|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "\n", |
| 11 | + "from skimage import io\n", |
| 12 | + "from skimage import data\n", |
| 13 | + "from skimage.measure import block_reduce" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 7, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [ |
| 21 | + { |
| 22 | + "name": "stderr", |
| 23 | + "output_type": "stream", |
| 24 | + "text": [ |
| 25 | + "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/matplotlib_plugin.py:51: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", |
| 26 | + " out_of_range_float = (np.issubdtype(image.dtype, np.float) and\n", |
| 27 | + "/usr/local/lib/python3.6/dist-packages/matplotlib/axes/_base.py:1400: MatplotlibDeprecationWarning: The 'box-forced' keyword argument is deprecated since 2.2.\n", |
| 28 | + " \" since 2.2.\", cbook.mplDeprecation)\n" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "data": { |
| 33 | + "text/plain": [ |
| 34 | + "<matplotlib.image.AxesImage at 0x7fdb5828d5c0>" |
| 35 | + ] |
| 36 | + }, |
| 37 | + "execution_count": 7, |
| 38 | + "metadata": {}, |
| 39 | + "output_type": "execute_result" |
| 40 | + }, |
| 41 | + { |
| 42 | + "data": { |
| 43 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAAEYCAYAAADI0+pcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXusZWWZ5p/XAuQiUpRAUVIFxUVbVAaQCuAFFRwJONpiNF4zwUhC1J4E0520OJNM7GRi7Jhom8zEDmkdmKRtcWiZMsZpmgGNGm8UiNwLSqySgrqJoKCCoN/8cXbZ+/vtr/a71jmn9jmuPL+EcN691/rWu7619ld7Pfu9RClFxhgzRJ6z1A4YY8z+wgucMWaweIEzxgwWL3DGmMHiBc4YM1i8wBljBosXOGPMYPECZ4wZLAta4CLioojYHBFbIuLKxXLKGGMWg5hvJkNErJB0v6Q3Stou6RZJ7yml3LOvfQ4++OBy2GGHjY+RHWM+flU2z6/vmPPxYbnRusYLPa+FZsB0Of5yy7KZjz/ZPn3H7LJ932Nmn5n94eNC9nnqqaf0zDPPdLqBD+jtyb9xtqQtpZQHJSkiviTprZL2ucAddthhuvjii/9or1ixonqfE33AAbV73L61z3OeU38p/f3vfz/1/cyHbHxeGL7fou+i+4c//CEdc9r4XRa4vgse57Wvj7y2Lfp+ULJrTR8XOn5rzOx9HpNjPvvss73Gax0/24Y2r33mU3b/Ztu3XuMxp93Dt91228R4+2Ihj6jHSXpozN4+eq0iIi6PiE0Rsempp55awOGMMaYf+/1HhlLKVaWUDaWUDQcffPD+PpwxxvyRhTyiPixp3Zi9dvTaPomI6pGQjxDZ42DrETWj7zH4/nyO2Zfs8bCvD/PRafo+omaPfxwve5RrPdr3fYTMrmX26D4f7SmTLLLHP+5/4IEHTt0+O740OdfZYy99zu637JGX+3d5jM4kk/nqsQv5BneLpBdFxIkRcZCkd0v66gLGM8aYRWXe3+BKKc9GxH+SdIOkFZK+UEq5e9E8M8aYBbKQR1SVUr4u6euL5IsxxiwqC1rg5sP4s3Wmd2U6T2uM7H2GJ2T799WqWuEPC43n6rt/pvu0tiFd5n7a9tn7Cw1TadE3/ivTz0jLR+7DeeIxsnmlXpZdy0yjkybvSR6jr86XzWOmr7X2IfRp2roxDadqGWMGixc4Y8xg8QJnjBksM9XgIqLSA/qmKLX0rb5xbn33J1mM0Hz0tkzD6JL+Nc2Hls8LjTHL6KIDZuP31bPIQnMqqVW15jGLayN97y+On6UWSpN+L3bMWV8fW3MyTWObj0/7wt/gjDGDxQucMWaweIEzxgyWZRUHl8WctZ7l+Rp1ukyH6RsPtj/i4LK4osWYJ5JpYl1imcY55JBDpu5PDjrooMp++umnJ7bJ4iT5Psc4/PDDp77P8Z588snKZl5oy0fOdd9yR1neZpe8zswnkn0msmvfN55wPvUIp5234+CMMUZe4IwxA8YLnDFmsCwrDY7P3V30skxvoNbzzDPPTN2/b4ly0iVfNrOzWLusvHMXFloHL4tJO/LIIyv7xBNPrOzzzz+/slva5aGHHlrZ27dvr+w77rijstetW1fZp512WmVznlj6+p576mr727Ztq+zWnPzmN7+p7IXm+GYxZl1yhPseo+/+ffXZLq0GMk14vrnK/gZnjBksXuCMMYPFC5wxZrB4gTPGDJaZ/8gwThYQ2EXgX+wg2oUmlbfE0IX2HCWZj12CQccbcLegMHzBBRdU9otf/OLK5o8K+4O1a9dOtTN4Hc4666ypNu+djRs3TozJHz727NlT2fxR67e//W1lM3g4u+f7JvdL+Q8XGQst9tCib6HZ+eJvcMaYweIFzhgzWLzAGWMGy8w1uGnP81nwaGvfvkUz+wY9Zsfrm4zfIksi7xsUyaDZ5z3veRPbvP3tb69sBuKSvjrMcqRvoQW+f8kll6THeOyxxyr72muvrez777+/snmtaP/ud79Lj0kW2lwnCyTPPgP8jM2ngfa0YqdOtjfGGHmBM8YMGC9wxpjBsqRxcIvR7Jdkz/JZ42fqBa0k8GnH63JOWfwfNZBMU+P7jFG7+OKLJ3zoOw+LFZe0r+MNBcYDfvCDH6zsJ554orJZKPTGG2+sbMbRffvb367sp556asIHvsb7KYuTzOLmsnthPg3bswZDXWI7m77May9jjPkTwAucMWaweIEzxgyWmWtw057fF0OXYdOPvjFAZKGaXGuMI444orIZ68RmJ9RpjjnmmMqmxsZCkX1j/aTZ5QrOkuWg+7ERDrnwwgsrm7mrq1atquxvfvObE2P8/Oc/r2xqclmcWt/G4/OJeyMLzQnfF/4GZ4wZLF7gjDGDJV3gIuILEbE7Iu4ae21VRNwYEQ+M/r//a+UYY0xPumhwV0v675L+19hrV0q6qZTyyYi4cmR/tO/B++aRdtG39nfOZFaPq5Unym0Yx8a4NdZeM0vDYtQ16wv1Ut4rr3nNayr7nHPOmRjj+uuvr+zvfe97lU2dOsvX7kuXz2B2jL55w/v0JduglPItSb/Ay2+VdM3o72sk5VnIxhgzY+b7dWd1KWXH6O+dklbva8OIuDwiNkXEplbUtTHG7C8W/DxX5r5L7vO7fCnlqlLKhlLKhoMPPnihhzPGmM7MNw5uV0SsKaXsiIg1knZ33XH82TrTONi0ubX9YmsgfRsiP/e5z63sVpwT93n3u99d2StXruzt51KzHGLK+tI3vossx3NmzKQkvfOd76zsiy66qLKvvvrqyn744Ycre+fOnZXNfNisfuF8NLw+tflmUQ/uq5IuHf19qaTJbhzGGLPEdAkT+SdJ35P0ZxGxPSIuk/RJSW+MiAck/fuRbYwxy4r0EbWU8p59vPWGRfbFGGMWlSWtB5fBZ/8sD3Q+ZJobNQ7a1CM+9KEPTRyDWuL+ZhbxW9kx+taXm08/2b69BTIyTW4xcizp03zyhPvy/Oc/v7I//OEPV/ZXvvKVyt60aVNl795dS+yMoyNdegUvtFdrV5yqZYwZLF7gjDGDxQucMWawLKkG17ff4ny0pYXGOh111FGV/a53vauyWZutC4uVZ7cvZhGvleXkZtrTfOr2Z/NGbSjTgvrGa3XJhc7mntrTli1bKvuUU07p5dN8oJbNuLlf/KLOzGR9OZ4D57HLZ3ChNee64m9wxpjB4gXOGDNYvMAZYwbLzDW48Wft7Lk7ywPtMkb2PmPUaJ9//vmVPR/NjSy2RrZ58+bKZm/Ols9949iy/bN5ZiUZ1jljXwop1+2yHMms