Skip to content

Commit 808fca2

Browse files
author
hnr543
committed
2 parents 0de4c76 + b69ebce commit 808fca2

File tree

3 files changed

+69
-30
lines changed

3 files changed

+69
-30
lines changed

projects/capstone/README.md

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,4 @@ The Capstone is a two-staged project. The first is the proposal component, where
88

99
You can find the [capstone proposal rubric here](https://review.udacity.com/#!/rubrics/410/view), and the [capstone project rubric here](https://review.udacity.com/#!/rubrics/108/view). Please ensure that you are following directions correctly before submitting these two stages which encapsulate your capstone.
1010

11-
You will find an `open_projects` folder in these files. This will be where pre-curated capstone projects are available, should you choose to work on a project already partially designed for you.
12-
1311
Please email [[email protected]](mailto:[email protected]) if you have any questions.

projects/finding_donors/finding_donors.ipynb

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -237,7 +237,7 @@
237237
"| 2 | A | | 1 | 0 | 0 |\n",
238238
"\n",
239239
"Additionally, as with the non-numeric features, we need to convert the non-numeric target label, `'income'` to numerical values for the learning algorithm to work. Since there are only two possible categories for this label (\"<=50K\" and \">50K\"), we can avoid using one-hot encoding and simply encode these two categories as `0` and `1`, respectively. In code cell below, you will need to implement the following:\n",
240-
" - Use [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummies#pandas.get_dummies) to perform one-hot encoding on the `'features_raw'` data.\n",
240+
" - Use [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummies#pandas.get_dummies) to perform one-hot encoding on the `'features_log_minmax_transform'` data.\n",
241241
" - Convert the target label `'income_raw'` to numerical entries.\n",
242242
" - Set records with \"<=50K\" to `0` and records with \">50K\" to `1`."
243243
]
@@ -374,7 +374,6 @@
374374
"precision = None\n",
375375
"\n",
376376
"# TODO: Calculate F-score using the formula above for beta = 0.5 and correct values for precision and recall.\n",
377-
"# HINT: The formula above can be written as (1 + beta**2) * (precision * recall) / ((beta**2 * precision) + recall)\n",
378377
"fscore = None\n",
379378
"\n",
380379
"# Print the results \n",

