Skip to content

Commit 0dba375

Browse files
committed
Fixed a small error
1 parent 0aebebd commit 0dba375

File tree

3 files changed

+21
-3
lines changed

3 files changed

+21
-3
lines changed

06_StatisticalInference/homework/hw1.Rmd

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ Consider influenza epidemics for two parent heterosexual families. Suppose that
4545
1. 15%
4646
2. 6%
4747
3. 5%
48-
4. _1%_
48+
4. _2%_
4949

5050
*** .hint
5151
$A = Father$, $P(A) = .06$, $B = Mother$, $P(B) = .05$
@@ -54,6 +54,9 @@ $P(A\cup B) = .15$,
5454
*** .explanation
5555
$P(A\cup B) = P(A) + P(B) - 2 P(AB)$ thus
5656
$$.15 = .06 + .05 - 2 P(AB)$$
57+
```{r}
58+
(0.15 - .06 - .05) / 2
59+
```
5760

5861
--- &radio
5962

06_StatisticalInference/homework/hw1.html

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ <h2>About these slides</h2>
6969
<li>15%</li>
7070
<li>6%</li>
7171
<li>5%</li>
72-
<li><em>1%</em></li>
72+
<li><em>2%</em></li>
7373
</ol>
7474

7575
<button class="quiz-submit btn btn-primary">Submit</button>
@@ -86,6 +86,12 @@ <h2>About these slides</h2>
8686
<p>\(P(A\cup B) = P(A) + P(B) - 2 P(AB)\) thus
8787
\[.15 = .06 + .05 - 2 P(AB)\]</p>
8888

89+
<pre><code class="r">(0.15 - .06 - .05) / 2
90+
</code></pre>
91+
92+
<pre><code>[1] 0.02
93+
</code></pre>
94+
8995
</div>
9096
</div>
9197
</article>

06_StatisticalInference/homework/hw1.md

Lines changed: 10 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ Consider influenza epidemics for two parent heterosexual families. Suppose that
3030
1. 15%
3131
2. 6%
3232
3. 5%
33-
4. _1%_
33+
4. _2%_
3434

3535
*** .hint
3636
$A = Father$, $P(A) = .06$, $B = Mother$, $P(B) = .05$
@@ -40,6 +40,15 @@ $P(A\cup B) = .15$,
4040
$P(A\cup B) = P(A) + P(B) - 2 P(AB)$ thus
4141
$$.15 = .06 + .05 - 2 P(AB)$$
4242

43+
```r
44+
(0.15 - .06 - .05) / 2
45+
```
46+
47+
```
48+
[1] 0.02
49+
```
50+
51+
4352
--- &radio
4453

4554
A random variable, $X$, is uniform, a box from $0$ to $1$ of height $1$. (So that it's density is $f(x) = 1$ for $0\leq x \leq 1$.) What is it's median expressed to two decimal places? </p>

0 commit comments

Comments
 (0)