|
| 1 | +# Time: O(n * α(n) + m * log(logm)) ~= O(n + m), m is the max of nums |
| 2 | +# Space: O(n) |
| 3 | + |
| 4 | +import itertools |
| 5 | + |
| 6 | + |
| 7 | +class UnionFind(object): # Time: O(n * α(n)), Space: O(n) |
| 8 | + def __init__(self, n): |
| 9 | + self.set = range(n) |
| 10 | + self.rank = [0]*n |
| 11 | + |
| 12 | + def find_set(self, x): |
| 13 | + stk = [] |
| 14 | + while self.set[x] != x: # path compression |
| 15 | + stk.append(x) |
| 16 | + x = self.set[x] |
| 17 | + while stk: |
| 18 | + self.set[stk.pop()] = x |
| 19 | + return x |
| 20 | + |
| 21 | + def union_set(self, x, y): |
| 22 | + x_root, y_root = map(self.find_set, (x, y)) |
| 23 | + if x_root == y_root: |
| 24 | + return False |
| 25 | + if self.rank[x_root] < self.rank[y_root]: # union by rank |
| 26 | + self.set[x_root] = y_root |
| 27 | + elif self.rank[x_root] > self.rank[y_root]: |
| 28 | + self.set[y_root] = x_root |
| 29 | + else: |
| 30 | + self.set[y_root] = x_root |
| 31 | + self.rank[x_root] += 1 |
| 32 | + return True |
| 33 | + |
| 34 | + |
| 35 | +class Solution(object): |
| 36 | + def gcdSort(self, nums): |
| 37 | + """ |
| 38 | + :type nums: List[int] |
| 39 | + :rtype: bool |
| 40 | + """ |
| 41 | + def modified_sieve_of_eratosthenes(n, lookup, uf): # Time: O(n * log(logn)), Space: O(n) |
| 42 | + if n < 2: |
| 43 | + return |
| 44 | + is_prime = [True]*(n+1) |
| 45 | + for i in xrange(2, len(is_prime)): |
| 46 | + if not is_prime[i]: |
| 47 | + continue |
| 48 | + for j in xrange(i+i, len(is_prime), i): |
| 49 | + is_prime[j] = False |
| 50 | + if j in lookup: # modified |
| 51 | + uf.union_set(i-1, j-1) |
| 52 | + |
| 53 | + max_num = max(nums) |
| 54 | + uf = UnionFind(max_num) |
| 55 | + modified_sieve_of_eratosthenes(max_num, set(nums), uf) |
| 56 | + return all(uf.find_set(a-1) == uf.find_set(b-1) for a, b in itertools.izip(nums, sorted(nums))) |
0 commit comments