|
691 | 691 | },
|
692 | 692 | {
|
693 | 693 | "cell_type": "code",
|
694 |
| - "execution_count": 17, |
| 694 | + "execution_count": 1, |
695 | 695 | "metadata": {},
|
696 | 696 | "outputs": [
|
697 | 697 | {
|
|
700 | 700 | "text": [
|
701 | 701 | "## plot_decision_regions\n",
|
702 | 702 | "\n",
|
703 |
| - "*plot_decision_regions(X, y, clf, feature_index=None, filler_feature_values=None, filler_feature_ranges=None, ax=None, X_highlight=None, res=0.02, legend=1, hide_spines=True, markers='s^oxv<>', colors='red,blue,limegreen,gray,cyan')*\n", |
| 703 | + "*plot_decision_regions(X, y, clf, feature_index=None, filler_feature_values=None, filler_feature_ranges=None, ax=None, X_highlight=None, res=None, legend=1, hide_spines=True, markers='s^oxv<>', colors='red,blue,limegreen,gray,cyan', scatter_kwargs=None, contourf_kwargs=None, scatter_highlight_kwargs=None)*\n", |
704 | 704 | "\n",
|
705 | 705 | "Plot decision regions of a classifier.\n",
|
706 | 706 | "\n",
|
|
751 | 751 | "\n",
|
752 | 752 | " An array with data points that are used to highlight samples in `X`.\n",
|
753 | 753 | "\n",
|
754 |
| - "- `res` : float or array-like, shape = (2,) (default: 0.02)\n", |
| 754 | + "- `res` : float or array-like, shape = (2,) (default: None)\n", |
755 | 755 | "\n",
|
756 |
| - " Grid width. If float, same resolution is used for both the x- and\n", |
757 |
| - " y-axis. If array-like, the first item is used on the x-axis, the\n", |
758 |
| - " second is used on the y-axis. Lower values increase the resolution but\n", |
759 |
| - " slow down the plotting.\n", |
| 756 | + " This parameter was used to define the grid width,\n", |
| 757 | + " but it has been deprecated in favor of\n", |
| 758 | + " determining the number of points given the figure DPI and size\n", |
| 759 | + " automatically for optimal results and computational efficiency.\n", |
| 760 | + " To increase the resolution, it's is recommended to use to provide\n", |
| 761 | + " a `dpi argument via matplotlib, e.g., `plt.figure(dpi=600)`.\n", |
760 | 762 | "\n",
|
761 | 763 | "- `hide_spines` : bool (default: True)\n",
|
762 | 764 | "\n",
|
|
767 | 769 | " Integer to specify the legend location.\n",
|
768 | 770 | " No legend if legend is 0.\n",
|
769 | 771 | "\n",
|
770 |
| - "- `markers` : str (default 's^oxv<>')\n", |
| 772 | + "- `markers` : str (default: 's^oxv<>')\n", |
771 | 773 | "\n",
|
772 | 774 | " Scatterplot markers.\n",
|
773 | 775 | "\n",
|
774 |
| - "- `colors` : str (default 'red,blue,limegreen,gray,cyan')\n", |
| 776 | + "- `colors` : str (default: 'red,blue,limegreen,gray,cyan')\n", |
775 | 777 | "\n",
|
776 | 778 | " Comma separated list of colors.\n",
|
777 | 779 | "\n",
|
| 780 | + "- `scatter_kwargs` : dict (default: None)\n", |
| 781 | + "\n", |
| 782 | + " Keyword arguments for underlying matplotlib scatter function.\n", |
| 783 | + "\n", |
| 784 | + "- `contourf_kwargs` : dict (default: None)\n", |
| 785 | + "\n", |
| 786 | + " Keyword arguments for underlying matplotlib contourf function.\n", |
| 787 | + "\n", |
| 788 | + "- `scatter_highlight_kwargs` : dict (default: None)\n", |
| 789 | + "\n", |
| 790 | + " Keyword arguments for underlying matplotlib scatter function.\n", |
| 791 | + "\n", |
778 | 792 | "**Returns**\n",
|
779 | 793 | "\n",
|
780 | 794 | "- `ax` : matplotlib.axes.Axes object\n",
|
|
788 | 802 | "with open('../../api_modules/mlxtend.plotting/plot_decision_regions.md', 'r') as f:\n",
|
789 | 803 | " print(f.read())"
|
790 | 804 | ]
|
791 |
| - }, |
792 |
| - { |
793 |
| - "cell_type": "code", |
794 |
| - "execution_count": null, |
795 |
| - "metadata": { |
796 |
| - "collapsed": true |
797 |
| - }, |
798 |
| - "outputs": [], |
799 |
| - "source": [] |
800 | 805 | }
|
801 | 806 | ],
|
802 | 807 | "metadata": {
|
|
816 | 821 | "name": "python",
|
817 | 822 | "nbconvert_exporter": "python",
|
818 | 823 | "pygments_lexer": "ipython3",
|
819 |
| - "version": "3.6.2" |
| 824 | + "version": "3.6.4" |
820 | 825 | }
|
821 | 826 | },
|
822 | 827 | "nbformat": 4,
|
|
0 commit comments