|
| 1 | +dataset_type = 'FaceOccluded' |
| 2 | +data_root = 'data/occlusion-aware-dataset' |
| 3 | +crop_size = (512, 512) |
| 4 | +img_norm_cfg = dict( |
| 5 | + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
| 6 | +train_pipeline = [ |
| 7 | + dict(type='LoadImageFromFile'), |
| 8 | + dict(type='LoadAnnotations'), |
| 9 | + dict(type='Resize', img_scale=(512, 512)), |
| 10 | + dict(type='RandomFlip', prob=0.5), |
| 11 | + dict(type='RandomRotate', degree=(-30, 30), prob=0.5), |
| 12 | + dict(type='PhotoMetricDistortion'), |
| 13 | + dict( |
| 14 | + type='Normalize', |
| 15 | + mean=[123.675, 116.28, 103.53], |
| 16 | + std=[58.395, 57.12, 57.375], |
| 17 | + to_rgb=True), |
| 18 | + dict(type='DefaultFormatBundle'), |
| 19 | + dict(type='Collect', keys=['img', 'gt_semantic_seg']) |
| 20 | +] |
| 21 | +test_pipeline = [ |
| 22 | + dict(type='LoadImageFromFile'), |
| 23 | + dict( |
| 24 | + type='MultiScaleFlipAug', |
| 25 | + img_scale=(512, 512), |
| 26 | + img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], |
| 27 | + flip=True, |
| 28 | + transforms=[ |
| 29 | + dict(type='Resize', keep_ratio=True), |
| 30 | + dict(type='ResizeToMultiple', size_divisor=32), |
| 31 | + dict(type='RandomFlip'), |
| 32 | + dict( |
| 33 | + type='Normalize', |
| 34 | + mean=[123.675, 116.28, 103.53], |
| 35 | + std=[58.395, 57.12, 57.375], |
| 36 | + to_rgb=True), |
| 37 | + dict(type='ImageToTensor', keys=['img']), |
| 38 | + dict(type='Collect', keys=['img']) |
| 39 | + ]) |
| 40 | +] |
| 41 | + |
| 42 | +dataset_train_A = dict( |
| 43 | + type='FaceOccluded', |
| 44 | + data_root=data_root, |
| 45 | + img_dir='CelebAMask-HQ-original/image', |
| 46 | + ann_dir='CelebAMask-HQ-original/mask_edited', |
| 47 | + split='CelebAMask-HQ-original/split/train_ori.txt', |
| 48 | + pipeline=train_pipeline) |
| 49 | + |
| 50 | +dataset_train_B = dict( |
| 51 | + type='FaceOccluded', |
| 52 | + data_root=data_root, |
| 53 | + img_dir='NatOcc-SOT/image', |
| 54 | + ann_dir='NatOcc-SOT/mask', |
| 55 | + split='NatOcc-SOT/split/train.txt', |
| 56 | + pipeline=train_pipeline) |
| 57 | + |
| 58 | + |
| 59 | +dataset_valid = dict( |
| 60 | + type='FaceOccluded', |
| 61 | + data_root=data_root, |
| 62 | + img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image', |
| 63 | + ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask', |
| 64 | + split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/split/val.txt', |
| 65 | + pipeline=test_pipeline) |
| 66 | + |
| 67 | +dataset_test = dict( |
| 68 | + type='FaceOccluded', |
| 69 | + data_root=data_root, |
| 70 | + img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image', |
| 71 | + ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask', |
| 72 | + split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/test.txt', |
| 73 | + pipeline=test_pipeline) |
| 74 | + |
| 75 | +data = dict( |
| 76 | + samples_per_gpu=2, |
| 77 | + workers_per_gpu=2, |
| 78 | + train=[ |
| 79 | + dataset_train_A,dataset_train_B, |
| 80 | + ], |
| 81 | + val= dataset_valid, |
| 82 | + test=dataset_test) |
0 commit comments