Skip to content

Commit f08e9e6

Browse files
authored
Merge pull request rasbt#346 from rasbt/0.11.0
0.11.0 release
2 parents eef3bb9 + 73f3071 commit f08e9e6

15 files changed

+29
-24
lines changed

docs/sources/CHANGELOG.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ The CHANGELOG for the current development version is available at
77

88
---
99

10-
### Version 0.11.0dev
10+
### Version 0.11.0 (2017-03-14)
1111

1212
##### Downloads
1313

@@ -25,7 +25,7 @@ The CHANGELOG for the current development version is available at
2525
- New function implementing the 5x2cv paired t-test procedure (`paired_ttest_5x2cv`) proposed by Dieterrich (1998)
2626
to compare the performance of two models. ([#325](https://github.com/rasbt/mlxtend/issues/325))
2727
- A `refit` parameter was added to stacking classes (similar to the `refit` parameter in the `EnsembleVoteClassifier`), to support classifiers and regressors that follow the scikit-learn API but are not compatible with scikit-learn's `clone` function. ([#325](https://github.com/rasbt/mlxtend/issues/324))
28-
- The `ColumnSelector` now has a `drop_axis` argument to use it in pipelines with `CountVectorizers`. ([#333](https://github.com/rasbt/mlxtend/pull/333)
28+
- The `ColumnSelector` now has a `drop_axis` argument to use it in pipelines with `CountVectorizers`. ([#333](https://github.com/rasbt/mlxtend/pull/333))
2929

3030
##### Changes
3131

docs/sources/user_guide/evaluate/paired_ttest_kfold_cv.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@
4141
"cell_type": "markdown",
4242
"metadata": {},
4343
"source": [
44-
"K-fold cross-validated paired t-test procedure is a common method for comparing the performance of two models (classifiers or regressors) and addresses some of the drawbacks of the [resampled t-test procedure](paired_ttest_resampled.md); however, this method has still the problem that the training sets overlap and is not recommended to be used in practice [1], and techniques such as the [`paired_ttest_5times2cv`](paired_ttest_5times2cv.md) should be used instead.\n",
44+
"K-fold cross-validated paired t-test procedure is a common method for comparing the performance of two models (classifiers or regressors) and addresses some of the drawbacks of the [resampled t-test procedure](paired_ttest_resampled.md); however, this method has still the problem that the training sets overlap and is not recommended to be used in practice [1], and techniques such as the [`paired_ttest_5x2cv`](paired_ttest_5x2cv.md) should be used instead.\n",
4545
"\n",
4646
"To explain how this method works, let's consider to estimator (e.g., classifiers) A and B. Further, we have a labeled dataset *D*. In the common hold-out method, we typically split the dataset into 2 parts: a training and a test set. In the k-fold cross-validated paired t-test procedure, we split the test set into *k* parts of equal size, and each of these parts is then used for testing while the remaining *k-1* parts (joined together) are used for training a classifier or regressor (i.e., the standard k-fold cross-validation procedure).\n",
4747
"\n",
@@ -321,7 +321,7 @@
321321
"name": "python",
322322
"nbconvert_exporter": "python",
323323
"pygments_lexer": "ipython3",
324-
"version": "3.6.3"
324+
"version": "3.6.4"
325325
}
326326
},
327327
"nbformat": 4,

