@@ -27,8 +27,9 @@ TorchSat is an open-source deep learning framework for satellite imagery analysi
27
27
28
28
## How to use
29
29
- [ Introduction] ( https://torchsat.readthedocs.io/en/latest/index.html )
30
- - [ Image Classification Tutorial] ( https://torchsat.readthedocs.io/en/latest/tutorials/image_classification.html )
31
- - ** Data augmentation** - [ data-augmentation.ipynb] ( exsamples/data-augmentation.ipynb )
30
+ - Image Classification Tutorial: [ Docs] ( https://torchsat.readthedocs.io/en/latest/tutorials/image-classification.html ) , [ Google Colab] ( https://colab.research.google.com/drive/1RLiz6ugYfR8hWP5vNkLjdyKjr6FY8SEy )
31
+ - Semantic Segmentation Tutorial: [ Docs] ( https://torchsat.readthedocs.io/en/latest/tutorials/semantic-segmentation.html )
32
+ - Data Augumentation: [ Docs] ( https://torchsat.readthedocs.io/en/latest/tutorials/data-augumentation.html ) , [ Google Colab] ( https://colab.research.google.com/drive/1M46TXAM-JNV708Wn0OQDDXnD5nK9yUOK )
32
33
33
34
34
35
## Features
@@ -72,11 +73,13 @@ Spatial-level transforms will simultaneously change both an input image as well
72
73
### Models
73
74
#### Classification
74
75
All models support multi-channels as input (e.g. 8 channels).
75
- - VGG: ` vgg11 ` , ` vgg11_bn ` , ` vgg13 ` , ` vgg13_bn ` , ` vgg16 ` , ` vgg16_bn ` ,` vgg19_bn ` , ` vgg19 `
76
- - ResNet: ` resnet18 ` , ` resnet34 ` , ` restnet50 ` , ` resnet101 ` , ` resnet152 `
77
- - DenseNet: ` densenet121 ` , ` densenet169 ` , ` densenet201 ` , ` densenet161 `
76
+ - VGG: ` vgg11 ` , ` vgg11_bn ` , ` vgg13 ` , ` vgg13_bn ` , ` vgg16 ` , ` vgg16_bn ` , ` vgg19_bn ` , ` vgg19 `
77
+ - ResNet: ` resnet18 ` , ` resnet34 ` , ` resnet50 ` , ` resnet101 ` , ` resnet152 ` , ` resnext50_32x4d ` , ` resnext101_32x8d ` , ` wide_resnet50_2 ` , ` wide_resnet101_2 `
78
+ - DenseNet: ` densenet121 ` , ` densenet169 ` , ` densenet201 `
78
79
- Inception: ` inception_v3 `
79
80
- MobileNet: ` mobilenet_v2 `
81
+ - EfficientNet: ` efficientnet_b0 ` , ` efficientnet_b1 ` , ` efficientnet_b2 ` , ` efficientnet_b3 ` ,` efficientnet_b4 ` , ` efficientnet_b5 ` , ` efficientnet_b6 ` , ` efficientnet_b7 `
82
+ - ResNeSt: ` resnest50 ` , ` resnest101 ` , ` resnest200 ` , ` resnest269 `
80
83
81
84
#### Sementic Segmentation
82
85
- UNet: ` unet ` , ` unet34 ` , ` unet101 ` , ` unet152 ` (with resnet as backbone.)
0 commit comments