": "stdout",
@@ -719,9 +678,7 @@
719678
{
720679
"cell_type": "code",
721680
"execution_count": 39,
722-
"metadata": {
723-
"collapsed": false
724-
},
681+
"metadata": {},
725682
"outputs": [
726683
{
727684
"name": "stdout",
@@ -818,9 +775,7 @@
818775
{
819776
"cell_type": "code",
820777
"execution_count": 40,
821-
"metadata": {
822-
"collapsed": false
823-
},
778+
"metadata": {},
824779
"outputs": [
825780
{
826781
"data": {
@@ -842,6 +797,76 @@
842797
"pl.show()"
843798
]
844799
},
800+
{
801+
"cell_type": "markdown",
802+
"metadata": {},
803+
"source": [
804+
"## Comparisons regression methods\n",
805+
"#### let's parametrize the regression methods\n"
806+
]
807+
},
808+
{
809+
"cell_type": "code",
810+
"execution_count": 44,
811+
"metadata": {},
812+
"outputs": [
813+
{
814+
"name": "stdout",
815+
"output_type": "stream",
816+
"text": [
817+
"Method: linear regression\n",
818+
"RMSE on training: 4.6795\n",
819+
"RMSE on 10-fold CV: 5.8819\n",
820+
"\n",
821+
"\n",
822+
"Method: lasso\n",
823+
"RMSE on training: 4.8570\n",
824+
"RMSE on 10-fold CV: 5.7675\n",
825+
"\n",
826+
"\n",
827+
"Method: ridge\n",
828+
"RMSE on training: 4.6822\n",
829+
"RMSE on 10-fold CV: 5.8535\n",
830+
"\n",
831+
"\n",
832+
"Method: elastic-net\n",
833+
"RMSE on training: 4.9072\n",
834+
"RMSE on 10-fold CV: 5.4936\n",
835+
"\n",
836+
"\n"
837+
]
838+
}
839+
],
840+
"source": [
841+
"a = 0.3\n",
842+
"for name,met in [\n",
843+
" ('linear regression', LinearRegression()),\n",
844+
" ('lasso', Lasso(fit_intercept=True, alpha=a)),\n",
845+
" ('ridge', Ridge(fit_intercept=True, alpha=a)),\n",
846+
" ('elastic-net', ElasticNet(fit_intercept=True, alpha=a))\n",
847+
" ]:\n",
848+
" met.fit(x,y)\n",
849+
" # p = np.array([met.predict(xi) for xi in x])\n",
850+
" p = met.predict(x)\n",
851+
" e = p-y\n",
852+
" total_error = np.dot(e,e)\n",
853+
" rmse_train = np.sqrt(total_error/len(p))\n",
854+
"\n",
855+
" kf = KFold(len(x), n_folds=10)\n",
856+
" err = 0\n",
857+
" for train,test in kf:\n",
858+
" met.fit(x[train],y[train])\n",
859+
" p = met.predict(x[test])\n",
860+
" e = p-y[test]\n",
861+
" err += np.dot(e,e)\n",
862+
"\n",
863+
" rmse_10cv = np.sqrt(err/len(x))\n",
864+
" print('Method: %s' %name)\n",
865+
" print('RMSE on training: %.4f' %rmse_train)\n",
866+
" print('RMSE on 10-fold CV: %.4f' %rmse_10cv)\n",
867+
" print('\\n')"
868+
]
869+
},
845870
{
846871
"cell_type": "code",
847872
"execution_count": null,
@@ -868,7 +893,7 @@
868893
"name": "python",
869894
"nbconvert_exporter": "python",
870895
"pygments_lexer": "ipython3",
871-
"version": "3.6.0"
896+
"version": "3.5.3"
872897
}
873898
},
874899
"nbformat": 4,

0 commit comments

Comments
 (0)