Skip to content

where is pytorch_tokenizers.tools.llama2c.convert? #10571

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
hayyaw opened this issue Apr 30, 2025 · 3 comments
Closed

where is pytorch_tokenizers.tools.llama2c.convert? #10571

hayyaw opened this issue Apr 30, 2025 · 3 comments
Labels
module: llm Issues related to LLM examples and apps, and to the extensions/llm/ code

Comments

@hayyaw
Copy link

hayyaw commented Apr 30, 2025

🐛 Describe the bug

I can not find pytorch_tokenizers.tools.llama2c.convert with command "python -m pytorch_tokenizers.tools.llama2c.convert -t ../tokenizer.model -o ../tokenizer.bin" according to docs. the env
I use is built by "pip install executorch"

Versions

Collecting environment information...
PyTorch version: 2.7.0+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-6.8.0-58-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.5.119
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
Nvidia driver version: 565.57.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: 13th Gen Intel(R) Core(TM) i9-13900KF
CPU family: 6
Model: 183
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 1
CPU max MHz: 5800.0000
CPU min MHz: 800.0000
BogoMIPS: 5990.40
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 896 KiB (24 instances)
L1i cache: 1.3 MiB (24 instances)
L2 cache: 32 MiB (12 instances)
L3 cache: 36 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Mitigation; Clear Register File
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] executorch==0.6.0
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnxruntime==1.21.0
[pip3] optree==0.15.0
[pip3] torch==2.7.0
[pip3] torchao==0.10.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] triton==3.3.0
[conda] executorch 0.6.0 pypi_0 pypi
[conda] numpy 2.2.5 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] torch 2.7.0 pypi_0 pypi
[conda] torchao 0.10.0 pypi_0 pypi
[conda] torchaudio 2.7.0 pypi_0 pypi
[conda] torchvision 0.22.0 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi

cc @larryliu0820 @mergennachin @cccclai @helunwencser @jackzhxng

@tarun292 tarun292 added the module: llm Issues related to LLM examples and apps, and to the extensions/llm/ code label Apr 30, 2025
@github-project-automation github-project-automation bot moved this to To triage in ExecuTorch Core Apr 30, 2025
@tarun292
Copy link
Contributor

@larryliu0820 @jackzhxng tagging you guys as you've been working on tokenizers a bit.

@jackzhxng
Copy link
Contributor

Which docs are you following?

@hayyaw
Copy link
Author

hayyaw commented May 6, 2025

@hayyaw hayyaw closed this as completed May 8, 2025
@github-project-automation github-project-automation bot moved this from To triage to Done in ExecuTorch Core May 8, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
module: llm Issues related to LLM examples and apps, and to the extensions/llm/ code
Projects
Status: Done
Development

No branches or pull requests

3 participants