Skip to content

Commit cc1b307

Browse files
committed
Feb 6 class updates
1 parent 8c6332b commit cc1b307

File tree

4 files changed

+13
-81
lines changed

4 files changed

+13
-81
lines changed

examples/keras-cnn/wandb/settings

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
[default]
22
entity: qualcomm
3-
project: digits-dec4
3+
project: digits-feb6
44
base_url: https://api.wandb.ai

examples/keras-mlp/wandb/settings

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
[default]
22
entity: qualcomm
3-
project: digits-sep25
3+
project: digits-feb6
44
base_url: https://api.wandb.ai
Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
[default]
2-
entity: oreilly-class
3-
project: digits-jan21
2+
entity: qualcomm
3+
project: digits-feb6
44
base_url: https://api.wandb.ai
Lines changed: 9 additions & 77 deletions
Original file line numberDiff line numberDiff line change
@@ -1,82 +1,14 @@
1-
# pip install opencv-python
2-
from tensorflow.keras.models import Sequential
3-
from tensorflow.keras.layers.core import Flatten, Dense, Dropout
4-
from tensorflow.keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
5-
from tensorflow.keras.optimizers import SGD
6-
from tensorflow.keras import backend as K
1+
from tensorflow.keras.applications.vgg16 import VGG16
72
import cv2
83
import numpy as np
9-
import os
10-
11-
# get weights from https://drive.google.com/file/d/0Bz7KyqmuGsilT0J5dmRCM0ROVHc
12-
K.set_image_dim_ordering('th')
13-
14-
15-
def VGG_16(weights_path=None):
16-
model = Sequential()
17-
model.add(ZeroPadding2D((1, 1), input_shape=(3, 224, 224)))
18-
model.add(Convolution2D(64, 3, 3, activation='relu'))
19-
model.add(ZeroPadding2D((1, 1)))
20-
model.add(Convolution2D(64, 3, 3, activation='relu'))
21-
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
22-
23-
model.add(ZeroPadding2D((1, 1)))
24-
model.add(Convolution2D(128, 3, 3, activation='relu'))
25-
model.add(ZeroPadding2D((1, 1)))
26-
model.add(Convolution2D(128, 3, 3, activation='relu'))
27-
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
28-
29-
model.add(ZeroPadding2D((1, 1)))
30-
model.add(Convolution2D(256, 3, 3, activation='relu'))
31-
model.add(ZeroPadding2D((1, 1)))
32-
model.add(Convolution2D(256, 3, 3, activation='relu'))
33-
model.add(ZeroPadding2D((1, 1)))
34-
model.add(Convolution2D(256, 3, 3, activation='relu'))
35-
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
36-
37-
model.add(ZeroPadding2D((1, 1)))
38-
model.add(Convolution2D(512, 3, 3, activation='relu'))
39-
model.add(ZeroPadding2D((1, 1)))
40-
model.add(Convolution2D(512, 3, 3, activation='relu'))
41-
model.add(ZeroPadding2D((1, 1)))
42-
model.add(Convolution2D(512, 3, 3, activation='relu'))
43-
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
44-
45-
model.add(ZeroPadding2D((1, 1)))
46-
model.add(Convolution2D(512, 3, 3, activation='relu'))
47-
model.add(ZeroPadding2D((1, 1)))
48-
model.add(Convolution2D(512, 3, 3, activation='relu'))
49-
model.add(ZeroPadding2D((1, 1)))
50-
model.add(Convolution2D(512, 3, 3, activation='relu'))
51-
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
52-
53-
model.add(Flatten())
54-
model.add(Dense(4096, activation='relu'))
55-
model.add(Dropout(0.5))
56-
model.add(Dense(4096, activation='relu'))
57-
model.add(Dropout(0.5))
58-
model.add(Dense(1000, activation='softmax'))
59-
60-
if weights_path:
61-
model.load_weights(weights_path)
62-
63-
return model
64-
654

665
if __name__ == "__main__":
67-
model = VGG_16()
6+
model = VGG16()
687
model.summary()
69-
# Test pretrained model if weights exist
70-
if os.path.exists("vgg16_weights.h5"):
71-
im = cv2.resize(cv2.imread('elephant.jpg'),
72-
(224, 224)).astype(np.float32)
73-
im[:, :, 0] -= 103.939
74-
im[:, :, 1] -= 116.779
75-
im[:, :, 2] -= 123.68
76-
im = im.transpose((2, 0, 1))
77-
im = np.expand_dims(im, axis=0)
78-
model = VGG_16('vgg16_weights.h5')
79-
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
80-
model.compile(optimizer=sgd, loss='categorical_crossentropy')
81-
out = model.predict(im)
82-
print(np.argmax(out))
8+
im = cv2.resize(cv2.imread('elephant.jpg'),
9+
(224, 224)).astype(np.float32)
10+
im[:, :, 0] -= 103.939
11+
im[:, :, 1] -= 116.779
12+
im[:, :, 2] -= 123.68
13+
out = model.predict(im)
14+
print(np.argmax(out))

0 commit comments

Comments
 (0)