1wCv9W9+85vKZnGIVhzmQusP/vrXv65s6l3UgLuw0Jxb9nI99dRTK3vjxjoz8/HHH69sXusucXDZtZp1Lqoxxix7vMAZYwaLFzhjzGCZqQYXEZWOwedsPpdndaekPP4qe/+www6rbOaSMo8vo6VtZefZl0ceeaSyH3jggcresGFDOsbTTz9d2axrl8V3teqQjdPS1Ka939qeGhs1sSwnkj1FOe88Jt/n/pyjlk994+JOP/30yv76179e2ex520V/ymIM+2pyr3vd6yr7vPPOq+wrrriisjkH2XWScr11vvgbnDFmsHiBM8YMFi9wxpjB4gXOGDNYZv4jw7h4mP2IQKFxPoG+DM5k0OsHPvCBymYAal+6BDUuFBYk5A8G/AHgySefnBgjK7zIMShUMyiWwjJ/IGBA6xFHHDF1/JZPvNb8kYDH5Pa/+tWvKps/MPGcMn+kyaBWzlvf4g+8/xj4e/TRR0/dv8V8CnVOg+fw3ve+t7LZ1Kb1gxSvFZn2Y40DfY0xRl7gjDEDxgucMWawzDzZvk/jmEwXasFgzLPOOquyGTi5UH2sSyG+LPAyK8z4xBNPVDY1NwabUnNraRbUeqh5tHS7aT5QY2NwJ23u/4IXvGDiGJwn6l1ZADUDdanB0Qdy6KGHVvajjz46sc2qVasqm+d5yCGHVHYWCExt6o477qjs1772tZXd5TPBecmCvEnm8ytf+crK3rFjR2XffPPNE2NSP80+A/MtUOFvcMaYweIFzhgzWLzAGWMGy5I2ncninDJbmtRJzjjjjMp+05ve1MunhTY07tJggzZ1G2pq27Ztq2xqS8cee2yv8aVJzYw6DPehZsL9qetk+lamr0mT1zYbg/fTnj17evnEuDjqYa3CC2zQQlavXl3ZmTZ53HHHVfZDDz1U2Swu2SUujvco54l6K/XZvvoXdclW43Nqh1nj5/Fr7Tg4Y4yRFzhjzIDxAmeMGSwzz0Udf/bum6dHbUqa1GFe9apXLcDDvDkwY6mYU9nS8DItMYsNpIaxc+fOqT5Qx2lpcNS8qCVlcXH0OWsqQz2L80pNr0XWZCbTOglj1LJ4xdY8ZteSMYxZs2ru/7Of/ayyTz755MruosHxGNS/eO14TpkWSnbv3l3ZXT4ThJqc4+CMMQZ4gTPGDJZ0gYuIdRHxjYi4JyLujogrRq+viogbI+KB0f+PzMYyxphZ0kWDe1bSX5VSbouIwyXdGhE3Snq/pJtKKZ+MiCslXSnpo9MGiohKN8m0qS7P3cxhpK5Csjg3xphldIn/YowZtR36TP2BmgaPsWbNmspmvFbrnHnMLPeUYzAei7XUstg+6mmteaf2yG04T5yXVmzdNB+pTXWJ1aL+yXmkzVg7wnllXifrw5100klTx5MmdT0eg/cXdT7m4PK6HH744ZXN+69LjcSs9mPWxGhfpN/gSik7Sim3jf5+QtK9ko6T9FZJ14w2u0bSJfPywBhj9hO9NLiIWC/pTEk/kLS6lLL3n5edklbvY5/LI2JTRGzKKqYaY8xi0nmBi4jnSfpnSR8ppVSxEmXu+aX57FdKuaqUsqGUsqHvz83GGLMQOsXBRcSBmlvc/rGU8pXRy7siYk0pZUdErJG0e98j/HGc6tk6q/nE5/KWlsRn8zvvvLOymZvKeCvqCYxbou6S5VB2qX9PjYLaETUP6leMfeK8UWNp5QJmeif1LmpmWQxZVv+ty7d55pLSx0ynoQ+8VtTDsnzbVh8BxhzyWnHueQz6xP2p32b5tC14jO3bt1c2tca77767stnHhPcG55H5t62YN167LBd1XEdc1FzUmBvt85LuLaV8euytr0q6dPT3pZI2dj6qMcbMgC7f4F4t6T9KujMibh+99p8lfVLSlyPiMknbJL1z/7hojDHzI13gSinfkbSv74RvWFx3jDFm8Zh5Pbg+GhztVs4mNTHGDb385S+vbD7rU4+gnkC9YeXKlVPHa2kJLQ1s2j7UYZj/Sm2IPh55ZB1z3dIFqeVQJ6HGRt2Q+hjjvaixcA6oZ7XinDgvWV0zbs98WM4rtUqeA8drXcdbb721stetW1fZa9eurWz+0MZz4jEY50m9rBU/yGvHzxHvceYhcx54regTtc6f/OQnld36TGR6+7Raf64HZ4wx8gJnjBkwXuCMMYNl5hrc+PNz39zTLv0OqNNluaKMe6MGQu2JGl8XH6n9ZPmu1GUYx8Rz5HjcvqVvUUukLvPLX/6ysqnLULehzsJjUg/j+9TDpEm9ifpVplXyHOjjY489Vtk8J2qdrXqE55xzTmWzfhvzNBnXxvuLMZDMdd26dWtlv+QlL5nwifcg55pxlFu2bKlsXivWH+R1ePjhhyub897SLvvmlnbpP9zC3+CMMYPFC5wxZrB4gTPGDJaZ92Rg7NI4097buz/J4uAYk3PUUUdVNvUu1sZiTBFzKKnpMW9PmvSb2hKhHkWb80QfqfOwT6U0qblRb6LOx96snCfqW9QFWceM49NnafLacK6piTEvlDGO1IZoM7aP1+m+++6b8JE+nHfeeZXNef3xj39c2Vk9N8aYUQ9r1fGjvprls/IY1AEz/fTBBx+sbH7mWnSJcd2Xj46DM8YYeYEzxgwYL3DGmMEycw1u/FmbGktW76sVY8YxqAX99Kc/rWxqZByTsVHU9LKina2aYdRpshgg+kDdhToic0+puXTpi8q5psZGn6j93H///ZXNWKusR0NrXqn98NpRf+W9wJzJrFYb3//ud79b2e9973snfPziF79Y2dddd11lf+pTn6ps5kbffvvtlU3tkjoh74VNmzZN+MT8V8J4Qc4ztUjeb9TLeA5dYtY4RvY5zvqo7gt/gzPGDBYvcMaYweIFzhgzWLzAGWMGy8yT7cehsJ0VvOzS0CVrQLx58+bKzoRo/iBAgZbJ0i1BPyvUyGMwUJPJ0Gz0zB8EeA5dihRw3vhjCYXmm2++ubKZZM7EdfrM4ORWoCcDlPmjAOeVgbmtazEOrx3n/fvf/35lf+QjH5kYg2I45/HTn/50ZV944YWVfeyxx1Y2iz/wfmMQbqt5D38Q4o9QtPkjQ1YMgo2d+IMTr2V2HaTJaznfHxWIv8EZYwaLFzhjzGDxAmeMGSzLqukMyTS5FnyW5/M/A3+pF7DAIPUIaiBMWm9BH6gvUEehfkW97KGHHqpsalVMfmbRRWkyEf3ss8+u7HvuuaeyP/7xj1f21VdfXdmf+MQnKpvNgxnIy+O1ku3pN7Uivk8NjkUKjj/++MrOCgB8+MMfnjqelDdu5nm+8IUvrGzqgLzfOC+8P9evXz/hE+9Ram48T/pATY3Bxbz/Mrroafxs854ff9/J9sYYIy9wxpgB4wXOGDNYZp5s3+dZOouT6zIGNTnGd1FPoKZGH04++eTKpgZDjUSa1CBYBJFa0F133VXZ1GGo87DpB7WqVgEAakEbN26sbCaR0+f3ve99lf2yl72sspnwfcYZZ1Q29TL6I+VJ3lmRRF5LHpMxkIwf4zy+//3vnzjGvffeW9mM72P8H+9Xxr1RL2OyfZcCFNQ7s9hNXitquA888EBl836aT5EM6tK8NowN7aO7Vcee117GGPMngBc4Y8xg8QJnjBksM4+DG38e53P1YuSf9Y2dYwMONhahPsHYK2okrXNgbBNjfJjH+cgjj1Q2dZ1M98ua90iTeZ2veMUrpo55ww03TPWJuuBLX/rSyj7ttNMqmzrQ6tWrJ3zMGtNkBS+p82QaHvdnfOKGDRsmfKROx/spu3a8nzI9i9tTp5Qm5/bWW2+t7HPPPbeymU/LuDeeE33k/qT1GeTcT4t7k7rlobfwNzhjzGDxAmeMGSzpAhcRB0fEDyPixxFxd0T8zej1EyPiBxGxJSKujYiDsrGMMWaWdNHgnpZ0QSnlyYg4UNJ3IuL/SvpLSZ8ppXwpIv5e0mWSPjdtoIU2fm5Bzauvrpc1LGatNcYArVu3rrIZ1yRNxiFRY2P8FeOYGBNEn6kDUfdpNZrmmNQS6cNb3vKWyt61a1dls8kMNTjGuVHja12nrEE275dMc6POw/ez3NYW1BYZk8h5ps/Ut3hMzgvzjql9SpPnyXuSuarU7OgTfaYWytxV6mUt/Yw+LpkGV+bYewYHjv4rki6QtLeF0DWSLpmXB8YYs5/opMFFxIqIuF3Sbkk3SvqJpMdLKXv/ydwu6bh97Ht5RGyKiE1c6Y0xZn/SaYErpfy+lHKGpLWSzpb0kq4HKKVcVUrZUErZwEcpY4zZn/SKgyulPB4R35D0SkkrI+KA0be4tZIenr73JJnG0UUDyZpHZ3Fw1DhoU5PjeNSSWrXXqLExdqmVKzoO9QnmhVIzoabS0mkYj0X9ipoa54Fxa9SzGGfHeePxWnX1+uYfZrmpWbwW4Tkwd1WarBF3yimnVDb7afBa8byplzEWjxpc60sD/eb9wlxT9oVgDTvGxVFn5PjZZ7L1Gj930xo/L2o9uIg4OiJWjv4+RNIbJd0r6RuS3jHa7FJJG9sjGGPM0tDlG9waSddExArNLYhfLqV8LSLukfSliPhvkn4k6fP70U9jjOlNusCVUu6QdGbj9Qc1p8cZY8yyZOb14MZjaDL9K8vLa0G9imNmOk2mH1BDYS031v+SpFNPPbWyGRtFnYU6DHWXbJ7oY5dYKWqH9IFaD4+ZxWcxrq7VgyGji7bTB84T740uudHUu9hPg/oW72FqTbw3OO/HHHPM1PelSU2Xc33bbbdN9YH3BuG8ZHUbu2ifmXae+bQvnKpljBksXuCMMYPFC5wxZrDMXIMbf17PnuW7PHdnz/9ZffgsXzHLb+T4rZ4MJIuvYl5opqmwjj/fb2lV1MQ4L5lmls07z4nzSKiHtXziGJlOQ80uu3aMDSQt/ZbHZFwbr2Wm8/HeoH3CCSdUdiuGMtPU+sagZRpvxnx6qWT6fFf8Dc4YM1i8wBljBosXOGPMYJl5T4ZpfVGpmXTpr0iyWLm+ug3HoybCPqldCgpkmghzcKk90QfG0VGXYX04aVIryjQ46jI8Js+beha1J+o4Lb0105JuueWWymZMImv5sb8Ga9Qdd1xdEIfbtzS4rHYf8zh5bVlhh9eBOcGMg2vVSduxY8dUn/rqXzwG388+Q13ItPPxMRc1F9UYY/5U8QJnjBksXuCMMYNl5hrcOFn+WZZz2WWbTFPrUj9+HOo0rP/VhUxLzPSvLN+W59CqtcZ4PWpD1PGoA2Z5oVnfCOpZrJknSdu3b6/sb33rW5XNvM8sbm7btm2VTW2SWhXzcdevXz/hI+eWObjMRd2zZ8/EGONwXo8//vjKzmJHpcnzoo+ca14LzkPfeoWZxizln4EuY3TB3+CMMYPFC5wxZrB4gTPGDBYvcMaYwTLzHxnGRVQKidkPAIt9/BZZQUw25JjPMSmYstgkG/NSsOcPAtm8tZKjGQS7cuXKqftQFM4Chekjm7NQjGcjFEn62c9+VtmcN/5oQPE8+9GBDWEuuuiiymajHQb+djkGrw1tNghiAxfOE38AYNC3NHkP89pyDN4v9IEB1NlnqMsPd32T6V3w0hhjgBc4Y8xg8QJnjBksM9XgSinV83j2rN4luZ7P5tQf+gbyUud529veNvX9xdAJ6TP1LephDHBlMUrOSavpB7WdVqDtOCxgyWBkQp2HehaT0FvzuHnz5sretWtXZd9www2VzcDc7NozSJtBuWeddVZls+GxNKmp8drxfc4b7yfOG7dncdNWkc5NmzZN3YZFOHltsuKkWeBvF7LP9rTkeyfbG2OMvMAZYwaMFzhjzGBZVnFwWQOYLs0r+jatpRb15je/eer2GV30gb5NQajjUA/Liiq2fKIexX14DPqQxWNRx2FhR8ZasYCmJB111FGVfdNNN1V2lkSeFXN45JFHKvs73/lOZZ9++umVzVg+afKeZawcixpk9wcT5al3MTawFbfJogC8VrS3bt1a2TxPXqss9o/3M++tFlm8YJfm0S38Dc4YM1i8wBljBosXOGPMYFlSDY5kualdxss0OGog55577tT3s+N1gT5lxSS5PXVC5pEyVopxcq18RRagZD5sVsQwmweeE3VC6kCt68b81GweSBYHx/hC6l933nlnZZ966qkTx2AMImPK+D71K+aJ8jowto/zxJi21jbMuWVcXJbrnOncWXP01mcq22aa7Tg4Y4yRFzhjzIDpvMBFxIqI+FFEfG1knxgRP4iILRFxbURMPgcZY8wS0keDu0LSvZL2FrD6W0mfKaV8KSL+XtJlkj6XDTL+/N43nqYV89NFpxsn056y5/v5NL/ItCBqS/SJcUnUbai50ccu8VvUerL8xVWrVlV2Vv8tu9asOSZNaoe8H6hvUdfL4DzzOnRp8EI9lftQ56PPWf24rMkyNT8pj5XjPDHOjZpcppfS5yyOs0WWh943HvWP+3XZKCLWSvoPkv5hZIekCyRdN9rkGkmXzMsDY4zZT3RdFv9O0l9L2rt0v0DS46WUvf/8bJd0XGvHiLg8IjZFxCZGsxtjzP4kXeAi4s2SdpdSbp3PAUopV5VSNpRSNvDx0Bhj9iddNLhXS/rziHiTpIM1p8F9VtLKiDhg9C1uraTJYlmglFI933fR2Mbpko+WxdMwx5KayEJp1dLieVKXoQbC9zlmX42jNW87duyobOosa9asqWxqcMyxzL6d85wYF9