docs/sources/user_guide/plotting/plot_decision_regions.ipynb

Lines changed: 24 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -691,7 +691,7 @@
691691
},
692692
{
693693
"cell_type": "code",
694-
"execution_count": 17,
694+
"execution_count": 1,
695695
"metadata": {},
696696
"outputs": [
697697
{
@@ -700,7 +700,7 @@
700700
"text": [
701701
"## plot_decision_regions\n",
702702
"\n",
703-
"*plot_decision_regions(X, y, clf, feature_index=None, filler_feature_values=None, filler_feature_ranges=None, ax=None, X_highlight=None, res=0.02, legend=1, hide_spines=True, markers='s^oxv<>', colors='red,blue,limegreen,gray,cyan')*\n",
703+
"*plot_decision_regions(X, y, clf, feature_index=None, filler_feature_values=None, filler_feature_ranges=None, ax=None, X_highlight=None, res=None, legend=1, hide_spines=True, markers='s^oxv<>', colors='red,blue,limegreen,gray,cyan', scatter_kwargs=None, contourf_kwargs=None, scatter_highlight_kwargs=None)*\n",
704704
"\n",
705705
"Plot decision regions of a classifier.\n",
706706
"\n",
@@ -751,12 +751,14 @@
751751
"\n",
752752
" An array with data points that are used to highlight samples in `X`.\n",
753753
"\n",
754-
"- `res` : float or array-like, shape = (2,) (default: 0.02)\n",
754+
"- `res` : float or array-like, shape = (2,) (default: None)\n",
755755
"\n",
756-
" Grid width. If float, same resolution is used for both the x- and\n",
757-
" y-axis. If array-like, the first item is used on the x-axis, the\n",
758-
" second is used on the y-axis. Lower values increase the resolution but\n",
759-
" slow down the plotting.\n",
756+
" This parameter was used to define the grid width,\n",
757+
" but it has been deprecated in favor of\n",
758+
" determining the number of points given the figure DPI and size\n",
759+
" automatically for optimal results and computational efficiency.\n",
760+
" To increase the resolution, it's is recommended to use to provide\n",
761+
" a `dpi argument via matplotlib, e.g., `plt.figure(dpi=600)`.\n",
760762
"\n",
761763
"- `hide_spines` : bool (default: True)\n",
762764
"\n",
@@ -767,14 +769,26 @@
767769
" Integer to specify the legend location.\n",
768770
" No legend if legend is 0.\n",
769771
"\n",
770-
"- `markers` : str (default 's^oxv<>')\n",
772+
"- `markers` : str (default: 's^oxv<>')\n",
771773
"\n",
772774
" Scatterplot markers.\n",
773775
"\n",
774-
"- `colors` : str (default 'red,blue,limegreen,gray,cyan')\n",
776+
"- `colors` : str (default: 'red,blue,limegreen,gray,cyan')\n",
775777
"\n",
776778
" Comma separated list of colors.\n",
777779
"\n",
780+
"- `scatter_kwargs` : dict (default: None)\n",
781+
"\n",
782+
" Keyword arguments for underlying matplotlib scatter function.\n",
783+
"\n",
784+
"- `contourf_kwargs` : dict (default: None)\n",
785+
"\n",
786+
" Keyword arguments for underlying matplotlib contourf function.\n",
787+
"\n",
788+
"- `scatter_highlight_kwargs` : dict (default: None)\n",
789+
"\n",
790+
" Keyword arguments for underlying matplotlib scatter function.\n",
791+
"\n",
778792
"**Returns**\n",
779793
"\n",
780794
"- `ax` : matplotlib.axes.Axes object\n",
@@ -788,15 +802,6 @@
788802
"with open('../../api_modules/mlxtend.plotting/plot_decision_regions.md', 'r') as f:\n",
789803
" print(f.read())"
790804
]
791-
},
792-
{
793-
"cell_type": "code",
794-
"execution_count": null,
795-
"metadata": {
796-
"collapsed": true
797-
},
798-
"outputs": [],
799-
"source": []
800805
}
801806
],
802807
"metadata": {
@@ -816,7 +821,7 @@
816821
"name": "python",
817822
"nbconvert_exporter": "python",
818823
"pygments_lexer": "ipython3",
819-
"version": "3.6.2"
824+
"version": "3.6.4"
820825
}
821826
},
822827
"nbformat": 4,
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

mlxtend/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,4 +4,4 @@
44
#
55
# License: BSD 3 clause
66

7-
__version__ = '0.11.0dev'
7+
__version__ = '0.11.0'

0 commit comments

Comments
 (0)