Skip to content

Commit cf623fd

Browse files
authored
Add files via upload
1 parent f42854b commit cf623fd

File tree

30 files changed

+1601616
-0
lines changed

30 files changed

+1601616
-0
lines changed
Lines changed: 91 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,91 @@
1+
require(ggplot2)
2+
require(caret)
3+
4+
5+
getwd()
6+
setwd('!!Regression/ML Process/!2 Restaurent Revenue Prediction/! 1 Single Tree Model/')
7+
getwd()
8+
training=read.csv('train.csv',header=T,sep=",",na.strings=c("NA",""," "))
9+
dim(training)
10+
str(training)
11+
names(training)
12+
head(training)
13+
summary(training$revenue)
14+
15+
summary(head(training))
16+
str(head(training))
17+
18+
levels(training$City)
19+
levels(training$City.Group)
20+
levels(training$Type)
21+
22+
summary(training$P1)
23+
x11()
24+
xtabs(revenue~City,training)
25+
plot(training$City.Group,training$revenue)
26+
dotplot(revenue~Open.Date,training)
27+
28+
?trainControl
29+
set.seed(1000)
30+
control1=trainControl(method="cv",number=30,repeats=10)
31+
control2=trainControl(method="boot",number=10,repeats=5)
32+
control3=trainControl(method="repeatedcv",number=20,repeats=5)
33+
34+
set.seed(10001)
35+
cart_model1=train(training[,-c(1,2,3,4,5,43)],training[,c("revenue")],method="rpart",trControl=control1,tuneLength=20)
36+
cart_model1
37+
summary(cart_model1)
38+
cart_model1$method
39+
cart_model1$modelInfo
40+
cart_model1$modelType
41+
cart_model1$results
42+
cart_model1$resample
43+
cart_model1$bestTune
44+
cart_model1$call
45+
cart_model1$metric
46+
cart_model1$control
47+
cart_model1$finalModel
48+
varImp(cart_model1)
49+
X11()
50+
plot(varImp(cart_model1))
51+
cart_model1$finalModel$variable.importance
52+
plot(cart_model1$finalModel$variable.importance,type='both')
53+
cart_model1$yLimits
54+
cart_model1$perfNames
55+
var(cart_model1$results)
56+
57+
set.seed(10002)
58+
cart_model2=train(training[,-c(1,2,3,4,5,43)],training[,c("revenue")],method="rpart",trControl=control2,tuneLength=35)
59+
cart_model2
60+
cart_model2$results
61+
cart_model2$resample
62+
X11()
63+
varImp(cart_model2)
64+
plot(varImp(cart_model2))
65+
66+
set.seed(10003)
67+
cart_model3=train(training[,-c(1,2,3,4,5,43)],training[,c("revenue")],method="rpart",trControl=control3)
68+
cart_model3
69+
x11()
70+
plot(cart_model3)
71+
cart_model3$results
72+
73+
74+
test=read.csv('test.csv',header=T,sep=",",na.strings=c("NA"," ",""))
75+
dim(test)
76+
dim(training)
77+
names(test)
78+
names(training)
79+
80+
levels(training$Type)=levels(test$Type)
81+
82+
test$Prediction=predict(cart_model1,test[,-c(1,2,3,4,5,43)])
83+
summary(test$Prediction)
84+
x11()
85+
write.csv(test[,c("Id","Prediction")],file="rpartmodel.csv",row.names=F)
86+
87+
88+
89+
90+
91+

Restaurent Revenue Prediction/! 1 Single Tree Model/test.csv

Lines changed: 100001 additions & 0 deletions
Large diffs are not rendered by default.

Restaurent Revenue Prediction/! 1 Single Tree Model/train.csv

Lines changed: 138 additions & 0 deletions
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)