eatyzOjT5kvQbY/4C5rNQBmaPJ3FhpUtOlbshj8FpTy8xizqi3cjxp8h5njw/qq9QReb9kTb8zumhwfRq4L2ocXCnlY6WUtaWU9ZLeLenmUsr7JH1D0jtGm10qaWPnoxpjzAxYSBzcRyX9ZURs0Zwm9/nFcckYYxaHXqlapZRvSvrm6O8HJfXvoWeMMTNi5rmo45pC1t+gS/5j1nP06KOPrmzmE/aNa+vb40GarHXGfag9ZrWwOF6m+7T0LY5JLYdxcRyDGh71sOx4PGfWZpMmdTtqRRzjhBNOqOxsnqip8V7g8X/1q1+lPrImHWPt2Pchg9eS47X6yVIvpebG2DmeQ/a569s7pZVnzGvHMRarJ7JTtYwxg8ULnDFmsHiBM8YMliXti0oYx8Tn8ixOTprMiezbf7EvWa03adJvakPUQGiz3hs1lT179lQ2z4l1zlpj0CfGTjFPk/tTQ6MeRg2OGl8rp5JaJHVA6n70iZoZt+d4xxxzTGUz55dxdK0xCeexb7B71le1Bec6u7+4fd+eIVkMW4uFfu664m9wxpjB4gXOGDNYvMAZYwbLzOPgxnUPxiVl9be6PLdTV8nqv5Es/obvMwezpcG1XhuH+lZWd5829Sxqfi3tkjoLz4u5orxWjC+kz8zj5LXM4rta+2Qxj6xBd9ppp00dj3mgjIs7+eSTp44nTcYPbtu2beoY2f2VxYZST23FmPF+yDTf7P7MtO8sTq51zlkfB8fBGWNMghc4Y8xg8QJnjBksM9fgxp+1M82tSx12aknUKF7+8pf38i/T+bK8vZaekfWRpI7H9x966KHKZswY54k+tHoVcJ5a/TXHodbEmDPqiNRUGJ9Ize244yYLQvOY3Id5n9TUOE+MWaOOeNJJJ1U249527do14SPnjfUFqSVx3jgvnDfeO9y/Sz1DanDZ/ZHFtWXxiTynVj3CLPaOx5xWR3Ia/gZnjBksXuCMMYPFC5wxZrB4gTPGDJaZ/8gwTt/ikS1xkYImxepWo5C+xxgna2DcImtQnCVDs4kIk8DZLIVCdJdgUArqbG5CwZ778xhZs+AjjzyystevXz/hI4OBGWzMMbKmRLxXGAROYZtzwB81pMkfPvgjAQshvPCFL6zs7DPA+4tFDXgdWvtw7jlP2Y/vwnVoAAAMkklEQVR5fYOTs2T9Ftk24+/7RwZjjJEXOGPMgPECZ4wZLDPV4CKiet7PGsJ2aTpDXaaVED1tjCy5mXpCFpTbpTEJoUaXaRrU2DiPWYCrNKm7UMfLgkOpNTEol/NIH7s0MCYMzOW8UJvMGmhTz6JeywKYXYpVZoG3DAxmgDQ1vawRNK+TNHnefXU+3hs8Zh+9rOs2WVHNcfok4vsbnDFmsHiBM8YMFi9wxpjBMvM4uPHn+yypl8/ajGOSJpPGqdMQHoP6Q1YIMmu4QU1FyhPy+T51POp+3J6aG3XJlmaRxanxPDgvPCb1L+qEmc7TKgjAbdjAhfPImLM1a9ZMHY9xdLy21LcYjyhNNoHh3FP/5PuE88x54bVs3W/U4LJ7tvW56kOmp7U0Od4P2eds2rbT8Dc4Y8xg8QJnjBksXuCMMYNl5nFw4xpEVkivC69//esru0tz6GnbU9fJ8jq7HI96A3UbaiZZsUhqctR1soKE0mQ8FuPS6CN94DzRp6xhELWmlg7EmDA2lWGuKueNPlFD4xxkecZdmnpn9zC1S+qAmX6VFZeUJu+HLIaRY9LmOXG8LJe1S1wc74e+n+N94W9wxpjB4gXOGDNYOn0PjIitkp6Q9HtJz5ZSNkTEKknXSlovaaukd5ZSJuvJGGPMEtHnQff8Usp4wuKVkm4qpXwyIq4c2R/tc/Cs6Qw58cQTJ15jviDJcksz/YFkTZlbcU7USah3saZXFnPG2ChqVYzfap0T55714LK4JOpb3J7zRL0sy7GUJs87a8hCH3iOnHfmnrZi8ab5I03m8FJTy8akxtv3OrR8yhp/06dsXjNNLrsOLe0yu1+y2n5dWcgj6lslXTP6+xpJlyzcHWOMWTy6LnBF0r9GxK0RcfnotdWllB2jv3dKWt3aMSIuj4hNEbGJ/+obY8z+pOsj6mtKKQ9HxDGSboyI+8bfLKWUiGjmT5RSrpJ0lSSdcMIJ3XMsjDFmgXRa4EopD4/+vzsirpd0tqRdEbGmlLIjItZI2t1lrPFnbWokfC6nnrV27dqWb5XdRduZtj1z+/itM4sBah2PegLPK4sxy5riUsfJ8kylydxR5nEyDo46YRb7lPlATa6lv3LuGS/IGnKcV54DfaB+y3nkHLVizthsmnoW84qZO81j8P7jPG7btq2yqQFKeS2+DN5fWf426aKfZRpcn32nkT6iRsRhEXH43r8lXSjpLklflXTpaLNLJW3sfFRjjJkBXb7BrZZ0/WgVP0DSF0sp/xIRt0j6ckRcJmmbpHfuPzeNMaY/6QJXSnlQ0umN1x+V9Ib94ZQxxiwGM81FLaVUOkoWt0S9Yt26dRNjTqsbJeW12Ah1HuouHI/bt+KSmEOZ1fjKejhQW+Ixu/Sb5TE4Zpa/yDpnjL3L8h3Z36CVe8jrT42N1yKrc8bxdu3aVdnMVeUctWIcs/4HPM++PUMZF5fFH+7rtWlk85j1WSVd+q5mNeqy3OWuOFXLGDNYvMAZYwaLFzhjzGCZuQY3/jzP52zqMGeeeWZlt/S2LNeUGkkWt0a9IasH16VmGHNFH3usrklAH3kMxntxe8Y5cXweX5r0O6shxhxL+pRpndT4utQ1y2IUCbVNzgt7lvLeob5Fza6lrzLOjfPI86Smxvsxi3nkPFLfbe2T6dSZ5pbtn9HaP8tDz2LtuuJvcMaYweIFzhgzWLzAGWMGy0w1uOc85zmVrpHVmVq9ui5Q0oqVomaRxctQK2L8FjU32sz9o9bU0olYh6yl5YxDPYoaBt/nOWeaXGuMrPZallvKnMqMrEaeNHkeWf8Mzn0Wi0e9jLpi5o80GQ9IfZT6J33i/cXtOc+ct5Z2mfVW5XlksXmZ7kw9LbNbPpC+sXz7wt/gjDGDxQucMWaweIEzxgyWmWpwUv3szWd75gJmNcekyWf1rAY+36fukvU/yOrRt+KSHnnkkcrO4thYK411yzgedcQutbYYv0VtiHNPvYs6DGPMeA48XlbDTprUyLJ8RZ5nFr/FYzJvlNeJcXHS5P2TxXNlecicZ76fxWW2yDQ5kmlw2faky+eYPk67hxe1Hpwxxvyp4gXOGDNYvMAZYwaLFzhjzGCZebL9uMBJsfD00+vCwVlD2tZrWVAif0Toa2cFLikCS5MBy2zgsnPnzsru2xQ3KzjAHwBa22QNsbOiiFlzniyws1VMMgtIzX4YYVPurEhn5mMXsZw/RGRNaI499tjKzn4YOf744yub5yDljZhp81pn90JfFpqsvxD8Dc4YM1i8wBljBosXOGPMYJl5oO/48zi1KQb6ZsGl0qQukgXyUrPgMTLtiHpW1pxFmgz+pc8sJkmdhsdgQjZ1nyw4tLVNltCfNbzO5p3zyMKNLf0ra17CY2RNZ7JrmzXobhUzzRLLs3nbsWNHZfP+4v3EogTUPqVJ7TELqs4Cf7MinF20yYwsaHu+yff+BmeMGSxe4Iwxg8ULnDFmsMxcgxtn/fr1lZ0lKnfRQBiXxpizTG/gsz7Ho+5D7aBVzDLTdqi77Nmzp7I5L9u3b69s6llZc2opj42itsNikn2LdjL5PmvA3Roja1LEe4HzynnMdMTs+NLkvGVxb9ye+mkW17l169bKbsXB8dpwm6x5dEtHHofzluljrSK0nMusCbwbPxtjDPACZ4wZLF7gjDGDZaYa3IoVK6rGt8zDo3aQ5WC2oEbGfahHUKd59NFHK5saXqZXtGLOeIzdu3dPHZP6BJvGZLogj9fK4aUOw30Ya0cticUhGevHc8qaW7ea9WRNlak98tpmcXBZ0yNey5Y2Rb2U9w+b8dBnwmtPH9euXVvZ991338QY9Jtzn+WW0gfOy2I0hMmKk/ZtXr0v/A3OGDNYvMAZYwaLFzhjzGCJxWqw2ulgEXskbZN0lKSfJ5svNfZxcbCPi4N9/DdOKKUc3WXDmS5wfzxoxKZSyoaZH7gH9nFxsI+Lg32cH35ENcYMFi9wxpjBslQL3FVLdNw+2MfFwT4uDvZxHiyJBmeMMbPAj6jGmMHiBc4YM1hmusBFxEURsTkitkTElbM89jQi4gsRsTsi7hp7bVVE3BgRD4z+f+S0Mfazf+si4hsRcU9E3B0RVyxDHw+OiB9GxI9HPv7N6PUTI+IHo2t+bURMNkCdva8rIuJHEfG15ehjRGyNiDsj4vaI2DR6bdlc65E/KyPiuoi4LyLujYhXLjcfpRkucBGxQtL/kHSxpJdKek9EvHRWx0+4WtJFeO1KSTeVUl4k6aaRvVQ8K+mvSikvlXSupL8Yzd1y8vFpSReUUk6XdIakiyLiXEl/K+kzpZRTJD0m6bIl9HEvV0i6d8xejj6eX0o5YyyubDlda0n6rKR/KaW8RNLpmpvP5ebjXGWAWfwn6ZWSbhizPybpY7M6fgf/1ku6a8zeLGnN6O81kjYvtY9jvm2U9Mbl6qOkQyXdJukczUW2H9C6B5bIt7Wa+/BdIOlrkmIZ+rhV0lF4bdlca0lHSPqpRj9SLkcf9/43y0fU4yQ9NGZvH722XFldStnb022npNXTNp4VEbFe0pmSfqBl5uPo0e92Sbsl3SjpJ5IeL6Xsrc+zHK7530n6a0l76/W8QMvPxyLpXyPi1oi4fPTacrrWJ0raI+l/jh71/yEiDtPy8lGSf2ToRJn7J2nJ42ki4nmS/lnSR0opVbG05eBjKeX3pZQzNPct6WxJL1lKf0hEvFnS7lLKrUvtS8JrSimv0Jyc8xcR8drxN5fBtT5A0iskfa6UcqakXwuPo8vAR0mzXeAelrRuzF47em25sisi1kjS6P+7k+33KxFxoOYWt38spXxl9PKy8nEvpZTHJX1Dc497KyNib6XIpb7mr5b05xGxVdKXNPeY+lktLx9VSnl49P/dkq7X3D8Wy+lab5e0vZTyg5F9neYWvOXko6TZLnC3SHrR6BergyS9W9JXZ3j8vnxV0qWjvy/VnO61JMRcOdPPS7q3lPLpsbeWk49HR8TK0d+HaE4jvFdzC907RpstqY+llI+VUtaWUtZr7v67uZTyPi0jHyPisIg4fO/fki6UdJeW0bUupeyU9FBE/NnopTdIukfLyMc/MmNx8k2S7tecNvNfllqAHPPrnyTtkPSM5v51ukxz2sxNkh6Q9P8krVpC/16jua/7d0i6ffTfm5aZj/9O0o9GPt4l6b+OXj9J0g8lbZH0vyU9d6mv98iv10v62nLzceTLj0f/3b33c7KcrvXInzMkbRpd7/8j6cjl5mMpxalaxpjh4h8ZjDGDxQucMWaweIEzxgwWL3DGmMHiBc4YM1i8wBljBosXOGPMYPn/xDnkdYAd1rEAAAAASUVORK5CYII=\n", |
| 44 | + "text/plain": [ |
| 45 | + "<Figure size 432x288 with 1 Axes>" |
| 46 | + ] |
| 47 | + }, |
| 48 | + "metadata": {}, |
| 49 | + "output_type": "display_data" |
| 50 | + } |
| 51 | + ], |
| 52 | + "source": [ |
| 53 | + "image = io.imread('dog.jpg', as_grey=True)\n", |
| 54 | + "new_image = block_reduce(image, block_size=(5, 5), func=np.max)\n", |
| 55 | + "io.imshow(new_image)" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": null, |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [] |
| 64 | + } |
| 65 | + ], |
| 66 | + "metadata": { |
| 67 | + "kernelspec": { |
| 68 | + "display_name": "Python 3", |
| 69 | + "language": "python", |
| 70 | + "name": "python3" |
| 71 | + }, |
| 72 | + "language_info": { |
| 73 | + "codemirror_mode": { |
| 74 | + "name": "ipython", |
| 75 | + "version": 3 |
| 76 | + }, |
| 77 | + "file_extension": ".py", |
| 78 | + "mimetype": "text/x-python", |
| 79 | + "name": "python", |
| 80 | + "nbconvert_exporter": "python", |
| 81 | + "pygments_lexer": "ipython3", |
| 82 | + "version": "3.6.5" |
| 83 | + } |
| 84 | + }, |
| 85 | + "nbformat": 4, |
| 86 | + "nbformat_minor": 2 |
| 87 | +} |
0 commit comments