projects/practice_projects/naive_bayes_tutorial/Naive_Bayes_tutorial.ipynb

Lines changed: 68 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,9 @@
6868
{
6969
"cell_type": "code",
7070
"execution_count": 1,
71-
"metadata": {},
71+
"metadata": {
72+
"collapsed": false
73+
},
7274
"outputs": [
7375
{
7476
"data": {
@@ -170,7 +172,9 @@
170172
{
171173
"cell_type": "code",
172174
"execution_count": 2,
173-
"metadata": {},
175+
"metadata": {
176+
"collapsed": false
177+
},
174178
"outputs": [
175179
{
176180
"name": "stdout",
@@ -315,7 +319,9 @@
315319
{
316320
"cell_type": "code",
317321
"execution_count": 3,
318-
"metadata": {},
322+
"metadata": {
323+
"collapsed": false
324+
},
319325
"outputs": [
320326
{
321327
"name": "stdout",
@@ -354,7 +360,9 @@
354360
{
355361
"cell_type": "code",
356362
"execution_count": 4,
357-
"metadata": {},
363+
"metadata": {
364+
"collapsed": false
365+
},
358366
"outputs": [
359367
{
360368
"name": "stdout",
@@ -399,7 +407,9 @@
399407
{
400408
"cell_type": "code",
401409
"execution_count": 6,
402-
"metadata": {},
410+
"metadata": {
411+
"collapsed": false
412+
},
403413
"outputs": [
404414
{
405415
"name": "stdout",
@@ -443,7 +453,9 @@
443453
{
444454
"cell_type": "code",
445455
"execution_count": 7,
446-
"metadata": {},
456+
"metadata": {
457+
"collapsed": false
458+
},
447459
"outputs": [
448460
{
449461
"name": "stdout",
@@ -559,7 +571,9 @@
559571
{
560572
"cell_type": "code",
561573
"execution_count": 10,
562-
"metadata": {},
574+
"metadata": {
575+
"collapsed": false
576+
},
563577
"outputs": [
564578
{
565579
"name": "stdout",
@@ -596,7 +610,9 @@
596610
{
597611
"cell_type": "code",
598612
"execution_count": 12,
599-
"metadata": {},
613+
"metadata": {
614+
"collapsed": false
615+
},
600616
"outputs": [
601617
{
602618
"data": {
@@ -651,7 +667,9 @@
651667
{
652668
"cell_type": "code",
653669
"execution_count": 13,
654-
"metadata": {},
670+
"metadata": {
671+
"collapsed": false
672+
},
655673
"outputs": [
656674
{
657675
"data": {
@@ -694,7 +712,9 @@
694712
{
695713
"cell_type": "code",
696714
"execution_count": 14,
697-
"metadata": {},
715+
"metadata": {
716+
"collapsed": false
717+
},
698718
"outputs": [
699719
{
700720
"data": {
@@ -845,7 +865,9 @@
845865
{
846866
"cell_type": "code",
847867
"execution_count": 51,
848-
"metadata": {},
868+
"metadata": {
869+
"collapsed": false
870+
},
849871
"outputs": [
850872
{
851873
"name": "stdout",
@@ -1002,7 +1024,9 @@
10021024
{
10031025
"cell_type": "code",
10041026
"execution_count": 27,
1005-
"metadata": {},
1027+
"metadata": {
1028+
"collapsed": false
1029+
},
10061030
"outputs": [
10071031
{
10081032
"name": "stdout",
@@ -1070,7 +1094,9 @@
10701094
{
10711095
"cell_type": "code",
10721096
"execution_count": 28,
1073-
"metadata": {},
1097+
"metadata": {
1098+
"collapsed": false
1099+
},
10741100
"outputs": [
10751101
{
10761102
"name": "stdout",
@@ -1115,7 +1141,9 @@
11151141
{
11161142
"cell_type": "code",
11171143
"execution_count": 203,
1118-
"metadata": {},
1144+
"metadata": {
1145+
"collapsed": false
1146+
},
11191147
"outputs": [
11201148
{
11211149
"name": "stdout",
@@ -1233,7 +1261,9 @@
12331261
{
12341262
"cell_type": "code",
12351263
"execution_count": 29,
1236-
"metadata": {},
1264+
"metadata": {
1265+
"collapsed": false
1266+
},
12371267
"outputs": [
12381268
{
12391269
"name": "stdout",
@@ -1263,7 +1293,9 @@
12631293
{
12641294
"cell_type": "code",
12651295
"execution_count": 30,
1266-
"metadata": {},
1296+
"metadata": {
1297+
"collapsed": false
1298+
},
12671299
"outputs": [
12681300
{
12691301
"name": "stdout",
@@ -1293,7 +1325,9 @@
12931325
{
12941326
"cell_type": "code",
12951327
"execution_count": 31,
1296-
"metadata": {},
1328+
"metadata": {
1329+
"collapsed": false
1330+
},
12971331
"outputs": [
12981332
{
12991333
"name": "stdout",
@@ -1335,7 +1369,9 @@
13351369
{
13361370
"cell_type": "code",
13371371
"execution_count": 32,
1338-
"metadata": {},
1372+
"metadata": {
1373+
"collapsed": false
1374+
},
13391375
"outputs": [
13401376
{
13411377
"name": "stdout",
@@ -1370,7 +1406,9 @@
13701406
{
13711407
"cell_type": "code",
13721408
"execution_count": 33,
1373-
"metadata": {},
1409+
"metadata": {
1410+
"collapsed": false
1411+
},
13741412
"outputs": [
13751413
{
13761414
"name": "stdout",
@@ -1438,7 +1476,9 @@
14381476
{
14391477
"cell_type": "code",
14401478
"execution_count": 53,
1441-
"metadata": {},
1479+
"metadata": {
1480+
"collapsed": false
1481+
},
14421482
"outputs": [
14431483
{
14441484
"data": {
@@ -1544,7 +1584,9 @@
15441584
{
15451585
"cell_type": "code",
15461586
"execution_count": 56,
1547-
"metadata": {},
1587+
"metadata": {
1588+
"collapsed": false
1589+
},
15481590
"outputs": [
15491591
{
15501592
"name": "stdout",
@@ -1596,21 +1638,21 @@
15961638
],
15971639
"metadata": {
15981640
"kernelspec": {
1599-
"display_name": "Python 3",
1641+
"display_name": "Python 2",
16001642
"language": "python",
1601-
"name": "python3"
1643+
"name": "python2"
16021644
},
16031645
"language_info": {
16041646
"codemirror_mode": {
16051647
"name": "ipython",
1606-
"version": 3
1648+
"version": 2
16071649
},
16081650
"file_extension": ".py",
16091651
"mimetype": "text/x-python",
16101652
"name": "python",
16111653
"nbconvert_exporter": "python",
1612-
"pygments_lexer": "ipython3",
1613-
"version": "3.6.0"
1654+
"pygments_lexer": "ipython2",
1655+
"version": "2.7.12"
16141656
}
16151657
},
16161658
"nbformat": 4,

0 commit comments

Comments
 (0)